1 /* 2 * "splice": joining two ropes together by interweaving their strands. 3 * 4 * This is the "extended pipe" functionality, where a pipe is used as 5 * an arbitrary in-memory buffer. Think of a pipe as a small kernel 6 * buffer that you can use to transfer data from one end to the other. 7 * 8 * The traditional unix read/write is extended with a "splice()" operation 9 * that transfers data buffers to or from a pipe buffer. 10 * 11 * Named by Larry McVoy, original implementation from Linus, extended by 12 * Jens to support splicing to files, network, direct splicing, etc and 13 * fixing lots of bugs. 14 * 15 * Copyright (C) 2005-2006 Jens Axboe <axboe@kernel.dk> 16 * Copyright (C) 2005-2006 Linus Torvalds <torvalds@osdl.org> 17 * Copyright (C) 2006 Ingo Molnar <mingo@elte.hu> 18 * 19 */ 20 #include <linux/fs.h> 21 #include <linux/file.h> 22 #include <linux/pagemap.h> 23 #include <linux/splice.h> 24 #include <linux/memcontrol.h> 25 #include <linux/mm_inline.h> 26 #include <linux/swap.h> 27 #include <linux/writeback.h> 28 #include <linux/buffer_head.h> 29 #include <linux/module.h> 30 #include <linux/syscalls.h> 31 #include <linux/uio.h> 32 #include <linux/security.h> 33 #include <linux/gfp.h> 34 35 /* 36 * Attempt to steal a page from a pipe buffer. This should perhaps go into 37 * a vm helper function, it's already simplified quite a bit by the 38 * addition of remove_mapping(). If success is returned, the caller may 39 * attempt to reuse this page for another destination. 40 */ 41 static int page_cache_pipe_buf_steal(struct pipe_inode_info *pipe, 42 struct pipe_buffer *buf) 43 { 44 struct page *page = buf->page; 45 struct address_space *mapping; 46 47 lock_page(page); 48 49 mapping = page_mapping(page); 50 if (mapping) { 51 WARN_ON(!PageUptodate(page)); 52 53 /* 54 * At least for ext2 with nobh option, we need to wait on 55 * writeback completing on this page, since we'll remove it 56 * from the pagecache. Otherwise truncate wont wait on the 57 * page, allowing the disk blocks to be reused by someone else 58 * before we actually wrote our data to them. fs corruption 59 * ensues. 60 */ 61 wait_on_page_writeback(page); 62 63 if (page_has_private(page) && 64 !try_to_release_page(page, GFP_KERNEL)) 65 goto out_unlock; 66 67 /* 68 * If we succeeded in removing the mapping, set LRU flag 69 * and return good. 70 */ 71 if (remove_mapping(mapping, page)) { 72 buf->flags |= PIPE_BUF_FLAG_LRU; 73 return 0; 74 } 75 } 76 77 /* 78 * Raced with truncate or failed to remove page from current 79 * address space, unlock and return failure. 80 */ 81 out_unlock: 82 unlock_page(page); 83 return 1; 84 } 85 86 static void page_cache_pipe_buf_release(struct pipe_inode_info *pipe, 87 struct pipe_buffer *buf) 88 { 89 page_cache_release(buf->page); 90 buf->flags &= ~PIPE_BUF_FLAG_LRU; 91 } 92 93 /* 94 * Check whether the contents of buf is OK to access. Since the content 95 * is a page cache page, IO may be in flight. 96 */ 97 static int page_cache_pipe_buf_confirm(struct pipe_inode_info *pipe, 98 struct pipe_buffer *buf) 99 { 100 struct page *page = buf->page; 101 int err; 102 103 if (!PageUptodate(page)) { 104 lock_page(page); 105 106 /* 107 * Page got truncated/unhashed. This will cause a 0-byte 108 * splice, if this is the first page. 109 */ 110 if (!page->mapping) { 111 err = -ENODATA; 112 goto error; 113 } 114 115 /* 116 * Uh oh, read-error from disk. 117 */ 118 if (!PageUptodate(page)) { 119 err = -EIO; 120 goto error; 121 } 122 123 /* 124 * Page is ok afterall, we are done. 125 */ 126 unlock_page(page); 127 } 128 129 return 0; 130 error: 131 unlock_page(page); 132 return err; 133 } 134 135 static const struct pipe_buf_operations page_cache_pipe_buf_ops = { 136 .can_merge = 0, 137 .map = generic_pipe_buf_map, 138 .unmap = generic_pipe_buf_unmap, 139 .confirm = page_cache_pipe_buf_confirm, 140 .release = page_cache_pipe_buf_release, 141 .steal = page_cache_pipe_buf_steal, 142 .get = generic_pipe_buf_get, 143 }; 144 145 static int user_page_pipe_buf_steal(struct pipe_inode_info *pipe, 146 struct pipe_buffer *buf) 147 { 148 if (!(buf->flags & PIPE_BUF_FLAG_GIFT)) 149 return 1; 150 151 buf->flags |= PIPE_BUF_FLAG_LRU; 152 return generic_pipe_buf_steal(pipe, buf); 153 } 154 155 static const struct pipe_buf_operations user_page_pipe_buf_ops = { 156 .can_merge = 0, 157 .map = generic_pipe_buf_map, 158 .unmap = generic_pipe_buf_unmap, 159 .confirm = generic_pipe_buf_confirm, 160 .release = page_cache_pipe_buf_release, 161 .steal = user_page_pipe_buf_steal, 162 .get = generic_pipe_buf_get, 163 }; 164 165 /** 166 * splice_to_pipe - fill passed data into a pipe 167 * @pipe: pipe to fill 168 * @spd: data to fill 169 * 170 * Description: 171 * @spd contains a map of pages and len/offset tuples, along with 172 * the struct pipe_buf_operations associated with these pages. This 173 * function will link that data to the pipe. 174 * 175 */ 176 ssize_t splice_to_pipe(struct pipe_inode_info *pipe, 177 struct splice_pipe_desc *spd) 178 { 179 unsigned int spd_pages = spd->nr_pages; 180 int ret, do_wakeup, page_nr; 181 182 ret = 0; 183 do_wakeup = 0; 184 page_nr = 0; 185 186 pipe_lock(pipe); 187 188 for (;;) { 189 if (!pipe->readers) { 190 send_sig(SIGPIPE, current, 0); 191 if (!ret) 192 ret = -EPIPE; 193 break; 194 } 195 196 if (pipe->nrbufs < pipe->buffers) { 197 int newbuf = (pipe->curbuf + pipe->nrbufs) & (pipe->buffers - 1); 198 struct pipe_buffer *buf = pipe->bufs + newbuf; 199 200 buf->page = spd->pages[page_nr]; 201 buf->offset = spd->partial[page_nr].offset; 202 buf->len = spd->partial[page_nr].len; 203 buf->private = spd->partial[page_nr].private; 204 buf->ops = spd->ops; 205 if (spd->flags & SPLICE_F_GIFT) 206 buf->flags |= PIPE_BUF_FLAG_GIFT; 207 208 pipe->nrbufs++; 209 page_nr++; 210 ret += buf->len; 211 212 if (pipe->inode) 213 do_wakeup = 1; 214 215 if (!--spd->nr_pages) 216 break; 217 if (pipe->nrbufs < pipe->buffers) 218 continue; 219 220 break; 221 } 222 223 if (spd->flags & SPLICE_F_NONBLOCK) { 224 if (!ret) 225 ret = -EAGAIN; 226 break; 227 } 228 229 if (signal_pending(current)) { 230 if (!ret) 231 ret = -ERESTARTSYS; 232 break; 233 } 234 235 if (do_wakeup) { 236 smp_mb(); 237 if (waitqueue_active(&pipe->wait)) 238 wake_up_interruptible_sync(&pipe->wait); 239 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN); 240 do_wakeup = 0; 241 } 242 243 pipe->waiting_writers++; 244 pipe_wait(pipe); 245 pipe->waiting_writers--; 246 } 247 248 pipe_unlock(pipe); 249 250 if (do_wakeup) { 251 smp_mb(); 252 if (waitqueue_active(&pipe->wait)) 253 wake_up_interruptible(&pipe->wait); 254 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN); 255 } 256 257 while (page_nr < spd_pages) 258 spd->spd_release(spd, page_nr++); 259 260 return ret; 261 } 262 263 static void spd_release_page(struct splice_pipe_desc *spd, unsigned int i) 264 { 265 page_cache_release(spd->pages[i]); 266 } 267 268 /* 269 * Check if we need to grow the arrays holding pages and partial page 270 * descriptions. 271 */ 272 int splice_grow_spd(struct pipe_inode_info *pipe, struct splice_pipe_desc *spd) 273 { 274 if (pipe->buffers <= PIPE_DEF_BUFFERS) 275 return 0; 276 277 spd->pages = kmalloc(pipe->buffers * sizeof(struct page *), GFP_KERNEL); 278 spd->partial = kmalloc(pipe->buffers * sizeof(struct partial_page), GFP_KERNEL); 279 280 if (spd->pages && spd->partial) 281 return 0; 282 283 kfree(spd->pages); 284 kfree(spd->partial); 285 return -ENOMEM; 286 } 287 288 void splice_shrink_spd(struct pipe_inode_info *pipe, 289 struct splice_pipe_desc *spd) 290 { 291 if (pipe->buffers <= PIPE_DEF_BUFFERS) 292 return; 293 294 kfree(spd->pages); 295 kfree(spd->partial); 296 } 297 298 static int 299 __generic_file_splice_read(struct file *in, loff_t *ppos, 300 struct pipe_inode_info *pipe, size_t len, 301 unsigned int flags) 302 { 303 struct address_space *mapping = in->f_mapping; 304 unsigned int loff, nr_pages, req_pages; 305 struct page *pages[PIPE_DEF_BUFFERS]; 306 struct partial_page partial[PIPE_DEF_BUFFERS]; 307 struct page *page; 308 pgoff_t index, end_index; 309 loff_t isize; 310 int error, page_nr; 311 struct splice_pipe_desc spd = { 312 .pages = pages, 313 .partial = partial, 314 .flags = flags, 315 .ops = &page_cache_pipe_buf_ops, 316 .spd_release = spd_release_page, 317 }; 318 319 if (splice_grow_spd(pipe, &spd)) 320 return -ENOMEM; 321 322 index = *ppos >> PAGE_CACHE_SHIFT; 323 loff = *ppos & ~PAGE_CACHE_MASK; 324 req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; 325 nr_pages = min(req_pages, pipe->buffers); 326 327 /* 328 * Lookup the (hopefully) full range of pages we need. 329 */ 330 spd.nr_pages = find_get_pages_contig(mapping, index, nr_pages, spd.pages); 331 index += spd.nr_pages; 332 333 /* 334 * If find_get_pages_contig() returned fewer pages than we needed, 335 * readahead/allocate the rest and fill in the holes. 336 */ 337 if (spd.nr_pages < nr_pages) 338 page_cache_sync_readahead(mapping, &in->f_ra, in, 339 index, req_pages - spd.nr_pages); 340 341 error = 0; 342 while (spd.nr_pages < nr_pages) { 343 /* 344 * Page could be there, find_get_pages_contig() breaks on 345 * the first hole. 346 */ 347 page = find_get_page(mapping, index); 348 if (!page) { 349 /* 350 * page didn't exist, allocate one. 351 */ 352 page = page_cache_alloc_cold(mapping); 353 if (!page) 354 break; 355 356 error = add_to_page_cache_lru(page, mapping, index, 357 GFP_KERNEL); 358 if (unlikely(error)) { 359 page_cache_release(page); 360 if (error == -EEXIST) 361 continue; 362 break; 363 } 364 /* 365 * add_to_page_cache() locks the page, unlock it 366 * to avoid convoluting the logic below even more. 367 */ 368 unlock_page(page); 369 } 370 371 spd.pages[spd.nr_pages++] = page; 372 index++; 373 } 374 375 /* 376 * Now loop over the map and see if we need to start IO on any 377 * pages, fill in the partial map, etc. 378 */ 379 index = *ppos >> PAGE_CACHE_SHIFT; 380 nr_pages = spd.nr_pages; 381 spd.nr_pages = 0; 382 for (page_nr = 0; page_nr < nr_pages; page_nr++) { 383 unsigned int this_len; 384 385 if (!len) 386 break; 387 388 /* 389 * this_len is the max we'll use from this page 390 */ 391 this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff); 392 page = spd.pages[page_nr]; 393 394 if (PageReadahead(page)) 395 page_cache_async_readahead(mapping, &in->f_ra, in, 396 page, index, req_pages - page_nr); 397 398 /* 399 * If the page isn't uptodate, we may need to start io on it 400 */ 401 if (!PageUptodate(page)) { 402 lock_page(page); 403 404 /* 405 * Page was truncated, or invalidated by the 406 * filesystem. Redo the find/create, but this time the 407 * page is kept locked, so there's no chance of another 408 * race with truncate/invalidate. 409 */ 410 if (!page->mapping) { 411 unlock_page(page); 412 page = find_or_create_page(mapping, index, 413 mapping_gfp_mask(mapping)); 414 415 if (!page) { 416 error = -ENOMEM; 417 break; 418 } 419 page_cache_release(spd.pages[page_nr]); 420 spd.pages[page_nr] = page; 421 } 422 /* 423 * page was already under io and is now done, great 424 */ 425 if (PageUptodate(page)) { 426 unlock_page(page); 427 goto fill_it; 428 } 429 430 /* 431 * need to read in the page 432 */ 433 error = mapping->a_ops->readpage(in, page); 434 if (unlikely(error)) { 435 /* 436 * We really should re-lookup the page here, 437 * but it complicates things a lot. Instead 438 * lets just do what we already stored, and 439 * we'll get it the next time we are called. 440 */ 441 if (error == AOP_TRUNCATED_PAGE) 442 error = 0; 443 444 break; 445 } 446 } 447 fill_it: 448 /* 449 * i_size must be checked after PageUptodate. 450 */ 451 isize = i_size_read(mapping->host); 452 end_index = (isize - 1) >> PAGE_CACHE_SHIFT; 453 if (unlikely(!isize || index > end_index)) 454 break; 455 456 /* 457 * if this is the last page, see if we need to shrink 458 * the length and stop 459 */ 460 if (end_index == index) { 461 unsigned int plen; 462 463 /* 464 * max good bytes in this page 465 */ 466 plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1; 467 if (plen <= loff) 468 break; 469 470 /* 471 * force quit after adding this page 472 */ 473 this_len = min(this_len, plen - loff); 474 len = this_len; 475 } 476 477 spd.partial[page_nr].offset = loff; 478 spd.partial[page_nr].len = this_len; 479 len -= this_len; 480 loff = 0; 481 spd.nr_pages++; 482 index++; 483 } 484 485 /* 486 * Release any pages at the end, if we quit early. 'page_nr' is how far 487 * we got, 'nr_pages' is how many pages are in the map. 488 */ 489 while (page_nr < nr_pages) 490 page_cache_release(spd.pages[page_nr++]); 491 in->f_ra.prev_pos = (loff_t)index << PAGE_CACHE_SHIFT; 492 493 if (spd.nr_pages) 494 error = splice_to_pipe(pipe, &spd); 495 496 splice_shrink_spd(pipe, &spd); 497 return error; 498 } 499 500 /** 501 * generic_file_splice_read - splice data from file to a pipe 502 * @in: file to splice from 503 * @ppos: position in @in 504 * @pipe: pipe to splice to 505 * @len: number of bytes to splice 506 * @flags: splice modifier flags 507 * 508 * Description: 509 * Will read pages from given file and fill them into a pipe. Can be 510 * used as long as the address_space operations for the source implements 511 * a readpage() hook. 512 * 513 */ 514 ssize_t generic_file_splice_read(struct file *in, loff_t *ppos, 515 struct pipe_inode_info *pipe, size_t len, 516 unsigned int flags) 517 { 518 loff_t isize, left; 519 int ret; 520 521 isize = i_size_read(in->f_mapping->host); 522 if (unlikely(*ppos >= isize)) 523 return 0; 524 525 left = isize - *ppos; 526 if (unlikely(left < len)) 527 len = left; 528 529 ret = __generic_file_splice_read(in, ppos, pipe, len, flags); 530 if (ret > 0) { 531 *ppos += ret; 532 file_accessed(in); 533 } 534 535 return ret; 536 } 537 EXPORT_SYMBOL(generic_file_splice_read); 538 539 static const struct pipe_buf_operations default_pipe_buf_ops = { 540 .can_merge = 0, 541 .map = generic_pipe_buf_map, 542 .unmap = generic_pipe_buf_unmap, 543 .confirm = generic_pipe_buf_confirm, 544 .release = generic_pipe_buf_release, 545 .steal = generic_pipe_buf_steal, 546 .get = generic_pipe_buf_get, 547 }; 548 549 static ssize_t kernel_readv(struct file *file, const struct iovec *vec, 550 unsigned long vlen, loff_t offset) 551 { 552 mm_segment_t old_fs; 553 loff_t pos = offset; 554 ssize_t res; 555 556 old_fs = get_fs(); 557 set_fs(get_ds()); 558 /* The cast to a user pointer is valid due to the set_fs() */ 559 res = vfs_readv(file, (const struct iovec __user *)vec, vlen, &pos); 560 set_fs(old_fs); 561 562 return res; 563 } 564 565 static ssize_t kernel_write(struct file *file, const char *buf, size_t count, 566 loff_t pos) 567 { 568 mm_segment_t old_fs; 569 ssize_t res; 570 571 old_fs = get_fs(); 572 set_fs(get_ds()); 573 /* The cast to a user pointer is valid due to the set_fs() */ 574 res = vfs_write(file, (const char __user *)buf, count, &pos); 575 set_fs(old_fs); 576 577 return res; 578 } 579 580 ssize_t default_file_splice_read(struct file *in, loff_t *ppos, 581 struct pipe_inode_info *pipe, size_t len, 582 unsigned int flags) 583 { 584 unsigned int nr_pages; 585 unsigned int nr_freed; 586 size_t offset; 587 struct page *pages[PIPE_DEF_BUFFERS]; 588 struct partial_page partial[PIPE_DEF_BUFFERS]; 589 struct iovec *vec, __vec[PIPE_DEF_BUFFERS]; 590 ssize_t res; 591 size_t this_len; 592 int error; 593 int i; 594 struct splice_pipe_desc spd = { 595 .pages = pages, 596 .partial = partial, 597 .flags = flags, 598 .ops = &default_pipe_buf_ops, 599 .spd_release = spd_release_page, 600 }; 601 602 if (splice_grow_spd(pipe, &spd)) 603 return -ENOMEM; 604 605 res = -ENOMEM; 606 vec = __vec; 607 if (pipe->buffers > PIPE_DEF_BUFFERS) { 608 vec = kmalloc(pipe->buffers * sizeof(struct iovec), GFP_KERNEL); 609 if (!vec) 610 goto shrink_ret; 611 } 612 613 offset = *ppos & ~PAGE_CACHE_MASK; 614 nr_pages = (len + offset + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; 615 616 for (i = 0; i < nr_pages && i < pipe->buffers && len; i++) { 617 struct page *page; 618 619 page = alloc_page(GFP_USER); 620 error = -ENOMEM; 621 if (!page) 622 goto err; 623 624 this_len = min_t(size_t, len, PAGE_CACHE_SIZE - offset); 625 vec[i].iov_base = (void __user *) page_address(page); 626 vec[i].iov_len = this_len; 627 spd.pages[i] = page; 628 spd.nr_pages++; 629 len -= this_len; 630 offset = 0; 631 } 632 633 res = kernel_readv(in, vec, spd.nr_pages, *ppos); 634 if (res < 0) { 635 error = res; 636 goto err; 637 } 638 639 error = 0; 640 if (!res) 641 goto err; 642 643 nr_freed = 0; 644 for (i = 0; i < spd.nr_pages; i++) { 645 this_len = min_t(size_t, vec[i].iov_len, res); 646 spd.partial[i].offset = 0; 647 spd.partial[i].len = this_len; 648 if (!this_len) { 649 __free_page(spd.pages[i]); 650 spd.pages[i] = NULL; 651 nr_freed++; 652 } 653 res -= this_len; 654 } 655 spd.nr_pages -= nr_freed; 656 657 res = splice_to_pipe(pipe, &spd); 658 if (res > 0) 659 *ppos += res; 660 661 shrink_ret: 662 if (vec != __vec) 663 kfree(vec); 664 splice_shrink_spd(pipe, &spd); 665 return res; 666 667 err: 668 for (i = 0; i < spd.nr_pages; i++) 669 __free_page(spd.pages[i]); 670 671 res = error; 672 goto shrink_ret; 673 } 674 EXPORT_SYMBOL(default_file_splice_read); 675 676 /* 677 * Send 'sd->len' bytes to socket from 'sd->file' at position 'sd->pos' 678 * using sendpage(). Return the number of bytes sent. 679 */ 680 static int pipe_to_sendpage(struct pipe_inode_info *pipe, 681 struct pipe_buffer *buf, struct splice_desc *sd) 682 { 683 struct file *file = sd->u.file; 684 loff_t pos = sd->pos; 685 int more; 686 687 if (!likely(file->f_op && file->f_op->sendpage)) 688 return -EINVAL; 689 690 more = (sd->flags & SPLICE_F_MORE) || sd->len < sd->total_len; 691 return file->f_op->sendpage(file, buf->page, buf->offset, 692 sd->len, &pos, more); 693 } 694 695 /* 696 * This is a little more tricky than the file -> pipe splicing. There are 697 * basically three cases: 698 * 699 * - Destination page already exists in the address space and there 700 * are users of it. For that case we have no other option that 701 * copying the data. Tough luck. 702 * - Destination page already exists in the address space, but there 703 * are no users of it. Make sure it's uptodate, then drop it. Fall 704 * through to last case. 705 * - Destination page does not exist, we can add the pipe page to 706 * the page cache and avoid the copy. 707 * 708 * If asked to move pages to the output file (SPLICE_F_MOVE is set in 709 * sd->flags), we attempt to migrate pages from the pipe to the output 710 * file address space page cache. This is possible if no one else has 711 * the pipe page referenced outside of the pipe and page cache. If 712 * SPLICE_F_MOVE isn't set, or we cannot move the page, we simply create 713 * a new page in the output file page cache and fill/dirty that. 714 */ 715 int pipe_to_file(struct pipe_inode_info *pipe, struct pipe_buffer *buf, 716 struct splice_desc *sd) 717 { 718 struct file *file = sd->u.file; 719 struct address_space *mapping = file->f_mapping; 720 unsigned int offset, this_len; 721 struct page *page; 722 void *fsdata; 723 int ret; 724 725 offset = sd->pos & ~PAGE_CACHE_MASK; 726 727 this_len = sd->len; 728 if (this_len + offset > PAGE_CACHE_SIZE) 729 this_len = PAGE_CACHE_SIZE - offset; 730 731 ret = pagecache_write_begin(file, mapping, sd->pos, this_len, 732 AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata); 733 if (unlikely(ret)) 734 goto out; 735 736 if (buf->page != page) { 737 /* 738 * Careful, ->map() uses KM_USER0! 739 */ 740 char *src = buf->ops->map(pipe, buf, 1); 741 char *dst = kmap_atomic(page, KM_USER1); 742 743 memcpy(dst + offset, src + buf->offset, this_len); 744 flush_dcache_page(page); 745 kunmap_atomic(dst, KM_USER1); 746 buf->ops->unmap(pipe, buf, src); 747 } 748 ret = pagecache_write_end(file, mapping, sd->pos, this_len, this_len, 749 page, fsdata); 750 out: 751 return ret; 752 } 753 EXPORT_SYMBOL(pipe_to_file); 754 755 static void wakeup_pipe_writers(struct pipe_inode_info *pipe) 756 { 757 smp_mb(); 758 if (waitqueue_active(&pipe->wait)) 759 wake_up_interruptible(&pipe->wait); 760 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT); 761 } 762 763 /** 764 * splice_from_pipe_feed - feed available data from a pipe to a file 765 * @pipe: pipe to splice from 766 * @sd: information to @actor 767 * @actor: handler that splices the data 768 * 769 * Description: 770 * This function loops over the pipe and calls @actor to do the 771 * actual moving of a single struct pipe_buffer to the desired 772 * destination. It returns when there's no more buffers left in 773 * the pipe or if the requested number of bytes (@sd->total_len) 774 * have been copied. It returns a positive number (one) if the 775 * pipe needs to be filled with more data, zero if the required 776 * number of bytes have been copied and -errno on error. 777 * 778 * This, together with splice_from_pipe_{begin,end,next}, may be 779 * used to implement the functionality of __splice_from_pipe() when 780 * locking is required around copying the pipe buffers to the 781 * destination. 782 */ 783 int splice_from_pipe_feed(struct pipe_inode_info *pipe, struct splice_desc *sd, 784 splice_actor *actor) 785 { 786 int ret; 787 788 while (pipe->nrbufs) { 789 struct pipe_buffer *buf = pipe->bufs + pipe->curbuf; 790 const struct pipe_buf_operations *ops = buf->ops; 791 792 sd->len = buf->len; 793 if (sd->len > sd->total_len) 794 sd->len = sd->total_len; 795 796 ret = buf->ops->confirm(pipe, buf); 797 if (unlikely(ret)) { 798 if (ret == -ENODATA) 799 ret = 0; 800 return ret; 801 } 802 803 ret = actor(pipe, buf, sd); 804 if (ret <= 0) 805 return ret; 806 807 buf->offset += ret; 808 buf->len -= ret; 809 810 sd->num_spliced += ret; 811 sd->len -= ret; 812 sd->pos += ret; 813 sd->total_len -= ret; 814 815 if (!buf->len) { 816 buf->ops = NULL; 817 ops->release(pipe, buf); 818 pipe->curbuf = (pipe->curbuf + 1) & (pipe->buffers - 1); 819 pipe->nrbufs--; 820 if (pipe->inode) 821 sd->need_wakeup = true; 822 } 823 824 if (!sd->total_len) 825 return 0; 826 } 827 828 return 1; 829 } 830 EXPORT_SYMBOL(splice_from_pipe_feed); 831 832 /** 833 * splice_from_pipe_next - wait for some data to splice from 834 * @pipe: pipe to splice from 835 * @sd: information about the splice operation 836 * 837 * Description: 838 * This function will wait for some data and return a positive 839 * value (one) if pipe buffers are available. It will return zero 840 * or -errno if no more data needs to be spliced. 841 */ 842 int splice_from_pipe_next(struct pipe_inode_info *pipe, struct splice_desc *sd) 843 { 844 while (!pipe->nrbufs) { 845 if (!pipe->writers) 846 return 0; 847 848 if (!pipe->waiting_writers && sd->num_spliced) 849 return 0; 850 851 if (sd->flags & SPLICE_F_NONBLOCK) 852 return -EAGAIN; 853 854 if (signal_pending(current)) 855 return -ERESTARTSYS; 856 857 if (sd->need_wakeup) { 858 wakeup_pipe_writers(pipe); 859 sd->need_wakeup = false; 860 } 861 862 pipe_wait(pipe); 863 } 864 865 return 1; 866 } 867 EXPORT_SYMBOL(splice_from_pipe_next); 868 869 /** 870 * splice_from_pipe_begin - start splicing from pipe 871 * @sd: information about the splice operation 872 * 873 * Description: 874 * This function should be called before a loop containing 875 * splice_from_pipe_next() and splice_from_pipe_feed() to 876 * initialize the necessary fields of @sd. 877 */ 878 void splice_from_pipe_begin(struct splice_desc *sd) 879 { 880 sd->num_spliced = 0; 881 sd->need_wakeup = false; 882 } 883 EXPORT_SYMBOL(splice_from_pipe_begin); 884 885 /** 886 * splice_from_pipe_end - finish splicing from pipe 887 * @pipe: pipe to splice from 888 * @sd: information about the splice operation 889 * 890 * Description: 891 * This function will wake up pipe writers if necessary. It should 892 * be called after a loop containing splice_from_pipe_next() and 893 * splice_from_pipe_feed(). 894 */ 895 void splice_from_pipe_end(struct pipe_inode_info *pipe, struct splice_desc *sd) 896 { 897 if (sd->need_wakeup) 898 wakeup_pipe_writers(pipe); 899 } 900 EXPORT_SYMBOL(splice_from_pipe_end); 901 902 /** 903 * __splice_from_pipe - splice data from a pipe to given actor 904 * @pipe: pipe to splice from 905 * @sd: information to @actor 906 * @actor: handler that splices the data 907 * 908 * Description: 909 * This function does little more than loop over the pipe and call 910 * @actor to do the actual moving of a single struct pipe_buffer to 911 * the desired destination. See pipe_to_file, pipe_to_sendpage, or 912 * pipe_to_user. 913 * 914 */ 915 ssize_t __splice_from_pipe(struct pipe_inode_info *pipe, struct splice_desc *sd, 916 splice_actor *actor) 917 { 918 int ret; 919 920 splice_from_pipe_begin(sd); 921 do { 922 ret = splice_from_pipe_next(pipe, sd); 923 if (ret > 0) 924 ret = splice_from_pipe_feed(pipe, sd, actor); 925 } while (ret > 0); 926 splice_from_pipe_end(pipe, sd); 927 928 return sd->num_spliced ? sd->num_spliced : ret; 929 } 930 EXPORT_SYMBOL(__splice_from_pipe); 931 932 /** 933 * splice_from_pipe - splice data from a pipe to a file 934 * @pipe: pipe to splice from 935 * @out: file to splice to 936 * @ppos: position in @out 937 * @len: how many bytes to splice 938 * @flags: splice modifier flags 939 * @actor: handler that splices the data 940 * 941 * Description: 942 * See __splice_from_pipe. This function locks the pipe inode, 943 * otherwise it's identical to __splice_from_pipe(). 944 * 945 */ 946 ssize_t splice_from_pipe(struct pipe_inode_info *pipe, struct file *out, 947 loff_t *ppos, size_t len, unsigned int flags, 948 splice_actor *actor) 949 { 950 ssize_t ret; 951 struct splice_desc sd = { 952 .total_len = len, 953 .flags = flags, 954 .pos = *ppos, 955 .u.file = out, 956 }; 957 958 pipe_lock(pipe); 959 ret = __splice_from_pipe(pipe, &sd, actor); 960 pipe_unlock(pipe); 961 962 return ret; 963 } 964 965 /** 966 * generic_file_splice_write - splice data from a pipe to a file 967 * @pipe: pipe info 968 * @out: file to write to 969 * @ppos: position in @out 970 * @len: number of bytes to splice 971 * @flags: splice modifier flags 972 * 973 * Description: 974 * Will either move or copy pages (determined by @flags options) from 975 * the given pipe inode to the given file. 976 * 977 */ 978 ssize_t 979 generic_file_splice_write(struct pipe_inode_info *pipe, struct file *out, 980 loff_t *ppos, size_t len, unsigned int flags) 981 { 982 struct address_space *mapping = out->f_mapping; 983 struct inode *inode = mapping->host; 984 struct splice_desc sd = { 985 .total_len = len, 986 .flags = flags, 987 .pos = *ppos, 988 .u.file = out, 989 }; 990 ssize_t ret; 991 992 pipe_lock(pipe); 993 994 splice_from_pipe_begin(&sd); 995 do { 996 ret = splice_from_pipe_next(pipe, &sd); 997 if (ret <= 0) 998 break; 999 1000 mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD); 1001 ret = file_remove_suid(out); 1002 if (!ret) { 1003 file_update_time(out); 1004 ret = splice_from_pipe_feed(pipe, &sd, pipe_to_file); 1005 } 1006 mutex_unlock(&inode->i_mutex); 1007 } while (ret > 0); 1008 splice_from_pipe_end(pipe, &sd); 1009 1010 pipe_unlock(pipe); 1011 1012 if (sd.num_spliced) 1013 ret = sd.num_spliced; 1014 1015 if (ret > 0) { 1016 unsigned long nr_pages; 1017 int err; 1018 1019 nr_pages = (ret + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; 1020 1021 err = generic_write_sync(out, *ppos, ret); 1022 if (err) 1023 ret = err; 1024 else 1025 *ppos += ret; 1026 balance_dirty_pages_ratelimited_nr(mapping, nr_pages); 1027 } 1028 1029 return ret; 1030 } 1031 1032 EXPORT_SYMBOL(generic_file_splice_write); 1033 1034 static int write_pipe_buf(struct pipe_inode_info *pipe, struct pipe_buffer *buf, 1035 struct splice_desc *sd) 1036 { 1037 int ret; 1038 void *data; 1039 1040 data = buf->ops->map(pipe, buf, 0); 1041 ret = kernel_write(sd->u.file, data + buf->offset, sd->len, sd->pos); 1042 buf->ops->unmap(pipe, buf, data); 1043 1044 return ret; 1045 } 1046 1047 static ssize_t default_file_splice_write(struct pipe_inode_info *pipe, 1048 struct file *out, loff_t *ppos, 1049 size_t len, unsigned int flags) 1050 { 1051 ssize_t ret; 1052 1053 ret = splice_from_pipe(pipe, out, ppos, len, flags, write_pipe_buf); 1054 if (ret > 0) 1055 *ppos += ret; 1056 1057 return ret; 1058 } 1059 1060 /** 1061 * generic_splice_sendpage - splice data from a pipe to a socket 1062 * @pipe: pipe to splice from 1063 * @out: socket to write to 1064 * @ppos: position in @out 1065 * @len: number of bytes to splice 1066 * @flags: splice modifier flags 1067 * 1068 * Description: 1069 * Will send @len bytes from the pipe to a network socket. No data copying 1070 * is involved. 1071 * 1072 */ 1073 ssize_t generic_splice_sendpage(struct pipe_inode_info *pipe, struct file *out, 1074 loff_t *ppos, size_t len, unsigned int flags) 1075 { 1076 return splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_sendpage); 1077 } 1078 1079 EXPORT_SYMBOL(generic_splice_sendpage); 1080 1081 /* 1082 * Attempt to initiate a splice from pipe to file. 1083 */ 1084 static long do_splice_from(struct pipe_inode_info *pipe, struct file *out, 1085 loff_t *ppos, size_t len, unsigned int flags) 1086 { 1087 ssize_t (*splice_write)(struct pipe_inode_info *, struct file *, 1088 loff_t *, size_t, unsigned int); 1089 int ret; 1090 1091 if (unlikely(!(out->f_mode & FMODE_WRITE))) 1092 return -EBADF; 1093 1094 if (unlikely(out->f_flags & O_APPEND)) 1095 return -EINVAL; 1096 1097 ret = rw_verify_area(WRITE, out, ppos, len); 1098 if (unlikely(ret < 0)) 1099 return ret; 1100 1101 if (out->f_op && out->f_op->splice_write) 1102 splice_write = out->f_op->splice_write; 1103 else 1104 splice_write = default_file_splice_write; 1105 1106 return splice_write(pipe, out, ppos, len, flags); 1107 } 1108 1109 /* 1110 * Attempt to initiate a splice from a file to a pipe. 1111 */ 1112 static long do_splice_to(struct file *in, loff_t *ppos, 1113 struct pipe_inode_info *pipe, size_t len, 1114 unsigned int flags) 1115 { 1116 ssize_t (*splice_read)(struct file *, loff_t *, 1117 struct pipe_inode_info *, size_t, unsigned int); 1118 int ret; 1119 1120 if (unlikely(!(in->f_mode & FMODE_READ))) 1121 return -EBADF; 1122 1123 ret = rw_verify_area(READ, in, ppos, len); 1124 if (unlikely(ret < 0)) 1125 return ret; 1126 1127 if (in->f_op && in->f_op->splice_read) 1128 splice_read = in->f_op->splice_read; 1129 else 1130 splice_read = default_file_splice_read; 1131 1132 return splice_read(in, ppos, pipe, len, flags); 1133 } 1134 1135 /** 1136 * splice_direct_to_actor - splices data directly between two non-pipes 1137 * @in: file to splice from 1138 * @sd: actor information on where to splice to 1139 * @actor: handles the data splicing 1140 * 1141 * Description: 1142 * This is a special case helper to splice directly between two 1143 * points, without requiring an explicit pipe. Internally an allocated 1144 * pipe is cached in the process, and reused during the lifetime of 1145 * that process. 1146 * 1147 */ 1148 ssize_t splice_direct_to_actor(struct file *in, struct splice_desc *sd, 1149 splice_direct_actor *actor) 1150 { 1151 struct pipe_inode_info *pipe; 1152 long ret, bytes; 1153 umode_t i_mode; 1154 size_t len; 1155 int i, flags; 1156 1157 /* 1158 * We require the input being a regular file, as we don't want to 1159 * randomly drop data for eg socket -> socket splicing. Use the 1160 * piped splicing for that! 1161 */ 1162 i_mode = in->f_path.dentry->d_inode->i_mode; 1163 if (unlikely(!S_ISREG(i_mode) && !S_ISBLK(i_mode))) 1164 return -EINVAL; 1165 1166 /* 1167 * neither in nor out is a pipe, setup an internal pipe attached to 1168 * 'out' and transfer the wanted data from 'in' to 'out' through that 1169 */ 1170 pipe = current->splice_pipe; 1171 if (unlikely(!pipe)) { 1172 pipe = alloc_pipe_info(NULL); 1173 if (!pipe) 1174 return -ENOMEM; 1175 1176 /* 1177 * We don't have an immediate reader, but we'll read the stuff 1178 * out of the pipe right after the splice_to_pipe(). So set 1179 * PIPE_READERS appropriately. 1180 */ 1181 pipe->readers = 1; 1182 1183 current->splice_pipe = pipe; 1184 } 1185 1186 /* 1187 * Do the splice. 1188 */ 1189 ret = 0; 1190 bytes = 0; 1191 len = sd->total_len; 1192 flags = sd->flags; 1193 1194 /* 1195 * Don't block on output, we have to drain the direct pipe. 1196 */ 1197 sd->flags &= ~SPLICE_F_NONBLOCK; 1198 1199 while (len) { 1200 size_t read_len; 1201 loff_t pos = sd->pos, prev_pos = pos; 1202 1203 ret = do_splice_to(in, &pos, pipe, len, flags); 1204 if (unlikely(ret <= 0)) 1205 goto out_release; 1206 1207 read_len = ret; 1208 sd->total_len = read_len; 1209 1210 /* 1211 * NOTE: nonblocking mode only applies to the input. We 1212 * must not do the output in nonblocking mode as then we 1213 * could get stuck data in the internal pipe: 1214 */ 1215 ret = actor(pipe, sd); 1216 if (unlikely(ret <= 0)) { 1217 sd->pos = prev_pos; 1218 goto out_release; 1219 } 1220 1221 bytes += ret; 1222 len -= ret; 1223 sd->pos = pos; 1224 1225 if (ret < read_len) { 1226 sd->pos = prev_pos + ret; 1227 goto out_release; 1228 } 1229 } 1230 1231 done: 1232 pipe->nrbufs = pipe->curbuf = 0; 1233 file_accessed(in); 1234 return bytes; 1235 1236 out_release: 1237 /* 1238 * If we did an incomplete transfer we must release 1239 * the pipe buffers in question: 1240 */ 1241 for (i = 0; i < pipe->buffers; i++) { 1242 struct pipe_buffer *buf = pipe->bufs + i; 1243 1244 if (buf->ops) { 1245 buf->ops->release(pipe, buf); 1246 buf->ops = NULL; 1247 } 1248 } 1249 1250 if (!bytes) 1251 bytes = ret; 1252 1253 goto done; 1254 } 1255 EXPORT_SYMBOL(splice_direct_to_actor); 1256 1257 static int direct_splice_actor(struct pipe_inode_info *pipe, 1258 struct splice_desc *sd) 1259 { 1260 struct file *file = sd->u.file; 1261 1262 return do_splice_from(pipe, file, &file->f_pos, sd->total_len, 1263 sd->flags); 1264 } 1265 1266 /** 1267 * do_splice_direct - splices data directly between two files 1268 * @in: file to splice from 1269 * @ppos: input file offset 1270 * @out: file to splice to 1271 * @len: number of bytes to splice 1272 * @flags: splice modifier flags 1273 * 1274 * Description: 1275 * For use by do_sendfile(). splice can easily emulate sendfile, but 1276 * doing it in the application would incur an extra system call 1277 * (splice in + splice out, as compared to just sendfile()). So this helper 1278 * can splice directly through a process-private pipe. 1279 * 1280 */ 1281 long do_splice_direct(struct file *in, loff_t *ppos, struct file *out, 1282 size_t len, unsigned int flags) 1283 { 1284 struct splice_desc sd = { 1285 .len = len, 1286 .total_len = len, 1287 .flags = flags, 1288 .pos = *ppos, 1289 .u.file = out, 1290 }; 1291 long ret; 1292 1293 ret = splice_direct_to_actor(in, &sd, direct_splice_actor); 1294 if (ret > 0) 1295 *ppos = sd.pos; 1296 1297 return ret; 1298 } 1299 1300 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe, 1301 struct pipe_inode_info *opipe, 1302 size_t len, unsigned int flags); 1303 1304 /* 1305 * Determine where to splice to/from. 1306 */ 1307 static long do_splice(struct file *in, loff_t __user *off_in, 1308 struct file *out, loff_t __user *off_out, 1309 size_t len, unsigned int flags) 1310 { 1311 struct pipe_inode_info *ipipe; 1312 struct pipe_inode_info *opipe; 1313 loff_t offset, *off; 1314 long ret; 1315 1316 ipipe = get_pipe_info(in); 1317 opipe = get_pipe_info(out); 1318 1319 if (ipipe && opipe) { 1320 if (off_in || off_out) 1321 return -ESPIPE; 1322 1323 if (!(in->f_mode & FMODE_READ)) 1324 return -EBADF; 1325 1326 if (!(out->f_mode & FMODE_WRITE)) 1327 return -EBADF; 1328 1329 /* Splicing to self would be fun, but... */ 1330 if (ipipe == opipe) 1331 return -EINVAL; 1332 1333 return splice_pipe_to_pipe(ipipe, opipe, len, flags); 1334 } 1335 1336 if (ipipe) { 1337 if (off_in) 1338 return -ESPIPE; 1339 if (off_out) { 1340 if (!(out->f_mode & FMODE_PWRITE)) 1341 return -EINVAL; 1342 if (copy_from_user(&offset, off_out, sizeof(loff_t))) 1343 return -EFAULT; 1344 off = &offset; 1345 } else 1346 off = &out->f_pos; 1347 1348 ret = do_splice_from(ipipe, out, off, len, flags); 1349 1350 if (off_out && copy_to_user(off_out, off, sizeof(loff_t))) 1351 ret = -EFAULT; 1352 1353 return ret; 1354 } 1355 1356 if (opipe) { 1357 if (off_out) 1358 return -ESPIPE; 1359 if (off_in) { 1360 if (!(in->f_mode & FMODE_PREAD)) 1361 return -EINVAL; 1362 if (copy_from_user(&offset, off_in, sizeof(loff_t))) 1363 return -EFAULT; 1364 off = &offset; 1365 } else 1366 off = &in->f_pos; 1367 1368 ret = do_splice_to(in, off, opipe, len, flags); 1369 1370 if (off_in && copy_to_user(off_in, off, sizeof(loff_t))) 1371 ret = -EFAULT; 1372 1373 return ret; 1374 } 1375 1376 return -EINVAL; 1377 } 1378 1379 /* 1380 * Map an iov into an array of pages and offset/length tupples. With the 1381 * partial_page structure, we can map several non-contiguous ranges into 1382 * our ones pages[] map instead of splitting that operation into pieces. 1383 * Could easily be exported as a generic helper for other users, in which 1384 * case one would probably want to add a 'max_nr_pages' parameter as well. 1385 */ 1386 static int get_iovec_page_array(const struct iovec __user *iov, 1387 unsigned int nr_vecs, struct page **pages, 1388 struct partial_page *partial, int aligned, 1389 unsigned int pipe_buffers) 1390 { 1391 int buffers = 0, error = 0; 1392 1393 while (nr_vecs) { 1394 unsigned long off, npages; 1395 struct iovec entry; 1396 void __user *base; 1397 size_t len; 1398 int i; 1399 1400 error = -EFAULT; 1401 if (copy_from_user(&entry, iov, sizeof(entry))) 1402 break; 1403 1404 base = entry.iov_base; 1405 len = entry.iov_len; 1406 1407 /* 1408 * Sanity check this iovec. 0 read succeeds. 1409 */ 1410 error = 0; 1411 if (unlikely(!len)) 1412 break; 1413 error = -EFAULT; 1414 if (!access_ok(VERIFY_READ, base, len)) 1415 break; 1416 1417 /* 1418 * Get this base offset and number of pages, then map 1419 * in the user pages. 1420 */ 1421 off = (unsigned long) base & ~PAGE_MASK; 1422 1423 /* 1424 * If asked for alignment, the offset must be zero and the 1425 * length a multiple of the PAGE_SIZE. 1426 */ 1427 error = -EINVAL; 1428 if (aligned && (off || len & ~PAGE_MASK)) 1429 break; 1430 1431 npages = (off + len + PAGE_SIZE - 1) >> PAGE_SHIFT; 1432 if (npages > pipe_buffers - buffers) 1433 npages = pipe_buffers - buffers; 1434 1435 error = get_user_pages_fast((unsigned long)base, npages, 1436 0, &pages[buffers]); 1437 1438 if (unlikely(error <= 0)) 1439 break; 1440 1441 /* 1442 * Fill this contiguous range into the partial page map. 1443 */ 1444 for (i = 0; i < error; i++) { 1445 const int plen = min_t(size_t, len, PAGE_SIZE - off); 1446 1447 partial[buffers].offset = off; 1448 partial[buffers].len = plen; 1449 1450 off = 0; 1451 len -= plen; 1452 buffers++; 1453 } 1454 1455 /* 1456 * We didn't complete this iov, stop here since it probably 1457 * means we have to move some of this into a pipe to 1458 * be able to continue. 1459 */ 1460 if (len) 1461 break; 1462 1463 /* 1464 * Don't continue if we mapped fewer pages than we asked for, 1465 * or if we mapped the max number of pages that we have 1466 * room for. 1467 */ 1468 if (error < npages || buffers == pipe_buffers) 1469 break; 1470 1471 nr_vecs--; 1472 iov++; 1473 } 1474 1475 if (buffers) 1476 return buffers; 1477 1478 return error; 1479 } 1480 1481 static int pipe_to_user(struct pipe_inode_info *pipe, struct pipe_buffer *buf, 1482 struct splice_desc *sd) 1483 { 1484 char *src; 1485 int ret; 1486 1487 /* 1488 * See if we can use the atomic maps, by prefaulting in the 1489 * pages and doing an atomic copy 1490 */ 1491 if (!fault_in_pages_writeable(sd->u.userptr, sd->len)) { 1492 src = buf->ops->map(pipe, buf, 1); 1493 ret = __copy_to_user_inatomic(sd->u.userptr, src + buf->offset, 1494 sd->len); 1495 buf->ops->unmap(pipe, buf, src); 1496 if (!ret) { 1497 ret = sd->len; 1498 goto out; 1499 } 1500 } 1501 1502 /* 1503 * No dice, use slow non-atomic map and copy 1504 */ 1505 src = buf->ops->map(pipe, buf, 0); 1506 1507 ret = sd->len; 1508 if (copy_to_user(sd->u.userptr, src + buf->offset, sd->len)) 1509 ret = -EFAULT; 1510 1511 buf->ops->unmap(pipe, buf, src); 1512 out: 1513 if (ret > 0) 1514 sd->u.userptr += ret; 1515 return ret; 1516 } 1517 1518 /* 1519 * For lack of a better implementation, implement vmsplice() to userspace 1520 * as a simple copy of the pipes pages to the user iov. 1521 */ 1522 static long vmsplice_to_user(struct file *file, const struct iovec __user *iov, 1523 unsigned long nr_segs, unsigned int flags) 1524 { 1525 struct pipe_inode_info *pipe; 1526 struct splice_desc sd; 1527 ssize_t size; 1528 int error; 1529 long ret; 1530 1531 pipe = get_pipe_info(file); 1532 if (!pipe) 1533 return -EBADF; 1534 1535 pipe_lock(pipe); 1536 1537 error = ret = 0; 1538 while (nr_segs) { 1539 void __user *base; 1540 size_t len; 1541 1542 /* 1543 * Get user address base and length for this iovec. 1544 */ 1545 error = get_user(base, &iov->iov_base); 1546 if (unlikely(error)) 1547 break; 1548 error = get_user(len, &iov->iov_len); 1549 if (unlikely(error)) 1550 break; 1551 1552 /* 1553 * Sanity check this iovec. 0 read succeeds. 1554 */ 1555 if (unlikely(!len)) 1556 break; 1557 if (unlikely(!base)) { 1558 error = -EFAULT; 1559 break; 1560 } 1561 1562 if (unlikely(!access_ok(VERIFY_WRITE, base, len))) { 1563 error = -EFAULT; 1564 break; 1565 } 1566 1567 sd.len = 0; 1568 sd.total_len = len; 1569 sd.flags = flags; 1570 sd.u.userptr = base; 1571 sd.pos = 0; 1572 1573 size = __splice_from_pipe(pipe, &sd, pipe_to_user); 1574 if (size < 0) { 1575 if (!ret) 1576 ret = size; 1577 1578 break; 1579 } 1580 1581 ret += size; 1582 1583 if (size < len) 1584 break; 1585 1586 nr_segs--; 1587 iov++; 1588 } 1589 1590 pipe_unlock(pipe); 1591 1592 if (!ret) 1593 ret = error; 1594 1595 return ret; 1596 } 1597 1598 /* 1599 * vmsplice splices a user address range into a pipe. It can be thought of 1600 * as splice-from-memory, where the regular splice is splice-from-file (or 1601 * to file). In both cases the output is a pipe, naturally. 1602 */ 1603 static long vmsplice_to_pipe(struct file *file, const struct iovec __user *iov, 1604 unsigned long nr_segs, unsigned int flags) 1605 { 1606 struct pipe_inode_info *pipe; 1607 struct page *pages[PIPE_DEF_BUFFERS]; 1608 struct partial_page partial[PIPE_DEF_BUFFERS]; 1609 struct splice_pipe_desc spd = { 1610 .pages = pages, 1611 .partial = partial, 1612 .flags = flags, 1613 .ops = &user_page_pipe_buf_ops, 1614 .spd_release = spd_release_page, 1615 }; 1616 long ret; 1617 1618 pipe = get_pipe_info(file); 1619 if (!pipe) 1620 return -EBADF; 1621 1622 if (splice_grow_spd(pipe, &spd)) 1623 return -ENOMEM; 1624 1625 spd.nr_pages = get_iovec_page_array(iov, nr_segs, spd.pages, 1626 spd.partial, flags & SPLICE_F_GIFT, 1627 pipe->buffers); 1628 if (spd.nr_pages <= 0) 1629 ret = spd.nr_pages; 1630 else 1631 ret = splice_to_pipe(pipe, &spd); 1632 1633 splice_shrink_spd(pipe, &spd); 1634 return ret; 1635 } 1636 1637 /* 1638 * Note that vmsplice only really supports true splicing _from_ user memory 1639 * to a pipe, not the other way around. Splicing from user memory is a simple 1640 * operation that can be supported without any funky alignment restrictions 1641 * or nasty vm tricks. We simply map in the user memory and fill them into 1642 * a pipe. The reverse isn't quite as easy, though. There are two possible 1643 * solutions for that: 1644 * 1645 * - memcpy() the data internally, at which point we might as well just 1646 * do a regular read() on the buffer anyway. 1647 * - Lots of nasty vm tricks, that are neither fast nor flexible (it 1648 * has restriction limitations on both ends of the pipe). 1649 * 1650 * Currently we punt and implement it as a normal copy, see pipe_to_user(). 1651 * 1652 */ 1653 SYSCALL_DEFINE4(vmsplice, int, fd, const struct iovec __user *, iov, 1654 unsigned long, nr_segs, unsigned int, flags) 1655 { 1656 struct file *file; 1657 long error; 1658 int fput; 1659 1660 if (unlikely(nr_segs > UIO_MAXIOV)) 1661 return -EINVAL; 1662 else if (unlikely(!nr_segs)) 1663 return 0; 1664 1665 error = -EBADF; 1666 file = fget_light(fd, &fput); 1667 if (file) { 1668 if (file->f_mode & FMODE_WRITE) 1669 error = vmsplice_to_pipe(file, iov, nr_segs, flags); 1670 else if (file->f_mode & FMODE_READ) 1671 error = vmsplice_to_user(file, iov, nr_segs, flags); 1672 1673 fput_light(file, fput); 1674 } 1675 1676 return error; 1677 } 1678 1679 SYSCALL_DEFINE6(splice, int, fd_in, loff_t __user *, off_in, 1680 int, fd_out, loff_t __user *, off_out, 1681 size_t, len, unsigned int, flags) 1682 { 1683 long error; 1684 struct file *in, *out; 1685 int fput_in, fput_out; 1686 1687 if (unlikely(!len)) 1688 return 0; 1689 1690 error = -EBADF; 1691 in = fget_light(fd_in, &fput_in); 1692 if (in) { 1693 if (in->f_mode & FMODE_READ) { 1694 out = fget_light(fd_out, &fput_out); 1695 if (out) { 1696 if (out->f_mode & FMODE_WRITE) 1697 error = do_splice(in, off_in, 1698 out, off_out, 1699 len, flags); 1700 fput_light(out, fput_out); 1701 } 1702 } 1703 1704 fput_light(in, fput_in); 1705 } 1706 1707 return error; 1708 } 1709 1710 /* 1711 * Make sure there's data to read. Wait for input if we can, otherwise 1712 * return an appropriate error. 1713 */ 1714 static int ipipe_prep(struct pipe_inode_info *pipe, unsigned int flags) 1715 { 1716 int ret; 1717 1718 /* 1719 * Check ->nrbufs without the inode lock first. This function 1720 * is speculative anyways, so missing one is ok. 1721 */ 1722 if (pipe->nrbufs) 1723 return 0; 1724 1725 ret = 0; 1726 pipe_lock(pipe); 1727 1728 while (!pipe->nrbufs) { 1729 if (signal_pending(current)) { 1730 ret = -ERESTARTSYS; 1731 break; 1732 } 1733 if (!pipe->writers) 1734 break; 1735 if (!pipe->waiting_writers) { 1736 if (flags & SPLICE_F_NONBLOCK) { 1737 ret = -EAGAIN; 1738 break; 1739 } 1740 } 1741 pipe_wait(pipe); 1742 } 1743 1744 pipe_unlock(pipe); 1745 return ret; 1746 } 1747 1748 /* 1749 * Make sure there's writeable room. Wait for room if we can, otherwise 1750 * return an appropriate error. 1751 */ 1752 static int opipe_prep(struct pipe_inode_info *pipe, unsigned int flags) 1753 { 1754 int ret; 1755 1756 /* 1757 * Check ->nrbufs without the inode lock first. This function 1758 * is speculative anyways, so missing one is ok. 1759 */ 1760 if (pipe->nrbufs < pipe->buffers) 1761 return 0; 1762 1763 ret = 0; 1764 pipe_lock(pipe); 1765 1766 while (pipe->nrbufs >= pipe->buffers) { 1767 if (!pipe->readers) { 1768 send_sig(SIGPIPE, current, 0); 1769 ret = -EPIPE; 1770 break; 1771 } 1772 if (flags & SPLICE_F_NONBLOCK) { 1773 ret = -EAGAIN; 1774 break; 1775 } 1776 if (signal_pending(current)) { 1777 ret = -ERESTARTSYS; 1778 break; 1779 } 1780 pipe->waiting_writers++; 1781 pipe_wait(pipe); 1782 pipe->waiting_writers--; 1783 } 1784 1785 pipe_unlock(pipe); 1786 return ret; 1787 } 1788 1789 /* 1790 * Splice contents of ipipe to opipe. 1791 */ 1792 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe, 1793 struct pipe_inode_info *opipe, 1794 size_t len, unsigned int flags) 1795 { 1796 struct pipe_buffer *ibuf, *obuf; 1797 int ret = 0, nbuf; 1798 bool input_wakeup = false; 1799 1800 1801 retry: 1802 ret = ipipe_prep(ipipe, flags); 1803 if (ret) 1804 return ret; 1805 1806 ret = opipe_prep(opipe, flags); 1807 if (ret) 1808 return ret; 1809 1810 /* 1811 * Potential ABBA deadlock, work around it by ordering lock 1812 * grabbing by pipe info address. Otherwise two different processes 1813 * could deadlock (one doing tee from A -> B, the other from B -> A). 1814 */ 1815 pipe_double_lock(ipipe, opipe); 1816 1817 do { 1818 if (!opipe->readers) { 1819 send_sig(SIGPIPE, current, 0); 1820 if (!ret) 1821 ret = -EPIPE; 1822 break; 1823 } 1824 1825 if (!ipipe->nrbufs && !ipipe->writers) 1826 break; 1827 1828 /* 1829 * Cannot make any progress, because either the input 1830 * pipe is empty or the output pipe is full. 1831 */ 1832 if (!ipipe->nrbufs || opipe->nrbufs >= opipe->buffers) { 1833 /* Already processed some buffers, break */ 1834 if (ret) 1835 break; 1836 1837 if (flags & SPLICE_F_NONBLOCK) { 1838 ret = -EAGAIN; 1839 break; 1840 } 1841 1842 /* 1843 * We raced with another reader/writer and haven't 1844 * managed to process any buffers. A zero return 1845 * value means EOF, so retry instead. 1846 */ 1847 pipe_unlock(ipipe); 1848 pipe_unlock(opipe); 1849 goto retry; 1850 } 1851 1852 ibuf = ipipe->bufs + ipipe->curbuf; 1853 nbuf = (opipe->curbuf + opipe->nrbufs) & (opipe->buffers - 1); 1854 obuf = opipe->bufs + nbuf; 1855 1856 if (len >= ibuf->len) { 1857 /* 1858 * Simply move the whole buffer from ipipe to opipe 1859 */ 1860 *obuf = *ibuf; 1861 ibuf->ops = NULL; 1862 opipe->nrbufs++; 1863 ipipe->curbuf = (ipipe->curbuf + 1) & (ipipe->buffers - 1); 1864 ipipe->nrbufs--; 1865 input_wakeup = true; 1866 } else { 1867 /* 1868 * Get a reference to this pipe buffer, 1869 * so we can copy the contents over. 1870 */ 1871 ibuf->ops->get(ipipe, ibuf); 1872 *obuf = *ibuf; 1873 1874 /* 1875 * Don't inherit the gift flag, we need to 1876 * prevent multiple steals of this page. 1877 */ 1878 obuf->flags &= ~PIPE_BUF_FLAG_GIFT; 1879 1880 obuf->len = len; 1881 opipe->nrbufs++; 1882 ibuf->offset += obuf->len; 1883 ibuf->len -= obuf->len; 1884 } 1885 ret += obuf->len; 1886 len -= obuf->len; 1887 } while (len); 1888 1889 pipe_unlock(ipipe); 1890 pipe_unlock(opipe); 1891 1892 /* 1893 * If we put data in the output pipe, wakeup any potential readers. 1894 */ 1895 if (ret > 0) { 1896 smp_mb(); 1897 if (waitqueue_active(&opipe->wait)) 1898 wake_up_interruptible(&opipe->wait); 1899 kill_fasync(&opipe->fasync_readers, SIGIO, POLL_IN); 1900 } 1901 if (input_wakeup) 1902 wakeup_pipe_writers(ipipe); 1903 1904 return ret; 1905 } 1906 1907 /* 1908 * Link contents of ipipe to opipe. 1909 */ 1910 static int link_pipe(struct pipe_inode_info *ipipe, 1911 struct pipe_inode_info *opipe, 1912 size_t len, unsigned int flags) 1913 { 1914 struct pipe_buffer *ibuf, *obuf; 1915 int ret = 0, i = 0, nbuf; 1916 1917 /* 1918 * Potential ABBA deadlock, work around it by ordering lock 1919 * grabbing by pipe info address. Otherwise two different processes 1920 * could deadlock (one doing tee from A -> B, the other from B -> A). 1921 */ 1922 pipe_double_lock(ipipe, opipe); 1923 1924 do { 1925 if (!opipe->readers) { 1926 send_sig(SIGPIPE, current, 0); 1927 if (!ret) 1928 ret = -EPIPE; 1929 break; 1930 } 1931 1932 /* 1933 * If we have iterated all input buffers or ran out of 1934 * output room, break. 1935 */ 1936 if (i >= ipipe->nrbufs || opipe->nrbufs >= opipe->buffers) 1937 break; 1938 1939 ibuf = ipipe->bufs + ((ipipe->curbuf + i) & (ipipe->buffers-1)); 1940 nbuf = (opipe->curbuf + opipe->nrbufs) & (opipe->buffers - 1); 1941 1942 /* 1943 * Get a reference to this pipe buffer, 1944 * so we can copy the contents over. 1945 */ 1946 ibuf->ops->get(ipipe, ibuf); 1947 1948 obuf = opipe->bufs + nbuf; 1949 *obuf = *ibuf; 1950 1951 /* 1952 * Don't inherit the gift flag, we need to 1953 * prevent multiple steals of this page. 1954 */ 1955 obuf->flags &= ~PIPE_BUF_FLAG_GIFT; 1956 1957 if (obuf->len > len) 1958 obuf->len = len; 1959 1960 opipe->nrbufs++; 1961 ret += obuf->len; 1962 len -= obuf->len; 1963 i++; 1964 } while (len); 1965 1966 /* 1967 * return EAGAIN if we have the potential of some data in the 1968 * future, otherwise just return 0 1969 */ 1970 if (!ret && ipipe->waiting_writers && (flags & SPLICE_F_NONBLOCK)) 1971 ret = -EAGAIN; 1972 1973 pipe_unlock(ipipe); 1974 pipe_unlock(opipe); 1975 1976 /* 1977 * If we put data in the output pipe, wakeup any potential readers. 1978 */ 1979 if (ret > 0) { 1980 smp_mb(); 1981 if (waitqueue_active(&opipe->wait)) 1982 wake_up_interruptible(&opipe->wait); 1983 kill_fasync(&opipe->fasync_readers, SIGIO, POLL_IN); 1984 } 1985 1986 return ret; 1987 } 1988 1989 /* 1990 * This is a tee(1) implementation that works on pipes. It doesn't copy 1991 * any data, it simply references the 'in' pages on the 'out' pipe. 1992 * The 'flags' used are the SPLICE_F_* variants, currently the only 1993 * applicable one is SPLICE_F_NONBLOCK. 1994 */ 1995 static long do_tee(struct file *in, struct file *out, size_t len, 1996 unsigned int flags) 1997 { 1998 struct pipe_inode_info *ipipe = get_pipe_info(in); 1999 struct pipe_inode_info *opipe = get_pipe_info(out); 2000 int ret = -EINVAL; 2001 2002 /* 2003 * Duplicate the contents of ipipe to opipe without actually 2004 * copying the data. 2005 */ 2006 if (ipipe && opipe && ipipe != opipe) { 2007 /* 2008 * Keep going, unless we encounter an error. The ipipe/opipe 2009 * ordering doesn't really matter. 2010 */ 2011 ret = ipipe_prep(ipipe, flags); 2012 if (!ret) { 2013 ret = opipe_prep(opipe, flags); 2014 if (!ret) 2015 ret = link_pipe(ipipe, opipe, len, flags); 2016 } 2017 } 2018 2019 return ret; 2020 } 2021 2022 SYSCALL_DEFINE4(tee, int, fdin, int, fdout, size_t, len, unsigned int, flags) 2023 { 2024 struct file *in; 2025 int error, fput_in; 2026 2027 if (unlikely(!len)) 2028 return 0; 2029 2030 error = -EBADF; 2031 in = fget_light(fdin, &fput_in); 2032 if (in) { 2033 if (in->f_mode & FMODE_READ) { 2034 int fput_out; 2035 struct file *out = fget_light(fdout, &fput_out); 2036 2037 if (out) { 2038 if (out->f_mode & FMODE_WRITE) 2039 error = do_tee(in, out, len, flags); 2040 fput_light(out, fput_out); 2041 } 2042 } 2043 fput_light(in, fput_in); 2044 } 2045 2046 return error; 2047 } 2048