xref: /linux/fs/splice.c (revision 98366c20a275e957416e9516db5dcb7195b4e101)
1 /*
2  * "splice": joining two ropes together by interweaving their strands.
3  *
4  * This is the "extended pipe" functionality, where a pipe is used as
5  * an arbitrary in-memory buffer. Think of a pipe as a small kernel
6  * buffer that you can use to transfer data from one end to the other.
7  *
8  * The traditional unix read/write is extended with a "splice()" operation
9  * that transfers data buffers to or from a pipe buffer.
10  *
11  * Named by Larry McVoy, original implementation from Linus, extended by
12  * Jens to support splicing to files, network, direct splicing, etc and
13  * fixing lots of bugs.
14  *
15  * Copyright (C) 2005-2006 Jens Axboe <axboe@kernel.dk>
16  * Copyright (C) 2005-2006 Linus Torvalds <torvalds@osdl.org>
17  * Copyright (C) 2006 Ingo Molnar <mingo@elte.hu>
18  *
19  */
20 #include <linux/fs.h>
21 #include <linux/file.h>
22 #include <linux/pagemap.h>
23 #include <linux/splice.h>
24 #include <linux/mm_inline.h>
25 #include <linux/swap.h>
26 #include <linux/writeback.h>
27 #include <linux/buffer_head.h>
28 #include <linux/module.h>
29 #include <linux/syscalls.h>
30 #include <linux/uio.h>
31 #include <linux/security.h>
32 
33 /*
34  * Attempt to steal a page from a pipe buffer. This should perhaps go into
35  * a vm helper function, it's already simplified quite a bit by the
36  * addition of remove_mapping(). If success is returned, the caller may
37  * attempt to reuse this page for another destination.
38  */
39 static int page_cache_pipe_buf_steal(struct pipe_inode_info *pipe,
40 				     struct pipe_buffer *buf)
41 {
42 	struct page *page = buf->page;
43 	struct address_space *mapping;
44 
45 	lock_page(page);
46 
47 	mapping = page_mapping(page);
48 	if (mapping) {
49 		WARN_ON(!PageUptodate(page));
50 
51 		/*
52 		 * At least for ext2 with nobh option, we need to wait on
53 		 * writeback completing on this page, since we'll remove it
54 		 * from the pagecache.  Otherwise truncate wont wait on the
55 		 * page, allowing the disk blocks to be reused by someone else
56 		 * before we actually wrote our data to them. fs corruption
57 		 * ensues.
58 		 */
59 		wait_on_page_writeback(page);
60 
61 		if (PagePrivate(page))
62 			try_to_release_page(page, GFP_KERNEL);
63 
64 		/*
65 		 * If we succeeded in removing the mapping, set LRU flag
66 		 * and return good.
67 		 */
68 		if (remove_mapping(mapping, page)) {
69 			buf->flags |= PIPE_BUF_FLAG_LRU;
70 			return 0;
71 		}
72 	}
73 
74 	/*
75 	 * Raced with truncate or failed to remove page from current
76 	 * address space, unlock and return failure.
77 	 */
78 	unlock_page(page);
79 	return 1;
80 }
81 
82 static void page_cache_pipe_buf_release(struct pipe_inode_info *pipe,
83 					struct pipe_buffer *buf)
84 {
85 	page_cache_release(buf->page);
86 	buf->flags &= ~PIPE_BUF_FLAG_LRU;
87 }
88 
89 /*
90  * Check whether the contents of buf is OK to access. Since the content
91  * is a page cache page, IO may be in flight.
92  */
93 static int page_cache_pipe_buf_confirm(struct pipe_inode_info *pipe,
94 				       struct pipe_buffer *buf)
95 {
96 	struct page *page = buf->page;
97 	int err;
98 
99 	if (!PageUptodate(page)) {
100 		lock_page(page);
101 
102 		/*
103 		 * Page got truncated/unhashed. This will cause a 0-byte
104 		 * splice, if this is the first page.
105 		 */
106 		if (!page->mapping) {
107 			err = -ENODATA;
108 			goto error;
109 		}
110 
111 		/*
112 		 * Uh oh, read-error from disk.
113 		 */
114 		if (!PageUptodate(page)) {
115 			err = -EIO;
116 			goto error;
117 		}
118 
119 		/*
120 		 * Page is ok afterall, we are done.
121 		 */
122 		unlock_page(page);
123 	}
124 
125 	return 0;
126 error:
127 	unlock_page(page);
128 	return err;
129 }
130 
131 static const struct pipe_buf_operations page_cache_pipe_buf_ops = {
132 	.can_merge = 0,
133 	.map = generic_pipe_buf_map,
134 	.unmap = generic_pipe_buf_unmap,
135 	.confirm = page_cache_pipe_buf_confirm,
136 	.release = page_cache_pipe_buf_release,
137 	.steal = page_cache_pipe_buf_steal,
138 	.get = generic_pipe_buf_get,
139 };
140 
141 static int user_page_pipe_buf_steal(struct pipe_inode_info *pipe,
142 				    struct pipe_buffer *buf)
143 {
144 	if (!(buf->flags & PIPE_BUF_FLAG_GIFT))
145 		return 1;
146 
147 	buf->flags |= PIPE_BUF_FLAG_LRU;
148 	return generic_pipe_buf_steal(pipe, buf);
149 }
150 
151 static const struct pipe_buf_operations user_page_pipe_buf_ops = {
152 	.can_merge = 0,
153 	.map = generic_pipe_buf_map,
154 	.unmap = generic_pipe_buf_unmap,
155 	.confirm = generic_pipe_buf_confirm,
156 	.release = page_cache_pipe_buf_release,
157 	.steal = user_page_pipe_buf_steal,
158 	.get = generic_pipe_buf_get,
159 };
160 
161 /**
162  * splice_to_pipe - fill passed data into a pipe
163  * @pipe:	pipe to fill
164  * @spd:	data to fill
165  *
166  * Description:
167  *    @spd contains a map of pages and len/offset tuples, along with
168  *    the struct pipe_buf_operations associated with these pages. This
169  *    function will link that data to the pipe.
170  *
171  */
172 ssize_t splice_to_pipe(struct pipe_inode_info *pipe,
173 		       struct splice_pipe_desc *spd)
174 {
175 	unsigned int spd_pages = spd->nr_pages;
176 	int ret, do_wakeup, page_nr;
177 
178 	ret = 0;
179 	do_wakeup = 0;
180 	page_nr = 0;
181 
182 	if (pipe->inode)
183 		mutex_lock(&pipe->inode->i_mutex);
184 
185 	for (;;) {
186 		if (!pipe->readers) {
187 			send_sig(SIGPIPE, current, 0);
188 			if (!ret)
189 				ret = -EPIPE;
190 			break;
191 		}
192 
193 		if (pipe->nrbufs < PIPE_BUFFERS) {
194 			int newbuf = (pipe->curbuf + pipe->nrbufs) & (PIPE_BUFFERS - 1);
195 			struct pipe_buffer *buf = pipe->bufs + newbuf;
196 
197 			buf->page = spd->pages[page_nr];
198 			buf->offset = spd->partial[page_nr].offset;
199 			buf->len = spd->partial[page_nr].len;
200 			buf->private = spd->partial[page_nr].private;
201 			buf->ops = spd->ops;
202 			if (spd->flags & SPLICE_F_GIFT)
203 				buf->flags |= PIPE_BUF_FLAG_GIFT;
204 
205 			pipe->nrbufs++;
206 			page_nr++;
207 			ret += buf->len;
208 
209 			if (pipe->inode)
210 				do_wakeup = 1;
211 
212 			if (!--spd->nr_pages)
213 				break;
214 			if (pipe->nrbufs < PIPE_BUFFERS)
215 				continue;
216 
217 			break;
218 		}
219 
220 		if (spd->flags & SPLICE_F_NONBLOCK) {
221 			if (!ret)
222 				ret = -EAGAIN;
223 			break;
224 		}
225 
226 		if (signal_pending(current)) {
227 			if (!ret)
228 				ret = -ERESTARTSYS;
229 			break;
230 		}
231 
232 		if (do_wakeup) {
233 			smp_mb();
234 			if (waitqueue_active(&pipe->wait))
235 				wake_up_interruptible_sync(&pipe->wait);
236 			kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
237 			do_wakeup = 0;
238 		}
239 
240 		pipe->waiting_writers++;
241 		pipe_wait(pipe);
242 		pipe->waiting_writers--;
243 	}
244 
245 	if (pipe->inode) {
246 		mutex_unlock(&pipe->inode->i_mutex);
247 
248 		if (do_wakeup) {
249 			smp_mb();
250 			if (waitqueue_active(&pipe->wait))
251 				wake_up_interruptible(&pipe->wait);
252 			kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
253 		}
254 	}
255 
256 	while (page_nr < spd_pages)
257 		page_cache_release(spd->pages[page_nr++]);
258 
259 	return ret;
260 }
261 
262 static int
263 __generic_file_splice_read(struct file *in, loff_t *ppos,
264 			   struct pipe_inode_info *pipe, size_t len,
265 			   unsigned int flags)
266 {
267 	struct address_space *mapping = in->f_mapping;
268 	unsigned int loff, nr_pages, req_pages;
269 	struct page *pages[PIPE_BUFFERS];
270 	struct partial_page partial[PIPE_BUFFERS];
271 	struct page *page;
272 	pgoff_t index, end_index;
273 	loff_t isize;
274 	int error, page_nr;
275 	struct splice_pipe_desc spd = {
276 		.pages = pages,
277 		.partial = partial,
278 		.flags = flags,
279 		.ops = &page_cache_pipe_buf_ops,
280 	};
281 
282 	index = *ppos >> PAGE_CACHE_SHIFT;
283 	loff = *ppos & ~PAGE_CACHE_MASK;
284 	req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
285 	nr_pages = min(req_pages, (unsigned)PIPE_BUFFERS);
286 
287 	/*
288 	 * Lookup the (hopefully) full range of pages we need.
289 	 */
290 	spd.nr_pages = find_get_pages_contig(mapping, index, nr_pages, pages);
291 	index += spd.nr_pages;
292 
293 	/*
294 	 * If find_get_pages_contig() returned fewer pages than we needed,
295 	 * readahead/allocate the rest and fill in the holes.
296 	 */
297 	if (spd.nr_pages < nr_pages)
298 		page_cache_sync_readahead(mapping, &in->f_ra, in,
299 				index, req_pages - spd.nr_pages);
300 
301 	error = 0;
302 	while (spd.nr_pages < nr_pages) {
303 		/*
304 		 * Page could be there, find_get_pages_contig() breaks on
305 		 * the first hole.
306 		 */
307 		page = find_get_page(mapping, index);
308 		if (!page) {
309 			/*
310 			 * page didn't exist, allocate one.
311 			 */
312 			page = page_cache_alloc_cold(mapping);
313 			if (!page)
314 				break;
315 
316 			error = add_to_page_cache_lru(page, mapping, index,
317 					      GFP_KERNEL);
318 			if (unlikely(error)) {
319 				page_cache_release(page);
320 				if (error == -EEXIST)
321 					continue;
322 				break;
323 			}
324 			/*
325 			 * add_to_page_cache() locks the page, unlock it
326 			 * to avoid convoluting the logic below even more.
327 			 */
328 			unlock_page(page);
329 		}
330 
331 		pages[spd.nr_pages++] = page;
332 		index++;
333 	}
334 
335 	/*
336 	 * Now loop over the map and see if we need to start IO on any
337 	 * pages, fill in the partial map, etc.
338 	 */
339 	index = *ppos >> PAGE_CACHE_SHIFT;
340 	nr_pages = spd.nr_pages;
341 	spd.nr_pages = 0;
342 	for (page_nr = 0; page_nr < nr_pages; page_nr++) {
343 		unsigned int this_len;
344 
345 		if (!len)
346 			break;
347 
348 		/*
349 		 * this_len is the max we'll use from this page
350 		 */
351 		this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
352 		page = pages[page_nr];
353 
354 		if (PageReadahead(page))
355 			page_cache_async_readahead(mapping, &in->f_ra, in,
356 					page, index, req_pages - page_nr);
357 
358 		/*
359 		 * If the page isn't uptodate, we may need to start io on it
360 		 */
361 		if (!PageUptodate(page)) {
362 			/*
363 			 * If in nonblock mode then dont block on waiting
364 			 * for an in-flight io page
365 			 */
366 			if (flags & SPLICE_F_NONBLOCK) {
367 				if (TestSetPageLocked(page))
368 					break;
369 			} else
370 				lock_page(page);
371 
372 			/*
373 			 * page was truncated, stop here. if this isn't the
374 			 * first page, we'll just complete what we already
375 			 * added
376 			 */
377 			if (!page->mapping) {
378 				unlock_page(page);
379 				break;
380 			}
381 			/*
382 			 * page was already under io and is now done, great
383 			 */
384 			if (PageUptodate(page)) {
385 				unlock_page(page);
386 				goto fill_it;
387 			}
388 
389 			/*
390 			 * need to read in the page
391 			 */
392 			error = mapping->a_ops->readpage(in, page);
393 			if (unlikely(error)) {
394 				/*
395 				 * We really should re-lookup the page here,
396 				 * but it complicates things a lot. Instead
397 				 * lets just do what we already stored, and
398 				 * we'll get it the next time we are called.
399 				 */
400 				if (error == AOP_TRUNCATED_PAGE)
401 					error = 0;
402 
403 				break;
404 			}
405 		}
406 fill_it:
407 		/*
408 		 * i_size must be checked after PageUptodate.
409 		 */
410 		isize = i_size_read(mapping->host);
411 		end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
412 		if (unlikely(!isize || index > end_index))
413 			break;
414 
415 		/*
416 		 * if this is the last page, see if we need to shrink
417 		 * the length and stop
418 		 */
419 		if (end_index == index) {
420 			unsigned int plen;
421 
422 			/*
423 			 * max good bytes in this page
424 			 */
425 			plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
426 			if (plen <= loff)
427 				break;
428 
429 			/*
430 			 * force quit after adding this page
431 			 */
432 			this_len = min(this_len, plen - loff);
433 			len = this_len;
434 		}
435 
436 		partial[page_nr].offset = loff;
437 		partial[page_nr].len = this_len;
438 		len -= this_len;
439 		loff = 0;
440 		spd.nr_pages++;
441 		index++;
442 	}
443 
444 	/*
445 	 * Release any pages at the end, if we quit early. 'page_nr' is how far
446 	 * we got, 'nr_pages' is how many pages are in the map.
447 	 */
448 	while (page_nr < nr_pages)
449 		page_cache_release(pages[page_nr++]);
450 	in->f_ra.prev_pos = (loff_t)index << PAGE_CACHE_SHIFT;
451 
452 	if (spd.nr_pages)
453 		return splice_to_pipe(pipe, &spd);
454 
455 	return error;
456 }
457 
458 /**
459  * generic_file_splice_read - splice data from file to a pipe
460  * @in:		file to splice from
461  * @ppos:	position in @in
462  * @pipe:	pipe to splice to
463  * @len:	number of bytes to splice
464  * @flags:	splice modifier flags
465  *
466  * Description:
467  *    Will read pages from given file and fill them into a pipe. Can be
468  *    used as long as the address_space operations for the source implements
469  *    a readpage() hook.
470  *
471  */
472 ssize_t generic_file_splice_read(struct file *in, loff_t *ppos,
473 				 struct pipe_inode_info *pipe, size_t len,
474 				 unsigned int flags)
475 {
476 	ssize_t spliced;
477 	int ret;
478 	loff_t isize, left;
479 
480 	isize = i_size_read(in->f_mapping->host);
481 	if (unlikely(*ppos >= isize))
482 		return 0;
483 
484 	left = isize - *ppos;
485 	if (unlikely(left < len))
486 		len = left;
487 
488 	ret = 0;
489 	spliced = 0;
490 	while (len && !spliced) {
491 		ret = __generic_file_splice_read(in, ppos, pipe, len, flags);
492 
493 		if (ret < 0)
494 			break;
495 		else if (!ret) {
496 			if (spliced)
497 				break;
498 			if (flags & SPLICE_F_NONBLOCK) {
499 				ret = -EAGAIN;
500 				break;
501 			}
502 		}
503 
504 		*ppos += ret;
505 		len -= ret;
506 		spliced += ret;
507 	}
508 
509 	if (spliced)
510 		return spliced;
511 
512 	return ret;
513 }
514 
515 EXPORT_SYMBOL(generic_file_splice_read);
516 
517 /*
518  * Send 'sd->len' bytes to socket from 'sd->file' at position 'sd->pos'
519  * using sendpage(). Return the number of bytes sent.
520  */
521 static int pipe_to_sendpage(struct pipe_inode_info *pipe,
522 			    struct pipe_buffer *buf, struct splice_desc *sd)
523 {
524 	struct file *file = sd->u.file;
525 	loff_t pos = sd->pos;
526 	int ret, more;
527 
528 	ret = buf->ops->confirm(pipe, buf);
529 	if (!ret) {
530 		more = (sd->flags & SPLICE_F_MORE) || sd->len < sd->total_len;
531 
532 		ret = file->f_op->sendpage(file, buf->page, buf->offset,
533 					   sd->len, &pos, more);
534 	}
535 
536 	return ret;
537 }
538 
539 /*
540  * This is a little more tricky than the file -> pipe splicing. There are
541  * basically three cases:
542  *
543  *	- Destination page already exists in the address space and there
544  *	  are users of it. For that case we have no other option that
545  *	  copying the data. Tough luck.
546  *	- Destination page already exists in the address space, but there
547  *	  are no users of it. Make sure it's uptodate, then drop it. Fall
548  *	  through to last case.
549  *	- Destination page does not exist, we can add the pipe page to
550  *	  the page cache and avoid the copy.
551  *
552  * If asked to move pages to the output file (SPLICE_F_MOVE is set in
553  * sd->flags), we attempt to migrate pages from the pipe to the output
554  * file address space page cache. This is possible if no one else has
555  * the pipe page referenced outside of the pipe and page cache. If
556  * SPLICE_F_MOVE isn't set, or we cannot move the page, we simply create
557  * a new page in the output file page cache and fill/dirty that.
558  */
559 static int pipe_to_file(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
560 			struct splice_desc *sd)
561 {
562 	struct file *file = sd->u.file;
563 	struct address_space *mapping = file->f_mapping;
564 	unsigned int offset, this_len;
565 	struct page *page;
566 	void *fsdata;
567 	int ret;
568 
569 	/*
570 	 * make sure the data in this buffer is uptodate
571 	 */
572 	ret = buf->ops->confirm(pipe, buf);
573 	if (unlikely(ret))
574 		return ret;
575 
576 	offset = sd->pos & ~PAGE_CACHE_MASK;
577 
578 	this_len = sd->len;
579 	if (this_len + offset > PAGE_CACHE_SIZE)
580 		this_len = PAGE_CACHE_SIZE - offset;
581 
582 	ret = pagecache_write_begin(file, mapping, sd->pos, this_len,
583 				AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
584 	if (unlikely(ret))
585 		goto out;
586 
587 	if (buf->page != page) {
588 		/*
589 		 * Careful, ->map() uses KM_USER0!
590 		 */
591 		char *src = buf->ops->map(pipe, buf, 1);
592 		char *dst = kmap_atomic(page, KM_USER1);
593 
594 		memcpy(dst + offset, src + buf->offset, this_len);
595 		flush_dcache_page(page);
596 		kunmap_atomic(dst, KM_USER1);
597 		buf->ops->unmap(pipe, buf, src);
598 	}
599 	ret = pagecache_write_end(file, mapping, sd->pos, this_len, this_len,
600 				page, fsdata);
601 out:
602 	return ret;
603 }
604 
605 /**
606  * __splice_from_pipe - splice data from a pipe to given actor
607  * @pipe:	pipe to splice from
608  * @sd:		information to @actor
609  * @actor:	handler that splices the data
610  *
611  * Description:
612  *    This function does little more than loop over the pipe and call
613  *    @actor to do the actual moving of a single struct pipe_buffer to
614  *    the desired destination. See pipe_to_file, pipe_to_sendpage, or
615  *    pipe_to_user.
616  *
617  */
618 ssize_t __splice_from_pipe(struct pipe_inode_info *pipe, struct splice_desc *sd,
619 			   splice_actor *actor)
620 {
621 	int ret, do_wakeup, err;
622 
623 	ret = 0;
624 	do_wakeup = 0;
625 
626 	for (;;) {
627 		if (pipe->nrbufs) {
628 			struct pipe_buffer *buf = pipe->bufs + pipe->curbuf;
629 			const struct pipe_buf_operations *ops = buf->ops;
630 
631 			sd->len = buf->len;
632 			if (sd->len > sd->total_len)
633 				sd->len = sd->total_len;
634 
635 			err = actor(pipe, buf, sd);
636 			if (err <= 0) {
637 				if (!ret && err != -ENODATA)
638 					ret = err;
639 
640 				break;
641 			}
642 
643 			ret += err;
644 			buf->offset += err;
645 			buf->len -= err;
646 
647 			sd->len -= err;
648 			sd->pos += err;
649 			sd->total_len -= err;
650 			if (sd->len)
651 				continue;
652 
653 			if (!buf->len) {
654 				buf->ops = NULL;
655 				ops->release(pipe, buf);
656 				pipe->curbuf = (pipe->curbuf + 1) & (PIPE_BUFFERS - 1);
657 				pipe->nrbufs--;
658 				if (pipe->inode)
659 					do_wakeup = 1;
660 			}
661 
662 			if (!sd->total_len)
663 				break;
664 		}
665 
666 		if (pipe->nrbufs)
667 			continue;
668 		if (!pipe->writers)
669 			break;
670 		if (!pipe->waiting_writers) {
671 			if (ret)
672 				break;
673 		}
674 
675 		if (sd->flags & SPLICE_F_NONBLOCK) {
676 			if (!ret)
677 				ret = -EAGAIN;
678 			break;
679 		}
680 
681 		if (signal_pending(current)) {
682 			if (!ret)
683 				ret = -ERESTARTSYS;
684 			break;
685 		}
686 
687 		if (do_wakeup) {
688 			smp_mb();
689 			if (waitqueue_active(&pipe->wait))
690 				wake_up_interruptible_sync(&pipe->wait);
691 			kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
692 			do_wakeup = 0;
693 		}
694 
695 		pipe_wait(pipe);
696 	}
697 
698 	if (do_wakeup) {
699 		smp_mb();
700 		if (waitqueue_active(&pipe->wait))
701 			wake_up_interruptible(&pipe->wait);
702 		kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
703 	}
704 
705 	return ret;
706 }
707 EXPORT_SYMBOL(__splice_from_pipe);
708 
709 /**
710  * splice_from_pipe - splice data from a pipe to a file
711  * @pipe:	pipe to splice from
712  * @out:	file to splice to
713  * @ppos:	position in @out
714  * @len:	how many bytes to splice
715  * @flags:	splice modifier flags
716  * @actor:	handler that splices the data
717  *
718  * Description:
719  *    See __splice_from_pipe. This function locks the input and output inodes,
720  *    otherwise it's identical to __splice_from_pipe().
721  *
722  */
723 ssize_t splice_from_pipe(struct pipe_inode_info *pipe, struct file *out,
724 			 loff_t *ppos, size_t len, unsigned int flags,
725 			 splice_actor *actor)
726 {
727 	ssize_t ret;
728 	struct inode *inode = out->f_mapping->host;
729 	struct splice_desc sd = {
730 		.total_len = len,
731 		.flags = flags,
732 		.pos = *ppos,
733 		.u.file = out,
734 	};
735 
736 	/*
737 	 * The actor worker might be calling ->prepare_write and
738 	 * ->commit_write. Most of the time, these expect i_mutex to
739 	 * be held. Since this may result in an ABBA deadlock with
740 	 * pipe->inode, we have to order lock acquiry here.
741 	 */
742 	inode_double_lock(inode, pipe->inode);
743 	ret = __splice_from_pipe(pipe, &sd, actor);
744 	inode_double_unlock(inode, pipe->inode);
745 
746 	return ret;
747 }
748 
749 /**
750  * generic_file_splice_write_nolock - generic_file_splice_write without mutexes
751  * @pipe:	pipe info
752  * @out:	file to write to
753  * @ppos:	position in @out
754  * @len:	number of bytes to splice
755  * @flags:	splice modifier flags
756  *
757  * Description:
758  *    Will either move or copy pages (determined by @flags options) from
759  *    the given pipe inode to the given file. The caller is responsible
760  *    for acquiring i_mutex on both inodes.
761  *
762  */
763 ssize_t
764 generic_file_splice_write_nolock(struct pipe_inode_info *pipe, struct file *out,
765 				 loff_t *ppos, size_t len, unsigned int flags)
766 {
767 	struct address_space *mapping = out->f_mapping;
768 	struct inode *inode = mapping->host;
769 	struct splice_desc sd = {
770 		.total_len = len,
771 		.flags = flags,
772 		.pos = *ppos,
773 		.u.file = out,
774 	};
775 	ssize_t ret;
776 	int err;
777 
778 	err = remove_suid(out->f_path.dentry);
779 	if (unlikely(err))
780 		return err;
781 
782 	ret = __splice_from_pipe(pipe, &sd, pipe_to_file);
783 	if (ret > 0) {
784 		unsigned long nr_pages;
785 
786 		*ppos += ret;
787 		nr_pages = (ret + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
788 
789 		/*
790 		 * If file or inode is SYNC and we actually wrote some data,
791 		 * sync it.
792 		 */
793 		if (unlikely((out->f_flags & O_SYNC) || IS_SYNC(inode))) {
794 			err = generic_osync_inode(inode, mapping,
795 						  OSYNC_METADATA|OSYNC_DATA);
796 
797 			if (err)
798 				ret = err;
799 		}
800 		balance_dirty_pages_ratelimited_nr(mapping, nr_pages);
801 	}
802 
803 	return ret;
804 }
805 
806 EXPORT_SYMBOL(generic_file_splice_write_nolock);
807 
808 /**
809  * generic_file_splice_write - splice data from a pipe to a file
810  * @pipe:	pipe info
811  * @out:	file to write to
812  * @ppos:	position in @out
813  * @len:	number of bytes to splice
814  * @flags:	splice modifier flags
815  *
816  * Description:
817  *    Will either move or copy pages (determined by @flags options) from
818  *    the given pipe inode to the given file.
819  *
820  */
821 ssize_t
822 generic_file_splice_write(struct pipe_inode_info *pipe, struct file *out,
823 			  loff_t *ppos, size_t len, unsigned int flags)
824 {
825 	struct address_space *mapping = out->f_mapping;
826 	struct inode *inode = mapping->host;
827 	int killsuid, killpriv;
828 	ssize_t ret;
829 	int err = 0;
830 
831 	killpriv = security_inode_need_killpriv(out->f_path.dentry);
832 	killsuid = should_remove_suid(out->f_path.dentry);
833 	if (unlikely(killsuid || killpriv)) {
834 		mutex_lock(&inode->i_mutex);
835 		if (killpriv)
836 			err = security_inode_killpriv(out->f_path.dentry);
837 		if (!err && killsuid)
838 			err = __remove_suid(out->f_path.dentry, killsuid);
839 		mutex_unlock(&inode->i_mutex);
840 		if (err)
841 			return err;
842 	}
843 
844 	ret = splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_file);
845 	if (ret > 0) {
846 		unsigned long nr_pages;
847 
848 		*ppos += ret;
849 		nr_pages = (ret + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
850 
851 		/*
852 		 * If file or inode is SYNC and we actually wrote some data,
853 		 * sync it.
854 		 */
855 		if (unlikely((out->f_flags & O_SYNC) || IS_SYNC(inode))) {
856 			mutex_lock(&inode->i_mutex);
857 			err = generic_osync_inode(inode, mapping,
858 						  OSYNC_METADATA|OSYNC_DATA);
859 			mutex_unlock(&inode->i_mutex);
860 
861 			if (err)
862 				ret = err;
863 		}
864 		balance_dirty_pages_ratelimited_nr(mapping, nr_pages);
865 	}
866 
867 	return ret;
868 }
869 
870 EXPORT_SYMBOL(generic_file_splice_write);
871 
872 /**
873  * generic_splice_sendpage - splice data from a pipe to a socket
874  * @pipe:	pipe to splice from
875  * @out:	socket to write to
876  * @ppos:	position in @out
877  * @len:	number of bytes to splice
878  * @flags:	splice modifier flags
879  *
880  * Description:
881  *    Will send @len bytes from the pipe to a network socket. No data copying
882  *    is involved.
883  *
884  */
885 ssize_t generic_splice_sendpage(struct pipe_inode_info *pipe, struct file *out,
886 				loff_t *ppos, size_t len, unsigned int flags)
887 {
888 	return splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_sendpage);
889 }
890 
891 EXPORT_SYMBOL(generic_splice_sendpage);
892 
893 /*
894  * Attempt to initiate a splice from pipe to file.
895  */
896 static long do_splice_from(struct pipe_inode_info *pipe, struct file *out,
897 			   loff_t *ppos, size_t len, unsigned int flags)
898 {
899 	int ret;
900 
901 	if (unlikely(!out->f_op || !out->f_op->splice_write))
902 		return -EINVAL;
903 
904 	if (unlikely(!(out->f_mode & FMODE_WRITE)))
905 		return -EBADF;
906 
907 	ret = rw_verify_area(WRITE, out, ppos, len);
908 	if (unlikely(ret < 0))
909 		return ret;
910 
911 	ret = security_file_permission(out, MAY_WRITE);
912 	if (unlikely(ret < 0))
913 		return ret;
914 
915 	return out->f_op->splice_write(pipe, out, ppos, len, flags);
916 }
917 
918 /*
919  * Attempt to initiate a splice from a file to a pipe.
920  */
921 static long do_splice_to(struct file *in, loff_t *ppos,
922 			 struct pipe_inode_info *pipe, size_t len,
923 			 unsigned int flags)
924 {
925 	int ret;
926 
927 	if (unlikely(!in->f_op || !in->f_op->splice_read))
928 		return -EINVAL;
929 
930 	if (unlikely(!(in->f_mode & FMODE_READ)))
931 		return -EBADF;
932 
933 	ret = rw_verify_area(READ, in, ppos, len);
934 	if (unlikely(ret < 0))
935 		return ret;
936 
937 	ret = security_file_permission(in, MAY_READ);
938 	if (unlikely(ret < 0))
939 		return ret;
940 
941 	return in->f_op->splice_read(in, ppos, pipe, len, flags);
942 }
943 
944 /**
945  * splice_direct_to_actor - splices data directly between two non-pipes
946  * @in:		file to splice from
947  * @sd:		actor information on where to splice to
948  * @actor:	handles the data splicing
949  *
950  * Description:
951  *    This is a special case helper to splice directly between two
952  *    points, without requiring an explicit pipe. Internally an allocated
953  *    pipe is cached in the process, and reused during the lifetime of
954  *    that process.
955  *
956  */
957 ssize_t splice_direct_to_actor(struct file *in, struct splice_desc *sd,
958 			       splice_direct_actor *actor)
959 {
960 	struct pipe_inode_info *pipe;
961 	long ret, bytes;
962 	umode_t i_mode;
963 	size_t len;
964 	int i, flags;
965 
966 	/*
967 	 * We require the input being a regular file, as we don't want to
968 	 * randomly drop data for eg socket -> socket splicing. Use the
969 	 * piped splicing for that!
970 	 */
971 	i_mode = in->f_path.dentry->d_inode->i_mode;
972 	if (unlikely(!S_ISREG(i_mode) && !S_ISBLK(i_mode)))
973 		return -EINVAL;
974 
975 	/*
976 	 * neither in nor out is a pipe, setup an internal pipe attached to
977 	 * 'out' and transfer the wanted data from 'in' to 'out' through that
978 	 */
979 	pipe = current->splice_pipe;
980 	if (unlikely(!pipe)) {
981 		pipe = alloc_pipe_info(NULL);
982 		if (!pipe)
983 			return -ENOMEM;
984 
985 		/*
986 		 * We don't have an immediate reader, but we'll read the stuff
987 		 * out of the pipe right after the splice_to_pipe(). So set
988 		 * PIPE_READERS appropriately.
989 		 */
990 		pipe->readers = 1;
991 
992 		current->splice_pipe = pipe;
993 	}
994 
995 	/*
996 	 * Do the splice.
997 	 */
998 	ret = 0;
999 	bytes = 0;
1000 	len = sd->total_len;
1001 	flags = sd->flags;
1002 
1003 	/*
1004 	 * Don't block on output, we have to drain the direct pipe.
1005 	 */
1006 	sd->flags &= ~SPLICE_F_NONBLOCK;
1007 
1008 	while (len) {
1009 		size_t read_len;
1010 		loff_t pos = sd->pos;
1011 
1012 		ret = do_splice_to(in, &pos, pipe, len, flags);
1013 		if (unlikely(ret <= 0))
1014 			goto out_release;
1015 
1016 		read_len = ret;
1017 		sd->total_len = read_len;
1018 
1019 		/*
1020 		 * NOTE: nonblocking mode only applies to the input. We
1021 		 * must not do the output in nonblocking mode as then we
1022 		 * could get stuck data in the internal pipe:
1023 		 */
1024 		ret = actor(pipe, sd);
1025 		if (unlikely(ret <= 0))
1026 			goto out_release;
1027 
1028 		bytes += ret;
1029 		len -= ret;
1030 		sd->pos = pos;
1031 
1032 		if (ret < read_len)
1033 			goto out_release;
1034 	}
1035 
1036 	pipe->nrbufs = pipe->curbuf = 0;
1037 	return bytes;
1038 
1039 out_release:
1040 	/*
1041 	 * If we did an incomplete transfer we must release
1042 	 * the pipe buffers in question:
1043 	 */
1044 	for (i = 0; i < PIPE_BUFFERS; i++) {
1045 		struct pipe_buffer *buf = pipe->bufs + i;
1046 
1047 		if (buf->ops) {
1048 			buf->ops->release(pipe, buf);
1049 			buf->ops = NULL;
1050 		}
1051 	}
1052 	pipe->nrbufs = pipe->curbuf = 0;
1053 
1054 	/*
1055 	 * If we transferred some data, return the number of bytes:
1056 	 */
1057 	if (bytes > 0)
1058 		return bytes;
1059 
1060 	return ret;
1061 
1062 }
1063 EXPORT_SYMBOL(splice_direct_to_actor);
1064 
1065 static int direct_splice_actor(struct pipe_inode_info *pipe,
1066 			       struct splice_desc *sd)
1067 {
1068 	struct file *file = sd->u.file;
1069 
1070 	return do_splice_from(pipe, file, &sd->pos, sd->total_len, sd->flags);
1071 }
1072 
1073 /**
1074  * do_splice_direct - splices data directly between two files
1075  * @in:		file to splice from
1076  * @ppos:	input file offset
1077  * @out:	file to splice to
1078  * @len:	number of bytes to splice
1079  * @flags:	splice modifier flags
1080  *
1081  * Description:
1082  *    For use by do_sendfile(). splice can easily emulate sendfile, but
1083  *    doing it in the application would incur an extra system call
1084  *    (splice in + splice out, as compared to just sendfile()). So this helper
1085  *    can splice directly through a process-private pipe.
1086  *
1087  */
1088 long do_splice_direct(struct file *in, loff_t *ppos, struct file *out,
1089 		      size_t len, unsigned int flags)
1090 {
1091 	struct splice_desc sd = {
1092 		.len		= len,
1093 		.total_len	= len,
1094 		.flags		= flags,
1095 		.pos		= *ppos,
1096 		.u.file		= out,
1097 	};
1098 	long ret;
1099 
1100 	ret = splice_direct_to_actor(in, &sd, direct_splice_actor);
1101 	if (ret > 0)
1102 		*ppos += ret;
1103 
1104 	return ret;
1105 }
1106 
1107 /*
1108  * After the inode slimming patch, i_pipe/i_bdev/i_cdev share the same
1109  * location, so checking ->i_pipe is not enough to verify that this is a
1110  * pipe.
1111  */
1112 static inline struct pipe_inode_info *pipe_info(struct inode *inode)
1113 {
1114 	if (S_ISFIFO(inode->i_mode))
1115 		return inode->i_pipe;
1116 
1117 	return NULL;
1118 }
1119 
1120 /*
1121  * Determine where to splice to/from.
1122  */
1123 static long do_splice(struct file *in, loff_t __user *off_in,
1124 		      struct file *out, loff_t __user *off_out,
1125 		      size_t len, unsigned int flags)
1126 {
1127 	struct pipe_inode_info *pipe;
1128 	loff_t offset, *off;
1129 	long ret;
1130 
1131 	pipe = pipe_info(in->f_path.dentry->d_inode);
1132 	if (pipe) {
1133 		if (off_in)
1134 			return -ESPIPE;
1135 		if (off_out) {
1136 			if (out->f_op->llseek == no_llseek)
1137 				return -EINVAL;
1138 			if (copy_from_user(&offset, off_out, sizeof(loff_t)))
1139 				return -EFAULT;
1140 			off = &offset;
1141 		} else
1142 			off = &out->f_pos;
1143 
1144 		ret = do_splice_from(pipe, out, off, len, flags);
1145 
1146 		if (off_out && copy_to_user(off_out, off, sizeof(loff_t)))
1147 			ret = -EFAULT;
1148 
1149 		return ret;
1150 	}
1151 
1152 	pipe = pipe_info(out->f_path.dentry->d_inode);
1153 	if (pipe) {
1154 		if (off_out)
1155 			return -ESPIPE;
1156 		if (off_in) {
1157 			if (in->f_op->llseek == no_llseek)
1158 				return -EINVAL;
1159 			if (copy_from_user(&offset, off_in, sizeof(loff_t)))
1160 				return -EFAULT;
1161 			off = &offset;
1162 		} else
1163 			off = &in->f_pos;
1164 
1165 		ret = do_splice_to(in, off, pipe, len, flags);
1166 
1167 		if (off_in && copy_to_user(off_in, off, sizeof(loff_t)))
1168 			ret = -EFAULT;
1169 
1170 		return ret;
1171 	}
1172 
1173 	return -EINVAL;
1174 }
1175 
1176 /*
1177  * Do a copy-from-user while holding the mmap_semaphore for reading, in a
1178  * manner safe from deadlocking with simultaneous mmap() (grabbing mmap_sem
1179  * for writing) and page faulting on the user memory pointed to by src.
1180  * This assumes that we will very rarely hit the partial != 0 path, or this
1181  * will not be a win.
1182  */
1183 static int copy_from_user_mmap_sem(void *dst, const void __user *src, size_t n)
1184 {
1185 	int partial;
1186 
1187 	pagefault_disable();
1188 	partial = __copy_from_user_inatomic(dst, src, n);
1189 	pagefault_enable();
1190 
1191 	/*
1192 	 * Didn't copy everything, drop the mmap_sem and do a faulting copy
1193 	 */
1194 	if (unlikely(partial)) {
1195 		up_read(&current->mm->mmap_sem);
1196 		partial = copy_from_user(dst, src, n);
1197 		down_read(&current->mm->mmap_sem);
1198 	}
1199 
1200 	return partial;
1201 }
1202 
1203 /*
1204  * Map an iov into an array of pages and offset/length tupples. With the
1205  * partial_page structure, we can map several non-contiguous ranges into
1206  * our ones pages[] map instead of splitting that operation into pieces.
1207  * Could easily be exported as a generic helper for other users, in which
1208  * case one would probably want to add a 'max_nr_pages' parameter as well.
1209  */
1210 static int get_iovec_page_array(const struct iovec __user *iov,
1211 				unsigned int nr_vecs, struct page **pages,
1212 				struct partial_page *partial, int aligned)
1213 {
1214 	int buffers = 0, error = 0;
1215 
1216 	down_read(&current->mm->mmap_sem);
1217 
1218 	while (nr_vecs) {
1219 		unsigned long off, npages;
1220 		struct iovec entry;
1221 		void __user *base;
1222 		size_t len;
1223 		int i;
1224 
1225 		error = -EFAULT;
1226 		if (copy_from_user_mmap_sem(&entry, iov, sizeof(entry)))
1227 			break;
1228 
1229 		base = entry.iov_base;
1230 		len = entry.iov_len;
1231 
1232 		/*
1233 		 * Sanity check this iovec. 0 read succeeds.
1234 		 */
1235 		error = 0;
1236 		if (unlikely(!len))
1237 			break;
1238 		error = -EFAULT;
1239 		if (unlikely(!base))
1240 			break;
1241 
1242 		/*
1243 		 * Get this base offset and number of pages, then map
1244 		 * in the user pages.
1245 		 */
1246 		off = (unsigned long) base & ~PAGE_MASK;
1247 
1248 		/*
1249 		 * If asked for alignment, the offset must be zero and the
1250 		 * length a multiple of the PAGE_SIZE.
1251 		 */
1252 		error = -EINVAL;
1253 		if (aligned && (off || len & ~PAGE_MASK))
1254 			break;
1255 
1256 		npages = (off + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1257 		if (npages > PIPE_BUFFERS - buffers)
1258 			npages = PIPE_BUFFERS - buffers;
1259 
1260 		error = get_user_pages(current, current->mm,
1261 				       (unsigned long) base, npages, 0, 0,
1262 				       &pages[buffers], NULL);
1263 
1264 		if (unlikely(error <= 0))
1265 			break;
1266 
1267 		/*
1268 		 * Fill this contiguous range into the partial page map.
1269 		 */
1270 		for (i = 0; i < error; i++) {
1271 			const int plen = min_t(size_t, len, PAGE_SIZE - off);
1272 
1273 			partial[buffers].offset = off;
1274 			partial[buffers].len = plen;
1275 
1276 			off = 0;
1277 			len -= plen;
1278 			buffers++;
1279 		}
1280 
1281 		/*
1282 		 * We didn't complete this iov, stop here since it probably
1283 		 * means we have to move some of this into a pipe to
1284 		 * be able to continue.
1285 		 */
1286 		if (len)
1287 			break;
1288 
1289 		/*
1290 		 * Don't continue if we mapped fewer pages than we asked for,
1291 		 * or if we mapped the max number of pages that we have
1292 		 * room for.
1293 		 */
1294 		if (error < npages || buffers == PIPE_BUFFERS)
1295 			break;
1296 
1297 		nr_vecs--;
1298 		iov++;
1299 	}
1300 
1301 	up_read(&current->mm->mmap_sem);
1302 
1303 	if (buffers)
1304 		return buffers;
1305 
1306 	return error;
1307 }
1308 
1309 static int pipe_to_user(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1310 			struct splice_desc *sd)
1311 {
1312 	char *src;
1313 	int ret;
1314 
1315 	ret = buf->ops->confirm(pipe, buf);
1316 	if (unlikely(ret))
1317 		return ret;
1318 
1319 	/*
1320 	 * See if we can use the atomic maps, by prefaulting in the
1321 	 * pages and doing an atomic copy
1322 	 */
1323 	if (!fault_in_pages_writeable(sd->u.userptr, sd->len)) {
1324 		src = buf->ops->map(pipe, buf, 1);
1325 		ret = __copy_to_user_inatomic(sd->u.userptr, src + buf->offset,
1326 							sd->len);
1327 		buf->ops->unmap(pipe, buf, src);
1328 		if (!ret) {
1329 			ret = sd->len;
1330 			goto out;
1331 		}
1332 	}
1333 
1334 	/*
1335 	 * No dice, use slow non-atomic map and copy
1336  	 */
1337 	src = buf->ops->map(pipe, buf, 0);
1338 
1339 	ret = sd->len;
1340 	if (copy_to_user(sd->u.userptr, src + buf->offset, sd->len))
1341 		ret = -EFAULT;
1342 
1343 	buf->ops->unmap(pipe, buf, src);
1344 out:
1345 	if (ret > 0)
1346 		sd->u.userptr += ret;
1347 	return ret;
1348 }
1349 
1350 /*
1351  * For lack of a better implementation, implement vmsplice() to userspace
1352  * as a simple copy of the pipes pages to the user iov.
1353  */
1354 static long vmsplice_to_user(struct file *file, const struct iovec __user *iov,
1355 			     unsigned long nr_segs, unsigned int flags)
1356 {
1357 	struct pipe_inode_info *pipe;
1358 	struct splice_desc sd;
1359 	ssize_t size;
1360 	int error;
1361 	long ret;
1362 
1363 	pipe = pipe_info(file->f_path.dentry->d_inode);
1364 	if (!pipe)
1365 		return -EBADF;
1366 
1367 	if (pipe->inode)
1368 		mutex_lock(&pipe->inode->i_mutex);
1369 
1370 	error = ret = 0;
1371 	while (nr_segs) {
1372 		void __user *base;
1373 		size_t len;
1374 
1375 		/*
1376 		 * Get user address base and length for this iovec.
1377 		 */
1378 		error = get_user(base, &iov->iov_base);
1379 		if (unlikely(error))
1380 			break;
1381 		error = get_user(len, &iov->iov_len);
1382 		if (unlikely(error))
1383 			break;
1384 
1385 		/*
1386 		 * Sanity check this iovec. 0 read succeeds.
1387 		 */
1388 		if (unlikely(!len))
1389 			break;
1390 		if (unlikely(!base)) {
1391 			error = -EFAULT;
1392 			break;
1393 		}
1394 
1395 		sd.len = 0;
1396 		sd.total_len = len;
1397 		sd.flags = flags;
1398 		sd.u.userptr = base;
1399 		sd.pos = 0;
1400 
1401 		size = __splice_from_pipe(pipe, &sd, pipe_to_user);
1402 		if (size < 0) {
1403 			if (!ret)
1404 				ret = size;
1405 
1406 			break;
1407 		}
1408 
1409 		ret += size;
1410 
1411 		if (size < len)
1412 			break;
1413 
1414 		nr_segs--;
1415 		iov++;
1416 	}
1417 
1418 	if (pipe->inode)
1419 		mutex_unlock(&pipe->inode->i_mutex);
1420 
1421 	if (!ret)
1422 		ret = error;
1423 
1424 	return ret;
1425 }
1426 
1427 /*
1428  * vmsplice splices a user address range into a pipe. It can be thought of
1429  * as splice-from-memory, where the regular splice is splice-from-file (or
1430  * to file). In both cases the output is a pipe, naturally.
1431  */
1432 static long vmsplice_to_pipe(struct file *file, const struct iovec __user *iov,
1433 			     unsigned long nr_segs, unsigned int flags)
1434 {
1435 	struct pipe_inode_info *pipe;
1436 	struct page *pages[PIPE_BUFFERS];
1437 	struct partial_page partial[PIPE_BUFFERS];
1438 	struct splice_pipe_desc spd = {
1439 		.pages = pages,
1440 		.partial = partial,
1441 		.flags = flags,
1442 		.ops = &user_page_pipe_buf_ops,
1443 	};
1444 
1445 	pipe = pipe_info(file->f_path.dentry->d_inode);
1446 	if (!pipe)
1447 		return -EBADF;
1448 
1449 	spd.nr_pages = get_iovec_page_array(iov, nr_segs, pages, partial,
1450 					    flags & SPLICE_F_GIFT);
1451 	if (spd.nr_pages <= 0)
1452 		return spd.nr_pages;
1453 
1454 	return splice_to_pipe(pipe, &spd);
1455 }
1456 
1457 /*
1458  * Note that vmsplice only really supports true splicing _from_ user memory
1459  * to a pipe, not the other way around. Splicing from user memory is a simple
1460  * operation that can be supported without any funky alignment restrictions
1461  * or nasty vm tricks. We simply map in the user memory and fill them into
1462  * a pipe. The reverse isn't quite as easy, though. There are two possible
1463  * solutions for that:
1464  *
1465  *	- memcpy() the data internally, at which point we might as well just
1466  *	  do a regular read() on the buffer anyway.
1467  *	- Lots of nasty vm tricks, that are neither fast nor flexible (it
1468  *	  has restriction limitations on both ends of the pipe).
1469  *
1470  * Currently we punt and implement it as a normal copy, see pipe_to_user().
1471  *
1472  */
1473 asmlinkage long sys_vmsplice(int fd, const struct iovec __user *iov,
1474 			     unsigned long nr_segs, unsigned int flags)
1475 {
1476 	struct file *file;
1477 	long error;
1478 	int fput;
1479 
1480 	if (unlikely(nr_segs > UIO_MAXIOV))
1481 		return -EINVAL;
1482 	else if (unlikely(!nr_segs))
1483 		return 0;
1484 
1485 	error = -EBADF;
1486 	file = fget_light(fd, &fput);
1487 	if (file) {
1488 		if (file->f_mode & FMODE_WRITE)
1489 			error = vmsplice_to_pipe(file, iov, nr_segs, flags);
1490 		else if (file->f_mode & FMODE_READ)
1491 			error = vmsplice_to_user(file, iov, nr_segs, flags);
1492 
1493 		fput_light(file, fput);
1494 	}
1495 
1496 	return error;
1497 }
1498 
1499 asmlinkage long sys_splice(int fd_in, loff_t __user *off_in,
1500 			   int fd_out, loff_t __user *off_out,
1501 			   size_t len, unsigned int flags)
1502 {
1503 	long error;
1504 	struct file *in, *out;
1505 	int fput_in, fput_out;
1506 
1507 	if (unlikely(!len))
1508 		return 0;
1509 
1510 	error = -EBADF;
1511 	in = fget_light(fd_in, &fput_in);
1512 	if (in) {
1513 		if (in->f_mode & FMODE_READ) {
1514 			out = fget_light(fd_out, &fput_out);
1515 			if (out) {
1516 				if (out->f_mode & FMODE_WRITE)
1517 					error = do_splice(in, off_in,
1518 							  out, off_out,
1519 							  len, flags);
1520 				fput_light(out, fput_out);
1521 			}
1522 		}
1523 
1524 		fput_light(in, fput_in);
1525 	}
1526 
1527 	return error;
1528 }
1529 
1530 /*
1531  * Make sure there's data to read. Wait for input if we can, otherwise
1532  * return an appropriate error.
1533  */
1534 static int link_ipipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1535 {
1536 	int ret;
1537 
1538 	/*
1539 	 * Check ->nrbufs without the inode lock first. This function
1540 	 * is speculative anyways, so missing one is ok.
1541 	 */
1542 	if (pipe->nrbufs)
1543 		return 0;
1544 
1545 	ret = 0;
1546 	mutex_lock(&pipe->inode->i_mutex);
1547 
1548 	while (!pipe->nrbufs) {
1549 		if (signal_pending(current)) {
1550 			ret = -ERESTARTSYS;
1551 			break;
1552 		}
1553 		if (!pipe->writers)
1554 			break;
1555 		if (!pipe->waiting_writers) {
1556 			if (flags & SPLICE_F_NONBLOCK) {
1557 				ret = -EAGAIN;
1558 				break;
1559 			}
1560 		}
1561 		pipe_wait(pipe);
1562 	}
1563 
1564 	mutex_unlock(&pipe->inode->i_mutex);
1565 	return ret;
1566 }
1567 
1568 /*
1569  * Make sure there's writeable room. Wait for room if we can, otherwise
1570  * return an appropriate error.
1571  */
1572 static int link_opipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1573 {
1574 	int ret;
1575 
1576 	/*
1577 	 * Check ->nrbufs without the inode lock first. This function
1578 	 * is speculative anyways, so missing one is ok.
1579 	 */
1580 	if (pipe->nrbufs < PIPE_BUFFERS)
1581 		return 0;
1582 
1583 	ret = 0;
1584 	mutex_lock(&pipe->inode->i_mutex);
1585 
1586 	while (pipe->nrbufs >= PIPE_BUFFERS) {
1587 		if (!pipe->readers) {
1588 			send_sig(SIGPIPE, current, 0);
1589 			ret = -EPIPE;
1590 			break;
1591 		}
1592 		if (flags & SPLICE_F_NONBLOCK) {
1593 			ret = -EAGAIN;
1594 			break;
1595 		}
1596 		if (signal_pending(current)) {
1597 			ret = -ERESTARTSYS;
1598 			break;
1599 		}
1600 		pipe->waiting_writers++;
1601 		pipe_wait(pipe);
1602 		pipe->waiting_writers--;
1603 	}
1604 
1605 	mutex_unlock(&pipe->inode->i_mutex);
1606 	return ret;
1607 }
1608 
1609 /*
1610  * Link contents of ipipe to opipe.
1611  */
1612 static int link_pipe(struct pipe_inode_info *ipipe,
1613 		     struct pipe_inode_info *opipe,
1614 		     size_t len, unsigned int flags)
1615 {
1616 	struct pipe_buffer *ibuf, *obuf;
1617 	int ret = 0, i = 0, nbuf;
1618 
1619 	/*
1620 	 * Potential ABBA deadlock, work around it by ordering lock
1621 	 * grabbing by inode address. Otherwise two different processes
1622 	 * could deadlock (one doing tee from A -> B, the other from B -> A).
1623 	 */
1624 	inode_double_lock(ipipe->inode, opipe->inode);
1625 
1626 	do {
1627 		if (!opipe->readers) {
1628 			send_sig(SIGPIPE, current, 0);
1629 			if (!ret)
1630 				ret = -EPIPE;
1631 			break;
1632 		}
1633 
1634 		/*
1635 		 * If we have iterated all input buffers or ran out of
1636 		 * output room, break.
1637 		 */
1638 		if (i >= ipipe->nrbufs || opipe->nrbufs >= PIPE_BUFFERS)
1639 			break;
1640 
1641 		ibuf = ipipe->bufs + ((ipipe->curbuf + i) & (PIPE_BUFFERS - 1));
1642 		nbuf = (opipe->curbuf + opipe->nrbufs) & (PIPE_BUFFERS - 1);
1643 
1644 		/*
1645 		 * Get a reference to this pipe buffer,
1646 		 * so we can copy the contents over.
1647 		 */
1648 		ibuf->ops->get(ipipe, ibuf);
1649 
1650 		obuf = opipe->bufs + nbuf;
1651 		*obuf = *ibuf;
1652 
1653 		/*
1654 		 * Don't inherit the gift flag, we need to
1655 		 * prevent multiple steals of this page.
1656 		 */
1657 		obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1658 
1659 		if (obuf->len > len)
1660 			obuf->len = len;
1661 
1662 		opipe->nrbufs++;
1663 		ret += obuf->len;
1664 		len -= obuf->len;
1665 		i++;
1666 	} while (len);
1667 
1668 	inode_double_unlock(ipipe->inode, opipe->inode);
1669 
1670 	/*
1671 	 * If we put data in the output pipe, wakeup any potential readers.
1672 	 */
1673 	if (ret > 0) {
1674 		smp_mb();
1675 		if (waitqueue_active(&opipe->wait))
1676 			wake_up_interruptible(&opipe->wait);
1677 		kill_fasync(&opipe->fasync_readers, SIGIO, POLL_IN);
1678 	}
1679 
1680 	return ret;
1681 }
1682 
1683 /*
1684  * This is a tee(1) implementation that works on pipes. It doesn't copy
1685  * any data, it simply references the 'in' pages on the 'out' pipe.
1686  * The 'flags' used are the SPLICE_F_* variants, currently the only
1687  * applicable one is SPLICE_F_NONBLOCK.
1688  */
1689 static long do_tee(struct file *in, struct file *out, size_t len,
1690 		   unsigned int flags)
1691 {
1692 	struct pipe_inode_info *ipipe = pipe_info(in->f_path.dentry->d_inode);
1693 	struct pipe_inode_info *opipe = pipe_info(out->f_path.dentry->d_inode);
1694 	int ret = -EINVAL;
1695 
1696 	/*
1697 	 * Duplicate the contents of ipipe to opipe without actually
1698 	 * copying the data.
1699 	 */
1700 	if (ipipe && opipe && ipipe != opipe) {
1701 		/*
1702 		 * Keep going, unless we encounter an error. The ipipe/opipe
1703 		 * ordering doesn't really matter.
1704 		 */
1705 		ret = link_ipipe_prep(ipipe, flags);
1706 		if (!ret) {
1707 			ret = link_opipe_prep(opipe, flags);
1708 			if (!ret) {
1709 				ret = link_pipe(ipipe, opipe, len, flags);
1710 				if (!ret && (flags & SPLICE_F_NONBLOCK))
1711 					ret = -EAGAIN;
1712 			}
1713 		}
1714 	}
1715 
1716 	return ret;
1717 }
1718 
1719 asmlinkage long sys_tee(int fdin, int fdout, size_t len, unsigned int flags)
1720 {
1721 	struct file *in;
1722 	int error, fput_in;
1723 
1724 	if (unlikely(!len))
1725 		return 0;
1726 
1727 	error = -EBADF;
1728 	in = fget_light(fdin, &fput_in);
1729 	if (in) {
1730 		if (in->f_mode & FMODE_READ) {
1731 			int fput_out;
1732 			struct file *out = fget_light(fdout, &fput_out);
1733 
1734 			if (out) {
1735 				if (out->f_mode & FMODE_WRITE)
1736 					error = do_tee(in, out, len, flags);
1737 				fput_light(out, fput_out);
1738 			}
1739 		}
1740  		fput_light(in, fput_in);
1741  	}
1742 
1743 	return error;
1744 }
1745