xref: /linux/fs/splice.c (revision d524dac9279b6a41ffdf7ff7958c577f2e387db6)
1 /*
2  * "splice": joining two ropes together by interweaving their strands.
3  *
4  * This is the "extended pipe" functionality, where a pipe is used as
5  * an arbitrary in-memory buffer. Think of a pipe as a small kernel
6  * buffer that you can use to transfer data from one end to the other.
7  *
8  * The traditional unix read/write is extended with a "splice()" operation
9  * that transfers data buffers to or from a pipe buffer.
10  *
11  * Named by Larry McVoy, original implementation from Linus, extended by
12  * Jens to support splicing to files, network, direct splicing, etc and
13  * fixing lots of bugs.
14  *
15  * Copyright (C) 2005-2006 Jens Axboe <axboe@kernel.dk>
16  * Copyright (C) 2005-2006 Linus Torvalds <torvalds@osdl.org>
17  * Copyright (C) 2006 Ingo Molnar <mingo@elte.hu>
18  *
19  */
20 #include <linux/fs.h>
21 #include <linux/file.h>
22 #include <linux/pagemap.h>
23 #include <linux/splice.h>
24 #include <linux/memcontrol.h>
25 #include <linux/mm_inline.h>
26 #include <linux/swap.h>
27 #include <linux/writeback.h>
28 #include <linux/buffer_head.h>
29 #include <linux/module.h>
30 #include <linux/syscalls.h>
31 #include <linux/uio.h>
32 #include <linux/security.h>
33 #include <linux/gfp.h>
34 
35 /*
36  * Attempt to steal a page from a pipe buffer. This should perhaps go into
37  * a vm helper function, it's already simplified quite a bit by the
38  * addition of remove_mapping(). If success is returned, the caller may
39  * attempt to reuse this page for another destination.
40  */
41 static int page_cache_pipe_buf_steal(struct pipe_inode_info *pipe,
42 				     struct pipe_buffer *buf)
43 {
44 	struct page *page = buf->page;
45 	struct address_space *mapping;
46 
47 	lock_page(page);
48 
49 	mapping = page_mapping(page);
50 	if (mapping) {
51 		WARN_ON(!PageUptodate(page));
52 
53 		/*
54 		 * At least for ext2 with nobh option, we need to wait on
55 		 * writeback completing on this page, since we'll remove it
56 		 * from the pagecache.  Otherwise truncate wont wait on the
57 		 * page, allowing the disk blocks to be reused by someone else
58 		 * before we actually wrote our data to them. fs corruption
59 		 * ensues.
60 		 */
61 		wait_on_page_writeback(page);
62 
63 		if (page_has_private(page) &&
64 		    !try_to_release_page(page, GFP_KERNEL))
65 			goto out_unlock;
66 
67 		/*
68 		 * If we succeeded in removing the mapping, set LRU flag
69 		 * and return good.
70 		 */
71 		if (remove_mapping(mapping, page)) {
72 			buf->flags |= PIPE_BUF_FLAG_LRU;
73 			return 0;
74 		}
75 	}
76 
77 	/*
78 	 * Raced with truncate or failed to remove page from current
79 	 * address space, unlock and return failure.
80 	 */
81 out_unlock:
82 	unlock_page(page);
83 	return 1;
84 }
85 
86 static void page_cache_pipe_buf_release(struct pipe_inode_info *pipe,
87 					struct pipe_buffer *buf)
88 {
89 	page_cache_release(buf->page);
90 	buf->flags &= ~PIPE_BUF_FLAG_LRU;
91 }
92 
93 /*
94  * Check whether the contents of buf is OK to access. Since the content
95  * is a page cache page, IO may be in flight.
96  */
97 static int page_cache_pipe_buf_confirm(struct pipe_inode_info *pipe,
98 				       struct pipe_buffer *buf)
99 {
100 	struct page *page = buf->page;
101 	int err;
102 
103 	if (!PageUptodate(page)) {
104 		lock_page(page);
105 
106 		/*
107 		 * Page got truncated/unhashed. This will cause a 0-byte
108 		 * splice, if this is the first page.
109 		 */
110 		if (!page->mapping) {
111 			err = -ENODATA;
112 			goto error;
113 		}
114 
115 		/*
116 		 * Uh oh, read-error from disk.
117 		 */
118 		if (!PageUptodate(page)) {
119 			err = -EIO;
120 			goto error;
121 		}
122 
123 		/*
124 		 * Page is ok afterall, we are done.
125 		 */
126 		unlock_page(page);
127 	}
128 
129 	return 0;
130 error:
131 	unlock_page(page);
132 	return err;
133 }
134 
135 static const struct pipe_buf_operations page_cache_pipe_buf_ops = {
136 	.can_merge = 0,
137 	.map = generic_pipe_buf_map,
138 	.unmap = generic_pipe_buf_unmap,
139 	.confirm = page_cache_pipe_buf_confirm,
140 	.release = page_cache_pipe_buf_release,
141 	.steal = page_cache_pipe_buf_steal,
142 	.get = generic_pipe_buf_get,
143 };
144 
145 static int user_page_pipe_buf_steal(struct pipe_inode_info *pipe,
146 				    struct pipe_buffer *buf)
147 {
148 	if (!(buf->flags & PIPE_BUF_FLAG_GIFT))
149 		return 1;
150 
151 	buf->flags |= PIPE_BUF_FLAG_LRU;
152 	return generic_pipe_buf_steal(pipe, buf);
153 }
154 
155 static const struct pipe_buf_operations user_page_pipe_buf_ops = {
156 	.can_merge = 0,
157 	.map = generic_pipe_buf_map,
158 	.unmap = generic_pipe_buf_unmap,
159 	.confirm = generic_pipe_buf_confirm,
160 	.release = page_cache_pipe_buf_release,
161 	.steal = user_page_pipe_buf_steal,
162 	.get = generic_pipe_buf_get,
163 };
164 
165 /**
166  * splice_to_pipe - fill passed data into a pipe
167  * @pipe:	pipe to fill
168  * @spd:	data to fill
169  *
170  * Description:
171  *    @spd contains a map of pages and len/offset tuples, along with
172  *    the struct pipe_buf_operations associated with these pages. This
173  *    function will link that data to the pipe.
174  *
175  */
176 ssize_t splice_to_pipe(struct pipe_inode_info *pipe,
177 		       struct splice_pipe_desc *spd)
178 {
179 	unsigned int spd_pages = spd->nr_pages;
180 	int ret, do_wakeup, page_nr;
181 
182 	ret = 0;
183 	do_wakeup = 0;
184 	page_nr = 0;
185 
186 	pipe_lock(pipe);
187 
188 	for (;;) {
189 		if (!pipe->readers) {
190 			send_sig(SIGPIPE, current, 0);
191 			if (!ret)
192 				ret = -EPIPE;
193 			break;
194 		}
195 
196 		if (pipe->nrbufs < pipe->buffers) {
197 			int newbuf = (pipe->curbuf + pipe->nrbufs) & (pipe->buffers - 1);
198 			struct pipe_buffer *buf = pipe->bufs + newbuf;
199 
200 			buf->page = spd->pages[page_nr];
201 			buf->offset = spd->partial[page_nr].offset;
202 			buf->len = spd->partial[page_nr].len;
203 			buf->private = spd->partial[page_nr].private;
204 			buf->ops = spd->ops;
205 			if (spd->flags & SPLICE_F_GIFT)
206 				buf->flags |= PIPE_BUF_FLAG_GIFT;
207 
208 			pipe->nrbufs++;
209 			page_nr++;
210 			ret += buf->len;
211 
212 			if (pipe->inode)
213 				do_wakeup = 1;
214 
215 			if (!--spd->nr_pages)
216 				break;
217 			if (pipe->nrbufs < pipe->buffers)
218 				continue;
219 
220 			break;
221 		}
222 
223 		if (spd->flags & SPLICE_F_NONBLOCK) {
224 			if (!ret)
225 				ret = -EAGAIN;
226 			break;
227 		}
228 
229 		if (signal_pending(current)) {
230 			if (!ret)
231 				ret = -ERESTARTSYS;
232 			break;
233 		}
234 
235 		if (do_wakeup) {
236 			smp_mb();
237 			if (waitqueue_active(&pipe->wait))
238 				wake_up_interruptible_sync(&pipe->wait);
239 			kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
240 			do_wakeup = 0;
241 		}
242 
243 		pipe->waiting_writers++;
244 		pipe_wait(pipe);
245 		pipe->waiting_writers--;
246 	}
247 
248 	pipe_unlock(pipe);
249 
250 	if (do_wakeup) {
251 		smp_mb();
252 		if (waitqueue_active(&pipe->wait))
253 			wake_up_interruptible(&pipe->wait);
254 		kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
255 	}
256 
257 	while (page_nr < spd_pages)
258 		spd->spd_release(spd, page_nr++);
259 
260 	return ret;
261 }
262 
263 static void spd_release_page(struct splice_pipe_desc *spd, unsigned int i)
264 {
265 	page_cache_release(spd->pages[i]);
266 }
267 
268 /*
269  * Check if we need to grow the arrays holding pages and partial page
270  * descriptions.
271  */
272 int splice_grow_spd(struct pipe_inode_info *pipe, struct splice_pipe_desc *spd)
273 {
274 	if (pipe->buffers <= PIPE_DEF_BUFFERS)
275 		return 0;
276 
277 	spd->pages = kmalloc(pipe->buffers * sizeof(struct page *), GFP_KERNEL);
278 	spd->partial = kmalloc(pipe->buffers * sizeof(struct partial_page), GFP_KERNEL);
279 
280 	if (spd->pages && spd->partial)
281 		return 0;
282 
283 	kfree(spd->pages);
284 	kfree(spd->partial);
285 	return -ENOMEM;
286 }
287 
288 void splice_shrink_spd(struct pipe_inode_info *pipe,
289 		       struct splice_pipe_desc *spd)
290 {
291 	if (pipe->buffers <= PIPE_DEF_BUFFERS)
292 		return;
293 
294 	kfree(spd->pages);
295 	kfree(spd->partial);
296 }
297 
298 static int
299 __generic_file_splice_read(struct file *in, loff_t *ppos,
300 			   struct pipe_inode_info *pipe, size_t len,
301 			   unsigned int flags)
302 {
303 	struct address_space *mapping = in->f_mapping;
304 	unsigned int loff, nr_pages, req_pages;
305 	struct page *pages[PIPE_DEF_BUFFERS];
306 	struct partial_page partial[PIPE_DEF_BUFFERS];
307 	struct page *page;
308 	pgoff_t index, end_index;
309 	loff_t isize;
310 	int error, page_nr;
311 	struct splice_pipe_desc spd = {
312 		.pages = pages,
313 		.partial = partial,
314 		.flags = flags,
315 		.ops = &page_cache_pipe_buf_ops,
316 		.spd_release = spd_release_page,
317 	};
318 
319 	if (splice_grow_spd(pipe, &spd))
320 		return -ENOMEM;
321 
322 	index = *ppos >> PAGE_CACHE_SHIFT;
323 	loff = *ppos & ~PAGE_CACHE_MASK;
324 	req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
325 	nr_pages = min(req_pages, pipe->buffers);
326 
327 	/*
328 	 * Lookup the (hopefully) full range of pages we need.
329 	 */
330 	spd.nr_pages = find_get_pages_contig(mapping, index, nr_pages, spd.pages);
331 	index += spd.nr_pages;
332 
333 	/*
334 	 * If find_get_pages_contig() returned fewer pages than we needed,
335 	 * readahead/allocate the rest and fill in the holes.
336 	 */
337 	if (spd.nr_pages < nr_pages)
338 		page_cache_sync_readahead(mapping, &in->f_ra, in,
339 				index, req_pages - spd.nr_pages);
340 
341 	error = 0;
342 	while (spd.nr_pages < nr_pages) {
343 		/*
344 		 * Page could be there, find_get_pages_contig() breaks on
345 		 * the first hole.
346 		 */
347 		page = find_get_page(mapping, index);
348 		if (!page) {
349 			/*
350 			 * page didn't exist, allocate one.
351 			 */
352 			page = page_cache_alloc_cold(mapping);
353 			if (!page)
354 				break;
355 
356 			error = add_to_page_cache_lru(page, mapping, index,
357 						GFP_KERNEL);
358 			if (unlikely(error)) {
359 				page_cache_release(page);
360 				if (error == -EEXIST)
361 					continue;
362 				break;
363 			}
364 			/*
365 			 * add_to_page_cache() locks the page, unlock it
366 			 * to avoid convoluting the logic below even more.
367 			 */
368 			unlock_page(page);
369 		}
370 
371 		spd.pages[spd.nr_pages++] = page;
372 		index++;
373 	}
374 
375 	/*
376 	 * Now loop over the map and see if we need to start IO on any
377 	 * pages, fill in the partial map, etc.
378 	 */
379 	index = *ppos >> PAGE_CACHE_SHIFT;
380 	nr_pages = spd.nr_pages;
381 	spd.nr_pages = 0;
382 	for (page_nr = 0; page_nr < nr_pages; page_nr++) {
383 		unsigned int this_len;
384 
385 		if (!len)
386 			break;
387 
388 		/*
389 		 * this_len is the max we'll use from this page
390 		 */
391 		this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
392 		page = spd.pages[page_nr];
393 
394 		if (PageReadahead(page))
395 			page_cache_async_readahead(mapping, &in->f_ra, in,
396 					page, index, req_pages - page_nr);
397 
398 		/*
399 		 * If the page isn't uptodate, we may need to start io on it
400 		 */
401 		if (!PageUptodate(page)) {
402 			lock_page(page);
403 
404 			/*
405 			 * Page was truncated, or invalidated by the
406 			 * filesystem.  Redo the find/create, but this time the
407 			 * page is kept locked, so there's no chance of another
408 			 * race with truncate/invalidate.
409 			 */
410 			if (!page->mapping) {
411 				unlock_page(page);
412 				page = find_or_create_page(mapping, index,
413 						mapping_gfp_mask(mapping));
414 
415 				if (!page) {
416 					error = -ENOMEM;
417 					break;
418 				}
419 				page_cache_release(spd.pages[page_nr]);
420 				spd.pages[page_nr] = page;
421 			}
422 			/*
423 			 * page was already under io and is now done, great
424 			 */
425 			if (PageUptodate(page)) {
426 				unlock_page(page);
427 				goto fill_it;
428 			}
429 
430 			/*
431 			 * need to read in the page
432 			 */
433 			error = mapping->a_ops->readpage(in, page);
434 			if (unlikely(error)) {
435 				/*
436 				 * We really should re-lookup the page here,
437 				 * but it complicates things a lot. Instead
438 				 * lets just do what we already stored, and
439 				 * we'll get it the next time we are called.
440 				 */
441 				if (error == AOP_TRUNCATED_PAGE)
442 					error = 0;
443 
444 				break;
445 			}
446 		}
447 fill_it:
448 		/*
449 		 * i_size must be checked after PageUptodate.
450 		 */
451 		isize = i_size_read(mapping->host);
452 		end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
453 		if (unlikely(!isize || index > end_index))
454 			break;
455 
456 		/*
457 		 * if this is the last page, see if we need to shrink
458 		 * the length and stop
459 		 */
460 		if (end_index == index) {
461 			unsigned int plen;
462 
463 			/*
464 			 * max good bytes in this page
465 			 */
466 			plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
467 			if (plen <= loff)
468 				break;
469 
470 			/*
471 			 * force quit after adding this page
472 			 */
473 			this_len = min(this_len, plen - loff);
474 			len = this_len;
475 		}
476 
477 		spd.partial[page_nr].offset = loff;
478 		spd.partial[page_nr].len = this_len;
479 		len -= this_len;
480 		loff = 0;
481 		spd.nr_pages++;
482 		index++;
483 	}
484 
485 	/*
486 	 * Release any pages at the end, if we quit early. 'page_nr' is how far
487 	 * we got, 'nr_pages' is how many pages are in the map.
488 	 */
489 	while (page_nr < nr_pages)
490 		page_cache_release(spd.pages[page_nr++]);
491 	in->f_ra.prev_pos = (loff_t)index << PAGE_CACHE_SHIFT;
492 
493 	if (spd.nr_pages)
494 		error = splice_to_pipe(pipe, &spd);
495 
496 	splice_shrink_spd(pipe, &spd);
497 	return error;
498 }
499 
500 /**
501  * generic_file_splice_read - splice data from file to a pipe
502  * @in:		file to splice from
503  * @ppos:	position in @in
504  * @pipe:	pipe to splice to
505  * @len:	number of bytes to splice
506  * @flags:	splice modifier flags
507  *
508  * Description:
509  *    Will read pages from given file and fill them into a pipe. Can be
510  *    used as long as the address_space operations for the source implements
511  *    a readpage() hook.
512  *
513  */
514 ssize_t generic_file_splice_read(struct file *in, loff_t *ppos,
515 				 struct pipe_inode_info *pipe, size_t len,
516 				 unsigned int flags)
517 {
518 	loff_t isize, left;
519 	int ret;
520 
521 	isize = i_size_read(in->f_mapping->host);
522 	if (unlikely(*ppos >= isize))
523 		return 0;
524 
525 	left = isize - *ppos;
526 	if (unlikely(left < len))
527 		len = left;
528 
529 	ret = __generic_file_splice_read(in, ppos, pipe, len, flags);
530 	if (ret > 0) {
531 		*ppos += ret;
532 		file_accessed(in);
533 	}
534 
535 	return ret;
536 }
537 EXPORT_SYMBOL(generic_file_splice_read);
538 
539 static const struct pipe_buf_operations default_pipe_buf_ops = {
540 	.can_merge = 0,
541 	.map = generic_pipe_buf_map,
542 	.unmap = generic_pipe_buf_unmap,
543 	.confirm = generic_pipe_buf_confirm,
544 	.release = generic_pipe_buf_release,
545 	.steal = generic_pipe_buf_steal,
546 	.get = generic_pipe_buf_get,
547 };
548 
549 static ssize_t kernel_readv(struct file *file, const struct iovec *vec,
550 			    unsigned long vlen, loff_t offset)
551 {
552 	mm_segment_t old_fs;
553 	loff_t pos = offset;
554 	ssize_t res;
555 
556 	old_fs = get_fs();
557 	set_fs(get_ds());
558 	/* The cast to a user pointer is valid due to the set_fs() */
559 	res = vfs_readv(file, (const struct iovec __user *)vec, vlen, &pos);
560 	set_fs(old_fs);
561 
562 	return res;
563 }
564 
565 static ssize_t kernel_write(struct file *file, const char *buf, size_t count,
566 			    loff_t pos)
567 {
568 	mm_segment_t old_fs;
569 	ssize_t res;
570 
571 	old_fs = get_fs();
572 	set_fs(get_ds());
573 	/* The cast to a user pointer is valid due to the set_fs() */
574 	res = vfs_write(file, (const char __user *)buf, count, &pos);
575 	set_fs(old_fs);
576 
577 	return res;
578 }
579 
580 ssize_t default_file_splice_read(struct file *in, loff_t *ppos,
581 				 struct pipe_inode_info *pipe, size_t len,
582 				 unsigned int flags)
583 {
584 	unsigned int nr_pages;
585 	unsigned int nr_freed;
586 	size_t offset;
587 	struct page *pages[PIPE_DEF_BUFFERS];
588 	struct partial_page partial[PIPE_DEF_BUFFERS];
589 	struct iovec *vec, __vec[PIPE_DEF_BUFFERS];
590 	ssize_t res;
591 	size_t this_len;
592 	int error;
593 	int i;
594 	struct splice_pipe_desc spd = {
595 		.pages = pages,
596 		.partial = partial,
597 		.flags = flags,
598 		.ops = &default_pipe_buf_ops,
599 		.spd_release = spd_release_page,
600 	};
601 
602 	if (splice_grow_spd(pipe, &spd))
603 		return -ENOMEM;
604 
605 	res = -ENOMEM;
606 	vec = __vec;
607 	if (pipe->buffers > PIPE_DEF_BUFFERS) {
608 		vec = kmalloc(pipe->buffers * sizeof(struct iovec), GFP_KERNEL);
609 		if (!vec)
610 			goto shrink_ret;
611 	}
612 
613 	offset = *ppos & ~PAGE_CACHE_MASK;
614 	nr_pages = (len + offset + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
615 
616 	for (i = 0; i < nr_pages && i < pipe->buffers && len; i++) {
617 		struct page *page;
618 
619 		page = alloc_page(GFP_USER);
620 		error = -ENOMEM;
621 		if (!page)
622 			goto err;
623 
624 		this_len = min_t(size_t, len, PAGE_CACHE_SIZE - offset);
625 		vec[i].iov_base = (void __user *) page_address(page);
626 		vec[i].iov_len = this_len;
627 		spd.pages[i] = page;
628 		spd.nr_pages++;
629 		len -= this_len;
630 		offset = 0;
631 	}
632 
633 	res = kernel_readv(in, vec, spd.nr_pages, *ppos);
634 	if (res < 0) {
635 		error = res;
636 		goto err;
637 	}
638 
639 	error = 0;
640 	if (!res)
641 		goto err;
642 
643 	nr_freed = 0;
644 	for (i = 0; i < spd.nr_pages; i++) {
645 		this_len = min_t(size_t, vec[i].iov_len, res);
646 		spd.partial[i].offset = 0;
647 		spd.partial[i].len = this_len;
648 		if (!this_len) {
649 			__free_page(spd.pages[i]);
650 			spd.pages[i] = NULL;
651 			nr_freed++;
652 		}
653 		res -= this_len;
654 	}
655 	spd.nr_pages -= nr_freed;
656 
657 	res = splice_to_pipe(pipe, &spd);
658 	if (res > 0)
659 		*ppos += res;
660 
661 shrink_ret:
662 	if (vec != __vec)
663 		kfree(vec);
664 	splice_shrink_spd(pipe, &spd);
665 	return res;
666 
667 err:
668 	for (i = 0; i < spd.nr_pages; i++)
669 		__free_page(spd.pages[i]);
670 
671 	res = error;
672 	goto shrink_ret;
673 }
674 EXPORT_SYMBOL(default_file_splice_read);
675 
676 /*
677  * Send 'sd->len' bytes to socket from 'sd->file' at position 'sd->pos'
678  * using sendpage(). Return the number of bytes sent.
679  */
680 static int pipe_to_sendpage(struct pipe_inode_info *pipe,
681 			    struct pipe_buffer *buf, struct splice_desc *sd)
682 {
683 	struct file *file = sd->u.file;
684 	loff_t pos = sd->pos;
685 	int more;
686 
687 	if (!likely(file->f_op && file->f_op->sendpage))
688 		return -EINVAL;
689 
690 	more = (sd->flags & SPLICE_F_MORE) || sd->len < sd->total_len;
691 	return file->f_op->sendpage(file, buf->page, buf->offset,
692 				    sd->len, &pos, more);
693 }
694 
695 /*
696  * This is a little more tricky than the file -> pipe splicing. There are
697  * basically three cases:
698  *
699  *	- Destination page already exists in the address space and there
700  *	  are users of it. For that case we have no other option that
701  *	  copying the data. Tough luck.
702  *	- Destination page already exists in the address space, but there
703  *	  are no users of it. Make sure it's uptodate, then drop it. Fall
704  *	  through to last case.
705  *	- Destination page does not exist, we can add the pipe page to
706  *	  the page cache and avoid the copy.
707  *
708  * If asked to move pages to the output file (SPLICE_F_MOVE is set in
709  * sd->flags), we attempt to migrate pages from the pipe to the output
710  * file address space page cache. This is possible if no one else has
711  * the pipe page referenced outside of the pipe and page cache. If
712  * SPLICE_F_MOVE isn't set, or we cannot move the page, we simply create
713  * a new page in the output file page cache and fill/dirty that.
714  */
715 int pipe_to_file(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
716 		 struct splice_desc *sd)
717 {
718 	struct file *file = sd->u.file;
719 	struct address_space *mapping = file->f_mapping;
720 	unsigned int offset, this_len;
721 	struct page *page;
722 	void *fsdata;
723 	int ret;
724 
725 	offset = sd->pos & ~PAGE_CACHE_MASK;
726 
727 	this_len = sd->len;
728 	if (this_len + offset > PAGE_CACHE_SIZE)
729 		this_len = PAGE_CACHE_SIZE - offset;
730 
731 	ret = pagecache_write_begin(file, mapping, sd->pos, this_len,
732 				AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
733 	if (unlikely(ret))
734 		goto out;
735 
736 	if (buf->page != page) {
737 		/*
738 		 * Careful, ->map() uses KM_USER0!
739 		 */
740 		char *src = buf->ops->map(pipe, buf, 1);
741 		char *dst = kmap_atomic(page, KM_USER1);
742 
743 		memcpy(dst + offset, src + buf->offset, this_len);
744 		flush_dcache_page(page);
745 		kunmap_atomic(dst, KM_USER1);
746 		buf->ops->unmap(pipe, buf, src);
747 	}
748 	ret = pagecache_write_end(file, mapping, sd->pos, this_len, this_len,
749 				page, fsdata);
750 out:
751 	return ret;
752 }
753 EXPORT_SYMBOL(pipe_to_file);
754 
755 static void wakeup_pipe_writers(struct pipe_inode_info *pipe)
756 {
757 	smp_mb();
758 	if (waitqueue_active(&pipe->wait))
759 		wake_up_interruptible(&pipe->wait);
760 	kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
761 }
762 
763 /**
764  * splice_from_pipe_feed - feed available data from a pipe to a file
765  * @pipe:	pipe to splice from
766  * @sd:		information to @actor
767  * @actor:	handler that splices the data
768  *
769  * Description:
770  *    This function loops over the pipe and calls @actor to do the
771  *    actual moving of a single struct pipe_buffer to the desired
772  *    destination.  It returns when there's no more buffers left in
773  *    the pipe or if the requested number of bytes (@sd->total_len)
774  *    have been copied.  It returns a positive number (one) if the
775  *    pipe needs to be filled with more data, zero if the required
776  *    number of bytes have been copied and -errno on error.
777  *
778  *    This, together with splice_from_pipe_{begin,end,next}, may be
779  *    used to implement the functionality of __splice_from_pipe() when
780  *    locking is required around copying the pipe buffers to the
781  *    destination.
782  */
783 int splice_from_pipe_feed(struct pipe_inode_info *pipe, struct splice_desc *sd,
784 			  splice_actor *actor)
785 {
786 	int ret;
787 
788 	while (pipe->nrbufs) {
789 		struct pipe_buffer *buf = pipe->bufs + pipe->curbuf;
790 		const struct pipe_buf_operations *ops = buf->ops;
791 
792 		sd->len = buf->len;
793 		if (sd->len > sd->total_len)
794 			sd->len = sd->total_len;
795 
796 		ret = buf->ops->confirm(pipe, buf);
797 		if (unlikely(ret)) {
798 			if (ret == -ENODATA)
799 				ret = 0;
800 			return ret;
801 		}
802 
803 		ret = actor(pipe, buf, sd);
804 		if (ret <= 0)
805 			return ret;
806 
807 		buf->offset += ret;
808 		buf->len -= ret;
809 
810 		sd->num_spliced += ret;
811 		sd->len -= ret;
812 		sd->pos += ret;
813 		sd->total_len -= ret;
814 
815 		if (!buf->len) {
816 			buf->ops = NULL;
817 			ops->release(pipe, buf);
818 			pipe->curbuf = (pipe->curbuf + 1) & (pipe->buffers - 1);
819 			pipe->nrbufs--;
820 			if (pipe->inode)
821 				sd->need_wakeup = true;
822 		}
823 
824 		if (!sd->total_len)
825 			return 0;
826 	}
827 
828 	return 1;
829 }
830 EXPORT_SYMBOL(splice_from_pipe_feed);
831 
832 /**
833  * splice_from_pipe_next - wait for some data to splice from
834  * @pipe:	pipe to splice from
835  * @sd:		information about the splice operation
836  *
837  * Description:
838  *    This function will wait for some data and return a positive
839  *    value (one) if pipe buffers are available.  It will return zero
840  *    or -errno if no more data needs to be spliced.
841  */
842 int splice_from_pipe_next(struct pipe_inode_info *pipe, struct splice_desc *sd)
843 {
844 	while (!pipe->nrbufs) {
845 		if (!pipe->writers)
846 			return 0;
847 
848 		if (!pipe->waiting_writers && sd->num_spliced)
849 			return 0;
850 
851 		if (sd->flags & SPLICE_F_NONBLOCK)
852 			return -EAGAIN;
853 
854 		if (signal_pending(current))
855 			return -ERESTARTSYS;
856 
857 		if (sd->need_wakeup) {
858 			wakeup_pipe_writers(pipe);
859 			sd->need_wakeup = false;
860 		}
861 
862 		pipe_wait(pipe);
863 	}
864 
865 	return 1;
866 }
867 EXPORT_SYMBOL(splice_from_pipe_next);
868 
869 /**
870  * splice_from_pipe_begin - start splicing from pipe
871  * @sd:		information about the splice operation
872  *
873  * Description:
874  *    This function should be called before a loop containing
875  *    splice_from_pipe_next() and splice_from_pipe_feed() to
876  *    initialize the necessary fields of @sd.
877  */
878 void splice_from_pipe_begin(struct splice_desc *sd)
879 {
880 	sd->num_spliced = 0;
881 	sd->need_wakeup = false;
882 }
883 EXPORT_SYMBOL(splice_from_pipe_begin);
884 
885 /**
886  * splice_from_pipe_end - finish splicing from pipe
887  * @pipe:	pipe to splice from
888  * @sd:		information about the splice operation
889  *
890  * Description:
891  *    This function will wake up pipe writers if necessary.  It should
892  *    be called after a loop containing splice_from_pipe_next() and
893  *    splice_from_pipe_feed().
894  */
895 void splice_from_pipe_end(struct pipe_inode_info *pipe, struct splice_desc *sd)
896 {
897 	if (sd->need_wakeup)
898 		wakeup_pipe_writers(pipe);
899 }
900 EXPORT_SYMBOL(splice_from_pipe_end);
901 
902 /**
903  * __splice_from_pipe - splice data from a pipe to given actor
904  * @pipe:	pipe to splice from
905  * @sd:		information to @actor
906  * @actor:	handler that splices the data
907  *
908  * Description:
909  *    This function does little more than loop over the pipe and call
910  *    @actor to do the actual moving of a single struct pipe_buffer to
911  *    the desired destination. See pipe_to_file, pipe_to_sendpage, or
912  *    pipe_to_user.
913  *
914  */
915 ssize_t __splice_from_pipe(struct pipe_inode_info *pipe, struct splice_desc *sd,
916 			   splice_actor *actor)
917 {
918 	int ret;
919 
920 	splice_from_pipe_begin(sd);
921 	do {
922 		ret = splice_from_pipe_next(pipe, sd);
923 		if (ret > 0)
924 			ret = splice_from_pipe_feed(pipe, sd, actor);
925 	} while (ret > 0);
926 	splice_from_pipe_end(pipe, sd);
927 
928 	return sd->num_spliced ? sd->num_spliced : ret;
929 }
930 EXPORT_SYMBOL(__splice_from_pipe);
931 
932 /**
933  * splice_from_pipe - splice data from a pipe to a file
934  * @pipe:	pipe to splice from
935  * @out:	file to splice to
936  * @ppos:	position in @out
937  * @len:	how many bytes to splice
938  * @flags:	splice modifier flags
939  * @actor:	handler that splices the data
940  *
941  * Description:
942  *    See __splice_from_pipe. This function locks the pipe inode,
943  *    otherwise it's identical to __splice_from_pipe().
944  *
945  */
946 ssize_t splice_from_pipe(struct pipe_inode_info *pipe, struct file *out,
947 			 loff_t *ppos, size_t len, unsigned int flags,
948 			 splice_actor *actor)
949 {
950 	ssize_t ret;
951 	struct splice_desc sd = {
952 		.total_len = len,
953 		.flags = flags,
954 		.pos = *ppos,
955 		.u.file = out,
956 	};
957 
958 	pipe_lock(pipe);
959 	ret = __splice_from_pipe(pipe, &sd, actor);
960 	pipe_unlock(pipe);
961 
962 	return ret;
963 }
964 
965 /**
966  * generic_file_splice_write - splice data from a pipe to a file
967  * @pipe:	pipe info
968  * @out:	file to write to
969  * @ppos:	position in @out
970  * @len:	number of bytes to splice
971  * @flags:	splice modifier flags
972  *
973  * Description:
974  *    Will either move or copy pages (determined by @flags options) from
975  *    the given pipe inode to the given file.
976  *
977  */
978 ssize_t
979 generic_file_splice_write(struct pipe_inode_info *pipe, struct file *out,
980 			  loff_t *ppos, size_t len, unsigned int flags)
981 {
982 	struct address_space *mapping = out->f_mapping;
983 	struct inode *inode = mapping->host;
984 	struct splice_desc sd = {
985 		.total_len = len,
986 		.flags = flags,
987 		.pos = *ppos,
988 		.u.file = out,
989 	};
990 	ssize_t ret;
991 
992 	pipe_lock(pipe);
993 
994 	splice_from_pipe_begin(&sd);
995 	do {
996 		ret = splice_from_pipe_next(pipe, &sd);
997 		if (ret <= 0)
998 			break;
999 
1000 		mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
1001 		ret = file_remove_suid(out);
1002 		if (!ret) {
1003 			file_update_time(out);
1004 			ret = splice_from_pipe_feed(pipe, &sd, pipe_to_file);
1005 		}
1006 		mutex_unlock(&inode->i_mutex);
1007 	} while (ret > 0);
1008 	splice_from_pipe_end(pipe, &sd);
1009 
1010 	pipe_unlock(pipe);
1011 
1012 	if (sd.num_spliced)
1013 		ret = sd.num_spliced;
1014 
1015 	if (ret > 0) {
1016 		unsigned long nr_pages;
1017 		int err;
1018 
1019 		nr_pages = (ret + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1020 
1021 		err = generic_write_sync(out, *ppos, ret);
1022 		if (err)
1023 			ret = err;
1024 		else
1025 			*ppos += ret;
1026 		balance_dirty_pages_ratelimited_nr(mapping, nr_pages);
1027 	}
1028 
1029 	return ret;
1030 }
1031 
1032 EXPORT_SYMBOL(generic_file_splice_write);
1033 
1034 static int write_pipe_buf(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1035 			  struct splice_desc *sd)
1036 {
1037 	int ret;
1038 	void *data;
1039 
1040 	data = buf->ops->map(pipe, buf, 0);
1041 	ret = kernel_write(sd->u.file, data + buf->offset, sd->len, sd->pos);
1042 	buf->ops->unmap(pipe, buf, data);
1043 
1044 	return ret;
1045 }
1046 
1047 static ssize_t default_file_splice_write(struct pipe_inode_info *pipe,
1048 					 struct file *out, loff_t *ppos,
1049 					 size_t len, unsigned int flags)
1050 {
1051 	ssize_t ret;
1052 
1053 	ret = splice_from_pipe(pipe, out, ppos, len, flags, write_pipe_buf);
1054 	if (ret > 0)
1055 		*ppos += ret;
1056 
1057 	return ret;
1058 }
1059 
1060 /**
1061  * generic_splice_sendpage - splice data from a pipe to a socket
1062  * @pipe:	pipe to splice from
1063  * @out:	socket to write to
1064  * @ppos:	position in @out
1065  * @len:	number of bytes to splice
1066  * @flags:	splice modifier flags
1067  *
1068  * Description:
1069  *    Will send @len bytes from the pipe to a network socket. No data copying
1070  *    is involved.
1071  *
1072  */
1073 ssize_t generic_splice_sendpage(struct pipe_inode_info *pipe, struct file *out,
1074 				loff_t *ppos, size_t len, unsigned int flags)
1075 {
1076 	return splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_sendpage);
1077 }
1078 
1079 EXPORT_SYMBOL(generic_splice_sendpage);
1080 
1081 /*
1082  * Attempt to initiate a splice from pipe to file.
1083  */
1084 static long do_splice_from(struct pipe_inode_info *pipe, struct file *out,
1085 			   loff_t *ppos, size_t len, unsigned int flags)
1086 {
1087 	ssize_t (*splice_write)(struct pipe_inode_info *, struct file *,
1088 				loff_t *, size_t, unsigned int);
1089 	int ret;
1090 
1091 	if (unlikely(!(out->f_mode & FMODE_WRITE)))
1092 		return -EBADF;
1093 
1094 	if (unlikely(out->f_flags & O_APPEND))
1095 		return -EINVAL;
1096 
1097 	ret = rw_verify_area(WRITE, out, ppos, len);
1098 	if (unlikely(ret < 0))
1099 		return ret;
1100 
1101 	if (out->f_op && out->f_op->splice_write)
1102 		splice_write = out->f_op->splice_write;
1103 	else
1104 		splice_write = default_file_splice_write;
1105 
1106 	return splice_write(pipe, out, ppos, len, flags);
1107 }
1108 
1109 /*
1110  * Attempt to initiate a splice from a file to a pipe.
1111  */
1112 static long do_splice_to(struct file *in, loff_t *ppos,
1113 			 struct pipe_inode_info *pipe, size_t len,
1114 			 unsigned int flags)
1115 {
1116 	ssize_t (*splice_read)(struct file *, loff_t *,
1117 			       struct pipe_inode_info *, size_t, unsigned int);
1118 	int ret;
1119 
1120 	if (unlikely(!(in->f_mode & FMODE_READ)))
1121 		return -EBADF;
1122 
1123 	ret = rw_verify_area(READ, in, ppos, len);
1124 	if (unlikely(ret < 0))
1125 		return ret;
1126 
1127 	if (in->f_op && in->f_op->splice_read)
1128 		splice_read = in->f_op->splice_read;
1129 	else
1130 		splice_read = default_file_splice_read;
1131 
1132 	return splice_read(in, ppos, pipe, len, flags);
1133 }
1134 
1135 /**
1136  * splice_direct_to_actor - splices data directly between two non-pipes
1137  * @in:		file to splice from
1138  * @sd:		actor information on where to splice to
1139  * @actor:	handles the data splicing
1140  *
1141  * Description:
1142  *    This is a special case helper to splice directly between two
1143  *    points, without requiring an explicit pipe. Internally an allocated
1144  *    pipe is cached in the process, and reused during the lifetime of
1145  *    that process.
1146  *
1147  */
1148 ssize_t splice_direct_to_actor(struct file *in, struct splice_desc *sd,
1149 			       splice_direct_actor *actor)
1150 {
1151 	struct pipe_inode_info *pipe;
1152 	long ret, bytes;
1153 	umode_t i_mode;
1154 	size_t len;
1155 	int i, flags;
1156 
1157 	/*
1158 	 * We require the input being a regular file, as we don't want to
1159 	 * randomly drop data for eg socket -> socket splicing. Use the
1160 	 * piped splicing for that!
1161 	 */
1162 	i_mode = in->f_path.dentry->d_inode->i_mode;
1163 	if (unlikely(!S_ISREG(i_mode) && !S_ISBLK(i_mode)))
1164 		return -EINVAL;
1165 
1166 	/*
1167 	 * neither in nor out is a pipe, setup an internal pipe attached to
1168 	 * 'out' and transfer the wanted data from 'in' to 'out' through that
1169 	 */
1170 	pipe = current->splice_pipe;
1171 	if (unlikely(!pipe)) {
1172 		pipe = alloc_pipe_info(NULL);
1173 		if (!pipe)
1174 			return -ENOMEM;
1175 
1176 		/*
1177 		 * We don't have an immediate reader, but we'll read the stuff
1178 		 * out of the pipe right after the splice_to_pipe(). So set
1179 		 * PIPE_READERS appropriately.
1180 		 */
1181 		pipe->readers = 1;
1182 
1183 		current->splice_pipe = pipe;
1184 	}
1185 
1186 	/*
1187 	 * Do the splice.
1188 	 */
1189 	ret = 0;
1190 	bytes = 0;
1191 	len = sd->total_len;
1192 	flags = sd->flags;
1193 
1194 	/*
1195 	 * Don't block on output, we have to drain the direct pipe.
1196 	 */
1197 	sd->flags &= ~SPLICE_F_NONBLOCK;
1198 
1199 	while (len) {
1200 		size_t read_len;
1201 		loff_t pos = sd->pos, prev_pos = pos;
1202 
1203 		ret = do_splice_to(in, &pos, pipe, len, flags);
1204 		if (unlikely(ret <= 0))
1205 			goto out_release;
1206 
1207 		read_len = ret;
1208 		sd->total_len = read_len;
1209 
1210 		/*
1211 		 * NOTE: nonblocking mode only applies to the input. We
1212 		 * must not do the output in nonblocking mode as then we
1213 		 * could get stuck data in the internal pipe:
1214 		 */
1215 		ret = actor(pipe, sd);
1216 		if (unlikely(ret <= 0)) {
1217 			sd->pos = prev_pos;
1218 			goto out_release;
1219 		}
1220 
1221 		bytes += ret;
1222 		len -= ret;
1223 		sd->pos = pos;
1224 
1225 		if (ret < read_len) {
1226 			sd->pos = prev_pos + ret;
1227 			goto out_release;
1228 		}
1229 	}
1230 
1231 done:
1232 	pipe->nrbufs = pipe->curbuf = 0;
1233 	file_accessed(in);
1234 	return bytes;
1235 
1236 out_release:
1237 	/*
1238 	 * If we did an incomplete transfer we must release
1239 	 * the pipe buffers in question:
1240 	 */
1241 	for (i = 0; i < pipe->buffers; i++) {
1242 		struct pipe_buffer *buf = pipe->bufs + i;
1243 
1244 		if (buf->ops) {
1245 			buf->ops->release(pipe, buf);
1246 			buf->ops = NULL;
1247 		}
1248 	}
1249 
1250 	if (!bytes)
1251 		bytes = ret;
1252 
1253 	goto done;
1254 }
1255 EXPORT_SYMBOL(splice_direct_to_actor);
1256 
1257 static int direct_splice_actor(struct pipe_inode_info *pipe,
1258 			       struct splice_desc *sd)
1259 {
1260 	struct file *file = sd->u.file;
1261 
1262 	return do_splice_from(pipe, file, &file->f_pos, sd->total_len,
1263 			      sd->flags);
1264 }
1265 
1266 /**
1267  * do_splice_direct - splices data directly between two files
1268  * @in:		file to splice from
1269  * @ppos:	input file offset
1270  * @out:	file to splice to
1271  * @len:	number of bytes to splice
1272  * @flags:	splice modifier flags
1273  *
1274  * Description:
1275  *    For use by do_sendfile(). splice can easily emulate sendfile, but
1276  *    doing it in the application would incur an extra system call
1277  *    (splice in + splice out, as compared to just sendfile()). So this helper
1278  *    can splice directly through a process-private pipe.
1279  *
1280  */
1281 long do_splice_direct(struct file *in, loff_t *ppos, struct file *out,
1282 		      size_t len, unsigned int flags)
1283 {
1284 	struct splice_desc sd = {
1285 		.len		= len,
1286 		.total_len	= len,
1287 		.flags		= flags,
1288 		.pos		= *ppos,
1289 		.u.file		= out,
1290 	};
1291 	long ret;
1292 
1293 	ret = splice_direct_to_actor(in, &sd, direct_splice_actor);
1294 	if (ret > 0)
1295 		*ppos = sd.pos;
1296 
1297 	return ret;
1298 }
1299 
1300 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1301 			       struct pipe_inode_info *opipe,
1302 			       size_t len, unsigned int flags);
1303 
1304 /*
1305  * Determine where to splice to/from.
1306  */
1307 static long do_splice(struct file *in, loff_t __user *off_in,
1308 		      struct file *out, loff_t __user *off_out,
1309 		      size_t len, unsigned int flags)
1310 {
1311 	struct pipe_inode_info *ipipe;
1312 	struct pipe_inode_info *opipe;
1313 	loff_t offset, *off;
1314 	long ret;
1315 
1316 	ipipe = get_pipe_info(in);
1317 	opipe = get_pipe_info(out);
1318 
1319 	if (ipipe && opipe) {
1320 		if (off_in || off_out)
1321 			return -ESPIPE;
1322 
1323 		if (!(in->f_mode & FMODE_READ))
1324 			return -EBADF;
1325 
1326 		if (!(out->f_mode & FMODE_WRITE))
1327 			return -EBADF;
1328 
1329 		/* Splicing to self would be fun, but... */
1330 		if (ipipe == opipe)
1331 			return -EINVAL;
1332 
1333 		return splice_pipe_to_pipe(ipipe, opipe, len, flags);
1334 	}
1335 
1336 	if (ipipe) {
1337 		if (off_in)
1338 			return -ESPIPE;
1339 		if (off_out) {
1340 			if (!(out->f_mode & FMODE_PWRITE))
1341 				return -EINVAL;
1342 			if (copy_from_user(&offset, off_out, sizeof(loff_t)))
1343 				return -EFAULT;
1344 			off = &offset;
1345 		} else
1346 			off = &out->f_pos;
1347 
1348 		ret = do_splice_from(ipipe, out, off, len, flags);
1349 
1350 		if (off_out && copy_to_user(off_out, off, sizeof(loff_t)))
1351 			ret = -EFAULT;
1352 
1353 		return ret;
1354 	}
1355 
1356 	if (opipe) {
1357 		if (off_out)
1358 			return -ESPIPE;
1359 		if (off_in) {
1360 			if (!(in->f_mode & FMODE_PREAD))
1361 				return -EINVAL;
1362 			if (copy_from_user(&offset, off_in, sizeof(loff_t)))
1363 				return -EFAULT;
1364 			off = &offset;
1365 		} else
1366 			off = &in->f_pos;
1367 
1368 		ret = do_splice_to(in, off, opipe, len, flags);
1369 
1370 		if (off_in && copy_to_user(off_in, off, sizeof(loff_t)))
1371 			ret = -EFAULT;
1372 
1373 		return ret;
1374 	}
1375 
1376 	return -EINVAL;
1377 }
1378 
1379 /*
1380  * Map an iov into an array of pages and offset/length tupples. With the
1381  * partial_page structure, we can map several non-contiguous ranges into
1382  * our ones pages[] map instead of splitting that operation into pieces.
1383  * Could easily be exported as a generic helper for other users, in which
1384  * case one would probably want to add a 'max_nr_pages' parameter as well.
1385  */
1386 static int get_iovec_page_array(const struct iovec __user *iov,
1387 				unsigned int nr_vecs, struct page **pages,
1388 				struct partial_page *partial, int aligned,
1389 				unsigned int pipe_buffers)
1390 {
1391 	int buffers = 0, error = 0;
1392 
1393 	while (nr_vecs) {
1394 		unsigned long off, npages;
1395 		struct iovec entry;
1396 		void __user *base;
1397 		size_t len;
1398 		int i;
1399 
1400 		error = -EFAULT;
1401 		if (copy_from_user(&entry, iov, sizeof(entry)))
1402 			break;
1403 
1404 		base = entry.iov_base;
1405 		len = entry.iov_len;
1406 
1407 		/*
1408 		 * Sanity check this iovec. 0 read succeeds.
1409 		 */
1410 		error = 0;
1411 		if (unlikely(!len))
1412 			break;
1413 		error = -EFAULT;
1414 		if (!access_ok(VERIFY_READ, base, len))
1415 			break;
1416 
1417 		/*
1418 		 * Get this base offset and number of pages, then map
1419 		 * in the user pages.
1420 		 */
1421 		off = (unsigned long) base & ~PAGE_MASK;
1422 
1423 		/*
1424 		 * If asked for alignment, the offset must be zero and the
1425 		 * length a multiple of the PAGE_SIZE.
1426 		 */
1427 		error = -EINVAL;
1428 		if (aligned && (off || len & ~PAGE_MASK))
1429 			break;
1430 
1431 		npages = (off + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1432 		if (npages > pipe_buffers - buffers)
1433 			npages = pipe_buffers - buffers;
1434 
1435 		error = get_user_pages_fast((unsigned long)base, npages,
1436 					0, &pages[buffers]);
1437 
1438 		if (unlikely(error <= 0))
1439 			break;
1440 
1441 		/*
1442 		 * Fill this contiguous range into the partial page map.
1443 		 */
1444 		for (i = 0; i < error; i++) {
1445 			const int plen = min_t(size_t, len, PAGE_SIZE - off);
1446 
1447 			partial[buffers].offset = off;
1448 			partial[buffers].len = plen;
1449 
1450 			off = 0;
1451 			len -= plen;
1452 			buffers++;
1453 		}
1454 
1455 		/*
1456 		 * We didn't complete this iov, stop here since it probably
1457 		 * means we have to move some of this into a pipe to
1458 		 * be able to continue.
1459 		 */
1460 		if (len)
1461 			break;
1462 
1463 		/*
1464 		 * Don't continue if we mapped fewer pages than we asked for,
1465 		 * or if we mapped the max number of pages that we have
1466 		 * room for.
1467 		 */
1468 		if (error < npages || buffers == pipe_buffers)
1469 			break;
1470 
1471 		nr_vecs--;
1472 		iov++;
1473 	}
1474 
1475 	if (buffers)
1476 		return buffers;
1477 
1478 	return error;
1479 }
1480 
1481 static int pipe_to_user(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1482 			struct splice_desc *sd)
1483 {
1484 	char *src;
1485 	int ret;
1486 
1487 	/*
1488 	 * See if we can use the atomic maps, by prefaulting in the
1489 	 * pages and doing an atomic copy
1490 	 */
1491 	if (!fault_in_pages_writeable(sd->u.userptr, sd->len)) {
1492 		src = buf->ops->map(pipe, buf, 1);
1493 		ret = __copy_to_user_inatomic(sd->u.userptr, src + buf->offset,
1494 							sd->len);
1495 		buf->ops->unmap(pipe, buf, src);
1496 		if (!ret) {
1497 			ret = sd->len;
1498 			goto out;
1499 		}
1500 	}
1501 
1502 	/*
1503 	 * No dice, use slow non-atomic map and copy
1504  	 */
1505 	src = buf->ops->map(pipe, buf, 0);
1506 
1507 	ret = sd->len;
1508 	if (copy_to_user(sd->u.userptr, src + buf->offset, sd->len))
1509 		ret = -EFAULT;
1510 
1511 	buf->ops->unmap(pipe, buf, src);
1512 out:
1513 	if (ret > 0)
1514 		sd->u.userptr += ret;
1515 	return ret;
1516 }
1517 
1518 /*
1519  * For lack of a better implementation, implement vmsplice() to userspace
1520  * as a simple copy of the pipes pages to the user iov.
1521  */
1522 static long vmsplice_to_user(struct file *file, const struct iovec __user *iov,
1523 			     unsigned long nr_segs, unsigned int flags)
1524 {
1525 	struct pipe_inode_info *pipe;
1526 	struct splice_desc sd;
1527 	ssize_t size;
1528 	int error;
1529 	long ret;
1530 
1531 	pipe = get_pipe_info(file);
1532 	if (!pipe)
1533 		return -EBADF;
1534 
1535 	pipe_lock(pipe);
1536 
1537 	error = ret = 0;
1538 	while (nr_segs) {
1539 		void __user *base;
1540 		size_t len;
1541 
1542 		/*
1543 		 * Get user address base and length for this iovec.
1544 		 */
1545 		error = get_user(base, &iov->iov_base);
1546 		if (unlikely(error))
1547 			break;
1548 		error = get_user(len, &iov->iov_len);
1549 		if (unlikely(error))
1550 			break;
1551 
1552 		/*
1553 		 * Sanity check this iovec. 0 read succeeds.
1554 		 */
1555 		if (unlikely(!len))
1556 			break;
1557 		if (unlikely(!base)) {
1558 			error = -EFAULT;
1559 			break;
1560 		}
1561 
1562 		if (unlikely(!access_ok(VERIFY_WRITE, base, len))) {
1563 			error = -EFAULT;
1564 			break;
1565 		}
1566 
1567 		sd.len = 0;
1568 		sd.total_len = len;
1569 		sd.flags = flags;
1570 		sd.u.userptr = base;
1571 		sd.pos = 0;
1572 
1573 		size = __splice_from_pipe(pipe, &sd, pipe_to_user);
1574 		if (size < 0) {
1575 			if (!ret)
1576 				ret = size;
1577 
1578 			break;
1579 		}
1580 
1581 		ret += size;
1582 
1583 		if (size < len)
1584 			break;
1585 
1586 		nr_segs--;
1587 		iov++;
1588 	}
1589 
1590 	pipe_unlock(pipe);
1591 
1592 	if (!ret)
1593 		ret = error;
1594 
1595 	return ret;
1596 }
1597 
1598 /*
1599  * vmsplice splices a user address range into a pipe. It can be thought of
1600  * as splice-from-memory, where the regular splice is splice-from-file (or
1601  * to file). In both cases the output is a pipe, naturally.
1602  */
1603 static long vmsplice_to_pipe(struct file *file, const struct iovec __user *iov,
1604 			     unsigned long nr_segs, unsigned int flags)
1605 {
1606 	struct pipe_inode_info *pipe;
1607 	struct page *pages[PIPE_DEF_BUFFERS];
1608 	struct partial_page partial[PIPE_DEF_BUFFERS];
1609 	struct splice_pipe_desc spd = {
1610 		.pages = pages,
1611 		.partial = partial,
1612 		.flags = flags,
1613 		.ops = &user_page_pipe_buf_ops,
1614 		.spd_release = spd_release_page,
1615 	};
1616 	long ret;
1617 
1618 	pipe = get_pipe_info(file);
1619 	if (!pipe)
1620 		return -EBADF;
1621 
1622 	if (splice_grow_spd(pipe, &spd))
1623 		return -ENOMEM;
1624 
1625 	spd.nr_pages = get_iovec_page_array(iov, nr_segs, spd.pages,
1626 					    spd.partial, flags & SPLICE_F_GIFT,
1627 					    pipe->buffers);
1628 	if (spd.nr_pages <= 0)
1629 		ret = spd.nr_pages;
1630 	else
1631 		ret = splice_to_pipe(pipe, &spd);
1632 
1633 	splice_shrink_spd(pipe, &spd);
1634 	return ret;
1635 }
1636 
1637 /*
1638  * Note that vmsplice only really supports true splicing _from_ user memory
1639  * to a pipe, not the other way around. Splicing from user memory is a simple
1640  * operation that can be supported without any funky alignment restrictions
1641  * or nasty vm tricks. We simply map in the user memory and fill them into
1642  * a pipe. The reverse isn't quite as easy, though. There are two possible
1643  * solutions for that:
1644  *
1645  *	- memcpy() the data internally, at which point we might as well just
1646  *	  do a regular read() on the buffer anyway.
1647  *	- Lots of nasty vm tricks, that are neither fast nor flexible (it
1648  *	  has restriction limitations on both ends of the pipe).
1649  *
1650  * Currently we punt and implement it as a normal copy, see pipe_to_user().
1651  *
1652  */
1653 SYSCALL_DEFINE4(vmsplice, int, fd, const struct iovec __user *, iov,
1654 		unsigned long, nr_segs, unsigned int, flags)
1655 {
1656 	struct file *file;
1657 	long error;
1658 	int fput;
1659 
1660 	if (unlikely(nr_segs > UIO_MAXIOV))
1661 		return -EINVAL;
1662 	else if (unlikely(!nr_segs))
1663 		return 0;
1664 
1665 	error = -EBADF;
1666 	file = fget_light(fd, &fput);
1667 	if (file) {
1668 		if (file->f_mode & FMODE_WRITE)
1669 			error = vmsplice_to_pipe(file, iov, nr_segs, flags);
1670 		else if (file->f_mode & FMODE_READ)
1671 			error = vmsplice_to_user(file, iov, nr_segs, flags);
1672 
1673 		fput_light(file, fput);
1674 	}
1675 
1676 	return error;
1677 }
1678 
1679 SYSCALL_DEFINE6(splice, int, fd_in, loff_t __user *, off_in,
1680 		int, fd_out, loff_t __user *, off_out,
1681 		size_t, len, unsigned int, flags)
1682 {
1683 	long error;
1684 	struct file *in, *out;
1685 	int fput_in, fput_out;
1686 
1687 	if (unlikely(!len))
1688 		return 0;
1689 
1690 	error = -EBADF;
1691 	in = fget_light(fd_in, &fput_in);
1692 	if (in) {
1693 		if (in->f_mode & FMODE_READ) {
1694 			out = fget_light(fd_out, &fput_out);
1695 			if (out) {
1696 				if (out->f_mode & FMODE_WRITE)
1697 					error = do_splice(in, off_in,
1698 							  out, off_out,
1699 							  len, flags);
1700 				fput_light(out, fput_out);
1701 			}
1702 		}
1703 
1704 		fput_light(in, fput_in);
1705 	}
1706 
1707 	return error;
1708 }
1709 
1710 /*
1711  * Make sure there's data to read. Wait for input if we can, otherwise
1712  * return an appropriate error.
1713  */
1714 static int ipipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1715 {
1716 	int ret;
1717 
1718 	/*
1719 	 * Check ->nrbufs without the inode lock first. This function
1720 	 * is speculative anyways, so missing one is ok.
1721 	 */
1722 	if (pipe->nrbufs)
1723 		return 0;
1724 
1725 	ret = 0;
1726 	pipe_lock(pipe);
1727 
1728 	while (!pipe->nrbufs) {
1729 		if (signal_pending(current)) {
1730 			ret = -ERESTARTSYS;
1731 			break;
1732 		}
1733 		if (!pipe->writers)
1734 			break;
1735 		if (!pipe->waiting_writers) {
1736 			if (flags & SPLICE_F_NONBLOCK) {
1737 				ret = -EAGAIN;
1738 				break;
1739 			}
1740 		}
1741 		pipe_wait(pipe);
1742 	}
1743 
1744 	pipe_unlock(pipe);
1745 	return ret;
1746 }
1747 
1748 /*
1749  * Make sure there's writeable room. Wait for room if we can, otherwise
1750  * return an appropriate error.
1751  */
1752 static int opipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1753 {
1754 	int ret;
1755 
1756 	/*
1757 	 * Check ->nrbufs without the inode lock first. This function
1758 	 * is speculative anyways, so missing one is ok.
1759 	 */
1760 	if (pipe->nrbufs < pipe->buffers)
1761 		return 0;
1762 
1763 	ret = 0;
1764 	pipe_lock(pipe);
1765 
1766 	while (pipe->nrbufs >= pipe->buffers) {
1767 		if (!pipe->readers) {
1768 			send_sig(SIGPIPE, current, 0);
1769 			ret = -EPIPE;
1770 			break;
1771 		}
1772 		if (flags & SPLICE_F_NONBLOCK) {
1773 			ret = -EAGAIN;
1774 			break;
1775 		}
1776 		if (signal_pending(current)) {
1777 			ret = -ERESTARTSYS;
1778 			break;
1779 		}
1780 		pipe->waiting_writers++;
1781 		pipe_wait(pipe);
1782 		pipe->waiting_writers--;
1783 	}
1784 
1785 	pipe_unlock(pipe);
1786 	return ret;
1787 }
1788 
1789 /*
1790  * Splice contents of ipipe to opipe.
1791  */
1792 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1793 			       struct pipe_inode_info *opipe,
1794 			       size_t len, unsigned int flags)
1795 {
1796 	struct pipe_buffer *ibuf, *obuf;
1797 	int ret = 0, nbuf;
1798 	bool input_wakeup = false;
1799 
1800 
1801 retry:
1802 	ret = ipipe_prep(ipipe, flags);
1803 	if (ret)
1804 		return ret;
1805 
1806 	ret = opipe_prep(opipe, flags);
1807 	if (ret)
1808 		return ret;
1809 
1810 	/*
1811 	 * Potential ABBA deadlock, work around it by ordering lock
1812 	 * grabbing by pipe info address. Otherwise two different processes
1813 	 * could deadlock (one doing tee from A -> B, the other from B -> A).
1814 	 */
1815 	pipe_double_lock(ipipe, opipe);
1816 
1817 	do {
1818 		if (!opipe->readers) {
1819 			send_sig(SIGPIPE, current, 0);
1820 			if (!ret)
1821 				ret = -EPIPE;
1822 			break;
1823 		}
1824 
1825 		if (!ipipe->nrbufs && !ipipe->writers)
1826 			break;
1827 
1828 		/*
1829 		 * Cannot make any progress, because either the input
1830 		 * pipe is empty or the output pipe is full.
1831 		 */
1832 		if (!ipipe->nrbufs || opipe->nrbufs >= opipe->buffers) {
1833 			/* Already processed some buffers, break */
1834 			if (ret)
1835 				break;
1836 
1837 			if (flags & SPLICE_F_NONBLOCK) {
1838 				ret = -EAGAIN;
1839 				break;
1840 			}
1841 
1842 			/*
1843 			 * We raced with another reader/writer and haven't
1844 			 * managed to process any buffers.  A zero return
1845 			 * value means EOF, so retry instead.
1846 			 */
1847 			pipe_unlock(ipipe);
1848 			pipe_unlock(opipe);
1849 			goto retry;
1850 		}
1851 
1852 		ibuf = ipipe->bufs + ipipe->curbuf;
1853 		nbuf = (opipe->curbuf + opipe->nrbufs) & (opipe->buffers - 1);
1854 		obuf = opipe->bufs + nbuf;
1855 
1856 		if (len >= ibuf->len) {
1857 			/*
1858 			 * Simply move the whole buffer from ipipe to opipe
1859 			 */
1860 			*obuf = *ibuf;
1861 			ibuf->ops = NULL;
1862 			opipe->nrbufs++;
1863 			ipipe->curbuf = (ipipe->curbuf + 1) & (ipipe->buffers - 1);
1864 			ipipe->nrbufs--;
1865 			input_wakeup = true;
1866 		} else {
1867 			/*
1868 			 * Get a reference to this pipe buffer,
1869 			 * so we can copy the contents over.
1870 			 */
1871 			ibuf->ops->get(ipipe, ibuf);
1872 			*obuf = *ibuf;
1873 
1874 			/*
1875 			 * Don't inherit the gift flag, we need to
1876 			 * prevent multiple steals of this page.
1877 			 */
1878 			obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1879 
1880 			obuf->len = len;
1881 			opipe->nrbufs++;
1882 			ibuf->offset += obuf->len;
1883 			ibuf->len -= obuf->len;
1884 		}
1885 		ret += obuf->len;
1886 		len -= obuf->len;
1887 	} while (len);
1888 
1889 	pipe_unlock(ipipe);
1890 	pipe_unlock(opipe);
1891 
1892 	/*
1893 	 * If we put data in the output pipe, wakeup any potential readers.
1894 	 */
1895 	if (ret > 0) {
1896 		smp_mb();
1897 		if (waitqueue_active(&opipe->wait))
1898 			wake_up_interruptible(&opipe->wait);
1899 		kill_fasync(&opipe->fasync_readers, SIGIO, POLL_IN);
1900 	}
1901 	if (input_wakeup)
1902 		wakeup_pipe_writers(ipipe);
1903 
1904 	return ret;
1905 }
1906 
1907 /*
1908  * Link contents of ipipe to opipe.
1909  */
1910 static int link_pipe(struct pipe_inode_info *ipipe,
1911 		     struct pipe_inode_info *opipe,
1912 		     size_t len, unsigned int flags)
1913 {
1914 	struct pipe_buffer *ibuf, *obuf;
1915 	int ret = 0, i = 0, nbuf;
1916 
1917 	/*
1918 	 * Potential ABBA deadlock, work around it by ordering lock
1919 	 * grabbing by pipe info address. Otherwise two different processes
1920 	 * could deadlock (one doing tee from A -> B, the other from B -> A).
1921 	 */
1922 	pipe_double_lock(ipipe, opipe);
1923 
1924 	do {
1925 		if (!opipe->readers) {
1926 			send_sig(SIGPIPE, current, 0);
1927 			if (!ret)
1928 				ret = -EPIPE;
1929 			break;
1930 		}
1931 
1932 		/*
1933 		 * If we have iterated all input buffers or ran out of
1934 		 * output room, break.
1935 		 */
1936 		if (i >= ipipe->nrbufs || opipe->nrbufs >= opipe->buffers)
1937 			break;
1938 
1939 		ibuf = ipipe->bufs + ((ipipe->curbuf + i) & (ipipe->buffers-1));
1940 		nbuf = (opipe->curbuf + opipe->nrbufs) & (opipe->buffers - 1);
1941 
1942 		/*
1943 		 * Get a reference to this pipe buffer,
1944 		 * so we can copy the contents over.
1945 		 */
1946 		ibuf->ops->get(ipipe, ibuf);
1947 
1948 		obuf = opipe->bufs + nbuf;
1949 		*obuf = *ibuf;
1950 
1951 		/*
1952 		 * Don't inherit the gift flag, we need to
1953 		 * prevent multiple steals of this page.
1954 		 */
1955 		obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1956 
1957 		if (obuf->len > len)
1958 			obuf->len = len;
1959 
1960 		opipe->nrbufs++;
1961 		ret += obuf->len;
1962 		len -= obuf->len;
1963 		i++;
1964 	} while (len);
1965 
1966 	/*
1967 	 * return EAGAIN if we have the potential of some data in the
1968 	 * future, otherwise just return 0
1969 	 */
1970 	if (!ret && ipipe->waiting_writers && (flags & SPLICE_F_NONBLOCK))
1971 		ret = -EAGAIN;
1972 
1973 	pipe_unlock(ipipe);
1974 	pipe_unlock(opipe);
1975 
1976 	/*
1977 	 * If we put data in the output pipe, wakeup any potential readers.
1978 	 */
1979 	if (ret > 0) {
1980 		smp_mb();
1981 		if (waitqueue_active(&opipe->wait))
1982 			wake_up_interruptible(&opipe->wait);
1983 		kill_fasync(&opipe->fasync_readers, SIGIO, POLL_IN);
1984 	}
1985 
1986 	return ret;
1987 }
1988 
1989 /*
1990  * This is a tee(1) implementation that works on pipes. It doesn't copy
1991  * any data, it simply references the 'in' pages on the 'out' pipe.
1992  * The 'flags' used are the SPLICE_F_* variants, currently the only
1993  * applicable one is SPLICE_F_NONBLOCK.
1994  */
1995 static long do_tee(struct file *in, struct file *out, size_t len,
1996 		   unsigned int flags)
1997 {
1998 	struct pipe_inode_info *ipipe = get_pipe_info(in);
1999 	struct pipe_inode_info *opipe = get_pipe_info(out);
2000 	int ret = -EINVAL;
2001 
2002 	/*
2003 	 * Duplicate the contents of ipipe to opipe without actually
2004 	 * copying the data.
2005 	 */
2006 	if (ipipe && opipe && ipipe != opipe) {
2007 		/*
2008 		 * Keep going, unless we encounter an error. The ipipe/opipe
2009 		 * ordering doesn't really matter.
2010 		 */
2011 		ret = ipipe_prep(ipipe, flags);
2012 		if (!ret) {
2013 			ret = opipe_prep(opipe, flags);
2014 			if (!ret)
2015 				ret = link_pipe(ipipe, opipe, len, flags);
2016 		}
2017 	}
2018 
2019 	return ret;
2020 }
2021 
2022 SYSCALL_DEFINE4(tee, int, fdin, int, fdout, size_t, len, unsigned int, flags)
2023 {
2024 	struct file *in;
2025 	int error, fput_in;
2026 
2027 	if (unlikely(!len))
2028 		return 0;
2029 
2030 	error = -EBADF;
2031 	in = fget_light(fdin, &fput_in);
2032 	if (in) {
2033 		if (in->f_mode & FMODE_READ) {
2034 			int fput_out;
2035 			struct file *out = fget_light(fdout, &fput_out);
2036 
2037 			if (out) {
2038 				if (out->f_mode & FMODE_WRITE)
2039 					error = do_tee(in, out, len, flags);
2040 				fput_light(out, fput_out);
2041 			}
2042 		}
2043  		fput_light(in, fput_in);
2044  	}
2045 
2046 	return error;
2047 }
2048