xref: /linux/fs/squashfs/block.c (revision fdd51b3e73e906aac056f2c337710185607d43d1)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Squashfs - a compressed read only filesystem for Linux
4  *
5  * Copyright (c) 2002, 2003, 2004, 2005, 2006, 2007, 2008
6  * Phillip Lougher <phillip@squashfs.org.uk>
7  *
8  * block.c
9  */
10 
11 /*
12  * This file implements the low-level routines to read and decompress
13  * datablocks and metadata blocks.
14  */
15 
16 #include <linux/blkdev.h>
17 #include <linux/fs.h>
18 #include <linux/vfs.h>
19 #include <linux/slab.h>
20 #include <linux/pagemap.h>
21 #include <linux/string.h>
22 #include <linux/bio.h>
23 
24 #include "squashfs_fs.h"
25 #include "squashfs_fs_sb.h"
26 #include "squashfs.h"
27 #include "decompressor.h"
28 #include "page_actor.h"
29 
30 /*
31  * Returns the amount of bytes copied to the page actor.
32  */
33 static int copy_bio_to_actor(struct bio *bio,
34 			     struct squashfs_page_actor *actor,
35 			     int offset, int req_length)
36 {
37 	void *actor_addr;
38 	struct bvec_iter_all iter_all = {};
39 	struct bio_vec *bvec = bvec_init_iter_all(&iter_all);
40 	int copied_bytes = 0;
41 	int actor_offset = 0;
42 
43 	squashfs_actor_nobuff(actor);
44 	actor_addr = squashfs_first_page(actor);
45 
46 	if (WARN_ON_ONCE(!bio_next_segment(bio, &iter_all)))
47 		return 0;
48 
49 	while (copied_bytes < req_length) {
50 		int bytes_to_copy = min_t(int, bvec->bv_len - offset,
51 					  PAGE_SIZE - actor_offset);
52 
53 		bytes_to_copy = min_t(int, bytes_to_copy,
54 				      req_length - copied_bytes);
55 		if (!IS_ERR(actor_addr))
56 			memcpy(actor_addr + actor_offset, bvec_virt(bvec) +
57 					offset, bytes_to_copy);
58 
59 		actor_offset += bytes_to_copy;
60 		copied_bytes += bytes_to_copy;
61 		offset += bytes_to_copy;
62 
63 		if (actor_offset >= PAGE_SIZE) {
64 			actor_addr = squashfs_next_page(actor);
65 			if (!actor_addr)
66 				break;
67 			actor_offset = 0;
68 		}
69 		if (offset >= bvec->bv_len) {
70 			if (!bio_next_segment(bio, &iter_all))
71 				break;
72 			offset = 0;
73 		}
74 	}
75 	squashfs_finish_page(actor);
76 	return copied_bytes;
77 }
78 
79 static int squashfs_bio_read_cached(struct bio *fullbio,
80 		struct address_space *cache_mapping, u64 index, int length,
81 		u64 read_start, u64 read_end, int page_count)
82 {
83 	struct page *head_to_cache = NULL, *tail_to_cache = NULL;
84 	struct block_device *bdev = fullbio->bi_bdev;
85 	int start_idx = 0, end_idx = 0;
86 	struct bvec_iter_all iter_all;
87 	struct bio *bio = NULL;
88 	struct bio_vec *bv;
89 	int idx = 0;
90 	int err = 0;
91 
92 	bio_for_each_segment_all(bv, fullbio, iter_all) {
93 		struct page *page = bv->bv_page;
94 
95 		if (page->mapping == cache_mapping) {
96 			idx++;
97 			continue;
98 		}
99 
100 		/*
101 		 * We only use this when the device block size is the same as
102 		 * the page size, so read_start and read_end cover full pages.
103 		 *
104 		 * Compare these to the original required index and length to
105 		 * only cache pages which were requested partially, since these
106 		 * are the ones which are likely to be needed when reading
107 		 * adjacent blocks.
108 		 */
109 		if (idx == 0 && index != read_start)
110 			head_to_cache = page;
111 		else if (idx == page_count - 1 && index + length != read_end)
112 			tail_to_cache = page;
113 
114 		if (!bio || idx != end_idx) {
115 			struct bio *new = bio_alloc_clone(bdev, fullbio,
116 							  GFP_NOIO, &fs_bio_set);
117 
118 			if (bio) {
119 				bio_trim(bio, start_idx * PAGE_SECTORS,
120 					 (end_idx - start_idx) * PAGE_SECTORS);
121 				bio_chain(bio, new);
122 				submit_bio(bio);
123 			}
124 
125 			bio = new;
126 			start_idx = idx;
127 		}
128 
129 		idx++;
130 		end_idx = idx;
131 	}
132 
133 	if (bio) {
134 		bio_trim(bio, start_idx * PAGE_SECTORS,
135 			 (end_idx - start_idx) * PAGE_SECTORS);
136 		err = submit_bio_wait(bio);
137 		bio_put(bio);
138 	}
139 
140 	if (err)
141 		return err;
142 
143 	if (head_to_cache) {
144 		int ret = add_to_page_cache_lru(head_to_cache, cache_mapping,
145 						read_start >> PAGE_SHIFT,
146 						GFP_NOIO);
147 
148 		if (!ret) {
149 			SetPageUptodate(head_to_cache);
150 			unlock_page(head_to_cache);
151 		}
152 
153 	}
154 
155 	if (tail_to_cache) {
156 		int ret = add_to_page_cache_lru(tail_to_cache, cache_mapping,
157 						(read_end >> PAGE_SHIFT) - 1,
158 						GFP_NOIO);
159 
160 		if (!ret) {
161 			SetPageUptodate(tail_to_cache);
162 			unlock_page(tail_to_cache);
163 		}
164 	}
165 
166 	return 0;
167 }
168 
169 static struct page *squashfs_get_cache_page(struct address_space *mapping,
170 					    pgoff_t index)
171 {
172 	struct page *page;
173 
174 	if (!mapping)
175 		return NULL;
176 
177 	page = find_get_page(mapping, index);
178 	if (!page)
179 		return NULL;
180 
181 	if (!PageUptodate(page)) {
182 		put_page(page);
183 		return NULL;
184 	}
185 
186 	return page;
187 }
188 
189 static int squashfs_bio_read(struct super_block *sb, u64 index, int length,
190 			     struct bio **biop, int *block_offset)
191 {
192 	struct squashfs_sb_info *msblk = sb->s_fs_info;
193 	struct address_space *cache_mapping = msblk->cache_mapping;
194 	const u64 read_start = round_down(index, msblk->devblksize);
195 	const sector_t block = read_start >> msblk->devblksize_log2;
196 	const u64 read_end = round_up(index + length, msblk->devblksize);
197 	const sector_t block_end = read_end >> msblk->devblksize_log2;
198 	int offset = read_start - round_down(index, PAGE_SIZE);
199 	int total_len = (block_end - block) << msblk->devblksize_log2;
200 	const int page_count = DIV_ROUND_UP(total_len + offset, PAGE_SIZE);
201 	int error, i;
202 	struct bio *bio;
203 
204 	bio = bio_kmalloc(page_count, GFP_NOIO);
205 	if (!bio)
206 		return -ENOMEM;
207 	bio_init(bio, sb->s_bdev, bio->bi_inline_vecs, page_count, REQ_OP_READ);
208 	bio->bi_iter.bi_sector = block * (msblk->devblksize >> SECTOR_SHIFT);
209 
210 	for (i = 0; i < page_count; ++i) {
211 		unsigned int len =
212 			min_t(unsigned int, PAGE_SIZE - offset, total_len);
213 		pgoff_t index = (read_start >> PAGE_SHIFT) + i;
214 		struct page *page;
215 
216 		page = squashfs_get_cache_page(cache_mapping, index);
217 		if (!page)
218 			page = alloc_page(GFP_NOIO);
219 
220 		if (!page) {
221 			error = -ENOMEM;
222 			goto out_free_bio;
223 		}
224 
225 		/*
226 		 * Use the __ version to avoid merging since we need each page
227 		 * to be separate when we check for and avoid cached pages.
228 		 */
229 		__bio_add_page(bio, page, len, offset);
230 		offset = 0;
231 		total_len -= len;
232 	}
233 
234 	if (cache_mapping)
235 		error = squashfs_bio_read_cached(bio, cache_mapping, index,
236 						 length, read_start, read_end,
237 						 page_count);
238 	else
239 		error = submit_bio_wait(bio);
240 	if (error)
241 		goto out_free_bio;
242 
243 	*biop = bio;
244 	*block_offset = index & ((1 << msblk->devblksize_log2) - 1);
245 	return 0;
246 
247 out_free_bio:
248 	bio_free_pages(bio);
249 	bio_uninit(bio);
250 	kfree(bio);
251 	return error;
252 }
253 
254 /*
255  * Read and decompress a metadata block or datablock.  Length is non-zero
256  * if a datablock is being read (the size is stored elsewhere in the
257  * filesystem), otherwise the length is obtained from the first two bytes of
258  * the metadata block.  A bit in the length field indicates if the block
259  * is stored uncompressed in the filesystem (usually because compression
260  * generated a larger block - this does occasionally happen with compression
261  * algorithms).
262  */
263 int squashfs_read_data(struct super_block *sb, u64 index, int length,
264 		       u64 *next_index, struct squashfs_page_actor *output)
265 {
266 	struct squashfs_sb_info *msblk = sb->s_fs_info;
267 	struct bio *bio = NULL;
268 	int compressed;
269 	int res;
270 	int offset;
271 
272 	if (length) {
273 		/*
274 		 * Datablock.
275 		 */
276 		compressed = SQUASHFS_COMPRESSED_BLOCK(length);
277 		length = SQUASHFS_COMPRESSED_SIZE_BLOCK(length);
278 		TRACE("Block @ 0x%llx, %scompressed size %d, src size %d\n",
279 			index, compressed ? "" : "un", length, output->length);
280 	} else {
281 		/*
282 		 * Metadata block.
283 		 */
284 		const u8 *data;
285 		struct bvec_iter_all iter_all = {};
286 		struct bio_vec *bvec = bvec_init_iter_all(&iter_all);
287 
288 		if (index + 2 > msblk->bytes_used) {
289 			res = -EIO;
290 			goto out;
291 		}
292 		res = squashfs_bio_read(sb, index, 2, &bio, &offset);
293 		if (res)
294 			goto out;
295 
296 		if (WARN_ON_ONCE(!bio_next_segment(bio, &iter_all))) {
297 			res = -EIO;
298 			goto out_free_bio;
299 		}
300 		/* Extract the length of the metadata block */
301 		data = bvec_virt(bvec);
302 		length = data[offset];
303 		if (offset < bvec->bv_len - 1) {
304 			length |= data[offset + 1] << 8;
305 		} else {
306 			if (WARN_ON_ONCE(!bio_next_segment(bio, &iter_all))) {
307 				res = -EIO;
308 				goto out_free_bio;
309 			}
310 			data = bvec_virt(bvec);
311 			length |= data[0] << 8;
312 		}
313 		bio_free_pages(bio);
314 		bio_uninit(bio);
315 		kfree(bio);
316 
317 		compressed = SQUASHFS_COMPRESSED(length);
318 		length = SQUASHFS_COMPRESSED_SIZE(length);
319 		index += 2;
320 
321 		TRACE("Block @ 0x%llx, %scompressed size %d\n", index - 2,
322 		      compressed ? "" : "un", length);
323 	}
324 	if (length <= 0 || length > output->length ||
325 			(index + length) > msblk->bytes_used) {
326 		res = -EIO;
327 		goto out;
328 	}
329 
330 	if (next_index)
331 		*next_index = index + length;
332 
333 	res = squashfs_bio_read(sb, index, length, &bio, &offset);
334 	if (res)
335 		goto out;
336 
337 	if (compressed) {
338 		if (!msblk->stream) {
339 			res = -EIO;
340 			goto out_free_bio;
341 		}
342 		res = msblk->thread_ops->decompress(msblk, bio, offset, length, output);
343 	} else {
344 		res = copy_bio_to_actor(bio, output, offset, length);
345 	}
346 
347 out_free_bio:
348 	bio_free_pages(bio);
349 	bio_uninit(bio);
350 	kfree(bio);
351 out:
352 	if (res < 0) {
353 		ERROR("Failed to read block 0x%llx: %d\n", index, res);
354 		if (msblk->panic_on_errors)
355 			panic("squashfs read failed");
356 	}
357 
358 	return res;
359 }
360