xref: /linux/fs/splice.c (revision e0bf6c5ca2d3281f231c5f0c9bf145e9513644de)
1 /*
2  * "splice": joining two ropes together by interweaving their strands.
3  *
4  * This is the "extended pipe" functionality, where a pipe is used as
5  * an arbitrary in-memory buffer. Think of a pipe as a small kernel
6  * buffer that you can use to transfer data from one end to the other.
7  *
8  * The traditional unix read/write is extended with a "splice()" operation
9  * that transfers data buffers to or from a pipe buffer.
10  *
11  * Named by Larry McVoy, original implementation from Linus, extended by
12  * Jens to support splicing to files, network, direct splicing, etc and
13  * fixing lots of bugs.
14  *
15  * Copyright (C) 2005-2006 Jens Axboe <axboe@kernel.dk>
16  * Copyright (C) 2005-2006 Linus Torvalds <torvalds@osdl.org>
17  * Copyright (C) 2006 Ingo Molnar <mingo@elte.hu>
18  *
19  */
20 #include <linux/fs.h>
21 #include <linux/file.h>
22 #include <linux/pagemap.h>
23 #include <linux/splice.h>
24 #include <linux/memcontrol.h>
25 #include <linux/mm_inline.h>
26 #include <linux/swap.h>
27 #include <linux/writeback.h>
28 #include <linux/export.h>
29 #include <linux/syscalls.h>
30 #include <linux/uio.h>
31 #include <linux/security.h>
32 #include <linux/gfp.h>
33 #include <linux/socket.h>
34 #include <linux/compat.h>
35 #include <linux/aio.h>
36 #include "internal.h"
37 
38 /*
39  * Attempt to steal a page from a pipe buffer. This should perhaps go into
40  * a vm helper function, it's already simplified quite a bit by the
41  * addition of remove_mapping(). If success is returned, the caller may
42  * attempt to reuse this page for another destination.
43  */
44 static int page_cache_pipe_buf_steal(struct pipe_inode_info *pipe,
45 				     struct pipe_buffer *buf)
46 {
47 	struct page *page = buf->page;
48 	struct address_space *mapping;
49 
50 	lock_page(page);
51 
52 	mapping = page_mapping(page);
53 	if (mapping) {
54 		WARN_ON(!PageUptodate(page));
55 
56 		/*
57 		 * At least for ext2 with nobh option, we need to wait on
58 		 * writeback completing on this page, since we'll remove it
59 		 * from the pagecache.  Otherwise truncate wont wait on the
60 		 * page, allowing the disk blocks to be reused by someone else
61 		 * before we actually wrote our data to them. fs corruption
62 		 * ensues.
63 		 */
64 		wait_on_page_writeback(page);
65 
66 		if (page_has_private(page) &&
67 		    !try_to_release_page(page, GFP_KERNEL))
68 			goto out_unlock;
69 
70 		/*
71 		 * If we succeeded in removing the mapping, set LRU flag
72 		 * and return good.
73 		 */
74 		if (remove_mapping(mapping, page)) {
75 			buf->flags |= PIPE_BUF_FLAG_LRU;
76 			return 0;
77 		}
78 	}
79 
80 	/*
81 	 * Raced with truncate or failed to remove page from current
82 	 * address space, unlock and return failure.
83 	 */
84 out_unlock:
85 	unlock_page(page);
86 	return 1;
87 }
88 
89 static void page_cache_pipe_buf_release(struct pipe_inode_info *pipe,
90 					struct pipe_buffer *buf)
91 {
92 	page_cache_release(buf->page);
93 	buf->flags &= ~PIPE_BUF_FLAG_LRU;
94 }
95 
96 /*
97  * Check whether the contents of buf is OK to access. Since the content
98  * is a page cache page, IO may be in flight.
99  */
100 static int page_cache_pipe_buf_confirm(struct pipe_inode_info *pipe,
101 				       struct pipe_buffer *buf)
102 {
103 	struct page *page = buf->page;
104 	int err;
105 
106 	if (!PageUptodate(page)) {
107 		lock_page(page);
108 
109 		/*
110 		 * Page got truncated/unhashed. This will cause a 0-byte
111 		 * splice, if this is the first page.
112 		 */
113 		if (!page->mapping) {
114 			err = -ENODATA;
115 			goto error;
116 		}
117 
118 		/*
119 		 * Uh oh, read-error from disk.
120 		 */
121 		if (!PageUptodate(page)) {
122 			err = -EIO;
123 			goto error;
124 		}
125 
126 		/*
127 		 * Page is ok afterall, we are done.
128 		 */
129 		unlock_page(page);
130 	}
131 
132 	return 0;
133 error:
134 	unlock_page(page);
135 	return err;
136 }
137 
138 const struct pipe_buf_operations page_cache_pipe_buf_ops = {
139 	.can_merge = 0,
140 	.confirm = page_cache_pipe_buf_confirm,
141 	.release = page_cache_pipe_buf_release,
142 	.steal = page_cache_pipe_buf_steal,
143 	.get = generic_pipe_buf_get,
144 };
145 
146 static int user_page_pipe_buf_steal(struct pipe_inode_info *pipe,
147 				    struct pipe_buffer *buf)
148 {
149 	if (!(buf->flags & PIPE_BUF_FLAG_GIFT))
150 		return 1;
151 
152 	buf->flags |= PIPE_BUF_FLAG_LRU;
153 	return generic_pipe_buf_steal(pipe, buf);
154 }
155 
156 static const struct pipe_buf_operations user_page_pipe_buf_ops = {
157 	.can_merge = 0,
158 	.confirm = generic_pipe_buf_confirm,
159 	.release = page_cache_pipe_buf_release,
160 	.steal = user_page_pipe_buf_steal,
161 	.get = generic_pipe_buf_get,
162 };
163 
164 static void wakeup_pipe_readers(struct pipe_inode_info *pipe)
165 {
166 	smp_mb();
167 	if (waitqueue_active(&pipe->wait))
168 		wake_up_interruptible(&pipe->wait);
169 	kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
170 }
171 
172 /**
173  * splice_to_pipe - fill passed data into a pipe
174  * @pipe:	pipe to fill
175  * @spd:	data to fill
176  *
177  * Description:
178  *    @spd contains a map of pages and len/offset tuples, along with
179  *    the struct pipe_buf_operations associated with these pages. This
180  *    function will link that data to the pipe.
181  *
182  */
183 ssize_t splice_to_pipe(struct pipe_inode_info *pipe,
184 		       struct splice_pipe_desc *spd)
185 {
186 	unsigned int spd_pages = spd->nr_pages;
187 	int ret, do_wakeup, page_nr;
188 
189 	ret = 0;
190 	do_wakeup = 0;
191 	page_nr = 0;
192 
193 	pipe_lock(pipe);
194 
195 	for (;;) {
196 		if (!pipe->readers) {
197 			send_sig(SIGPIPE, current, 0);
198 			if (!ret)
199 				ret = -EPIPE;
200 			break;
201 		}
202 
203 		if (pipe->nrbufs < pipe->buffers) {
204 			int newbuf = (pipe->curbuf + pipe->nrbufs) & (pipe->buffers - 1);
205 			struct pipe_buffer *buf = pipe->bufs + newbuf;
206 
207 			buf->page = spd->pages[page_nr];
208 			buf->offset = spd->partial[page_nr].offset;
209 			buf->len = spd->partial[page_nr].len;
210 			buf->private = spd->partial[page_nr].private;
211 			buf->ops = spd->ops;
212 			if (spd->flags & SPLICE_F_GIFT)
213 				buf->flags |= PIPE_BUF_FLAG_GIFT;
214 
215 			pipe->nrbufs++;
216 			page_nr++;
217 			ret += buf->len;
218 
219 			if (pipe->files)
220 				do_wakeup = 1;
221 
222 			if (!--spd->nr_pages)
223 				break;
224 			if (pipe->nrbufs < pipe->buffers)
225 				continue;
226 
227 			break;
228 		}
229 
230 		if (spd->flags & SPLICE_F_NONBLOCK) {
231 			if (!ret)
232 				ret = -EAGAIN;
233 			break;
234 		}
235 
236 		if (signal_pending(current)) {
237 			if (!ret)
238 				ret = -ERESTARTSYS;
239 			break;
240 		}
241 
242 		if (do_wakeup) {
243 			smp_mb();
244 			if (waitqueue_active(&pipe->wait))
245 				wake_up_interruptible_sync(&pipe->wait);
246 			kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
247 			do_wakeup = 0;
248 		}
249 
250 		pipe->waiting_writers++;
251 		pipe_wait(pipe);
252 		pipe->waiting_writers--;
253 	}
254 
255 	pipe_unlock(pipe);
256 
257 	if (do_wakeup)
258 		wakeup_pipe_readers(pipe);
259 
260 	while (page_nr < spd_pages)
261 		spd->spd_release(spd, page_nr++);
262 
263 	return ret;
264 }
265 
266 void spd_release_page(struct splice_pipe_desc *spd, unsigned int i)
267 {
268 	page_cache_release(spd->pages[i]);
269 }
270 
271 /*
272  * Check if we need to grow the arrays holding pages and partial page
273  * descriptions.
274  */
275 int splice_grow_spd(const struct pipe_inode_info *pipe, struct splice_pipe_desc *spd)
276 {
277 	unsigned int buffers = ACCESS_ONCE(pipe->buffers);
278 
279 	spd->nr_pages_max = buffers;
280 	if (buffers <= PIPE_DEF_BUFFERS)
281 		return 0;
282 
283 	spd->pages = kmalloc(buffers * sizeof(struct page *), GFP_KERNEL);
284 	spd->partial = kmalloc(buffers * sizeof(struct partial_page), GFP_KERNEL);
285 
286 	if (spd->pages && spd->partial)
287 		return 0;
288 
289 	kfree(spd->pages);
290 	kfree(spd->partial);
291 	return -ENOMEM;
292 }
293 
294 void splice_shrink_spd(struct splice_pipe_desc *spd)
295 {
296 	if (spd->nr_pages_max <= PIPE_DEF_BUFFERS)
297 		return;
298 
299 	kfree(spd->pages);
300 	kfree(spd->partial);
301 }
302 
303 static int
304 __generic_file_splice_read(struct file *in, loff_t *ppos,
305 			   struct pipe_inode_info *pipe, size_t len,
306 			   unsigned int flags)
307 {
308 	struct address_space *mapping = in->f_mapping;
309 	unsigned int loff, nr_pages, req_pages;
310 	struct page *pages[PIPE_DEF_BUFFERS];
311 	struct partial_page partial[PIPE_DEF_BUFFERS];
312 	struct page *page;
313 	pgoff_t index, end_index;
314 	loff_t isize;
315 	int error, page_nr;
316 	struct splice_pipe_desc spd = {
317 		.pages = pages,
318 		.partial = partial,
319 		.nr_pages_max = PIPE_DEF_BUFFERS,
320 		.flags = flags,
321 		.ops = &page_cache_pipe_buf_ops,
322 		.spd_release = spd_release_page,
323 	};
324 
325 	if (splice_grow_spd(pipe, &spd))
326 		return -ENOMEM;
327 
328 	index = *ppos >> PAGE_CACHE_SHIFT;
329 	loff = *ppos & ~PAGE_CACHE_MASK;
330 	req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
331 	nr_pages = min(req_pages, spd.nr_pages_max);
332 
333 	/*
334 	 * Lookup the (hopefully) full range of pages we need.
335 	 */
336 	spd.nr_pages = find_get_pages_contig(mapping, index, nr_pages, spd.pages);
337 	index += spd.nr_pages;
338 
339 	/*
340 	 * If find_get_pages_contig() returned fewer pages than we needed,
341 	 * readahead/allocate the rest and fill in the holes.
342 	 */
343 	if (spd.nr_pages < nr_pages)
344 		page_cache_sync_readahead(mapping, &in->f_ra, in,
345 				index, req_pages - spd.nr_pages);
346 
347 	error = 0;
348 	while (spd.nr_pages < nr_pages) {
349 		/*
350 		 * Page could be there, find_get_pages_contig() breaks on
351 		 * the first hole.
352 		 */
353 		page = find_get_page(mapping, index);
354 		if (!page) {
355 			/*
356 			 * page didn't exist, allocate one.
357 			 */
358 			page = page_cache_alloc_cold(mapping);
359 			if (!page)
360 				break;
361 
362 			error = add_to_page_cache_lru(page, mapping, index,
363 						GFP_KERNEL);
364 			if (unlikely(error)) {
365 				page_cache_release(page);
366 				if (error == -EEXIST)
367 					continue;
368 				break;
369 			}
370 			/*
371 			 * add_to_page_cache() locks the page, unlock it
372 			 * to avoid convoluting the logic below even more.
373 			 */
374 			unlock_page(page);
375 		}
376 
377 		spd.pages[spd.nr_pages++] = page;
378 		index++;
379 	}
380 
381 	/*
382 	 * Now loop over the map and see if we need to start IO on any
383 	 * pages, fill in the partial map, etc.
384 	 */
385 	index = *ppos >> PAGE_CACHE_SHIFT;
386 	nr_pages = spd.nr_pages;
387 	spd.nr_pages = 0;
388 	for (page_nr = 0; page_nr < nr_pages; page_nr++) {
389 		unsigned int this_len;
390 
391 		if (!len)
392 			break;
393 
394 		/*
395 		 * this_len is the max we'll use from this page
396 		 */
397 		this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
398 		page = spd.pages[page_nr];
399 
400 		if (PageReadahead(page))
401 			page_cache_async_readahead(mapping, &in->f_ra, in,
402 					page, index, req_pages - page_nr);
403 
404 		/*
405 		 * If the page isn't uptodate, we may need to start io on it
406 		 */
407 		if (!PageUptodate(page)) {
408 			lock_page(page);
409 
410 			/*
411 			 * Page was truncated, or invalidated by the
412 			 * filesystem.  Redo the find/create, but this time the
413 			 * page is kept locked, so there's no chance of another
414 			 * race with truncate/invalidate.
415 			 */
416 			if (!page->mapping) {
417 				unlock_page(page);
418 				page = find_or_create_page(mapping, index,
419 						mapping_gfp_mask(mapping));
420 
421 				if (!page) {
422 					error = -ENOMEM;
423 					break;
424 				}
425 				page_cache_release(spd.pages[page_nr]);
426 				spd.pages[page_nr] = page;
427 			}
428 			/*
429 			 * page was already under io and is now done, great
430 			 */
431 			if (PageUptodate(page)) {
432 				unlock_page(page);
433 				goto fill_it;
434 			}
435 
436 			/*
437 			 * need to read in the page
438 			 */
439 			error = mapping->a_ops->readpage(in, page);
440 			if (unlikely(error)) {
441 				/*
442 				 * We really should re-lookup the page here,
443 				 * but it complicates things a lot. Instead
444 				 * lets just do what we already stored, and
445 				 * we'll get it the next time we are called.
446 				 */
447 				if (error == AOP_TRUNCATED_PAGE)
448 					error = 0;
449 
450 				break;
451 			}
452 		}
453 fill_it:
454 		/*
455 		 * i_size must be checked after PageUptodate.
456 		 */
457 		isize = i_size_read(mapping->host);
458 		end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
459 		if (unlikely(!isize || index > end_index))
460 			break;
461 
462 		/*
463 		 * if this is the last page, see if we need to shrink
464 		 * the length and stop
465 		 */
466 		if (end_index == index) {
467 			unsigned int plen;
468 
469 			/*
470 			 * max good bytes in this page
471 			 */
472 			plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
473 			if (plen <= loff)
474 				break;
475 
476 			/*
477 			 * force quit after adding this page
478 			 */
479 			this_len = min(this_len, plen - loff);
480 			len = this_len;
481 		}
482 
483 		spd.partial[page_nr].offset = loff;
484 		spd.partial[page_nr].len = this_len;
485 		len -= this_len;
486 		loff = 0;
487 		spd.nr_pages++;
488 		index++;
489 	}
490 
491 	/*
492 	 * Release any pages at the end, if we quit early. 'page_nr' is how far
493 	 * we got, 'nr_pages' is how many pages are in the map.
494 	 */
495 	while (page_nr < nr_pages)
496 		page_cache_release(spd.pages[page_nr++]);
497 	in->f_ra.prev_pos = (loff_t)index << PAGE_CACHE_SHIFT;
498 
499 	if (spd.nr_pages)
500 		error = splice_to_pipe(pipe, &spd);
501 
502 	splice_shrink_spd(&spd);
503 	return error;
504 }
505 
506 /**
507  * generic_file_splice_read - splice data from file to a pipe
508  * @in:		file to splice from
509  * @ppos:	position in @in
510  * @pipe:	pipe to splice to
511  * @len:	number of bytes to splice
512  * @flags:	splice modifier flags
513  *
514  * Description:
515  *    Will read pages from given file and fill them into a pipe. Can be
516  *    used as long as the address_space operations for the source implements
517  *    a readpage() hook.
518  *
519  */
520 ssize_t generic_file_splice_read(struct file *in, loff_t *ppos,
521 				 struct pipe_inode_info *pipe, size_t len,
522 				 unsigned int flags)
523 {
524 	loff_t isize, left;
525 	int ret;
526 
527 	isize = i_size_read(in->f_mapping->host);
528 	if (unlikely(*ppos >= isize))
529 		return 0;
530 
531 	left = isize - *ppos;
532 	if (unlikely(left < len))
533 		len = left;
534 
535 	ret = __generic_file_splice_read(in, ppos, pipe, len, flags);
536 	if (ret > 0) {
537 		*ppos += ret;
538 		file_accessed(in);
539 	}
540 
541 	return ret;
542 }
543 EXPORT_SYMBOL(generic_file_splice_read);
544 
545 static const struct pipe_buf_operations default_pipe_buf_ops = {
546 	.can_merge = 0,
547 	.confirm = generic_pipe_buf_confirm,
548 	.release = generic_pipe_buf_release,
549 	.steal = generic_pipe_buf_steal,
550 	.get = generic_pipe_buf_get,
551 };
552 
553 static int generic_pipe_buf_nosteal(struct pipe_inode_info *pipe,
554 				    struct pipe_buffer *buf)
555 {
556 	return 1;
557 }
558 
559 /* Pipe buffer operations for a socket and similar. */
560 const struct pipe_buf_operations nosteal_pipe_buf_ops = {
561 	.can_merge = 0,
562 	.confirm = generic_pipe_buf_confirm,
563 	.release = generic_pipe_buf_release,
564 	.steal = generic_pipe_buf_nosteal,
565 	.get = generic_pipe_buf_get,
566 };
567 EXPORT_SYMBOL(nosteal_pipe_buf_ops);
568 
569 static ssize_t kernel_readv(struct file *file, const struct iovec *vec,
570 			    unsigned long vlen, loff_t offset)
571 {
572 	mm_segment_t old_fs;
573 	loff_t pos = offset;
574 	ssize_t res;
575 
576 	old_fs = get_fs();
577 	set_fs(get_ds());
578 	/* The cast to a user pointer is valid due to the set_fs() */
579 	res = vfs_readv(file, (const struct iovec __user *)vec, vlen, &pos);
580 	set_fs(old_fs);
581 
582 	return res;
583 }
584 
585 ssize_t kernel_write(struct file *file, const char *buf, size_t count,
586 			    loff_t pos)
587 {
588 	mm_segment_t old_fs;
589 	ssize_t res;
590 
591 	old_fs = get_fs();
592 	set_fs(get_ds());
593 	/* The cast to a user pointer is valid due to the set_fs() */
594 	res = vfs_write(file, (__force const char __user *)buf, count, &pos);
595 	set_fs(old_fs);
596 
597 	return res;
598 }
599 EXPORT_SYMBOL(kernel_write);
600 
601 ssize_t default_file_splice_read(struct file *in, loff_t *ppos,
602 				 struct pipe_inode_info *pipe, size_t len,
603 				 unsigned int flags)
604 {
605 	unsigned int nr_pages;
606 	unsigned int nr_freed;
607 	size_t offset;
608 	struct page *pages[PIPE_DEF_BUFFERS];
609 	struct partial_page partial[PIPE_DEF_BUFFERS];
610 	struct iovec *vec, __vec[PIPE_DEF_BUFFERS];
611 	ssize_t res;
612 	size_t this_len;
613 	int error;
614 	int i;
615 	struct splice_pipe_desc spd = {
616 		.pages = pages,
617 		.partial = partial,
618 		.nr_pages_max = PIPE_DEF_BUFFERS,
619 		.flags = flags,
620 		.ops = &default_pipe_buf_ops,
621 		.spd_release = spd_release_page,
622 	};
623 
624 	if (splice_grow_spd(pipe, &spd))
625 		return -ENOMEM;
626 
627 	res = -ENOMEM;
628 	vec = __vec;
629 	if (spd.nr_pages_max > PIPE_DEF_BUFFERS) {
630 		vec = kmalloc(spd.nr_pages_max * sizeof(struct iovec), GFP_KERNEL);
631 		if (!vec)
632 			goto shrink_ret;
633 	}
634 
635 	offset = *ppos & ~PAGE_CACHE_MASK;
636 	nr_pages = (len + offset + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
637 
638 	for (i = 0; i < nr_pages && i < spd.nr_pages_max && len; i++) {
639 		struct page *page;
640 
641 		page = alloc_page(GFP_USER);
642 		error = -ENOMEM;
643 		if (!page)
644 			goto err;
645 
646 		this_len = min_t(size_t, len, PAGE_CACHE_SIZE - offset);
647 		vec[i].iov_base = (void __user *) page_address(page);
648 		vec[i].iov_len = this_len;
649 		spd.pages[i] = page;
650 		spd.nr_pages++;
651 		len -= this_len;
652 		offset = 0;
653 	}
654 
655 	res = kernel_readv(in, vec, spd.nr_pages, *ppos);
656 	if (res < 0) {
657 		error = res;
658 		goto err;
659 	}
660 
661 	error = 0;
662 	if (!res)
663 		goto err;
664 
665 	nr_freed = 0;
666 	for (i = 0; i < spd.nr_pages; i++) {
667 		this_len = min_t(size_t, vec[i].iov_len, res);
668 		spd.partial[i].offset = 0;
669 		spd.partial[i].len = this_len;
670 		if (!this_len) {
671 			__free_page(spd.pages[i]);
672 			spd.pages[i] = NULL;
673 			nr_freed++;
674 		}
675 		res -= this_len;
676 	}
677 	spd.nr_pages -= nr_freed;
678 
679 	res = splice_to_pipe(pipe, &spd);
680 	if (res > 0)
681 		*ppos += res;
682 
683 shrink_ret:
684 	if (vec != __vec)
685 		kfree(vec);
686 	splice_shrink_spd(&spd);
687 	return res;
688 
689 err:
690 	for (i = 0; i < spd.nr_pages; i++)
691 		__free_page(spd.pages[i]);
692 
693 	res = error;
694 	goto shrink_ret;
695 }
696 EXPORT_SYMBOL(default_file_splice_read);
697 
698 /*
699  * Send 'sd->len' bytes to socket from 'sd->file' at position 'sd->pos'
700  * using sendpage(). Return the number of bytes sent.
701  */
702 static int pipe_to_sendpage(struct pipe_inode_info *pipe,
703 			    struct pipe_buffer *buf, struct splice_desc *sd)
704 {
705 	struct file *file = sd->u.file;
706 	loff_t pos = sd->pos;
707 	int more;
708 
709 	if (!likely(file->f_op->sendpage))
710 		return -EINVAL;
711 
712 	more = (sd->flags & SPLICE_F_MORE) ? MSG_MORE : 0;
713 
714 	if (sd->len < sd->total_len && pipe->nrbufs > 1)
715 		more |= MSG_SENDPAGE_NOTLAST;
716 
717 	return file->f_op->sendpage(file, buf->page, buf->offset,
718 				    sd->len, &pos, more);
719 }
720 
721 static void wakeup_pipe_writers(struct pipe_inode_info *pipe)
722 {
723 	smp_mb();
724 	if (waitqueue_active(&pipe->wait))
725 		wake_up_interruptible(&pipe->wait);
726 	kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
727 }
728 
729 /**
730  * splice_from_pipe_feed - feed available data from a pipe to a file
731  * @pipe:	pipe to splice from
732  * @sd:		information to @actor
733  * @actor:	handler that splices the data
734  *
735  * Description:
736  *    This function loops over the pipe and calls @actor to do the
737  *    actual moving of a single struct pipe_buffer to the desired
738  *    destination.  It returns when there's no more buffers left in
739  *    the pipe or if the requested number of bytes (@sd->total_len)
740  *    have been copied.  It returns a positive number (one) if the
741  *    pipe needs to be filled with more data, zero if the required
742  *    number of bytes have been copied and -errno on error.
743  *
744  *    This, together with splice_from_pipe_{begin,end,next}, may be
745  *    used to implement the functionality of __splice_from_pipe() when
746  *    locking is required around copying the pipe buffers to the
747  *    destination.
748  */
749 static int splice_from_pipe_feed(struct pipe_inode_info *pipe, struct splice_desc *sd,
750 			  splice_actor *actor)
751 {
752 	int ret;
753 
754 	while (pipe->nrbufs) {
755 		struct pipe_buffer *buf = pipe->bufs + pipe->curbuf;
756 		const struct pipe_buf_operations *ops = buf->ops;
757 
758 		sd->len = buf->len;
759 		if (sd->len > sd->total_len)
760 			sd->len = sd->total_len;
761 
762 		ret = buf->ops->confirm(pipe, buf);
763 		if (unlikely(ret)) {
764 			if (ret == -ENODATA)
765 				ret = 0;
766 			return ret;
767 		}
768 
769 		ret = actor(pipe, buf, sd);
770 		if (ret <= 0)
771 			return ret;
772 
773 		buf->offset += ret;
774 		buf->len -= ret;
775 
776 		sd->num_spliced += ret;
777 		sd->len -= ret;
778 		sd->pos += ret;
779 		sd->total_len -= ret;
780 
781 		if (!buf->len) {
782 			buf->ops = NULL;
783 			ops->release(pipe, buf);
784 			pipe->curbuf = (pipe->curbuf + 1) & (pipe->buffers - 1);
785 			pipe->nrbufs--;
786 			if (pipe->files)
787 				sd->need_wakeup = true;
788 		}
789 
790 		if (!sd->total_len)
791 			return 0;
792 	}
793 
794 	return 1;
795 }
796 
797 /**
798  * splice_from_pipe_next - wait for some data to splice from
799  * @pipe:	pipe to splice from
800  * @sd:		information about the splice operation
801  *
802  * Description:
803  *    This function will wait for some data and return a positive
804  *    value (one) if pipe buffers are available.  It will return zero
805  *    or -errno if no more data needs to be spliced.
806  */
807 static int splice_from_pipe_next(struct pipe_inode_info *pipe, struct splice_desc *sd)
808 {
809 	while (!pipe->nrbufs) {
810 		if (!pipe->writers)
811 			return 0;
812 
813 		if (!pipe->waiting_writers && sd->num_spliced)
814 			return 0;
815 
816 		if (sd->flags & SPLICE_F_NONBLOCK)
817 			return -EAGAIN;
818 
819 		if (signal_pending(current))
820 			return -ERESTARTSYS;
821 
822 		if (sd->need_wakeup) {
823 			wakeup_pipe_writers(pipe);
824 			sd->need_wakeup = false;
825 		}
826 
827 		pipe_wait(pipe);
828 	}
829 
830 	return 1;
831 }
832 
833 /**
834  * splice_from_pipe_begin - start splicing from pipe
835  * @sd:		information about the splice operation
836  *
837  * Description:
838  *    This function should be called before a loop containing
839  *    splice_from_pipe_next() and splice_from_pipe_feed() to
840  *    initialize the necessary fields of @sd.
841  */
842 static void splice_from_pipe_begin(struct splice_desc *sd)
843 {
844 	sd->num_spliced = 0;
845 	sd->need_wakeup = false;
846 }
847 
848 /**
849  * splice_from_pipe_end - finish splicing from pipe
850  * @pipe:	pipe to splice from
851  * @sd:		information about the splice operation
852  *
853  * Description:
854  *    This function will wake up pipe writers if necessary.  It should
855  *    be called after a loop containing splice_from_pipe_next() and
856  *    splice_from_pipe_feed().
857  */
858 static void splice_from_pipe_end(struct pipe_inode_info *pipe, struct splice_desc *sd)
859 {
860 	if (sd->need_wakeup)
861 		wakeup_pipe_writers(pipe);
862 }
863 
864 /**
865  * __splice_from_pipe - splice data from a pipe to given actor
866  * @pipe:	pipe to splice from
867  * @sd:		information to @actor
868  * @actor:	handler that splices the data
869  *
870  * Description:
871  *    This function does little more than loop over the pipe and call
872  *    @actor to do the actual moving of a single struct pipe_buffer to
873  *    the desired destination. See pipe_to_file, pipe_to_sendpage, or
874  *    pipe_to_user.
875  *
876  */
877 ssize_t __splice_from_pipe(struct pipe_inode_info *pipe, struct splice_desc *sd,
878 			   splice_actor *actor)
879 {
880 	int ret;
881 
882 	splice_from_pipe_begin(sd);
883 	do {
884 		ret = splice_from_pipe_next(pipe, sd);
885 		if (ret > 0)
886 			ret = splice_from_pipe_feed(pipe, sd, actor);
887 	} while (ret > 0);
888 	splice_from_pipe_end(pipe, sd);
889 
890 	return sd->num_spliced ? sd->num_spliced : ret;
891 }
892 EXPORT_SYMBOL(__splice_from_pipe);
893 
894 /**
895  * splice_from_pipe - splice data from a pipe to a file
896  * @pipe:	pipe to splice from
897  * @out:	file to splice to
898  * @ppos:	position in @out
899  * @len:	how many bytes to splice
900  * @flags:	splice modifier flags
901  * @actor:	handler that splices the data
902  *
903  * Description:
904  *    See __splice_from_pipe. This function locks the pipe inode,
905  *    otherwise it's identical to __splice_from_pipe().
906  *
907  */
908 ssize_t splice_from_pipe(struct pipe_inode_info *pipe, struct file *out,
909 			 loff_t *ppos, size_t len, unsigned int flags,
910 			 splice_actor *actor)
911 {
912 	ssize_t ret;
913 	struct splice_desc sd = {
914 		.total_len = len,
915 		.flags = flags,
916 		.pos = *ppos,
917 		.u.file = out,
918 	};
919 
920 	pipe_lock(pipe);
921 	ret = __splice_from_pipe(pipe, &sd, actor);
922 	pipe_unlock(pipe);
923 
924 	return ret;
925 }
926 
927 /**
928  * iter_file_splice_write - splice data from a pipe to a file
929  * @pipe:	pipe info
930  * @out:	file to write to
931  * @ppos:	position in @out
932  * @len:	number of bytes to splice
933  * @flags:	splice modifier flags
934  *
935  * Description:
936  *    Will either move or copy pages (determined by @flags options) from
937  *    the given pipe inode to the given file.
938  *    This one is ->write_iter-based.
939  *
940  */
941 ssize_t
942 iter_file_splice_write(struct pipe_inode_info *pipe, struct file *out,
943 			  loff_t *ppos, size_t len, unsigned int flags)
944 {
945 	struct splice_desc sd = {
946 		.total_len = len,
947 		.flags = flags,
948 		.pos = *ppos,
949 		.u.file = out,
950 	};
951 	int nbufs = pipe->buffers;
952 	struct bio_vec *array = kcalloc(nbufs, sizeof(struct bio_vec),
953 					GFP_KERNEL);
954 	ssize_t ret;
955 
956 	if (unlikely(!array))
957 		return -ENOMEM;
958 
959 	pipe_lock(pipe);
960 
961 	splice_from_pipe_begin(&sd);
962 	while (sd.total_len) {
963 		struct iov_iter from;
964 		size_t left;
965 		int n, idx;
966 
967 		ret = splice_from_pipe_next(pipe, &sd);
968 		if (ret <= 0)
969 			break;
970 
971 		if (unlikely(nbufs < pipe->buffers)) {
972 			kfree(array);
973 			nbufs = pipe->buffers;
974 			array = kcalloc(nbufs, sizeof(struct bio_vec),
975 					GFP_KERNEL);
976 			if (!array) {
977 				ret = -ENOMEM;
978 				break;
979 			}
980 		}
981 
982 		/* build the vector */
983 		left = sd.total_len;
984 		for (n = 0, idx = pipe->curbuf; left && n < pipe->nrbufs; n++, idx++) {
985 			struct pipe_buffer *buf = pipe->bufs + idx;
986 			size_t this_len = buf->len;
987 
988 			if (this_len > left)
989 				this_len = left;
990 
991 			if (idx == pipe->buffers - 1)
992 				idx = -1;
993 
994 			ret = buf->ops->confirm(pipe, buf);
995 			if (unlikely(ret)) {
996 				if (ret == -ENODATA)
997 					ret = 0;
998 				goto done;
999 			}
1000 
1001 			array[n].bv_page = buf->page;
1002 			array[n].bv_len = this_len;
1003 			array[n].bv_offset = buf->offset;
1004 			left -= this_len;
1005 		}
1006 
1007 		iov_iter_bvec(&from, ITER_BVEC | WRITE, array, n,
1008 			      sd.total_len - left);
1009 		ret = vfs_iter_write(out, &from, &sd.pos);
1010 		if (ret <= 0)
1011 			break;
1012 
1013 		sd.num_spliced += ret;
1014 		sd.total_len -= ret;
1015 		*ppos = sd.pos;
1016 
1017 		/* dismiss the fully eaten buffers, adjust the partial one */
1018 		while (ret) {
1019 			struct pipe_buffer *buf = pipe->bufs + pipe->curbuf;
1020 			if (ret >= buf->len) {
1021 				const struct pipe_buf_operations *ops = buf->ops;
1022 				ret -= buf->len;
1023 				buf->len = 0;
1024 				buf->ops = NULL;
1025 				ops->release(pipe, buf);
1026 				pipe->curbuf = (pipe->curbuf + 1) & (pipe->buffers - 1);
1027 				pipe->nrbufs--;
1028 				if (pipe->files)
1029 					sd.need_wakeup = true;
1030 			} else {
1031 				buf->offset += ret;
1032 				buf->len -= ret;
1033 				ret = 0;
1034 			}
1035 		}
1036 	}
1037 done:
1038 	kfree(array);
1039 	splice_from_pipe_end(pipe, &sd);
1040 
1041 	pipe_unlock(pipe);
1042 
1043 	if (sd.num_spliced)
1044 		ret = sd.num_spliced;
1045 
1046 	return ret;
1047 }
1048 
1049 EXPORT_SYMBOL(iter_file_splice_write);
1050 
1051 static int write_pipe_buf(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1052 			  struct splice_desc *sd)
1053 {
1054 	int ret;
1055 	void *data;
1056 	loff_t tmp = sd->pos;
1057 
1058 	data = kmap(buf->page);
1059 	ret = __kernel_write(sd->u.file, data + buf->offset, sd->len, &tmp);
1060 	kunmap(buf->page);
1061 
1062 	return ret;
1063 }
1064 
1065 static ssize_t default_file_splice_write(struct pipe_inode_info *pipe,
1066 					 struct file *out, loff_t *ppos,
1067 					 size_t len, unsigned int flags)
1068 {
1069 	ssize_t ret;
1070 
1071 	ret = splice_from_pipe(pipe, out, ppos, len, flags, write_pipe_buf);
1072 	if (ret > 0)
1073 		*ppos += ret;
1074 
1075 	return ret;
1076 }
1077 
1078 /**
1079  * generic_splice_sendpage - splice data from a pipe to a socket
1080  * @pipe:	pipe to splice from
1081  * @out:	socket to write to
1082  * @ppos:	position in @out
1083  * @len:	number of bytes to splice
1084  * @flags:	splice modifier flags
1085  *
1086  * Description:
1087  *    Will send @len bytes from the pipe to a network socket. No data copying
1088  *    is involved.
1089  *
1090  */
1091 ssize_t generic_splice_sendpage(struct pipe_inode_info *pipe, struct file *out,
1092 				loff_t *ppos, size_t len, unsigned int flags)
1093 {
1094 	return splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_sendpage);
1095 }
1096 
1097 EXPORT_SYMBOL(generic_splice_sendpage);
1098 
1099 /*
1100  * Attempt to initiate a splice from pipe to file.
1101  */
1102 static long do_splice_from(struct pipe_inode_info *pipe, struct file *out,
1103 			   loff_t *ppos, size_t len, unsigned int flags)
1104 {
1105 	ssize_t (*splice_write)(struct pipe_inode_info *, struct file *,
1106 				loff_t *, size_t, unsigned int);
1107 
1108 	if (out->f_op->splice_write)
1109 		splice_write = out->f_op->splice_write;
1110 	else
1111 		splice_write = default_file_splice_write;
1112 
1113 	return splice_write(pipe, out, ppos, len, flags);
1114 }
1115 
1116 /*
1117  * Attempt to initiate a splice from a file to a pipe.
1118  */
1119 static long do_splice_to(struct file *in, loff_t *ppos,
1120 			 struct pipe_inode_info *pipe, size_t len,
1121 			 unsigned int flags)
1122 {
1123 	ssize_t (*splice_read)(struct file *, loff_t *,
1124 			       struct pipe_inode_info *, size_t, unsigned int);
1125 	int ret;
1126 
1127 	if (unlikely(!(in->f_mode & FMODE_READ)))
1128 		return -EBADF;
1129 
1130 	ret = rw_verify_area(READ, in, ppos, len);
1131 	if (unlikely(ret < 0))
1132 		return ret;
1133 
1134 	if (in->f_op->splice_read)
1135 		splice_read = in->f_op->splice_read;
1136 	else
1137 		splice_read = default_file_splice_read;
1138 
1139 	return splice_read(in, ppos, pipe, len, flags);
1140 }
1141 
1142 /**
1143  * splice_direct_to_actor - splices data directly between two non-pipes
1144  * @in:		file to splice from
1145  * @sd:		actor information on where to splice to
1146  * @actor:	handles the data splicing
1147  *
1148  * Description:
1149  *    This is a special case helper to splice directly between two
1150  *    points, without requiring an explicit pipe. Internally an allocated
1151  *    pipe is cached in the process, and reused during the lifetime of
1152  *    that process.
1153  *
1154  */
1155 ssize_t splice_direct_to_actor(struct file *in, struct splice_desc *sd,
1156 			       splice_direct_actor *actor)
1157 {
1158 	struct pipe_inode_info *pipe;
1159 	long ret, bytes;
1160 	umode_t i_mode;
1161 	size_t len;
1162 	int i, flags;
1163 
1164 	/*
1165 	 * We require the input being a regular file, as we don't want to
1166 	 * randomly drop data for eg socket -> socket splicing. Use the
1167 	 * piped splicing for that!
1168 	 */
1169 	i_mode = file_inode(in)->i_mode;
1170 	if (unlikely(!S_ISREG(i_mode) && !S_ISBLK(i_mode)))
1171 		return -EINVAL;
1172 
1173 	/*
1174 	 * neither in nor out is a pipe, setup an internal pipe attached to
1175 	 * 'out' and transfer the wanted data from 'in' to 'out' through that
1176 	 */
1177 	pipe = current->splice_pipe;
1178 	if (unlikely(!pipe)) {
1179 		pipe = alloc_pipe_info();
1180 		if (!pipe)
1181 			return -ENOMEM;
1182 
1183 		/*
1184 		 * We don't have an immediate reader, but we'll read the stuff
1185 		 * out of the pipe right after the splice_to_pipe(). So set
1186 		 * PIPE_READERS appropriately.
1187 		 */
1188 		pipe->readers = 1;
1189 
1190 		current->splice_pipe = pipe;
1191 	}
1192 
1193 	/*
1194 	 * Do the splice.
1195 	 */
1196 	ret = 0;
1197 	bytes = 0;
1198 	len = sd->total_len;
1199 	flags = sd->flags;
1200 
1201 	/*
1202 	 * Don't block on output, we have to drain the direct pipe.
1203 	 */
1204 	sd->flags &= ~SPLICE_F_NONBLOCK;
1205 
1206 	while (len) {
1207 		size_t read_len;
1208 		loff_t pos = sd->pos, prev_pos = pos;
1209 
1210 		ret = do_splice_to(in, &pos, pipe, len, flags);
1211 		if (unlikely(ret <= 0))
1212 			goto out_release;
1213 
1214 		read_len = ret;
1215 		sd->total_len = read_len;
1216 
1217 		/*
1218 		 * NOTE: nonblocking mode only applies to the input. We
1219 		 * must not do the output in nonblocking mode as then we
1220 		 * could get stuck data in the internal pipe:
1221 		 */
1222 		ret = actor(pipe, sd);
1223 		if (unlikely(ret <= 0)) {
1224 			sd->pos = prev_pos;
1225 			goto out_release;
1226 		}
1227 
1228 		bytes += ret;
1229 		len -= ret;
1230 		sd->pos = pos;
1231 
1232 		if (ret < read_len) {
1233 			sd->pos = prev_pos + ret;
1234 			goto out_release;
1235 		}
1236 	}
1237 
1238 done:
1239 	pipe->nrbufs = pipe->curbuf = 0;
1240 	file_accessed(in);
1241 	return bytes;
1242 
1243 out_release:
1244 	/*
1245 	 * If we did an incomplete transfer we must release
1246 	 * the pipe buffers in question:
1247 	 */
1248 	for (i = 0; i < pipe->buffers; i++) {
1249 		struct pipe_buffer *buf = pipe->bufs + i;
1250 
1251 		if (buf->ops) {
1252 			buf->ops->release(pipe, buf);
1253 			buf->ops = NULL;
1254 		}
1255 	}
1256 
1257 	if (!bytes)
1258 		bytes = ret;
1259 
1260 	goto done;
1261 }
1262 EXPORT_SYMBOL(splice_direct_to_actor);
1263 
1264 static int direct_splice_actor(struct pipe_inode_info *pipe,
1265 			       struct splice_desc *sd)
1266 {
1267 	struct file *file = sd->u.file;
1268 
1269 	return do_splice_from(pipe, file, sd->opos, sd->total_len,
1270 			      sd->flags);
1271 }
1272 
1273 /**
1274  * do_splice_direct - splices data directly between two files
1275  * @in:		file to splice from
1276  * @ppos:	input file offset
1277  * @out:	file to splice to
1278  * @opos:	output file offset
1279  * @len:	number of bytes to splice
1280  * @flags:	splice modifier flags
1281  *
1282  * Description:
1283  *    For use by do_sendfile(). splice can easily emulate sendfile, but
1284  *    doing it in the application would incur an extra system call
1285  *    (splice in + splice out, as compared to just sendfile()). So this helper
1286  *    can splice directly through a process-private pipe.
1287  *
1288  */
1289 long do_splice_direct(struct file *in, loff_t *ppos, struct file *out,
1290 		      loff_t *opos, size_t len, unsigned int flags)
1291 {
1292 	struct splice_desc sd = {
1293 		.len		= len,
1294 		.total_len	= len,
1295 		.flags		= flags,
1296 		.pos		= *ppos,
1297 		.u.file		= out,
1298 		.opos		= opos,
1299 	};
1300 	long ret;
1301 
1302 	if (unlikely(!(out->f_mode & FMODE_WRITE)))
1303 		return -EBADF;
1304 
1305 	if (unlikely(out->f_flags & O_APPEND))
1306 		return -EINVAL;
1307 
1308 	ret = rw_verify_area(WRITE, out, opos, len);
1309 	if (unlikely(ret < 0))
1310 		return ret;
1311 
1312 	ret = splice_direct_to_actor(in, &sd, direct_splice_actor);
1313 	if (ret > 0)
1314 		*ppos = sd.pos;
1315 
1316 	return ret;
1317 }
1318 EXPORT_SYMBOL(do_splice_direct);
1319 
1320 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1321 			       struct pipe_inode_info *opipe,
1322 			       size_t len, unsigned int flags);
1323 
1324 /*
1325  * Determine where to splice to/from.
1326  */
1327 static long do_splice(struct file *in, loff_t __user *off_in,
1328 		      struct file *out, loff_t __user *off_out,
1329 		      size_t len, unsigned int flags)
1330 {
1331 	struct pipe_inode_info *ipipe;
1332 	struct pipe_inode_info *opipe;
1333 	loff_t offset;
1334 	long ret;
1335 
1336 	ipipe = get_pipe_info(in);
1337 	opipe = get_pipe_info(out);
1338 
1339 	if (ipipe && opipe) {
1340 		if (off_in || off_out)
1341 			return -ESPIPE;
1342 
1343 		if (!(in->f_mode & FMODE_READ))
1344 			return -EBADF;
1345 
1346 		if (!(out->f_mode & FMODE_WRITE))
1347 			return -EBADF;
1348 
1349 		/* Splicing to self would be fun, but... */
1350 		if (ipipe == opipe)
1351 			return -EINVAL;
1352 
1353 		return splice_pipe_to_pipe(ipipe, opipe, len, flags);
1354 	}
1355 
1356 	if (ipipe) {
1357 		if (off_in)
1358 			return -ESPIPE;
1359 		if (off_out) {
1360 			if (!(out->f_mode & FMODE_PWRITE))
1361 				return -EINVAL;
1362 			if (copy_from_user(&offset, off_out, sizeof(loff_t)))
1363 				return -EFAULT;
1364 		} else {
1365 			offset = out->f_pos;
1366 		}
1367 
1368 		if (unlikely(!(out->f_mode & FMODE_WRITE)))
1369 			return -EBADF;
1370 
1371 		if (unlikely(out->f_flags & O_APPEND))
1372 			return -EINVAL;
1373 
1374 		ret = rw_verify_area(WRITE, out, &offset, len);
1375 		if (unlikely(ret < 0))
1376 			return ret;
1377 
1378 		file_start_write(out);
1379 		ret = do_splice_from(ipipe, out, &offset, len, flags);
1380 		file_end_write(out);
1381 
1382 		if (!off_out)
1383 			out->f_pos = offset;
1384 		else if (copy_to_user(off_out, &offset, sizeof(loff_t)))
1385 			ret = -EFAULT;
1386 
1387 		return ret;
1388 	}
1389 
1390 	if (opipe) {
1391 		if (off_out)
1392 			return -ESPIPE;
1393 		if (off_in) {
1394 			if (!(in->f_mode & FMODE_PREAD))
1395 				return -EINVAL;
1396 			if (copy_from_user(&offset, off_in, sizeof(loff_t)))
1397 				return -EFAULT;
1398 		} else {
1399 			offset = in->f_pos;
1400 		}
1401 
1402 		ret = do_splice_to(in, &offset, opipe, len, flags);
1403 
1404 		if (!off_in)
1405 			in->f_pos = offset;
1406 		else if (copy_to_user(off_in, &offset, sizeof(loff_t)))
1407 			ret = -EFAULT;
1408 
1409 		return ret;
1410 	}
1411 
1412 	return -EINVAL;
1413 }
1414 
1415 /*
1416  * Map an iov into an array of pages and offset/length tupples. With the
1417  * partial_page structure, we can map several non-contiguous ranges into
1418  * our ones pages[] map instead of splitting that operation into pieces.
1419  * Could easily be exported as a generic helper for other users, in which
1420  * case one would probably want to add a 'max_nr_pages' parameter as well.
1421  */
1422 static int get_iovec_page_array(const struct iovec __user *iov,
1423 				unsigned int nr_vecs, struct page **pages,
1424 				struct partial_page *partial, bool aligned,
1425 				unsigned int pipe_buffers)
1426 {
1427 	int buffers = 0, error = 0;
1428 
1429 	while (nr_vecs) {
1430 		unsigned long off, npages;
1431 		struct iovec entry;
1432 		void __user *base;
1433 		size_t len;
1434 		int i;
1435 
1436 		error = -EFAULT;
1437 		if (copy_from_user(&entry, iov, sizeof(entry)))
1438 			break;
1439 
1440 		base = entry.iov_base;
1441 		len = entry.iov_len;
1442 
1443 		/*
1444 		 * Sanity check this iovec. 0 read succeeds.
1445 		 */
1446 		error = 0;
1447 		if (unlikely(!len))
1448 			break;
1449 		error = -EFAULT;
1450 		if (!access_ok(VERIFY_READ, base, len))
1451 			break;
1452 
1453 		/*
1454 		 * Get this base offset and number of pages, then map
1455 		 * in the user pages.
1456 		 */
1457 		off = (unsigned long) base & ~PAGE_MASK;
1458 
1459 		/*
1460 		 * If asked for alignment, the offset must be zero and the
1461 		 * length a multiple of the PAGE_SIZE.
1462 		 */
1463 		error = -EINVAL;
1464 		if (aligned && (off || len & ~PAGE_MASK))
1465 			break;
1466 
1467 		npages = (off + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1468 		if (npages > pipe_buffers - buffers)
1469 			npages = pipe_buffers - buffers;
1470 
1471 		error = get_user_pages_fast((unsigned long)base, npages,
1472 					0, &pages[buffers]);
1473 
1474 		if (unlikely(error <= 0))
1475 			break;
1476 
1477 		/*
1478 		 * Fill this contiguous range into the partial page map.
1479 		 */
1480 		for (i = 0; i < error; i++) {
1481 			const int plen = min_t(size_t, len, PAGE_SIZE - off);
1482 
1483 			partial[buffers].offset = off;
1484 			partial[buffers].len = plen;
1485 
1486 			off = 0;
1487 			len -= plen;
1488 			buffers++;
1489 		}
1490 
1491 		/*
1492 		 * We didn't complete this iov, stop here since it probably
1493 		 * means we have to move some of this into a pipe to
1494 		 * be able to continue.
1495 		 */
1496 		if (len)
1497 			break;
1498 
1499 		/*
1500 		 * Don't continue if we mapped fewer pages than we asked for,
1501 		 * or if we mapped the max number of pages that we have
1502 		 * room for.
1503 		 */
1504 		if (error < npages || buffers == pipe_buffers)
1505 			break;
1506 
1507 		nr_vecs--;
1508 		iov++;
1509 	}
1510 
1511 	if (buffers)
1512 		return buffers;
1513 
1514 	return error;
1515 }
1516 
1517 static int pipe_to_user(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1518 			struct splice_desc *sd)
1519 {
1520 	int n = copy_page_to_iter(buf->page, buf->offset, sd->len, sd->u.data);
1521 	return n == sd->len ? n : -EFAULT;
1522 }
1523 
1524 /*
1525  * For lack of a better implementation, implement vmsplice() to userspace
1526  * as a simple copy of the pipes pages to the user iov.
1527  */
1528 static long vmsplice_to_user(struct file *file, const struct iovec __user *uiov,
1529 			     unsigned long nr_segs, unsigned int flags)
1530 {
1531 	struct pipe_inode_info *pipe;
1532 	struct splice_desc sd;
1533 	long ret;
1534 	struct iovec iovstack[UIO_FASTIOV];
1535 	struct iovec *iov = iovstack;
1536 	struct iov_iter iter;
1537 	ssize_t count;
1538 
1539 	pipe = get_pipe_info(file);
1540 	if (!pipe)
1541 		return -EBADF;
1542 
1543 	ret = rw_copy_check_uvector(READ, uiov, nr_segs,
1544 				    ARRAY_SIZE(iovstack), iovstack, &iov);
1545 	if (ret <= 0)
1546 		goto out;
1547 
1548 	count = ret;
1549 	iov_iter_init(&iter, READ, iov, nr_segs, count);
1550 
1551 	sd.len = 0;
1552 	sd.total_len = count;
1553 	sd.flags = flags;
1554 	sd.u.data = &iter;
1555 	sd.pos = 0;
1556 
1557 	pipe_lock(pipe);
1558 	ret = __splice_from_pipe(pipe, &sd, pipe_to_user);
1559 	pipe_unlock(pipe);
1560 
1561 out:
1562 	if (iov != iovstack)
1563 		kfree(iov);
1564 
1565 	return ret;
1566 }
1567 
1568 /*
1569  * vmsplice splices a user address range into a pipe. It can be thought of
1570  * as splice-from-memory, where the regular splice is splice-from-file (or
1571  * to file). In both cases the output is a pipe, naturally.
1572  */
1573 static long vmsplice_to_pipe(struct file *file, const struct iovec __user *iov,
1574 			     unsigned long nr_segs, unsigned int flags)
1575 {
1576 	struct pipe_inode_info *pipe;
1577 	struct page *pages[PIPE_DEF_BUFFERS];
1578 	struct partial_page partial[PIPE_DEF_BUFFERS];
1579 	struct splice_pipe_desc spd = {
1580 		.pages = pages,
1581 		.partial = partial,
1582 		.nr_pages_max = PIPE_DEF_BUFFERS,
1583 		.flags = flags,
1584 		.ops = &user_page_pipe_buf_ops,
1585 		.spd_release = spd_release_page,
1586 	};
1587 	long ret;
1588 
1589 	pipe = get_pipe_info(file);
1590 	if (!pipe)
1591 		return -EBADF;
1592 
1593 	if (splice_grow_spd(pipe, &spd))
1594 		return -ENOMEM;
1595 
1596 	spd.nr_pages = get_iovec_page_array(iov, nr_segs, spd.pages,
1597 					    spd.partial, false,
1598 					    spd.nr_pages_max);
1599 	if (spd.nr_pages <= 0)
1600 		ret = spd.nr_pages;
1601 	else
1602 		ret = splice_to_pipe(pipe, &spd);
1603 
1604 	splice_shrink_spd(&spd);
1605 	return ret;
1606 }
1607 
1608 /*
1609  * Note that vmsplice only really supports true splicing _from_ user memory
1610  * to a pipe, not the other way around. Splicing from user memory is a simple
1611  * operation that can be supported without any funky alignment restrictions
1612  * or nasty vm tricks. We simply map in the user memory and fill them into
1613  * a pipe. The reverse isn't quite as easy, though. There are two possible
1614  * solutions for that:
1615  *
1616  *	- memcpy() the data internally, at which point we might as well just
1617  *	  do a regular read() on the buffer anyway.
1618  *	- Lots of nasty vm tricks, that are neither fast nor flexible (it
1619  *	  has restriction limitations on both ends of the pipe).
1620  *
1621  * Currently we punt and implement it as a normal copy, see pipe_to_user().
1622  *
1623  */
1624 SYSCALL_DEFINE4(vmsplice, int, fd, const struct iovec __user *, iov,
1625 		unsigned long, nr_segs, unsigned int, flags)
1626 {
1627 	struct fd f;
1628 	long error;
1629 
1630 	if (unlikely(nr_segs > UIO_MAXIOV))
1631 		return -EINVAL;
1632 	else if (unlikely(!nr_segs))
1633 		return 0;
1634 
1635 	error = -EBADF;
1636 	f = fdget(fd);
1637 	if (f.file) {
1638 		if (f.file->f_mode & FMODE_WRITE)
1639 			error = vmsplice_to_pipe(f.file, iov, nr_segs, flags);
1640 		else if (f.file->f_mode & FMODE_READ)
1641 			error = vmsplice_to_user(f.file, iov, nr_segs, flags);
1642 
1643 		fdput(f);
1644 	}
1645 
1646 	return error;
1647 }
1648 
1649 #ifdef CONFIG_COMPAT
1650 COMPAT_SYSCALL_DEFINE4(vmsplice, int, fd, const struct compat_iovec __user *, iov32,
1651 		    unsigned int, nr_segs, unsigned int, flags)
1652 {
1653 	unsigned i;
1654 	struct iovec __user *iov;
1655 	if (nr_segs > UIO_MAXIOV)
1656 		return -EINVAL;
1657 	iov = compat_alloc_user_space(nr_segs * sizeof(struct iovec));
1658 	for (i = 0; i < nr_segs; i++) {
1659 		struct compat_iovec v;
1660 		if (get_user(v.iov_base, &iov32[i].iov_base) ||
1661 		    get_user(v.iov_len, &iov32[i].iov_len) ||
1662 		    put_user(compat_ptr(v.iov_base), &iov[i].iov_base) ||
1663 		    put_user(v.iov_len, &iov[i].iov_len))
1664 			return -EFAULT;
1665 	}
1666 	return sys_vmsplice(fd, iov, nr_segs, flags);
1667 }
1668 #endif
1669 
1670 SYSCALL_DEFINE6(splice, int, fd_in, loff_t __user *, off_in,
1671 		int, fd_out, loff_t __user *, off_out,
1672 		size_t, len, unsigned int, flags)
1673 {
1674 	struct fd in, out;
1675 	long error;
1676 
1677 	if (unlikely(!len))
1678 		return 0;
1679 
1680 	error = -EBADF;
1681 	in = fdget(fd_in);
1682 	if (in.file) {
1683 		if (in.file->f_mode & FMODE_READ) {
1684 			out = fdget(fd_out);
1685 			if (out.file) {
1686 				if (out.file->f_mode & FMODE_WRITE)
1687 					error = do_splice(in.file, off_in,
1688 							  out.file, off_out,
1689 							  len, flags);
1690 				fdput(out);
1691 			}
1692 		}
1693 		fdput(in);
1694 	}
1695 	return error;
1696 }
1697 
1698 /*
1699  * Make sure there's data to read. Wait for input if we can, otherwise
1700  * return an appropriate error.
1701  */
1702 static int ipipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1703 {
1704 	int ret;
1705 
1706 	/*
1707 	 * Check ->nrbufs without the inode lock first. This function
1708 	 * is speculative anyways, so missing one is ok.
1709 	 */
1710 	if (pipe->nrbufs)
1711 		return 0;
1712 
1713 	ret = 0;
1714 	pipe_lock(pipe);
1715 
1716 	while (!pipe->nrbufs) {
1717 		if (signal_pending(current)) {
1718 			ret = -ERESTARTSYS;
1719 			break;
1720 		}
1721 		if (!pipe->writers)
1722 			break;
1723 		if (!pipe->waiting_writers) {
1724 			if (flags & SPLICE_F_NONBLOCK) {
1725 				ret = -EAGAIN;
1726 				break;
1727 			}
1728 		}
1729 		pipe_wait(pipe);
1730 	}
1731 
1732 	pipe_unlock(pipe);
1733 	return ret;
1734 }
1735 
1736 /*
1737  * Make sure there's writeable room. Wait for room if we can, otherwise
1738  * return an appropriate error.
1739  */
1740 static int opipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1741 {
1742 	int ret;
1743 
1744 	/*
1745 	 * Check ->nrbufs without the inode lock first. This function
1746 	 * is speculative anyways, so missing one is ok.
1747 	 */
1748 	if (pipe->nrbufs < pipe->buffers)
1749 		return 0;
1750 
1751 	ret = 0;
1752 	pipe_lock(pipe);
1753 
1754 	while (pipe->nrbufs >= pipe->buffers) {
1755 		if (!pipe->readers) {
1756 			send_sig(SIGPIPE, current, 0);
1757 			ret = -EPIPE;
1758 			break;
1759 		}
1760 		if (flags & SPLICE_F_NONBLOCK) {
1761 			ret = -EAGAIN;
1762 			break;
1763 		}
1764 		if (signal_pending(current)) {
1765 			ret = -ERESTARTSYS;
1766 			break;
1767 		}
1768 		pipe->waiting_writers++;
1769 		pipe_wait(pipe);
1770 		pipe->waiting_writers--;
1771 	}
1772 
1773 	pipe_unlock(pipe);
1774 	return ret;
1775 }
1776 
1777 /*
1778  * Splice contents of ipipe to opipe.
1779  */
1780 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1781 			       struct pipe_inode_info *opipe,
1782 			       size_t len, unsigned int flags)
1783 {
1784 	struct pipe_buffer *ibuf, *obuf;
1785 	int ret = 0, nbuf;
1786 	bool input_wakeup = false;
1787 
1788 
1789 retry:
1790 	ret = ipipe_prep(ipipe, flags);
1791 	if (ret)
1792 		return ret;
1793 
1794 	ret = opipe_prep(opipe, flags);
1795 	if (ret)
1796 		return ret;
1797 
1798 	/*
1799 	 * Potential ABBA deadlock, work around it by ordering lock
1800 	 * grabbing by pipe info address. Otherwise two different processes
1801 	 * could deadlock (one doing tee from A -> B, the other from B -> A).
1802 	 */
1803 	pipe_double_lock(ipipe, opipe);
1804 
1805 	do {
1806 		if (!opipe->readers) {
1807 			send_sig(SIGPIPE, current, 0);
1808 			if (!ret)
1809 				ret = -EPIPE;
1810 			break;
1811 		}
1812 
1813 		if (!ipipe->nrbufs && !ipipe->writers)
1814 			break;
1815 
1816 		/*
1817 		 * Cannot make any progress, because either the input
1818 		 * pipe is empty or the output pipe is full.
1819 		 */
1820 		if (!ipipe->nrbufs || opipe->nrbufs >= opipe->buffers) {
1821 			/* Already processed some buffers, break */
1822 			if (ret)
1823 				break;
1824 
1825 			if (flags & SPLICE_F_NONBLOCK) {
1826 				ret = -EAGAIN;
1827 				break;
1828 			}
1829 
1830 			/*
1831 			 * We raced with another reader/writer and haven't
1832 			 * managed to process any buffers.  A zero return
1833 			 * value means EOF, so retry instead.
1834 			 */
1835 			pipe_unlock(ipipe);
1836 			pipe_unlock(opipe);
1837 			goto retry;
1838 		}
1839 
1840 		ibuf = ipipe->bufs + ipipe->curbuf;
1841 		nbuf = (opipe->curbuf + opipe->nrbufs) & (opipe->buffers - 1);
1842 		obuf = opipe->bufs + nbuf;
1843 
1844 		if (len >= ibuf->len) {
1845 			/*
1846 			 * Simply move the whole buffer from ipipe to opipe
1847 			 */
1848 			*obuf = *ibuf;
1849 			ibuf->ops = NULL;
1850 			opipe->nrbufs++;
1851 			ipipe->curbuf = (ipipe->curbuf + 1) & (ipipe->buffers - 1);
1852 			ipipe->nrbufs--;
1853 			input_wakeup = true;
1854 		} else {
1855 			/*
1856 			 * Get a reference to this pipe buffer,
1857 			 * so we can copy the contents over.
1858 			 */
1859 			ibuf->ops->get(ipipe, ibuf);
1860 			*obuf = *ibuf;
1861 
1862 			/*
1863 			 * Don't inherit the gift flag, we need to
1864 			 * prevent multiple steals of this page.
1865 			 */
1866 			obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1867 
1868 			obuf->len = len;
1869 			opipe->nrbufs++;
1870 			ibuf->offset += obuf->len;
1871 			ibuf->len -= obuf->len;
1872 		}
1873 		ret += obuf->len;
1874 		len -= obuf->len;
1875 	} while (len);
1876 
1877 	pipe_unlock(ipipe);
1878 	pipe_unlock(opipe);
1879 
1880 	/*
1881 	 * If we put data in the output pipe, wakeup any potential readers.
1882 	 */
1883 	if (ret > 0)
1884 		wakeup_pipe_readers(opipe);
1885 
1886 	if (input_wakeup)
1887 		wakeup_pipe_writers(ipipe);
1888 
1889 	return ret;
1890 }
1891 
1892 /*
1893  * Link contents of ipipe to opipe.
1894  */
1895 static int link_pipe(struct pipe_inode_info *ipipe,
1896 		     struct pipe_inode_info *opipe,
1897 		     size_t len, unsigned int flags)
1898 {
1899 	struct pipe_buffer *ibuf, *obuf;
1900 	int ret = 0, i = 0, nbuf;
1901 
1902 	/*
1903 	 * Potential ABBA deadlock, work around it by ordering lock
1904 	 * grabbing by pipe info address. Otherwise two different processes
1905 	 * could deadlock (one doing tee from A -> B, the other from B -> A).
1906 	 */
1907 	pipe_double_lock(ipipe, opipe);
1908 
1909 	do {
1910 		if (!opipe->readers) {
1911 			send_sig(SIGPIPE, current, 0);
1912 			if (!ret)
1913 				ret = -EPIPE;
1914 			break;
1915 		}
1916 
1917 		/*
1918 		 * If we have iterated all input buffers or ran out of
1919 		 * output room, break.
1920 		 */
1921 		if (i >= ipipe->nrbufs || opipe->nrbufs >= opipe->buffers)
1922 			break;
1923 
1924 		ibuf = ipipe->bufs + ((ipipe->curbuf + i) & (ipipe->buffers-1));
1925 		nbuf = (opipe->curbuf + opipe->nrbufs) & (opipe->buffers - 1);
1926 
1927 		/*
1928 		 * Get a reference to this pipe buffer,
1929 		 * so we can copy the contents over.
1930 		 */
1931 		ibuf->ops->get(ipipe, ibuf);
1932 
1933 		obuf = opipe->bufs + nbuf;
1934 		*obuf = *ibuf;
1935 
1936 		/*
1937 		 * Don't inherit the gift flag, we need to
1938 		 * prevent multiple steals of this page.
1939 		 */
1940 		obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1941 
1942 		if (obuf->len > len)
1943 			obuf->len = len;
1944 
1945 		opipe->nrbufs++;
1946 		ret += obuf->len;
1947 		len -= obuf->len;
1948 		i++;
1949 	} while (len);
1950 
1951 	/*
1952 	 * return EAGAIN if we have the potential of some data in the
1953 	 * future, otherwise just return 0
1954 	 */
1955 	if (!ret && ipipe->waiting_writers && (flags & SPLICE_F_NONBLOCK))
1956 		ret = -EAGAIN;
1957 
1958 	pipe_unlock(ipipe);
1959 	pipe_unlock(opipe);
1960 
1961 	/*
1962 	 * If we put data in the output pipe, wakeup any potential readers.
1963 	 */
1964 	if (ret > 0)
1965 		wakeup_pipe_readers(opipe);
1966 
1967 	return ret;
1968 }
1969 
1970 /*
1971  * This is a tee(1) implementation that works on pipes. It doesn't copy
1972  * any data, it simply references the 'in' pages on the 'out' pipe.
1973  * The 'flags' used are the SPLICE_F_* variants, currently the only
1974  * applicable one is SPLICE_F_NONBLOCK.
1975  */
1976 static long do_tee(struct file *in, struct file *out, size_t len,
1977 		   unsigned int flags)
1978 {
1979 	struct pipe_inode_info *ipipe = get_pipe_info(in);
1980 	struct pipe_inode_info *opipe = get_pipe_info(out);
1981 	int ret = -EINVAL;
1982 
1983 	/*
1984 	 * Duplicate the contents of ipipe to opipe without actually
1985 	 * copying the data.
1986 	 */
1987 	if (ipipe && opipe && ipipe != opipe) {
1988 		/*
1989 		 * Keep going, unless we encounter an error. The ipipe/opipe
1990 		 * ordering doesn't really matter.
1991 		 */
1992 		ret = ipipe_prep(ipipe, flags);
1993 		if (!ret) {
1994 			ret = opipe_prep(opipe, flags);
1995 			if (!ret)
1996 				ret = link_pipe(ipipe, opipe, len, flags);
1997 		}
1998 	}
1999 
2000 	return ret;
2001 }
2002 
2003 SYSCALL_DEFINE4(tee, int, fdin, int, fdout, size_t, len, unsigned int, flags)
2004 {
2005 	struct fd in;
2006 	int error;
2007 
2008 	if (unlikely(!len))
2009 		return 0;
2010 
2011 	error = -EBADF;
2012 	in = fdget(fdin);
2013 	if (in.file) {
2014 		if (in.file->f_mode & FMODE_READ) {
2015 			struct fd out = fdget(fdout);
2016 			if (out.file) {
2017 				if (out.file->f_mode & FMODE_WRITE)
2018 					error = do_tee(in.file, out.file,
2019 							len, flags);
2020 				fdput(out);
2021 			}
2022 		}
2023  		fdput(in);
2024  	}
2025 
2026 	return error;
2027 }
2028