xref: /linux/fs/splice.c (revision c75c5ab575af7db707689cdbb5a5c458e9a034bb)
1 /*
2  * "splice": joining two ropes together by interweaving their strands.
3  *
4  * This is the "extended pipe" functionality, where a pipe is used as
5  * an arbitrary in-memory buffer. Think of a pipe as a small kernel
6  * buffer that you can use to transfer data from one end to the other.
7  *
8  * The traditional unix read/write is extended with a "splice()" operation
9  * that transfers data buffers to or from a pipe buffer.
10  *
11  * Named by Larry McVoy, original implementation from Linus, extended by
12  * Jens to support splicing to files, network, direct splicing, etc and
13  * fixing lots of bugs.
14  *
15  * Copyright (C) 2005-2006 Jens Axboe <axboe@kernel.dk>
16  * Copyright (C) 2005-2006 Linus Torvalds <torvalds@osdl.org>
17  * Copyright (C) 2006 Ingo Molnar <mingo@elte.hu>
18  *
19  */
20 #include <linux/fs.h>
21 #include <linux/file.h>
22 #include <linux/pagemap.h>
23 #include <linux/splice.h>
24 #include <linux/memcontrol.h>
25 #include <linux/mm_inline.h>
26 #include <linux/swap.h>
27 #include <linux/writeback.h>
28 #include <linux/export.h>
29 #include <linux/syscalls.h>
30 #include <linux/uio.h>
31 #include <linux/security.h>
32 #include <linux/gfp.h>
33 #include <linux/socket.h>
34 #include "internal.h"
35 
36 /*
37  * Attempt to steal a page from a pipe buffer. This should perhaps go into
38  * a vm helper function, it's already simplified quite a bit by the
39  * addition of remove_mapping(). If success is returned, the caller may
40  * attempt to reuse this page for another destination.
41  */
42 static int page_cache_pipe_buf_steal(struct pipe_inode_info *pipe,
43 				     struct pipe_buffer *buf)
44 {
45 	struct page *page = buf->page;
46 	struct address_space *mapping;
47 
48 	lock_page(page);
49 
50 	mapping = page_mapping(page);
51 	if (mapping) {
52 		WARN_ON(!PageUptodate(page));
53 
54 		/*
55 		 * At least for ext2 with nobh option, we need to wait on
56 		 * writeback completing on this page, since we'll remove it
57 		 * from the pagecache.  Otherwise truncate wont wait on the
58 		 * page, allowing the disk blocks to be reused by someone else
59 		 * before we actually wrote our data to them. fs corruption
60 		 * ensues.
61 		 */
62 		wait_on_page_writeback(page);
63 
64 		if (page_has_private(page) &&
65 		    !try_to_release_page(page, GFP_KERNEL))
66 			goto out_unlock;
67 
68 		/*
69 		 * If we succeeded in removing the mapping, set LRU flag
70 		 * and return good.
71 		 */
72 		if (remove_mapping(mapping, page)) {
73 			buf->flags |= PIPE_BUF_FLAG_LRU;
74 			return 0;
75 		}
76 	}
77 
78 	/*
79 	 * Raced with truncate or failed to remove page from current
80 	 * address space, unlock and return failure.
81 	 */
82 out_unlock:
83 	unlock_page(page);
84 	return 1;
85 }
86 
87 static void page_cache_pipe_buf_release(struct pipe_inode_info *pipe,
88 					struct pipe_buffer *buf)
89 {
90 	page_cache_release(buf->page);
91 	buf->flags &= ~PIPE_BUF_FLAG_LRU;
92 }
93 
94 /*
95  * Check whether the contents of buf is OK to access. Since the content
96  * is a page cache page, IO may be in flight.
97  */
98 static int page_cache_pipe_buf_confirm(struct pipe_inode_info *pipe,
99 				       struct pipe_buffer *buf)
100 {
101 	struct page *page = buf->page;
102 	int err;
103 
104 	if (!PageUptodate(page)) {
105 		lock_page(page);
106 
107 		/*
108 		 * Page got truncated/unhashed. This will cause a 0-byte
109 		 * splice, if this is the first page.
110 		 */
111 		if (!page->mapping) {
112 			err = -ENODATA;
113 			goto error;
114 		}
115 
116 		/*
117 		 * Uh oh, read-error from disk.
118 		 */
119 		if (!PageUptodate(page)) {
120 			err = -EIO;
121 			goto error;
122 		}
123 
124 		/*
125 		 * Page is ok afterall, we are done.
126 		 */
127 		unlock_page(page);
128 	}
129 
130 	return 0;
131 error:
132 	unlock_page(page);
133 	return err;
134 }
135 
136 const struct pipe_buf_operations page_cache_pipe_buf_ops = {
137 	.can_merge = 0,
138 	.map = generic_pipe_buf_map,
139 	.unmap = generic_pipe_buf_unmap,
140 	.confirm = page_cache_pipe_buf_confirm,
141 	.release = page_cache_pipe_buf_release,
142 	.steal = page_cache_pipe_buf_steal,
143 	.get = generic_pipe_buf_get,
144 };
145 
146 static int user_page_pipe_buf_steal(struct pipe_inode_info *pipe,
147 				    struct pipe_buffer *buf)
148 {
149 	if (!(buf->flags & PIPE_BUF_FLAG_GIFT))
150 		return 1;
151 
152 	buf->flags |= PIPE_BUF_FLAG_LRU;
153 	return generic_pipe_buf_steal(pipe, buf);
154 }
155 
156 static const struct pipe_buf_operations user_page_pipe_buf_ops = {
157 	.can_merge = 0,
158 	.map = generic_pipe_buf_map,
159 	.unmap = generic_pipe_buf_unmap,
160 	.confirm = generic_pipe_buf_confirm,
161 	.release = page_cache_pipe_buf_release,
162 	.steal = user_page_pipe_buf_steal,
163 	.get = generic_pipe_buf_get,
164 };
165 
166 static void wakeup_pipe_readers(struct pipe_inode_info *pipe)
167 {
168 	smp_mb();
169 	if (waitqueue_active(&pipe->wait))
170 		wake_up_interruptible(&pipe->wait);
171 	kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
172 }
173 
174 /**
175  * splice_to_pipe - fill passed data into a pipe
176  * @pipe:	pipe to fill
177  * @spd:	data to fill
178  *
179  * Description:
180  *    @spd contains a map of pages and len/offset tuples, along with
181  *    the struct pipe_buf_operations associated with these pages. This
182  *    function will link that data to the pipe.
183  *
184  */
185 ssize_t splice_to_pipe(struct pipe_inode_info *pipe,
186 		       struct splice_pipe_desc *spd)
187 {
188 	unsigned int spd_pages = spd->nr_pages;
189 	int ret, do_wakeup, page_nr;
190 
191 	ret = 0;
192 	do_wakeup = 0;
193 	page_nr = 0;
194 
195 	pipe_lock(pipe);
196 
197 	for (;;) {
198 		if (!pipe->readers) {
199 			send_sig(SIGPIPE, current, 0);
200 			if (!ret)
201 				ret = -EPIPE;
202 			break;
203 		}
204 
205 		if (pipe->nrbufs < pipe->buffers) {
206 			int newbuf = (pipe->curbuf + pipe->nrbufs) & (pipe->buffers - 1);
207 			struct pipe_buffer *buf = pipe->bufs + newbuf;
208 
209 			buf->page = spd->pages[page_nr];
210 			buf->offset = spd->partial[page_nr].offset;
211 			buf->len = spd->partial[page_nr].len;
212 			buf->private = spd->partial[page_nr].private;
213 			buf->ops = spd->ops;
214 			if (spd->flags & SPLICE_F_GIFT)
215 				buf->flags |= PIPE_BUF_FLAG_GIFT;
216 
217 			pipe->nrbufs++;
218 			page_nr++;
219 			ret += buf->len;
220 
221 			if (pipe->inode)
222 				do_wakeup = 1;
223 
224 			if (!--spd->nr_pages)
225 				break;
226 			if (pipe->nrbufs < pipe->buffers)
227 				continue;
228 
229 			break;
230 		}
231 
232 		if (spd->flags & SPLICE_F_NONBLOCK) {
233 			if (!ret)
234 				ret = -EAGAIN;
235 			break;
236 		}
237 
238 		if (signal_pending(current)) {
239 			if (!ret)
240 				ret = -ERESTARTSYS;
241 			break;
242 		}
243 
244 		if (do_wakeup) {
245 			smp_mb();
246 			if (waitqueue_active(&pipe->wait))
247 				wake_up_interruptible_sync(&pipe->wait);
248 			kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
249 			do_wakeup = 0;
250 		}
251 
252 		pipe->waiting_writers++;
253 		pipe_wait(pipe);
254 		pipe->waiting_writers--;
255 	}
256 
257 	pipe_unlock(pipe);
258 
259 	if (do_wakeup)
260 		wakeup_pipe_readers(pipe);
261 
262 	while (page_nr < spd_pages)
263 		spd->spd_release(spd, page_nr++);
264 
265 	return ret;
266 }
267 
268 void spd_release_page(struct splice_pipe_desc *spd, unsigned int i)
269 {
270 	page_cache_release(spd->pages[i]);
271 }
272 
273 /*
274  * Check if we need to grow the arrays holding pages and partial page
275  * descriptions.
276  */
277 int splice_grow_spd(const struct pipe_inode_info *pipe, struct splice_pipe_desc *spd)
278 {
279 	unsigned int buffers = ACCESS_ONCE(pipe->buffers);
280 
281 	spd->nr_pages_max = buffers;
282 	if (buffers <= PIPE_DEF_BUFFERS)
283 		return 0;
284 
285 	spd->pages = kmalloc(buffers * sizeof(struct page *), GFP_KERNEL);
286 	spd->partial = kmalloc(buffers * sizeof(struct partial_page), GFP_KERNEL);
287 
288 	if (spd->pages && spd->partial)
289 		return 0;
290 
291 	kfree(spd->pages);
292 	kfree(spd->partial);
293 	return -ENOMEM;
294 }
295 
296 void splice_shrink_spd(struct splice_pipe_desc *spd)
297 {
298 	if (spd->nr_pages_max <= PIPE_DEF_BUFFERS)
299 		return;
300 
301 	kfree(spd->pages);
302 	kfree(spd->partial);
303 }
304 
305 static int
306 __generic_file_splice_read(struct file *in, loff_t *ppos,
307 			   struct pipe_inode_info *pipe, size_t len,
308 			   unsigned int flags)
309 {
310 	struct address_space *mapping = in->f_mapping;
311 	unsigned int loff, nr_pages, req_pages;
312 	struct page *pages[PIPE_DEF_BUFFERS];
313 	struct partial_page partial[PIPE_DEF_BUFFERS];
314 	struct page *page;
315 	pgoff_t index, end_index;
316 	loff_t isize;
317 	int error, page_nr;
318 	struct splice_pipe_desc spd = {
319 		.pages = pages,
320 		.partial = partial,
321 		.nr_pages_max = PIPE_DEF_BUFFERS,
322 		.flags = flags,
323 		.ops = &page_cache_pipe_buf_ops,
324 		.spd_release = spd_release_page,
325 	};
326 
327 	if (splice_grow_spd(pipe, &spd))
328 		return -ENOMEM;
329 
330 	index = *ppos >> PAGE_CACHE_SHIFT;
331 	loff = *ppos & ~PAGE_CACHE_MASK;
332 	req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
333 	nr_pages = min(req_pages, spd.nr_pages_max);
334 
335 	/*
336 	 * Lookup the (hopefully) full range of pages we need.
337 	 */
338 	spd.nr_pages = find_get_pages_contig(mapping, index, nr_pages, spd.pages);
339 	index += spd.nr_pages;
340 
341 	/*
342 	 * If find_get_pages_contig() returned fewer pages than we needed,
343 	 * readahead/allocate the rest and fill in the holes.
344 	 */
345 	if (spd.nr_pages < nr_pages)
346 		page_cache_sync_readahead(mapping, &in->f_ra, in,
347 				index, req_pages - spd.nr_pages);
348 
349 	error = 0;
350 	while (spd.nr_pages < nr_pages) {
351 		/*
352 		 * Page could be there, find_get_pages_contig() breaks on
353 		 * the first hole.
354 		 */
355 		page = find_get_page(mapping, index);
356 		if (!page) {
357 			/*
358 			 * page didn't exist, allocate one.
359 			 */
360 			page = page_cache_alloc_cold(mapping);
361 			if (!page)
362 				break;
363 
364 			error = add_to_page_cache_lru(page, mapping, index,
365 						GFP_KERNEL);
366 			if (unlikely(error)) {
367 				page_cache_release(page);
368 				if (error == -EEXIST)
369 					continue;
370 				break;
371 			}
372 			/*
373 			 * add_to_page_cache() locks the page, unlock it
374 			 * to avoid convoluting the logic below even more.
375 			 */
376 			unlock_page(page);
377 		}
378 
379 		spd.pages[spd.nr_pages++] = page;
380 		index++;
381 	}
382 
383 	/*
384 	 * Now loop over the map and see if we need to start IO on any
385 	 * pages, fill in the partial map, etc.
386 	 */
387 	index = *ppos >> PAGE_CACHE_SHIFT;
388 	nr_pages = spd.nr_pages;
389 	spd.nr_pages = 0;
390 	for (page_nr = 0; page_nr < nr_pages; page_nr++) {
391 		unsigned int this_len;
392 
393 		if (!len)
394 			break;
395 
396 		/*
397 		 * this_len is the max we'll use from this page
398 		 */
399 		this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
400 		page = spd.pages[page_nr];
401 
402 		if (PageReadahead(page))
403 			page_cache_async_readahead(mapping, &in->f_ra, in,
404 					page, index, req_pages - page_nr);
405 
406 		/*
407 		 * If the page isn't uptodate, we may need to start io on it
408 		 */
409 		if (!PageUptodate(page)) {
410 			lock_page(page);
411 
412 			/*
413 			 * Page was truncated, or invalidated by the
414 			 * filesystem.  Redo the find/create, but this time the
415 			 * page is kept locked, so there's no chance of another
416 			 * race with truncate/invalidate.
417 			 */
418 			if (!page->mapping) {
419 				unlock_page(page);
420 				page = find_or_create_page(mapping, index,
421 						mapping_gfp_mask(mapping));
422 
423 				if (!page) {
424 					error = -ENOMEM;
425 					break;
426 				}
427 				page_cache_release(spd.pages[page_nr]);
428 				spd.pages[page_nr] = page;
429 			}
430 			/*
431 			 * page was already under io and is now done, great
432 			 */
433 			if (PageUptodate(page)) {
434 				unlock_page(page);
435 				goto fill_it;
436 			}
437 
438 			/*
439 			 * need to read in the page
440 			 */
441 			error = mapping->a_ops->readpage(in, page);
442 			if (unlikely(error)) {
443 				/*
444 				 * We really should re-lookup the page here,
445 				 * but it complicates things a lot. Instead
446 				 * lets just do what we already stored, and
447 				 * we'll get it the next time we are called.
448 				 */
449 				if (error == AOP_TRUNCATED_PAGE)
450 					error = 0;
451 
452 				break;
453 			}
454 		}
455 fill_it:
456 		/*
457 		 * i_size must be checked after PageUptodate.
458 		 */
459 		isize = i_size_read(mapping->host);
460 		end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
461 		if (unlikely(!isize || index > end_index))
462 			break;
463 
464 		/*
465 		 * if this is the last page, see if we need to shrink
466 		 * the length and stop
467 		 */
468 		if (end_index == index) {
469 			unsigned int plen;
470 
471 			/*
472 			 * max good bytes in this page
473 			 */
474 			plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
475 			if (plen <= loff)
476 				break;
477 
478 			/*
479 			 * force quit after adding this page
480 			 */
481 			this_len = min(this_len, plen - loff);
482 			len = this_len;
483 		}
484 
485 		spd.partial[page_nr].offset = loff;
486 		spd.partial[page_nr].len = this_len;
487 		len -= this_len;
488 		loff = 0;
489 		spd.nr_pages++;
490 		index++;
491 	}
492 
493 	/*
494 	 * Release any pages at the end, if we quit early. 'page_nr' is how far
495 	 * we got, 'nr_pages' is how many pages are in the map.
496 	 */
497 	while (page_nr < nr_pages)
498 		page_cache_release(spd.pages[page_nr++]);
499 	in->f_ra.prev_pos = (loff_t)index << PAGE_CACHE_SHIFT;
500 
501 	if (spd.nr_pages)
502 		error = splice_to_pipe(pipe, &spd);
503 
504 	splice_shrink_spd(&spd);
505 	return error;
506 }
507 
508 /**
509  * generic_file_splice_read - splice data from file to a pipe
510  * @in:		file to splice from
511  * @ppos:	position in @in
512  * @pipe:	pipe to splice to
513  * @len:	number of bytes to splice
514  * @flags:	splice modifier flags
515  *
516  * Description:
517  *    Will read pages from given file and fill them into a pipe. Can be
518  *    used as long as the address_space operations for the source implements
519  *    a readpage() hook.
520  *
521  */
522 ssize_t generic_file_splice_read(struct file *in, loff_t *ppos,
523 				 struct pipe_inode_info *pipe, size_t len,
524 				 unsigned int flags)
525 {
526 	loff_t isize, left;
527 	int ret;
528 
529 	isize = i_size_read(in->f_mapping->host);
530 	if (unlikely(*ppos >= isize))
531 		return 0;
532 
533 	left = isize - *ppos;
534 	if (unlikely(left < len))
535 		len = left;
536 
537 	ret = __generic_file_splice_read(in, ppos, pipe, len, flags);
538 	if (ret > 0) {
539 		*ppos += ret;
540 		file_accessed(in);
541 	}
542 
543 	return ret;
544 }
545 EXPORT_SYMBOL(generic_file_splice_read);
546 
547 static const struct pipe_buf_operations default_pipe_buf_ops = {
548 	.can_merge = 0,
549 	.map = generic_pipe_buf_map,
550 	.unmap = generic_pipe_buf_unmap,
551 	.confirm = generic_pipe_buf_confirm,
552 	.release = generic_pipe_buf_release,
553 	.steal = generic_pipe_buf_steal,
554 	.get = generic_pipe_buf_get,
555 };
556 
557 static ssize_t kernel_readv(struct file *file, const struct iovec *vec,
558 			    unsigned long vlen, loff_t offset)
559 {
560 	mm_segment_t old_fs;
561 	loff_t pos = offset;
562 	ssize_t res;
563 
564 	old_fs = get_fs();
565 	set_fs(get_ds());
566 	/* The cast to a user pointer is valid due to the set_fs() */
567 	res = vfs_readv(file, (const struct iovec __user *)vec, vlen, &pos);
568 	set_fs(old_fs);
569 
570 	return res;
571 }
572 
573 ssize_t kernel_write(struct file *file, const char *buf, size_t count,
574 			    loff_t pos)
575 {
576 	mm_segment_t old_fs;
577 	ssize_t res;
578 
579 	old_fs = get_fs();
580 	set_fs(get_ds());
581 	/* The cast to a user pointer is valid due to the set_fs() */
582 	res = vfs_write(file, (__force const char __user *)buf, count, &pos);
583 	set_fs(old_fs);
584 
585 	return res;
586 }
587 EXPORT_SYMBOL(kernel_write);
588 
589 ssize_t default_file_splice_read(struct file *in, loff_t *ppos,
590 				 struct pipe_inode_info *pipe, size_t len,
591 				 unsigned int flags)
592 {
593 	unsigned int nr_pages;
594 	unsigned int nr_freed;
595 	size_t offset;
596 	struct page *pages[PIPE_DEF_BUFFERS];
597 	struct partial_page partial[PIPE_DEF_BUFFERS];
598 	struct iovec *vec, __vec[PIPE_DEF_BUFFERS];
599 	ssize_t res;
600 	size_t this_len;
601 	int error;
602 	int i;
603 	struct splice_pipe_desc spd = {
604 		.pages = pages,
605 		.partial = partial,
606 		.nr_pages_max = PIPE_DEF_BUFFERS,
607 		.flags = flags,
608 		.ops = &default_pipe_buf_ops,
609 		.spd_release = spd_release_page,
610 	};
611 
612 	if (splice_grow_spd(pipe, &spd))
613 		return -ENOMEM;
614 
615 	res = -ENOMEM;
616 	vec = __vec;
617 	if (spd.nr_pages_max > PIPE_DEF_BUFFERS) {
618 		vec = kmalloc(spd.nr_pages_max * sizeof(struct iovec), GFP_KERNEL);
619 		if (!vec)
620 			goto shrink_ret;
621 	}
622 
623 	offset = *ppos & ~PAGE_CACHE_MASK;
624 	nr_pages = (len + offset + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
625 
626 	for (i = 0; i < nr_pages && i < spd.nr_pages_max && len; i++) {
627 		struct page *page;
628 
629 		page = alloc_page(GFP_USER);
630 		error = -ENOMEM;
631 		if (!page)
632 			goto err;
633 
634 		this_len = min_t(size_t, len, PAGE_CACHE_SIZE - offset);
635 		vec[i].iov_base = (void __user *) page_address(page);
636 		vec[i].iov_len = this_len;
637 		spd.pages[i] = page;
638 		spd.nr_pages++;
639 		len -= this_len;
640 		offset = 0;
641 	}
642 
643 	res = kernel_readv(in, vec, spd.nr_pages, *ppos);
644 	if (res < 0) {
645 		error = res;
646 		goto err;
647 	}
648 
649 	error = 0;
650 	if (!res)
651 		goto err;
652 
653 	nr_freed = 0;
654 	for (i = 0; i < spd.nr_pages; i++) {
655 		this_len = min_t(size_t, vec[i].iov_len, res);
656 		spd.partial[i].offset = 0;
657 		spd.partial[i].len = this_len;
658 		if (!this_len) {
659 			__free_page(spd.pages[i]);
660 			spd.pages[i] = NULL;
661 			nr_freed++;
662 		}
663 		res -= this_len;
664 	}
665 	spd.nr_pages -= nr_freed;
666 
667 	res = splice_to_pipe(pipe, &spd);
668 	if (res > 0)
669 		*ppos += res;
670 
671 shrink_ret:
672 	if (vec != __vec)
673 		kfree(vec);
674 	splice_shrink_spd(&spd);
675 	return res;
676 
677 err:
678 	for (i = 0; i < spd.nr_pages; i++)
679 		__free_page(spd.pages[i]);
680 
681 	res = error;
682 	goto shrink_ret;
683 }
684 EXPORT_SYMBOL(default_file_splice_read);
685 
686 /*
687  * Send 'sd->len' bytes to socket from 'sd->file' at position 'sd->pos'
688  * using sendpage(). Return the number of bytes sent.
689  */
690 static int pipe_to_sendpage(struct pipe_inode_info *pipe,
691 			    struct pipe_buffer *buf, struct splice_desc *sd)
692 {
693 	struct file *file = sd->u.file;
694 	loff_t pos = sd->pos;
695 	int more;
696 
697 	if (!likely(file->f_op && file->f_op->sendpage))
698 		return -EINVAL;
699 
700 	more = (sd->flags & SPLICE_F_MORE) ? MSG_MORE : 0;
701 
702 	if (sd->len < sd->total_len && pipe->nrbufs > 1)
703 		more |= MSG_SENDPAGE_NOTLAST;
704 
705 	return file->f_op->sendpage(file, buf->page, buf->offset,
706 				    sd->len, &pos, more);
707 }
708 
709 /*
710  * This is a little more tricky than the file -> pipe splicing. There are
711  * basically three cases:
712  *
713  *	- Destination page already exists in the address space and there
714  *	  are users of it. For that case we have no other option that
715  *	  copying the data. Tough luck.
716  *	- Destination page already exists in the address space, but there
717  *	  are no users of it. Make sure it's uptodate, then drop it. Fall
718  *	  through to last case.
719  *	- Destination page does not exist, we can add the pipe page to
720  *	  the page cache and avoid the copy.
721  *
722  * If asked to move pages to the output file (SPLICE_F_MOVE is set in
723  * sd->flags), we attempt to migrate pages from the pipe to the output
724  * file address space page cache. This is possible if no one else has
725  * the pipe page referenced outside of the pipe and page cache. If
726  * SPLICE_F_MOVE isn't set, or we cannot move the page, we simply create
727  * a new page in the output file page cache and fill/dirty that.
728  */
729 int pipe_to_file(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
730 		 struct splice_desc *sd)
731 {
732 	struct file *file = sd->u.file;
733 	struct address_space *mapping = file->f_mapping;
734 	unsigned int offset, this_len;
735 	struct page *page;
736 	void *fsdata;
737 	int ret;
738 
739 	offset = sd->pos & ~PAGE_CACHE_MASK;
740 
741 	this_len = sd->len;
742 	if (this_len + offset > PAGE_CACHE_SIZE)
743 		this_len = PAGE_CACHE_SIZE - offset;
744 
745 	ret = pagecache_write_begin(file, mapping, sd->pos, this_len,
746 				AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
747 	if (unlikely(ret))
748 		goto out;
749 
750 	if (buf->page != page) {
751 		char *src = buf->ops->map(pipe, buf, 1);
752 		char *dst = kmap_atomic(page);
753 
754 		memcpy(dst + offset, src + buf->offset, this_len);
755 		flush_dcache_page(page);
756 		kunmap_atomic(dst);
757 		buf->ops->unmap(pipe, buf, src);
758 	}
759 	ret = pagecache_write_end(file, mapping, sd->pos, this_len, this_len,
760 				page, fsdata);
761 out:
762 	return ret;
763 }
764 EXPORT_SYMBOL(pipe_to_file);
765 
766 static void wakeup_pipe_writers(struct pipe_inode_info *pipe)
767 {
768 	smp_mb();
769 	if (waitqueue_active(&pipe->wait))
770 		wake_up_interruptible(&pipe->wait);
771 	kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
772 }
773 
774 /**
775  * splice_from_pipe_feed - feed available data from a pipe to a file
776  * @pipe:	pipe to splice from
777  * @sd:		information to @actor
778  * @actor:	handler that splices the data
779  *
780  * Description:
781  *    This function loops over the pipe and calls @actor to do the
782  *    actual moving of a single struct pipe_buffer to the desired
783  *    destination.  It returns when there's no more buffers left in
784  *    the pipe or if the requested number of bytes (@sd->total_len)
785  *    have been copied.  It returns a positive number (one) if the
786  *    pipe needs to be filled with more data, zero if the required
787  *    number of bytes have been copied and -errno on error.
788  *
789  *    This, together with splice_from_pipe_{begin,end,next}, may be
790  *    used to implement the functionality of __splice_from_pipe() when
791  *    locking is required around copying the pipe buffers to the
792  *    destination.
793  */
794 int splice_from_pipe_feed(struct pipe_inode_info *pipe, struct splice_desc *sd,
795 			  splice_actor *actor)
796 {
797 	int ret;
798 
799 	while (pipe->nrbufs) {
800 		struct pipe_buffer *buf = pipe->bufs + pipe->curbuf;
801 		const struct pipe_buf_operations *ops = buf->ops;
802 
803 		sd->len = buf->len;
804 		if (sd->len > sd->total_len)
805 			sd->len = sd->total_len;
806 
807 		ret = buf->ops->confirm(pipe, buf);
808 		if (unlikely(ret)) {
809 			if (ret == -ENODATA)
810 				ret = 0;
811 			return ret;
812 		}
813 
814 		ret = actor(pipe, buf, sd);
815 		if (ret <= 0)
816 			return ret;
817 
818 		buf->offset += ret;
819 		buf->len -= ret;
820 
821 		sd->num_spliced += ret;
822 		sd->len -= ret;
823 		sd->pos += ret;
824 		sd->total_len -= ret;
825 
826 		if (!buf->len) {
827 			buf->ops = NULL;
828 			ops->release(pipe, buf);
829 			pipe->curbuf = (pipe->curbuf + 1) & (pipe->buffers - 1);
830 			pipe->nrbufs--;
831 			if (pipe->inode)
832 				sd->need_wakeup = true;
833 		}
834 
835 		if (!sd->total_len)
836 			return 0;
837 	}
838 
839 	return 1;
840 }
841 EXPORT_SYMBOL(splice_from_pipe_feed);
842 
843 /**
844  * splice_from_pipe_next - wait for some data to splice from
845  * @pipe:	pipe to splice from
846  * @sd:		information about the splice operation
847  *
848  * Description:
849  *    This function will wait for some data and return a positive
850  *    value (one) if pipe buffers are available.  It will return zero
851  *    or -errno if no more data needs to be spliced.
852  */
853 int splice_from_pipe_next(struct pipe_inode_info *pipe, struct splice_desc *sd)
854 {
855 	while (!pipe->nrbufs) {
856 		if (!pipe->writers)
857 			return 0;
858 
859 		if (!pipe->waiting_writers && sd->num_spliced)
860 			return 0;
861 
862 		if (sd->flags & SPLICE_F_NONBLOCK)
863 			return -EAGAIN;
864 
865 		if (signal_pending(current))
866 			return -ERESTARTSYS;
867 
868 		if (sd->need_wakeup) {
869 			wakeup_pipe_writers(pipe);
870 			sd->need_wakeup = false;
871 		}
872 
873 		pipe_wait(pipe);
874 	}
875 
876 	return 1;
877 }
878 EXPORT_SYMBOL(splice_from_pipe_next);
879 
880 /**
881  * splice_from_pipe_begin - start splicing from pipe
882  * @sd:		information about the splice operation
883  *
884  * Description:
885  *    This function should be called before a loop containing
886  *    splice_from_pipe_next() and splice_from_pipe_feed() to
887  *    initialize the necessary fields of @sd.
888  */
889 void splice_from_pipe_begin(struct splice_desc *sd)
890 {
891 	sd->num_spliced = 0;
892 	sd->need_wakeup = false;
893 }
894 EXPORT_SYMBOL(splice_from_pipe_begin);
895 
896 /**
897  * splice_from_pipe_end - finish splicing from pipe
898  * @pipe:	pipe to splice from
899  * @sd:		information about the splice operation
900  *
901  * Description:
902  *    This function will wake up pipe writers if necessary.  It should
903  *    be called after a loop containing splice_from_pipe_next() and
904  *    splice_from_pipe_feed().
905  */
906 void splice_from_pipe_end(struct pipe_inode_info *pipe, struct splice_desc *sd)
907 {
908 	if (sd->need_wakeup)
909 		wakeup_pipe_writers(pipe);
910 }
911 EXPORT_SYMBOL(splice_from_pipe_end);
912 
913 /**
914  * __splice_from_pipe - splice data from a pipe to given actor
915  * @pipe:	pipe to splice from
916  * @sd:		information to @actor
917  * @actor:	handler that splices the data
918  *
919  * Description:
920  *    This function does little more than loop over the pipe and call
921  *    @actor to do the actual moving of a single struct pipe_buffer to
922  *    the desired destination. See pipe_to_file, pipe_to_sendpage, or
923  *    pipe_to_user.
924  *
925  */
926 ssize_t __splice_from_pipe(struct pipe_inode_info *pipe, struct splice_desc *sd,
927 			   splice_actor *actor)
928 {
929 	int ret;
930 
931 	splice_from_pipe_begin(sd);
932 	do {
933 		ret = splice_from_pipe_next(pipe, sd);
934 		if (ret > 0)
935 			ret = splice_from_pipe_feed(pipe, sd, actor);
936 	} while (ret > 0);
937 	splice_from_pipe_end(pipe, sd);
938 
939 	return sd->num_spliced ? sd->num_spliced : ret;
940 }
941 EXPORT_SYMBOL(__splice_from_pipe);
942 
943 /**
944  * splice_from_pipe - splice data from a pipe to a file
945  * @pipe:	pipe to splice from
946  * @out:	file to splice to
947  * @ppos:	position in @out
948  * @len:	how many bytes to splice
949  * @flags:	splice modifier flags
950  * @actor:	handler that splices the data
951  *
952  * Description:
953  *    See __splice_from_pipe. This function locks the pipe inode,
954  *    otherwise it's identical to __splice_from_pipe().
955  *
956  */
957 ssize_t splice_from_pipe(struct pipe_inode_info *pipe, struct file *out,
958 			 loff_t *ppos, size_t len, unsigned int flags,
959 			 splice_actor *actor)
960 {
961 	ssize_t ret;
962 	struct splice_desc sd = {
963 		.total_len = len,
964 		.flags = flags,
965 		.pos = *ppos,
966 		.u.file = out,
967 	};
968 
969 	pipe_lock(pipe);
970 	ret = __splice_from_pipe(pipe, &sd, actor);
971 	pipe_unlock(pipe);
972 
973 	return ret;
974 }
975 
976 /**
977  * generic_file_splice_write - splice data from a pipe to a file
978  * @pipe:	pipe info
979  * @out:	file to write to
980  * @ppos:	position in @out
981  * @len:	number of bytes to splice
982  * @flags:	splice modifier flags
983  *
984  * Description:
985  *    Will either move or copy pages (determined by @flags options) from
986  *    the given pipe inode to the given file.
987  *
988  */
989 ssize_t
990 generic_file_splice_write(struct pipe_inode_info *pipe, struct file *out,
991 			  loff_t *ppos, size_t len, unsigned int flags)
992 {
993 	struct address_space *mapping = out->f_mapping;
994 	struct inode *inode = mapping->host;
995 	struct splice_desc sd = {
996 		.total_len = len,
997 		.flags = flags,
998 		.pos = *ppos,
999 		.u.file = out,
1000 	};
1001 	ssize_t ret;
1002 
1003 	sb_start_write(inode->i_sb);
1004 
1005 	pipe_lock(pipe);
1006 
1007 	splice_from_pipe_begin(&sd);
1008 	do {
1009 		ret = splice_from_pipe_next(pipe, &sd);
1010 		if (ret <= 0)
1011 			break;
1012 
1013 		mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
1014 		ret = file_remove_suid(out);
1015 		if (!ret) {
1016 			ret = file_update_time(out);
1017 			if (!ret)
1018 				ret = splice_from_pipe_feed(pipe, &sd,
1019 							    pipe_to_file);
1020 		}
1021 		mutex_unlock(&inode->i_mutex);
1022 	} while (ret > 0);
1023 	splice_from_pipe_end(pipe, &sd);
1024 
1025 	pipe_unlock(pipe);
1026 
1027 	if (sd.num_spliced)
1028 		ret = sd.num_spliced;
1029 
1030 	if (ret > 0) {
1031 		int err;
1032 
1033 		err = generic_write_sync(out, *ppos, ret);
1034 		if (err)
1035 			ret = err;
1036 		else
1037 			*ppos += ret;
1038 		balance_dirty_pages_ratelimited(mapping);
1039 	}
1040 	sb_end_write(inode->i_sb);
1041 
1042 	return ret;
1043 }
1044 
1045 EXPORT_SYMBOL(generic_file_splice_write);
1046 
1047 static int write_pipe_buf(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1048 			  struct splice_desc *sd)
1049 {
1050 	int ret;
1051 	void *data;
1052 	loff_t tmp = sd->pos;
1053 
1054 	data = buf->ops->map(pipe, buf, 0);
1055 	ret = __kernel_write(sd->u.file, data + buf->offset, sd->len, &tmp);
1056 	buf->ops->unmap(pipe, buf, data);
1057 
1058 	return ret;
1059 }
1060 
1061 static ssize_t default_file_splice_write(struct pipe_inode_info *pipe,
1062 					 struct file *out, loff_t *ppos,
1063 					 size_t len, unsigned int flags)
1064 {
1065 	ssize_t ret;
1066 
1067 	ret = splice_from_pipe(pipe, out, ppos, len, flags, write_pipe_buf);
1068 	if (ret > 0)
1069 		*ppos += ret;
1070 
1071 	return ret;
1072 }
1073 
1074 /**
1075  * generic_splice_sendpage - splice data from a pipe to a socket
1076  * @pipe:	pipe to splice from
1077  * @out:	socket to write to
1078  * @ppos:	position in @out
1079  * @len:	number of bytes to splice
1080  * @flags:	splice modifier flags
1081  *
1082  * Description:
1083  *    Will send @len bytes from the pipe to a network socket. No data copying
1084  *    is involved.
1085  *
1086  */
1087 ssize_t generic_splice_sendpage(struct pipe_inode_info *pipe, struct file *out,
1088 				loff_t *ppos, size_t len, unsigned int flags)
1089 {
1090 	return splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_sendpage);
1091 }
1092 
1093 EXPORT_SYMBOL(generic_splice_sendpage);
1094 
1095 /*
1096  * Attempt to initiate a splice from pipe to file.
1097  */
1098 static long do_splice_from(struct pipe_inode_info *pipe, struct file *out,
1099 			   loff_t *ppos, size_t len, unsigned int flags)
1100 {
1101 	ssize_t (*splice_write)(struct pipe_inode_info *, struct file *,
1102 				loff_t *, size_t, unsigned int);
1103 	int ret;
1104 
1105 	if (unlikely(!(out->f_mode & FMODE_WRITE)))
1106 		return -EBADF;
1107 
1108 	if (unlikely(out->f_flags & O_APPEND))
1109 		return -EINVAL;
1110 
1111 	ret = rw_verify_area(WRITE, out, ppos, len);
1112 	if (unlikely(ret < 0))
1113 		return ret;
1114 
1115 	if (out->f_op && out->f_op->splice_write)
1116 		splice_write = out->f_op->splice_write;
1117 	else
1118 		splice_write = default_file_splice_write;
1119 
1120 	return splice_write(pipe, out, ppos, len, flags);
1121 }
1122 
1123 /*
1124  * Attempt to initiate a splice from a file to a pipe.
1125  */
1126 static long do_splice_to(struct file *in, loff_t *ppos,
1127 			 struct pipe_inode_info *pipe, size_t len,
1128 			 unsigned int flags)
1129 {
1130 	ssize_t (*splice_read)(struct file *, loff_t *,
1131 			       struct pipe_inode_info *, size_t, unsigned int);
1132 	int ret;
1133 
1134 	if (unlikely(!(in->f_mode & FMODE_READ)))
1135 		return -EBADF;
1136 
1137 	ret = rw_verify_area(READ, in, ppos, len);
1138 	if (unlikely(ret < 0))
1139 		return ret;
1140 
1141 	if (in->f_op && in->f_op->splice_read)
1142 		splice_read = in->f_op->splice_read;
1143 	else
1144 		splice_read = default_file_splice_read;
1145 
1146 	return splice_read(in, ppos, pipe, len, flags);
1147 }
1148 
1149 /**
1150  * splice_direct_to_actor - splices data directly between two non-pipes
1151  * @in:		file to splice from
1152  * @sd:		actor information on where to splice to
1153  * @actor:	handles the data splicing
1154  *
1155  * Description:
1156  *    This is a special case helper to splice directly between two
1157  *    points, without requiring an explicit pipe. Internally an allocated
1158  *    pipe is cached in the process, and reused during the lifetime of
1159  *    that process.
1160  *
1161  */
1162 ssize_t splice_direct_to_actor(struct file *in, struct splice_desc *sd,
1163 			       splice_direct_actor *actor)
1164 {
1165 	struct pipe_inode_info *pipe;
1166 	long ret, bytes;
1167 	umode_t i_mode;
1168 	size_t len;
1169 	int i, flags;
1170 
1171 	/*
1172 	 * We require the input being a regular file, as we don't want to
1173 	 * randomly drop data for eg socket -> socket splicing. Use the
1174 	 * piped splicing for that!
1175 	 */
1176 	i_mode = file_inode(in)->i_mode;
1177 	if (unlikely(!S_ISREG(i_mode) && !S_ISBLK(i_mode)))
1178 		return -EINVAL;
1179 
1180 	/*
1181 	 * neither in nor out is a pipe, setup an internal pipe attached to
1182 	 * 'out' and transfer the wanted data from 'in' to 'out' through that
1183 	 */
1184 	pipe = current->splice_pipe;
1185 	if (unlikely(!pipe)) {
1186 		pipe = alloc_pipe_info(NULL);
1187 		if (!pipe)
1188 			return -ENOMEM;
1189 
1190 		/*
1191 		 * We don't have an immediate reader, but we'll read the stuff
1192 		 * out of the pipe right after the splice_to_pipe(). So set
1193 		 * PIPE_READERS appropriately.
1194 		 */
1195 		pipe->readers = 1;
1196 
1197 		current->splice_pipe = pipe;
1198 	}
1199 
1200 	/*
1201 	 * Do the splice.
1202 	 */
1203 	ret = 0;
1204 	bytes = 0;
1205 	len = sd->total_len;
1206 	flags = sd->flags;
1207 
1208 	/*
1209 	 * Don't block on output, we have to drain the direct pipe.
1210 	 */
1211 	sd->flags &= ~SPLICE_F_NONBLOCK;
1212 
1213 	while (len) {
1214 		size_t read_len;
1215 		loff_t pos = sd->pos, prev_pos = pos;
1216 
1217 		ret = do_splice_to(in, &pos, pipe, len, flags);
1218 		if (unlikely(ret <= 0))
1219 			goto out_release;
1220 
1221 		read_len = ret;
1222 		sd->total_len = read_len;
1223 
1224 		/*
1225 		 * NOTE: nonblocking mode only applies to the input. We
1226 		 * must not do the output in nonblocking mode as then we
1227 		 * could get stuck data in the internal pipe:
1228 		 */
1229 		ret = actor(pipe, sd);
1230 		if (unlikely(ret <= 0)) {
1231 			sd->pos = prev_pos;
1232 			goto out_release;
1233 		}
1234 
1235 		bytes += ret;
1236 		len -= ret;
1237 		sd->pos = pos;
1238 
1239 		if (ret < read_len) {
1240 			sd->pos = prev_pos + ret;
1241 			goto out_release;
1242 		}
1243 	}
1244 
1245 done:
1246 	pipe->nrbufs = pipe->curbuf = 0;
1247 	file_accessed(in);
1248 	return bytes;
1249 
1250 out_release:
1251 	/*
1252 	 * If we did an incomplete transfer we must release
1253 	 * the pipe buffers in question:
1254 	 */
1255 	for (i = 0; i < pipe->buffers; i++) {
1256 		struct pipe_buffer *buf = pipe->bufs + i;
1257 
1258 		if (buf->ops) {
1259 			buf->ops->release(pipe, buf);
1260 			buf->ops = NULL;
1261 		}
1262 	}
1263 
1264 	if (!bytes)
1265 		bytes = ret;
1266 
1267 	goto done;
1268 }
1269 EXPORT_SYMBOL(splice_direct_to_actor);
1270 
1271 static int direct_splice_actor(struct pipe_inode_info *pipe,
1272 			       struct splice_desc *sd)
1273 {
1274 	struct file *file = sd->u.file;
1275 
1276 	return do_splice_from(pipe, file, &file->f_pos, sd->total_len,
1277 			      sd->flags);
1278 }
1279 
1280 /**
1281  * do_splice_direct - splices data directly between two files
1282  * @in:		file to splice from
1283  * @ppos:	input file offset
1284  * @out:	file to splice to
1285  * @len:	number of bytes to splice
1286  * @flags:	splice modifier flags
1287  *
1288  * Description:
1289  *    For use by do_sendfile(). splice can easily emulate sendfile, but
1290  *    doing it in the application would incur an extra system call
1291  *    (splice in + splice out, as compared to just sendfile()). So this helper
1292  *    can splice directly through a process-private pipe.
1293  *
1294  */
1295 long do_splice_direct(struct file *in, loff_t *ppos, struct file *out,
1296 		      size_t len, unsigned int flags)
1297 {
1298 	struct splice_desc sd = {
1299 		.len		= len,
1300 		.total_len	= len,
1301 		.flags		= flags,
1302 		.pos		= *ppos,
1303 		.u.file		= out,
1304 	};
1305 	long ret;
1306 
1307 	ret = splice_direct_to_actor(in, &sd, direct_splice_actor);
1308 	if (ret > 0)
1309 		*ppos = sd.pos;
1310 
1311 	return ret;
1312 }
1313 
1314 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1315 			       struct pipe_inode_info *opipe,
1316 			       size_t len, unsigned int flags);
1317 
1318 /*
1319  * Determine where to splice to/from.
1320  */
1321 static long do_splice(struct file *in, loff_t __user *off_in,
1322 		      struct file *out, loff_t __user *off_out,
1323 		      size_t len, unsigned int flags)
1324 {
1325 	struct pipe_inode_info *ipipe;
1326 	struct pipe_inode_info *opipe;
1327 	loff_t offset, *off;
1328 	long ret;
1329 
1330 	ipipe = get_pipe_info(in);
1331 	opipe = get_pipe_info(out);
1332 
1333 	if (ipipe && opipe) {
1334 		if (off_in || off_out)
1335 			return -ESPIPE;
1336 
1337 		if (!(in->f_mode & FMODE_READ))
1338 			return -EBADF;
1339 
1340 		if (!(out->f_mode & FMODE_WRITE))
1341 			return -EBADF;
1342 
1343 		/* Splicing to self would be fun, but... */
1344 		if (ipipe == opipe)
1345 			return -EINVAL;
1346 
1347 		return splice_pipe_to_pipe(ipipe, opipe, len, flags);
1348 	}
1349 
1350 	if (ipipe) {
1351 		if (off_in)
1352 			return -ESPIPE;
1353 		if (off_out) {
1354 			if (!(out->f_mode & FMODE_PWRITE))
1355 				return -EINVAL;
1356 			if (copy_from_user(&offset, off_out, sizeof(loff_t)))
1357 				return -EFAULT;
1358 			off = &offset;
1359 		} else
1360 			off = &out->f_pos;
1361 
1362 		ret = do_splice_from(ipipe, out, off, len, flags);
1363 
1364 		if (off_out && copy_to_user(off_out, off, sizeof(loff_t)))
1365 			ret = -EFAULT;
1366 
1367 		return ret;
1368 	}
1369 
1370 	if (opipe) {
1371 		if (off_out)
1372 			return -ESPIPE;
1373 		if (off_in) {
1374 			if (!(in->f_mode & FMODE_PREAD))
1375 				return -EINVAL;
1376 			if (copy_from_user(&offset, off_in, sizeof(loff_t)))
1377 				return -EFAULT;
1378 			off = &offset;
1379 		} else
1380 			off = &in->f_pos;
1381 
1382 		ret = do_splice_to(in, off, opipe, len, flags);
1383 
1384 		if (off_in && copy_to_user(off_in, off, sizeof(loff_t)))
1385 			ret = -EFAULT;
1386 
1387 		return ret;
1388 	}
1389 
1390 	return -EINVAL;
1391 }
1392 
1393 /*
1394  * Map an iov into an array of pages and offset/length tupples. With the
1395  * partial_page structure, we can map several non-contiguous ranges into
1396  * our ones pages[] map instead of splitting that operation into pieces.
1397  * Could easily be exported as a generic helper for other users, in which
1398  * case one would probably want to add a 'max_nr_pages' parameter as well.
1399  */
1400 static int get_iovec_page_array(const struct iovec __user *iov,
1401 				unsigned int nr_vecs, struct page **pages,
1402 				struct partial_page *partial, bool aligned,
1403 				unsigned int pipe_buffers)
1404 {
1405 	int buffers = 0, error = 0;
1406 
1407 	while (nr_vecs) {
1408 		unsigned long off, npages;
1409 		struct iovec entry;
1410 		void __user *base;
1411 		size_t len;
1412 		int i;
1413 
1414 		error = -EFAULT;
1415 		if (copy_from_user(&entry, iov, sizeof(entry)))
1416 			break;
1417 
1418 		base = entry.iov_base;
1419 		len = entry.iov_len;
1420 
1421 		/*
1422 		 * Sanity check this iovec. 0 read succeeds.
1423 		 */
1424 		error = 0;
1425 		if (unlikely(!len))
1426 			break;
1427 		error = -EFAULT;
1428 		if (!access_ok(VERIFY_READ, base, len))
1429 			break;
1430 
1431 		/*
1432 		 * Get this base offset and number of pages, then map
1433 		 * in the user pages.
1434 		 */
1435 		off = (unsigned long) base & ~PAGE_MASK;
1436 
1437 		/*
1438 		 * If asked for alignment, the offset must be zero and the
1439 		 * length a multiple of the PAGE_SIZE.
1440 		 */
1441 		error = -EINVAL;
1442 		if (aligned && (off || len & ~PAGE_MASK))
1443 			break;
1444 
1445 		npages = (off + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1446 		if (npages > pipe_buffers - buffers)
1447 			npages = pipe_buffers - buffers;
1448 
1449 		error = get_user_pages_fast((unsigned long)base, npages,
1450 					0, &pages[buffers]);
1451 
1452 		if (unlikely(error <= 0))
1453 			break;
1454 
1455 		/*
1456 		 * Fill this contiguous range into the partial page map.
1457 		 */
1458 		for (i = 0; i < error; i++) {
1459 			const int plen = min_t(size_t, len, PAGE_SIZE - off);
1460 
1461 			partial[buffers].offset = off;
1462 			partial[buffers].len = plen;
1463 
1464 			off = 0;
1465 			len -= plen;
1466 			buffers++;
1467 		}
1468 
1469 		/*
1470 		 * We didn't complete this iov, stop here since it probably
1471 		 * means we have to move some of this into a pipe to
1472 		 * be able to continue.
1473 		 */
1474 		if (len)
1475 			break;
1476 
1477 		/*
1478 		 * Don't continue if we mapped fewer pages than we asked for,
1479 		 * or if we mapped the max number of pages that we have
1480 		 * room for.
1481 		 */
1482 		if (error < npages || buffers == pipe_buffers)
1483 			break;
1484 
1485 		nr_vecs--;
1486 		iov++;
1487 	}
1488 
1489 	if (buffers)
1490 		return buffers;
1491 
1492 	return error;
1493 }
1494 
1495 static int pipe_to_user(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1496 			struct splice_desc *sd)
1497 {
1498 	char *src;
1499 	int ret;
1500 
1501 	/*
1502 	 * See if we can use the atomic maps, by prefaulting in the
1503 	 * pages and doing an atomic copy
1504 	 */
1505 	if (!fault_in_pages_writeable(sd->u.userptr, sd->len)) {
1506 		src = buf->ops->map(pipe, buf, 1);
1507 		ret = __copy_to_user_inatomic(sd->u.userptr, src + buf->offset,
1508 							sd->len);
1509 		buf->ops->unmap(pipe, buf, src);
1510 		if (!ret) {
1511 			ret = sd->len;
1512 			goto out;
1513 		}
1514 	}
1515 
1516 	/*
1517 	 * No dice, use slow non-atomic map and copy
1518  	 */
1519 	src = buf->ops->map(pipe, buf, 0);
1520 
1521 	ret = sd->len;
1522 	if (copy_to_user(sd->u.userptr, src + buf->offset, sd->len))
1523 		ret = -EFAULT;
1524 
1525 	buf->ops->unmap(pipe, buf, src);
1526 out:
1527 	if (ret > 0)
1528 		sd->u.userptr += ret;
1529 	return ret;
1530 }
1531 
1532 /*
1533  * For lack of a better implementation, implement vmsplice() to userspace
1534  * as a simple copy of the pipes pages to the user iov.
1535  */
1536 static long vmsplice_to_user(struct file *file, const struct iovec __user *iov,
1537 			     unsigned long nr_segs, unsigned int flags)
1538 {
1539 	struct pipe_inode_info *pipe;
1540 	struct splice_desc sd;
1541 	ssize_t size;
1542 	int error;
1543 	long ret;
1544 
1545 	pipe = get_pipe_info(file);
1546 	if (!pipe)
1547 		return -EBADF;
1548 
1549 	pipe_lock(pipe);
1550 
1551 	error = ret = 0;
1552 	while (nr_segs) {
1553 		void __user *base;
1554 		size_t len;
1555 
1556 		/*
1557 		 * Get user address base and length for this iovec.
1558 		 */
1559 		error = get_user(base, &iov->iov_base);
1560 		if (unlikely(error))
1561 			break;
1562 		error = get_user(len, &iov->iov_len);
1563 		if (unlikely(error))
1564 			break;
1565 
1566 		/*
1567 		 * Sanity check this iovec. 0 read succeeds.
1568 		 */
1569 		if (unlikely(!len))
1570 			break;
1571 		if (unlikely(!base)) {
1572 			error = -EFAULT;
1573 			break;
1574 		}
1575 
1576 		if (unlikely(!access_ok(VERIFY_WRITE, base, len))) {
1577 			error = -EFAULT;
1578 			break;
1579 		}
1580 
1581 		sd.len = 0;
1582 		sd.total_len = len;
1583 		sd.flags = flags;
1584 		sd.u.userptr = base;
1585 		sd.pos = 0;
1586 
1587 		size = __splice_from_pipe(pipe, &sd, pipe_to_user);
1588 		if (size < 0) {
1589 			if (!ret)
1590 				ret = size;
1591 
1592 			break;
1593 		}
1594 
1595 		ret += size;
1596 
1597 		if (size < len)
1598 			break;
1599 
1600 		nr_segs--;
1601 		iov++;
1602 	}
1603 
1604 	pipe_unlock(pipe);
1605 
1606 	if (!ret)
1607 		ret = error;
1608 
1609 	return ret;
1610 }
1611 
1612 /*
1613  * vmsplice splices a user address range into a pipe. It can be thought of
1614  * as splice-from-memory, where the regular splice is splice-from-file (or
1615  * to file). In both cases the output is a pipe, naturally.
1616  */
1617 static long vmsplice_to_pipe(struct file *file, const struct iovec __user *iov,
1618 			     unsigned long nr_segs, unsigned int flags)
1619 {
1620 	struct pipe_inode_info *pipe;
1621 	struct page *pages[PIPE_DEF_BUFFERS];
1622 	struct partial_page partial[PIPE_DEF_BUFFERS];
1623 	struct splice_pipe_desc spd = {
1624 		.pages = pages,
1625 		.partial = partial,
1626 		.nr_pages_max = PIPE_DEF_BUFFERS,
1627 		.flags = flags,
1628 		.ops = &user_page_pipe_buf_ops,
1629 		.spd_release = spd_release_page,
1630 	};
1631 	long ret;
1632 
1633 	pipe = get_pipe_info(file);
1634 	if (!pipe)
1635 		return -EBADF;
1636 
1637 	if (splice_grow_spd(pipe, &spd))
1638 		return -ENOMEM;
1639 
1640 	spd.nr_pages = get_iovec_page_array(iov, nr_segs, spd.pages,
1641 					    spd.partial, false,
1642 					    spd.nr_pages_max);
1643 	if (spd.nr_pages <= 0)
1644 		ret = spd.nr_pages;
1645 	else
1646 		ret = splice_to_pipe(pipe, &spd);
1647 
1648 	splice_shrink_spd(&spd);
1649 	return ret;
1650 }
1651 
1652 /*
1653  * Note that vmsplice only really supports true splicing _from_ user memory
1654  * to a pipe, not the other way around. Splicing from user memory is a simple
1655  * operation that can be supported without any funky alignment restrictions
1656  * or nasty vm tricks. We simply map in the user memory and fill them into
1657  * a pipe. The reverse isn't quite as easy, though. There are two possible
1658  * solutions for that:
1659  *
1660  *	- memcpy() the data internally, at which point we might as well just
1661  *	  do a regular read() on the buffer anyway.
1662  *	- Lots of nasty vm tricks, that are neither fast nor flexible (it
1663  *	  has restriction limitations on both ends of the pipe).
1664  *
1665  * Currently we punt and implement it as a normal copy, see pipe_to_user().
1666  *
1667  */
1668 SYSCALL_DEFINE4(vmsplice, int, fd, const struct iovec __user *, iov,
1669 		unsigned long, nr_segs, unsigned int, flags)
1670 {
1671 	struct fd f;
1672 	long error;
1673 
1674 	if (unlikely(nr_segs > UIO_MAXIOV))
1675 		return -EINVAL;
1676 	else if (unlikely(!nr_segs))
1677 		return 0;
1678 
1679 	error = -EBADF;
1680 	f = fdget(fd);
1681 	if (f.file) {
1682 		if (f.file->f_mode & FMODE_WRITE)
1683 			error = vmsplice_to_pipe(f.file, iov, nr_segs, flags);
1684 		else if (f.file->f_mode & FMODE_READ)
1685 			error = vmsplice_to_user(f.file, iov, nr_segs, flags);
1686 
1687 		fdput(f);
1688 	}
1689 
1690 	return error;
1691 }
1692 
1693 SYSCALL_DEFINE6(splice, int, fd_in, loff_t __user *, off_in,
1694 		int, fd_out, loff_t __user *, off_out,
1695 		size_t, len, unsigned int, flags)
1696 {
1697 	struct fd in, out;
1698 	long error;
1699 
1700 	if (unlikely(!len))
1701 		return 0;
1702 
1703 	error = -EBADF;
1704 	in = fdget(fd_in);
1705 	if (in.file) {
1706 		if (in.file->f_mode & FMODE_READ) {
1707 			out = fdget(fd_out);
1708 			if (out.file) {
1709 				if (out.file->f_mode & FMODE_WRITE)
1710 					error = do_splice(in.file, off_in,
1711 							  out.file, off_out,
1712 							  len, flags);
1713 				fdput(out);
1714 			}
1715 		}
1716 		fdput(in);
1717 	}
1718 	return error;
1719 }
1720 
1721 /*
1722  * Make sure there's data to read. Wait for input if we can, otherwise
1723  * return an appropriate error.
1724  */
1725 static int ipipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1726 {
1727 	int ret;
1728 
1729 	/*
1730 	 * Check ->nrbufs without the inode lock first. This function
1731 	 * is speculative anyways, so missing one is ok.
1732 	 */
1733 	if (pipe->nrbufs)
1734 		return 0;
1735 
1736 	ret = 0;
1737 	pipe_lock(pipe);
1738 
1739 	while (!pipe->nrbufs) {
1740 		if (signal_pending(current)) {
1741 			ret = -ERESTARTSYS;
1742 			break;
1743 		}
1744 		if (!pipe->writers)
1745 			break;
1746 		if (!pipe->waiting_writers) {
1747 			if (flags & SPLICE_F_NONBLOCK) {
1748 				ret = -EAGAIN;
1749 				break;
1750 			}
1751 		}
1752 		pipe_wait(pipe);
1753 	}
1754 
1755 	pipe_unlock(pipe);
1756 	return ret;
1757 }
1758 
1759 /*
1760  * Make sure there's writeable room. Wait for room if we can, otherwise
1761  * return an appropriate error.
1762  */
1763 static int opipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1764 {
1765 	int ret;
1766 
1767 	/*
1768 	 * Check ->nrbufs without the inode lock first. This function
1769 	 * is speculative anyways, so missing one is ok.
1770 	 */
1771 	if (pipe->nrbufs < pipe->buffers)
1772 		return 0;
1773 
1774 	ret = 0;
1775 	pipe_lock(pipe);
1776 
1777 	while (pipe->nrbufs >= pipe->buffers) {
1778 		if (!pipe->readers) {
1779 			send_sig(SIGPIPE, current, 0);
1780 			ret = -EPIPE;
1781 			break;
1782 		}
1783 		if (flags & SPLICE_F_NONBLOCK) {
1784 			ret = -EAGAIN;
1785 			break;
1786 		}
1787 		if (signal_pending(current)) {
1788 			ret = -ERESTARTSYS;
1789 			break;
1790 		}
1791 		pipe->waiting_writers++;
1792 		pipe_wait(pipe);
1793 		pipe->waiting_writers--;
1794 	}
1795 
1796 	pipe_unlock(pipe);
1797 	return ret;
1798 }
1799 
1800 /*
1801  * Splice contents of ipipe to opipe.
1802  */
1803 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1804 			       struct pipe_inode_info *opipe,
1805 			       size_t len, unsigned int flags)
1806 {
1807 	struct pipe_buffer *ibuf, *obuf;
1808 	int ret = 0, nbuf;
1809 	bool input_wakeup = false;
1810 
1811 
1812 retry:
1813 	ret = ipipe_prep(ipipe, flags);
1814 	if (ret)
1815 		return ret;
1816 
1817 	ret = opipe_prep(opipe, flags);
1818 	if (ret)
1819 		return ret;
1820 
1821 	/*
1822 	 * Potential ABBA deadlock, work around it by ordering lock
1823 	 * grabbing by pipe info address. Otherwise two different processes
1824 	 * could deadlock (one doing tee from A -> B, the other from B -> A).
1825 	 */
1826 	pipe_double_lock(ipipe, opipe);
1827 
1828 	do {
1829 		if (!opipe->readers) {
1830 			send_sig(SIGPIPE, current, 0);
1831 			if (!ret)
1832 				ret = -EPIPE;
1833 			break;
1834 		}
1835 
1836 		if (!ipipe->nrbufs && !ipipe->writers)
1837 			break;
1838 
1839 		/*
1840 		 * Cannot make any progress, because either the input
1841 		 * pipe is empty or the output pipe is full.
1842 		 */
1843 		if (!ipipe->nrbufs || opipe->nrbufs >= opipe->buffers) {
1844 			/* Already processed some buffers, break */
1845 			if (ret)
1846 				break;
1847 
1848 			if (flags & SPLICE_F_NONBLOCK) {
1849 				ret = -EAGAIN;
1850 				break;
1851 			}
1852 
1853 			/*
1854 			 * We raced with another reader/writer and haven't
1855 			 * managed to process any buffers.  A zero return
1856 			 * value means EOF, so retry instead.
1857 			 */
1858 			pipe_unlock(ipipe);
1859 			pipe_unlock(opipe);
1860 			goto retry;
1861 		}
1862 
1863 		ibuf = ipipe->bufs + ipipe->curbuf;
1864 		nbuf = (opipe->curbuf + opipe->nrbufs) & (opipe->buffers - 1);
1865 		obuf = opipe->bufs + nbuf;
1866 
1867 		if (len >= ibuf->len) {
1868 			/*
1869 			 * Simply move the whole buffer from ipipe to opipe
1870 			 */
1871 			*obuf = *ibuf;
1872 			ibuf->ops = NULL;
1873 			opipe->nrbufs++;
1874 			ipipe->curbuf = (ipipe->curbuf + 1) & (ipipe->buffers - 1);
1875 			ipipe->nrbufs--;
1876 			input_wakeup = true;
1877 		} else {
1878 			/*
1879 			 * Get a reference to this pipe buffer,
1880 			 * so we can copy the contents over.
1881 			 */
1882 			ibuf->ops->get(ipipe, ibuf);
1883 			*obuf = *ibuf;
1884 
1885 			/*
1886 			 * Don't inherit the gift flag, we need to
1887 			 * prevent multiple steals of this page.
1888 			 */
1889 			obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1890 
1891 			obuf->len = len;
1892 			opipe->nrbufs++;
1893 			ibuf->offset += obuf->len;
1894 			ibuf->len -= obuf->len;
1895 		}
1896 		ret += obuf->len;
1897 		len -= obuf->len;
1898 	} while (len);
1899 
1900 	pipe_unlock(ipipe);
1901 	pipe_unlock(opipe);
1902 
1903 	/*
1904 	 * If we put data in the output pipe, wakeup any potential readers.
1905 	 */
1906 	if (ret > 0)
1907 		wakeup_pipe_readers(opipe);
1908 
1909 	if (input_wakeup)
1910 		wakeup_pipe_writers(ipipe);
1911 
1912 	return ret;
1913 }
1914 
1915 /*
1916  * Link contents of ipipe to opipe.
1917  */
1918 static int link_pipe(struct pipe_inode_info *ipipe,
1919 		     struct pipe_inode_info *opipe,
1920 		     size_t len, unsigned int flags)
1921 {
1922 	struct pipe_buffer *ibuf, *obuf;
1923 	int ret = 0, i = 0, nbuf;
1924 
1925 	/*
1926 	 * Potential ABBA deadlock, work around it by ordering lock
1927 	 * grabbing by pipe info address. Otherwise two different processes
1928 	 * could deadlock (one doing tee from A -> B, the other from B -> A).
1929 	 */
1930 	pipe_double_lock(ipipe, opipe);
1931 
1932 	do {
1933 		if (!opipe->readers) {
1934 			send_sig(SIGPIPE, current, 0);
1935 			if (!ret)
1936 				ret = -EPIPE;
1937 			break;
1938 		}
1939 
1940 		/*
1941 		 * If we have iterated all input buffers or ran out of
1942 		 * output room, break.
1943 		 */
1944 		if (i >= ipipe->nrbufs || opipe->nrbufs >= opipe->buffers)
1945 			break;
1946 
1947 		ibuf = ipipe->bufs + ((ipipe->curbuf + i) & (ipipe->buffers-1));
1948 		nbuf = (opipe->curbuf + opipe->nrbufs) & (opipe->buffers - 1);
1949 
1950 		/*
1951 		 * Get a reference to this pipe buffer,
1952 		 * so we can copy the contents over.
1953 		 */
1954 		ibuf->ops->get(ipipe, ibuf);
1955 
1956 		obuf = opipe->bufs + nbuf;
1957 		*obuf = *ibuf;
1958 
1959 		/*
1960 		 * Don't inherit the gift flag, we need to
1961 		 * prevent multiple steals of this page.
1962 		 */
1963 		obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1964 
1965 		if (obuf->len > len)
1966 			obuf->len = len;
1967 
1968 		opipe->nrbufs++;
1969 		ret += obuf->len;
1970 		len -= obuf->len;
1971 		i++;
1972 	} while (len);
1973 
1974 	/*
1975 	 * return EAGAIN if we have the potential of some data in the
1976 	 * future, otherwise just return 0
1977 	 */
1978 	if (!ret && ipipe->waiting_writers && (flags & SPLICE_F_NONBLOCK))
1979 		ret = -EAGAIN;
1980 
1981 	pipe_unlock(ipipe);
1982 	pipe_unlock(opipe);
1983 
1984 	/*
1985 	 * If we put data in the output pipe, wakeup any potential readers.
1986 	 */
1987 	if (ret > 0)
1988 		wakeup_pipe_readers(opipe);
1989 
1990 	return ret;
1991 }
1992 
1993 /*
1994  * This is a tee(1) implementation that works on pipes. It doesn't copy
1995  * any data, it simply references the 'in' pages on the 'out' pipe.
1996  * The 'flags' used are the SPLICE_F_* variants, currently the only
1997  * applicable one is SPLICE_F_NONBLOCK.
1998  */
1999 static long do_tee(struct file *in, struct file *out, size_t len,
2000 		   unsigned int flags)
2001 {
2002 	struct pipe_inode_info *ipipe = get_pipe_info(in);
2003 	struct pipe_inode_info *opipe = get_pipe_info(out);
2004 	int ret = -EINVAL;
2005 
2006 	/*
2007 	 * Duplicate the contents of ipipe to opipe without actually
2008 	 * copying the data.
2009 	 */
2010 	if (ipipe && opipe && ipipe != opipe) {
2011 		/*
2012 		 * Keep going, unless we encounter an error. The ipipe/opipe
2013 		 * ordering doesn't really matter.
2014 		 */
2015 		ret = ipipe_prep(ipipe, flags);
2016 		if (!ret) {
2017 			ret = opipe_prep(opipe, flags);
2018 			if (!ret)
2019 				ret = link_pipe(ipipe, opipe, len, flags);
2020 		}
2021 	}
2022 
2023 	return ret;
2024 }
2025 
2026 SYSCALL_DEFINE4(tee, int, fdin, int, fdout, size_t, len, unsigned int, flags)
2027 {
2028 	struct fd in;
2029 	int error;
2030 
2031 	if (unlikely(!len))
2032 		return 0;
2033 
2034 	error = -EBADF;
2035 	in = fdget(fdin);
2036 	if (in.file) {
2037 		if (in.file->f_mode & FMODE_READ) {
2038 			struct fd out = fdget(fdout);
2039 			if (out.file) {
2040 				if (out.file->f_mode & FMODE_WRITE)
2041 					error = do_tee(in.file, out.file,
2042 							len, flags);
2043 				fdput(out);
2044 			}
2045 		}
2046  		fdput(in);
2047  	}
2048 
2049 	return error;
2050 }
2051