1 /* 2 * "splice": joining two ropes together by interweaving their strands. 3 * 4 * This is the "extended pipe" functionality, where a pipe is used as 5 * an arbitrary in-memory buffer. Think of a pipe as a small kernel 6 * buffer that you can use to transfer data from one end to the other. 7 * 8 * The traditional unix read/write is extended with a "splice()" operation 9 * that transfers data buffers to or from a pipe buffer. 10 * 11 * Named by Larry McVoy, original implementation from Linus, extended by 12 * Jens to support splicing to files, network, direct splicing, etc and 13 * fixing lots of bugs. 14 * 15 * Copyright (C) 2005-2006 Jens Axboe <axboe@kernel.dk> 16 * Copyright (C) 2005-2006 Linus Torvalds <torvalds@osdl.org> 17 * Copyright (C) 2006 Ingo Molnar <mingo@elte.hu> 18 * 19 */ 20 #include <linux/fs.h> 21 #include <linux/file.h> 22 #include <linux/pagemap.h> 23 #include <linux/splice.h> 24 #include <linux/memcontrol.h> 25 #include <linux/mm_inline.h> 26 #include <linux/swap.h> 27 #include <linux/writeback.h> 28 #include <linux/export.h> 29 #include <linux/syscalls.h> 30 #include <linux/uio.h> 31 #include <linux/security.h> 32 #include <linux/gfp.h> 33 #include <linux/socket.h> 34 #include <linux/compat.h> 35 #include "internal.h" 36 37 /* 38 * Attempt to steal a page from a pipe buffer. This should perhaps go into 39 * a vm helper function, it's already simplified quite a bit by the 40 * addition of remove_mapping(). If success is returned, the caller may 41 * attempt to reuse this page for another destination. 42 */ 43 static int page_cache_pipe_buf_steal(struct pipe_inode_info *pipe, 44 struct pipe_buffer *buf) 45 { 46 struct page *page = buf->page; 47 struct address_space *mapping; 48 49 lock_page(page); 50 51 mapping = page_mapping(page); 52 if (mapping) { 53 WARN_ON(!PageUptodate(page)); 54 55 /* 56 * At least for ext2 with nobh option, we need to wait on 57 * writeback completing on this page, since we'll remove it 58 * from the pagecache. Otherwise truncate wont wait on the 59 * page, allowing the disk blocks to be reused by someone else 60 * before we actually wrote our data to them. fs corruption 61 * ensues. 62 */ 63 wait_on_page_writeback(page); 64 65 if (page_has_private(page) && 66 !try_to_release_page(page, GFP_KERNEL)) 67 goto out_unlock; 68 69 /* 70 * If we succeeded in removing the mapping, set LRU flag 71 * and return good. 72 */ 73 if (remove_mapping(mapping, page)) { 74 buf->flags |= PIPE_BUF_FLAG_LRU; 75 return 0; 76 } 77 } 78 79 /* 80 * Raced with truncate or failed to remove page from current 81 * address space, unlock and return failure. 82 */ 83 out_unlock: 84 unlock_page(page); 85 return 1; 86 } 87 88 static void page_cache_pipe_buf_release(struct pipe_inode_info *pipe, 89 struct pipe_buffer *buf) 90 { 91 put_page(buf->page); 92 buf->flags &= ~PIPE_BUF_FLAG_LRU; 93 } 94 95 /* 96 * Check whether the contents of buf is OK to access. Since the content 97 * is a page cache page, IO may be in flight. 98 */ 99 static int page_cache_pipe_buf_confirm(struct pipe_inode_info *pipe, 100 struct pipe_buffer *buf) 101 { 102 struct page *page = buf->page; 103 int err; 104 105 if (!PageUptodate(page)) { 106 lock_page(page); 107 108 /* 109 * Page got truncated/unhashed. This will cause a 0-byte 110 * splice, if this is the first page. 111 */ 112 if (!page->mapping) { 113 err = -ENODATA; 114 goto error; 115 } 116 117 /* 118 * Uh oh, read-error from disk. 119 */ 120 if (!PageUptodate(page)) { 121 err = -EIO; 122 goto error; 123 } 124 125 /* 126 * Page is ok afterall, we are done. 127 */ 128 unlock_page(page); 129 } 130 131 return 0; 132 error: 133 unlock_page(page); 134 return err; 135 } 136 137 const struct pipe_buf_operations page_cache_pipe_buf_ops = { 138 .can_merge = 0, 139 .confirm = page_cache_pipe_buf_confirm, 140 .release = page_cache_pipe_buf_release, 141 .steal = page_cache_pipe_buf_steal, 142 .get = generic_pipe_buf_get, 143 }; 144 145 static int user_page_pipe_buf_steal(struct pipe_inode_info *pipe, 146 struct pipe_buffer *buf) 147 { 148 if (!(buf->flags & PIPE_BUF_FLAG_GIFT)) 149 return 1; 150 151 buf->flags |= PIPE_BUF_FLAG_LRU; 152 return generic_pipe_buf_steal(pipe, buf); 153 } 154 155 static const struct pipe_buf_operations user_page_pipe_buf_ops = { 156 .can_merge = 0, 157 .confirm = generic_pipe_buf_confirm, 158 .release = page_cache_pipe_buf_release, 159 .steal = user_page_pipe_buf_steal, 160 .get = generic_pipe_buf_get, 161 }; 162 163 static void wakeup_pipe_readers(struct pipe_inode_info *pipe) 164 { 165 smp_mb(); 166 if (waitqueue_active(&pipe->wait)) 167 wake_up_interruptible(&pipe->wait); 168 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN); 169 } 170 171 /** 172 * splice_to_pipe - fill passed data into a pipe 173 * @pipe: pipe to fill 174 * @spd: data to fill 175 * 176 * Description: 177 * @spd contains a map of pages and len/offset tuples, along with 178 * the struct pipe_buf_operations associated with these pages. This 179 * function will link that data to the pipe. 180 * 181 */ 182 ssize_t splice_to_pipe(struct pipe_inode_info *pipe, 183 struct splice_pipe_desc *spd) 184 { 185 unsigned int spd_pages = spd->nr_pages; 186 int ret, do_wakeup, page_nr; 187 188 if (!spd_pages) 189 return 0; 190 191 ret = 0; 192 do_wakeup = 0; 193 page_nr = 0; 194 195 pipe_lock(pipe); 196 197 for (;;) { 198 if (!pipe->readers) { 199 send_sig(SIGPIPE, current, 0); 200 if (!ret) 201 ret = -EPIPE; 202 break; 203 } 204 205 if (pipe->nrbufs < pipe->buffers) { 206 int newbuf = (pipe->curbuf + pipe->nrbufs) & (pipe->buffers - 1); 207 struct pipe_buffer *buf = pipe->bufs + newbuf; 208 209 buf->page = spd->pages[page_nr]; 210 buf->offset = spd->partial[page_nr].offset; 211 buf->len = spd->partial[page_nr].len; 212 buf->private = spd->partial[page_nr].private; 213 buf->ops = spd->ops; 214 if (spd->flags & SPLICE_F_GIFT) 215 buf->flags |= PIPE_BUF_FLAG_GIFT; 216 217 pipe->nrbufs++; 218 page_nr++; 219 ret += buf->len; 220 221 if (pipe->files) 222 do_wakeup = 1; 223 224 if (!--spd->nr_pages) 225 break; 226 if (pipe->nrbufs < pipe->buffers) 227 continue; 228 229 break; 230 } 231 232 if (spd->flags & SPLICE_F_NONBLOCK) { 233 if (!ret) 234 ret = -EAGAIN; 235 break; 236 } 237 238 if (signal_pending(current)) { 239 if (!ret) 240 ret = -ERESTARTSYS; 241 break; 242 } 243 244 if (do_wakeup) { 245 smp_mb(); 246 if (waitqueue_active(&pipe->wait)) 247 wake_up_interruptible_sync(&pipe->wait); 248 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN); 249 do_wakeup = 0; 250 } 251 252 pipe->waiting_writers++; 253 pipe_wait(pipe); 254 pipe->waiting_writers--; 255 } 256 257 pipe_unlock(pipe); 258 259 if (do_wakeup) 260 wakeup_pipe_readers(pipe); 261 262 while (page_nr < spd_pages) 263 spd->spd_release(spd, page_nr++); 264 265 return ret; 266 } 267 EXPORT_SYMBOL_GPL(splice_to_pipe); 268 269 void spd_release_page(struct splice_pipe_desc *spd, unsigned int i) 270 { 271 put_page(spd->pages[i]); 272 } 273 274 /* 275 * Check if we need to grow the arrays holding pages and partial page 276 * descriptions. 277 */ 278 int splice_grow_spd(const struct pipe_inode_info *pipe, struct splice_pipe_desc *spd) 279 { 280 unsigned int buffers = ACCESS_ONCE(pipe->buffers); 281 282 spd->nr_pages_max = buffers; 283 if (buffers <= PIPE_DEF_BUFFERS) 284 return 0; 285 286 spd->pages = kmalloc(buffers * sizeof(struct page *), GFP_KERNEL); 287 spd->partial = kmalloc(buffers * sizeof(struct partial_page), GFP_KERNEL); 288 289 if (spd->pages && spd->partial) 290 return 0; 291 292 kfree(spd->pages); 293 kfree(spd->partial); 294 return -ENOMEM; 295 } 296 297 void splice_shrink_spd(struct splice_pipe_desc *spd) 298 { 299 if (spd->nr_pages_max <= PIPE_DEF_BUFFERS) 300 return; 301 302 kfree(spd->pages); 303 kfree(spd->partial); 304 } 305 306 static int 307 __generic_file_splice_read(struct file *in, loff_t *ppos, 308 struct pipe_inode_info *pipe, size_t len, 309 unsigned int flags) 310 { 311 struct address_space *mapping = in->f_mapping; 312 unsigned int loff, nr_pages, req_pages; 313 struct page *pages[PIPE_DEF_BUFFERS]; 314 struct partial_page partial[PIPE_DEF_BUFFERS]; 315 struct page *page; 316 pgoff_t index, end_index; 317 loff_t isize; 318 int error, page_nr; 319 struct splice_pipe_desc spd = { 320 .pages = pages, 321 .partial = partial, 322 .nr_pages_max = PIPE_DEF_BUFFERS, 323 .flags = flags, 324 .ops = &page_cache_pipe_buf_ops, 325 .spd_release = spd_release_page, 326 }; 327 328 if (splice_grow_spd(pipe, &spd)) 329 return -ENOMEM; 330 331 index = *ppos >> PAGE_SHIFT; 332 loff = *ppos & ~PAGE_MASK; 333 req_pages = (len + loff + PAGE_SIZE - 1) >> PAGE_SHIFT; 334 nr_pages = min(req_pages, spd.nr_pages_max); 335 336 /* 337 * Lookup the (hopefully) full range of pages we need. 338 */ 339 spd.nr_pages = find_get_pages_contig(mapping, index, nr_pages, spd.pages); 340 index += spd.nr_pages; 341 342 /* 343 * If find_get_pages_contig() returned fewer pages than we needed, 344 * readahead/allocate the rest and fill in the holes. 345 */ 346 if (spd.nr_pages < nr_pages) 347 page_cache_sync_readahead(mapping, &in->f_ra, in, 348 index, req_pages - spd.nr_pages); 349 350 error = 0; 351 while (spd.nr_pages < nr_pages) { 352 /* 353 * Page could be there, find_get_pages_contig() breaks on 354 * the first hole. 355 */ 356 page = find_get_page(mapping, index); 357 if (!page) { 358 /* 359 * page didn't exist, allocate one. 360 */ 361 page = page_cache_alloc_cold(mapping); 362 if (!page) 363 break; 364 365 error = add_to_page_cache_lru(page, mapping, index, 366 mapping_gfp_constraint(mapping, GFP_KERNEL)); 367 if (unlikely(error)) { 368 put_page(page); 369 if (error == -EEXIST) 370 continue; 371 break; 372 } 373 /* 374 * add_to_page_cache() locks the page, unlock it 375 * to avoid convoluting the logic below even more. 376 */ 377 unlock_page(page); 378 } 379 380 spd.pages[spd.nr_pages++] = page; 381 index++; 382 } 383 384 /* 385 * Now loop over the map and see if we need to start IO on any 386 * pages, fill in the partial map, etc. 387 */ 388 index = *ppos >> PAGE_SHIFT; 389 nr_pages = spd.nr_pages; 390 spd.nr_pages = 0; 391 for (page_nr = 0; page_nr < nr_pages; page_nr++) { 392 unsigned int this_len; 393 394 if (!len) 395 break; 396 397 /* 398 * this_len is the max we'll use from this page 399 */ 400 this_len = min_t(unsigned long, len, PAGE_SIZE - loff); 401 page = spd.pages[page_nr]; 402 403 if (PageReadahead(page)) 404 page_cache_async_readahead(mapping, &in->f_ra, in, 405 page, index, req_pages - page_nr); 406 407 /* 408 * If the page isn't uptodate, we may need to start io on it 409 */ 410 if (!PageUptodate(page)) { 411 lock_page(page); 412 413 /* 414 * Page was truncated, or invalidated by the 415 * filesystem. Redo the find/create, but this time the 416 * page is kept locked, so there's no chance of another 417 * race with truncate/invalidate. 418 */ 419 if (!page->mapping) { 420 unlock_page(page); 421 retry_lookup: 422 page = find_or_create_page(mapping, index, 423 mapping_gfp_mask(mapping)); 424 425 if (!page) { 426 error = -ENOMEM; 427 break; 428 } 429 put_page(spd.pages[page_nr]); 430 spd.pages[page_nr] = page; 431 } 432 /* 433 * page was already under io and is now done, great 434 */ 435 if (PageUptodate(page)) { 436 unlock_page(page); 437 goto fill_it; 438 } 439 440 /* 441 * need to read in the page 442 */ 443 error = mapping->a_ops->readpage(in, page); 444 if (unlikely(error)) { 445 /* 446 * Re-lookup the page 447 */ 448 if (error == AOP_TRUNCATED_PAGE) 449 goto retry_lookup; 450 451 break; 452 } 453 } 454 fill_it: 455 /* 456 * i_size must be checked after PageUptodate. 457 */ 458 isize = i_size_read(mapping->host); 459 end_index = (isize - 1) >> PAGE_SHIFT; 460 if (unlikely(!isize || index > end_index)) 461 break; 462 463 /* 464 * if this is the last page, see if we need to shrink 465 * the length and stop 466 */ 467 if (end_index == index) { 468 unsigned int plen; 469 470 /* 471 * max good bytes in this page 472 */ 473 plen = ((isize - 1) & ~PAGE_MASK) + 1; 474 if (plen <= loff) 475 break; 476 477 /* 478 * force quit after adding this page 479 */ 480 this_len = min(this_len, plen - loff); 481 len = this_len; 482 } 483 484 spd.partial[page_nr].offset = loff; 485 spd.partial[page_nr].len = this_len; 486 len -= this_len; 487 loff = 0; 488 spd.nr_pages++; 489 index++; 490 } 491 492 /* 493 * Release any pages at the end, if we quit early. 'page_nr' is how far 494 * we got, 'nr_pages' is how many pages are in the map. 495 */ 496 while (page_nr < nr_pages) 497 put_page(spd.pages[page_nr++]); 498 in->f_ra.prev_pos = (loff_t)index << PAGE_SHIFT; 499 500 if (spd.nr_pages) 501 error = splice_to_pipe(pipe, &spd); 502 503 splice_shrink_spd(&spd); 504 return error; 505 } 506 507 /** 508 * generic_file_splice_read - splice data from file to a pipe 509 * @in: file to splice from 510 * @ppos: position in @in 511 * @pipe: pipe to splice to 512 * @len: number of bytes to splice 513 * @flags: splice modifier flags 514 * 515 * Description: 516 * Will read pages from given file and fill them into a pipe. Can be 517 * used as long as the address_space operations for the source implements 518 * a readpage() hook. 519 * 520 */ 521 ssize_t generic_file_splice_read(struct file *in, loff_t *ppos, 522 struct pipe_inode_info *pipe, size_t len, 523 unsigned int flags) 524 { 525 loff_t isize, left; 526 int ret; 527 528 if (IS_DAX(in->f_mapping->host)) 529 return default_file_splice_read(in, ppos, pipe, len, flags); 530 531 isize = i_size_read(in->f_mapping->host); 532 if (unlikely(*ppos >= isize)) 533 return 0; 534 535 left = isize - *ppos; 536 if (unlikely(left < len)) 537 len = left; 538 539 ret = __generic_file_splice_read(in, ppos, pipe, len, flags); 540 if (ret > 0) { 541 *ppos += ret; 542 file_accessed(in); 543 } 544 545 return ret; 546 } 547 EXPORT_SYMBOL(generic_file_splice_read); 548 549 static const struct pipe_buf_operations default_pipe_buf_ops = { 550 .can_merge = 0, 551 .confirm = generic_pipe_buf_confirm, 552 .release = generic_pipe_buf_release, 553 .steal = generic_pipe_buf_steal, 554 .get = generic_pipe_buf_get, 555 }; 556 557 static int generic_pipe_buf_nosteal(struct pipe_inode_info *pipe, 558 struct pipe_buffer *buf) 559 { 560 return 1; 561 } 562 563 /* Pipe buffer operations for a socket and similar. */ 564 const struct pipe_buf_operations nosteal_pipe_buf_ops = { 565 .can_merge = 0, 566 .confirm = generic_pipe_buf_confirm, 567 .release = generic_pipe_buf_release, 568 .steal = generic_pipe_buf_nosteal, 569 .get = generic_pipe_buf_get, 570 }; 571 EXPORT_SYMBOL(nosteal_pipe_buf_ops); 572 573 static ssize_t kernel_readv(struct file *file, const struct iovec *vec, 574 unsigned long vlen, loff_t offset) 575 { 576 mm_segment_t old_fs; 577 loff_t pos = offset; 578 ssize_t res; 579 580 old_fs = get_fs(); 581 set_fs(get_ds()); 582 /* The cast to a user pointer is valid due to the set_fs() */ 583 res = vfs_readv(file, (const struct iovec __user *)vec, vlen, &pos, 0); 584 set_fs(old_fs); 585 586 return res; 587 } 588 589 ssize_t kernel_write(struct file *file, const char *buf, size_t count, 590 loff_t pos) 591 { 592 mm_segment_t old_fs; 593 ssize_t res; 594 595 old_fs = get_fs(); 596 set_fs(get_ds()); 597 /* The cast to a user pointer is valid due to the set_fs() */ 598 res = vfs_write(file, (__force const char __user *)buf, count, &pos); 599 set_fs(old_fs); 600 601 return res; 602 } 603 EXPORT_SYMBOL(kernel_write); 604 605 ssize_t default_file_splice_read(struct file *in, loff_t *ppos, 606 struct pipe_inode_info *pipe, size_t len, 607 unsigned int flags) 608 { 609 unsigned int nr_pages; 610 unsigned int nr_freed; 611 size_t offset; 612 struct page *pages[PIPE_DEF_BUFFERS]; 613 struct partial_page partial[PIPE_DEF_BUFFERS]; 614 struct iovec *vec, __vec[PIPE_DEF_BUFFERS]; 615 ssize_t res; 616 size_t this_len; 617 int error; 618 int i; 619 struct splice_pipe_desc spd = { 620 .pages = pages, 621 .partial = partial, 622 .nr_pages_max = PIPE_DEF_BUFFERS, 623 .flags = flags, 624 .ops = &default_pipe_buf_ops, 625 .spd_release = spd_release_page, 626 }; 627 628 if (splice_grow_spd(pipe, &spd)) 629 return -ENOMEM; 630 631 res = -ENOMEM; 632 vec = __vec; 633 if (spd.nr_pages_max > PIPE_DEF_BUFFERS) { 634 vec = kmalloc(spd.nr_pages_max * sizeof(struct iovec), GFP_KERNEL); 635 if (!vec) 636 goto shrink_ret; 637 } 638 639 offset = *ppos & ~PAGE_MASK; 640 nr_pages = (len + offset + PAGE_SIZE - 1) >> PAGE_SHIFT; 641 642 for (i = 0; i < nr_pages && i < spd.nr_pages_max && len; i++) { 643 struct page *page; 644 645 page = alloc_page(GFP_USER); 646 error = -ENOMEM; 647 if (!page) 648 goto err; 649 650 this_len = min_t(size_t, len, PAGE_SIZE - offset); 651 vec[i].iov_base = (void __user *) page_address(page); 652 vec[i].iov_len = this_len; 653 spd.pages[i] = page; 654 spd.nr_pages++; 655 len -= this_len; 656 offset = 0; 657 } 658 659 res = kernel_readv(in, vec, spd.nr_pages, *ppos); 660 if (res < 0) { 661 error = res; 662 goto err; 663 } 664 665 error = 0; 666 if (!res) 667 goto err; 668 669 nr_freed = 0; 670 for (i = 0; i < spd.nr_pages; i++) { 671 this_len = min_t(size_t, vec[i].iov_len, res); 672 spd.partial[i].offset = 0; 673 spd.partial[i].len = this_len; 674 if (!this_len) { 675 __free_page(spd.pages[i]); 676 spd.pages[i] = NULL; 677 nr_freed++; 678 } 679 res -= this_len; 680 } 681 spd.nr_pages -= nr_freed; 682 683 res = splice_to_pipe(pipe, &spd); 684 if (res > 0) 685 *ppos += res; 686 687 shrink_ret: 688 if (vec != __vec) 689 kfree(vec); 690 splice_shrink_spd(&spd); 691 return res; 692 693 err: 694 for (i = 0; i < spd.nr_pages; i++) 695 __free_page(spd.pages[i]); 696 697 res = error; 698 goto shrink_ret; 699 } 700 EXPORT_SYMBOL(default_file_splice_read); 701 702 /* 703 * Send 'sd->len' bytes to socket from 'sd->file' at position 'sd->pos' 704 * using sendpage(). Return the number of bytes sent. 705 */ 706 static int pipe_to_sendpage(struct pipe_inode_info *pipe, 707 struct pipe_buffer *buf, struct splice_desc *sd) 708 { 709 struct file *file = sd->u.file; 710 loff_t pos = sd->pos; 711 int more; 712 713 if (!likely(file->f_op->sendpage)) 714 return -EINVAL; 715 716 more = (sd->flags & SPLICE_F_MORE) ? MSG_MORE : 0; 717 718 if (sd->len < sd->total_len && pipe->nrbufs > 1) 719 more |= MSG_SENDPAGE_NOTLAST; 720 721 return file->f_op->sendpage(file, buf->page, buf->offset, 722 sd->len, &pos, more); 723 } 724 725 static void wakeup_pipe_writers(struct pipe_inode_info *pipe) 726 { 727 smp_mb(); 728 if (waitqueue_active(&pipe->wait)) 729 wake_up_interruptible(&pipe->wait); 730 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT); 731 } 732 733 /** 734 * splice_from_pipe_feed - feed available data from a pipe to a file 735 * @pipe: pipe to splice from 736 * @sd: information to @actor 737 * @actor: handler that splices the data 738 * 739 * Description: 740 * This function loops over the pipe and calls @actor to do the 741 * actual moving of a single struct pipe_buffer to the desired 742 * destination. It returns when there's no more buffers left in 743 * the pipe or if the requested number of bytes (@sd->total_len) 744 * have been copied. It returns a positive number (one) if the 745 * pipe needs to be filled with more data, zero if the required 746 * number of bytes have been copied and -errno on error. 747 * 748 * This, together with splice_from_pipe_{begin,end,next}, may be 749 * used to implement the functionality of __splice_from_pipe() when 750 * locking is required around copying the pipe buffers to the 751 * destination. 752 */ 753 static int splice_from_pipe_feed(struct pipe_inode_info *pipe, struct splice_desc *sd, 754 splice_actor *actor) 755 { 756 int ret; 757 758 while (pipe->nrbufs) { 759 struct pipe_buffer *buf = pipe->bufs + pipe->curbuf; 760 const struct pipe_buf_operations *ops = buf->ops; 761 762 sd->len = buf->len; 763 if (sd->len > sd->total_len) 764 sd->len = sd->total_len; 765 766 ret = buf->ops->confirm(pipe, buf); 767 if (unlikely(ret)) { 768 if (ret == -ENODATA) 769 ret = 0; 770 return ret; 771 } 772 773 ret = actor(pipe, buf, sd); 774 if (ret <= 0) 775 return ret; 776 777 buf->offset += ret; 778 buf->len -= ret; 779 780 sd->num_spliced += ret; 781 sd->len -= ret; 782 sd->pos += ret; 783 sd->total_len -= ret; 784 785 if (!buf->len) { 786 buf->ops = NULL; 787 ops->release(pipe, buf); 788 pipe->curbuf = (pipe->curbuf + 1) & (pipe->buffers - 1); 789 pipe->nrbufs--; 790 if (pipe->files) 791 sd->need_wakeup = true; 792 } 793 794 if (!sd->total_len) 795 return 0; 796 } 797 798 return 1; 799 } 800 801 /** 802 * splice_from_pipe_next - wait for some data to splice from 803 * @pipe: pipe to splice from 804 * @sd: information about the splice operation 805 * 806 * Description: 807 * This function will wait for some data and return a positive 808 * value (one) if pipe buffers are available. It will return zero 809 * or -errno if no more data needs to be spliced. 810 */ 811 static int splice_from_pipe_next(struct pipe_inode_info *pipe, struct splice_desc *sd) 812 { 813 /* 814 * Check for signal early to make process killable when there are 815 * always buffers available 816 */ 817 if (signal_pending(current)) 818 return -ERESTARTSYS; 819 820 while (!pipe->nrbufs) { 821 if (!pipe->writers) 822 return 0; 823 824 if (!pipe->waiting_writers && sd->num_spliced) 825 return 0; 826 827 if (sd->flags & SPLICE_F_NONBLOCK) 828 return -EAGAIN; 829 830 if (signal_pending(current)) 831 return -ERESTARTSYS; 832 833 if (sd->need_wakeup) { 834 wakeup_pipe_writers(pipe); 835 sd->need_wakeup = false; 836 } 837 838 pipe_wait(pipe); 839 } 840 841 return 1; 842 } 843 844 /** 845 * splice_from_pipe_begin - start splicing from pipe 846 * @sd: information about the splice operation 847 * 848 * Description: 849 * This function should be called before a loop containing 850 * splice_from_pipe_next() and splice_from_pipe_feed() to 851 * initialize the necessary fields of @sd. 852 */ 853 static void splice_from_pipe_begin(struct splice_desc *sd) 854 { 855 sd->num_spliced = 0; 856 sd->need_wakeup = false; 857 } 858 859 /** 860 * splice_from_pipe_end - finish splicing from pipe 861 * @pipe: pipe to splice from 862 * @sd: information about the splice operation 863 * 864 * Description: 865 * This function will wake up pipe writers if necessary. It should 866 * be called after a loop containing splice_from_pipe_next() and 867 * splice_from_pipe_feed(). 868 */ 869 static void splice_from_pipe_end(struct pipe_inode_info *pipe, struct splice_desc *sd) 870 { 871 if (sd->need_wakeup) 872 wakeup_pipe_writers(pipe); 873 } 874 875 /** 876 * __splice_from_pipe - splice data from a pipe to given actor 877 * @pipe: pipe to splice from 878 * @sd: information to @actor 879 * @actor: handler that splices the data 880 * 881 * Description: 882 * This function does little more than loop over the pipe and call 883 * @actor to do the actual moving of a single struct pipe_buffer to 884 * the desired destination. See pipe_to_file, pipe_to_sendpage, or 885 * pipe_to_user. 886 * 887 */ 888 ssize_t __splice_from_pipe(struct pipe_inode_info *pipe, struct splice_desc *sd, 889 splice_actor *actor) 890 { 891 int ret; 892 893 splice_from_pipe_begin(sd); 894 do { 895 cond_resched(); 896 ret = splice_from_pipe_next(pipe, sd); 897 if (ret > 0) 898 ret = splice_from_pipe_feed(pipe, sd, actor); 899 } while (ret > 0); 900 splice_from_pipe_end(pipe, sd); 901 902 return sd->num_spliced ? sd->num_spliced : ret; 903 } 904 EXPORT_SYMBOL(__splice_from_pipe); 905 906 /** 907 * splice_from_pipe - splice data from a pipe to a file 908 * @pipe: pipe to splice from 909 * @out: file to splice to 910 * @ppos: position in @out 911 * @len: how many bytes to splice 912 * @flags: splice modifier flags 913 * @actor: handler that splices the data 914 * 915 * Description: 916 * See __splice_from_pipe. This function locks the pipe inode, 917 * otherwise it's identical to __splice_from_pipe(). 918 * 919 */ 920 ssize_t splice_from_pipe(struct pipe_inode_info *pipe, struct file *out, 921 loff_t *ppos, size_t len, unsigned int flags, 922 splice_actor *actor) 923 { 924 ssize_t ret; 925 struct splice_desc sd = { 926 .total_len = len, 927 .flags = flags, 928 .pos = *ppos, 929 .u.file = out, 930 }; 931 932 pipe_lock(pipe); 933 ret = __splice_from_pipe(pipe, &sd, actor); 934 pipe_unlock(pipe); 935 936 return ret; 937 } 938 939 /** 940 * iter_file_splice_write - splice data from a pipe to a file 941 * @pipe: pipe info 942 * @out: file to write to 943 * @ppos: position in @out 944 * @len: number of bytes to splice 945 * @flags: splice modifier flags 946 * 947 * Description: 948 * Will either move or copy pages (determined by @flags options) from 949 * the given pipe inode to the given file. 950 * This one is ->write_iter-based. 951 * 952 */ 953 ssize_t 954 iter_file_splice_write(struct pipe_inode_info *pipe, struct file *out, 955 loff_t *ppos, size_t len, unsigned int flags) 956 { 957 struct splice_desc sd = { 958 .total_len = len, 959 .flags = flags, 960 .pos = *ppos, 961 .u.file = out, 962 }; 963 int nbufs = pipe->buffers; 964 struct bio_vec *array = kcalloc(nbufs, sizeof(struct bio_vec), 965 GFP_KERNEL); 966 ssize_t ret; 967 968 if (unlikely(!array)) 969 return -ENOMEM; 970 971 pipe_lock(pipe); 972 973 splice_from_pipe_begin(&sd); 974 while (sd.total_len) { 975 struct iov_iter from; 976 size_t left; 977 int n, idx; 978 979 ret = splice_from_pipe_next(pipe, &sd); 980 if (ret <= 0) 981 break; 982 983 if (unlikely(nbufs < pipe->buffers)) { 984 kfree(array); 985 nbufs = pipe->buffers; 986 array = kcalloc(nbufs, sizeof(struct bio_vec), 987 GFP_KERNEL); 988 if (!array) { 989 ret = -ENOMEM; 990 break; 991 } 992 } 993 994 /* build the vector */ 995 left = sd.total_len; 996 for (n = 0, idx = pipe->curbuf; left && n < pipe->nrbufs; n++, idx++) { 997 struct pipe_buffer *buf = pipe->bufs + idx; 998 size_t this_len = buf->len; 999 1000 if (this_len > left) 1001 this_len = left; 1002 1003 if (idx == pipe->buffers - 1) 1004 idx = -1; 1005 1006 ret = buf->ops->confirm(pipe, buf); 1007 if (unlikely(ret)) { 1008 if (ret == -ENODATA) 1009 ret = 0; 1010 goto done; 1011 } 1012 1013 array[n].bv_page = buf->page; 1014 array[n].bv_len = this_len; 1015 array[n].bv_offset = buf->offset; 1016 left -= this_len; 1017 } 1018 1019 iov_iter_bvec(&from, ITER_BVEC | WRITE, array, n, 1020 sd.total_len - left); 1021 ret = vfs_iter_write(out, &from, &sd.pos); 1022 if (ret <= 0) 1023 break; 1024 1025 sd.num_spliced += ret; 1026 sd.total_len -= ret; 1027 *ppos = sd.pos; 1028 1029 /* dismiss the fully eaten buffers, adjust the partial one */ 1030 while (ret) { 1031 struct pipe_buffer *buf = pipe->bufs + pipe->curbuf; 1032 if (ret >= buf->len) { 1033 const struct pipe_buf_operations *ops = buf->ops; 1034 ret -= buf->len; 1035 buf->len = 0; 1036 buf->ops = NULL; 1037 ops->release(pipe, buf); 1038 pipe->curbuf = (pipe->curbuf + 1) & (pipe->buffers - 1); 1039 pipe->nrbufs--; 1040 if (pipe->files) 1041 sd.need_wakeup = true; 1042 } else { 1043 buf->offset += ret; 1044 buf->len -= ret; 1045 ret = 0; 1046 } 1047 } 1048 } 1049 done: 1050 kfree(array); 1051 splice_from_pipe_end(pipe, &sd); 1052 1053 pipe_unlock(pipe); 1054 1055 if (sd.num_spliced) 1056 ret = sd.num_spliced; 1057 1058 return ret; 1059 } 1060 1061 EXPORT_SYMBOL(iter_file_splice_write); 1062 1063 static int write_pipe_buf(struct pipe_inode_info *pipe, struct pipe_buffer *buf, 1064 struct splice_desc *sd) 1065 { 1066 int ret; 1067 void *data; 1068 loff_t tmp = sd->pos; 1069 1070 data = kmap(buf->page); 1071 ret = __kernel_write(sd->u.file, data + buf->offset, sd->len, &tmp); 1072 kunmap(buf->page); 1073 1074 return ret; 1075 } 1076 1077 static ssize_t default_file_splice_write(struct pipe_inode_info *pipe, 1078 struct file *out, loff_t *ppos, 1079 size_t len, unsigned int flags) 1080 { 1081 ssize_t ret; 1082 1083 ret = splice_from_pipe(pipe, out, ppos, len, flags, write_pipe_buf); 1084 if (ret > 0) 1085 *ppos += ret; 1086 1087 return ret; 1088 } 1089 1090 /** 1091 * generic_splice_sendpage - splice data from a pipe to a socket 1092 * @pipe: pipe to splice from 1093 * @out: socket to write to 1094 * @ppos: position in @out 1095 * @len: number of bytes to splice 1096 * @flags: splice modifier flags 1097 * 1098 * Description: 1099 * Will send @len bytes from the pipe to a network socket. No data copying 1100 * is involved. 1101 * 1102 */ 1103 ssize_t generic_splice_sendpage(struct pipe_inode_info *pipe, struct file *out, 1104 loff_t *ppos, size_t len, unsigned int flags) 1105 { 1106 return splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_sendpage); 1107 } 1108 1109 EXPORT_SYMBOL(generic_splice_sendpage); 1110 1111 /* 1112 * Attempt to initiate a splice from pipe to file. 1113 */ 1114 static long do_splice_from(struct pipe_inode_info *pipe, struct file *out, 1115 loff_t *ppos, size_t len, unsigned int flags) 1116 { 1117 ssize_t (*splice_write)(struct pipe_inode_info *, struct file *, 1118 loff_t *, size_t, unsigned int); 1119 1120 if (out->f_op->splice_write) 1121 splice_write = out->f_op->splice_write; 1122 else 1123 splice_write = default_file_splice_write; 1124 1125 return splice_write(pipe, out, ppos, len, flags); 1126 } 1127 1128 /* 1129 * Attempt to initiate a splice from a file to a pipe. 1130 */ 1131 static long do_splice_to(struct file *in, loff_t *ppos, 1132 struct pipe_inode_info *pipe, size_t len, 1133 unsigned int flags) 1134 { 1135 ssize_t (*splice_read)(struct file *, loff_t *, 1136 struct pipe_inode_info *, size_t, unsigned int); 1137 int ret; 1138 1139 if (unlikely(!(in->f_mode & FMODE_READ))) 1140 return -EBADF; 1141 1142 ret = rw_verify_area(READ, in, ppos, len); 1143 if (unlikely(ret < 0)) 1144 return ret; 1145 1146 if (unlikely(len > MAX_RW_COUNT)) 1147 len = MAX_RW_COUNT; 1148 1149 if (in->f_op->splice_read) 1150 splice_read = in->f_op->splice_read; 1151 else 1152 splice_read = default_file_splice_read; 1153 1154 return splice_read(in, ppos, pipe, len, flags); 1155 } 1156 1157 /** 1158 * splice_direct_to_actor - splices data directly between two non-pipes 1159 * @in: file to splice from 1160 * @sd: actor information on where to splice to 1161 * @actor: handles the data splicing 1162 * 1163 * Description: 1164 * This is a special case helper to splice directly between two 1165 * points, without requiring an explicit pipe. Internally an allocated 1166 * pipe is cached in the process, and reused during the lifetime of 1167 * that process. 1168 * 1169 */ 1170 ssize_t splice_direct_to_actor(struct file *in, struct splice_desc *sd, 1171 splice_direct_actor *actor) 1172 { 1173 struct pipe_inode_info *pipe; 1174 long ret, bytes; 1175 umode_t i_mode; 1176 size_t len; 1177 int i, flags, more; 1178 1179 /* 1180 * We require the input being a regular file, as we don't want to 1181 * randomly drop data for eg socket -> socket splicing. Use the 1182 * piped splicing for that! 1183 */ 1184 i_mode = file_inode(in)->i_mode; 1185 if (unlikely(!S_ISREG(i_mode) && !S_ISBLK(i_mode))) 1186 return -EINVAL; 1187 1188 /* 1189 * neither in nor out is a pipe, setup an internal pipe attached to 1190 * 'out' and transfer the wanted data from 'in' to 'out' through that 1191 */ 1192 pipe = current->splice_pipe; 1193 if (unlikely(!pipe)) { 1194 pipe = alloc_pipe_info(); 1195 if (!pipe) 1196 return -ENOMEM; 1197 1198 /* 1199 * We don't have an immediate reader, but we'll read the stuff 1200 * out of the pipe right after the splice_to_pipe(). So set 1201 * PIPE_READERS appropriately. 1202 */ 1203 pipe->readers = 1; 1204 1205 current->splice_pipe = pipe; 1206 } 1207 1208 /* 1209 * Do the splice. 1210 */ 1211 ret = 0; 1212 bytes = 0; 1213 len = sd->total_len; 1214 flags = sd->flags; 1215 1216 /* 1217 * Don't block on output, we have to drain the direct pipe. 1218 */ 1219 sd->flags &= ~SPLICE_F_NONBLOCK; 1220 more = sd->flags & SPLICE_F_MORE; 1221 1222 while (len) { 1223 size_t read_len; 1224 loff_t pos = sd->pos, prev_pos = pos; 1225 1226 ret = do_splice_to(in, &pos, pipe, len, flags); 1227 if (unlikely(ret <= 0)) 1228 goto out_release; 1229 1230 read_len = ret; 1231 sd->total_len = read_len; 1232 1233 /* 1234 * If more data is pending, set SPLICE_F_MORE 1235 * If this is the last data and SPLICE_F_MORE was not set 1236 * initially, clears it. 1237 */ 1238 if (read_len < len) 1239 sd->flags |= SPLICE_F_MORE; 1240 else if (!more) 1241 sd->flags &= ~SPLICE_F_MORE; 1242 /* 1243 * NOTE: nonblocking mode only applies to the input. We 1244 * must not do the output in nonblocking mode as then we 1245 * could get stuck data in the internal pipe: 1246 */ 1247 ret = actor(pipe, sd); 1248 if (unlikely(ret <= 0)) { 1249 sd->pos = prev_pos; 1250 goto out_release; 1251 } 1252 1253 bytes += ret; 1254 len -= ret; 1255 sd->pos = pos; 1256 1257 if (ret < read_len) { 1258 sd->pos = prev_pos + ret; 1259 goto out_release; 1260 } 1261 } 1262 1263 done: 1264 pipe->nrbufs = pipe->curbuf = 0; 1265 file_accessed(in); 1266 return bytes; 1267 1268 out_release: 1269 /* 1270 * If we did an incomplete transfer we must release 1271 * the pipe buffers in question: 1272 */ 1273 for (i = 0; i < pipe->buffers; i++) { 1274 struct pipe_buffer *buf = pipe->bufs + i; 1275 1276 if (buf->ops) { 1277 buf->ops->release(pipe, buf); 1278 buf->ops = NULL; 1279 } 1280 } 1281 1282 if (!bytes) 1283 bytes = ret; 1284 1285 goto done; 1286 } 1287 EXPORT_SYMBOL(splice_direct_to_actor); 1288 1289 static int direct_splice_actor(struct pipe_inode_info *pipe, 1290 struct splice_desc *sd) 1291 { 1292 struct file *file = sd->u.file; 1293 1294 return do_splice_from(pipe, file, sd->opos, sd->total_len, 1295 sd->flags); 1296 } 1297 1298 /** 1299 * do_splice_direct - splices data directly between two files 1300 * @in: file to splice from 1301 * @ppos: input file offset 1302 * @out: file to splice to 1303 * @opos: output file offset 1304 * @len: number of bytes to splice 1305 * @flags: splice modifier flags 1306 * 1307 * Description: 1308 * For use by do_sendfile(). splice can easily emulate sendfile, but 1309 * doing it in the application would incur an extra system call 1310 * (splice in + splice out, as compared to just sendfile()). So this helper 1311 * can splice directly through a process-private pipe. 1312 * 1313 */ 1314 long do_splice_direct(struct file *in, loff_t *ppos, struct file *out, 1315 loff_t *opos, size_t len, unsigned int flags) 1316 { 1317 struct splice_desc sd = { 1318 .len = len, 1319 .total_len = len, 1320 .flags = flags, 1321 .pos = *ppos, 1322 .u.file = out, 1323 .opos = opos, 1324 }; 1325 long ret; 1326 1327 if (unlikely(!(out->f_mode & FMODE_WRITE))) 1328 return -EBADF; 1329 1330 if (unlikely(out->f_flags & O_APPEND)) 1331 return -EINVAL; 1332 1333 ret = rw_verify_area(WRITE, out, opos, len); 1334 if (unlikely(ret < 0)) 1335 return ret; 1336 1337 ret = splice_direct_to_actor(in, &sd, direct_splice_actor); 1338 if (ret > 0) 1339 *ppos = sd.pos; 1340 1341 return ret; 1342 } 1343 EXPORT_SYMBOL(do_splice_direct); 1344 1345 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe, 1346 struct pipe_inode_info *opipe, 1347 size_t len, unsigned int flags); 1348 1349 /* 1350 * Determine where to splice to/from. 1351 */ 1352 static long do_splice(struct file *in, loff_t __user *off_in, 1353 struct file *out, loff_t __user *off_out, 1354 size_t len, unsigned int flags) 1355 { 1356 struct pipe_inode_info *ipipe; 1357 struct pipe_inode_info *opipe; 1358 loff_t offset; 1359 long ret; 1360 1361 ipipe = get_pipe_info(in); 1362 opipe = get_pipe_info(out); 1363 1364 if (ipipe && opipe) { 1365 if (off_in || off_out) 1366 return -ESPIPE; 1367 1368 if (!(in->f_mode & FMODE_READ)) 1369 return -EBADF; 1370 1371 if (!(out->f_mode & FMODE_WRITE)) 1372 return -EBADF; 1373 1374 /* Splicing to self would be fun, but... */ 1375 if (ipipe == opipe) 1376 return -EINVAL; 1377 1378 return splice_pipe_to_pipe(ipipe, opipe, len, flags); 1379 } 1380 1381 if (ipipe) { 1382 if (off_in) 1383 return -ESPIPE; 1384 if (off_out) { 1385 if (!(out->f_mode & FMODE_PWRITE)) 1386 return -EINVAL; 1387 if (copy_from_user(&offset, off_out, sizeof(loff_t))) 1388 return -EFAULT; 1389 } else { 1390 offset = out->f_pos; 1391 } 1392 1393 if (unlikely(!(out->f_mode & FMODE_WRITE))) 1394 return -EBADF; 1395 1396 if (unlikely(out->f_flags & O_APPEND)) 1397 return -EINVAL; 1398 1399 ret = rw_verify_area(WRITE, out, &offset, len); 1400 if (unlikely(ret < 0)) 1401 return ret; 1402 1403 file_start_write(out); 1404 ret = do_splice_from(ipipe, out, &offset, len, flags); 1405 file_end_write(out); 1406 1407 if (!off_out) 1408 out->f_pos = offset; 1409 else if (copy_to_user(off_out, &offset, sizeof(loff_t))) 1410 ret = -EFAULT; 1411 1412 return ret; 1413 } 1414 1415 if (opipe) { 1416 if (off_out) 1417 return -ESPIPE; 1418 if (off_in) { 1419 if (!(in->f_mode & FMODE_PREAD)) 1420 return -EINVAL; 1421 if (copy_from_user(&offset, off_in, sizeof(loff_t))) 1422 return -EFAULT; 1423 } else { 1424 offset = in->f_pos; 1425 } 1426 1427 ret = do_splice_to(in, &offset, opipe, len, flags); 1428 1429 if (!off_in) 1430 in->f_pos = offset; 1431 else if (copy_to_user(off_in, &offset, sizeof(loff_t))) 1432 ret = -EFAULT; 1433 1434 return ret; 1435 } 1436 1437 return -EINVAL; 1438 } 1439 1440 /* 1441 * Map an iov into an array of pages and offset/length tupples. With the 1442 * partial_page structure, we can map several non-contiguous ranges into 1443 * our ones pages[] map instead of splitting that operation into pieces. 1444 * Could easily be exported as a generic helper for other users, in which 1445 * case one would probably want to add a 'max_nr_pages' parameter as well. 1446 */ 1447 static int get_iovec_page_array(const struct iovec __user *iov, 1448 unsigned int nr_vecs, struct page **pages, 1449 struct partial_page *partial, bool aligned, 1450 unsigned int pipe_buffers) 1451 { 1452 int buffers = 0, error = 0; 1453 1454 while (nr_vecs) { 1455 unsigned long off, npages; 1456 struct iovec entry; 1457 void __user *base; 1458 size_t len; 1459 int i; 1460 1461 error = -EFAULT; 1462 if (copy_from_user(&entry, iov, sizeof(entry))) 1463 break; 1464 1465 base = entry.iov_base; 1466 len = entry.iov_len; 1467 1468 /* 1469 * Sanity check this iovec. 0 read succeeds. 1470 */ 1471 error = 0; 1472 if (unlikely(!len)) 1473 break; 1474 error = -EFAULT; 1475 if (!access_ok(VERIFY_READ, base, len)) 1476 break; 1477 1478 /* 1479 * Get this base offset and number of pages, then map 1480 * in the user pages. 1481 */ 1482 off = (unsigned long) base & ~PAGE_MASK; 1483 1484 /* 1485 * If asked for alignment, the offset must be zero and the 1486 * length a multiple of the PAGE_SIZE. 1487 */ 1488 error = -EINVAL; 1489 if (aligned && (off || len & ~PAGE_MASK)) 1490 break; 1491 1492 npages = (off + len + PAGE_SIZE - 1) >> PAGE_SHIFT; 1493 if (npages > pipe_buffers - buffers) 1494 npages = pipe_buffers - buffers; 1495 1496 error = get_user_pages_fast((unsigned long)base, npages, 1497 0, &pages[buffers]); 1498 1499 if (unlikely(error <= 0)) 1500 break; 1501 1502 /* 1503 * Fill this contiguous range into the partial page map. 1504 */ 1505 for (i = 0; i < error; i++) { 1506 const int plen = min_t(size_t, len, PAGE_SIZE - off); 1507 1508 partial[buffers].offset = off; 1509 partial[buffers].len = plen; 1510 1511 off = 0; 1512 len -= plen; 1513 buffers++; 1514 } 1515 1516 /* 1517 * We didn't complete this iov, stop here since it probably 1518 * means we have to move some of this into a pipe to 1519 * be able to continue. 1520 */ 1521 if (len) 1522 break; 1523 1524 /* 1525 * Don't continue if we mapped fewer pages than we asked for, 1526 * or if we mapped the max number of pages that we have 1527 * room for. 1528 */ 1529 if (error < npages || buffers == pipe_buffers) 1530 break; 1531 1532 nr_vecs--; 1533 iov++; 1534 } 1535 1536 if (buffers) 1537 return buffers; 1538 1539 return error; 1540 } 1541 1542 static int pipe_to_user(struct pipe_inode_info *pipe, struct pipe_buffer *buf, 1543 struct splice_desc *sd) 1544 { 1545 int n = copy_page_to_iter(buf->page, buf->offset, sd->len, sd->u.data); 1546 return n == sd->len ? n : -EFAULT; 1547 } 1548 1549 /* 1550 * For lack of a better implementation, implement vmsplice() to userspace 1551 * as a simple copy of the pipes pages to the user iov. 1552 */ 1553 static long vmsplice_to_user(struct file *file, const struct iovec __user *uiov, 1554 unsigned long nr_segs, unsigned int flags) 1555 { 1556 struct pipe_inode_info *pipe; 1557 struct splice_desc sd; 1558 long ret; 1559 struct iovec iovstack[UIO_FASTIOV]; 1560 struct iovec *iov = iovstack; 1561 struct iov_iter iter; 1562 1563 pipe = get_pipe_info(file); 1564 if (!pipe) 1565 return -EBADF; 1566 1567 ret = import_iovec(READ, uiov, nr_segs, 1568 ARRAY_SIZE(iovstack), &iov, &iter); 1569 if (ret < 0) 1570 return ret; 1571 1572 sd.total_len = iov_iter_count(&iter); 1573 sd.len = 0; 1574 sd.flags = flags; 1575 sd.u.data = &iter; 1576 sd.pos = 0; 1577 1578 if (sd.total_len) { 1579 pipe_lock(pipe); 1580 ret = __splice_from_pipe(pipe, &sd, pipe_to_user); 1581 pipe_unlock(pipe); 1582 } 1583 1584 kfree(iov); 1585 return ret; 1586 } 1587 1588 /* 1589 * vmsplice splices a user address range into a pipe. It can be thought of 1590 * as splice-from-memory, where the regular splice is splice-from-file (or 1591 * to file). In both cases the output is a pipe, naturally. 1592 */ 1593 static long vmsplice_to_pipe(struct file *file, const struct iovec __user *iov, 1594 unsigned long nr_segs, unsigned int flags) 1595 { 1596 struct pipe_inode_info *pipe; 1597 struct page *pages[PIPE_DEF_BUFFERS]; 1598 struct partial_page partial[PIPE_DEF_BUFFERS]; 1599 struct splice_pipe_desc spd = { 1600 .pages = pages, 1601 .partial = partial, 1602 .nr_pages_max = PIPE_DEF_BUFFERS, 1603 .flags = flags, 1604 .ops = &user_page_pipe_buf_ops, 1605 .spd_release = spd_release_page, 1606 }; 1607 long ret; 1608 1609 pipe = get_pipe_info(file); 1610 if (!pipe) 1611 return -EBADF; 1612 1613 if (splice_grow_spd(pipe, &spd)) 1614 return -ENOMEM; 1615 1616 spd.nr_pages = get_iovec_page_array(iov, nr_segs, spd.pages, 1617 spd.partial, false, 1618 spd.nr_pages_max); 1619 if (spd.nr_pages <= 0) 1620 ret = spd.nr_pages; 1621 else 1622 ret = splice_to_pipe(pipe, &spd); 1623 1624 splice_shrink_spd(&spd); 1625 return ret; 1626 } 1627 1628 /* 1629 * Note that vmsplice only really supports true splicing _from_ user memory 1630 * to a pipe, not the other way around. Splicing from user memory is a simple 1631 * operation that can be supported without any funky alignment restrictions 1632 * or nasty vm tricks. We simply map in the user memory and fill them into 1633 * a pipe. The reverse isn't quite as easy, though. There are two possible 1634 * solutions for that: 1635 * 1636 * - memcpy() the data internally, at which point we might as well just 1637 * do a regular read() on the buffer anyway. 1638 * - Lots of nasty vm tricks, that are neither fast nor flexible (it 1639 * has restriction limitations on both ends of the pipe). 1640 * 1641 * Currently we punt and implement it as a normal copy, see pipe_to_user(). 1642 * 1643 */ 1644 SYSCALL_DEFINE4(vmsplice, int, fd, const struct iovec __user *, iov, 1645 unsigned long, nr_segs, unsigned int, flags) 1646 { 1647 struct fd f; 1648 long error; 1649 1650 if (unlikely(nr_segs > UIO_MAXIOV)) 1651 return -EINVAL; 1652 else if (unlikely(!nr_segs)) 1653 return 0; 1654 1655 error = -EBADF; 1656 f = fdget(fd); 1657 if (f.file) { 1658 if (f.file->f_mode & FMODE_WRITE) 1659 error = vmsplice_to_pipe(f.file, iov, nr_segs, flags); 1660 else if (f.file->f_mode & FMODE_READ) 1661 error = vmsplice_to_user(f.file, iov, nr_segs, flags); 1662 1663 fdput(f); 1664 } 1665 1666 return error; 1667 } 1668 1669 #ifdef CONFIG_COMPAT 1670 COMPAT_SYSCALL_DEFINE4(vmsplice, int, fd, const struct compat_iovec __user *, iov32, 1671 unsigned int, nr_segs, unsigned int, flags) 1672 { 1673 unsigned i; 1674 struct iovec __user *iov; 1675 if (nr_segs > UIO_MAXIOV) 1676 return -EINVAL; 1677 iov = compat_alloc_user_space(nr_segs * sizeof(struct iovec)); 1678 for (i = 0; i < nr_segs; i++) { 1679 struct compat_iovec v; 1680 if (get_user(v.iov_base, &iov32[i].iov_base) || 1681 get_user(v.iov_len, &iov32[i].iov_len) || 1682 put_user(compat_ptr(v.iov_base), &iov[i].iov_base) || 1683 put_user(v.iov_len, &iov[i].iov_len)) 1684 return -EFAULT; 1685 } 1686 return sys_vmsplice(fd, iov, nr_segs, flags); 1687 } 1688 #endif 1689 1690 SYSCALL_DEFINE6(splice, int, fd_in, loff_t __user *, off_in, 1691 int, fd_out, loff_t __user *, off_out, 1692 size_t, len, unsigned int, flags) 1693 { 1694 struct fd in, out; 1695 long error; 1696 1697 if (unlikely(!len)) 1698 return 0; 1699 1700 error = -EBADF; 1701 in = fdget(fd_in); 1702 if (in.file) { 1703 if (in.file->f_mode & FMODE_READ) { 1704 out = fdget(fd_out); 1705 if (out.file) { 1706 if (out.file->f_mode & FMODE_WRITE) 1707 error = do_splice(in.file, off_in, 1708 out.file, off_out, 1709 len, flags); 1710 fdput(out); 1711 } 1712 } 1713 fdput(in); 1714 } 1715 return error; 1716 } 1717 1718 /* 1719 * Make sure there's data to read. Wait for input if we can, otherwise 1720 * return an appropriate error. 1721 */ 1722 static int ipipe_prep(struct pipe_inode_info *pipe, unsigned int flags) 1723 { 1724 int ret; 1725 1726 /* 1727 * Check ->nrbufs without the inode lock first. This function 1728 * is speculative anyways, so missing one is ok. 1729 */ 1730 if (pipe->nrbufs) 1731 return 0; 1732 1733 ret = 0; 1734 pipe_lock(pipe); 1735 1736 while (!pipe->nrbufs) { 1737 if (signal_pending(current)) { 1738 ret = -ERESTARTSYS; 1739 break; 1740 } 1741 if (!pipe->writers) 1742 break; 1743 if (!pipe->waiting_writers) { 1744 if (flags & SPLICE_F_NONBLOCK) { 1745 ret = -EAGAIN; 1746 break; 1747 } 1748 } 1749 pipe_wait(pipe); 1750 } 1751 1752 pipe_unlock(pipe); 1753 return ret; 1754 } 1755 1756 /* 1757 * Make sure there's writeable room. Wait for room if we can, otherwise 1758 * return an appropriate error. 1759 */ 1760 static int opipe_prep(struct pipe_inode_info *pipe, unsigned int flags) 1761 { 1762 int ret; 1763 1764 /* 1765 * Check ->nrbufs without the inode lock first. This function 1766 * is speculative anyways, so missing one is ok. 1767 */ 1768 if (pipe->nrbufs < pipe->buffers) 1769 return 0; 1770 1771 ret = 0; 1772 pipe_lock(pipe); 1773 1774 while (pipe->nrbufs >= pipe->buffers) { 1775 if (!pipe->readers) { 1776 send_sig(SIGPIPE, current, 0); 1777 ret = -EPIPE; 1778 break; 1779 } 1780 if (flags & SPLICE_F_NONBLOCK) { 1781 ret = -EAGAIN; 1782 break; 1783 } 1784 if (signal_pending(current)) { 1785 ret = -ERESTARTSYS; 1786 break; 1787 } 1788 pipe->waiting_writers++; 1789 pipe_wait(pipe); 1790 pipe->waiting_writers--; 1791 } 1792 1793 pipe_unlock(pipe); 1794 return ret; 1795 } 1796 1797 /* 1798 * Splice contents of ipipe to opipe. 1799 */ 1800 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe, 1801 struct pipe_inode_info *opipe, 1802 size_t len, unsigned int flags) 1803 { 1804 struct pipe_buffer *ibuf, *obuf; 1805 int ret = 0, nbuf; 1806 bool input_wakeup = false; 1807 1808 1809 retry: 1810 ret = ipipe_prep(ipipe, flags); 1811 if (ret) 1812 return ret; 1813 1814 ret = opipe_prep(opipe, flags); 1815 if (ret) 1816 return ret; 1817 1818 /* 1819 * Potential ABBA deadlock, work around it by ordering lock 1820 * grabbing by pipe info address. Otherwise two different processes 1821 * could deadlock (one doing tee from A -> B, the other from B -> A). 1822 */ 1823 pipe_double_lock(ipipe, opipe); 1824 1825 do { 1826 if (!opipe->readers) { 1827 send_sig(SIGPIPE, current, 0); 1828 if (!ret) 1829 ret = -EPIPE; 1830 break; 1831 } 1832 1833 if (!ipipe->nrbufs && !ipipe->writers) 1834 break; 1835 1836 /* 1837 * Cannot make any progress, because either the input 1838 * pipe is empty or the output pipe is full. 1839 */ 1840 if (!ipipe->nrbufs || opipe->nrbufs >= opipe->buffers) { 1841 /* Already processed some buffers, break */ 1842 if (ret) 1843 break; 1844 1845 if (flags & SPLICE_F_NONBLOCK) { 1846 ret = -EAGAIN; 1847 break; 1848 } 1849 1850 /* 1851 * We raced with another reader/writer and haven't 1852 * managed to process any buffers. A zero return 1853 * value means EOF, so retry instead. 1854 */ 1855 pipe_unlock(ipipe); 1856 pipe_unlock(opipe); 1857 goto retry; 1858 } 1859 1860 ibuf = ipipe->bufs + ipipe->curbuf; 1861 nbuf = (opipe->curbuf + opipe->nrbufs) & (opipe->buffers - 1); 1862 obuf = opipe->bufs + nbuf; 1863 1864 if (len >= ibuf->len) { 1865 /* 1866 * Simply move the whole buffer from ipipe to opipe 1867 */ 1868 *obuf = *ibuf; 1869 ibuf->ops = NULL; 1870 opipe->nrbufs++; 1871 ipipe->curbuf = (ipipe->curbuf + 1) & (ipipe->buffers - 1); 1872 ipipe->nrbufs--; 1873 input_wakeup = true; 1874 } else { 1875 /* 1876 * Get a reference to this pipe buffer, 1877 * so we can copy the contents over. 1878 */ 1879 ibuf->ops->get(ipipe, ibuf); 1880 *obuf = *ibuf; 1881 1882 /* 1883 * Don't inherit the gift flag, we need to 1884 * prevent multiple steals of this page. 1885 */ 1886 obuf->flags &= ~PIPE_BUF_FLAG_GIFT; 1887 1888 obuf->len = len; 1889 opipe->nrbufs++; 1890 ibuf->offset += obuf->len; 1891 ibuf->len -= obuf->len; 1892 } 1893 ret += obuf->len; 1894 len -= obuf->len; 1895 } while (len); 1896 1897 pipe_unlock(ipipe); 1898 pipe_unlock(opipe); 1899 1900 /* 1901 * If we put data in the output pipe, wakeup any potential readers. 1902 */ 1903 if (ret > 0) 1904 wakeup_pipe_readers(opipe); 1905 1906 if (input_wakeup) 1907 wakeup_pipe_writers(ipipe); 1908 1909 return ret; 1910 } 1911 1912 /* 1913 * Link contents of ipipe to opipe. 1914 */ 1915 static int link_pipe(struct pipe_inode_info *ipipe, 1916 struct pipe_inode_info *opipe, 1917 size_t len, unsigned int flags) 1918 { 1919 struct pipe_buffer *ibuf, *obuf; 1920 int ret = 0, i = 0, nbuf; 1921 1922 /* 1923 * Potential ABBA deadlock, work around it by ordering lock 1924 * grabbing by pipe info address. Otherwise two different processes 1925 * could deadlock (one doing tee from A -> B, the other from B -> A). 1926 */ 1927 pipe_double_lock(ipipe, opipe); 1928 1929 do { 1930 if (!opipe->readers) { 1931 send_sig(SIGPIPE, current, 0); 1932 if (!ret) 1933 ret = -EPIPE; 1934 break; 1935 } 1936 1937 /* 1938 * If we have iterated all input buffers or ran out of 1939 * output room, break. 1940 */ 1941 if (i >= ipipe->nrbufs || opipe->nrbufs >= opipe->buffers) 1942 break; 1943 1944 ibuf = ipipe->bufs + ((ipipe->curbuf + i) & (ipipe->buffers-1)); 1945 nbuf = (opipe->curbuf + opipe->nrbufs) & (opipe->buffers - 1); 1946 1947 /* 1948 * Get a reference to this pipe buffer, 1949 * so we can copy the contents over. 1950 */ 1951 ibuf->ops->get(ipipe, ibuf); 1952 1953 obuf = opipe->bufs + nbuf; 1954 *obuf = *ibuf; 1955 1956 /* 1957 * Don't inherit the gift flag, we need to 1958 * prevent multiple steals of this page. 1959 */ 1960 obuf->flags &= ~PIPE_BUF_FLAG_GIFT; 1961 1962 if (obuf->len > len) 1963 obuf->len = len; 1964 1965 opipe->nrbufs++; 1966 ret += obuf->len; 1967 len -= obuf->len; 1968 i++; 1969 } while (len); 1970 1971 /* 1972 * return EAGAIN if we have the potential of some data in the 1973 * future, otherwise just return 0 1974 */ 1975 if (!ret && ipipe->waiting_writers && (flags & SPLICE_F_NONBLOCK)) 1976 ret = -EAGAIN; 1977 1978 pipe_unlock(ipipe); 1979 pipe_unlock(opipe); 1980 1981 /* 1982 * If we put data in the output pipe, wakeup any potential readers. 1983 */ 1984 if (ret > 0) 1985 wakeup_pipe_readers(opipe); 1986 1987 return ret; 1988 } 1989 1990 /* 1991 * This is a tee(1) implementation that works on pipes. It doesn't copy 1992 * any data, it simply references the 'in' pages on the 'out' pipe. 1993 * The 'flags' used are the SPLICE_F_* variants, currently the only 1994 * applicable one is SPLICE_F_NONBLOCK. 1995 */ 1996 static long do_tee(struct file *in, struct file *out, size_t len, 1997 unsigned int flags) 1998 { 1999 struct pipe_inode_info *ipipe = get_pipe_info(in); 2000 struct pipe_inode_info *opipe = get_pipe_info(out); 2001 int ret = -EINVAL; 2002 2003 /* 2004 * Duplicate the contents of ipipe to opipe without actually 2005 * copying the data. 2006 */ 2007 if (ipipe && opipe && ipipe != opipe) { 2008 /* 2009 * Keep going, unless we encounter an error. The ipipe/opipe 2010 * ordering doesn't really matter. 2011 */ 2012 ret = ipipe_prep(ipipe, flags); 2013 if (!ret) { 2014 ret = opipe_prep(opipe, flags); 2015 if (!ret) 2016 ret = link_pipe(ipipe, opipe, len, flags); 2017 } 2018 } 2019 2020 return ret; 2021 } 2022 2023 SYSCALL_DEFINE4(tee, int, fdin, int, fdout, size_t, len, unsigned int, flags) 2024 { 2025 struct fd in; 2026 int error; 2027 2028 if (unlikely(!len)) 2029 return 0; 2030 2031 error = -EBADF; 2032 in = fdget(fdin); 2033 if (in.file) { 2034 if (in.file->f_mode & FMODE_READ) { 2035 struct fd out = fdget(fdout); 2036 if (out.file) { 2037 if (out.file->f_mode & FMODE_WRITE) 2038 error = do_tee(in.file, out.file, 2039 len, flags); 2040 fdput(out); 2041 } 2042 } 2043 fdput(in); 2044 } 2045 2046 return error; 2047 } 2048