xref: /linux/fs/splice.c (revision f19900b2e608b604777a74d6d711bbf744657756)
1 /*
2  * "splice": joining two ropes together by interweaving their strands.
3  *
4  * This is the "extended pipe" functionality, where a pipe is used as
5  * an arbitrary in-memory buffer. Think of a pipe as a small kernel
6  * buffer that you can use to transfer data from one end to the other.
7  *
8  * The traditional unix read/write is extended with a "splice()" operation
9  * that transfers data buffers to or from a pipe buffer.
10  *
11  * Named by Larry McVoy, original implementation from Linus, extended by
12  * Jens to support splicing to files, network, direct splicing, etc and
13  * fixing lots of bugs.
14  *
15  * Copyright (C) 2005-2006 Jens Axboe <axboe@kernel.dk>
16  * Copyright (C) 2005-2006 Linus Torvalds <torvalds@osdl.org>
17  * Copyright (C) 2006 Ingo Molnar <mingo@elte.hu>
18  *
19  */
20 #include <linux/fs.h>
21 #include <linux/file.h>
22 #include <linux/pagemap.h>
23 #include <linux/splice.h>
24 #include <linux/memcontrol.h>
25 #include <linux/mm_inline.h>
26 #include <linux/swap.h>
27 #include <linux/writeback.h>
28 #include <linux/buffer_head.h>
29 #include <linux/module.h>
30 #include <linux/syscalls.h>
31 #include <linux/uio.h>
32 #include <linux/security.h>
33 
34 /*
35  * Attempt to steal a page from a pipe buffer. This should perhaps go into
36  * a vm helper function, it's already simplified quite a bit by the
37  * addition of remove_mapping(). If success is returned, the caller may
38  * attempt to reuse this page for another destination.
39  */
40 static int page_cache_pipe_buf_steal(struct pipe_inode_info *pipe,
41 				     struct pipe_buffer *buf)
42 {
43 	struct page *page = buf->page;
44 	struct address_space *mapping;
45 
46 	lock_page(page);
47 
48 	mapping = page_mapping(page);
49 	if (mapping) {
50 		WARN_ON(!PageUptodate(page));
51 
52 		/*
53 		 * At least for ext2 with nobh option, we need to wait on
54 		 * writeback completing on this page, since we'll remove it
55 		 * from the pagecache.  Otherwise truncate wont wait on the
56 		 * page, allowing the disk blocks to be reused by someone else
57 		 * before we actually wrote our data to them. fs corruption
58 		 * ensues.
59 		 */
60 		wait_on_page_writeback(page);
61 
62 		if (page_has_private(page) &&
63 		    !try_to_release_page(page, GFP_KERNEL))
64 			goto out_unlock;
65 
66 		/*
67 		 * If we succeeded in removing the mapping, set LRU flag
68 		 * and return good.
69 		 */
70 		if (remove_mapping(mapping, page)) {
71 			buf->flags |= PIPE_BUF_FLAG_LRU;
72 			return 0;
73 		}
74 	}
75 
76 	/*
77 	 * Raced with truncate or failed to remove page from current
78 	 * address space, unlock and return failure.
79 	 */
80 out_unlock:
81 	unlock_page(page);
82 	return 1;
83 }
84 
85 static void page_cache_pipe_buf_release(struct pipe_inode_info *pipe,
86 					struct pipe_buffer *buf)
87 {
88 	page_cache_release(buf->page);
89 	buf->flags &= ~PIPE_BUF_FLAG_LRU;
90 }
91 
92 /*
93  * Check whether the contents of buf is OK to access. Since the content
94  * is a page cache page, IO may be in flight.
95  */
96 static int page_cache_pipe_buf_confirm(struct pipe_inode_info *pipe,
97 				       struct pipe_buffer *buf)
98 {
99 	struct page *page = buf->page;
100 	int err;
101 
102 	if (!PageUptodate(page)) {
103 		lock_page(page);
104 
105 		/*
106 		 * Page got truncated/unhashed. This will cause a 0-byte
107 		 * splice, if this is the first page.
108 		 */
109 		if (!page->mapping) {
110 			err = -ENODATA;
111 			goto error;
112 		}
113 
114 		/*
115 		 * Uh oh, read-error from disk.
116 		 */
117 		if (!PageUptodate(page)) {
118 			err = -EIO;
119 			goto error;
120 		}
121 
122 		/*
123 		 * Page is ok afterall, we are done.
124 		 */
125 		unlock_page(page);
126 	}
127 
128 	return 0;
129 error:
130 	unlock_page(page);
131 	return err;
132 }
133 
134 static const struct pipe_buf_operations page_cache_pipe_buf_ops = {
135 	.can_merge = 0,
136 	.map = generic_pipe_buf_map,
137 	.unmap = generic_pipe_buf_unmap,
138 	.confirm = page_cache_pipe_buf_confirm,
139 	.release = page_cache_pipe_buf_release,
140 	.steal = page_cache_pipe_buf_steal,
141 	.get = generic_pipe_buf_get,
142 };
143 
144 static int user_page_pipe_buf_steal(struct pipe_inode_info *pipe,
145 				    struct pipe_buffer *buf)
146 {
147 	if (!(buf->flags & PIPE_BUF_FLAG_GIFT))
148 		return 1;
149 
150 	buf->flags |= PIPE_BUF_FLAG_LRU;
151 	return generic_pipe_buf_steal(pipe, buf);
152 }
153 
154 static const struct pipe_buf_operations user_page_pipe_buf_ops = {
155 	.can_merge = 0,
156 	.map = generic_pipe_buf_map,
157 	.unmap = generic_pipe_buf_unmap,
158 	.confirm = generic_pipe_buf_confirm,
159 	.release = page_cache_pipe_buf_release,
160 	.steal = user_page_pipe_buf_steal,
161 	.get = generic_pipe_buf_get,
162 };
163 
164 /**
165  * splice_to_pipe - fill passed data into a pipe
166  * @pipe:	pipe to fill
167  * @spd:	data to fill
168  *
169  * Description:
170  *    @spd contains a map of pages and len/offset tuples, along with
171  *    the struct pipe_buf_operations associated with these pages. This
172  *    function will link that data to the pipe.
173  *
174  */
175 ssize_t splice_to_pipe(struct pipe_inode_info *pipe,
176 		       struct splice_pipe_desc *spd)
177 {
178 	unsigned int spd_pages = spd->nr_pages;
179 	int ret, do_wakeup, page_nr;
180 
181 	ret = 0;
182 	do_wakeup = 0;
183 	page_nr = 0;
184 
185 	pipe_lock(pipe);
186 
187 	for (;;) {
188 		if (!pipe->readers) {
189 			send_sig(SIGPIPE, current, 0);
190 			if (!ret)
191 				ret = -EPIPE;
192 			break;
193 		}
194 
195 		if (pipe->nrbufs < PIPE_BUFFERS) {
196 			int newbuf = (pipe->curbuf + pipe->nrbufs) & (PIPE_BUFFERS - 1);
197 			struct pipe_buffer *buf = pipe->bufs + newbuf;
198 
199 			buf->page = spd->pages[page_nr];
200 			buf->offset = spd->partial[page_nr].offset;
201 			buf->len = spd->partial[page_nr].len;
202 			buf->private = spd->partial[page_nr].private;
203 			buf->ops = spd->ops;
204 			if (spd->flags & SPLICE_F_GIFT)
205 				buf->flags |= PIPE_BUF_FLAG_GIFT;
206 
207 			pipe->nrbufs++;
208 			page_nr++;
209 			ret += buf->len;
210 
211 			if (pipe->inode)
212 				do_wakeup = 1;
213 
214 			if (!--spd->nr_pages)
215 				break;
216 			if (pipe->nrbufs < PIPE_BUFFERS)
217 				continue;
218 
219 			break;
220 		}
221 
222 		if (spd->flags & SPLICE_F_NONBLOCK) {
223 			if (!ret)
224 				ret = -EAGAIN;
225 			break;
226 		}
227 
228 		if (signal_pending(current)) {
229 			if (!ret)
230 				ret = -ERESTARTSYS;
231 			break;
232 		}
233 
234 		if (do_wakeup) {
235 			smp_mb();
236 			if (waitqueue_active(&pipe->wait))
237 				wake_up_interruptible_sync(&pipe->wait);
238 			kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
239 			do_wakeup = 0;
240 		}
241 
242 		pipe->waiting_writers++;
243 		pipe_wait(pipe);
244 		pipe->waiting_writers--;
245 	}
246 
247 	pipe_unlock(pipe);
248 
249 	if (do_wakeup) {
250 		smp_mb();
251 		if (waitqueue_active(&pipe->wait))
252 			wake_up_interruptible(&pipe->wait);
253 		kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
254 	}
255 
256 	while (page_nr < spd_pages)
257 		spd->spd_release(spd, page_nr++);
258 
259 	return ret;
260 }
261 
262 static void spd_release_page(struct splice_pipe_desc *spd, unsigned int i)
263 {
264 	page_cache_release(spd->pages[i]);
265 }
266 
267 static int
268 __generic_file_splice_read(struct file *in, loff_t *ppos,
269 			   struct pipe_inode_info *pipe, size_t len,
270 			   unsigned int flags)
271 {
272 	struct address_space *mapping = in->f_mapping;
273 	unsigned int loff, nr_pages, req_pages;
274 	struct page *pages[PIPE_BUFFERS];
275 	struct partial_page partial[PIPE_BUFFERS];
276 	struct page *page;
277 	pgoff_t index, end_index;
278 	loff_t isize;
279 	int error, page_nr;
280 	struct splice_pipe_desc spd = {
281 		.pages = pages,
282 		.partial = partial,
283 		.flags = flags,
284 		.ops = &page_cache_pipe_buf_ops,
285 		.spd_release = spd_release_page,
286 	};
287 
288 	index = *ppos >> PAGE_CACHE_SHIFT;
289 	loff = *ppos & ~PAGE_CACHE_MASK;
290 	req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
291 	nr_pages = min(req_pages, (unsigned)PIPE_BUFFERS);
292 
293 	/*
294 	 * Lookup the (hopefully) full range of pages we need.
295 	 */
296 	spd.nr_pages = find_get_pages_contig(mapping, index, nr_pages, pages);
297 	index += spd.nr_pages;
298 
299 	/*
300 	 * If find_get_pages_contig() returned fewer pages than we needed,
301 	 * readahead/allocate the rest and fill in the holes.
302 	 */
303 	if (spd.nr_pages < nr_pages)
304 		page_cache_sync_readahead(mapping, &in->f_ra, in,
305 				index, req_pages - spd.nr_pages);
306 
307 	error = 0;
308 	while (spd.nr_pages < nr_pages) {
309 		/*
310 		 * Page could be there, find_get_pages_contig() breaks on
311 		 * the first hole.
312 		 */
313 		page = find_get_page(mapping, index);
314 		if (!page) {
315 			/*
316 			 * page didn't exist, allocate one.
317 			 */
318 			page = page_cache_alloc_cold(mapping);
319 			if (!page)
320 				break;
321 
322 			error = add_to_page_cache_lru(page, mapping, index,
323 						mapping_gfp_mask(mapping));
324 			if (unlikely(error)) {
325 				page_cache_release(page);
326 				if (error == -EEXIST)
327 					continue;
328 				break;
329 			}
330 			/*
331 			 * add_to_page_cache() locks the page, unlock it
332 			 * to avoid convoluting the logic below even more.
333 			 */
334 			unlock_page(page);
335 		}
336 
337 		pages[spd.nr_pages++] = page;
338 		index++;
339 	}
340 
341 	/*
342 	 * Now loop over the map and see if we need to start IO on any
343 	 * pages, fill in the partial map, etc.
344 	 */
345 	index = *ppos >> PAGE_CACHE_SHIFT;
346 	nr_pages = spd.nr_pages;
347 	spd.nr_pages = 0;
348 	for (page_nr = 0; page_nr < nr_pages; page_nr++) {
349 		unsigned int this_len;
350 
351 		if (!len)
352 			break;
353 
354 		/*
355 		 * this_len is the max we'll use from this page
356 		 */
357 		this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
358 		page = pages[page_nr];
359 
360 		if (PageReadahead(page))
361 			page_cache_async_readahead(mapping, &in->f_ra, in,
362 					page, index, req_pages - page_nr);
363 
364 		/*
365 		 * If the page isn't uptodate, we may need to start io on it
366 		 */
367 		if (!PageUptodate(page)) {
368 			/*
369 			 * If in nonblock mode then dont block on waiting
370 			 * for an in-flight io page
371 			 */
372 			if (flags & SPLICE_F_NONBLOCK) {
373 				if (!trylock_page(page)) {
374 					error = -EAGAIN;
375 					break;
376 				}
377 			} else
378 				lock_page(page);
379 
380 			/*
381 			 * Page was truncated, or invalidated by the
382 			 * filesystem.  Redo the find/create, but this time the
383 			 * page is kept locked, so there's no chance of another
384 			 * race with truncate/invalidate.
385 			 */
386 			if (!page->mapping) {
387 				unlock_page(page);
388 				page = find_or_create_page(mapping, index,
389 						mapping_gfp_mask(mapping));
390 
391 				if (!page) {
392 					error = -ENOMEM;
393 					break;
394 				}
395 				page_cache_release(pages[page_nr]);
396 				pages[page_nr] = page;
397 			}
398 			/*
399 			 * page was already under io and is now done, great
400 			 */
401 			if (PageUptodate(page)) {
402 				unlock_page(page);
403 				goto fill_it;
404 			}
405 
406 			/*
407 			 * need to read in the page
408 			 */
409 			error = mapping->a_ops->readpage(in, page);
410 			if (unlikely(error)) {
411 				/*
412 				 * We really should re-lookup the page here,
413 				 * but it complicates things a lot. Instead
414 				 * lets just do what we already stored, and
415 				 * we'll get it the next time we are called.
416 				 */
417 				if (error == AOP_TRUNCATED_PAGE)
418 					error = 0;
419 
420 				break;
421 			}
422 		}
423 fill_it:
424 		/*
425 		 * i_size must be checked after PageUptodate.
426 		 */
427 		isize = i_size_read(mapping->host);
428 		end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
429 		if (unlikely(!isize || index > end_index))
430 			break;
431 
432 		/*
433 		 * if this is the last page, see if we need to shrink
434 		 * the length and stop
435 		 */
436 		if (end_index == index) {
437 			unsigned int plen;
438 
439 			/*
440 			 * max good bytes in this page
441 			 */
442 			plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
443 			if (plen <= loff)
444 				break;
445 
446 			/*
447 			 * force quit after adding this page
448 			 */
449 			this_len = min(this_len, plen - loff);
450 			len = this_len;
451 		}
452 
453 		partial[page_nr].offset = loff;
454 		partial[page_nr].len = this_len;
455 		len -= this_len;
456 		loff = 0;
457 		spd.nr_pages++;
458 		index++;
459 	}
460 
461 	/*
462 	 * Release any pages at the end, if we quit early. 'page_nr' is how far
463 	 * we got, 'nr_pages' is how many pages are in the map.
464 	 */
465 	while (page_nr < nr_pages)
466 		page_cache_release(pages[page_nr++]);
467 	in->f_ra.prev_pos = (loff_t)index << PAGE_CACHE_SHIFT;
468 
469 	if (spd.nr_pages)
470 		return splice_to_pipe(pipe, &spd);
471 
472 	return error;
473 }
474 
475 /**
476  * generic_file_splice_read - splice data from file to a pipe
477  * @in:		file to splice from
478  * @ppos:	position in @in
479  * @pipe:	pipe to splice to
480  * @len:	number of bytes to splice
481  * @flags:	splice modifier flags
482  *
483  * Description:
484  *    Will read pages from given file and fill them into a pipe. Can be
485  *    used as long as the address_space operations for the source implements
486  *    a readpage() hook.
487  *
488  */
489 ssize_t generic_file_splice_read(struct file *in, loff_t *ppos,
490 				 struct pipe_inode_info *pipe, size_t len,
491 				 unsigned int flags)
492 {
493 	loff_t isize, left;
494 	int ret;
495 
496 	isize = i_size_read(in->f_mapping->host);
497 	if (unlikely(*ppos >= isize))
498 		return 0;
499 
500 	left = isize - *ppos;
501 	if (unlikely(left < len))
502 		len = left;
503 
504 	ret = __generic_file_splice_read(in, ppos, pipe, len, flags);
505 	if (ret > 0)
506 		*ppos += ret;
507 
508 	return ret;
509 }
510 
511 EXPORT_SYMBOL(generic_file_splice_read);
512 
513 /*
514  * Send 'sd->len' bytes to socket from 'sd->file' at position 'sd->pos'
515  * using sendpage(). Return the number of bytes sent.
516  */
517 static int pipe_to_sendpage(struct pipe_inode_info *pipe,
518 			    struct pipe_buffer *buf, struct splice_desc *sd)
519 {
520 	struct file *file = sd->u.file;
521 	loff_t pos = sd->pos;
522 	int ret, more;
523 
524 	ret = buf->ops->confirm(pipe, buf);
525 	if (!ret) {
526 		more = (sd->flags & SPLICE_F_MORE) || sd->len < sd->total_len;
527 
528 		ret = file->f_op->sendpage(file, buf->page, buf->offset,
529 					   sd->len, &pos, more);
530 	}
531 
532 	return ret;
533 }
534 
535 /*
536  * This is a little more tricky than the file -> pipe splicing. There are
537  * basically three cases:
538  *
539  *	- Destination page already exists in the address space and there
540  *	  are users of it. For that case we have no other option that
541  *	  copying the data. Tough luck.
542  *	- Destination page already exists in the address space, but there
543  *	  are no users of it. Make sure it's uptodate, then drop it. Fall
544  *	  through to last case.
545  *	- Destination page does not exist, we can add the pipe page to
546  *	  the page cache and avoid the copy.
547  *
548  * If asked to move pages to the output file (SPLICE_F_MOVE is set in
549  * sd->flags), we attempt to migrate pages from the pipe to the output
550  * file address space page cache. This is possible if no one else has
551  * the pipe page referenced outside of the pipe and page cache. If
552  * SPLICE_F_MOVE isn't set, or we cannot move the page, we simply create
553  * a new page in the output file page cache and fill/dirty that.
554  */
555 int pipe_to_file(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
556 		 struct splice_desc *sd)
557 {
558 	struct file *file = sd->u.file;
559 	struct address_space *mapping = file->f_mapping;
560 	unsigned int offset, this_len;
561 	struct page *page;
562 	void *fsdata;
563 	int ret;
564 
565 	/*
566 	 * make sure the data in this buffer is uptodate
567 	 */
568 	ret = buf->ops->confirm(pipe, buf);
569 	if (unlikely(ret))
570 		return ret;
571 
572 	offset = sd->pos & ~PAGE_CACHE_MASK;
573 
574 	this_len = sd->len;
575 	if (this_len + offset > PAGE_CACHE_SIZE)
576 		this_len = PAGE_CACHE_SIZE - offset;
577 
578 	ret = pagecache_write_begin(file, mapping, sd->pos, this_len,
579 				AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
580 	if (unlikely(ret))
581 		goto out;
582 
583 	if (buf->page != page) {
584 		/*
585 		 * Careful, ->map() uses KM_USER0!
586 		 */
587 		char *src = buf->ops->map(pipe, buf, 1);
588 		char *dst = kmap_atomic(page, KM_USER1);
589 
590 		memcpy(dst + offset, src + buf->offset, this_len);
591 		flush_dcache_page(page);
592 		kunmap_atomic(dst, KM_USER1);
593 		buf->ops->unmap(pipe, buf, src);
594 	}
595 	ret = pagecache_write_end(file, mapping, sd->pos, this_len, this_len,
596 				page, fsdata);
597 out:
598 	return ret;
599 }
600 EXPORT_SYMBOL(pipe_to_file);
601 
602 static void wakeup_pipe_writers(struct pipe_inode_info *pipe)
603 {
604 	smp_mb();
605 	if (waitqueue_active(&pipe->wait))
606 		wake_up_interruptible(&pipe->wait);
607 	kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
608 }
609 
610 /**
611  * splice_from_pipe_feed - feed available data from a pipe to a file
612  * @pipe:	pipe to splice from
613  * @sd:		information to @actor
614  * @actor:	handler that splices the data
615  *
616  * Description:
617  *    This function loops over the pipe and calls @actor to do the
618  *    actual moving of a single struct pipe_buffer to the desired
619  *    destination.  It returns when there's no more buffers left in
620  *    the pipe or if the requested number of bytes (@sd->total_len)
621  *    have been copied.  It returns a positive number (one) if the
622  *    pipe needs to be filled with more data, zero if the required
623  *    number of bytes have been copied and -errno on error.
624  *
625  *    This, together with splice_from_pipe_{begin,end,next}, may be
626  *    used to implement the functionality of __splice_from_pipe() when
627  *    locking is required around copying the pipe buffers to the
628  *    destination.
629  */
630 int splice_from_pipe_feed(struct pipe_inode_info *pipe, struct splice_desc *sd,
631 			  splice_actor *actor)
632 {
633 	int ret;
634 
635 	while (pipe->nrbufs) {
636 		struct pipe_buffer *buf = pipe->bufs + pipe->curbuf;
637 		const struct pipe_buf_operations *ops = buf->ops;
638 
639 		sd->len = buf->len;
640 		if (sd->len > sd->total_len)
641 			sd->len = sd->total_len;
642 
643 		ret = actor(pipe, buf, sd);
644 		if (ret <= 0) {
645 			if (ret == -ENODATA)
646 				ret = 0;
647 			return ret;
648 		}
649 		buf->offset += ret;
650 		buf->len -= ret;
651 
652 		sd->num_spliced += ret;
653 		sd->len -= ret;
654 		sd->pos += ret;
655 		sd->total_len -= ret;
656 
657 		if (!buf->len) {
658 			buf->ops = NULL;
659 			ops->release(pipe, buf);
660 			pipe->curbuf = (pipe->curbuf + 1) & (PIPE_BUFFERS - 1);
661 			pipe->nrbufs--;
662 			if (pipe->inode)
663 				sd->need_wakeup = true;
664 		}
665 
666 		if (!sd->total_len)
667 			return 0;
668 	}
669 
670 	return 1;
671 }
672 EXPORT_SYMBOL(splice_from_pipe_feed);
673 
674 /**
675  * splice_from_pipe_next - wait for some data to splice from
676  * @pipe:	pipe to splice from
677  * @sd:		information about the splice operation
678  *
679  * Description:
680  *    This function will wait for some data and return a positive
681  *    value (one) if pipe buffers are available.  It will return zero
682  *    or -errno if no more data needs to be spliced.
683  */
684 int splice_from_pipe_next(struct pipe_inode_info *pipe, struct splice_desc *sd)
685 {
686 	while (!pipe->nrbufs) {
687 		if (!pipe->writers)
688 			return 0;
689 
690 		if (!pipe->waiting_writers && sd->num_spliced)
691 			return 0;
692 
693 		if (sd->flags & SPLICE_F_NONBLOCK)
694 			return -EAGAIN;
695 
696 		if (signal_pending(current))
697 			return -ERESTARTSYS;
698 
699 		if (sd->need_wakeup) {
700 			wakeup_pipe_writers(pipe);
701 			sd->need_wakeup = false;
702 		}
703 
704 		pipe_wait(pipe);
705 	}
706 
707 	return 1;
708 }
709 EXPORT_SYMBOL(splice_from_pipe_next);
710 
711 /**
712  * splice_from_pipe_begin - start splicing from pipe
713  * @sd:		information about the splice operation
714  *
715  * Description:
716  *    This function should be called before a loop containing
717  *    splice_from_pipe_next() and splice_from_pipe_feed() to
718  *    initialize the necessary fields of @sd.
719  */
720 void splice_from_pipe_begin(struct splice_desc *sd)
721 {
722 	sd->num_spliced = 0;
723 	sd->need_wakeup = false;
724 }
725 EXPORT_SYMBOL(splice_from_pipe_begin);
726 
727 /**
728  * splice_from_pipe_end - finish splicing from pipe
729  * @pipe:	pipe to splice from
730  * @sd:		information about the splice operation
731  *
732  * Description:
733  *    This function will wake up pipe writers if necessary.  It should
734  *    be called after a loop containing splice_from_pipe_next() and
735  *    splice_from_pipe_feed().
736  */
737 void splice_from_pipe_end(struct pipe_inode_info *pipe, struct splice_desc *sd)
738 {
739 	if (sd->need_wakeup)
740 		wakeup_pipe_writers(pipe);
741 }
742 EXPORT_SYMBOL(splice_from_pipe_end);
743 
744 /**
745  * __splice_from_pipe - splice data from a pipe to given actor
746  * @pipe:	pipe to splice from
747  * @sd:		information to @actor
748  * @actor:	handler that splices the data
749  *
750  * Description:
751  *    This function does little more than loop over the pipe and call
752  *    @actor to do the actual moving of a single struct pipe_buffer to
753  *    the desired destination. See pipe_to_file, pipe_to_sendpage, or
754  *    pipe_to_user.
755  *
756  */
757 ssize_t __splice_from_pipe(struct pipe_inode_info *pipe, struct splice_desc *sd,
758 			   splice_actor *actor)
759 {
760 	int ret;
761 
762 	splice_from_pipe_begin(sd);
763 	do {
764 		ret = splice_from_pipe_next(pipe, sd);
765 		if (ret > 0)
766 			ret = splice_from_pipe_feed(pipe, sd, actor);
767 	} while (ret > 0);
768 	splice_from_pipe_end(pipe, sd);
769 
770 	return sd->num_spliced ? sd->num_spliced : ret;
771 }
772 EXPORT_SYMBOL(__splice_from_pipe);
773 
774 /**
775  * splice_from_pipe - splice data from a pipe to a file
776  * @pipe:	pipe to splice from
777  * @out:	file to splice to
778  * @ppos:	position in @out
779  * @len:	how many bytes to splice
780  * @flags:	splice modifier flags
781  * @actor:	handler that splices the data
782  *
783  * Description:
784  *    See __splice_from_pipe. This function locks the pipe inode,
785  *    otherwise it's identical to __splice_from_pipe().
786  *
787  */
788 ssize_t splice_from_pipe(struct pipe_inode_info *pipe, struct file *out,
789 			 loff_t *ppos, size_t len, unsigned int flags,
790 			 splice_actor *actor)
791 {
792 	ssize_t ret;
793 	struct splice_desc sd = {
794 		.total_len = len,
795 		.flags = flags,
796 		.pos = *ppos,
797 		.u.file = out,
798 	};
799 
800 	pipe_lock(pipe);
801 	ret = __splice_from_pipe(pipe, &sd, actor);
802 	pipe_unlock(pipe);
803 
804 	return ret;
805 }
806 
807 /**
808  * generic_file_splice_write - splice data from a pipe to a file
809  * @pipe:	pipe info
810  * @out:	file to write to
811  * @ppos:	position in @out
812  * @len:	number of bytes to splice
813  * @flags:	splice modifier flags
814  *
815  * Description:
816  *    Will either move or copy pages (determined by @flags options) from
817  *    the given pipe inode to the given file.
818  *
819  */
820 ssize_t
821 generic_file_splice_write(struct pipe_inode_info *pipe, struct file *out,
822 			  loff_t *ppos, size_t len, unsigned int flags)
823 {
824 	struct address_space *mapping = out->f_mapping;
825 	struct inode *inode = mapping->host;
826 	struct splice_desc sd = {
827 		.total_len = len,
828 		.flags = flags,
829 		.pos = *ppos,
830 		.u.file = out,
831 	};
832 	ssize_t ret;
833 
834 	pipe_lock(pipe);
835 
836 	splice_from_pipe_begin(&sd);
837 	do {
838 		ret = splice_from_pipe_next(pipe, &sd);
839 		if (ret <= 0)
840 			break;
841 
842 		mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
843 		ret = file_remove_suid(out);
844 		if (!ret)
845 			ret = splice_from_pipe_feed(pipe, &sd, pipe_to_file);
846 		mutex_unlock(&inode->i_mutex);
847 	} while (ret > 0);
848 	splice_from_pipe_end(pipe, &sd);
849 
850 	pipe_unlock(pipe);
851 
852 	if (sd.num_spliced)
853 		ret = sd.num_spliced;
854 
855 	if (ret > 0) {
856 		unsigned long nr_pages;
857 
858 		*ppos += ret;
859 		nr_pages = (ret + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
860 
861 		/*
862 		 * If file or inode is SYNC and we actually wrote some data,
863 		 * sync it.
864 		 */
865 		if (unlikely((out->f_flags & O_SYNC) || IS_SYNC(inode))) {
866 			int err;
867 
868 			mutex_lock(&inode->i_mutex);
869 			err = generic_osync_inode(inode, mapping,
870 						  OSYNC_METADATA|OSYNC_DATA);
871 			mutex_unlock(&inode->i_mutex);
872 
873 			if (err)
874 				ret = err;
875 		}
876 		balance_dirty_pages_ratelimited_nr(mapping, nr_pages);
877 	}
878 
879 	return ret;
880 }
881 
882 EXPORT_SYMBOL(generic_file_splice_write);
883 
884 /**
885  * generic_splice_sendpage - splice data from a pipe to a socket
886  * @pipe:	pipe to splice from
887  * @out:	socket to write to
888  * @ppos:	position in @out
889  * @len:	number of bytes to splice
890  * @flags:	splice modifier flags
891  *
892  * Description:
893  *    Will send @len bytes from the pipe to a network socket. No data copying
894  *    is involved.
895  *
896  */
897 ssize_t generic_splice_sendpage(struct pipe_inode_info *pipe, struct file *out,
898 				loff_t *ppos, size_t len, unsigned int flags)
899 {
900 	return splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_sendpage);
901 }
902 
903 EXPORT_SYMBOL(generic_splice_sendpage);
904 
905 /*
906  * Attempt to initiate a splice from pipe to file.
907  */
908 static long do_splice_from(struct pipe_inode_info *pipe, struct file *out,
909 			   loff_t *ppos, size_t len, unsigned int flags)
910 {
911 	int ret;
912 
913 	if (unlikely(!out->f_op || !out->f_op->splice_write))
914 		return -EINVAL;
915 
916 	if (unlikely(!(out->f_mode & FMODE_WRITE)))
917 		return -EBADF;
918 
919 	if (unlikely(out->f_flags & O_APPEND))
920 		return -EINVAL;
921 
922 	ret = rw_verify_area(WRITE, out, ppos, len);
923 	if (unlikely(ret < 0))
924 		return ret;
925 
926 	return out->f_op->splice_write(pipe, out, ppos, len, flags);
927 }
928 
929 /*
930  * Attempt to initiate a splice from a file to a pipe.
931  */
932 static long do_splice_to(struct file *in, loff_t *ppos,
933 			 struct pipe_inode_info *pipe, size_t len,
934 			 unsigned int flags)
935 {
936 	int ret;
937 
938 	if (unlikely(!in->f_op || !in->f_op->splice_read))
939 		return -EINVAL;
940 
941 	if (unlikely(!(in->f_mode & FMODE_READ)))
942 		return -EBADF;
943 
944 	ret = rw_verify_area(READ, in, ppos, len);
945 	if (unlikely(ret < 0))
946 		return ret;
947 
948 	return in->f_op->splice_read(in, ppos, pipe, len, flags);
949 }
950 
951 /**
952  * splice_direct_to_actor - splices data directly between two non-pipes
953  * @in:		file to splice from
954  * @sd:		actor information on where to splice to
955  * @actor:	handles the data splicing
956  *
957  * Description:
958  *    This is a special case helper to splice directly between two
959  *    points, without requiring an explicit pipe. Internally an allocated
960  *    pipe is cached in the process, and reused during the lifetime of
961  *    that process.
962  *
963  */
964 ssize_t splice_direct_to_actor(struct file *in, struct splice_desc *sd,
965 			       splice_direct_actor *actor)
966 {
967 	struct pipe_inode_info *pipe;
968 	long ret, bytes;
969 	umode_t i_mode;
970 	size_t len;
971 	int i, flags;
972 
973 	/*
974 	 * We require the input being a regular file, as we don't want to
975 	 * randomly drop data for eg socket -> socket splicing. Use the
976 	 * piped splicing for that!
977 	 */
978 	i_mode = in->f_path.dentry->d_inode->i_mode;
979 	if (unlikely(!S_ISREG(i_mode) && !S_ISBLK(i_mode)))
980 		return -EINVAL;
981 
982 	/*
983 	 * neither in nor out is a pipe, setup an internal pipe attached to
984 	 * 'out' and transfer the wanted data from 'in' to 'out' through that
985 	 */
986 	pipe = current->splice_pipe;
987 	if (unlikely(!pipe)) {
988 		pipe = alloc_pipe_info(NULL);
989 		if (!pipe)
990 			return -ENOMEM;
991 
992 		/*
993 		 * We don't have an immediate reader, but we'll read the stuff
994 		 * out of the pipe right after the splice_to_pipe(). So set
995 		 * PIPE_READERS appropriately.
996 		 */
997 		pipe->readers = 1;
998 
999 		current->splice_pipe = pipe;
1000 	}
1001 
1002 	/*
1003 	 * Do the splice.
1004 	 */
1005 	ret = 0;
1006 	bytes = 0;
1007 	len = sd->total_len;
1008 	flags = sd->flags;
1009 
1010 	/*
1011 	 * Don't block on output, we have to drain the direct pipe.
1012 	 */
1013 	sd->flags &= ~SPLICE_F_NONBLOCK;
1014 
1015 	while (len) {
1016 		size_t read_len;
1017 		loff_t pos = sd->pos, prev_pos = pos;
1018 
1019 		ret = do_splice_to(in, &pos, pipe, len, flags);
1020 		if (unlikely(ret <= 0))
1021 			goto out_release;
1022 
1023 		read_len = ret;
1024 		sd->total_len = read_len;
1025 
1026 		/*
1027 		 * NOTE: nonblocking mode only applies to the input. We
1028 		 * must not do the output in nonblocking mode as then we
1029 		 * could get stuck data in the internal pipe:
1030 		 */
1031 		ret = actor(pipe, sd);
1032 		if (unlikely(ret <= 0)) {
1033 			sd->pos = prev_pos;
1034 			goto out_release;
1035 		}
1036 
1037 		bytes += ret;
1038 		len -= ret;
1039 		sd->pos = pos;
1040 
1041 		if (ret < read_len) {
1042 			sd->pos = prev_pos + ret;
1043 			goto out_release;
1044 		}
1045 	}
1046 
1047 done:
1048 	pipe->nrbufs = pipe->curbuf = 0;
1049 	file_accessed(in);
1050 	return bytes;
1051 
1052 out_release:
1053 	/*
1054 	 * If we did an incomplete transfer we must release
1055 	 * the pipe buffers in question:
1056 	 */
1057 	for (i = 0; i < PIPE_BUFFERS; i++) {
1058 		struct pipe_buffer *buf = pipe->bufs + i;
1059 
1060 		if (buf->ops) {
1061 			buf->ops->release(pipe, buf);
1062 			buf->ops = NULL;
1063 		}
1064 	}
1065 
1066 	if (!bytes)
1067 		bytes = ret;
1068 
1069 	goto done;
1070 }
1071 EXPORT_SYMBOL(splice_direct_to_actor);
1072 
1073 static int direct_splice_actor(struct pipe_inode_info *pipe,
1074 			       struct splice_desc *sd)
1075 {
1076 	struct file *file = sd->u.file;
1077 
1078 	return do_splice_from(pipe, file, &sd->pos, sd->total_len, sd->flags);
1079 }
1080 
1081 /**
1082  * do_splice_direct - splices data directly between two files
1083  * @in:		file to splice from
1084  * @ppos:	input file offset
1085  * @out:	file to splice to
1086  * @len:	number of bytes to splice
1087  * @flags:	splice modifier flags
1088  *
1089  * Description:
1090  *    For use by do_sendfile(). splice can easily emulate sendfile, but
1091  *    doing it in the application would incur an extra system call
1092  *    (splice in + splice out, as compared to just sendfile()). So this helper
1093  *    can splice directly through a process-private pipe.
1094  *
1095  */
1096 long do_splice_direct(struct file *in, loff_t *ppos, struct file *out,
1097 		      size_t len, unsigned int flags)
1098 {
1099 	struct splice_desc sd = {
1100 		.len		= len,
1101 		.total_len	= len,
1102 		.flags		= flags,
1103 		.pos		= *ppos,
1104 		.u.file		= out,
1105 	};
1106 	long ret;
1107 
1108 	ret = splice_direct_to_actor(in, &sd, direct_splice_actor);
1109 	if (ret > 0)
1110 		*ppos = sd.pos;
1111 
1112 	return ret;
1113 }
1114 
1115 /*
1116  * After the inode slimming patch, i_pipe/i_bdev/i_cdev share the same
1117  * location, so checking ->i_pipe is not enough to verify that this is a
1118  * pipe.
1119  */
1120 static inline struct pipe_inode_info *pipe_info(struct inode *inode)
1121 {
1122 	if (S_ISFIFO(inode->i_mode))
1123 		return inode->i_pipe;
1124 
1125 	return NULL;
1126 }
1127 
1128 /*
1129  * Determine where to splice to/from.
1130  */
1131 static long do_splice(struct file *in, loff_t __user *off_in,
1132 		      struct file *out, loff_t __user *off_out,
1133 		      size_t len, unsigned int flags)
1134 {
1135 	struct pipe_inode_info *pipe;
1136 	loff_t offset, *off;
1137 	long ret;
1138 
1139 	pipe = pipe_info(in->f_path.dentry->d_inode);
1140 	if (pipe) {
1141 		if (off_in)
1142 			return -ESPIPE;
1143 		if (off_out) {
1144 			if (out->f_op->llseek == no_llseek)
1145 				return -EINVAL;
1146 			if (copy_from_user(&offset, off_out, sizeof(loff_t)))
1147 				return -EFAULT;
1148 			off = &offset;
1149 		} else
1150 			off = &out->f_pos;
1151 
1152 		ret = do_splice_from(pipe, out, off, len, flags);
1153 
1154 		if (off_out && copy_to_user(off_out, off, sizeof(loff_t)))
1155 			ret = -EFAULT;
1156 
1157 		return ret;
1158 	}
1159 
1160 	pipe = pipe_info(out->f_path.dentry->d_inode);
1161 	if (pipe) {
1162 		if (off_out)
1163 			return -ESPIPE;
1164 		if (off_in) {
1165 			if (in->f_op->llseek == no_llseek)
1166 				return -EINVAL;
1167 			if (copy_from_user(&offset, off_in, sizeof(loff_t)))
1168 				return -EFAULT;
1169 			off = &offset;
1170 		} else
1171 			off = &in->f_pos;
1172 
1173 		ret = do_splice_to(in, off, pipe, len, flags);
1174 
1175 		if (off_in && copy_to_user(off_in, off, sizeof(loff_t)))
1176 			ret = -EFAULT;
1177 
1178 		return ret;
1179 	}
1180 
1181 	return -EINVAL;
1182 }
1183 
1184 /*
1185  * Map an iov into an array of pages and offset/length tupples. With the
1186  * partial_page structure, we can map several non-contiguous ranges into
1187  * our ones pages[] map instead of splitting that operation into pieces.
1188  * Could easily be exported as a generic helper for other users, in which
1189  * case one would probably want to add a 'max_nr_pages' parameter as well.
1190  */
1191 static int get_iovec_page_array(const struct iovec __user *iov,
1192 				unsigned int nr_vecs, struct page **pages,
1193 				struct partial_page *partial, int aligned)
1194 {
1195 	int buffers = 0, error = 0;
1196 
1197 	while (nr_vecs) {
1198 		unsigned long off, npages;
1199 		struct iovec entry;
1200 		void __user *base;
1201 		size_t len;
1202 		int i;
1203 
1204 		error = -EFAULT;
1205 		if (copy_from_user(&entry, iov, sizeof(entry)))
1206 			break;
1207 
1208 		base = entry.iov_base;
1209 		len = entry.iov_len;
1210 
1211 		/*
1212 		 * Sanity check this iovec. 0 read succeeds.
1213 		 */
1214 		error = 0;
1215 		if (unlikely(!len))
1216 			break;
1217 		error = -EFAULT;
1218 		if (!access_ok(VERIFY_READ, base, len))
1219 			break;
1220 
1221 		/*
1222 		 * Get this base offset and number of pages, then map
1223 		 * in the user pages.
1224 		 */
1225 		off = (unsigned long) base & ~PAGE_MASK;
1226 
1227 		/*
1228 		 * If asked for alignment, the offset must be zero and the
1229 		 * length a multiple of the PAGE_SIZE.
1230 		 */
1231 		error = -EINVAL;
1232 		if (aligned && (off || len & ~PAGE_MASK))
1233 			break;
1234 
1235 		npages = (off + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1236 		if (npages > PIPE_BUFFERS - buffers)
1237 			npages = PIPE_BUFFERS - buffers;
1238 
1239 		error = get_user_pages_fast((unsigned long)base, npages,
1240 					0, &pages[buffers]);
1241 
1242 		if (unlikely(error <= 0))
1243 			break;
1244 
1245 		/*
1246 		 * Fill this contiguous range into the partial page map.
1247 		 */
1248 		for (i = 0; i < error; i++) {
1249 			const int plen = min_t(size_t, len, PAGE_SIZE - off);
1250 
1251 			partial[buffers].offset = off;
1252 			partial[buffers].len = plen;
1253 
1254 			off = 0;
1255 			len -= plen;
1256 			buffers++;
1257 		}
1258 
1259 		/*
1260 		 * We didn't complete this iov, stop here since it probably
1261 		 * means we have to move some of this into a pipe to
1262 		 * be able to continue.
1263 		 */
1264 		if (len)
1265 			break;
1266 
1267 		/*
1268 		 * Don't continue if we mapped fewer pages than we asked for,
1269 		 * or if we mapped the max number of pages that we have
1270 		 * room for.
1271 		 */
1272 		if (error < npages || buffers == PIPE_BUFFERS)
1273 			break;
1274 
1275 		nr_vecs--;
1276 		iov++;
1277 	}
1278 
1279 	if (buffers)
1280 		return buffers;
1281 
1282 	return error;
1283 }
1284 
1285 static int pipe_to_user(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1286 			struct splice_desc *sd)
1287 {
1288 	char *src;
1289 	int ret;
1290 
1291 	ret = buf->ops->confirm(pipe, buf);
1292 	if (unlikely(ret))
1293 		return ret;
1294 
1295 	/*
1296 	 * See if we can use the atomic maps, by prefaulting in the
1297 	 * pages and doing an atomic copy
1298 	 */
1299 	if (!fault_in_pages_writeable(sd->u.userptr, sd->len)) {
1300 		src = buf->ops->map(pipe, buf, 1);
1301 		ret = __copy_to_user_inatomic(sd->u.userptr, src + buf->offset,
1302 							sd->len);
1303 		buf->ops->unmap(pipe, buf, src);
1304 		if (!ret) {
1305 			ret = sd->len;
1306 			goto out;
1307 		}
1308 	}
1309 
1310 	/*
1311 	 * No dice, use slow non-atomic map and copy
1312  	 */
1313 	src = buf->ops->map(pipe, buf, 0);
1314 
1315 	ret = sd->len;
1316 	if (copy_to_user(sd->u.userptr, src + buf->offset, sd->len))
1317 		ret = -EFAULT;
1318 
1319 	buf->ops->unmap(pipe, buf, src);
1320 out:
1321 	if (ret > 0)
1322 		sd->u.userptr += ret;
1323 	return ret;
1324 }
1325 
1326 /*
1327  * For lack of a better implementation, implement vmsplice() to userspace
1328  * as a simple copy of the pipes pages to the user iov.
1329  */
1330 static long vmsplice_to_user(struct file *file, const struct iovec __user *iov,
1331 			     unsigned long nr_segs, unsigned int flags)
1332 {
1333 	struct pipe_inode_info *pipe;
1334 	struct splice_desc sd;
1335 	ssize_t size;
1336 	int error;
1337 	long ret;
1338 
1339 	pipe = pipe_info(file->f_path.dentry->d_inode);
1340 	if (!pipe)
1341 		return -EBADF;
1342 
1343 	pipe_lock(pipe);
1344 
1345 	error = ret = 0;
1346 	while (nr_segs) {
1347 		void __user *base;
1348 		size_t len;
1349 
1350 		/*
1351 		 * Get user address base and length for this iovec.
1352 		 */
1353 		error = get_user(base, &iov->iov_base);
1354 		if (unlikely(error))
1355 			break;
1356 		error = get_user(len, &iov->iov_len);
1357 		if (unlikely(error))
1358 			break;
1359 
1360 		/*
1361 		 * Sanity check this iovec. 0 read succeeds.
1362 		 */
1363 		if (unlikely(!len))
1364 			break;
1365 		if (unlikely(!base)) {
1366 			error = -EFAULT;
1367 			break;
1368 		}
1369 
1370 		if (unlikely(!access_ok(VERIFY_WRITE, base, len))) {
1371 			error = -EFAULT;
1372 			break;
1373 		}
1374 
1375 		sd.len = 0;
1376 		sd.total_len = len;
1377 		sd.flags = flags;
1378 		sd.u.userptr = base;
1379 		sd.pos = 0;
1380 
1381 		size = __splice_from_pipe(pipe, &sd, pipe_to_user);
1382 		if (size < 0) {
1383 			if (!ret)
1384 				ret = size;
1385 
1386 			break;
1387 		}
1388 
1389 		ret += size;
1390 
1391 		if (size < len)
1392 			break;
1393 
1394 		nr_segs--;
1395 		iov++;
1396 	}
1397 
1398 	pipe_unlock(pipe);
1399 
1400 	if (!ret)
1401 		ret = error;
1402 
1403 	return ret;
1404 }
1405 
1406 /*
1407  * vmsplice splices a user address range into a pipe. It can be thought of
1408  * as splice-from-memory, where the regular splice is splice-from-file (or
1409  * to file). In both cases the output is a pipe, naturally.
1410  */
1411 static long vmsplice_to_pipe(struct file *file, const struct iovec __user *iov,
1412 			     unsigned long nr_segs, unsigned int flags)
1413 {
1414 	struct pipe_inode_info *pipe;
1415 	struct page *pages[PIPE_BUFFERS];
1416 	struct partial_page partial[PIPE_BUFFERS];
1417 	struct splice_pipe_desc spd = {
1418 		.pages = pages,
1419 		.partial = partial,
1420 		.flags = flags,
1421 		.ops = &user_page_pipe_buf_ops,
1422 		.spd_release = spd_release_page,
1423 	};
1424 
1425 	pipe = pipe_info(file->f_path.dentry->d_inode);
1426 	if (!pipe)
1427 		return -EBADF;
1428 
1429 	spd.nr_pages = get_iovec_page_array(iov, nr_segs, pages, partial,
1430 					    flags & SPLICE_F_GIFT);
1431 	if (spd.nr_pages <= 0)
1432 		return spd.nr_pages;
1433 
1434 	return splice_to_pipe(pipe, &spd);
1435 }
1436 
1437 /*
1438  * Note that vmsplice only really supports true splicing _from_ user memory
1439  * to a pipe, not the other way around. Splicing from user memory is a simple
1440  * operation that can be supported without any funky alignment restrictions
1441  * or nasty vm tricks. We simply map in the user memory and fill them into
1442  * a pipe. The reverse isn't quite as easy, though. There are two possible
1443  * solutions for that:
1444  *
1445  *	- memcpy() the data internally, at which point we might as well just
1446  *	  do a regular read() on the buffer anyway.
1447  *	- Lots of nasty vm tricks, that are neither fast nor flexible (it
1448  *	  has restriction limitations on both ends of the pipe).
1449  *
1450  * Currently we punt and implement it as a normal copy, see pipe_to_user().
1451  *
1452  */
1453 SYSCALL_DEFINE4(vmsplice, int, fd, const struct iovec __user *, iov,
1454 		unsigned long, nr_segs, unsigned int, flags)
1455 {
1456 	struct file *file;
1457 	long error;
1458 	int fput;
1459 
1460 	if (unlikely(nr_segs > UIO_MAXIOV))
1461 		return -EINVAL;
1462 	else if (unlikely(!nr_segs))
1463 		return 0;
1464 
1465 	error = -EBADF;
1466 	file = fget_light(fd, &fput);
1467 	if (file) {
1468 		if (file->f_mode & FMODE_WRITE)
1469 			error = vmsplice_to_pipe(file, iov, nr_segs, flags);
1470 		else if (file->f_mode & FMODE_READ)
1471 			error = vmsplice_to_user(file, iov, nr_segs, flags);
1472 
1473 		fput_light(file, fput);
1474 	}
1475 
1476 	return error;
1477 }
1478 
1479 SYSCALL_DEFINE6(splice, int, fd_in, loff_t __user *, off_in,
1480 		int, fd_out, loff_t __user *, off_out,
1481 		size_t, len, unsigned int, flags)
1482 {
1483 	long error;
1484 	struct file *in, *out;
1485 	int fput_in, fput_out;
1486 
1487 	if (unlikely(!len))
1488 		return 0;
1489 
1490 	error = -EBADF;
1491 	in = fget_light(fd_in, &fput_in);
1492 	if (in) {
1493 		if (in->f_mode & FMODE_READ) {
1494 			out = fget_light(fd_out, &fput_out);
1495 			if (out) {
1496 				if (out->f_mode & FMODE_WRITE)
1497 					error = do_splice(in, off_in,
1498 							  out, off_out,
1499 							  len, flags);
1500 				fput_light(out, fput_out);
1501 			}
1502 		}
1503 
1504 		fput_light(in, fput_in);
1505 	}
1506 
1507 	return error;
1508 }
1509 
1510 /*
1511  * Make sure there's data to read. Wait for input if we can, otherwise
1512  * return an appropriate error.
1513  */
1514 static int link_ipipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1515 {
1516 	int ret;
1517 
1518 	/*
1519 	 * Check ->nrbufs without the inode lock first. This function
1520 	 * is speculative anyways, so missing one is ok.
1521 	 */
1522 	if (pipe->nrbufs)
1523 		return 0;
1524 
1525 	ret = 0;
1526 	pipe_lock(pipe);
1527 
1528 	while (!pipe->nrbufs) {
1529 		if (signal_pending(current)) {
1530 			ret = -ERESTARTSYS;
1531 			break;
1532 		}
1533 		if (!pipe->writers)
1534 			break;
1535 		if (!pipe->waiting_writers) {
1536 			if (flags & SPLICE_F_NONBLOCK) {
1537 				ret = -EAGAIN;
1538 				break;
1539 			}
1540 		}
1541 		pipe_wait(pipe);
1542 	}
1543 
1544 	pipe_unlock(pipe);
1545 	return ret;
1546 }
1547 
1548 /*
1549  * Make sure there's writeable room. Wait for room if we can, otherwise
1550  * return an appropriate error.
1551  */
1552 static int link_opipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1553 {
1554 	int ret;
1555 
1556 	/*
1557 	 * Check ->nrbufs without the inode lock first. This function
1558 	 * is speculative anyways, so missing one is ok.
1559 	 */
1560 	if (pipe->nrbufs < PIPE_BUFFERS)
1561 		return 0;
1562 
1563 	ret = 0;
1564 	pipe_lock(pipe);
1565 
1566 	while (pipe->nrbufs >= PIPE_BUFFERS) {
1567 		if (!pipe->readers) {
1568 			send_sig(SIGPIPE, current, 0);
1569 			ret = -EPIPE;
1570 			break;
1571 		}
1572 		if (flags & SPLICE_F_NONBLOCK) {
1573 			ret = -EAGAIN;
1574 			break;
1575 		}
1576 		if (signal_pending(current)) {
1577 			ret = -ERESTARTSYS;
1578 			break;
1579 		}
1580 		pipe->waiting_writers++;
1581 		pipe_wait(pipe);
1582 		pipe->waiting_writers--;
1583 	}
1584 
1585 	pipe_unlock(pipe);
1586 	return ret;
1587 }
1588 
1589 /*
1590  * Link contents of ipipe to opipe.
1591  */
1592 static int link_pipe(struct pipe_inode_info *ipipe,
1593 		     struct pipe_inode_info *opipe,
1594 		     size_t len, unsigned int flags)
1595 {
1596 	struct pipe_buffer *ibuf, *obuf;
1597 	int ret = 0, i = 0, nbuf;
1598 
1599 	/*
1600 	 * Potential ABBA deadlock, work around it by ordering lock
1601 	 * grabbing by pipe info address. Otherwise two different processes
1602 	 * could deadlock (one doing tee from A -> B, the other from B -> A).
1603 	 */
1604 	pipe_double_lock(ipipe, opipe);
1605 
1606 	do {
1607 		if (!opipe->readers) {
1608 			send_sig(SIGPIPE, current, 0);
1609 			if (!ret)
1610 				ret = -EPIPE;
1611 			break;
1612 		}
1613 
1614 		/*
1615 		 * If we have iterated all input buffers or ran out of
1616 		 * output room, break.
1617 		 */
1618 		if (i >= ipipe->nrbufs || opipe->nrbufs >= PIPE_BUFFERS)
1619 			break;
1620 
1621 		ibuf = ipipe->bufs + ((ipipe->curbuf + i) & (PIPE_BUFFERS - 1));
1622 		nbuf = (opipe->curbuf + opipe->nrbufs) & (PIPE_BUFFERS - 1);
1623 
1624 		/*
1625 		 * Get a reference to this pipe buffer,
1626 		 * so we can copy the contents over.
1627 		 */
1628 		ibuf->ops->get(ipipe, ibuf);
1629 
1630 		obuf = opipe->bufs + nbuf;
1631 		*obuf = *ibuf;
1632 
1633 		/*
1634 		 * Don't inherit the gift flag, we need to
1635 		 * prevent multiple steals of this page.
1636 		 */
1637 		obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1638 
1639 		if (obuf->len > len)
1640 			obuf->len = len;
1641 
1642 		opipe->nrbufs++;
1643 		ret += obuf->len;
1644 		len -= obuf->len;
1645 		i++;
1646 	} while (len);
1647 
1648 	/*
1649 	 * return EAGAIN if we have the potential of some data in the
1650 	 * future, otherwise just return 0
1651 	 */
1652 	if (!ret && ipipe->waiting_writers && (flags & SPLICE_F_NONBLOCK))
1653 		ret = -EAGAIN;
1654 
1655 	pipe_unlock(ipipe);
1656 	pipe_unlock(opipe);
1657 
1658 	/*
1659 	 * If we put data in the output pipe, wakeup any potential readers.
1660 	 */
1661 	if (ret > 0) {
1662 		smp_mb();
1663 		if (waitqueue_active(&opipe->wait))
1664 			wake_up_interruptible(&opipe->wait);
1665 		kill_fasync(&opipe->fasync_readers, SIGIO, POLL_IN);
1666 	}
1667 
1668 	return ret;
1669 }
1670 
1671 /*
1672  * This is a tee(1) implementation that works on pipes. It doesn't copy
1673  * any data, it simply references the 'in' pages on the 'out' pipe.
1674  * The 'flags' used are the SPLICE_F_* variants, currently the only
1675  * applicable one is SPLICE_F_NONBLOCK.
1676  */
1677 static long do_tee(struct file *in, struct file *out, size_t len,
1678 		   unsigned int flags)
1679 {
1680 	struct pipe_inode_info *ipipe = pipe_info(in->f_path.dentry->d_inode);
1681 	struct pipe_inode_info *opipe = pipe_info(out->f_path.dentry->d_inode);
1682 	int ret = -EINVAL;
1683 
1684 	/*
1685 	 * Duplicate the contents of ipipe to opipe without actually
1686 	 * copying the data.
1687 	 */
1688 	if (ipipe && opipe && ipipe != opipe) {
1689 		/*
1690 		 * Keep going, unless we encounter an error. The ipipe/opipe
1691 		 * ordering doesn't really matter.
1692 		 */
1693 		ret = link_ipipe_prep(ipipe, flags);
1694 		if (!ret) {
1695 			ret = link_opipe_prep(opipe, flags);
1696 			if (!ret)
1697 				ret = link_pipe(ipipe, opipe, len, flags);
1698 		}
1699 	}
1700 
1701 	return ret;
1702 }
1703 
1704 SYSCALL_DEFINE4(tee, int, fdin, int, fdout, size_t, len, unsigned int, flags)
1705 {
1706 	struct file *in;
1707 	int error, fput_in;
1708 
1709 	if (unlikely(!len))
1710 		return 0;
1711 
1712 	error = -EBADF;
1713 	in = fget_light(fdin, &fput_in);
1714 	if (in) {
1715 		if (in->f_mode & FMODE_READ) {
1716 			int fput_out;
1717 			struct file *out = fget_light(fdout, &fput_out);
1718 
1719 			if (out) {
1720 				if (out->f_mode & FMODE_WRITE)
1721 					error = do_tee(in, out, len, flags);
1722 				fput_light(out, fput_out);
1723 			}
1724 		}
1725  		fput_light(in, fput_in);
1726  	}
1727 
1728 	return error;
1729 }
1730