1 /* 2 * "splice": joining two ropes together by interweaving their strands. 3 * 4 * This is the "extended pipe" functionality, where a pipe is used as 5 * an arbitrary in-memory buffer. Think of a pipe as a small kernel 6 * buffer that you can use to transfer data from one end to the other. 7 * 8 * The traditional unix read/write is extended with a "splice()" operation 9 * that transfers data buffers to or from a pipe buffer. 10 * 11 * Named by Larry McVoy, original implementation from Linus, extended by 12 * Jens to support splicing to files, network, direct splicing, etc and 13 * fixing lots of bugs. 14 * 15 * Copyright (C) 2005-2006 Jens Axboe <axboe@kernel.dk> 16 * Copyright (C) 2005-2006 Linus Torvalds <torvalds@osdl.org> 17 * Copyright (C) 2006 Ingo Molnar <mingo@elte.hu> 18 * 19 */ 20 #include <linux/fs.h> 21 #include <linux/file.h> 22 #include <linux/pagemap.h> 23 #include <linux/splice.h> 24 #include <linux/memcontrol.h> 25 #include <linux/mm_inline.h> 26 #include <linux/swap.h> 27 #include <linux/writeback.h> 28 #include <linux/buffer_head.h> 29 #include <linux/module.h> 30 #include <linux/syscalls.h> 31 #include <linux/uio.h> 32 #include <linux/security.h> 33 #include <linux/gfp.h> 34 35 /* 36 * Attempt to steal a page from a pipe buffer. This should perhaps go into 37 * a vm helper function, it's already simplified quite a bit by the 38 * addition of remove_mapping(). If success is returned, the caller may 39 * attempt to reuse this page for another destination. 40 */ 41 static int page_cache_pipe_buf_steal(struct pipe_inode_info *pipe, 42 struct pipe_buffer *buf) 43 { 44 struct page *page = buf->page; 45 struct address_space *mapping; 46 47 lock_page(page); 48 49 mapping = page_mapping(page); 50 if (mapping) { 51 WARN_ON(!PageUptodate(page)); 52 53 /* 54 * At least for ext2 with nobh option, we need to wait on 55 * writeback completing on this page, since we'll remove it 56 * from the pagecache. Otherwise truncate wont wait on the 57 * page, allowing the disk blocks to be reused by someone else 58 * before we actually wrote our data to them. fs corruption 59 * ensues. 60 */ 61 wait_on_page_writeback(page); 62 63 if (page_has_private(page) && 64 !try_to_release_page(page, GFP_KERNEL)) 65 goto out_unlock; 66 67 /* 68 * If we succeeded in removing the mapping, set LRU flag 69 * and return good. 70 */ 71 if (remove_mapping(mapping, page)) { 72 buf->flags |= PIPE_BUF_FLAG_LRU; 73 return 0; 74 } 75 } 76 77 /* 78 * Raced with truncate or failed to remove page from current 79 * address space, unlock and return failure. 80 */ 81 out_unlock: 82 unlock_page(page); 83 return 1; 84 } 85 86 static void page_cache_pipe_buf_release(struct pipe_inode_info *pipe, 87 struct pipe_buffer *buf) 88 { 89 page_cache_release(buf->page); 90 buf->flags &= ~PIPE_BUF_FLAG_LRU; 91 } 92 93 /* 94 * Check whether the contents of buf is OK to access. Since the content 95 * is a page cache page, IO may be in flight. 96 */ 97 static int page_cache_pipe_buf_confirm(struct pipe_inode_info *pipe, 98 struct pipe_buffer *buf) 99 { 100 struct page *page = buf->page; 101 int err; 102 103 if (!PageUptodate(page)) { 104 lock_page(page); 105 106 /* 107 * Page got truncated/unhashed. This will cause a 0-byte 108 * splice, if this is the first page. 109 */ 110 if (!page->mapping) { 111 err = -ENODATA; 112 goto error; 113 } 114 115 /* 116 * Uh oh, read-error from disk. 117 */ 118 if (!PageUptodate(page)) { 119 err = -EIO; 120 goto error; 121 } 122 123 /* 124 * Page is ok afterall, we are done. 125 */ 126 unlock_page(page); 127 } 128 129 return 0; 130 error: 131 unlock_page(page); 132 return err; 133 } 134 135 static const struct pipe_buf_operations page_cache_pipe_buf_ops = { 136 .can_merge = 0, 137 .map = generic_pipe_buf_map, 138 .unmap = generic_pipe_buf_unmap, 139 .confirm = page_cache_pipe_buf_confirm, 140 .release = page_cache_pipe_buf_release, 141 .steal = page_cache_pipe_buf_steal, 142 .get = generic_pipe_buf_get, 143 }; 144 145 static int user_page_pipe_buf_steal(struct pipe_inode_info *pipe, 146 struct pipe_buffer *buf) 147 { 148 if (!(buf->flags & PIPE_BUF_FLAG_GIFT)) 149 return 1; 150 151 buf->flags |= PIPE_BUF_FLAG_LRU; 152 return generic_pipe_buf_steal(pipe, buf); 153 } 154 155 static const struct pipe_buf_operations user_page_pipe_buf_ops = { 156 .can_merge = 0, 157 .map = generic_pipe_buf_map, 158 .unmap = generic_pipe_buf_unmap, 159 .confirm = generic_pipe_buf_confirm, 160 .release = page_cache_pipe_buf_release, 161 .steal = user_page_pipe_buf_steal, 162 .get = generic_pipe_buf_get, 163 }; 164 165 /** 166 * splice_to_pipe - fill passed data into a pipe 167 * @pipe: pipe to fill 168 * @spd: data to fill 169 * 170 * Description: 171 * @spd contains a map of pages and len/offset tuples, along with 172 * the struct pipe_buf_operations associated with these pages. This 173 * function will link that data to the pipe. 174 * 175 */ 176 ssize_t splice_to_pipe(struct pipe_inode_info *pipe, 177 struct splice_pipe_desc *spd) 178 { 179 unsigned int spd_pages = spd->nr_pages; 180 int ret, do_wakeup, page_nr; 181 182 ret = 0; 183 do_wakeup = 0; 184 page_nr = 0; 185 186 pipe_lock(pipe); 187 188 for (;;) { 189 if (!pipe->readers) { 190 send_sig(SIGPIPE, current, 0); 191 if (!ret) 192 ret = -EPIPE; 193 break; 194 } 195 196 if (pipe->nrbufs < pipe->buffers) { 197 int newbuf = (pipe->curbuf + pipe->nrbufs) & (pipe->buffers - 1); 198 struct pipe_buffer *buf = pipe->bufs + newbuf; 199 200 buf->page = spd->pages[page_nr]; 201 buf->offset = spd->partial[page_nr].offset; 202 buf->len = spd->partial[page_nr].len; 203 buf->private = spd->partial[page_nr].private; 204 buf->ops = spd->ops; 205 if (spd->flags & SPLICE_F_GIFT) 206 buf->flags |= PIPE_BUF_FLAG_GIFT; 207 208 pipe->nrbufs++; 209 page_nr++; 210 ret += buf->len; 211 212 if (pipe->inode) 213 do_wakeup = 1; 214 215 if (!--spd->nr_pages) 216 break; 217 if (pipe->nrbufs < pipe->buffers) 218 continue; 219 220 break; 221 } 222 223 if (spd->flags & SPLICE_F_NONBLOCK) { 224 if (!ret) 225 ret = -EAGAIN; 226 break; 227 } 228 229 if (signal_pending(current)) { 230 if (!ret) 231 ret = -ERESTARTSYS; 232 break; 233 } 234 235 if (do_wakeup) { 236 smp_mb(); 237 if (waitqueue_active(&pipe->wait)) 238 wake_up_interruptible_sync(&pipe->wait); 239 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN); 240 do_wakeup = 0; 241 } 242 243 pipe->waiting_writers++; 244 pipe_wait(pipe); 245 pipe->waiting_writers--; 246 } 247 248 pipe_unlock(pipe); 249 250 if (do_wakeup) { 251 smp_mb(); 252 if (waitqueue_active(&pipe->wait)) 253 wake_up_interruptible(&pipe->wait); 254 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN); 255 } 256 257 while (page_nr < spd_pages) 258 spd->spd_release(spd, page_nr++); 259 260 return ret; 261 } 262 263 static void spd_release_page(struct splice_pipe_desc *spd, unsigned int i) 264 { 265 page_cache_release(spd->pages[i]); 266 } 267 268 /* 269 * Check if we need to grow the arrays holding pages and partial page 270 * descriptions. 271 */ 272 int splice_grow_spd(struct pipe_inode_info *pipe, struct splice_pipe_desc *spd) 273 { 274 if (pipe->buffers <= PIPE_DEF_BUFFERS) 275 return 0; 276 277 spd->pages = kmalloc(pipe->buffers * sizeof(struct page *), GFP_KERNEL); 278 spd->partial = kmalloc(pipe->buffers * sizeof(struct partial_page), GFP_KERNEL); 279 280 if (spd->pages && spd->partial) 281 return 0; 282 283 kfree(spd->pages); 284 kfree(spd->partial); 285 return -ENOMEM; 286 } 287 288 void splice_shrink_spd(struct pipe_inode_info *pipe, 289 struct splice_pipe_desc *spd) 290 { 291 if (pipe->buffers <= PIPE_DEF_BUFFERS) 292 return; 293 294 kfree(spd->pages); 295 kfree(spd->partial); 296 } 297 298 static int 299 __generic_file_splice_read(struct file *in, loff_t *ppos, 300 struct pipe_inode_info *pipe, size_t len, 301 unsigned int flags) 302 { 303 struct address_space *mapping = in->f_mapping; 304 unsigned int loff, nr_pages, req_pages; 305 struct page *pages[PIPE_DEF_BUFFERS]; 306 struct partial_page partial[PIPE_DEF_BUFFERS]; 307 struct page *page; 308 pgoff_t index, end_index; 309 loff_t isize; 310 int error, page_nr; 311 struct splice_pipe_desc spd = { 312 .pages = pages, 313 .partial = partial, 314 .flags = flags, 315 .ops = &page_cache_pipe_buf_ops, 316 .spd_release = spd_release_page, 317 }; 318 319 if (splice_grow_spd(pipe, &spd)) 320 return -ENOMEM; 321 322 index = *ppos >> PAGE_CACHE_SHIFT; 323 loff = *ppos & ~PAGE_CACHE_MASK; 324 req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; 325 nr_pages = min(req_pages, pipe->buffers); 326 327 /* 328 * Lookup the (hopefully) full range of pages we need. 329 */ 330 spd.nr_pages = find_get_pages_contig(mapping, index, nr_pages, spd.pages); 331 index += spd.nr_pages; 332 333 /* 334 * If find_get_pages_contig() returned fewer pages than we needed, 335 * readahead/allocate the rest and fill in the holes. 336 */ 337 if (spd.nr_pages < nr_pages) 338 page_cache_sync_readahead(mapping, &in->f_ra, in, 339 index, req_pages - spd.nr_pages); 340 341 error = 0; 342 while (spd.nr_pages < nr_pages) { 343 /* 344 * Page could be there, find_get_pages_contig() breaks on 345 * the first hole. 346 */ 347 page = find_get_page(mapping, index); 348 if (!page) { 349 /* 350 * page didn't exist, allocate one. 351 */ 352 page = page_cache_alloc_cold(mapping); 353 if (!page) 354 break; 355 356 error = add_to_page_cache_lru(page, mapping, index, 357 GFP_KERNEL); 358 if (unlikely(error)) { 359 page_cache_release(page); 360 if (error == -EEXIST) 361 continue; 362 break; 363 } 364 /* 365 * add_to_page_cache() locks the page, unlock it 366 * to avoid convoluting the logic below even more. 367 */ 368 unlock_page(page); 369 } 370 371 spd.pages[spd.nr_pages++] = page; 372 index++; 373 } 374 375 /* 376 * Now loop over the map and see if we need to start IO on any 377 * pages, fill in the partial map, etc. 378 */ 379 index = *ppos >> PAGE_CACHE_SHIFT; 380 nr_pages = spd.nr_pages; 381 spd.nr_pages = 0; 382 for (page_nr = 0; page_nr < nr_pages; page_nr++) { 383 unsigned int this_len; 384 385 if (!len) 386 break; 387 388 /* 389 * this_len is the max we'll use from this page 390 */ 391 this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff); 392 page = spd.pages[page_nr]; 393 394 if (PageReadahead(page)) 395 page_cache_async_readahead(mapping, &in->f_ra, in, 396 page, index, req_pages - page_nr); 397 398 /* 399 * If the page isn't uptodate, we may need to start io on it 400 */ 401 if (!PageUptodate(page)) { 402 /* 403 * If in nonblock mode then dont block on waiting 404 * for an in-flight io page 405 */ 406 if (flags & SPLICE_F_NONBLOCK) { 407 if (!trylock_page(page)) { 408 error = -EAGAIN; 409 break; 410 } 411 } else 412 lock_page(page); 413 414 /* 415 * Page was truncated, or invalidated by the 416 * filesystem. Redo the find/create, but this time the 417 * page is kept locked, so there's no chance of another 418 * race with truncate/invalidate. 419 */ 420 if (!page->mapping) { 421 unlock_page(page); 422 page = find_or_create_page(mapping, index, 423 mapping_gfp_mask(mapping)); 424 425 if (!page) { 426 error = -ENOMEM; 427 break; 428 } 429 page_cache_release(spd.pages[page_nr]); 430 spd.pages[page_nr] = page; 431 } 432 /* 433 * page was already under io and is now done, great 434 */ 435 if (PageUptodate(page)) { 436 unlock_page(page); 437 goto fill_it; 438 } 439 440 /* 441 * need to read in the page 442 */ 443 error = mapping->a_ops->readpage(in, page); 444 if (unlikely(error)) { 445 /* 446 * We really should re-lookup the page here, 447 * but it complicates things a lot. Instead 448 * lets just do what we already stored, and 449 * we'll get it the next time we are called. 450 */ 451 if (error == AOP_TRUNCATED_PAGE) 452 error = 0; 453 454 break; 455 } 456 } 457 fill_it: 458 /* 459 * i_size must be checked after PageUptodate. 460 */ 461 isize = i_size_read(mapping->host); 462 end_index = (isize - 1) >> PAGE_CACHE_SHIFT; 463 if (unlikely(!isize || index > end_index)) 464 break; 465 466 /* 467 * if this is the last page, see if we need to shrink 468 * the length and stop 469 */ 470 if (end_index == index) { 471 unsigned int plen; 472 473 /* 474 * max good bytes in this page 475 */ 476 plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1; 477 if (plen <= loff) 478 break; 479 480 /* 481 * force quit after adding this page 482 */ 483 this_len = min(this_len, plen - loff); 484 len = this_len; 485 } 486 487 spd.partial[page_nr].offset = loff; 488 spd.partial[page_nr].len = this_len; 489 len -= this_len; 490 loff = 0; 491 spd.nr_pages++; 492 index++; 493 } 494 495 /* 496 * Release any pages at the end, if we quit early. 'page_nr' is how far 497 * we got, 'nr_pages' is how many pages are in the map. 498 */ 499 while (page_nr < nr_pages) 500 page_cache_release(spd.pages[page_nr++]); 501 in->f_ra.prev_pos = (loff_t)index << PAGE_CACHE_SHIFT; 502 503 if (spd.nr_pages) 504 error = splice_to_pipe(pipe, &spd); 505 506 splice_shrink_spd(pipe, &spd); 507 return error; 508 } 509 510 /** 511 * generic_file_splice_read - splice data from file to a pipe 512 * @in: file to splice from 513 * @ppos: position in @in 514 * @pipe: pipe to splice to 515 * @len: number of bytes to splice 516 * @flags: splice modifier flags 517 * 518 * Description: 519 * Will read pages from given file and fill them into a pipe. Can be 520 * used as long as the address_space operations for the source implements 521 * a readpage() hook. 522 * 523 */ 524 ssize_t generic_file_splice_read(struct file *in, loff_t *ppos, 525 struct pipe_inode_info *pipe, size_t len, 526 unsigned int flags) 527 { 528 loff_t isize, left; 529 int ret; 530 531 isize = i_size_read(in->f_mapping->host); 532 if (unlikely(*ppos >= isize)) 533 return 0; 534 535 left = isize - *ppos; 536 if (unlikely(left < len)) 537 len = left; 538 539 ret = __generic_file_splice_read(in, ppos, pipe, len, flags); 540 if (ret > 0) { 541 *ppos += ret; 542 file_accessed(in); 543 } 544 545 return ret; 546 } 547 EXPORT_SYMBOL(generic_file_splice_read); 548 549 static const struct pipe_buf_operations default_pipe_buf_ops = { 550 .can_merge = 0, 551 .map = generic_pipe_buf_map, 552 .unmap = generic_pipe_buf_unmap, 553 .confirm = generic_pipe_buf_confirm, 554 .release = generic_pipe_buf_release, 555 .steal = generic_pipe_buf_steal, 556 .get = generic_pipe_buf_get, 557 }; 558 559 static ssize_t kernel_readv(struct file *file, const struct iovec *vec, 560 unsigned long vlen, loff_t offset) 561 { 562 mm_segment_t old_fs; 563 loff_t pos = offset; 564 ssize_t res; 565 566 old_fs = get_fs(); 567 set_fs(get_ds()); 568 /* The cast to a user pointer is valid due to the set_fs() */ 569 res = vfs_readv(file, (const struct iovec __user *)vec, vlen, &pos); 570 set_fs(old_fs); 571 572 return res; 573 } 574 575 static ssize_t kernel_write(struct file *file, const char *buf, size_t count, 576 loff_t pos) 577 { 578 mm_segment_t old_fs; 579 ssize_t res; 580 581 old_fs = get_fs(); 582 set_fs(get_ds()); 583 /* The cast to a user pointer is valid due to the set_fs() */ 584 res = vfs_write(file, (const char __user *)buf, count, &pos); 585 set_fs(old_fs); 586 587 return res; 588 } 589 590 ssize_t default_file_splice_read(struct file *in, loff_t *ppos, 591 struct pipe_inode_info *pipe, size_t len, 592 unsigned int flags) 593 { 594 unsigned int nr_pages; 595 unsigned int nr_freed; 596 size_t offset; 597 struct page *pages[PIPE_DEF_BUFFERS]; 598 struct partial_page partial[PIPE_DEF_BUFFERS]; 599 struct iovec *vec, __vec[PIPE_DEF_BUFFERS]; 600 pgoff_t index; 601 ssize_t res; 602 size_t this_len; 603 int error; 604 int i; 605 struct splice_pipe_desc spd = { 606 .pages = pages, 607 .partial = partial, 608 .flags = flags, 609 .ops = &default_pipe_buf_ops, 610 .spd_release = spd_release_page, 611 }; 612 613 if (splice_grow_spd(pipe, &spd)) 614 return -ENOMEM; 615 616 res = -ENOMEM; 617 vec = __vec; 618 if (pipe->buffers > PIPE_DEF_BUFFERS) { 619 vec = kmalloc(pipe->buffers * sizeof(struct iovec), GFP_KERNEL); 620 if (!vec) 621 goto shrink_ret; 622 } 623 624 index = *ppos >> PAGE_CACHE_SHIFT; 625 offset = *ppos & ~PAGE_CACHE_MASK; 626 nr_pages = (len + offset + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; 627 628 for (i = 0; i < nr_pages && i < pipe->buffers && len; i++) { 629 struct page *page; 630 631 page = alloc_page(GFP_USER); 632 error = -ENOMEM; 633 if (!page) 634 goto err; 635 636 this_len = min_t(size_t, len, PAGE_CACHE_SIZE - offset); 637 vec[i].iov_base = (void __user *) page_address(page); 638 vec[i].iov_len = this_len; 639 spd.pages[i] = page; 640 spd.nr_pages++; 641 len -= this_len; 642 offset = 0; 643 } 644 645 res = kernel_readv(in, vec, spd.nr_pages, *ppos); 646 if (res < 0) { 647 error = res; 648 goto err; 649 } 650 651 error = 0; 652 if (!res) 653 goto err; 654 655 nr_freed = 0; 656 for (i = 0; i < spd.nr_pages; i++) { 657 this_len = min_t(size_t, vec[i].iov_len, res); 658 spd.partial[i].offset = 0; 659 spd.partial[i].len = this_len; 660 if (!this_len) { 661 __free_page(spd.pages[i]); 662 spd.pages[i] = NULL; 663 nr_freed++; 664 } 665 res -= this_len; 666 } 667 spd.nr_pages -= nr_freed; 668 669 res = splice_to_pipe(pipe, &spd); 670 if (res > 0) 671 *ppos += res; 672 673 shrink_ret: 674 if (vec != __vec) 675 kfree(vec); 676 splice_shrink_spd(pipe, &spd); 677 return res; 678 679 err: 680 for (i = 0; i < spd.nr_pages; i++) 681 __free_page(spd.pages[i]); 682 683 res = error; 684 goto shrink_ret; 685 } 686 EXPORT_SYMBOL(default_file_splice_read); 687 688 /* 689 * Send 'sd->len' bytes to socket from 'sd->file' at position 'sd->pos' 690 * using sendpage(). Return the number of bytes sent. 691 */ 692 static int pipe_to_sendpage(struct pipe_inode_info *pipe, 693 struct pipe_buffer *buf, struct splice_desc *sd) 694 { 695 struct file *file = sd->u.file; 696 loff_t pos = sd->pos; 697 int ret, more; 698 699 ret = buf->ops->confirm(pipe, buf); 700 if (!ret) { 701 more = (sd->flags & SPLICE_F_MORE) || sd->len < sd->total_len; 702 if (file->f_op && file->f_op->sendpage) 703 ret = file->f_op->sendpage(file, buf->page, buf->offset, 704 sd->len, &pos, more); 705 else 706 ret = -EINVAL; 707 } 708 709 return ret; 710 } 711 712 /* 713 * This is a little more tricky than the file -> pipe splicing. There are 714 * basically three cases: 715 * 716 * - Destination page already exists in the address space and there 717 * are users of it. For that case we have no other option that 718 * copying the data. Tough luck. 719 * - Destination page already exists in the address space, but there 720 * are no users of it. Make sure it's uptodate, then drop it. Fall 721 * through to last case. 722 * - Destination page does not exist, we can add the pipe page to 723 * the page cache and avoid the copy. 724 * 725 * If asked to move pages to the output file (SPLICE_F_MOVE is set in 726 * sd->flags), we attempt to migrate pages from the pipe to the output 727 * file address space page cache. This is possible if no one else has 728 * the pipe page referenced outside of the pipe and page cache. If 729 * SPLICE_F_MOVE isn't set, or we cannot move the page, we simply create 730 * a new page in the output file page cache and fill/dirty that. 731 */ 732 int pipe_to_file(struct pipe_inode_info *pipe, struct pipe_buffer *buf, 733 struct splice_desc *sd) 734 { 735 struct file *file = sd->u.file; 736 struct address_space *mapping = file->f_mapping; 737 unsigned int offset, this_len; 738 struct page *page; 739 void *fsdata; 740 int ret; 741 742 /* 743 * make sure the data in this buffer is uptodate 744 */ 745 ret = buf->ops->confirm(pipe, buf); 746 if (unlikely(ret)) 747 return ret; 748 749 offset = sd->pos & ~PAGE_CACHE_MASK; 750 751 this_len = sd->len; 752 if (this_len + offset > PAGE_CACHE_SIZE) 753 this_len = PAGE_CACHE_SIZE - offset; 754 755 ret = pagecache_write_begin(file, mapping, sd->pos, this_len, 756 AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata); 757 if (unlikely(ret)) 758 goto out; 759 760 if (buf->page != page) { 761 /* 762 * Careful, ->map() uses KM_USER0! 763 */ 764 char *src = buf->ops->map(pipe, buf, 1); 765 char *dst = kmap_atomic(page, KM_USER1); 766 767 memcpy(dst + offset, src + buf->offset, this_len); 768 flush_dcache_page(page); 769 kunmap_atomic(dst, KM_USER1); 770 buf->ops->unmap(pipe, buf, src); 771 } 772 ret = pagecache_write_end(file, mapping, sd->pos, this_len, this_len, 773 page, fsdata); 774 out: 775 return ret; 776 } 777 EXPORT_SYMBOL(pipe_to_file); 778 779 static void wakeup_pipe_writers(struct pipe_inode_info *pipe) 780 { 781 smp_mb(); 782 if (waitqueue_active(&pipe->wait)) 783 wake_up_interruptible(&pipe->wait); 784 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT); 785 } 786 787 /** 788 * splice_from_pipe_feed - feed available data from a pipe to a file 789 * @pipe: pipe to splice from 790 * @sd: information to @actor 791 * @actor: handler that splices the data 792 * 793 * Description: 794 * This function loops over the pipe and calls @actor to do the 795 * actual moving of a single struct pipe_buffer to the desired 796 * destination. It returns when there's no more buffers left in 797 * the pipe or if the requested number of bytes (@sd->total_len) 798 * have been copied. It returns a positive number (one) if the 799 * pipe needs to be filled with more data, zero if the required 800 * number of bytes have been copied and -errno on error. 801 * 802 * This, together with splice_from_pipe_{begin,end,next}, may be 803 * used to implement the functionality of __splice_from_pipe() when 804 * locking is required around copying the pipe buffers to the 805 * destination. 806 */ 807 int splice_from_pipe_feed(struct pipe_inode_info *pipe, struct splice_desc *sd, 808 splice_actor *actor) 809 { 810 int ret; 811 812 while (pipe->nrbufs) { 813 struct pipe_buffer *buf = pipe->bufs + pipe->curbuf; 814 const struct pipe_buf_operations *ops = buf->ops; 815 816 sd->len = buf->len; 817 if (sd->len > sd->total_len) 818 sd->len = sd->total_len; 819 820 ret = actor(pipe, buf, sd); 821 if (ret <= 0) { 822 if (ret == -ENODATA) 823 ret = 0; 824 return ret; 825 } 826 buf->offset += ret; 827 buf->len -= ret; 828 829 sd->num_spliced += ret; 830 sd->len -= ret; 831 sd->pos += ret; 832 sd->total_len -= ret; 833 834 if (!buf->len) { 835 buf->ops = NULL; 836 ops->release(pipe, buf); 837 pipe->curbuf = (pipe->curbuf + 1) & (pipe->buffers - 1); 838 pipe->nrbufs--; 839 if (pipe->inode) 840 sd->need_wakeup = true; 841 } 842 843 if (!sd->total_len) 844 return 0; 845 } 846 847 return 1; 848 } 849 EXPORT_SYMBOL(splice_from_pipe_feed); 850 851 /** 852 * splice_from_pipe_next - wait for some data to splice from 853 * @pipe: pipe to splice from 854 * @sd: information about the splice operation 855 * 856 * Description: 857 * This function will wait for some data and return a positive 858 * value (one) if pipe buffers are available. It will return zero 859 * or -errno if no more data needs to be spliced. 860 */ 861 int splice_from_pipe_next(struct pipe_inode_info *pipe, struct splice_desc *sd) 862 { 863 while (!pipe->nrbufs) { 864 if (!pipe->writers) 865 return 0; 866 867 if (!pipe->waiting_writers && sd->num_spliced) 868 return 0; 869 870 if (sd->flags & SPLICE_F_NONBLOCK) 871 return -EAGAIN; 872 873 if (signal_pending(current)) 874 return -ERESTARTSYS; 875 876 if (sd->need_wakeup) { 877 wakeup_pipe_writers(pipe); 878 sd->need_wakeup = false; 879 } 880 881 pipe_wait(pipe); 882 } 883 884 return 1; 885 } 886 EXPORT_SYMBOL(splice_from_pipe_next); 887 888 /** 889 * splice_from_pipe_begin - start splicing from pipe 890 * @sd: information about the splice operation 891 * 892 * Description: 893 * This function should be called before a loop containing 894 * splice_from_pipe_next() and splice_from_pipe_feed() to 895 * initialize the necessary fields of @sd. 896 */ 897 void splice_from_pipe_begin(struct splice_desc *sd) 898 { 899 sd->num_spliced = 0; 900 sd->need_wakeup = false; 901 } 902 EXPORT_SYMBOL(splice_from_pipe_begin); 903 904 /** 905 * splice_from_pipe_end - finish splicing from pipe 906 * @pipe: pipe to splice from 907 * @sd: information about the splice operation 908 * 909 * Description: 910 * This function will wake up pipe writers if necessary. It should 911 * be called after a loop containing splice_from_pipe_next() and 912 * splice_from_pipe_feed(). 913 */ 914 void splice_from_pipe_end(struct pipe_inode_info *pipe, struct splice_desc *sd) 915 { 916 if (sd->need_wakeup) 917 wakeup_pipe_writers(pipe); 918 } 919 EXPORT_SYMBOL(splice_from_pipe_end); 920 921 /** 922 * __splice_from_pipe - splice data from a pipe to given actor 923 * @pipe: pipe to splice from 924 * @sd: information to @actor 925 * @actor: handler that splices the data 926 * 927 * Description: 928 * This function does little more than loop over the pipe and call 929 * @actor to do the actual moving of a single struct pipe_buffer to 930 * the desired destination. See pipe_to_file, pipe_to_sendpage, or 931 * pipe_to_user. 932 * 933 */ 934 ssize_t __splice_from_pipe(struct pipe_inode_info *pipe, struct splice_desc *sd, 935 splice_actor *actor) 936 { 937 int ret; 938 939 splice_from_pipe_begin(sd); 940 do { 941 ret = splice_from_pipe_next(pipe, sd); 942 if (ret > 0) 943 ret = splice_from_pipe_feed(pipe, sd, actor); 944 } while (ret > 0); 945 splice_from_pipe_end(pipe, sd); 946 947 return sd->num_spliced ? sd->num_spliced : ret; 948 } 949 EXPORT_SYMBOL(__splice_from_pipe); 950 951 /** 952 * splice_from_pipe - splice data from a pipe to a file 953 * @pipe: pipe to splice from 954 * @out: file to splice to 955 * @ppos: position in @out 956 * @len: how many bytes to splice 957 * @flags: splice modifier flags 958 * @actor: handler that splices the data 959 * 960 * Description: 961 * See __splice_from_pipe. This function locks the pipe inode, 962 * otherwise it's identical to __splice_from_pipe(). 963 * 964 */ 965 ssize_t splice_from_pipe(struct pipe_inode_info *pipe, struct file *out, 966 loff_t *ppos, size_t len, unsigned int flags, 967 splice_actor *actor) 968 { 969 ssize_t ret; 970 struct splice_desc sd = { 971 .total_len = len, 972 .flags = flags, 973 .pos = *ppos, 974 .u.file = out, 975 }; 976 977 pipe_lock(pipe); 978 ret = __splice_from_pipe(pipe, &sd, actor); 979 pipe_unlock(pipe); 980 981 return ret; 982 } 983 984 /** 985 * generic_file_splice_write - splice data from a pipe to a file 986 * @pipe: pipe info 987 * @out: file to write to 988 * @ppos: position in @out 989 * @len: number of bytes to splice 990 * @flags: splice modifier flags 991 * 992 * Description: 993 * Will either move or copy pages (determined by @flags options) from 994 * the given pipe inode to the given file. 995 * 996 */ 997 ssize_t 998 generic_file_splice_write(struct pipe_inode_info *pipe, struct file *out, 999 loff_t *ppos, size_t len, unsigned int flags) 1000 { 1001 struct address_space *mapping = out->f_mapping; 1002 struct inode *inode = mapping->host; 1003 struct splice_desc sd = { 1004 .total_len = len, 1005 .flags = flags, 1006 .pos = *ppos, 1007 .u.file = out, 1008 }; 1009 ssize_t ret; 1010 1011 pipe_lock(pipe); 1012 1013 splice_from_pipe_begin(&sd); 1014 do { 1015 ret = splice_from_pipe_next(pipe, &sd); 1016 if (ret <= 0) 1017 break; 1018 1019 mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD); 1020 ret = file_remove_suid(out); 1021 if (!ret) { 1022 file_update_time(out); 1023 ret = splice_from_pipe_feed(pipe, &sd, pipe_to_file); 1024 } 1025 mutex_unlock(&inode->i_mutex); 1026 } while (ret > 0); 1027 splice_from_pipe_end(pipe, &sd); 1028 1029 pipe_unlock(pipe); 1030 1031 if (sd.num_spliced) 1032 ret = sd.num_spliced; 1033 1034 if (ret > 0) { 1035 unsigned long nr_pages; 1036 int err; 1037 1038 nr_pages = (ret + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; 1039 1040 err = generic_write_sync(out, *ppos, ret); 1041 if (err) 1042 ret = err; 1043 else 1044 *ppos += ret; 1045 balance_dirty_pages_ratelimited_nr(mapping, nr_pages); 1046 } 1047 1048 return ret; 1049 } 1050 1051 EXPORT_SYMBOL(generic_file_splice_write); 1052 1053 static int write_pipe_buf(struct pipe_inode_info *pipe, struct pipe_buffer *buf, 1054 struct splice_desc *sd) 1055 { 1056 int ret; 1057 void *data; 1058 1059 ret = buf->ops->confirm(pipe, buf); 1060 if (ret) 1061 return ret; 1062 1063 data = buf->ops->map(pipe, buf, 0); 1064 ret = kernel_write(sd->u.file, data + buf->offset, sd->len, sd->pos); 1065 buf->ops->unmap(pipe, buf, data); 1066 1067 return ret; 1068 } 1069 1070 static ssize_t default_file_splice_write(struct pipe_inode_info *pipe, 1071 struct file *out, loff_t *ppos, 1072 size_t len, unsigned int flags) 1073 { 1074 ssize_t ret; 1075 1076 ret = splice_from_pipe(pipe, out, ppos, len, flags, write_pipe_buf); 1077 if (ret > 0) 1078 *ppos += ret; 1079 1080 return ret; 1081 } 1082 1083 /** 1084 * generic_splice_sendpage - splice data from a pipe to a socket 1085 * @pipe: pipe to splice from 1086 * @out: socket to write to 1087 * @ppos: position in @out 1088 * @len: number of bytes to splice 1089 * @flags: splice modifier flags 1090 * 1091 * Description: 1092 * Will send @len bytes from the pipe to a network socket. No data copying 1093 * is involved. 1094 * 1095 */ 1096 ssize_t generic_splice_sendpage(struct pipe_inode_info *pipe, struct file *out, 1097 loff_t *ppos, size_t len, unsigned int flags) 1098 { 1099 return splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_sendpage); 1100 } 1101 1102 EXPORT_SYMBOL(generic_splice_sendpage); 1103 1104 /* 1105 * Attempt to initiate a splice from pipe to file. 1106 */ 1107 static long do_splice_from(struct pipe_inode_info *pipe, struct file *out, 1108 loff_t *ppos, size_t len, unsigned int flags) 1109 { 1110 ssize_t (*splice_write)(struct pipe_inode_info *, struct file *, 1111 loff_t *, size_t, unsigned int); 1112 int ret; 1113 1114 if (unlikely(!(out->f_mode & FMODE_WRITE))) 1115 return -EBADF; 1116 1117 if (unlikely(out->f_flags & O_APPEND)) 1118 return -EINVAL; 1119 1120 ret = rw_verify_area(WRITE, out, ppos, len); 1121 if (unlikely(ret < 0)) 1122 return ret; 1123 1124 if (out->f_op && out->f_op->splice_write) 1125 splice_write = out->f_op->splice_write; 1126 else 1127 splice_write = default_file_splice_write; 1128 1129 return splice_write(pipe, out, ppos, len, flags); 1130 } 1131 1132 /* 1133 * Attempt to initiate a splice from a file to a pipe. 1134 */ 1135 static long do_splice_to(struct file *in, loff_t *ppos, 1136 struct pipe_inode_info *pipe, size_t len, 1137 unsigned int flags) 1138 { 1139 ssize_t (*splice_read)(struct file *, loff_t *, 1140 struct pipe_inode_info *, size_t, unsigned int); 1141 int ret; 1142 1143 if (unlikely(!(in->f_mode & FMODE_READ))) 1144 return -EBADF; 1145 1146 ret = rw_verify_area(READ, in, ppos, len); 1147 if (unlikely(ret < 0)) 1148 return ret; 1149 1150 if (in->f_op && in->f_op->splice_read) 1151 splice_read = in->f_op->splice_read; 1152 else 1153 splice_read = default_file_splice_read; 1154 1155 return splice_read(in, ppos, pipe, len, flags); 1156 } 1157 1158 /** 1159 * splice_direct_to_actor - splices data directly between two non-pipes 1160 * @in: file to splice from 1161 * @sd: actor information on where to splice to 1162 * @actor: handles the data splicing 1163 * 1164 * Description: 1165 * This is a special case helper to splice directly between two 1166 * points, without requiring an explicit pipe. Internally an allocated 1167 * pipe is cached in the process, and reused during the lifetime of 1168 * that process. 1169 * 1170 */ 1171 ssize_t splice_direct_to_actor(struct file *in, struct splice_desc *sd, 1172 splice_direct_actor *actor) 1173 { 1174 struct pipe_inode_info *pipe; 1175 long ret, bytes; 1176 umode_t i_mode; 1177 size_t len; 1178 int i, flags; 1179 1180 /* 1181 * We require the input being a regular file, as we don't want to 1182 * randomly drop data for eg socket -> socket splicing. Use the 1183 * piped splicing for that! 1184 */ 1185 i_mode = in->f_path.dentry->d_inode->i_mode; 1186 if (unlikely(!S_ISREG(i_mode) && !S_ISBLK(i_mode))) 1187 return -EINVAL; 1188 1189 /* 1190 * neither in nor out is a pipe, setup an internal pipe attached to 1191 * 'out' and transfer the wanted data from 'in' to 'out' through that 1192 */ 1193 pipe = current->splice_pipe; 1194 if (unlikely(!pipe)) { 1195 pipe = alloc_pipe_info(NULL); 1196 if (!pipe) 1197 return -ENOMEM; 1198 1199 /* 1200 * We don't have an immediate reader, but we'll read the stuff 1201 * out of the pipe right after the splice_to_pipe(). So set 1202 * PIPE_READERS appropriately. 1203 */ 1204 pipe->readers = 1; 1205 1206 current->splice_pipe = pipe; 1207 } 1208 1209 /* 1210 * Do the splice. 1211 */ 1212 ret = 0; 1213 bytes = 0; 1214 len = sd->total_len; 1215 flags = sd->flags; 1216 1217 /* 1218 * Don't block on output, we have to drain the direct pipe. 1219 */ 1220 sd->flags &= ~SPLICE_F_NONBLOCK; 1221 1222 while (len) { 1223 size_t read_len; 1224 loff_t pos = sd->pos, prev_pos = pos; 1225 1226 ret = do_splice_to(in, &pos, pipe, len, flags); 1227 if (unlikely(ret <= 0)) 1228 goto out_release; 1229 1230 read_len = ret; 1231 sd->total_len = read_len; 1232 1233 /* 1234 * NOTE: nonblocking mode only applies to the input. We 1235 * must not do the output in nonblocking mode as then we 1236 * could get stuck data in the internal pipe: 1237 */ 1238 ret = actor(pipe, sd); 1239 if (unlikely(ret <= 0)) { 1240 sd->pos = prev_pos; 1241 goto out_release; 1242 } 1243 1244 bytes += ret; 1245 len -= ret; 1246 sd->pos = pos; 1247 1248 if (ret < read_len) { 1249 sd->pos = prev_pos + ret; 1250 goto out_release; 1251 } 1252 } 1253 1254 done: 1255 pipe->nrbufs = pipe->curbuf = 0; 1256 file_accessed(in); 1257 return bytes; 1258 1259 out_release: 1260 /* 1261 * If we did an incomplete transfer we must release 1262 * the pipe buffers in question: 1263 */ 1264 for (i = 0; i < pipe->buffers; i++) { 1265 struct pipe_buffer *buf = pipe->bufs + i; 1266 1267 if (buf->ops) { 1268 buf->ops->release(pipe, buf); 1269 buf->ops = NULL; 1270 } 1271 } 1272 1273 if (!bytes) 1274 bytes = ret; 1275 1276 goto done; 1277 } 1278 EXPORT_SYMBOL(splice_direct_to_actor); 1279 1280 static int direct_splice_actor(struct pipe_inode_info *pipe, 1281 struct splice_desc *sd) 1282 { 1283 struct file *file = sd->u.file; 1284 1285 return do_splice_from(pipe, file, &sd->pos, sd->total_len, sd->flags); 1286 } 1287 1288 /** 1289 * do_splice_direct - splices data directly between two files 1290 * @in: file to splice from 1291 * @ppos: input file offset 1292 * @out: file to splice to 1293 * @len: number of bytes to splice 1294 * @flags: splice modifier flags 1295 * 1296 * Description: 1297 * For use by do_sendfile(). splice can easily emulate sendfile, but 1298 * doing it in the application would incur an extra system call 1299 * (splice in + splice out, as compared to just sendfile()). So this helper 1300 * can splice directly through a process-private pipe. 1301 * 1302 */ 1303 long do_splice_direct(struct file *in, loff_t *ppos, struct file *out, 1304 size_t len, unsigned int flags) 1305 { 1306 struct splice_desc sd = { 1307 .len = len, 1308 .total_len = len, 1309 .flags = flags, 1310 .pos = *ppos, 1311 .u.file = out, 1312 }; 1313 long ret; 1314 1315 ret = splice_direct_to_actor(in, &sd, direct_splice_actor); 1316 if (ret > 0) 1317 *ppos = sd.pos; 1318 1319 return ret; 1320 } 1321 1322 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe, 1323 struct pipe_inode_info *opipe, 1324 size_t len, unsigned int flags); 1325 /* 1326 * After the inode slimming patch, i_pipe/i_bdev/i_cdev share the same 1327 * location, so checking ->i_pipe is not enough to verify that this is a 1328 * pipe. 1329 */ 1330 static inline struct pipe_inode_info *pipe_info(struct inode *inode) 1331 { 1332 if (S_ISFIFO(inode->i_mode)) 1333 return inode->i_pipe; 1334 1335 return NULL; 1336 } 1337 1338 /* 1339 * Determine where to splice to/from. 1340 */ 1341 static long do_splice(struct file *in, loff_t __user *off_in, 1342 struct file *out, loff_t __user *off_out, 1343 size_t len, unsigned int flags) 1344 { 1345 struct pipe_inode_info *ipipe; 1346 struct pipe_inode_info *opipe; 1347 loff_t offset, *off; 1348 long ret; 1349 1350 ipipe = pipe_info(in->f_path.dentry->d_inode); 1351 opipe = pipe_info(out->f_path.dentry->d_inode); 1352 1353 if (ipipe && opipe) { 1354 if (off_in || off_out) 1355 return -ESPIPE; 1356 1357 if (!(in->f_mode & FMODE_READ)) 1358 return -EBADF; 1359 1360 if (!(out->f_mode & FMODE_WRITE)) 1361 return -EBADF; 1362 1363 /* Splicing to self would be fun, but... */ 1364 if (ipipe == opipe) 1365 return -EINVAL; 1366 1367 return splice_pipe_to_pipe(ipipe, opipe, len, flags); 1368 } 1369 1370 if (ipipe) { 1371 if (off_in) 1372 return -ESPIPE; 1373 if (off_out) { 1374 if (!out->f_op || !out->f_op->llseek || 1375 out->f_op->llseek == no_llseek) 1376 return -EINVAL; 1377 if (copy_from_user(&offset, off_out, sizeof(loff_t))) 1378 return -EFAULT; 1379 off = &offset; 1380 } else 1381 off = &out->f_pos; 1382 1383 ret = do_splice_from(ipipe, out, off, len, flags); 1384 1385 if (off_out && copy_to_user(off_out, off, sizeof(loff_t))) 1386 ret = -EFAULT; 1387 1388 return ret; 1389 } 1390 1391 if (opipe) { 1392 if (off_out) 1393 return -ESPIPE; 1394 if (off_in) { 1395 if (!in->f_op || !in->f_op->llseek || 1396 in->f_op->llseek == no_llseek) 1397 return -EINVAL; 1398 if (copy_from_user(&offset, off_in, sizeof(loff_t))) 1399 return -EFAULT; 1400 off = &offset; 1401 } else 1402 off = &in->f_pos; 1403 1404 ret = do_splice_to(in, off, opipe, len, flags); 1405 1406 if (off_in && copy_to_user(off_in, off, sizeof(loff_t))) 1407 ret = -EFAULT; 1408 1409 return ret; 1410 } 1411 1412 return -EINVAL; 1413 } 1414 1415 /* 1416 * Map an iov into an array of pages and offset/length tupples. With the 1417 * partial_page structure, we can map several non-contiguous ranges into 1418 * our ones pages[] map instead of splitting that operation into pieces. 1419 * Could easily be exported as a generic helper for other users, in which 1420 * case one would probably want to add a 'max_nr_pages' parameter as well. 1421 */ 1422 static int get_iovec_page_array(const struct iovec __user *iov, 1423 unsigned int nr_vecs, struct page **pages, 1424 struct partial_page *partial, int aligned, 1425 unsigned int pipe_buffers) 1426 { 1427 int buffers = 0, error = 0; 1428 1429 while (nr_vecs) { 1430 unsigned long off, npages; 1431 struct iovec entry; 1432 void __user *base; 1433 size_t len; 1434 int i; 1435 1436 error = -EFAULT; 1437 if (copy_from_user(&entry, iov, sizeof(entry))) 1438 break; 1439 1440 base = entry.iov_base; 1441 len = entry.iov_len; 1442 1443 /* 1444 * Sanity check this iovec. 0 read succeeds. 1445 */ 1446 error = 0; 1447 if (unlikely(!len)) 1448 break; 1449 error = -EFAULT; 1450 if (!access_ok(VERIFY_READ, base, len)) 1451 break; 1452 1453 /* 1454 * Get this base offset and number of pages, then map 1455 * in the user pages. 1456 */ 1457 off = (unsigned long) base & ~PAGE_MASK; 1458 1459 /* 1460 * If asked for alignment, the offset must be zero and the 1461 * length a multiple of the PAGE_SIZE. 1462 */ 1463 error = -EINVAL; 1464 if (aligned && (off || len & ~PAGE_MASK)) 1465 break; 1466 1467 npages = (off + len + PAGE_SIZE - 1) >> PAGE_SHIFT; 1468 if (npages > pipe_buffers - buffers) 1469 npages = pipe_buffers - buffers; 1470 1471 error = get_user_pages_fast((unsigned long)base, npages, 1472 0, &pages[buffers]); 1473 1474 if (unlikely(error <= 0)) 1475 break; 1476 1477 /* 1478 * Fill this contiguous range into the partial page map. 1479 */ 1480 for (i = 0; i < error; i++) { 1481 const int plen = min_t(size_t, len, PAGE_SIZE - off); 1482 1483 partial[buffers].offset = off; 1484 partial[buffers].len = plen; 1485 1486 off = 0; 1487 len -= plen; 1488 buffers++; 1489 } 1490 1491 /* 1492 * We didn't complete this iov, stop here since it probably 1493 * means we have to move some of this into a pipe to 1494 * be able to continue. 1495 */ 1496 if (len) 1497 break; 1498 1499 /* 1500 * Don't continue if we mapped fewer pages than we asked for, 1501 * or if we mapped the max number of pages that we have 1502 * room for. 1503 */ 1504 if (error < npages || buffers == pipe_buffers) 1505 break; 1506 1507 nr_vecs--; 1508 iov++; 1509 } 1510 1511 if (buffers) 1512 return buffers; 1513 1514 return error; 1515 } 1516 1517 static int pipe_to_user(struct pipe_inode_info *pipe, struct pipe_buffer *buf, 1518 struct splice_desc *sd) 1519 { 1520 char *src; 1521 int ret; 1522 1523 ret = buf->ops->confirm(pipe, buf); 1524 if (unlikely(ret)) 1525 return ret; 1526 1527 /* 1528 * See if we can use the atomic maps, by prefaulting in the 1529 * pages and doing an atomic copy 1530 */ 1531 if (!fault_in_pages_writeable(sd->u.userptr, sd->len)) { 1532 src = buf->ops->map(pipe, buf, 1); 1533 ret = __copy_to_user_inatomic(sd->u.userptr, src + buf->offset, 1534 sd->len); 1535 buf->ops->unmap(pipe, buf, src); 1536 if (!ret) { 1537 ret = sd->len; 1538 goto out; 1539 } 1540 } 1541 1542 /* 1543 * No dice, use slow non-atomic map and copy 1544 */ 1545 src = buf->ops->map(pipe, buf, 0); 1546 1547 ret = sd->len; 1548 if (copy_to_user(sd->u.userptr, src + buf->offset, sd->len)) 1549 ret = -EFAULT; 1550 1551 buf->ops->unmap(pipe, buf, src); 1552 out: 1553 if (ret > 0) 1554 sd->u.userptr += ret; 1555 return ret; 1556 } 1557 1558 /* 1559 * For lack of a better implementation, implement vmsplice() to userspace 1560 * as a simple copy of the pipes pages to the user iov. 1561 */ 1562 static long vmsplice_to_user(struct file *file, const struct iovec __user *iov, 1563 unsigned long nr_segs, unsigned int flags) 1564 { 1565 struct pipe_inode_info *pipe; 1566 struct splice_desc sd; 1567 ssize_t size; 1568 int error; 1569 long ret; 1570 1571 pipe = pipe_info(file->f_path.dentry->d_inode); 1572 if (!pipe) 1573 return -EBADF; 1574 1575 pipe_lock(pipe); 1576 1577 error = ret = 0; 1578 while (nr_segs) { 1579 void __user *base; 1580 size_t len; 1581 1582 /* 1583 * Get user address base and length for this iovec. 1584 */ 1585 error = get_user(base, &iov->iov_base); 1586 if (unlikely(error)) 1587 break; 1588 error = get_user(len, &iov->iov_len); 1589 if (unlikely(error)) 1590 break; 1591 1592 /* 1593 * Sanity check this iovec. 0 read succeeds. 1594 */ 1595 if (unlikely(!len)) 1596 break; 1597 if (unlikely(!base)) { 1598 error = -EFAULT; 1599 break; 1600 } 1601 1602 if (unlikely(!access_ok(VERIFY_WRITE, base, len))) { 1603 error = -EFAULT; 1604 break; 1605 } 1606 1607 sd.len = 0; 1608 sd.total_len = len; 1609 sd.flags = flags; 1610 sd.u.userptr = base; 1611 sd.pos = 0; 1612 1613 size = __splice_from_pipe(pipe, &sd, pipe_to_user); 1614 if (size < 0) { 1615 if (!ret) 1616 ret = size; 1617 1618 break; 1619 } 1620 1621 ret += size; 1622 1623 if (size < len) 1624 break; 1625 1626 nr_segs--; 1627 iov++; 1628 } 1629 1630 pipe_unlock(pipe); 1631 1632 if (!ret) 1633 ret = error; 1634 1635 return ret; 1636 } 1637 1638 /* 1639 * vmsplice splices a user address range into a pipe. It can be thought of 1640 * as splice-from-memory, where the regular splice is splice-from-file (or 1641 * to file). In both cases the output is a pipe, naturally. 1642 */ 1643 static long vmsplice_to_pipe(struct file *file, const struct iovec __user *iov, 1644 unsigned long nr_segs, unsigned int flags) 1645 { 1646 struct pipe_inode_info *pipe; 1647 struct page *pages[PIPE_DEF_BUFFERS]; 1648 struct partial_page partial[PIPE_DEF_BUFFERS]; 1649 struct splice_pipe_desc spd = { 1650 .pages = pages, 1651 .partial = partial, 1652 .flags = flags, 1653 .ops = &user_page_pipe_buf_ops, 1654 .spd_release = spd_release_page, 1655 }; 1656 long ret; 1657 1658 pipe = pipe_info(file->f_path.dentry->d_inode); 1659 if (!pipe) 1660 return -EBADF; 1661 1662 if (splice_grow_spd(pipe, &spd)) 1663 return -ENOMEM; 1664 1665 spd.nr_pages = get_iovec_page_array(iov, nr_segs, spd.pages, 1666 spd.partial, flags & SPLICE_F_GIFT, 1667 pipe->buffers); 1668 if (spd.nr_pages <= 0) 1669 ret = spd.nr_pages; 1670 else 1671 ret = splice_to_pipe(pipe, &spd); 1672 1673 splice_shrink_spd(pipe, &spd); 1674 return ret; 1675 } 1676 1677 /* 1678 * Note that vmsplice only really supports true splicing _from_ user memory 1679 * to a pipe, not the other way around. Splicing from user memory is a simple 1680 * operation that can be supported without any funky alignment restrictions 1681 * or nasty vm tricks. We simply map in the user memory and fill them into 1682 * a pipe. The reverse isn't quite as easy, though. There are two possible 1683 * solutions for that: 1684 * 1685 * - memcpy() the data internally, at which point we might as well just 1686 * do a regular read() on the buffer anyway. 1687 * - Lots of nasty vm tricks, that are neither fast nor flexible (it 1688 * has restriction limitations on both ends of the pipe). 1689 * 1690 * Currently we punt and implement it as a normal copy, see pipe_to_user(). 1691 * 1692 */ 1693 SYSCALL_DEFINE4(vmsplice, int, fd, const struct iovec __user *, iov, 1694 unsigned long, nr_segs, unsigned int, flags) 1695 { 1696 struct file *file; 1697 long error; 1698 int fput; 1699 1700 if (unlikely(nr_segs > UIO_MAXIOV)) 1701 return -EINVAL; 1702 else if (unlikely(!nr_segs)) 1703 return 0; 1704 1705 error = -EBADF; 1706 file = fget_light(fd, &fput); 1707 if (file) { 1708 if (file->f_mode & FMODE_WRITE) 1709 error = vmsplice_to_pipe(file, iov, nr_segs, flags); 1710 else if (file->f_mode & FMODE_READ) 1711 error = vmsplice_to_user(file, iov, nr_segs, flags); 1712 1713 fput_light(file, fput); 1714 } 1715 1716 return error; 1717 } 1718 1719 SYSCALL_DEFINE6(splice, int, fd_in, loff_t __user *, off_in, 1720 int, fd_out, loff_t __user *, off_out, 1721 size_t, len, unsigned int, flags) 1722 { 1723 long error; 1724 struct file *in, *out; 1725 int fput_in, fput_out; 1726 1727 if (unlikely(!len)) 1728 return 0; 1729 1730 error = -EBADF; 1731 in = fget_light(fd_in, &fput_in); 1732 if (in) { 1733 if (in->f_mode & FMODE_READ) { 1734 out = fget_light(fd_out, &fput_out); 1735 if (out) { 1736 if (out->f_mode & FMODE_WRITE) 1737 error = do_splice(in, off_in, 1738 out, off_out, 1739 len, flags); 1740 fput_light(out, fput_out); 1741 } 1742 } 1743 1744 fput_light(in, fput_in); 1745 } 1746 1747 return error; 1748 } 1749 1750 /* 1751 * Make sure there's data to read. Wait for input if we can, otherwise 1752 * return an appropriate error. 1753 */ 1754 static int ipipe_prep(struct pipe_inode_info *pipe, unsigned int flags) 1755 { 1756 int ret; 1757 1758 /* 1759 * Check ->nrbufs without the inode lock first. This function 1760 * is speculative anyways, so missing one is ok. 1761 */ 1762 if (pipe->nrbufs) 1763 return 0; 1764 1765 ret = 0; 1766 pipe_lock(pipe); 1767 1768 while (!pipe->nrbufs) { 1769 if (signal_pending(current)) { 1770 ret = -ERESTARTSYS; 1771 break; 1772 } 1773 if (!pipe->writers) 1774 break; 1775 if (!pipe->waiting_writers) { 1776 if (flags & SPLICE_F_NONBLOCK) { 1777 ret = -EAGAIN; 1778 break; 1779 } 1780 } 1781 pipe_wait(pipe); 1782 } 1783 1784 pipe_unlock(pipe); 1785 return ret; 1786 } 1787 1788 /* 1789 * Make sure there's writeable room. Wait for room if we can, otherwise 1790 * return an appropriate error. 1791 */ 1792 static int opipe_prep(struct pipe_inode_info *pipe, unsigned int flags) 1793 { 1794 int ret; 1795 1796 /* 1797 * Check ->nrbufs without the inode lock first. This function 1798 * is speculative anyways, so missing one is ok. 1799 */ 1800 if (pipe->nrbufs < pipe->buffers) 1801 return 0; 1802 1803 ret = 0; 1804 pipe_lock(pipe); 1805 1806 while (pipe->nrbufs >= pipe->buffers) { 1807 if (!pipe->readers) { 1808 send_sig(SIGPIPE, current, 0); 1809 ret = -EPIPE; 1810 break; 1811 } 1812 if (flags & SPLICE_F_NONBLOCK) { 1813 ret = -EAGAIN; 1814 break; 1815 } 1816 if (signal_pending(current)) { 1817 ret = -ERESTARTSYS; 1818 break; 1819 } 1820 pipe->waiting_writers++; 1821 pipe_wait(pipe); 1822 pipe->waiting_writers--; 1823 } 1824 1825 pipe_unlock(pipe); 1826 return ret; 1827 } 1828 1829 /* 1830 * Splice contents of ipipe to opipe. 1831 */ 1832 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe, 1833 struct pipe_inode_info *opipe, 1834 size_t len, unsigned int flags) 1835 { 1836 struct pipe_buffer *ibuf, *obuf; 1837 int ret = 0, nbuf; 1838 bool input_wakeup = false; 1839 1840 1841 retry: 1842 ret = ipipe_prep(ipipe, flags); 1843 if (ret) 1844 return ret; 1845 1846 ret = opipe_prep(opipe, flags); 1847 if (ret) 1848 return ret; 1849 1850 /* 1851 * Potential ABBA deadlock, work around it by ordering lock 1852 * grabbing by pipe info address. Otherwise two different processes 1853 * could deadlock (one doing tee from A -> B, the other from B -> A). 1854 */ 1855 pipe_double_lock(ipipe, opipe); 1856 1857 do { 1858 if (!opipe->readers) { 1859 send_sig(SIGPIPE, current, 0); 1860 if (!ret) 1861 ret = -EPIPE; 1862 break; 1863 } 1864 1865 if (!ipipe->nrbufs && !ipipe->writers) 1866 break; 1867 1868 /* 1869 * Cannot make any progress, because either the input 1870 * pipe is empty or the output pipe is full. 1871 */ 1872 if (!ipipe->nrbufs || opipe->nrbufs >= opipe->buffers) { 1873 /* Already processed some buffers, break */ 1874 if (ret) 1875 break; 1876 1877 if (flags & SPLICE_F_NONBLOCK) { 1878 ret = -EAGAIN; 1879 break; 1880 } 1881 1882 /* 1883 * We raced with another reader/writer and haven't 1884 * managed to process any buffers. A zero return 1885 * value means EOF, so retry instead. 1886 */ 1887 pipe_unlock(ipipe); 1888 pipe_unlock(opipe); 1889 goto retry; 1890 } 1891 1892 ibuf = ipipe->bufs + ipipe->curbuf; 1893 nbuf = (opipe->curbuf + opipe->nrbufs) & (opipe->buffers - 1); 1894 obuf = opipe->bufs + nbuf; 1895 1896 if (len >= ibuf->len) { 1897 /* 1898 * Simply move the whole buffer from ipipe to opipe 1899 */ 1900 *obuf = *ibuf; 1901 ibuf->ops = NULL; 1902 opipe->nrbufs++; 1903 ipipe->curbuf = (ipipe->curbuf + 1) & (ipipe->buffers - 1); 1904 ipipe->nrbufs--; 1905 input_wakeup = true; 1906 } else { 1907 /* 1908 * Get a reference to this pipe buffer, 1909 * so we can copy the contents over. 1910 */ 1911 ibuf->ops->get(ipipe, ibuf); 1912 *obuf = *ibuf; 1913 1914 /* 1915 * Don't inherit the gift flag, we need to 1916 * prevent multiple steals of this page. 1917 */ 1918 obuf->flags &= ~PIPE_BUF_FLAG_GIFT; 1919 1920 obuf->len = len; 1921 opipe->nrbufs++; 1922 ibuf->offset += obuf->len; 1923 ibuf->len -= obuf->len; 1924 } 1925 ret += obuf->len; 1926 len -= obuf->len; 1927 } while (len); 1928 1929 pipe_unlock(ipipe); 1930 pipe_unlock(opipe); 1931 1932 /* 1933 * If we put data in the output pipe, wakeup any potential readers. 1934 */ 1935 if (ret > 0) { 1936 smp_mb(); 1937 if (waitqueue_active(&opipe->wait)) 1938 wake_up_interruptible(&opipe->wait); 1939 kill_fasync(&opipe->fasync_readers, SIGIO, POLL_IN); 1940 } 1941 if (input_wakeup) 1942 wakeup_pipe_writers(ipipe); 1943 1944 return ret; 1945 } 1946 1947 /* 1948 * Link contents of ipipe to opipe. 1949 */ 1950 static int link_pipe(struct pipe_inode_info *ipipe, 1951 struct pipe_inode_info *opipe, 1952 size_t len, unsigned int flags) 1953 { 1954 struct pipe_buffer *ibuf, *obuf; 1955 int ret = 0, i = 0, nbuf; 1956 1957 /* 1958 * Potential ABBA deadlock, work around it by ordering lock 1959 * grabbing by pipe info address. Otherwise two different processes 1960 * could deadlock (one doing tee from A -> B, the other from B -> A). 1961 */ 1962 pipe_double_lock(ipipe, opipe); 1963 1964 do { 1965 if (!opipe->readers) { 1966 send_sig(SIGPIPE, current, 0); 1967 if (!ret) 1968 ret = -EPIPE; 1969 break; 1970 } 1971 1972 /* 1973 * If we have iterated all input buffers or ran out of 1974 * output room, break. 1975 */ 1976 if (i >= ipipe->nrbufs || opipe->nrbufs >= opipe->buffers) 1977 break; 1978 1979 ibuf = ipipe->bufs + ((ipipe->curbuf + i) & (ipipe->buffers-1)); 1980 nbuf = (opipe->curbuf + opipe->nrbufs) & (opipe->buffers - 1); 1981 1982 /* 1983 * Get a reference to this pipe buffer, 1984 * so we can copy the contents over. 1985 */ 1986 ibuf->ops->get(ipipe, ibuf); 1987 1988 obuf = opipe->bufs + nbuf; 1989 *obuf = *ibuf; 1990 1991 /* 1992 * Don't inherit the gift flag, we need to 1993 * prevent multiple steals of this page. 1994 */ 1995 obuf->flags &= ~PIPE_BUF_FLAG_GIFT; 1996 1997 if (obuf->len > len) 1998 obuf->len = len; 1999 2000 opipe->nrbufs++; 2001 ret += obuf->len; 2002 len -= obuf->len; 2003 i++; 2004 } while (len); 2005 2006 /* 2007 * return EAGAIN if we have the potential of some data in the 2008 * future, otherwise just return 0 2009 */ 2010 if (!ret && ipipe->waiting_writers && (flags & SPLICE_F_NONBLOCK)) 2011 ret = -EAGAIN; 2012 2013 pipe_unlock(ipipe); 2014 pipe_unlock(opipe); 2015 2016 /* 2017 * If we put data in the output pipe, wakeup any potential readers. 2018 */ 2019 if (ret > 0) { 2020 smp_mb(); 2021 if (waitqueue_active(&opipe->wait)) 2022 wake_up_interruptible(&opipe->wait); 2023 kill_fasync(&opipe->fasync_readers, SIGIO, POLL_IN); 2024 } 2025 2026 return ret; 2027 } 2028 2029 /* 2030 * This is a tee(1) implementation that works on pipes. It doesn't copy 2031 * any data, it simply references the 'in' pages on the 'out' pipe. 2032 * The 'flags' used are the SPLICE_F_* variants, currently the only 2033 * applicable one is SPLICE_F_NONBLOCK. 2034 */ 2035 static long do_tee(struct file *in, struct file *out, size_t len, 2036 unsigned int flags) 2037 { 2038 struct pipe_inode_info *ipipe = pipe_info(in->f_path.dentry->d_inode); 2039 struct pipe_inode_info *opipe = pipe_info(out->f_path.dentry->d_inode); 2040 int ret = -EINVAL; 2041 2042 /* 2043 * Duplicate the contents of ipipe to opipe without actually 2044 * copying the data. 2045 */ 2046 if (ipipe && opipe && ipipe != opipe) { 2047 /* 2048 * Keep going, unless we encounter an error. The ipipe/opipe 2049 * ordering doesn't really matter. 2050 */ 2051 ret = ipipe_prep(ipipe, flags); 2052 if (!ret) { 2053 ret = opipe_prep(opipe, flags); 2054 if (!ret) 2055 ret = link_pipe(ipipe, opipe, len, flags); 2056 } 2057 } 2058 2059 return ret; 2060 } 2061 2062 SYSCALL_DEFINE4(tee, int, fdin, int, fdout, size_t, len, unsigned int, flags) 2063 { 2064 struct file *in; 2065 int error, fput_in; 2066 2067 if (unlikely(!len)) 2068 return 0; 2069 2070 error = -EBADF; 2071 in = fget_light(fdin, &fput_in); 2072 if (in) { 2073 if (in->f_mode & FMODE_READ) { 2074 int fput_out; 2075 struct file *out = fget_light(fdout, &fput_out); 2076 2077 if (out) { 2078 if (out->f_mode & FMODE_WRITE) 2079 error = do_tee(in, out, len, flags); 2080 fput_light(out, fput_out); 2081 } 2082 } 2083 fput_light(in, fput_in); 2084 } 2085 2086 return error; 2087 } 2088