1 /* 2 * "splice": joining two ropes together by interweaving their strands. 3 * 4 * This is the "extended pipe" functionality, where a pipe is used as 5 * an arbitrary in-memory buffer. Think of a pipe as a small kernel 6 * buffer that you can use to transfer data from one end to the other. 7 * 8 * The traditional unix read/write is extended with a "splice()" operation 9 * that transfers data buffers to or from a pipe buffer. 10 * 11 * Named by Larry McVoy, original implementation from Linus, extended by 12 * Jens to support splicing to files, network, direct splicing, etc and 13 * fixing lots of bugs. 14 * 15 * Copyright (C) 2005-2006 Jens Axboe <axboe@kernel.dk> 16 * Copyright (C) 2005-2006 Linus Torvalds <torvalds@osdl.org> 17 * Copyright (C) 2006 Ingo Molnar <mingo@elte.hu> 18 * 19 */ 20 #include <linux/fs.h> 21 #include <linux/file.h> 22 #include <linux/pagemap.h> 23 #include <linux/splice.h> 24 #include <linux/memcontrol.h> 25 #include <linux/mm_inline.h> 26 #include <linux/swap.h> 27 #include <linux/writeback.h> 28 #include <linux/buffer_head.h> 29 #include <linux/module.h> 30 #include <linux/syscalls.h> 31 #include <linux/uio.h> 32 #include <linux/security.h> 33 34 /* 35 * Attempt to steal a page from a pipe buffer. This should perhaps go into 36 * a vm helper function, it's already simplified quite a bit by the 37 * addition of remove_mapping(). If success is returned, the caller may 38 * attempt to reuse this page for another destination. 39 */ 40 static int page_cache_pipe_buf_steal(struct pipe_inode_info *pipe, 41 struct pipe_buffer *buf) 42 { 43 struct page *page = buf->page; 44 struct address_space *mapping; 45 46 lock_page(page); 47 48 mapping = page_mapping(page); 49 if (mapping) { 50 WARN_ON(!PageUptodate(page)); 51 52 /* 53 * At least for ext2 with nobh option, we need to wait on 54 * writeback completing on this page, since we'll remove it 55 * from the pagecache. Otherwise truncate wont wait on the 56 * page, allowing the disk blocks to be reused by someone else 57 * before we actually wrote our data to them. fs corruption 58 * ensues. 59 */ 60 wait_on_page_writeback(page); 61 62 if (page_has_private(page) && 63 !try_to_release_page(page, GFP_KERNEL)) 64 goto out_unlock; 65 66 /* 67 * If we succeeded in removing the mapping, set LRU flag 68 * and return good. 69 */ 70 if (remove_mapping(mapping, page)) { 71 buf->flags |= PIPE_BUF_FLAG_LRU; 72 return 0; 73 } 74 } 75 76 /* 77 * Raced with truncate or failed to remove page from current 78 * address space, unlock and return failure. 79 */ 80 out_unlock: 81 unlock_page(page); 82 return 1; 83 } 84 85 static void page_cache_pipe_buf_release(struct pipe_inode_info *pipe, 86 struct pipe_buffer *buf) 87 { 88 page_cache_release(buf->page); 89 buf->flags &= ~PIPE_BUF_FLAG_LRU; 90 } 91 92 /* 93 * Check whether the contents of buf is OK to access. Since the content 94 * is a page cache page, IO may be in flight. 95 */ 96 static int page_cache_pipe_buf_confirm(struct pipe_inode_info *pipe, 97 struct pipe_buffer *buf) 98 { 99 struct page *page = buf->page; 100 int err; 101 102 if (!PageUptodate(page)) { 103 lock_page(page); 104 105 /* 106 * Page got truncated/unhashed. This will cause a 0-byte 107 * splice, if this is the first page. 108 */ 109 if (!page->mapping) { 110 err = -ENODATA; 111 goto error; 112 } 113 114 /* 115 * Uh oh, read-error from disk. 116 */ 117 if (!PageUptodate(page)) { 118 err = -EIO; 119 goto error; 120 } 121 122 /* 123 * Page is ok afterall, we are done. 124 */ 125 unlock_page(page); 126 } 127 128 return 0; 129 error: 130 unlock_page(page); 131 return err; 132 } 133 134 static const struct pipe_buf_operations page_cache_pipe_buf_ops = { 135 .can_merge = 0, 136 .map = generic_pipe_buf_map, 137 .unmap = generic_pipe_buf_unmap, 138 .confirm = page_cache_pipe_buf_confirm, 139 .release = page_cache_pipe_buf_release, 140 .steal = page_cache_pipe_buf_steal, 141 .get = generic_pipe_buf_get, 142 }; 143 144 static int user_page_pipe_buf_steal(struct pipe_inode_info *pipe, 145 struct pipe_buffer *buf) 146 { 147 if (!(buf->flags & PIPE_BUF_FLAG_GIFT)) 148 return 1; 149 150 buf->flags |= PIPE_BUF_FLAG_LRU; 151 return generic_pipe_buf_steal(pipe, buf); 152 } 153 154 static const struct pipe_buf_operations user_page_pipe_buf_ops = { 155 .can_merge = 0, 156 .map = generic_pipe_buf_map, 157 .unmap = generic_pipe_buf_unmap, 158 .confirm = generic_pipe_buf_confirm, 159 .release = page_cache_pipe_buf_release, 160 .steal = user_page_pipe_buf_steal, 161 .get = generic_pipe_buf_get, 162 }; 163 164 /** 165 * splice_to_pipe - fill passed data into a pipe 166 * @pipe: pipe to fill 167 * @spd: data to fill 168 * 169 * Description: 170 * @spd contains a map of pages and len/offset tuples, along with 171 * the struct pipe_buf_operations associated with these pages. This 172 * function will link that data to the pipe. 173 * 174 */ 175 ssize_t splice_to_pipe(struct pipe_inode_info *pipe, 176 struct splice_pipe_desc *spd) 177 { 178 unsigned int spd_pages = spd->nr_pages; 179 int ret, do_wakeup, page_nr; 180 181 ret = 0; 182 do_wakeup = 0; 183 page_nr = 0; 184 185 pipe_lock(pipe); 186 187 for (;;) { 188 if (!pipe->readers) { 189 send_sig(SIGPIPE, current, 0); 190 if (!ret) 191 ret = -EPIPE; 192 break; 193 } 194 195 if (pipe->nrbufs < PIPE_BUFFERS) { 196 int newbuf = (pipe->curbuf + pipe->nrbufs) & (PIPE_BUFFERS - 1); 197 struct pipe_buffer *buf = pipe->bufs + newbuf; 198 199 buf->page = spd->pages[page_nr]; 200 buf->offset = spd->partial[page_nr].offset; 201 buf->len = spd->partial[page_nr].len; 202 buf->private = spd->partial[page_nr].private; 203 buf->ops = spd->ops; 204 if (spd->flags & SPLICE_F_GIFT) 205 buf->flags |= PIPE_BUF_FLAG_GIFT; 206 207 pipe->nrbufs++; 208 page_nr++; 209 ret += buf->len; 210 211 if (pipe->inode) 212 do_wakeup = 1; 213 214 if (!--spd->nr_pages) 215 break; 216 if (pipe->nrbufs < PIPE_BUFFERS) 217 continue; 218 219 break; 220 } 221 222 if (spd->flags & SPLICE_F_NONBLOCK) { 223 if (!ret) 224 ret = -EAGAIN; 225 break; 226 } 227 228 if (signal_pending(current)) { 229 if (!ret) 230 ret = -ERESTARTSYS; 231 break; 232 } 233 234 if (do_wakeup) { 235 smp_mb(); 236 if (waitqueue_active(&pipe->wait)) 237 wake_up_interruptible_sync(&pipe->wait); 238 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN); 239 do_wakeup = 0; 240 } 241 242 pipe->waiting_writers++; 243 pipe_wait(pipe); 244 pipe->waiting_writers--; 245 } 246 247 pipe_unlock(pipe); 248 249 if (do_wakeup) { 250 smp_mb(); 251 if (waitqueue_active(&pipe->wait)) 252 wake_up_interruptible(&pipe->wait); 253 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN); 254 } 255 256 while (page_nr < spd_pages) 257 spd->spd_release(spd, page_nr++); 258 259 return ret; 260 } 261 262 static void spd_release_page(struct splice_pipe_desc *spd, unsigned int i) 263 { 264 page_cache_release(spd->pages[i]); 265 } 266 267 static int 268 __generic_file_splice_read(struct file *in, loff_t *ppos, 269 struct pipe_inode_info *pipe, size_t len, 270 unsigned int flags) 271 { 272 struct address_space *mapping = in->f_mapping; 273 unsigned int loff, nr_pages, req_pages; 274 struct page *pages[PIPE_BUFFERS]; 275 struct partial_page partial[PIPE_BUFFERS]; 276 struct page *page; 277 pgoff_t index, end_index; 278 loff_t isize; 279 int error, page_nr; 280 struct splice_pipe_desc spd = { 281 .pages = pages, 282 .partial = partial, 283 .flags = flags, 284 .ops = &page_cache_pipe_buf_ops, 285 .spd_release = spd_release_page, 286 }; 287 288 index = *ppos >> PAGE_CACHE_SHIFT; 289 loff = *ppos & ~PAGE_CACHE_MASK; 290 req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; 291 nr_pages = min(req_pages, (unsigned)PIPE_BUFFERS); 292 293 /* 294 * Lookup the (hopefully) full range of pages we need. 295 */ 296 spd.nr_pages = find_get_pages_contig(mapping, index, nr_pages, pages); 297 index += spd.nr_pages; 298 299 /* 300 * If find_get_pages_contig() returned fewer pages than we needed, 301 * readahead/allocate the rest and fill in the holes. 302 */ 303 if (spd.nr_pages < nr_pages) 304 page_cache_sync_readahead(mapping, &in->f_ra, in, 305 index, req_pages - spd.nr_pages); 306 307 error = 0; 308 while (spd.nr_pages < nr_pages) { 309 /* 310 * Page could be there, find_get_pages_contig() breaks on 311 * the first hole. 312 */ 313 page = find_get_page(mapping, index); 314 if (!page) { 315 /* 316 * page didn't exist, allocate one. 317 */ 318 page = page_cache_alloc_cold(mapping); 319 if (!page) 320 break; 321 322 error = add_to_page_cache_lru(page, mapping, index, 323 mapping_gfp_mask(mapping)); 324 if (unlikely(error)) { 325 page_cache_release(page); 326 if (error == -EEXIST) 327 continue; 328 break; 329 } 330 /* 331 * add_to_page_cache() locks the page, unlock it 332 * to avoid convoluting the logic below even more. 333 */ 334 unlock_page(page); 335 } 336 337 pages[spd.nr_pages++] = page; 338 index++; 339 } 340 341 /* 342 * Now loop over the map and see if we need to start IO on any 343 * pages, fill in the partial map, etc. 344 */ 345 index = *ppos >> PAGE_CACHE_SHIFT; 346 nr_pages = spd.nr_pages; 347 spd.nr_pages = 0; 348 for (page_nr = 0; page_nr < nr_pages; page_nr++) { 349 unsigned int this_len; 350 351 if (!len) 352 break; 353 354 /* 355 * this_len is the max we'll use from this page 356 */ 357 this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff); 358 page = pages[page_nr]; 359 360 if (PageReadahead(page)) 361 page_cache_async_readahead(mapping, &in->f_ra, in, 362 page, index, req_pages - page_nr); 363 364 /* 365 * If the page isn't uptodate, we may need to start io on it 366 */ 367 if (!PageUptodate(page)) { 368 /* 369 * If in nonblock mode then dont block on waiting 370 * for an in-flight io page 371 */ 372 if (flags & SPLICE_F_NONBLOCK) { 373 if (!trylock_page(page)) { 374 error = -EAGAIN; 375 break; 376 } 377 } else 378 lock_page(page); 379 380 /* 381 * Page was truncated, or invalidated by the 382 * filesystem. Redo the find/create, but this time the 383 * page is kept locked, so there's no chance of another 384 * race with truncate/invalidate. 385 */ 386 if (!page->mapping) { 387 unlock_page(page); 388 page = find_or_create_page(mapping, index, 389 mapping_gfp_mask(mapping)); 390 391 if (!page) { 392 error = -ENOMEM; 393 break; 394 } 395 page_cache_release(pages[page_nr]); 396 pages[page_nr] = page; 397 } 398 /* 399 * page was already under io and is now done, great 400 */ 401 if (PageUptodate(page)) { 402 unlock_page(page); 403 goto fill_it; 404 } 405 406 /* 407 * need to read in the page 408 */ 409 error = mapping->a_ops->readpage(in, page); 410 if (unlikely(error)) { 411 /* 412 * We really should re-lookup the page here, 413 * but it complicates things a lot. Instead 414 * lets just do what we already stored, and 415 * we'll get it the next time we are called. 416 */ 417 if (error == AOP_TRUNCATED_PAGE) 418 error = 0; 419 420 break; 421 } 422 } 423 fill_it: 424 /* 425 * i_size must be checked after PageUptodate. 426 */ 427 isize = i_size_read(mapping->host); 428 end_index = (isize - 1) >> PAGE_CACHE_SHIFT; 429 if (unlikely(!isize || index > end_index)) 430 break; 431 432 /* 433 * if this is the last page, see if we need to shrink 434 * the length and stop 435 */ 436 if (end_index == index) { 437 unsigned int plen; 438 439 /* 440 * max good bytes in this page 441 */ 442 plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1; 443 if (plen <= loff) 444 break; 445 446 /* 447 * force quit after adding this page 448 */ 449 this_len = min(this_len, plen - loff); 450 len = this_len; 451 } 452 453 partial[page_nr].offset = loff; 454 partial[page_nr].len = this_len; 455 len -= this_len; 456 loff = 0; 457 spd.nr_pages++; 458 index++; 459 } 460 461 /* 462 * Release any pages at the end, if we quit early. 'page_nr' is how far 463 * we got, 'nr_pages' is how many pages are in the map. 464 */ 465 while (page_nr < nr_pages) 466 page_cache_release(pages[page_nr++]); 467 in->f_ra.prev_pos = (loff_t)index << PAGE_CACHE_SHIFT; 468 469 if (spd.nr_pages) 470 return splice_to_pipe(pipe, &spd); 471 472 return error; 473 } 474 475 /** 476 * generic_file_splice_read - splice data from file to a pipe 477 * @in: file to splice from 478 * @ppos: position in @in 479 * @pipe: pipe to splice to 480 * @len: number of bytes to splice 481 * @flags: splice modifier flags 482 * 483 * Description: 484 * Will read pages from given file and fill them into a pipe. Can be 485 * used as long as the address_space operations for the source implements 486 * a readpage() hook. 487 * 488 */ 489 ssize_t generic_file_splice_read(struct file *in, loff_t *ppos, 490 struct pipe_inode_info *pipe, size_t len, 491 unsigned int flags) 492 { 493 loff_t isize, left; 494 int ret; 495 496 isize = i_size_read(in->f_mapping->host); 497 if (unlikely(*ppos >= isize)) 498 return 0; 499 500 left = isize - *ppos; 501 if (unlikely(left < len)) 502 len = left; 503 504 ret = __generic_file_splice_read(in, ppos, pipe, len, flags); 505 if (ret > 0) 506 *ppos += ret; 507 508 return ret; 509 } 510 511 EXPORT_SYMBOL(generic_file_splice_read); 512 513 /* 514 * Send 'sd->len' bytes to socket from 'sd->file' at position 'sd->pos' 515 * using sendpage(). Return the number of bytes sent. 516 */ 517 static int pipe_to_sendpage(struct pipe_inode_info *pipe, 518 struct pipe_buffer *buf, struct splice_desc *sd) 519 { 520 struct file *file = sd->u.file; 521 loff_t pos = sd->pos; 522 int ret, more; 523 524 ret = buf->ops->confirm(pipe, buf); 525 if (!ret) { 526 more = (sd->flags & SPLICE_F_MORE) || sd->len < sd->total_len; 527 528 ret = file->f_op->sendpage(file, buf->page, buf->offset, 529 sd->len, &pos, more); 530 } 531 532 return ret; 533 } 534 535 /* 536 * This is a little more tricky than the file -> pipe splicing. There are 537 * basically three cases: 538 * 539 * - Destination page already exists in the address space and there 540 * are users of it. For that case we have no other option that 541 * copying the data. Tough luck. 542 * - Destination page already exists in the address space, but there 543 * are no users of it. Make sure it's uptodate, then drop it. Fall 544 * through to last case. 545 * - Destination page does not exist, we can add the pipe page to 546 * the page cache and avoid the copy. 547 * 548 * If asked to move pages to the output file (SPLICE_F_MOVE is set in 549 * sd->flags), we attempt to migrate pages from the pipe to the output 550 * file address space page cache. This is possible if no one else has 551 * the pipe page referenced outside of the pipe and page cache. If 552 * SPLICE_F_MOVE isn't set, or we cannot move the page, we simply create 553 * a new page in the output file page cache and fill/dirty that. 554 */ 555 int pipe_to_file(struct pipe_inode_info *pipe, struct pipe_buffer *buf, 556 struct splice_desc *sd) 557 { 558 struct file *file = sd->u.file; 559 struct address_space *mapping = file->f_mapping; 560 unsigned int offset, this_len; 561 struct page *page; 562 void *fsdata; 563 int ret; 564 565 /* 566 * make sure the data in this buffer is uptodate 567 */ 568 ret = buf->ops->confirm(pipe, buf); 569 if (unlikely(ret)) 570 return ret; 571 572 offset = sd->pos & ~PAGE_CACHE_MASK; 573 574 this_len = sd->len; 575 if (this_len + offset > PAGE_CACHE_SIZE) 576 this_len = PAGE_CACHE_SIZE - offset; 577 578 ret = pagecache_write_begin(file, mapping, sd->pos, this_len, 579 AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata); 580 if (unlikely(ret)) 581 goto out; 582 583 if (buf->page != page) { 584 /* 585 * Careful, ->map() uses KM_USER0! 586 */ 587 char *src = buf->ops->map(pipe, buf, 1); 588 char *dst = kmap_atomic(page, KM_USER1); 589 590 memcpy(dst + offset, src + buf->offset, this_len); 591 flush_dcache_page(page); 592 kunmap_atomic(dst, KM_USER1); 593 buf->ops->unmap(pipe, buf, src); 594 } 595 ret = pagecache_write_end(file, mapping, sd->pos, this_len, this_len, 596 page, fsdata); 597 out: 598 return ret; 599 } 600 EXPORT_SYMBOL(pipe_to_file); 601 602 static void wakeup_pipe_writers(struct pipe_inode_info *pipe) 603 { 604 smp_mb(); 605 if (waitqueue_active(&pipe->wait)) 606 wake_up_interruptible(&pipe->wait); 607 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT); 608 } 609 610 /** 611 * splice_from_pipe_feed - feed available data from a pipe to a file 612 * @pipe: pipe to splice from 613 * @sd: information to @actor 614 * @actor: handler that splices the data 615 * 616 * Description: 617 * This function loops over the pipe and calls @actor to do the 618 * actual moving of a single struct pipe_buffer to the desired 619 * destination. It returns when there's no more buffers left in 620 * the pipe or if the requested number of bytes (@sd->total_len) 621 * have been copied. It returns a positive number (one) if the 622 * pipe needs to be filled with more data, zero if the required 623 * number of bytes have been copied and -errno on error. 624 * 625 * This, together with splice_from_pipe_{begin,end,next}, may be 626 * used to implement the functionality of __splice_from_pipe() when 627 * locking is required around copying the pipe buffers to the 628 * destination. 629 */ 630 int splice_from_pipe_feed(struct pipe_inode_info *pipe, struct splice_desc *sd, 631 splice_actor *actor) 632 { 633 int ret; 634 635 while (pipe->nrbufs) { 636 struct pipe_buffer *buf = pipe->bufs + pipe->curbuf; 637 const struct pipe_buf_operations *ops = buf->ops; 638 639 sd->len = buf->len; 640 if (sd->len > sd->total_len) 641 sd->len = sd->total_len; 642 643 ret = actor(pipe, buf, sd); 644 if (ret <= 0) { 645 if (ret == -ENODATA) 646 ret = 0; 647 return ret; 648 } 649 buf->offset += ret; 650 buf->len -= ret; 651 652 sd->num_spliced += ret; 653 sd->len -= ret; 654 sd->pos += ret; 655 sd->total_len -= ret; 656 657 if (!buf->len) { 658 buf->ops = NULL; 659 ops->release(pipe, buf); 660 pipe->curbuf = (pipe->curbuf + 1) & (PIPE_BUFFERS - 1); 661 pipe->nrbufs--; 662 if (pipe->inode) 663 sd->need_wakeup = true; 664 } 665 666 if (!sd->total_len) 667 return 0; 668 } 669 670 return 1; 671 } 672 EXPORT_SYMBOL(splice_from_pipe_feed); 673 674 /** 675 * splice_from_pipe_next - wait for some data to splice from 676 * @pipe: pipe to splice from 677 * @sd: information about the splice operation 678 * 679 * Description: 680 * This function will wait for some data and return a positive 681 * value (one) if pipe buffers are available. It will return zero 682 * or -errno if no more data needs to be spliced. 683 */ 684 int splice_from_pipe_next(struct pipe_inode_info *pipe, struct splice_desc *sd) 685 { 686 while (!pipe->nrbufs) { 687 if (!pipe->writers) 688 return 0; 689 690 if (!pipe->waiting_writers && sd->num_spliced) 691 return 0; 692 693 if (sd->flags & SPLICE_F_NONBLOCK) 694 return -EAGAIN; 695 696 if (signal_pending(current)) 697 return -ERESTARTSYS; 698 699 if (sd->need_wakeup) { 700 wakeup_pipe_writers(pipe); 701 sd->need_wakeup = false; 702 } 703 704 pipe_wait(pipe); 705 } 706 707 return 1; 708 } 709 EXPORT_SYMBOL(splice_from_pipe_next); 710 711 /** 712 * splice_from_pipe_begin - start splicing from pipe 713 * @sd: information about the splice operation 714 * 715 * Description: 716 * This function should be called before a loop containing 717 * splice_from_pipe_next() and splice_from_pipe_feed() to 718 * initialize the necessary fields of @sd. 719 */ 720 void splice_from_pipe_begin(struct splice_desc *sd) 721 { 722 sd->num_spliced = 0; 723 sd->need_wakeup = false; 724 } 725 EXPORT_SYMBOL(splice_from_pipe_begin); 726 727 /** 728 * splice_from_pipe_end - finish splicing from pipe 729 * @pipe: pipe to splice from 730 * @sd: information about the splice operation 731 * 732 * Description: 733 * This function will wake up pipe writers if necessary. It should 734 * be called after a loop containing splice_from_pipe_next() and 735 * splice_from_pipe_feed(). 736 */ 737 void splice_from_pipe_end(struct pipe_inode_info *pipe, struct splice_desc *sd) 738 { 739 if (sd->need_wakeup) 740 wakeup_pipe_writers(pipe); 741 } 742 EXPORT_SYMBOL(splice_from_pipe_end); 743 744 /** 745 * __splice_from_pipe - splice data from a pipe to given actor 746 * @pipe: pipe to splice from 747 * @sd: information to @actor 748 * @actor: handler that splices the data 749 * 750 * Description: 751 * This function does little more than loop over the pipe and call 752 * @actor to do the actual moving of a single struct pipe_buffer to 753 * the desired destination. See pipe_to_file, pipe_to_sendpage, or 754 * pipe_to_user. 755 * 756 */ 757 ssize_t __splice_from_pipe(struct pipe_inode_info *pipe, struct splice_desc *sd, 758 splice_actor *actor) 759 { 760 int ret; 761 762 splice_from_pipe_begin(sd); 763 do { 764 ret = splice_from_pipe_next(pipe, sd); 765 if (ret > 0) 766 ret = splice_from_pipe_feed(pipe, sd, actor); 767 } while (ret > 0); 768 splice_from_pipe_end(pipe, sd); 769 770 return sd->num_spliced ? sd->num_spliced : ret; 771 } 772 EXPORT_SYMBOL(__splice_from_pipe); 773 774 /** 775 * splice_from_pipe - splice data from a pipe to a file 776 * @pipe: pipe to splice from 777 * @out: file to splice to 778 * @ppos: position in @out 779 * @len: how many bytes to splice 780 * @flags: splice modifier flags 781 * @actor: handler that splices the data 782 * 783 * Description: 784 * See __splice_from_pipe. This function locks the pipe inode, 785 * otherwise it's identical to __splice_from_pipe(). 786 * 787 */ 788 ssize_t splice_from_pipe(struct pipe_inode_info *pipe, struct file *out, 789 loff_t *ppos, size_t len, unsigned int flags, 790 splice_actor *actor) 791 { 792 ssize_t ret; 793 struct splice_desc sd = { 794 .total_len = len, 795 .flags = flags, 796 .pos = *ppos, 797 .u.file = out, 798 }; 799 800 pipe_lock(pipe); 801 ret = __splice_from_pipe(pipe, &sd, actor); 802 pipe_unlock(pipe); 803 804 return ret; 805 } 806 807 /** 808 * generic_file_splice_write - splice data from a pipe to a file 809 * @pipe: pipe info 810 * @out: file to write to 811 * @ppos: position in @out 812 * @len: number of bytes to splice 813 * @flags: splice modifier flags 814 * 815 * Description: 816 * Will either move or copy pages (determined by @flags options) from 817 * the given pipe inode to the given file. 818 * 819 */ 820 ssize_t 821 generic_file_splice_write(struct pipe_inode_info *pipe, struct file *out, 822 loff_t *ppos, size_t len, unsigned int flags) 823 { 824 struct address_space *mapping = out->f_mapping; 825 struct inode *inode = mapping->host; 826 struct splice_desc sd = { 827 .total_len = len, 828 .flags = flags, 829 .pos = *ppos, 830 .u.file = out, 831 }; 832 ssize_t ret; 833 834 pipe_lock(pipe); 835 836 splice_from_pipe_begin(&sd); 837 do { 838 ret = splice_from_pipe_next(pipe, &sd); 839 if (ret <= 0) 840 break; 841 842 mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD); 843 ret = file_remove_suid(out); 844 if (!ret) 845 ret = splice_from_pipe_feed(pipe, &sd, pipe_to_file); 846 mutex_unlock(&inode->i_mutex); 847 } while (ret > 0); 848 splice_from_pipe_end(pipe, &sd); 849 850 pipe_unlock(pipe); 851 852 if (sd.num_spliced) 853 ret = sd.num_spliced; 854 855 if (ret > 0) { 856 unsigned long nr_pages; 857 858 *ppos += ret; 859 nr_pages = (ret + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; 860 861 /* 862 * If file or inode is SYNC and we actually wrote some data, 863 * sync it. 864 */ 865 if (unlikely((out->f_flags & O_SYNC) || IS_SYNC(inode))) { 866 int err; 867 868 mutex_lock(&inode->i_mutex); 869 err = generic_osync_inode(inode, mapping, 870 OSYNC_METADATA|OSYNC_DATA); 871 mutex_unlock(&inode->i_mutex); 872 873 if (err) 874 ret = err; 875 } 876 balance_dirty_pages_ratelimited_nr(mapping, nr_pages); 877 } 878 879 return ret; 880 } 881 882 EXPORT_SYMBOL(generic_file_splice_write); 883 884 /** 885 * generic_splice_sendpage - splice data from a pipe to a socket 886 * @pipe: pipe to splice from 887 * @out: socket to write to 888 * @ppos: position in @out 889 * @len: number of bytes to splice 890 * @flags: splice modifier flags 891 * 892 * Description: 893 * Will send @len bytes from the pipe to a network socket. No data copying 894 * is involved. 895 * 896 */ 897 ssize_t generic_splice_sendpage(struct pipe_inode_info *pipe, struct file *out, 898 loff_t *ppos, size_t len, unsigned int flags) 899 { 900 return splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_sendpage); 901 } 902 903 EXPORT_SYMBOL(generic_splice_sendpage); 904 905 /* 906 * Attempt to initiate a splice from pipe to file. 907 */ 908 static long do_splice_from(struct pipe_inode_info *pipe, struct file *out, 909 loff_t *ppos, size_t len, unsigned int flags) 910 { 911 int ret; 912 913 if (unlikely(!out->f_op || !out->f_op->splice_write)) 914 return -EINVAL; 915 916 if (unlikely(!(out->f_mode & FMODE_WRITE))) 917 return -EBADF; 918 919 if (unlikely(out->f_flags & O_APPEND)) 920 return -EINVAL; 921 922 ret = rw_verify_area(WRITE, out, ppos, len); 923 if (unlikely(ret < 0)) 924 return ret; 925 926 return out->f_op->splice_write(pipe, out, ppos, len, flags); 927 } 928 929 /* 930 * Attempt to initiate a splice from a file to a pipe. 931 */ 932 static long do_splice_to(struct file *in, loff_t *ppos, 933 struct pipe_inode_info *pipe, size_t len, 934 unsigned int flags) 935 { 936 int ret; 937 938 if (unlikely(!in->f_op || !in->f_op->splice_read)) 939 return -EINVAL; 940 941 if (unlikely(!(in->f_mode & FMODE_READ))) 942 return -EBADF; 943 944 ret = rw_verify_area(READ, in, ppos, len); 945 if (unlikely(ret < 0)) 946 return ret; 947 948 return in->f_op->splice_read(in, ppos, pipe, len, flags); 949 } 950 951 /** 952 * splice_direct_to_actor - splices data directly between two non-pipes 953 * @in: file to splice from 954 * @sd: actor information on where to splice to 955 * @actor: handles the data splicing 956 * 957 * Description: 958 * This is a special case helper to splice directly between two 959 * points, without requiring an explicit pipe. Internally an allocated 960 * pipe is cached in the process, and reused during the lifetime of 961 * that process. 962 * 963 */ 964 ssize_t splice_direct_to_actor(struct file *in, struct splice_desc *sd, 965 splice_direct_actor *actor) 966 { 967 struct pipe_inode_info *pipe; 968 long ret, bytes; 969 umode_t i_mode; 970 size_t len; 971 int i, flags; 972 973 /* 974 * We require the input being a regular file, as we don't want to 975 * randomly drop data for eg socket -> socket splicing. Use the 976 * piped splicing for that! 977 */ 978 i_mode = in->f_path.dentry->d_inode->i_mode; 979 if (unlikely(!S_ISREG(i_mode) && !S_ISBLK(i_mode))) 980 return -EINVAL; 981 982 /* 983 * neither in nor out is a pipe, setup an internal pipe attached to 984 * 'out' and transfer the wanted data from 'in' to 'out' through that 985 */ 986 pipe = current->splice_pipe; 987 if (unlikely(!pipe)) { 988 pipe = alloc_pipe_info(NULL); 989 if (!pipe) 990 return -ENOMEM; 991 992 /* 993 * We don't have an immediate reader, but we'll read the stuff 994 * out of the pipe right after the splice_to_pipe(). So set 995 * PIPE_READERS appropriately. 996 */ 997 pipe->readers = 1; 998 999 current->splice_pipe = pipe; 1000 } 1001 1002 /* 1003 * Do the splice. 1004 */ 1005 ret = 0; 1006 bytes = 0; 1007 len = sd->total_len; 1008 flags = sd->flags; 1009 1010 /* 1011 * Don't block on output, we have to drain the direct pipe. 1012 */ 1013 sd->flags &= ~SPLICE_F_NONBLOCK; 1014 1015 while (len) { 1016 size_t read_len; 1017 loff_t pos = sd->pos, prev_pos = pos; 1018 1019 ret = do_splice_to(in, &pos, pipe, len, flags); 1020 if (unlikely(ret <= 0)) 1021 goto out_release; 1022 1023 read_len = ret; 1024 sd->total_len = read_len; 1025 1026 /* 1027 * NOTE: nonblocking mode only applies to the input. We 1028 * must not do the output in nonblocking mode as then we 1029 * could get stuck data in the internal pipe: 1030 */ 1031 ret = actor(pipe, sd); 1032 if (unlikely(ret <= 0)) { 1033 sd->pos = prev_pos; 1034 goto out_release; 1035 } 1036 1037 bytes += ret; 1038 len -= ret; 1039 sd->pos = pos; 1040 1041 if (ret < read_len) { 1042 sd->pos = prev_pos + ret; 1043 goto out_release; 1044 } 1045 } 1046 1047 done: 1048 pipe->nrbufs = pipe->curbuf = 0; 1049 file_accessed(in); 1050 return bytes; 1051 1052 out_release: 1053 /* 1054 * If we did an incomplete transfer we must release 1055 * the pipe buffers in question: 1056 */ 1057 for (i = 0; i < PIPE_BUFFERS; i++) { 1058 struct pipe_buffer *buf = pipe->bufs + i; 1059 1060 if (buf->ops) { 1061 buf->ops->release(pipe, buf); 1062 buf->ops = NULL; 1063 } 1064 } 1065 1066 if (!bytes) 1067 bytes = ret; 1068 1069 goto done; 1070 } 1071 EXPORT_SYMBOL(splice_direct_to_actor); 1072 1073 static int direct_splice_actor(struct pipe_inode_info *pipe, 1074 struct splice_desc *sd) 1075 { 1076 struct file *file = sd->u.file; 1077 1078 return do_splice_from(pipe, file, &sd->pos, sd->total_len, sd->flags); 1079 } 1080 1081 /** 1082 * do_splice_direct - splices data directly between two files 1083 * @in: file to splice from 1084 * @ppos: input file offset 1085 * @out: file to splice to 1086 * @len: number of bytes to splice 1087 * @flags: splice modifier flags 1088 * 1089 * Description: 1090 * For use by do_sendfile(). splice can easily emulate sendfile, but 1091 * doing it in the application would incur an extra system call 1092 * (splice in + splice out, as compared to just sendfile()). So this helper 1093 * can splice directly through a process-private pipe. 1094 * 1095 */ 1096 long do_splice_direct(struct file *in, loff_t *ppos, struct file *out, 1097 size_t len, unsigned int flags) 1098 { 1099 struct splice_desc sd = { 1100 .len = len, 1101 .total_len = len, 1102 .flags = flags, 1103 .pos = *ppos, 1104 .u.file = out, 1105 }; 1106 long ret; 1107 1108 ret = splice_direct_to_actor(in, &sd, direct_splice_actor); 1109 if (ret > 0) 1110 *ppos = sd.pos; 1111 1112 return ret; 1113 } 1114 1115 /* 1116 * After the inode slimming patch, i_pipe/i_bdev/i_cdev share the same 1117 * location, so checking ->i_pipe is not enough to verify that this is a 1118 * pipe. 1119 */ 1120 static inline struct pipe_inode_info *pipe_info(struct inode *inode) 1121 { 1122 if (S_ISFIFO(inode->i_mode)) 1123 return inode->i_pipe; 1124 1125 return NULL; 1126 } 1127 1128 /* 1129 * Determine where to splice to/from. 1130 */ 1131 static long do_splice(struct file *in, loff_t __user *off_in, 1132 struct file *out, loff_t __user *off_out, 1133 size_t len, unsigned int flags) 1134 { 1135 struct pipe_inode_info *pipe; 1136 loff_t offset, *off; 1137 long ret; 1138 1139 pipe = pipe_info(in->f_path.dentry->d_inode); 1140 if (pipe) { 1141 if (off_in) 1142 return -ESPIPE; 1143 if (off_out) { 1144 if (out->f_op->llseek == no_llseek) 1145 return -EINVAL; 1146 if (copy_from_user(&offset, off_out, sizeof(loff_t))) 1147 return -EFAULT; 1148 off = &offset; 1149 } else 1150 off = &out->f_pos; 1151 1152 ret = do_splice_from(pipe, out, off, len, flags); 1153 1154 if (off_out && copy_to_user(off_out, off, sizeof(loff_t))) 1155 ret = -EFAULT; 1156 1157 return ret; 1158 } 1159 1160 pipe = pipe_info(out->f_path.dentry->d_inode); 1161 if (pipe) { 1162 if (off_out) 1163 return -ESPIPE; 1164 if (off_in) { 1165 if (in->f_op->llseek == no_llseek) 1166 return -EINVAL; 1167 if (copy_from_user(&offset, off_in, sizeof(loff_t))) 1168 return -EFAULT; 1169 off = &offset; 1170 } else 1171 off = &in->f_pos; 1172 1173 ret = do_splice_to(in, off, pipe, len, flags); 1174 1175 if (off_in && copy_to_user(off_in, off, sizeof(loff_t))) 1176 ret = -EFAULT; 1177 1178 return ret; 1179 } 1180 1181 return -EINVAL; 1182 } 1183 1184 /* 1185 * Map an iov into an array of pages and offset/length tupples. With the 1186 * partial_page structure, we can map several non-contiguous ranges into 1187 * our ones pages[] map instead of splitting that operation into pieces. 1188 * Could easily be exported as a generic helper for other users, in which 1189 * case one would probably want to add a 'max_nr_pages' parameter as well. 1190 */ 1191 static int get_iovec_page_array(const struct iovec __user *iov, 1192 unsigned int nr_vecs, struct page **pages, 1193 struct partial_page *partial, int aligned) 1194 { 1195 int buffers = 0, error = 0; 1196 1197 while (nr_vecs) { 1198 unsigned long off, npages; 1199 struct iovec entry; 1200 void __user *base; 1201 size_t len; 1202 int i; 1203 1204 error = -EFAULT; 1205 if (copy_from_user(&entry, iov, sizeof(entry))) 1206 break; 1207 1208 base = entry.iov_base; 1209 len = entry.iov_len; 1210 1211 /* 1212 * Sanity check this iovec. 0 read succeeds. 1213 */ 1214 error = 0; 1215 if (unlikely(!len)) 1216 break; 1217 error = -EFAULT; 1218 if (!access_ok(VERIFY_READ, base, len)) 1219 break; 1220 1221 /* 1222 * Get this base offset and number of pages, then map 1223 * in the user pages. 1224 */ 1225 off = (unsigned long) base & ~PAGE_MASK; 1226 1227 /* 1228 * If asked for alignment, the offset must be zero and the 1229 * length a multiple of the PAGE_SIZE. 1230 */ 1231 error = -EINVAL; 1232 if (aligned && (off || len & ~PAGE_MASK)) 1233 break; 1234 1235 npages = (off + len + PAGE_SIZE - 1) >> PAGE_SHIFT; 1236 if (npages > PIPE_BUFFERS - buffers) 1237 npages = PIPE_BUFFERS - buffers; 1238 1239 error = get_user_pages_fast((unsigned long)base, npages, 1240 0, &pages[buffers]); 1241 1242 if (unlikely(error <= 0)) 1243 break; 1244 1245 /* 1246 * Fill this contiguous range into the partial page map. 1247 */ 1248 for (i = 0; i < error; i++) { 1249 const int plen = min_t(size_t, len, PAGE_SIZE - off); 1250 1251 partial[buffers].offset = off; 1252 partial[buffers].len = plen; 1253 1254 off = 0; 1255 len -= plen; 1256 buffers++; 1257 } 1258 1259 /* 1260 * We didn't complete this iov, stop here since it probably 1261 * means we have to move some of this into a pipe to 1262 * be able to continue. 1263 */ 1264 if (len) 1265 break; 1266 1267 /* 1268 * Don't continue if we mapped fewer pages than we asked for, 1269 * or if we mapped the max number of pages that we have 1270 * room for. 1271 */ 1272 if (error < npages || buffers == PIPE_BUFFERS) 1273 break; 1274 1275 nr_vecs--; 1276 iov++; 1277 } 1278 1279 if (buffers) 1280 return buffers; 1281 1282 return error; 1283 } 1284 1285 static int pipe_to_user(struct pipe_inode_info *pipe, struct pipe_buffer *buf, 1286 struct splice_desc *sd) 1287 { 1288 char *src; 1289 int ret; 1290 1291 ret = buf->ops->confirm(pipe, buf); 1292 if (unlikely(ret)) 1293 return ret; 1294 1295 /* 1296 * See if we can use the atomic maps, by prefaulting in the 1297 * pages and doing an atomic copy 1298 */ 1299 if (!fault_in_pages_writeable(sd->u.userptr, sd->len)) { 1300 src = buf->ops->map(pipe, buf, 1); 1301 ret = __copy_to_user_inatomic(sd->u.userptr, src + buf->offset, 1302 sd->len); 1303 buf->ops->unmap(pipe, buf, src); 1304 if (!ret) { 1305 ret = sd->len; 1306 goto out; 1307 } 1308 } 1309 1310 /* 1311 * No dice, use slow non-atomic map and copy 1312 */ 1313 src = buf->ops->map(pipe, buf, 0); 1314 1315 ret = sd->len; 1316 if (copy_to_user(sd->u.userptr, src + buf->offset, sd->len)) 1317 ret = -EFAULT; 1318 1319 buf->ops->unmap(pipe, buf, src); 1320 out: 1321 if (ret > 0) 1322 sd->u.userptr += ret; 1323 return ret; 1324 } 1325 1326 /* 1327 * For lack of a better implementation, implement vmsplice() to userspace 1328 * as a simple copy of the pipes pages to the user iov. 1329 */ 1330 static long vmsplice_to_user(struct file *file, const struct iovec __user *iov, 1331 unsigned long nr_segs, unsigned int flags) 1332 { 1333 struct pipe_inode_info *pipe; 1334 struct splice_desc sd; 1335 ssize_t size; 1336 int error; 1337 long ret; 1338 1339 pipe = pipe_info(file->f_path.dentry->d_inode); 1340 if (!pipe) 1341 return -EBADF; 1342 1343 pipe_lock(pipe); 1344 1345 error = ret = 0; 1346 while (nr_segs) { 1347 void __user *base; 1348 size_t len; 1349 1350 /* 1351 * Get user address base and length for this iovec. 1352 */ 1353 error = get_user(base, &iov->iov_base); 1354 if (unlikely(error)) 1355 break; 1356 error = get_user(len, &iov->iov_len); 1357 if (unlikely(error)) 1358 break; 1359 1360 /* 1361 * Sanity check this iovec. 0 read succeeds. 1362 */ 1363 if (unlikely(!len)) 1364 break; 1365 if (unlikely(!base)) { 1366 error = -EFAULT; 1367 break; 1368 } 1369 1370 if (unlikely(!access_ok(VERIFY_WRITE, base, len))) { 1371 error = -EFAULT; 1372 break; 1373 } 1374 1375 sd.len = 0; 1376 sd.total_len = len; 1377 sd.flags = flags; 1378 sd.u.userptr = base; 1379 sd.pos = 0; 1380 1381 size = __splice_from_pipe(pipe, &sd, pipe_to_user); 1382 if (size < 0) { 1383 if (!ret) 1384 ret = size; 1385 1386 break; 1387 } 1388 1389 ret += size; 1390 1391 if (size < len) 1392 break; 1393 1394 nr_segs--; 1395 iov++; 1396 } 1397 1398 pipe_unlock(pipe); 1399 1400 if (!ret) 1401 ret = error; 1402 1403 return ret; 1404 } 1405 1406 /* 1407 * vmsplice splices a user address range into a pipe. It can be thought of 1408 * as splice-from-memory, where the regular splice is splice-from-file (or 1409 * to file). In both cases the output is a pipe, naturally. 1410 */ 1411 static long vmsplice_to_pipe(struct file *file, const struct iovec __user *iov, 1412 unsigned long nr_segs, unsigned int flags) 1413 { 1414 struct pipe_inode_info *pipe; 1415 struct page *pages[PIPE_BUFFERS]; 1416 struct partial_page partial[PIPE_BUFFERS]; 1417 struct splice_pipe_desc spd = { 1418 .pages = pages, 1419 .partial = partial, 1420 .flags = flags, 1421 .ops = &user_page_pipe_buf_ops, 1422 .spd_release = spd_release_page, 1423 }; 1424 1425 pipe = pipe_info(file->f_path.dentry->d_inode); 1426 if (!pipe) 1427 return -EBADF; 1428 1429 spd.nr_pages = get_iovec_page_array(iov, nr_segs, pages, partial, 1430 flags & SPLICE_F_GIFT); 1431 if (spd.nr_pages <= 0) 1432 return spd.nr_pages; 1433 1434 return splice_to_pipe(pipe, &spd); 1435 } 1436 1437 /* 1438 * Note that vmsplice only really supports true splicing _from_ user memory 1439 * to a pipe, not the other way around. Splicing from user memory is a simple 1440 * operation that can be supported without any funky alignment restrictions 1441 * or nasty vm tricks. We simply map in the user memory and fill them into 1442 * a pipe. The reverse isn't quite as easy, though. There are two possible 1443 * solutions for that: 1444 * 1445 * - memcpy() the data internally, at which point we might as well just 1446 * do a regular read() on the buffer anyway. 1447 * - Lots of nasty vm tricks, that are neither fast nor flexible (it 1448 * has restriction limitations on both ends of the pipe). 1449 * 1450 * Currently we punt and implement it as a normal copy, see pipe_to_user(). 1451 * 1452 */ 1453 SYSCALL_DEFINE4(vmsplice, int, fd, const struct iovec __user *, iov, 1454 unsigned long, nr_segs, unsigned int, flags) 1455 { 1456 struct file *file; 1457 long error; 1458 int fput; 1459 1460 if (unlikely(nr_segs > UIO_MAXIOV)) 1461 return -EINVAL; 1462 else if (unlikely(!nr_segs)) 1463 return 0; 1464 1465 error = -EBADF; 1466 file = fget_light(fd, &fput); 1467 if (file) { 1468 if (file->f_mode & FMODE_WRITE) 1469 error = vmsplice_to_pipe(file, iov, nr_segs, flags); 1470 else if (file->f_mode & FMODE_READ) 1471 error = vmsplice_to_user(file, iov, nr_segs, flags); 1472 1473 fput_light(file, fput); 1474 } 1475 1476 return error; 1477 } 1478 1479 SYSCALL_DEFINE6(splice, int, fd_in, loff_t __user *, off_in, 1480 int, fd_out, loff_t __user *, off_out, 1481 size_t, len, unsigned int, flags) 1482 { 1483 long error; 1484 struct file *in, *out; 1485 int fput_in, fput_out; 1486 1487 if (unlikely(!len)) 1488 return 0; 1489 1490 error = -EBADF; 1491 in = fget_light(fd_in, &fput_in); 1492 if (in) { 1493 if (in->f_mode & FMODE_READ) { 1494 out = fget_light(fd_out, &fput_out); 1495 if (out) { 1496 if (out->f_mode & FMODE_WRITE) 1497 error = do_splice(in, off_in, 1498 out, off_out, 1499 len, flags); 1500 fput_light(out, fput_out); 1501 } 1502 } 1503 1504 fput_light(in, fput_in); 1505 } 1506 1507 return error; 1508 } 1509 1510 /* 1511 * Make sure there's data to read. Wait for input if we can, otherwise 1512 * return an appropriate error. 1513 */ 1514 static int link_ipipe_prep(struct pipe_inode_info *pipe, unsigned int flags) 1515 { 1516 int ret; 1517 1518 /* 1519 * Check ->nrbufs without the inode lock first. This function 1520 * is speculative anyways, so missing one is ok. 1521 */ 1522 if (pipe->nrbufs) 1523 return 0; 1524 1525 ret = 0; 1526 pipe_lock(pipe); 1527 1528 while (!pipe->nrbufs) { 1529 if (signal_pending(current)) { 1530 ret = -ERESTARTSYS; 1531 break; 1532 } 1533 if (!pipe->writers) 1534 break; 1535 if (!pipe->waiting_writers) { 1536 if (flags & SPLICE_F_NONBLOCK) { 1537 ret = -EAGAIN; 1538 break; 1539 } 1540 } 1541 pipe_wait(pipe); 1542 } 1543 1544 pipe_unlock(pipe); 1545 return ret; 1546 } 1547 1548 /* 1549 * Make sure there's writeable room. Wait for room if we can, otherwise 1550 * return an appropriate error. 1551 */ 1552 static int link_opipe_prep(struct pipe_inode_info *pipe, unsigned int flags) 1553 { 1554 int ret; 1555 1556 /* 1557 * Check ->nrbufs without the inode lock first. This function 1558 * is speculative anyways, so missing one is ok. 1559 */ 1560 if (pipe->nrbufs < PIPE_BUFFERS) 1561 return 0; 1562 1563 ret = 0; 1564 pipe_lock(pipe); 1565 1566 while (pipe->nrbufs >= PIPE_BUFFERS) { 1567 if (!pipe->readers) { 1568 send_sig(SIGPIPE, current, 0); 1569 ret = -EPIPE; 1570 break; 1571 } 1572 if (flags & SPLICE_F_NONBLOCK) { 1573 ret = -EAGAIN; 1574 break; 1575 } 1576 if (signal_pending(current)) { 1577 ret = -ERESTARTSYS; 1578 break; 1579 } 1580 pipe->waiting_writers++; 1581 pipe_wait(pipe); 1582 pipe->waiting_writers--; 1583 } 1584 1585 pipe_unlock(pipe); 1586 return ret; 1587 } 1588 1589 /* 1590 * Link contents of ipipe to opipe. 1591 */ 1592 static int link_pipe(struct pipe_inode_info *ipipe, 1593 struct pipe_inode_info *opipe, 1594 size_t len, unsigned int flags) 1595 { 1596 struct pipe_buffer *ibuf, *obuf; 1597 int ret = 0, i = 0, nbuf; 1598 1599 /* 1600 * Potential ABBA deadlock, work around it by ordering lock 1601 * grabbing by pipe info address. Otherwise two different processes 1602 * could deadlock (one doing tee from A -> B, the other from B -> A). 1603 */ 1604 pipe_double_lock(ipipe, opipe); 1605 1606 do { 1607 if (!opipe->readers) { 1608 send_sig(SIGPIPE, current, 0); 1609 if (!ret) 1610 ret = -EPIPE; 1611 break; 1612 } 1613 1614 /* 1615 * If we have iterated all input buffers or ran out of 1616 * output room, break. 1617 */ 1618 if (i >= ipipe->nrbufs || opipe->nrbufs >= PIPE_BUFFERS) 1619 break; 1620 1621 ibuf = ipipe->bufs + ((ipipe->curbuf + i) & (PIPE_BUFFERS - 1)); 1622 nbuf = (opipe->curbuf + opipe->nrbufs) & (PIPE_BUFFERS - 1); 1623 1624 /* 1625 * Get a reference to this pipe buffer, 1626 * so we can copy the contents over. 1627 */ 1628 ibuf->ops->get(ipipe, ibuf); 1629 1630 obuf = opipe->bufs + nbuf; 1631 *obuf = *ibuf; 1632 1633 /* 1634 * Don't inherit the gift flag, we need to 1635 * prevent multiple steals of this page. 1636 */ 1637 obuf->flags &= ~PIPE_BUF_FLAG_GIFT; 1638 1639 if (obuf->len > len) 1640 obuf->len = len; 1641 1642 opipe->nrbufs++; 1643 ret += obuf->len; 1644 len -= obuf->len; 1645 i++; 1646 } while (len); 1647 1648 /* 1649 * return EAGAIN if we have the potential of some data in the 1650 * future, otherwise just return 0 1651 */ 1652 if (!ret && ipipe->waiting_writers && (flags & SPLICE_F_NONBLOCK)) 1653 ret = -EAGAIN; 1654 1655 pipe_unlock(ipipe); 1656 pipe_unlock(opipe); 1657 1658 /* 1659 * If we put data in the output pipe, wakeup any potential readers. 1660 */ 1661 if (ret > 0) { 1662 smp_mb(); 1663 if (waitqueue_active(&opipe->wait)) 1664 wake_up_interruptible(&opipe->wait); 1665 kill_fasync(&opipe->fasync_readers, SIGIO, POLL_IN); 1666 } 1667 1668 return ret; 1669 } 1670 1671 /* 1672 * This is a tee(1) implementation that works on pipes. It doesn't copy 1673 * any data, it simply references the 'in' pages on the 'out' pipe. 1674 * The 'flags' used are the SPLICE_F_* variants, currently the only 1675 * applicable one is SPLICE_F_NONBLOCK. 1676 */ 1677 static long do_tee(struct file *in, struct file *out, size_t len, 1678 unsigned int flags) 1679 { 1680 struct pipe_inode_info *ipipe = pipe_info(in->f_path.dentry->d_inode); 1681 struct pipe_inode_info *opipe = pipe_info(out->f_path.dentry->d_inode); 1682 int ret = -EINVAL; 1683 1684 /* 1685 * Duplicate the contents of ipipe to opipe without actually 1686 * copying the data. 1687 */ 1688 if (ipipe && opipe && ipipe != opipe) { 1689 /* 1690 * Keep going, unless we encounter an error. The ipipe/opipe 1691 * ordering doesn't really matter. 1692 */ 1693 ret = link_ipipe_prep(ipipe, flags); 1694 if (!ret) { 1695 ret = link_opipe_prep(opipe, flags); 1696 if (!ret) 1697 ret = link_pipe(ipipe, opipe, len, flags); 1698 } 1699 } 1700 1701 return ret; 1702 } 1703 1704 SYSCALL_DEFINE4(tee, int, fdin, int, fdout, size_t, len, unsigned int, flags) 1705 { 1706 struct file *in; 1707 int error, fput_in; 1708 1709 if (unlikely(!len)) 1710 return 0; 1711 1712 error = -EBADF; 1713 in = fget_light(fdin, &fput_in); 1714 if (in) { 1715 if (in->f_mode & FMODE_READ) { 1716 int fput_out; 1717 struct file *out = fget_light(fdout, &fput_out); 1718 1719 if (out) { 1720 if (out->f_mode & FMODE_WRITE) 1721 error = do_tee(in, out, len, flags); 1722 fput_light(out, fput_out); 1723 } 1724 } 1725 fput_light(in, fput_in); 1726 } 1727 1728 return error; 1729 } 1730