xref: /linux/fs/splice.c (revision ba6e8564f459211117ce300eae2c7fdd23befe34)
1 /*
2  * "splice": joining two ropes together by interweaving their strands.
3  *
4  * This is the "extended pipe" functionality, where a pipe is used as
5  * an arbitrary in-memory buffer. Think of a pipe as a small kernel
6  * buffer that you can use to transfer data from one end to the other.
7  *
8  * The traditional unix read/write is extended with a "splice()" operation
9  * that transfers data buffers to or from a pipe buffer.
10  *
11  * Named by Larry McVoy, original implementation from Linus, extended by
12  * Jens to support splicing to files, network, direct splicing, etc and
13  * fixing lots of bugs.
14  *
15  * Copyright (C) 2005-2006 Jens Axboe <axboe@kernel.dk>
16  * Copyright (C) 2005-2006 Linus Torvalds <torvalds@osdl.org>
17  * Copyright (C) 2006 Ingo Molnar <mingo@elte.hu>
18  *
19  */
20 #include <linux/fs.h>
21 #include <linux/file.h>
22 #include <linux/pagemap.h>
23 #include <linux/pipe_fs_i.h>
24 #include <linux/mm_inline.h>
25 #include <linux/swap.h>
26 #include <linux/writeback.h>
27 #include <linux/buffer_head.h>
28 #include <linux/module.h>
29 #include <linux/syscalls.h>
30 #include <linux/uio.h>
31 
32 struct partial_page {
33 	unsigned int offset;
34 	unsigned int len;
35 };
36 
37 /*
38  * Passed to splice_to_pipe
39  */
40 struct splice_pipe_desc {
41 	struct page **pages;		/* page map */
42 	struct partial_page *partial;	/* pages[] may not be contig */
43 	int nr_pages;			/* number of pages in map */
44 	unsigned int flags;		/* splice flags */
45 	const struct pipe_buf_operations *ops;/* ops associated with output pipe */
46 };
47 
48 /*
49  * Attempt to steal a page from a pipe buffer. This should perhaps go into
50  * a vm helper function, it's already simplified quite a bit by the
51  * addition of remove_mapping(). If success is returned, the caller may
52  * attempt to reuse this page for another destination.
53  */
54 static int page_cache_pipe_buf_steal(struct pipe_inode_info *pipe,
55 				     struct pipe_buffer *buf)
56 {
57 	struct page *page = buf->page;
58 	struct address_space *mapping;
59 
60 	lock_page(page);
61 
62 	mapping = page_mapping(page);
63 	if (mapping) {
64 		WARN_ON(!PageUptodate(page));
65 
66 		/*
67 		 * At least for ext2 with nobh option, we need to wait on
68 		 * writeback completing on this page, since we'll remove it
69 		 * from the pagecache.  Otherwise truncate wont wait on the
70 		 * page, allowing the disk blocks to be reused by someone else
71 		 * before we actually wrote our data to them. fs corruption
72 		 * ensues.
73 		 */
74 		wait_on_page_writeback(page);
75 
76 		if (PagePrivate(page))
77 			try_to_release_page(page, GFP_KERNEL);
78 
79 		/*
80 		 * If we succeeded in removing the mapping, set LRU flag
81 		 * and return good.
82 		 */
83 		if (remove_mapping(mapping, page)) {
84 			buf->flags |= PIPE_BUF_FLAG_LRU;
85 			return 0;
86 		}
87 	}
88 
89 	/*
90 	 * Raced with truncate or failed to remove page from current
91 	 * address space, unlock and return failure.
92 	 */
93 	unlock_page(page);
94 	return 1;
95 }
96 
97 static void page_cache_pipe_buf_release(struct pipe_inode_info *pipe,
98 					struct pipe_buffer *buf)
99 {
100 	page_cache_release(buf->page);
101 	buf->flags &= ~PIPE_BUF_FLAG_LRU;
102 }
103 
104 static int page_cache_pipe_buf_pin(struct pipe_inode_info *pipe,
105 				   struct pipe_buffer *buf)
106 {
107 	struct page *page = buf->page;
108 	int err;
109 
110 	if (!PageUptodate(page)) {
111 		lock_page(page);
112 
113 		/*
114 		 * Page got truncated/unhashed. This will cause a 0-byte
115 		 * splice, if this is the first page.
116 		 */
117 		if (!page->mapping) {
118 			err = -ENODATA;
119 			goto error;
120 		}
121 
122 		/*
123 		 * Uh oh, read-error from disk.
124 		 */
125 		if (!PageUptodate(page)) {
126 			err = -EIO;
127 			goto error;
128 		}
129 
130 		/*
131 		 * Page is ok afterall, we are done.
132 		 */
133 		unlock_page(page);
134 	}
135 
136 	return 0;
137 error:
138 	unlock_page(page);
139 	return err;
140 }
141 
142 static const struct pipe_buf_operations page_cache_pipe_buf_ops = {
143 	.can_merge = 0,
144 	.map = generic_pipe_buf_map,
145 	.unmap = generic_pipe_buf_unmap,
146 	.pin = page_cache_pipe_buf_pin,
147 	.release = page_cache_pipe_buf_release,
148 	.steal = page_cache_pipe_buf_steal,
149 	.get = generic_pipe_buf_get,
150 };
151 
152 static int user_page_pipe_buf_steal(struct pipe_inode_info *pipe,
153 				    struct pipe_buffer *buf)
154 {
155 	if (!(buf->flags & PIPE_BUF_FLAG_GIFT))
156 		return 1;
157 
158 	buf->flags |= PIPE_BUF_FLAG_LRU;
159 	return generic_pipe_buf_steal(pipe, buf);
160 }
161 
162 static const struct pipe_buf_operations user_page_pipe_buf_ops = {
163 	.can_merge = 0,
164 	.map = generic_pipe_buf_map,
165 	.unmap = generic_pipe_buf_unmap,
166 	.pin = generic_pipe_buf_pin,
167 	.release = page_cache_pipe_buf_release,
168 	.steal = user_page_pipe_buf_steal,
169 	.get = generic_pipe_buf_get,
170 };
171 
172 /*
173  * Pipe output worker. This sets up our pipe format with the page cache
174  * pipe buffer operations. Otherwise very similar to the regular pipe_writev().
175  */
176 static ssize_t splice_to_pipe(struct pipe_inode_info *pipe,
177 			      struct splice_pipe_desc *spd)
178 {
179 	int ret, do_wakeup, page_nr;
180 
181 	ret = 0;
182 	do_wakeup = 0;
183 	page_nr = 0;
184 
185 	if (pipe->inode)
186 		mutex_lock(&pipe->inode->i_mutex);
187 
188 	for (;;) {
189 		if (!pipe->readers) {
190 			send_sig(SIGPIPE, current, 0);
191 			if (!ret)
192 				ret = -EPIPE;
193 			break;
194 		}
195 
196 		if (pipe->nrbufs < PIPE_BUFFERS) {
197 			int newbuf = (pipe->curbuf + pipe->nrbufs) & (PIPE_BUFFERS - 1);
198 			struct pipe_buffer *buf = pipe->bufs + newbuf;
199 
200 			buf->page = spd->pages[page_nr];
201 			buf->offset = spd->partial[page_nr].offset;
202 			buf->len = spd->partial[page_nr].len;
203 			buf->ops = spd->ops;
204 			if (spd->flags & SPLICE_F_GIFT)
205 				buf->flags |= PIPE_BUF_FLAG_GIFT;
206 
207 			pipe->nrbufs++;
208 			page_nr++;
209 			ret += buf->len;
210 
211 			if (pipe->inode)
212 				do_wakeup = 1;
213 
214 			if (!--spd->nr_pages)
215 				break;
216 			if (pipe->nrbufs < PIPE_BUFFERS)
217 				continue;
218 
219 			break;
220 		}
221 
222 		if (spd->flags & SPLICE_F_NONBLOCK) {
223 			if (!ret)
224 				ret = -EAGAIN;
225 			break;
226 		}
227 
228 		if (signal_pending(current)) {
229 			if (!ret)
230 				ret = -ERESTARTSYS;
231 			break;
232 		}
233 
234 		if (do_wakeup) {
235 			smp_mb();
236 			if (waitqueue_active(&pipe->wait))
237 				wake_up_interruptible_sync(&pipe->wait);
238 			kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
239 			do_wakeup = 0;
240 		}
241 
242 		pipe->waiting_writers++;
243 		pipe_wait(pipe);
244 		pipe->waiting_writers--;
245 	}
246 
247 	if (pipe->inode)
248 		mutex_unlock(&pipe->inode->i_mutex);
249 
250 	if (do_wakeup) {
251 		smp_mb();
252 		if (waitqueue_active(&pipe->wait))
253 			wake_up_interruptible(&pipe->wait);
254 		kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
255 	}
256 
257 	while (page_nr < spd->nr_pages)
258 		page_cache_release(spd->pages[page_nr++]);
259 
260 	return ret;
261 }
262 
263 static int
264 __generic_file_splice_read(struct file *in, loff_t *ppos,
265 			   struct pipe_inode_info *pipe, size_t len,
266 			   unsigned int flags)
267 {
268 	struct address_space *mapping = in->f_mapping;
269 	unsigned int loff, nr_pages;
270 	struct page *pages[PIPE_BUFFERS];
271 	struct partial_page partial[PIPE_BUFFERS];
272 	struct page *page;
273 	pgoff_t index, end_index;
274 	loff_t isize;
275 	size_t total_len;
276 	int error, page_nr;
277 	struct splice_pipe_desc spd = {
278 		.pages = pages,
279 		.partial = partial,
280 		.flags = flags,
281 		.ops = &page_cache_pipe_buf_ops,
282 	};
283 
284 	index = *ppos >> PAGE_CACHE_SHIFT;
285 	loff = *ppos & ~PAGE_CACHE_MASK;
286 	nr_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
287 
288 	if (nr_pages > PIPE_BUFFERS)
289 		nr_pages = PIPE_BUFFERS;
290 
291 	/*
292 	 * Initiate read-ahead on this page range. however, don't call into
293 	 * read-ahead if this is a non-zero offset (we are likely doing small
294 	 * chunk splice and the page is already there) for a single page.
295 	 */
296 	if (!loff || nr_pages > 1)
297 		page_cache_readahead(mapping, &in->f_ra, in, index, nr_pages);
298 
299 	/*
300 	 * Now fill in the holes:
301 	 */
302 	error = 0;
303 	total_len = 0;
304 
305 	/*
306 	 * Lookup the (hopefully) full range of pages we need.
307 	 */
308 	spd.nr_pages = find_get_pages_contig(mapping, index, nr_pages, pages);
309 
310 	/*
311 	 * If find_get_pages_contig() returned fewer pages than we needed,
312 	 * allocate the rest.
313 	 */
314 	index += spd.nr_pages;
315 	while (spd.nr_pages < nr_pages) {
316 		/*
317 		 * Page could be there, find_get_pages_contig() breaks on
318 		 * the first hole.
319 		 */
320 		page = find_get_page(mapping, index);
321 		if (!page) {
322 			/*
323 			 * Make sure the read-ahead engine is notified
324 			 * about this failure.
325 			 */
326 			handle_ra_miss(mapping, &in->f_ra, index);
327 
328 			/*
329 			 * page didn't exist, allocate one.
330 			 */
331 			page = page_cache_alloc_cold(mapping);
332 			if (!page)
333 				break;
334 
335 			error = add_to_page_cache_lru(page, mapping, index,
336 					      GFP_KERNEL);
337 			if (unlikely(error)) {
338 				page_cache_release(page);
339 				if (error == -EEXIST)
340 					continue;
341 				break;
342 			}
343 			/*
344 			 * add_to_page_cache() locks the page, unlock it
345 			 * to avoid convoluting the logic below even more.
346 			 */
347 			unlock_page(page);
348 		}
349 
350 		pages[spd.nr_pages++] = page;
351 		index++;
352 	}
353 
354 	/*
355 	 * Now loop over the map and see if we need to start IO on any
356 	 * pages, fill in the partial map, etc.
357 	 */
358 	index = *ppos >> PAGE_CACHE_SHIFT;
359 	nr_pages = spd.nr_pages;
360 	spd.nr_pages = 0;
361 	for (page_nr = 0; page_nr < nr_pages; page_nr++) {
362 		unsigned int this_len;
363 
364 		if (!len)
365 			break;
366 
367 		/*
368 		 * this_len is the max we'll use from this page
369 		 */
370 		this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
371 		page = pages[page_nr];
372 
373 		/*
374 		 * If the page isn't uptodate, we may need to start io on it
375 		 */
376 		if (!PageUptodate(page)) {
377 			/*
378 			 * If in nonblock mode then dont block on waiting
379 			 * for an in-flight io page
380 			 */
381 			if (flags & SPLICE_F_NONBLOCK)
382 				break;
383 
384 			lock_page(page);
385 
386 			/*
387 			 * page was truncated, stop here. if this isn't the
388 			 * first page, we'll just complete what we already
389 			 * added
390 			 */
391 			if (!page->mapping) {
392 				unlock_page(page);
393 				break;
394 			}
395 			/*
396 			 * page was already under io and is now done, great
397 			 */
398 			if (PageUptodate(page)) {
399 				unlock_page(page);
400 				goto fill_it;
401 			}
402 
403 			/*
404 			 * need to read in the page
405 			 */
406 			error = mapping->a_ops->readpage(in, page);
407 			if (unlikely(error)) {
408 				/*
409 				 * We really should re-lookup the page here,
410 				 * but it complicates things a lot. Instead
411 				 * lets just do what we already stored, and
412 				 * we'll get it the next time we are called.
413 				 */
414 				if (error == AOP_TRUNCATED_PAGE)
415 					error = 0;
416 
417 				break;
418 			}
419 
420 			/*
421 			 * i_size must be checked after ->readpage().
422 			 */
423 			isize = i_size_read(mapping->host);
424 			end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
425 			if (unlikely(!isize || index > end_index))
426 				break;
427 
428 			/*
429 			 * if this is the last page, see if we need to shrink
430 			 * the length and stop
431 			 */
432 			if (end_index == index) {
433 				loff = PAGE_CACHE_SIZE - (isize & ~PAGE_CACHE_MASK);
434 				if (total_len + loff > isize)
435 					break;
436 				/*
437 				 * force quit after adding this page
438 				 */
439 				len = this_len;
440 				this_len = min(this_len, loff);
441 				loff = 0;
442 			}
443 		}
444 fill_it:
445 		partial[page_nr].offset = loff;
446 		partial[page_nr].len = this_len;
447 		len -= this_len;
448 		total_len += this_len;
449 		loff = 0;
450 		spd.nr_pages++;
451 		index++;
452 	}
453 
454 	/*
455 	 * Release any pages at the end, if we quit early. 'i' is how far
456 	 * we got, 'nr_pages' is how many pages are in the map.
457 	 */
458 	while (page_nr < nr_pages)
459 		page_cache_release(pages[page_nr++]);
460 
461 	if (spd.nr_pages)
462 		return splice_to_pipe(pipe, &spd);
463 
464 	return error;
465 }
466 
467 /**
468  * generic_file_splice_read - splice data from file to a pipe
469  * @in:		file to splice from
470  * @pipe:	pipe to splice to
471  * @len:	number of bytes to splice
472  * @flags:	splice modifier flags
473  *
474  * Will read pages from given file and fill them into a pipe.
475  */
476 ssize_t generic_file_splice_read(struct file *in, loff_t *ppos,
477 				 struct pipe_inode_info *pipe, size_t len,
478 				 unsigned int flags)
479 {
480 	ssize_t spliced;
481 	int ret;
482 
483 	ret = 0;
484 	spliced = 0;
485 
486 	while (len) {
487 		ret = __generic_file_splice_read(in, ppos, pipe, len, flags);
488 
489 		if (ret < 0)
490 			break;
491 		else if (!ret) {
492 			if (spliced)
493 				break;
494 			if (flags & SPLICE_F_NONBLOCK) {
495 				ret = -EAGAIN;
496 				break;
497 			}
498 		}
499 
500 		*ppos += ret;
501 		len -= ret;
502 		spliced += ret;
503 	}
504 
505 	if (spliced)
506 		return spliced;
507 
508 	return ret;
509 }
510 
511 EXPORT_SYMBOL(generic_file_splice_read);
512 
513 /*
514  * Send 'sd->len' bytes to socket from 'sd->file' at position 'sd->pos'
515  * using sendpage(). Return the number of bytes sent.
516  */
517 static int pipe_to_sendpage(struct pipe_inode_info *pipe,
518 			    struct pipe_buffer *buf, struct splice_desc *sd)
519 {
520 	struct file *file = sd->file;
521 	loff_t pos = sd->pos;
522 	int ret, more;
523 
524 	ret = buf->ops->pin(pipe, buf);
525 	if (!ret) {
526 		more = (sd->flags & SPLICE_F_MORE) || sd->len < sd->total_len;
527 
528 		ret = file->f_op->sendpage(file, buf->page, buf->offset,
529 					   sd->len, &pos, more);
530 	}
531 
532 	return ret;
533 }
534 
535 /*
536  * This is a little more tricky than the file -> pipe splicing. There are
537  * basically three cases:
538  *
539  *	- Destination page already exists in the address space and there
540  *	  are users of it. For that case we have no other option that
541  *	  copying the data. Tough luck.
542  *	- Destination page already exists in the address space, but there
543  *	  are no users of it. Make sure it's uptodate, then drop it. Fall
544  *	  through to last case.
545  *	- Destination page does not exist, we can add the pipe page to
546  *	  the page cache and avoid the copy.
547  *
548  * If asked to move pages to the output file (SPLICE_F_MOVE is set in
549  * sd->flags), we attempt to migrate pages from the pipe to the output
550  * file address space page cache. This is possible if no one else has
551  * the pipe page referenced outside of the pipe and page cache. If
552  * SPLICE_F_MOVE isn't set, or we cannot move the page, we simply create
553  * a new page in the output file page cache and fill/dirty that.
554  */
555 static int pipe_to_file(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
556 			struct splice_desc *sd)
557 {
558 	struct file *file = sd->file;
559 	struct address_space *mapping = file->f_mapping;
560 	unsigned int offset, this_len;
561 	struct page *page;
562 	pgoff_t index;
563 	int ret;
564 
565 	/*
566 	 * make sure the data in this buffer is uptodate
567 	 */
568 	ret = buf->ops->pin(pipe, buf);
569 	if (unlikely(ret))
570 		return ret;
571 
572 	index = sd->pos >> PAGE_CACHE_SHIFT;
573 	offset = sd->pos & ~PAGE_CACHE_MASK;
574 
575 	this_len = sd->len;
576 	if (this_len + offset > PAGE_CACHE_SIZE)
577 		this_len = PAGE_CACHE_SIZE - offset;
578 
579 find_page:
580 	page = find_lock_page(mapping, index);
581 	if (!page) {
582 		ret = -ENOMEM;
583 		page = page_cache_alloc_cold(mapping);
584 		if (unlikely(!page))
585 			goto out_ret;
586 
587 		/*
588 		 * This will also lock the page
589 		 */
590 		ret = add_to_page_cache_lru(page, mapping, index,
591 					    GFP_KERNEL);
592 		if (unlikely(ret))
593 			goto out;
594 	}
595 
596 	ret = mapping->a_ops->prepare_write(file, page, offset, offset+this_len);
597 	if (unlikely(ret)) {
598 		loff_t isize = i_size_read(mapping->host);
599 
600 		if (ret != AOP_TRUNCATED_PAGE)
601 			unlock_page(page);
602 		page_cache_release(page);
603 		if (ret == AOP_TRUNCATED_PAGE)
604 			goto find_page;
605 
606 		/*
607 		 * prepare_write() may have instantiated a few blocks
608 		 * outside i_size.  Trim these off again.
609 		 */
610 		if (sd->pos + this_len > isize)
611 			vmtruncate(mapping->host, isize);
612 
613 		goto out_ret;
614 	}
615 
616 	if (buf->page != page) {
617 		/*
618 		 * Careful, ->map() uses KM_USER0!
619 		 */
620 		char *src = buf->ops->map(pipe, buf, 1);
621 		char *dst = kmap_atomic(page, KM_USER1);
622 
623 		memcpy(dst + offset, src + buf->offset, this_len);
624 		flush_dcache_page(page);
625 		kunmap_atomic(dst, KM_USER1);
626 		buf->ops->unmap(pipe, buf, src);
627 	}
628 
629 	ret = mapping->a_ops->commit_write(file, page, offset, offset+this_len);
630 	if (ret) {
631 		if (ret == AOP_TRUNCATED_PAGE) {
632 			page_cache_release(page);
633 			goto find_page;
634 		}
635 		if (ret < 0)
636 			goto out;
637 		/*
638 		 * Partial write has happened, so 'ret' already initialized by
639 		 * number of bytes written, Where is nothing we have to do here.
640 		 */
641 	} else
642 		ret = this_len;
643 	/*
644 	 * Return the number of bytes written and mark page as
645 	 * accessed, we are now done!
646 	 */
647 	mark_page_accessed(page);
648 	balance_dirty_pages_ratelimited(mapping);
649 out:
650 	page_cache_release(page);
651 	unlock_page(page);
652 out_ret:
653 	return ret;
654 }
655 
656 /*
657  * Pipe input worker. Most of this logic works like a regular pipe, the
658  * key here is the 'actor' worker passed in that actually moves the data
659  * to the wanted destination. See pipe_to_file/pipe_to_sendpage above.
660  */
661 ssize_t __splice_from_pipe(struct pipe_inode_info *pipe,
662 			   struct file *out, loff_t *ppos, size_t len,
663 			   unsigned int flags, splice_actor *actor)
664 {
665 	int ret, do_wakeup, err;
666 	struct splice_desc sd;
667 
668 	ret = 0;
669 	do_wakeup = 0;
670 
671 	sd.total_len = len;
672 	sd.flags = flags;
673 	sd.file = out;
674 	sd.pos = *ppos;
675 
676 	for (;;) {
677 		if (pipe->nrbufs) {
678 			struct pipe_buffer *buf = pipe->bufs + pipe->curbuf;
679 			const struct pipe_buf_operations *ops = buf->ops;
680 
681 			sd.len = buf->len;
682 			if (sd.len > sd.total_len)
683 				sd.len = sd.total_len;
684 
685 			err = actor(pipe, buf, &sd);
686 			if (err <= 0) {
687 				if (!ret && err != -ENODATA)
688 					ret = err;
689 
690 				break;
691 			}
692 
693 			ret += err;
694 			buf->offset += err;
695 			buf->len -= err;
696 
697 			sd.len -= err;
698 			sd.pos += err;
699 			sd.total_len -= err;
700 			if (sd.len)
701 				continue;
702 
703 			if (!buf->len) {
704 				buf->ops = NULL;
705 				ops->release(pipe, buf);
706 				pipe->curbuf = (pipe->curbuf + 1) & (PIPE_BUFFERS - 1);
707 				pipe->nrbufs--;
708 				if (pipe->inode)
709 					do_wakeup = 1;
710 			}
711 
712 			if (!sd.total_len)
713 				break;
714 		}
715 
716 		if (pipe->nrbufs)
717 			continue;
718 		if (!pipe->writers)
719 			break;
720 		if (!pipe->waiting_writers) {
721 			if (ret)
722 				break;
723 		}
724 
725 		if (flags & SPLICE_F_NONBLOCK) {
726 			if (!ret)
727 				ret = -EAGAIN;
728 			break;
729 		}
730 
731 		if (signal_pending(current)) {
732 			if (!ret)
733 				ret = -ERESTARTSYS;
734 			break;
735 		}
736 
737 		if (do_wakeup) {
738 			smp_mb();
739 			if (waitqueue_active(&pipe->wait))
740 				wake_up_interruptible_sync(&pipe->wait);
741 			kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
742 			do_wakeup = 0;
743 		}
744 
745 		pipe_wait(pipe);
746 	}
747 
748 	if (do_wakeup) {
749 		smp_mb();
750 		if (waitqueue_active(&pipe->wait))
751 			wake_up_interruptible(&pipe->wait);
752 		kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
753 	}
754 
755 	return ret;
756 }
757 EXPORT_SYMBOL(__splice_from_pipe);
758 
759 ssize_t splice_from_pipe(struct pipe_inode_info *pipe, struct file *out,
760 			 loff_t *ppos, size_t len, unsigned int flags,
761 			 splice_actor *actor)
762 {
763 	ssize_t ret;
764 	struct inode *inode = out->f_mapping->host;
765 
766 	/*
767 	 * The actor worker might be calling ->prepare_write and
768 	 * ->commit_write. Most of the time, these expect i_mutex to
769 	 * be held. Since this may result in an ABBA deadlock with
770 	 * pipe->inode, we have to order lock acquiry here.
771 	 */
772 	inode_double_lock(inode, pipe->inode);
773 	ret = __splice_from_pipe(pipe, out, ppos, len, flags, actor);
774 	inode_double_unlock(inode, pipe->inode);
775 
776 	return ret;
777 }
778 
779 /**
780  * generic_file_splice_write_nolock - generic_file_splice_write without mutexes
781  * @pipe:	pipe info
782  * @out:	file to write to
783  * @len:	number of bytes to splice
784  * @flags:	splice modifier flags
785  *
786  * Will either move or copy pages (determined by @flags options) from
787  * the given pipe inode to the given file. The caller is responsible
788  * for acquiring i_mutex on both inodes.
789  *
790  */
791 ssize_t
792 generic_file_splice_write_nolock(struct pipe_inode_info *pipe, struct file *out,
793 				 loff_t *ppos, size_t len, unsigned int flags)
794 {
795 	struct address_space *mapping = out->f_mapping;
796 	struct inode *inode = mapping->host;
797 	ssize_t ret;
798 	int err;
799 
800 	err = remove_suid(out->f_path.dentry);
801 	if (unlikely(err))
802 		return err;
803 
804 	ret = __splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_file);
805 	if (ret > 0) {
806 		*ppos += ret;
807 
808 		/*
809 		 * If file or inode is SYNC and we actually wrote some data,
810 		 * sync it.
811 		 */
812 		if (unlikely((out->f_flags & O_SYNC) || IS_SYNC(inode))) {
813 			err = generic_osync_inode(inode, mapping,
814 						  OSYNC_METADATA|OSYNC_DATA);
815 
816 			if (err)
817 				ret = err;
818 		}
819 	}
820 
821 	return ret;
822 }
823 
824 EXPORT_SYMBOL(generic_file_splice_write_nolock);
825 
826 /**
827  * generic_file_splice_write - splice data from a pipe to a file
828  * @pipe:	pipe info
829  * @out:	file to write to
830  * @len:	number of bytes to splice
831  * @flags:	splice modifier flags
832  *
833  * Will either move or copy pages (determined by @flags options) from
834  * the given pipe inode to the given file.
835  *
836  */
837 ssize_t
838 generic_file_splice_write(struct pipe_inode_info *pipe, struct file *out,
839 			  loff_t *ppos, size_t len, unsigned int flags)
840 {
841 	struct address_space *mapping = out->f_mapping;
842 	struct inode *inode = mapping->host;
843 	ssize_t ret;
844 	int err;
845 
846 	err = should_remove_suid(out->f_path.dentry);
847 	if (unlikely(err)) {
848 		mutex_lock(&inode->i_mutex);
849 		err = __remove_suid(out->f_path.dentry, err);
850 		mutex_unlock(&inode->i_mutex);
851 		if (err)
852 			return err;
853 	}
854 
855 	ret = splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_file);
856 	if (ret > 0) {
857 		*ppos += ret;
858 
859 		/*
860 		 * If file or inode is SYNC and we actually wrote some data,
861 		 * sync it.
862 		 */
863 		if (unlikely((out->f_flags & O_SYNC) || IS_SYNC(inode))) {
864 			mutex_lock(&inode->i_mutex);
865 			err = generic_osync_inode(inode, mapping,
866 						  OSYNC_METADATA|OSYNC_DATA);
867 			mutex_unlock(&inode->i_mutex);
868 
869 			if (err)
870 				ret = err;
871 		}
872 	}
873 
874 	return ret;
875 }
876 
877 EXPORT_SYMBOL(generic_file_splice_write);
878 
879 /**
880  * generic_splice_sendpage - splice data from a pipe to a socket
881  * @inode:	pipe inode
882  * @out:	socket to write to
883  * @len:	number of bytes to splice
884  * @flags:	splice modifier flags
885  *
886  * Will send @len bytes from the pipe to a network socket. No data copying
887  * is involved.
888  *
889  */
890 ssize_t generic_splice_sendpage(struct pipe_inode_info *pipe, struct file *out,
891 				loff_t *ppos, size_t len, unsigned int flags)
892 {
893 	return splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_sendpage);
894 }
895 
896 EXPORT_SYMBOL(generic_splice_sendpage);
897 
898 /*
899  * Attempt to initiate a splice from pipe to file.
900  */
901 static long do_splice_from(struct pipe_inode_info *pipe, struct file *out,
902 			   loff_t *ppos, size_t len, unsigned int flags)
903 {
904 	int ret;
905 
906 	if (unlikely(!out->f_op || !out->f_op->splice_write))
907 		return -EINVAL;
908 
909 	if (unlikely(!(out->f_mode & FMODE_WRITE)))
910 		return -EBADF;
911 
912 	ret = rw_verify_area(WRITE, out, ppos, len);
913 	if (unlikely(ret < 0))
914 		return ret;
915 
916 	return out->f_op->splice_write(pipe, out, ppos, len, flags);
917 }
918 
919 /*
920  * Attempt to initiate a splice from a file to a pipe.
921  */
922 static long do_splice_to(struct file *in, loff_t *ppos,
923 			 struct pipe_inode_info *pipe, size_t len,
924 			 unsigned int flags)
925 {
926 	loff_t isize, left;
927 	int ret;
928 
929 	if (unlikely(!in->f_op || !in->f_op->splice_read))
930 		return -EINVAL;
931 
932 	if (unlikely(!(in->f_mode & FMODE_READ)))
933 		return -EBADF;
934 
935 	ret = rw_verify_area(READ, in, ppos, len);
936 	if (unlikely(ret < 0))
937 		return ret;
938 
939 	isize = i_size_read(in->f_mapping->host);
940 	if (unlikely(*ppos >= isize))
941 		return 0;
942 
943 	left = isize - *ppos;
944 	if (unlikely(left < len))
945 		len = left;
946 
947 	return in->f_op->splice_read(in, ppos, pipe, len, flags);
948 }
949 
950 long do_splice_direct(struct file *in, loff_t *ppos, struct file *out,
951 		      size_t len, unsigned int flags)
952 {
953 	struct pipe_inode_info *pipe;
954 	long ret, bytes;
955 	loff_t out_off;
956 	umode_t i_mode;
957 	int i;
958 
959 	/*
960 	 * We require the input being a regular file, as we don't want to
961 	 * randomly drop data for eg socket -> socket splicing. Use the
962 	 * piped splicing for that!
963 	 */
964 	i_mode = in->f_path.dentry->d_inode->i_mode;
965 	if (unlikely(!S_ISREG(i_mode) && !S_ISBLK(i_mode)))
966 		return -EINVAL;
967 
968 	/*
969 	 * neither in nor out is a pipe, setup an internal pipe attached to
970 	 * 'out' and transfer the wanted data from 'in' to 'out' through that
971 	 */
972 	pipe = current->splice_pipe;
973 	if (unlikely(!pipe)) {
974 		pipe = alloc_pipe_info(NULL);
975 		if (!pipe)
976 			return -ENOMEM;
977 
978 		/*
979 		 * We don't have an immediate reader, but we'll read the stuff
980 		 * out of the pipe right after the splice_to_pipe(). So set
981 		 * PIPE_READERS appropriately.
982 		 */
983 		pipe->readers = 1;
984 
985 		current->splice_pipe = pipe;
986 	}
987 
988 	/*
989 	 * Do the splice.
990 	 */
991 	ret = 0;
992 	bytes = 0;
993 	out_off = 0;
994 
995 	while (len) {
996 		size_t read_len, max_read_len;
997 
998 		/*
999 		 * Do at most PIPE_BUFFERS pages worth of transfer:
1000 		 */
1001 		max_read_len = min(len, (size_t)(PIPE_BUFFERS*PAGE_SIZE));
1002 
1003 		ret = do_splice_to(in, ppos, pipe, max_read_len, flags);
1004 		if (unlikely(ret < 0))
1005 			goto out_release;
1006 
1007 		read_len = ret;
1008 
1009 		/*
1010 		 * NOTE: nonblocking mode only applies to the input. We
1011 		 * must not do the output in nonblocking mode as then we
1012 		 * could get stuck data in the internal pipe:
1013 		 */
1014 		ret = do_splice_from(pipe, out, &out_off, read_len,
1015 				     flags & ~SPLICE_F_NONBLOCK);
1016 		if (unlikely(ret < 0))
1017 			goto out_release;
1018 
1019 		bytes += ret;
1020 		len -= ret;
1021 
1022 		/*
1023 		 * In nonblocking mode, if we got back a short read then
1024 		 * that was due to either an IO error or due to the
1025 		 * pagecache entry not being there. In the IO error case
1026 		 * the _next_ splice attempt will produce a clean IO error
1027 		 * return value (not a short read), so in both cases it's
1028 		 * correct to break out of the loop here:
1029 		 */
1030 		if ((flags & SPLICE_F_NONBLOCK) && (read_len < max_read_len))
1031 			break;
1032 	}
1033 
1034 	pipe->nrbufs = pipe->curbuf = 0;
1035 
1036 	return bytes;
1037 
1038 out_release:
1039 	/*
1040 	 * If we did an incomplete transfer we must release
1041 	 * the pipe buffers in question:
1042 	 */
1043 	for (i = 0; i < PIPE_BUFFERS; i++) {
1044 		struct pipe_buffer *buf = pipe->bufs + i;
1045 
1046 		if (buf->ops) {
1047 			buf->ops->release(pipe, buf);
1048 			buf->ops = NULL;
1049 		}
1050 	}
1051 	pipe->nrbufs = pipe->curbuf = 0;
1052 
1053 	/*
1054 	 * If we transferred some data, return the number of bytes:
1055 	 */
1056 	if (bytes > 0)
1057 		return bytes;
1058 
1059 	return ret;
1060 }
1061 
1062 EXPORT_SYMBOL(do_splice_direct);
1063 
1064 /*
1065  * After the inode slimming patch, i_pipe/i_bdev/i_cdev share the same
1066  * location, so checking ->i_pipe is not enough to verify that this is a
1067  * pipe.
1068  */
1069 static inline struct pipe_inode_info *pipe_info(struct inode *inode)
1070 {
1071 	if (S_ISFIFO(inode->i_mode))
1072 		return inode->i_pipe;
1073 
1074 	return NULL;
1075 }
1076 
1077 /*
1078  * Determine where to splice to/from.
1079  */
1080 static long do_splice(struct file *in, loff_t __user *off_in,
1081 		      struct file *out, loff_t __user *off_out,
1082 		      size_t len, unsigned int flags)
1083 {
1084 	struct pipe_inode_info *pipe;
1085 	loff_t offset, *off;
1086 	long ret;
1087 
1088 	pipe = pipe_info(in->f_path.dentry->d_inode);
1089 	if (pipe) {
1090 		if (off_in)
1091 			return -ESPIPE;
1092 		if (off_out) {
1093 			if (out->f_op->llseek == no_llseek)
1094 				return -EINVAL;
1095 			if (copy_from_user(&offset, off_out, sizeof(loff_t)))
1096 				return -EFAULT;
1097 			off = &offset;
1098 		} else
1099 			off = &out->f_pos;
1100 
1101 		ret = do_splice_from(pipe, out, off, len, flags);
1102 
1103 		if (off_out && copy_to_user(off_out, off, sizeof(loff_t)))
1104 			ret = -EFAULT;
1105 
1106 		return ret;
1107 	}
1108 
1109 	pipe = pipe_info(out->f_path.dentry->d_inode);
1110 	if (pipe) {
1111 		if (off_out)
1112 			return -ESPIPE;
1113 		if (off_in) {
1114 			if (in->f_op->llseek == no_llseek)
1115 				return -EINVAL;
1116 			if (copy_from_user(&offset, off_in, sizeof(loff_t)))
1117 				return -EFAULT;
1118 			off = &offset;
1119 		} else
1120 			off = &in->f_pos;
1121 
1122 		ret = do_splice_to(in, off, pipe, len, flags);
1123 
1124 		if (off_in && copy_to_user(off_in, off, sizeof(loff_t)))
1125 			ret = -EFAULT;
1126 
1127 		return ret;
1128 	}
1129 
1130 	return -EINVAL;
1131 }
1132 
1133 /*
1134  * Map an iov into an array of pages and offset/length tupples. With the
1135  * partial_page structure, we can map several non-contiguous ranges into
1136  * our ones pages[] map instead of splitting that operation into pieces.
1137  * Could easily be exported as a generic helper for other users, in which
1138  * case one would probably want to add a 'max_nr_pages' parameter as well.
1139  */
1140 static int get_iovec_page_array(const struct iovec __user *iov,
1141 				unsigned int nr_vecs, struct page **pages,
1142 				struct partial_page *partial, int aligned)
1143 {
1144 	int buffers = 0, error = 0;
1145 
1146 	/*
1147 	 * It's ok to take the mmap_sem for reading, even
1148 	 * across a "get_user()".
1149 	 */
1150 	down_read(&current->mm->mmap_sem);
1151 
1152 	while (nr_vecs) {
1153 		unsigned long off, npages;
1154 		void __user *base;
1155 		size_t len;
1156 		int i;
1157 
1158 		/*
1159 		 * Get user address base and length for this iovec.
1160 		 */
1161 		error = get_user(base, &iov->iov_base);
1162 		if (unlikely(error))
1163 			break;
1164 		error = get_user(len, &iov->iov_len);
1165 		if (unlikely(error))
1166 			break;
1167 
1168 		/*
1169 		 * Sanity check this iovec. 0 read succeeds.
1170 		 */
1171 		if (unlikely(!len))
1172 			break;
1173 		error = -EFAULT;
1174 		if (unlikely(!base))
1175 			break;
1176 
1177 		/*
1178 		 * Get this base offset and number of pages, then map
1179 		 * in the user pages.
1180 		 */
1181 		off = (unsigned long) base & ~PAGE_MASK;
1182 
1183 		/*
1184 		 * If asked for alignment, the offset must be zero and the
1185 		 * length a multiple of the PAGE_SIZE.
1186 		 */
1187 		error = -EINVAL;
1188 		if (aligned && (off || len & ~PAGE_MASK))
1189 			break;
1190 
1191 		npages = (off + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1192 		if (npages > PIPE_BUFFERS - buffers)
1193 			npages = PIPE_BUFFERS - buffers;
1194 
1195 		error = get_user_pages(current, current->mm,
1196 				       (unsigned long) base, npages, 0, 0,
1197 				       &pages[buffers], NULL);
1198 
1199 		if (unlikely(error <= 0))
1200 			break;
1201 
1202 		/*
1203 		 * Fill this contiguous range into the partial page map.
1204 		 */
1205 		for (i = 0; i < error; i++) {
1206 			const int plen = min_t(size_t, len, PAGE_SIZE - off);
1207 
1208 			partial[buffers].offset = off;
1209 			partial[buffers].len = plen;
1210 
1211 			off = 0;
1212 			len -= plen;
1213 			buffers++;
1214 		}
1215 
1216 		/*
1217 		 * We didn't complete this iov, stop here since it probably
1218 		 * means we have to move some of this into a pipe to
1219 		 * be able to continue.
1220 		 */
1221 		if (len)
1222 			break;
1223 
1224 		/*
1225 		 * Don't continue if we mapped fewer pages than we asked for,
1226 		 * or if we mapped the max number of pages that we have
1227 		 * room for.
1228 		 */
1229 		if (error < npages || buffers == PIPE_BUFFERS)
1230 			break;
1231 
1232 		nr_vecs--;
1233 		iov++;
1234 	}
1235 
1236 	up_read(&current->mm->mmap_sem);
1237 
1238 	if (buffers)
1239 		return buffers;
1240 
1241 	return error;
1242 }
1243 
1244 /*
1245  * vmsplice splices a user address range into a pipe. It can be thought of
1246  * as splice-from-memory, where the regular splice is splice-from-file (or
1247  * to file). In both cases the output is a pipe, naturally.
1248  *
1249  * Note that vmsplice only supports splicing _from_ user memory to a pipe,
1250  * not the other way around. Splicing from user memory is a simple operation
1251  * that can be supported without any funky alignment restrictions or nasty
1252  * vm tricks. We simply map in the user memory and fill them into a pipe.
1253  * The reverse isn't quite as easy, though. There are two possible solutions
1254  * for that:
1255  *
1256  *	- memcpy() the data internally, at which point we might as well just
1257  *	  do a regular read() on the buffer anyway.
1258  *	- Lots of nasty vm tricks, that are neither fast nor flexible (it
1259  *	  has restriction limitations on both ends of the pipe).
1260  *
1261  * Alas, it isn't here.
1262  *
1263  */
1264 static long do_vmsplice(struct file *file, const struct iovec __user *iov,
1265 			unsigned long nr_segs, unsigned int flags)
1266 {
1267 	struct pipe_inode_info *pipe;
1268 	struct page *pages[PIPE_BUFFERS];
1269 	struct partial_page partial[PIPE_BUFFERS];
1270 	struct splice_pipe_desc spd = {
1271 		.pages = pages,
1272 		.partial = partial,
1273 		.flags = flags,
1274 		.ops = &user_page_pipe_buf_ops,
1275 	};
1276 
1277 	pipe = pipe_info(file->f_path.dentry->d_inode);
1278 	if (!pipe)
1279 		return -EBADF;
1280 	if (unlikely(nr_segs > UIO_MAXIOV))
1281 		return -EINVAL;
1282 	else if (unlikely(!nr_segs))
1283 		return 0;
1284 
1285 	spd.nr_pages = get_iovec_page_array(iov, nr_segs, pages, partial,
1286 					    flags & SPLICE_F_GIFT);
1287 	if (spd.nr_pages <= 0)
1288 		return spd.nr_pages;
1289 
1290 	return splice_to_pipe(pipe, &spd);
1291 }
1292 
1293 asmlinkage long sys_vmsplice(int fd, const struct iovec __user *iov,
1294 			     unsigned long nr_segs, unsigned int flags)
1295 {
1296 	struct file *file;
1297 	long error;
1298 	int fput;
1299 
1300 	error = -EBADF;
1301 	file = fget_light(fd, &fput);
1302 	if (file) {
1303 		if (file->f_mode & FMODE_WRITE)
1304 			error = do_vmsplice(file, iov, nr_segs, flags);
1305 
1306 		fput_light(file, fput);
1307 	}
1308 
1309 	return error;
1310 }
1311 
1312 asmlinkage long sys_splice(int fd_in, loff_t __user *off_in,
1313 			   int fd_out, loff_t __user *off_out,
1314 			   size_t len, unsigned int flags)
1315 {
1316 	long error;
1317 	struct file *in, *out;
1318 	int fput_in, fput_out;
1319 
1320 	if (unlikely(!len))
1321 		return 0;
1322 
1323 	error = -EBADF;
1324 	in = fget_light(fd_in, &fput_in);
1325 	if (in) {
1326 		if (in->f_mode & FMODE_READ) {
1327 			out = fget_light(fd_out, &fput_out);
1328 			if (out) {
1329 				if (out->f_mode & FMODE_WRITE)
1330 					error = do_splice(in, off_in,
1331 							  out, off_out,
1332 							  len, flags);
1333 				fput_light(out, fput_out);
1334 			}
1335 		}
1336 
1337 		fput_light(in, fput_in);
1338 	}
1339 
1340 	return error;
1341 }
1342 
1343 /*
1344  * Make sure there's data to read. Wait for input if we can, otherwise
1345  * return an appropriate error.
1346  */
1347 static int link_ipipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1348 {
1349 	int ret;
1350 
1351 	/*
1352 	 * Check ->nrbufs without the inode lock first. This function
1353 	 * is speculative anyways, so missing one is ok.
1354 	 */
1355 	if (pipe->nrbufs)
1356 		return 0;
1357 
1358 	ret = 0;
1359 	mutex_lock(&pipe->inode->i_mutex);
1360 
1361 	while (!pipe->nrbufs) {
1362 		if (signal_pending(current)) {
1363 			ret = -ERESTARTSYS;
1364 			break;
1365 		}
1366 		if (!pipe->writers)
1367 			break;
1368 		if (!pipe->waiting_writers) {
1369 			if (flags & SPLICE_F_NONBLOCK) {
1370 				ret = -EAGAIN;
1371 				break;
1372 			}
1373 		}
1374 		pipe_wait(pipe);
1375 	}
1376 
1377 	mutex_unlock(&pipe->inode->i_mutex);
1378 	return ret;
1379 }
1380 
1381 /*
1382  * Make sure there's writeable room. Wait for room if we can, otherwise
1383  * return an appropriate error.
1384  */
1385 static int link_opipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1386 {
1387 	int ret;
1388 
1389 	/*
1390 	 * Check ->nrbufs without the inode lock first. This function
1391 	 * is speculative anyways, so missing one is ok.
1392 	 */
1393 	if (pipe->nrbufs < PIPE_BUFFERS)
1394 		return 0;
1395 
1396 	ret = 0;
1397 	mutex_lock(&pipe->inode->i_mutex);
1398 
1399 	while (pipe->nrbufs >= PIPE_BUFFERS) {
1400 		if (!pipe->readers) {
1401 			send_sig(SIGPIPE, current, 0);
1402 			ret = -EPIPE;
1403 			break;
1404 		}
1405 		if (flags & SPLICE_F_NONBLOCK) {
1406 			ret = -EAGAIN;
1407 			break;
1408 		}
1409 		if (signal_pending(current)) {
1410 			ret = -ERESTARTSYS;
1411 			break;
1412 		}
1413 		pipe->waiting_writers++;
1414 		pipe_wait(pipe);
1415 		pipe->waiting_writers--;
1416 	}
1417 
1418 	mutex_unlock(&pipe->inode->i_mutex);
1419 	return ret;
1420 }
1421 
1422 /*
1423  * Link contents of ipipe to opipe.
1424  */
1425 static int link_pipe(struct pipe_inode_info *ipipe,
1426 		     struct pipe_inode_info *opipe,
1427 		     size_t len, unsigned int flags)
1428 {
1429 	struct pipe_buffer *ibuf, *obuf;
1430 	int ret = 0, i = 0, nbuf;
1431 
1432 	/*
1433 	 * Potential ABBA deadlock, work around it by ordering lock
1434 	 * grabbing by inode address. Otherwise two different processes
1435 	 * could deadlock (one doing tee from A -> B, the other from B -> A).
1436 	 */
1437 	inode_double_lock(ipipe->inode, opipe->inode);
1438 
1439 	do {
1440 		if (!opipe->readers) {
1441 			send_sig(SIGPIPE, current, 0);
1442 			if (!ret)
1443 				ret = -EPIPE;
1444 			break;
1445 		}
1446 
1447 		/*
1448 		 * If we have iterated all input buffers or ran out of
1449 		 * output room, break.
1450 		 */
1451 		if (i >= ipipe->nrbufs || opipe->nrbufs >= PIPE_BUFFERS)
1452 			break;
1453 
1454 		ibuf = ipipe->bufs + ((ipipe->curbuf + i) & (PIPE_BUFFERS - 1));
1455 		nbuf = (opipe->curbuf + opipe->nrbufs) & (PIPE_BUFFERS - 1);
1456 
1457 		/*
1458 		 * Get a reference to this pipe buffer,
1459 		 * so we can copy the contents over.
1460 		 */
1461 		ibuf->ops->get(ipipe, ibuf);
1462 
1463 		obuf = opipe->bufs + nbuf;
1464 		*obuf = *ibuf;
1465 
1466 		/*
1467 		 * Don't inherit the gift flag, we need to
1468 		 * prevent multiple steals of this page.
1469 		 */
1470 		obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1471 
1472 		if (obuf->len > len)
1473 			obuf->len = len;
1474 
1475 		opipe->nrbufs++;
1476 		ret += obuf->len;
1477 		len -= obuf->len;
1478 		i++;
1479 	} while (len);
1480 
1481 	inode_double_unlock(ipipe->inode, opipe->inode);
1482 
1483 	/*
1484 	 * If we put data in the output pipe, wakeup any potential readers.
1485 	 */
1486 	if (ret > 0) {
1487 		smp_mb();
1488 		if (waitqueue_active(&opipe->wait))
1489 			wake_up_interruptible(&opipe->wait);
1490 		kill_fasync(&opipe->fasync_readers, SIGIO, POLL_IN);
1491 	}
1492 
1493 	return ret;
1494 }
1495 
1496 /*
1497  * This is a tee(1) implementation that works on pipes. It doesn't copy
1498  * any data, it simply references the 'in' pages on the 'out' pipe.
1499  * The 'flags' used are the SPLICE_F_* variants, currently the only
1500  * applicable one is SPLICE_F_NONBLOCK.
1501  */
1502 static long do_tee(struct file *in, struct file *out, size_t len,
1503 		   unsigned int flags)
1504 {
1505 	struct pipe_inode_info *ipipe = pipe_info(in->f_path.dentry->d_inode);
1506 	struct pipe_inode_info *opipe = pipe_info(out->f_path.dentry->d_inode);
1507 	int ret = -EINVAL;
1508 
1509 	/*
1510 	 * Duplicate the contents of ipipe to opipe without actually
1511 	 * copying the data.
1512 	 */
1513 	if (ipipe && opipe && ipipe != opipe) {
1514 		/*
1515 		 * Keep going, unless we encounter an error. The ipipe/opipe
1516 		 * ordering doesn't really matter.
1517 		 */
1518 		ret = link_ipipe_prep(ipipe, flags);
1519 		if (!ret) {
1520 			ret = link_opipe_prep(opipe, flags);
1521 			if (!ret) {
1522 				ret = link_pipe(ipipe, opipe, len, flags);
1523 				if (!ret && (flags & SPLICE_F_NONBLOCK))
1524 					ret = -EAGAIN;
1525 			}
1526 		}
1527 	}
1528 
1529 	return ret;
1530 }
1531 
1532 asmlinkage long sys_tee(int fdin, int fdout, size_t len, unsigned int flags)
1533 {
1534 	struct file *in;
1535 	int error, fput_in;
1536 
1537 	if (unlikely(!len))
1538 		return 0;
1539 
1540 	error = -EBADF;
1541 	in = fget_light(fdin, &fput_in);
1542 	if (in) {
1543 		if (in->f_mode & FMODE_READ) {
1544 			int fput_out;
1545 			struct file *out = fget_light(fdout, &fput_out);
1546 
1547 			if (out) {
1548 				if (out->f_mode & FMODE_WRITE)
1549 					error = do_tee(in, out, len, flags);
1550 				fput_light(out, fput_out);
1551 			}
1552 		}
1553  		fput_light(in, fput_in);
1554  	}
1555 
1556 	return error;
1557 }
1558