1 /* 2 * "splice": joining two ropes together by interweaving their strands. 3 * 4 * This is the "extended pipe" functionality, where a pipe is used as 5 * an arbitrary in-memory buffer. Think of a pipe as a small kernel 6 * buffer that you can use to transfer data from one end to the other. 7 * 8 * The traditional unix read/write is extended with a "splice()" operation 9 * that transfers data buffers to or from a pipe buffer. 10 * 11 * Named by Larry McVoy, original implementation from Linus, extended by 12 * Jens to support splicing to files, network, direct splicing, etc and 13 * fixing lots of bugs. 14 * 15 * Copyright (C) 2005-2006 Jens Axboe <axboe@kernel.dk> 16 * Copyright (C) 2005-2006 Linus Torvalds <torvalds@osdl.org> 17 * Copyright (C) 2006 Ingo Molnar <mingo@elte.hu> 18 * 19 */ 20 #include <linux/fs.h> 21 #include <linux/file.h> 22 #include <linux/pagemap.h> 23 #include <linux/splice.h> 24 #include <linux/memcontrol.h> 25 #include <linux/mm_inline.h> 26 #include <linux/swap.h> 27 #include <linux/writeback.h> 28 #include <linux/export.h> 29 #include <linux/syscalls.h> 30 #include <linux/uio.h> 31 #include <linux/security.h> 32 #include <linux/gfp.h> 33 #include <linux/socket.h> 34 #include <linux/compat.h> 35 #include <linux/aio.h> 36 #include "internal.h" 37 38 /* 39 * Attempt to steal a page from a pipe buffer. This should perhaps go into 40 * a vm helper function, it's already simplified quite a bit by the 41 * addition of remove_mapping(). If success is returned, the caller may 42 * attempt to reuse this page for another destination. 43 */ 44 static int page_cache_pipe_buf_steal(struct pipe_inode_info *pipe, 45 struct pipe_buffer *buf) 46 { 47 struct page *page = buf->page; 48 struct address_space *mapping; 49 50 lock_page(page); 51 52 mapping = page_mapping(page); 53 if (mapping) { 54 WARN_ON(!PageUptodate(page)); 55 56 /* 57 * At least for ext2 with nobh option, we need to wait on 58 * writeback completing on this page, since we'll remove it 59 * from the pagecache. Otherwise truncate wont wait on the 60 * page, allowing the disk blocks to be reused by someone else 61 * before we actually wrote our data to them. fs corruption 62 * ensues. 63 */ 64 wait_on_page_writeback(page); 65 66 if (page_has_private(page) && 67 !try_to_release_page(page, GFP_KERNEL)) 68 goto out_unlock; 69 70 /* 71 * If we succeeded in removing the mapping, set LRU flag 72 * and return good. 73 */ 74 if (remove_mapping(mapping, page)) { 75 buf->flags |= PIPE_BUF_FLAG_LRU; 76 return 0; 77 } 78 } 79 80 /* 81 * Raced with truncate or failed to remove page from current 82 * address space, unlock and return failure. 83 */ 84 out_unlock: 85 unlock_page(page); 86 return 1; 87 } 88 89 static void page_cache_pipe_buf_release(struct pipe_inode_info *pipe, 90 struct pipe_buffer *buf) 91 { 92 page_cache_release(buf->page); 93 buf->flags &= ~PIPE_BUF_FLAG_LRU; 94 } 95 96 /* 97 * Check whether the contents of buf is OK to access. Since the content 98 * is a page cache page, IO may be in flight. 99 */ 100 static int page_cache_pipe_buf_confirm(struct pipe_inode_info *pipe, 101 struct pipe_buffer *buf) 102 { 103 struct page *page = buf->page; 104 int err; 105 106 if (!PageUptodate(page)) { 107 lock_page(page); 108 109 /* 110 * Page got truncated/unhashed. This will cause a 0-byte 111 * splice, if this is the first page. 112 */ 113 if (!page->mapping) { 114 err = -ENODATA; 115 goto error; 116 } 117 118 /* 119 * Uh oh, read-error from disk. 120 */ 121 if (!PageUptodate(page)) { 122 err = -EIO; 123 goto error; 124 } 125 126 /* 127 * Page is ok afterall, we are done. 128 */ 129 unlock_page(page); 130 } 131 132 return 0; 133 error: 134 unlock_page(page); 135 return err; 136 } 137 138 const struct pipe_buf_operations page_cache_pipe_buf_ops = { 139 .can_merge = 0, 140 .confirm = page_cache_pipe_buf_confirm, 141 .release = page_cache_pipe_buf_release, 142 .steal = page_cache_pipe_buf_steal, 143 .get = generic_pipe_buf_get, 144 }; 145 146 static int user_page_pipe_buf_steal(struct pipe_inode_info *pipe, 147 struct pipe_buffer *buf) 148 { 149 if (!(buf->flags & PIPE_BUF_FLAG_GIFT)) 150 return 1; 151 152 buf->flags |= PIPE_BUF_FLAG_LRU; 153 return generic_pipe_buf_steal(pipe, buf); 154 } 155 156 static const struct pipe_buf_operations user_page_pipe_buf_ops = { 157 .can_merge = 0, 158 .confirm = generic_pipe_buf_confirm, 159 .release = page_cache_pipe_buf_release, 160 .steal = user_page_pipe_buf_steal, 161 .get = generic_pipe_buf_get, 162 }; 163 164 static void wakeup_pipe_readers(struct pipe_inode_info *pipe) 165 { 166 smp_mb(); 167 if (waitqueue_active(&pipe->wait)) 168 wake_up_interruptible(&pipe->wait); 169 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN); 170 } 171 172 /** 173 * splice_to_pipe - fill passed data into a pipe 174 * @pipe: pipe to fill 175 * @spd: data to fill 176 * 177 * Description: 178 * @spd contains a map of pages and len/offset tuples, along with 179 * the struct pipe_buf_operations associated with these pages. This 180 * function will link that data to the pipe. 181 * 182 */ 183 ssize_t splice_to_pipe(struct pipe_inode_info *pipe, 184 struct splice_pipe_desc *spd) 185 { 186 unsigned int spd_pages = spd->nr_pages; 187 int ret, do_wakeup, page_nr; 188 189 ret = 0; 190 do_wakeup = 0; 191 page_nr = 0; 192 193 pipe_lock(pipe); 194 195 for (;;) { 196 if (!pipe->readers) { 197 send_sig(SIGPIPE, current, 0); 198 if (!ret) 199 ret = -EPIPE; 200 break; 201 } 202 203 if (pipe->nrbufs < pipe->buffers) { 204 int newbuf = (pipe->curbuf + pipe->nrbufs) & (pipe->buffers - 1); 205 struct pipe_buffer *buf = pipe->bufs + newbuf; 206 207 buf->page = spd->pages[page_nr]; 208 buf->offset = spd->partial[page_nr].offset; 209 buf->len = spd->partial[page_nr].len; 210 buf->private = spd->partial[page_nr].private; 211 buf->ops = spd->ops; 212 if (spd->flags & SPLICE_F_GIFT) 213 buf->flags |= PIPE_BUF_FLAG_GIFT; 214 215 pipe->nrbufs++; 216 page_nr++; 217 ret += buf->len; 218 219 if (pipe->files) 220 do_wakeup = 1; 221 222 if (!--spd->nr_pages) 223 break; 224 if (pipe->nrbufs < pipe->buffers) 225 continue; 226 227 break; 228 } 229 230 if (spd->flags & SPLICE_F_NONBLOCK) { 231 if (!ret) 232 ret = -EAGAIN; 233 break; 234 } 235 236 if (signal_pending(current)) { 237 if (!ret) 238 ret = -ERESTARTSYS; 239 break; 240 } 241 242 if (do_wakeup) { 243 smp_mb(); 244 if (waitqueue_active(&pipe->wait)) 245 wake_up_interruptible_sync(&pipe->wait); 246 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN); 247 do_wakeup = 0; 248 } 249 250 pipe->waiting_writers++; 251 pipe_wait(pipe); 252 pipe->waiting_writers--; 253 } 254 255 pipe_unlock(pipe); 256 257 if (do_wakeup) 258 wakeup_pipe_readers(pipe); 259 260 while (page_nr < spd_pages) 261 spd->spd_release(spd, page_nr++); 262 263 return ret; 264 } 265 266 void spd_release_page(struct splice_pipe_desc *spd, unsigned int i) 267 { 268 page_cache_release(spd->pages[i]); 269 } 270 271 /* 272 * Check if we need to grow the arrays holding pages and partial page 273 * descriptions. 274 */ 275 int splice_grow_spd(const struct pipe_inode_info *pipe, struct splice_pipe_desc *spd) 276 { 277 unsigned int buffers = ACCESS_ONCE(pipe->buffers); 278 279 spd->nr_pages_max = buffers; 280 if (buffers <= PIPE_DEF_BUFFERS) 281 return 0; 282 283 spd->pages = kmalloc(buffers * sizeof(struct page *), GFP_KERNEL); 284 spd->partial = kmalloc(buffers * sizeof(struct partial_page), GFP_KERNEL); 285 286 if (spd->pages && spd->partial) 287 return 0; 288 289 kfree(spd->pages); 290 kfree(spd->partial); 291 return -ENOMEM; 292 } 293 294 void splice_shrink_spd(struct splice_pipe_desc *spd) 295 { 296 if (spd->nr_pages_max <= PIPE_DEF_BUFFERS) 297 return; 298 299 kfree(spd->pages); 300 kfree(spd->partial); 301 } 302 303 static int 304 __generic_file_splice_read(struct file *in, loff_t *ppos, 305 struct pipe_inode_info *pipe, size_t len, 306 unsigned int flags) 307 { 308 struct address_space *mapping = in->f_mapping; 309 unsigned int loff, nr_pages, req_pages; 310 struct page *pages[PIPE_DEF_BUFFERS]; 311 struct partial_page partial[PIPE_DEF_BUFFERS]; 312 struct page *page; 313 pgoff_t index, end_index; 314 loff_t isize; 315 int error, page_nr; 316 struct splice_pipe_desc spd = { 317 .pages = pages, 318 .partial = partial, 319 .nr_pages_max = PIPE_DEF_BUFFERS, 320 .flags = flags, 321 .ops = &page_cache_pipe_buf_ops, 322 .spd_release = spd_release_page, 323 }; 324 325 if (splice_grow_spd(pipe, &spd)) 326 return -ENOMEM; 327 328 index = *ppos >> PAGE_CACHE_SHIFT; 329 loff = *ppos & ~PAGE_CACHE_MASK; 330 req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; 331 nr_pages = min(req_pages, spd.nr_pages_max); 332 333 /* 334 * Lookup the (hopefully) full range of pages we need. 335 */ 336 spd.nr_pages = find_get_pages_contig(mapping, index, nr_pages, spd.pages); 337 index += spd.nr_pages; 338 339 /* 340 * If find_get_pages_contig() returned fewer pages than we needed, 341 * readahead/allocate the rest and fill in the holes. 342 */ 343 if (spd.nr_pages < nr_pages) 344 page_cache_sync_readahead(mapping, &in->f_ra, in, 345 index, req_pages - spd.nr_pages); 346 347 error = 0; 348 while (spd.nr_pages < nr_pages) { 349 /* 350 * Page could be there, find_get_pages_contig() breaks on 351 * the first hole. 352 */ 353 page = find_get_page(mapping, index); 354 if (!page) { 355 /* 356 * page didn't exist, allocate one. 357 */ 358 page = page_cache_alloc_cold(mapping); 359 if (!page) 360 break; 361 362 error = add_to_page_cache_lru(page, mapping, index, 363 GFP_KERNEL); 364 if (unlikely(error)) { 365 page_cache_release(page); 366 if (error == -EEXIST) 367 continue; 368 break; 369 } 370 /* 371 * add_to_page_cache() locks the page, unlock it 372 * to avoid convoluting the logic below even more. 373 */ 374 unlock_page(page); 375 } 376 377 spd.pages[spd.nr_pages++] = page; 378 index++; 379 } 380 381 /* 382 * Now loop over the map and see if we need to start IO on any 383 * pages, fill in the partial map, etc. 384 */ 385 index = *ppos >> PAGE_CACHE_SHIFT; 386 nr_pages = spd.nr_pages; 387 spd.nr_pages = 0; 388 for (page_nr = 0; page_nr < nr_pages; page_nr++) { 389 unsigned int this_len; 390 391 if (!len) 392 break; 393 394 /* 395 * this_len is the max we'll use from this page 396 */ 397 this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff); 398 page = spd.pages[page_nr]; 399 400 if (PageReadahead(page)) 401 page_cache_async_readahead(mapping, &in->f_ra, in, 402 page, index, req_pages - page_nr); 403 404 /* 405 * If the page isn't uptodate, we may need to start io on it 406 */ 407 if (!PageUptodate(page)) { 408 lock_page(page); 409 410 /* 411 * Page was truncated, or invalidated by the 412 * filesystem. Redo the find/create, but this time the 413 * page is kept locked, so there's no chance of another 414 * race with truncate/invalidate. 415 */ 416 if (!page->mapping) { 417 unlock_page(page); 418 page = find_or_create_page(mapping, index, 419 mapping_gfp_mask(mapping)); 420 421 if (!page) { 422 error = -ENOMEM; 423 break; 424 } 425 page_cache_release(spd.pages[page_nr]); 426 spd.pages[page_nr] = page; 427 } 428 /* 429 * page was already under io and is now done, great 430 */ 431 if (PageUptodate(page)) { 432 unlock_page(page); 433 goto fill_it; 434 } 435 436 /* 437 * need to read in the page 438 */ 439 error = mapping->a_ops->readpage(in, page); 440 if (unlikely(error)) { 441 /* 442 * We really should re-lookup the page here, 443 * but it complicates things a lot. Instead 444 * lets just do what we already stored, and 445 * we'll get it the next time we are called. 446 */ 447 if (error == AOP_TRUNCATED_PAGE) 448 error = 0; 449 450 break; 451 } 452 } 453 fill_it: 454 /* 455 * i_size must be checked after PageUptodate. 456 */ 457 isize = i_size_read(mapping->host); 458 end_index = (isize - 1) >> PAGE_CACHE_SHIFT; 459 if (unlikely(!isize || index > end_index)) 460 break; 461 462 /* 463 * if this is the last page, see if we need to shrink 464 * the length and stop 465 */ 466 if (end_index == index) { 467 unsigned int plen; 468 469 /* 470 * max good bytes in this page 471 */ 472 plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1; 473 if (plen <= loff) 474 break; 475 476 /* 477 * force quit after adding this page 478 */ 479 this_len = min(this_len, plen - loff); 480 len = this_len; 481 } 482 483 spd.partial[page_nr].offset = loff; 484 spd.partial[page_nr].len = this_len; 485 len -= this_len; 486 loff = 0; 487 spd.nr_pages++; 488 index++; 489 } 490 491 /* 492 * Release any pages at the end, if we quit early. 'page_nr' is how far 493 * we got, 'nr_pages' is how many pages are in the map. 494 */ 495 while (page_nr < nr_pages) 496 page_cache_release(spd.pages[page_nr++]); 497 in->f_ra.prev_pos = (loff_t)index << PAGE_CACHE_SHIFT; 498 499 if (spd.nr_pages) 500 error = splice_to_pipe(pipe, &spd); 501 502 splice_shrink_spd(&spd); 503 return error; 504 } 505 506 /** 507 * generic_file_splice_read - splice data from file to a pipe 508 * @in: file to splice from 509 * @ppos: position in @in 510 * @pipe: pipe to splice to 511 * @len: number of bytes to splice 512 * @flags: splice modifier flags 513 * 514 * Description: 515 * Will read pages from given file and fill them into a pipe. Can be 516 * used as long as the address_space operations for the source implements 517 * a readpage() hook. 518 * 519 */ 520 ssize_t generic_file_splice_read(struct file *in, loff_t *ppos, 521 struct pipe_inode_info *pipe, size_t len, 522 unsigned int flags) 523 { 524 loff_t isize, left; 525 int ret; 526 527 isize = i_size_read(in->f_mapping->host); 528 if (unlikely(*ppos >= isize)) 529 return 0; 530 531 left = isize - *ppos; 532 if (unlikely(left < len)) 533 len = left; 534 535 ret = __generic_file_splice_read(in, ppos, pipe, len, flags); 536 if (ret > 0) { 537 *ppos += ret; 538 file_accessed(in); 539 } 540 541 return ret; 542 } 543 EXPORT_SYMBOL(generic_file_splice_read); 544 545 static const struct pipe_buf_operations default_pipe_buf_ops = { 546 .can_merge = 0, 547 .confirm = generic_pipe_buf_confirm, 548 .release = generic_pipe_buf_release, 549 .steal = generic_pipe_buf_steal, 550 .get = generic_pipe_buf_get, 551 }; 552 553 static int generic_pipe_buf_nosteal(struct pipe_inode_info *pipe, 554 struct pipe_buffer *buf) 555 { 556 return 1; 557 } 558 559 /* Pipe buffer operations for a socket and similar. */ 560 const struct pipe_buf_operations nosteal_pipe_buf_ops = { 561 .can_merge = 0, 562 .confirm = generic_pipe_buf_confirm, 563 .release = generic_pipe_buf_release, 564 .steal = generic_pipe_buf_nosteal, 565 .get = generic_pipe_buf_get, 566 }; 567 EXPORT_SYMBOL(nosteal_pipe_buf_ops); 568 569 static ssize_t kernel_readv(struct file *file, const struct iovec *vec, 570 unsigned long vlen, loff_t offset) 571 { 572 mm_segment_t old_fs; 573 loff_t pos = offset; 574 ssize_t res; 575 576 old_fs = get_fs(); 577 set_fs(get_ds()); 578 /* The cast to a user pointer is valid due to the set_fs() */ 579 res = vfs_readv(file, (const struct iovec __user *)vec, vlen, &pos); 580 set_fs(old_fs); 581 582 return res; 583 } 584 585 ssize_t kernel_write(struct file *file, const char *buf, size_t count, 586 loff_t pos) 587 { 588 mm_segment_t old_fs; 589 ssize_t res; 590 591 old_fs = get_fs(); 592 set_fs(get_ds()); 593 /* The cast to a user pointer is valid due to the set_fs() */ 594 res = vfs_write(file, (__force const char __user *)buf, count, &pos); 595 set_fs(old_fs); 596 597 return res; 598 } 599 EXPORT_SYMBOL(kernel_write); 600 601 ssize_t default_file_splice_read(struct file *in, loff_t *ppos, 602 struct pipe_inode_info *pipe, size_t len, 603 unsigned int flags) 604 { 605 unsigned int nr_pages; 606 unsigned int nr_freed; 607 size_t offset; 608 struct page *pages[PIPE_DEF_BUFFERS]; 609 struct partial_page partial[PIPE_DEF_BUFFERS]; 610 struct iovec *vec, __vec[PIPE_DEF_BUFFERS]; 611 ssize_t res; 612 size_t this_len; 613 int error; 614 int i; 615 struct splice_pipe_desc spd = { 616 .pages = pages, 617 .partial = partial, 618 .nr_pages_max = PIPE_DEF_BUFFERS, 619 .flags = flags, 620 .ops = &default_pipe_buf_ops, 621 .spd_release = spd_release_page, 622 }; 623 624 if (splice_grow_spd(pipe, &spd)) 625 return -ENOMEM; 626 627 res = -ENOMEM; 628 vec = __vec; 629 if (spd.nr_pages_max > PIPE_DEF_BUFFERS) { 630 vec = kmalloc(spd.nr_pages_max * sizeof(struct iovec), GFP_KERNEL); 631 if (!vec) 632 goto shrink_ret; 633 } 634 635 offset = *ppos & ~PAGE_CACHE_MASK; 636 nr_pages = (len + offset + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; 637 638 for (i = 0; i < nr_pages && i < spd.nr_pages_max && len; i++) { 639 struct page *page; 640 641 page = alloc_page(GFP_USER); 642 error = -ENOMEM; 643 if (!page) 644 goto err; 645 646 this_len = min_t(size_t, len, PAGE_CACHE_SIZE - offset); 647 vec[i].iov_base = (void __user *) page_address(page); 648 vec[i].iov_len = this_len; 649 spd.pages[i] = page; 650 spd.nr_pages++; 651 len -= this_len; 652 offset = 0; 653 } 654 655 res = kernel_readv(in, vec, spd.nr_pages, *ppos); 656 if (res < 0) { 657 error = res; 658 goto err; 659 } 660 661 error = 0; 662 if (!res) 663 goto err; 664 665 nr_freed = 0; 666 for (i = 0; i < spd.nr_pages; i++) { 667 this_len = min_t(size_t, vec[i].iov_len, res); 668 spd.partial[i].offset = 0; 669 spd.partial[i].len = this_len; 670 if (!this_len) { 671 __free_page(spd.pages[i]); 672 spd.pages[i] = NULL; 673 nr_freed++; 674 } 675 res -= this_len; 676 } 677 spd.nr_pages -= nr_freed; 678 679 res = splice_to_pipe(pipe, &spd); 680 if (res > 0) 681 *ppos += res; 682 683 shrink_ret: 684 if (vec != __vec) 685 kfree(vec); 686 splice_shrink_spd(&spd); 687 return res; 688 689 err: 690 for (i = 0; i < spd.nr_pages; i++) 691 __free_page(spd.pages[i]); 692 693 res = error; 694 goto shrink_ret; 695 } 696 EXPORT_SYMBOL(default_file_splice_read); 697 698 /* 699 * Send 'sd->len' bytes to socket from 'sd->file' at position 'sd->pos' 700 * using sendpage(). Return the number of bytes sent. 701 */ 702 static int pipe_to_sendpage(struct pipe_inode_info *pipe, 703 struct pipe_buffer *buf, struct splice_desc *sd) 704 { 705 struct file *file = sd->u.file; 706 loff_t pos = sd->pos; 707 int more; 708 709 if (!likely(file->f_op->sendpage)) 710 return -EINVAL; 711 712 more = (sd->flags & SPLICE_F_MORE) ? MSG_MORE : 0; 713 714 if (sd->len < sd->total_len && pipe->nrbufs > 1) 715 more |= MSG_SENDPAGE_NOTLAST; 716 717 return file->f_op->sendpage(file, buf->page, buf->offset, 718 sd->len, &pos, more); 719 } 720 721 static void wakeup_pipe_writers(struct pipe_inode_info *pipe) 722 { 723 smp_mb(); 724 if (waitqueue_active(&pipe->wait)) 725 wake_up_interruptible(&pipe->wait); 726 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT); 727 } 728 729 /** 730 * splice_from_pipe_feed - feed available data from a pipe to a file 731 * @pipe: pipe to splice from 732 * @sd: information to @actor 733 * @actor: handler that splices the data 734 * 735 * Description: 736 * This function loops over the pipe and calls @actor to do the 737 * actual moving of a single struct pipe_buffer to the desired 738 * destination. It returns when there's no more buffers left in 739 * the pipe or if the requested number of bytes (@sd->total_len) 740 * have been copied. It returns a positive number (one) if the 741 * pipe needs to be filled with more data, zero if the required 742 * number of bytes have been copied and -errno on error. 743 * 744 * This, together with splice_from_pipe_{begin,end,next}, may be 745 * used to implement the functionality of __splice_from_pipe() when 746 * locking is required around copying the pipe buffers to the 747 * destination. 748 */ 749 static int splice_from_pipe_feed(struct pipe_inode_info *pipe, struct splice_desc *sd, 750 splice_actor *actor) 751 { 752 int ret; 753 754 while (pipe->nrbufs) { 755 struct pipe_buffer *buf = pipe->bufs + pipe->curbuf; 756 const struct pipe_buf_operations *ops = buf->ops; 757 758 sd->len = buf->len; 759 if (sd->len > sd->total_len) 760 sd->len = sd->total_len; 761 762 ret = buf->ops->confirm(pipe, buf); 763 if (unlikely(ret)) { 764 if (ret == -ENODATA) 765 ret = 0; 766 return ret; 767 } 768 769 ret = actor(pipe, buf, sd); 770 if (ret <= 0) 771 return ret; 772 773 buf->offset += ret; 774 buf->len -= ret; 775 776 sd->num_spliced += ret; 777 sd->len -= ret; 778 sd->pos += ret; 779 sd->total_len -= ret; 780 781 if (!buf->len) { 782 buf->ops = NULL; 783 ops->release(pipe, buf); 784 pipe->curbuf = (pipe->curbuf + 1) & (pipe->buffers - 1); 785 pipe->nrbufs--; 786 if (pipe->files) 787 sd->need_wakeup = true; 788 } 789 790 if (!sd->total_len) 791 return 0; 792 } 793 794 return 1; 795 } 796 797 /** 798 * splice_from_pipe_next - wait for some data to splice from 799 * @pipe: pipe to splice from 800 * @sd: information about the splice operation 801 * 802 * Description: 803 * This function will wait for some data and return a positive 804 * value (one) if pipe buffers are available. It will return zero 805 * or -errno if no more data needs to be spliced. 806 */ 807 static int splice_from_pipe_next(struct pipe_inode_info *pipe, struct splice_desc *sd) 808 { 809 while (!pipe->nrbufs) { 810 if (!pipe->writers) 811 return 0; 812 813 if (!pipe->waiting_writers && sd->num_spliced) 814 return 0; 815 816 if (sd->flags & SPLICE_F_NONBLOCK) 817 return -EAGAIN; 818 819 if (signal_pending(current)) 820 return -ERESTARTSYS; 821 822 if (sd->need_wakeup) { 823 wakeup_pipe_writers(pipe); 824 sd->need_wakeup = false; 825 } 826 827 pipe_wait(pipe); 828 } 829 830 return 1; 831 } 832 833 /** 834 * splice_from_pipe_begin - start splicing from pipe 835 * @sd: information about the splice operation 836 * 837 * Description: 838 * This function should be called before a loop containing 839 * splice_from_pipe_next() and splice_from_pipe_feed() to 840 * initialize the necessary fields of @sd. 841 */ 842 static void splice_from_pipe_begin(struct splice_desc *sd) 843 { 844 sd->num_spliced = 0; 845 sd->need_wakeup = false; 846 } 847 848 /** 849 * splice_from_pipe_end - finish splicing from pipe 850 * @pipe: pipe to splice from 851 * @sd: information about the splice operation 852 * 853 * Description: 854 * This function will wake up pipe writers if necessary. It should 855 * be called after a loop containing splice_from_pipe_next() and 856 * splice_from_pipe_feed(). 857 */ 858 static void splice_from_pipe_end(struct pipe_inode_info *pipe, struct splice_desc *sd) 859 { 860 if (sd->need_wakeup) 861 wakeup_pipe_writers(pipe); 862 } 863 864 /** 865 * __splice_from_pipe - splice data from a pipe to given actor 866 * @pipe: pipe to splice from 867 * @sd: information to @actor 868 * @actor: handler that splices the data 869 * 870 * Description: 871 * This function does little more than loop over the pipe and call 872 * @actor to do the actual moving of a single struct pipe_buffer to 873 * the desired destination. See pipe_to_file, pipe_to_sendpage, or 874 * pipe_to_user. 875 * 876 */ 877 ssize_t __splice_from_pipe(struct pipe_inode_info *pipe, struct splice_desc *sd, 878 splice_actor *actor) 879 { 880 int ret; 881 882 splice_from_pipe_begin(sd); 883 do { 884 ret = splice_from_pipe_next(pipe, sd); 885 if (ret > 0) 886 ret = splice_from_pipe_feed(pipe, sd, actor); 887 } while (ret > 0); 888 splice_from_pipe_end(pipe, sd); 889 890 return sd->num_spliced ? sd->num_spliced : ret; 891 } 892 EXPORT_SYMBOL(__splice_from_pipe); 893 894 /** 895 * splice_from_pipe - splice data from a pipe to a file 896 * @pipe: pipe to splice from 897 * @out: file to splice to 898 * @ppos: position in @out 899 * @len: how many bytes to splice 900 * @flags: splice modifier flags 901 * @actor: handler that splices the data 902 * 903 * Description: 904 * See __splice_from_pipe. This function locks the pipe inode, 905 * otherwise it's identical to __splice_from_pipe(). 906 * 907 */ 908 ssize_t splice_from_pipe(struct pipe_inode_info *pipe, struct file *out, 909 loff_t *ppos, size_t len, unsigned int flags, 910 splice_actor *actor) 911 { 912 ssize_t ret; 913 struct splice_desc sd = { 914 .total_len = len, 915 .flags = flags, 916 .pos = *ppos, 917 .u.file = out, 918 }; 919 920 pipe_lock(pipe); 921 ret = __splice_from_pipe(pipe, &sd, actor); 922 pipe_unlock(pipe); 923 924 return ret; 925 } 926 927 /** 928 * iter_file_splice_write - splice data from a pipe to a file 929 * @pipe: pipe info 930 * @out: file to write to 931 * @ppos: position in @out 932 * @len: number of bytes to splice 933 * @flags: splice modifier flags 934 * 935 * Description: 936 * Will either move or copy pages (determined by @flags options) from 937 * the given pipe inode to the given file. 938 * This one is ->write_iter-based. 939 * 940 */ 941 ssize_t 942 iter_file_splice_write(struct pipe_inode_info *pipe, struct file *out, 943 loff_t *ppos, size_t len, unsigned int flags) 944 { 945 struct splice_desc sd = { 946 .total_len = len, 947 .flags = flags, 948 .pos = *ppos, 949 .u.file = out, 950 }; 951 int nbufs = pipe->buffers; 952 struct bio_vec *array = kcalloc(nbufs, sizeof(struct bio_vec), 953 GFP_KERNEL); 954 ssize_t ret; 955 956 if (unlikely(!array)) 957 return -ENOMEM; 958 959 pipe_lock(pipe); 960 961 splice_from_pipe_begin(&sd); 962 while (sd.total_len) { 963 struct iov_iter from; 964 size_t left; 965 int n, idx; 966 967 ret = splice_from_pipe_next(pipe, &sd); 968 if (ret <= 0) 969 break; 970 971 if (unlikely(nbufs < pipe->buffers)) { 972 kfree(array); 973 nbufs = pipe->buffers; 974 array = kcalloc(nbufs, sizeof(struct bio_vec), 975 GFP_KERNEL); 976 if (!array) { 977 ret = -ENOMEM; 978 break; 979 } 980 } 981 982 /* build the vector */ 983 left = sd.total_len; 984 for (n = 0, idx = pipe->curbuf; left && n < pipe->nrbufs; n++, idx++) { 985 struct pipe_buffer *buf = pipe->bufs + idx; 986 size_t this_len = buf->len; 987 988 if (this_len > left) 989 this_len = left; 990 991 if (idx == pipe->buffers - 1) 992 idx = -1; 993 994 ret = buf->ops->confirm(pipe, buf); 995 if (unlikely(ret)) { 996 if (ret == -ENODATA) 997 ret = 0; 998 goto done; 999 } 1000 1001 array[n].bv_page = buf->page; 1002 array[n].bv_len = this_len; 1003 array[n].bv_offset = buf->offset; 1004 left -= this_len; 1005 } 1006 1007 iov_iter_bvec(&from, ITER_BVEC | WRITE, array, n, 1008 sd.total_len - left); 1009 ret = vfs_iter_write(out, &from, &sd.pos); 1010 if (ret <= 0) 1011 break; 1012 1013 sd.num_spliced += ret; 1014 sd.total_len -= ret; 1015 *ppos = sd.pos; 1016 1017 /* dismiss the fully eaten buffers, adjust the partial one */ 1018 while (ret) { 1019 struct pipe_buffer *buf = pipe->bufs + pipe->curbuf; 1020 if (ret >= buf->len) { 1021 const struct pipe_buf_operations *ops = buf->ops; 1022 ret -= buf->len; 1023 buf->len = 0; 1024 buf->ops = NULL; 1025 ops->release(pipe, buf); 1026 pipe->curbuf = (pipe->curbuf + 1) & (pipe->buffers - 1); 1027 pipe->nrbufs--; 1028 if (pipe->files) 1029 sd.need_wakeup = true; 1030 } else { 1031 buf->offset += ret; 1032 buf->len -= ret; 1033 ret = 0; 1034 } 1035 } 1036 } 1037 done: 1038 kfree(array); 1039 splice_from_pipe_end(pipe, &sd); 1040 1041 pipe_unlock(pipe); 1042 1043 if (sd.num_spliced) 1044 ret = sd.num_spliced; 1045 1046 return ret; 1047 } 1048 1049 EXPORT_SYMBOL(iter_file_splice_write); 1050 1051 static int write_pipe_buf(struct pipe_inode_info *pipe, struct pipe_buffer *buf, 1052 struct splice_desc *sd) 1053 { 1054 int ret; 1055 void *data; 1056 loff_t tmp = sd->pos; 1057 1058 data = kmap(buf->page); 1059 ret = __kernel_write(sd->u.file, data + buf->offset, sd->len, &tmp); 1060 kunmap(buf->page); 1061 1062 return ret; 1063 } 1064 1065 static ssize_t default_file_splice_write(struct pipe_inode_info *pipe, 1066 struct file *out, loff_t *ppos, 1067 size_t len, unsigned int flags) 1068 { 1069 ssize_t ret; 1070 1071 ret = splice_from_pipe(pipe, out, ppos, len, flags, write_pipe_buf); 1072 if (ret > 0) 1073 *ppos += ret; 1074 1075 return ret; 1076 } 1077 1078 /** 1079 * generic_splice_sendpage - splice data from a pipe to a socket 1080 * @pipe: pipe to splice from 1081 * @out: socket to write to 1082 * @ppos: position in @out 1083 * @len: number of bytes to splice 1084 * @flags: splice modifier flags 1085 * 1086 * Description: 1087 * Will send @len bytes from the pipe to a network socket. No data copying 1088 * is involved. 1089 * 1090 */ 1091 ssize_t generic_splice_sendpage(struct pipe_inode_info *pipe, struct file *out, 1092 loff_t *ppos, size_t len, unsigned int flags) 1093 { 1094 return splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_sendpage); 1095 } 1096 1097 EXPORT_SYMBOL(generic_splice_sendpage); 1098 1099 /* 1100 * Attempt to initiate a splice from pipe to file. 1101 */ 1102 static long do_splice_from(struct pipe_inode_info *pipe, struct file *out, 1103 loff_t *ppos, size_t len, unsigned int flags) 1104 { 1105 ssize_t (*splice_write)(struct pipe_inode_info *, struct file *, 1106 loff_t *, size_t, unsigned int); 1107 1108 if (out->f_op->splice_write) 1109 splice_write = out->f_op->splice_write; 1110 else 1111 splice_write = default_file_splice_write; 1112 1113 return splice_write(pipe, out, ppos, len, flags); 1114 } 1115 1116 /* 1117 * Attempt to initiate a splice from a file to a pipe. 1118 */ 1119 static long do_splice_to(struct file *in, loff_t *ppos, 1120 struct pipe_inode_info *pipe, size_t len, 1121 unsigned int flags) 1122 { 1123 ssize_t (*splice_read)(struct file *, loff_t *, 1124 struct pipe_inode_info *, size_t, unsigned int); 1125 int ret; 1126 1127 if (unlikely(!(in->f_mode & FMODE_READ))) 1128 return -EBADF; 1129 1130 ret = rw_verify_area(READ, in, ppos, len); 1131 if (unlikely(ret < 0)) 1132 return ret; 1133 1134 if (in->f_op->splice_read) 1135 splice_read = in->f_op->splice_read; 1136 else 1137 splice_read = default_file_splice_read; 1138 1139 return splice_read(in, ppos, pipe, len, flags); 1140 } 1141 1142 /** 1143 * splice_direct_to_actor - splices data directly between two non-pipes 1144 * @in: file to splice from 1145 * @sd: actor information on where to splice to 1146 * @actor: handles the data splicing 1147 * 1148 * Description: 1149 * This is a special case helper to splice directly between two 1150 * points, without requiring an explicit pipe. Internally an allocated 1151 * pipe is cached in the process, and reused during the lifetime of 1152 * that process. 1153 * 1154 */ 1155 ssize_t splice_direct_to_actor(struct file *in, struct splice_desc *sd, 1156 splice_direct_actor *actor) 1157 { 1158 struct pipe_inode_info *pipe; 1159 long ret, bytes; 1160 umode_t i_mode; 1161 size_t len; 1162 int i, flags; 1163 1164 /* 1165 * We require the input being a regular file, as we don't want to 1166 * randomly drop data for eg socket -> socket splicing. Use the 1167 * piped splicing for that! 1168 */ 1169 i_mode = file_inode(in)->i_mode; 1170 if (unlikely(!S_ISREG(i_mode) && !S_ISBLK(i_mode))) 1171 return -EINVAL; 1172 1173 /* 1174 * neither in nor out is a pipe, setup an internal pipe attached to 1175 * 'out' and transfer the wanted data from 'in' to 'out' through that 1176 */ 1177 pipe = current->splice_pipe; 1178 if (unlikely(!pipe)) { 1179 pipe = alloc_pipe_info(); 1180 if (!pipe) 1181 return -ENOMEM; 1182 1183 /* 1184 * We don't have an immediate reader, but we'll read the stuff 1185 * out of the pipe right after the splice_to_pipe(). So set 1186 * PIPE_READERS appropriately. 1187 */ 1188 pipe->readers = 1; 1189 1190 current->splice_pipe = pipe; 1191 } 1192 1193 /* 1194 * Do the splice. 1195 */ 1196 ret = 0; 1197 bytes = 0; 1198 len = sd->total_len; 1199 flags = sd->flags; 1200 1201 /* 1202 * Don't block on output, we have to drain the direct pipe. 1203 */ 1204 sd->flags &= ~SPLICE_F_NONBLOCK; 1205 1206 while (len) { 1207 size_t read_len; 1208 loff_t pos = sd->pos, prev_pos = pos; 1209 1210 ret = do_splice_to(in, &pos, pipe, len, flags); 1211 if (unlikely(ret <= 0)) 1212 goto out_release; 1213 1214 read_len = ret; 1215 sd->total_len = read_len; 1216 1217 /* 1218 * NOTE: nonblocking mode only applies to the input. We 1219 * must not do the output in nonblocking mode as then we 1220 * could get stuck data in the internal pipe: 1221 */ 1222 ret = actor(pipe, sd); 1223 if (unlikely(ret <= 0)) { 1224 sd->pos = prev_pos; 1225 goto out_release; 1226 } 1227 1228 bytes += ret; 1229 len -= ret; 1230 sd->pos = pos; 1231 1232 if (ret < read_len) { 1233 sd->pos = prev_pos + ret; 1234 goto out_release; 1235 } 1236 } 1237 1238 done: 1239 pipe->nrbufs = pipe->curbuf = 0; 1240 file_accessed(in); 1241 return bytes; 1242 1243 out_release: 1244 /* 1245 * If we did an incomplete transfer we must release 1246 * the pipe buffers in question: 1247 */ 1248 for (i = 0; i < pipe->buffers; i++) { 1249 struct pipe_buffer *buf = pipe->bufs + i; 1250 1251 if (buf->ops) { 1252 buf->ops->release(pipe, buf); 1253 buf->ops = NULL; 1254 } 1255 } 1256 1257 if (!bytes) 1258 bytes = ret; 1259 1260 goto done; 1261 } 1262 EXPORT_SYMBOL(splice_direct_to_actor); 1263 1264 static int direct_splice_actor(struct pipe_inode_info *pipe, 1265 struct splice_desc *sd) 1266 { 1267 struct file *file = sd->u.file; 1268 1269 return do_splice_from(pipe, file, sd->opos, sd->total_len, 1270 sd->flags); 1271 } 1272 1273 /** 1274 * do_splice_direct - splices data directly between two files 1275 * @in: file to splice from 1276 * @ppos: input file offset 1277 * @out: file to splice to 1278 * @opos: output file offset 1279 * @len: number of bytes to splice 1280 * @flags: splice modifier flags 1281 * 1282 * Description: 1283 * For use by do_sendfile(). splice can easily emulate sendfile, but 1284 * doing it in the application would incur an extra system call 1285 * (splice in + splice out, as compared to just sendfile()). So this helper 1286 * can splice directly through a process-private pipe. 1287 * 1288 */ 1289 long do_splice_direct(struct file *in, loff_t *ppos, struct file *out, 1290 loff_t *opos, size_t len, unsigned int flags) 1291 { 1292 struct splice_desc sd = { 1293 .len = len, 1294 .total_len = len, 1295 .flags = flags, 1296 .pos = *ppos, 1297 .u.file = out, 1298 .opos = opos, 1299 }; 1300 long ret; 1301 1302 if (unlikely(!(out->f_mode & FMODE_WRITE))) 1303 return -EBADF; 1304 1305 if (unlikely(out->f_flags & O_APPEND)) 1306 return -EINVAL; 1307 1308 ret = rw_verify_area(WRITE, out, opos, len); 1309 if (unlikely(ret < 0)) 1310 return ret; 1311 1312 ret = splice_direct_to_actor(in, &sd, direct_splice_actor); 1313 if (ret > 0) 1314 *ppos = sd.pos; 1315 1316 return ret; 1317 } 1318 EXPORT_SYMBOL(do_splice_direct); 1319 1320 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe, 1321 struct pipe_inode_info *opipe, 1322 size_t len, unsigned int flags); 1323 1324 /* 1325 * Determine where to splice to/from. 1326 */ 1327 static long do_splice(struct file *in, loff_t __user *off_in, 1328 struct file *out, loff_t __user *off_out, 1329 size_t len, unsigned int flags) 1330 { 1331 struct pipe_inode_info *ipipe; 1332 struct pipe_inode_info *opipe; 1333 loff_t offset; 1334 long ret; 1335 1336 ipipe = get_pipe_info(in); 1337 opipe = get_pipe_info(out); 1338 1339 if (ipipe && opipe) { 1340 if (off_in || off_out) 1341 return -ESPIPE; 1342 1343 if (!(in->f_mode & FMODE_READ)) 1344 return -EBADF; 1345 1346 if (!(out->f_mode & FMODE_WRITE)) 1347 return -EBADF; 1348 1349 /* Splicing to self would be fun, but... */ 1350 if (ipipe == opipe) 1351 return -EINVAL; 1352 1353 return splice_pipe_to_pipe(ipipe, opipe, len, flags); 1354 } 1355 1356 if (ipipe) { 1357 if (off_in) 1358 return -ESPIPE; 1359 if (off_out) { 1360 if (!(out->f_mode & FMODE_PWRITE)) 1361 return -EINVAL; 1362 if (copy_from_user(&offset, off_out, sizeof(loff_t))) 1363 return -EFAULT; 1364 } else { 1365 offset = out->f_pos; 1366 } 1367 1368 if (unlikely(!(out->f_mode & FMODE_WRITE))) 1369 return -EBADF; 1370 1371 if (unlikely(out->f_flags & O_APPEND)) 1372 return -EINVAL; 1373 1374 ret = rw_verify_area(WRITE, out, &offset, len); 1375 if (unlikely(ret < 0)) 1376 return ret; 1377 1378 file_start_write(out); 1379 ret = do_splice_from(ipipe, out, &offset, len, flags); 1380 file_end_write(out); 1381 1382 if (!off_out) 1383 out->f_pos = offset; 1384 else if (copy_to_user(off_out, &offset, sizeof(loff_t))) 1385 ret = -EFAULT; 1386 1387 return ret; 1388 } 1389 1390 if (opipe) { 1391 if (off_out) 1392 return -ESPIPE; 1393 if (off_in) { 1394 if (!(in->f_mode & FMODE_PREAD)) 1395 return -EINVAL; 1396 if (copy_from_user(&offset, off_in, sizeof(loff_t))) 1397 return -EFAULT; 1398 } else { 1399 offset = in->f_pos; 1400 } 1401 1402 ret = do_splice_to(in, &offset, opipe, len, flags); 1403 1404 if (!off_in) 1405 in->f_pos = offset; 1406 else if (copy_to_user(off_in, &offset, sizeof(loff_t))) 1407 ret = -EFAULT; 1408 1409 return ret; 1410 } 1411 1412 return -EINVAL; 1413 } 1414 1415 /* 1416 * Map an iov into an array of pages and offset/length tupples. With the 1417 * partial_page structure, we can map several non-contiguous ranges into 1418 * our ones pages[] map instead of splitting that operation into pieces. 1419 * Could easily be exported as a generic helper for other users, in which 1420 * case one would probably want to add a 'max_nr_pages' parameter as well. 1421 */ 1422 static int get_iovec_page_array(const struct iovec __user *iov, 1423 unsigned int nr_vecs, struct page **pages, 1424 struct partial_page *partial, bool aligned, 1425 unsigned int pipe_buffers) 1426 { 1427 int buffers = 0, error = 0; 1428 1429 while (nr_vecs) { 1430 unsigned long off, npages; 1431 struct iovec entry; 1432 void __user *base; 1433 size_t len; 1434 int i; 1435 1436 error = -EFAULT; 1437 if (copy_from_user(&entry, iov, sizeof(entry))) 1438 break; 1439 1440 base = entry.iov_base; 1441 len = entry.iov_len; 1442 1443 /* 1444 * Sanity check this iovec. 0 read succeeds. 1445 */ 1446 error = 0; 1447 if (unlikely(!len)) 1448 break; 1449 error = -EFAULT; 1450 if (!access_ok(VERIFY_READ, base, len)) 1451 break; 1452 1453 /* 1454 * Get this base offset and number of pages, then map 1455 * in the user pages. 1456 */ 1457 off = (unsigned long) base & ~PAGE_MASK; 1458 1459 /* 1460 * If asked for alignment, the offset must be zero and the 1461 * length a multiple of the PAGE_SIZE. 1462 */ 1463 error = -EINVAL; 1464 if (aligned && (off || len & ~PAGE_MASK)) 1465 break; 1466 1467 npages = (off + len + PAGE_SIZE - 1) >> PAGE_SHIFT; 1468 if (npages > pipe_buffers - buffers) 1469 npages = pipe_buffers - buffers; 1470 1471 error = get_user_pages_fast((unsigned long)base, npages, 1472 0, &pages[buffers]); 1473 1474 if (unlikely(error <= 0)) 1475 break; 1476 1477 /* 1478 * Fill this contiguous range into the partial page map. 1479 */ 1480 for (i = 0; i < error; i++) { 1481 const int plen = min_t(size_t, len, PAGE_SIZE - off); 1482 1483 partial[buffers].offset = off; 1484 partial[buffers].len = plen; 1485 1486 off = 0; 1487 len -= plen; 1488 buffers++; 1489 } 1490 1491 /* 1492 * We didn't complete this iov, stop here since it probably 1493 * means we have to move some of this into a pipe to 1494 * be able to continue. 1495 */ 1496 if (len) 1497 break; 1498 1499 /* 1500 * Don't continue if we mapped fewer pages than we asked for, 1501 * or if we mapped the max number of pages that we have 1502 * room for. 1503 */ 1504 if (error < npages || buffers == pipe_buffers) 1505 break; 1506 1507 nr_vecs--; 1508 iov++; 1509 } 1510 1511 if (buffers) 1512 return buffers; 1513 1514 return error; 1515 } 1516 1517 static int pipe_to_user(struct pipe_inode_info *pipe, struct pipe_buffer *buf, 1518 struct splice_desc *sd) 1519 { 1520 int n = copy_page_to_iter(buf->page, buf->offset, sd->len, sd->u.data); 1521 return n == sd->len ? n : -EFAULT; 1522 } 1523 1524 /* 1525 * For lack of a better implementation, implement vmsplice() to userspace 1526 * as a simple copy of the pipes pages to the user iov. 1527 */ 1528 static long vmsplice_to_user(struct file *file, const struct iovec __user *uiov, 1529 unsigned long nr_segs, unsigned int flags) 1530 { 1531 struct pipe_inode_info *pipe; 1532 struct splice_desc sd; 1533 long ret; 1534 struct iovec iovstack[UIO_FASTIOV]; 1535 struct iovec *iov = iovstack; 1536 struct iov_iter iter; 1537 ssize_t count; 1538 1539 pipe = get_pipe_info(file); 1540 if (!pipe) 1541 return -EBADF; 1542 1543 ret = rw_copy_check_uvector(READ, uiov, nr_segs, 1544 ARRAY_SIZE(iovstack), iovstack, &iov); 1545 if (ret <= 0) 1546 goto out; 1547 1548 count = ret; 1549 iov_iter_init(&iter, READ, iov, nr_segs, count); 1550 1551 sd.len = 0; 1552 sd.total_len = count; 1553 sd.flags = flags; 1554 sd.u.data = &iter; 1555 sd.pos = 0; 1556 1557 pipe_lock(pipe); 1558 ret = __splice_from_pipe(pipe, &sd, pipe_to_user); 1559 pipe_unlock(pipe); 1560 1561 out: 1562 if (iov != iovstack) 1563 kfree(iov); 1564 1565 return ret; 1566 } 1567 1568 /* 1569 * vmsplice splices a user address range into a pipe. It can be thought of 1570 * as splice-from-memory, where the regular splice is splice-from-file (or 1571 * to file). In both cases the output is a pipe, naturally. 1572 */ 1573 static long vmsplice_to_pipe(struct file *file, const struct iovec __user *iov, 1574 unsigned long nr_segs, unsigned int flags) 1575 { 1576 struct pipe_inode_info *pipe; 1577 struct page *pages[PIPE_DEF_BUFFERS]; 1578 struct partial_page partial[PIPE_DEF_BUFFERS]; 1579 struct splice_pipe_desc spd = { 1580 .pages = pages, 1581 .partial = partial, 1582 .nr_pages_max = PIPE_DEF_BUFFERS, 1583 .flags = flags, 1584 .ops = &user_page_pipe_buf_ops, 1585 .spd_release = spd_release_page, 1586 }; 1587 long ret; 1588 1589 pipe = get_pipe_info(file); 1590 if (!pipe) 1591 return -EBADF; 1592 1593 if (splice_grow_spd(pipe, &spd)) 1594 return -ENOMEM; 1595 1596 spd.nr_pages = get_iovec_page_array(iov, nr_segs, spd.pages, 1597 spd.partial, false, 1598 spd.nr_pages_max); 1599 if (spd.nr_pages <= 0) 1600 ret = spd.nr_pages; 1601 else 1602 ret = splice_to_pipe(pipe, &spd); 1603 1604 splice_shrink_spd(&spd); 1605 return ret; 1606 } 1607 1608 /* 1609 * Note that vmsplice only really supports true splicing _from_ user memory 1610 * to a pipe, not the other way around. Splicing from user memory is a simple 1611 * operation that can be supported without any funky alignment restrictions 1612 * or nasty vm tricks. We simply map in the user memory and fill them into 1613 * a pipe. The reverse isn't quite as easy, though. There are two possible 1614 * solutions for that: 1615 * 1616 * - memcpy() the data internally, at which point we might as well just 1617 * do a regular read() on the buffer anyway. 1618 * - Lots of nasty vm tricks, that are neither fast nor flexible (it 1619 * has restriction limitations on both ends of the pipe). 1620 * 1621 * Currently we punt and implement it as a normal copy, see pipe_to_user(). 1622 * 1623 */ 1624 SYSCALL_DEFINE4(vmsplice, int, fd, const struct iovec __user *, iov, 1625 unsigned long, nr_segs, unsigned int, flags) 1626 { 1627 struct fd f; 1628 long error; 1629 1630 if (unlikely(nr_segs > UIO_MAXIOV)) 1631 return -EINVAL; 1632 else if (unlikely(!nr_segs)) 1633 return 0; 1634 1635 error = -EBADF; 1636 f = fdget(fd); 1637 if (f.file) { 1638 if (f.file->f_mode & FMODE_WRITE) 1639 error = vmsplice_to_pipe(f.file, iov, nr_segs, flags); 1640 else if (f.file->f_mode & FMODE_READ) 1641 error = vmsplice_to_user(f.file, iov, nr_segs, flags); 1642 1643 fdput(f); 1644 } 1645 1646 return error; 1647 } 1648 1649 #ifdef CONFIG_COMPAT 1650 COMPAT_SYSCALL_DEFINE4(vmsplice, int, fd, const struct compat_iovec __user *, iov32, 1651 unsigned int, nr_segs, unsigned int, flags) 1652 { 1653 unsigned i; 1654 struct iovec __user *iov; 1655 if (nr_segs > UIO_MAXIOV) 1656 return -EINVAL; 1657 iov = compat_alloc_user_space(nr_segs * sizeof(struct iovec)); 1658 for (i = 0; i < nr_segs; i++) { 1659 struct compat_iovec v; 1660 if (get_user(v.iov_base, &iov32[i].iov_base) || 1661 get_user(v.iov_len, &iov32[i].iov_len) || 1662 put_user(compat_ptr(v.iov_base), &iov[i].iov_base) || 1663 put_user(v.iov_len, &iov[i].iov_len)) 1664 return -EFAULT; 1665 } 1666 return sys_vmsplice(fd, iov, nr_segs, flags); 1667 } 1668 #endif 1669 1670 SYSCALL_DEFINE6(splice, int, fd_in, loff_t __user *, off_in, 1671 int, fd_out, loff_t __user *, off_out, 1672 size_t, len, unsigned int, flags) 1673 { 1674 struct fd in, out; 1675 long error; 1676 1677 if (unlikely(!len)) 1678 return 0; 1679 1680 error = -EBADF; 1681 in = fdget(fd_in); 1682 if (in.file) { 1683 if (in.file->f_mode & FMODE_READ) { 1684 out = fdget(fd_out); 1685 if (out.file) { 1686 if (out.file->f_mode & FMODE_WRITE) 1687 error = do_splice(in.file, off_in, 1688 out.file, off_out, 1689 len, flags); 1690 fdput(out); 1691 } 1692 } 1693 fdput(in); 1694 } 1695 return error; 1696 } 1697 1698 /* 1699 * Make sure there's data to read. Wait for input if we can, otherwise 1700 * return an appropriate error. 1701 */ 1702 static int ipipe_prep(struct pipe_inode_info *pipe, unsigned int flags) 1703 { 1704 int ret; 1705 1706 /* 1707 * Check ->nrbufs without the inode lock first. This function 1708 * is speculative anyways, so missing one is ok. 1709 */ 1710 if (pipe->nrbufs) 1711 return 0; 1712 1713 ret = 0; 1714 pipe_lock(pipe); 1715 1716 while (!pipe->nrbufs) { 1717 if (signal_pending(current)) { 1718 ret = -ERESTARTSYS; 1719 break; 1720 } 1721 if (!pipe->writers) 1722 break; 1723 if (!pipe->waiting_writers) { 1724 if (flags & SPLICE_F_NONBLOCK) { 1725 ret = -EAGAIN; 1726 break; 1727 } 1728 } 1729 pipe_wait(pipe); 1730 } 1731 1732 pipe_unlock(pipe); 1733 return ret; 1734 } 1735 1736 /* 1737 * Make sure there's writeable room. Wait for room if we can, otherwise 1738 * return an appropriate error. 1739 */ 1740 static int opipe_prep(struct pipe_inode_info *pipe, unsigned int flags) 1741 { 1742 int ret; 1743 1744 /* 1745 * Check ->nrbufs without the inode lock first. This function 1746 * is speculative anyways, so missing one is ok. 1747 */ 1748 if (pipe->nrbufs < pipe->buffers) 1749 return 0; 1750 1751 ret = 0; 1752 pipe_lock(pipe); 1753 1754 while (pipe->nrbufs >= pipe->buffers) { 1755 if (!pipe->readers) { 1756 send_sig(SIGPIPE, current, 0); 1757 ret = -EPIPE; 1758 break; 1759 } 1760 if (flags & SPLICE_F_NONBLOCK) { 1761 ret = -EAGAIN; 1762 break; 1763 } 1764 if (signal_pending(current)) { 1765 ret = -ERESTARTSYS; 1766 break; 1767 } 1768 pipe->waiting_writers++; 1769 pipe_wait(pipe); 1770 pipe->waiting_writers--; 1771 } 1772 1773 pipe_unlock(pipe); 1774 return ret; 1775 } 1776 1777 /* 1778 * Splice contents of ipipe to opipe. 1779 */ 1780 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe, 1781 struct pipe_inode_info *opipe, 1782 size_t len, unsigned int flags) 1783 { 1784 struct pipe_buffer *ibuf, *obuf; 1785 int ret = 0, nbuf; 1786 bool input_wakeup = false; 1787 1788 1789 retry: 1790 ret = ipipe_prep(ipipe, flags); 1791 if (ret) 1792 return ret; 1793 1794 ret = opipe_prep(opipe, flags); 1795 if (ret) 1796 return ret; 1797 1798 /* 1799 * Potential ABBA deadlock, work around it by ordering lock 1800 * grabbing by pipe info address. Otherwise two different processes 1801 * could deadlock (one doing tee from A -> B, the other from B -> A). 1802 */ 1803 pipe_double_lock(ipipe, opipe); 1804 1805 do { 1806 if (!opipe->readers) { 1807 send_sig(SIGPIPE, current, 0); 1808 if (!ret) 1809 ret = -EPIPE; 1810 break; 1811 } 1812 1813 if (!ipipe->nrbufs && !ipipe->writers) 1814 break; 1815 1816 /* 1817 * Cannot make any progress, because either the input 1818 * pipe is empty or the output pipe is full. 1819 */ 1820 if (!ipipe->nrbufs || opipe->nrbufs >= opipe->buffers) { 1821 /* Already processed some buffers, break */ 1822 if (ret) 1823 break; 1824 1825 if (flags & SPLICE_F_NONBLOCK) { 1826 ret = -EAGAIN; 1827 break; 1828 } 1829 1830 /* 1831 * We raced with another reader/writer and haven't 1832 * managed to process any buffers. A zero return 1833 * value means EOF, so retry instead. 1834 */ 1835 pipe_unlock(ipipe); 1836 pipe_unlock(opipe); 1837 goto retry; 1838 } 1839 1840 ibuf = ipipe->bufs + ipipe->curbuf; 1841 nbuf = (opipe->curbuf + opipe->nrbufs) & (opipe->buffers - 1); 1842 obuf = opipe->bufs + nbuf; 1843 1844 if (len >= ibuf->len) { 1845 /* 1846 * Simply move the whole buffer from ipipe to opipe 1847 */ 1848 *obuf = *ibuf; 1849 ibuf->ops = NULL; 1850 opipe->nrbufs++; 1851 ipipe->curbuf = (ipipe->curbuf + 1) & (ipipe->buffers - 1); 1852 ipipe->nrbufs--; 1853 input_wakeup = true; 1854 } else { 1855 /* 1856 * Get a reference to this pipe buffer, 1857 * so we can copy the contents over. 1858 */ 1859 ibuf->ops->get(ipipe, ibuf); 1860 *obuf = *ibuf; 1861 1862 /* 1863 * Don't inherit the gift flag, we need to 1864 * prevent multiple steals of this page. 1865 */ 1866 obuf->flags &= ~PIPE_BUF_FLAG_GIFT; 1867 1868 obuf->len = len; 1869 opipe->nrbufs++; 1870 ibuf->offset += obuf->len; 1871 ibuf->len -= obuf->len; 1872 } 1873 ret += obuf->len; 1874 len -= obuf->len; 1875 } while (len); 1876 1877 pipe_unlock(ipipe); 1878 pipe_unlock(opipe); 1879 1880 /* 1881 * If we put data in the output pipe, wakeup any potential readers. 1882 */ 1883 if (ret > 0) 1884 wakeup_pipe_readers(opipe); 1885 1886 if (input_wakeup) 1887 wakeup_pipe_writers(ipipe); 1888 1889 return ret; 1890 } 1891 1892 /* 1893 * Link contents of ipipe to opipe. 1894 */ 1895 static int link_pipe(struct pipe_inode_info *ipipe, 1896 struct pipe_inode_info *opipe, 1897 size_t len, unsigned int flags) 1898 { 1899 struct pipe_buffer *ibuf, *obuf; 1900 int ret = 0, i = 0, nbuf; 1901 1902 /* 1903 * Potential ABBA deadlock, work around it by ordering lock 1904 * grabbing by pipe info address. Otherwise two different processes 1905 * could deadlock (one doing tee from A -> B, the other from B -> A). 1906 */ 1907 pipe_double_lock(ipipe, opipe); 1908 1909 do { 1910 if (!opipe->readers) { 1911 send_sig(SIGPIPE, current, 0); 1912 if (!ret) 1913 ret = -EPIPE; 1914 break; 1915 } 1916 1917 /* 1918 * If we have iterated all input buffers or ran out of 1919 * output room, break. 1920 */ 1921 if (i >= ipipe->nrbufs || opipe->nrbufs >= opipe->buffers) 1922 break; 1923 1924 ibuf = ipipe->bufs + ((ipipe->curbuf + i) & (ipipe->buffers-1)); 1925 nbuf = (opipe->curbuf + opipe->nrbufs) & (opipe->buffers - 1); 1926 1927 /* 1928 * Get a reference to this pipe buffer, 1929 * so we can copy the contents over. 1930 */ 1931 ibuf->ops->get(ipipe, ibuf); 1932 1933 obuf = opipe->bufs + nbuf; 1934 *obuf = *ibuf; 1935 1936 /* 1937 * Don't inherit the gift flag, we need to 1938 * prevent multiple steals of this page. 1939 */ 1940 obuf->flags &= ~PIPE_BUF_FLAG_GIFT; 1941 1942 if (obuf->len > len) 1943 obuf->len = len; 1944 1945 opipe->nrbufs++; 1946 ret += obuf->len; 1947 len -= obuf->len; 1948 i++; 1949 } while (len); 1950 1951 /* 1952 * return EAGAIN if we have the potential of some data in the 1953 * future, otherwise just return 0 1954 */ 1955 if (!ret && ipipe->waiting_writers && (flags & SPLICE_F_NONBLOCK)) 1956 ret = -EAGAIN; 1957 1958 pipe_unlock(ipipe); 1959 pipe_unlock(opipe); 1960 1961 /* 1962 * If we put data in the output pipe, wakeup any potential readers. 1963 */ 1964 if (ret > 0) 1965 wakeup_pipe_readers(opipe); 1966 1967 return ret; 1968 } 1969 1970 /* 1971 * This is a tee(1) implementation that works on pipes. It doesn't copy 1972 * any data, it simply references the 'in' pages on the 'out' pipe. 1973 * The 'flags' used are the SPLICE_F_* variants, currently the only 1974 * applicable one is SPLICE_F_NONBLOCK. 1975 */ 1976 static long do_tee(struct file *in, struct file *out, size_t len, 1977 unsigned int flags) 1978 { 1979 struct pipe_inode_info *ipipe = get_pipe_info(in); 1980 struct pipe_inode_info *opipe = get_pipe_info(out); 1981 int ret = -EINVAL; 1982 1983 /* 1984 * Duplicate the contents of ipipe to opipe without actually 1985 * copying the data. 1986 */ 1987 if (ipipe && opipe && ipipe != opipe) { 1988 /* 1989 * Keep going, unless we encounter an error. The ipipe/opipe 1990 * ordering doesn't really matter. 1991 */ 1992 ret = ipipe_prep(ipipe, flags); 1993 if (!ret) { 1994 ret = opipe_prep(opipe, flags); 1995 if (!ret) 1996 ret = link_pipe(ipipe, opipe, len, flags); 1997 } 1998 } 1999 2000 return ret; 2001 } 2002 2003 SYSCALL_DEFINE4(tee, int, fdin, int, fdout, size_t, len, unsigned int, flags) 2004 { 2005 struct fd in; 2006 int error; 2007 2008 if (unlikely(!len)) 2009 return 0; 2010 2011 error = -EBADF; 2012 in = fdget(fdin); 2013 if (in.file) { 2014 if (in.file->f_mode & FMODE_READ) { 2015 struct fd out = fdget(fdout); 2016 if (out.file) { 2017 if (out.file->f_mode & FMODE_WRITE) 2018 error = do_tee(in.file, out.file, 2019 len, flags); 2020 fdput(out); 2021 } 2022 } 2023 fdput(in); 2024 } 2025 2026 return error; 2027 } 2028