1 /* 2 * "splice": joining two ropes together by interweaving their strands. 3 * 4 * This is the "extended pipe" functionality, where a pipe is used as 5 * an arbitrary in-memory buffer. Think of a pipe as a small kernel 6 * buffer that you can use to transfer data from one end to the other. 7 * 8 * The traditional unix read/write is extended with a "splice()" operation 9 * that transfers data buffers to or from a pipe buffer. 10 * 11 * Named by Larry McVoy, original implementation from Linus, extended by 12 * Jens to support splicing to files, network, direct splicing, etc and 13 * fixing lots of bugs. 14 * 15 * Copyright (C) 2005-2006 Jens Axboe <axboe@kernel.dk> 16 * Copyright (C) 2005-2006 Linus Torvalds <torvalds@osdl.org> 17 * Copyright (C) 2006 Ingo Molnar <mingo@elte.hu> 18 * 19 */ 20 #include <linux/fs.h> 21 #include <linux/file.h> 22 #include <linux/pagemap.h> 23 #include <linux/splice.h> 24 #include <linux/mm_inline.h> 25 #include <linux/swap.h> 26 #include <linux/writeback.h> 27 #include <linux/buffer_head.h> 28 #include <linux/module.h> 29 #include <linux/syscalls.h> 30 #include <linux/uio.h> 31 #include <linux/security.h> 32 33 /* 34 * Attempt to steal a page from a pipe buffer. This should perhaps go into 35 * a vm helper function, it's already simplified quite a bit by the 36 * addition of remove_mapping(). If success is returned, the caller may 37 * attempt to reuse this page for another destination. 38 */ 39 static int page_cache_pipe_buf_steal(struct pipe_inode_info *pipe, 40 struct pipe_buffer *buf) 41 { 42 struct page *page = buf->page; 43 struct address_space *mapping; 44 45 lock_page(page); 46 47 mapping = page_mapping(page); 48 if (mapping) { 49 WARN_ON(!PageUptodate(page)); 50 51 /* 52 * At least for ext2 with nobh option, we need to wait on 53 * writeback completing on this page, since we'll remove it 54 * from the pagecache. Otherwise truncate wont wait on the 55 * page, allowing the disk blocks to be reused by someone else 56 * before we actually wrote our data to them. fs corruption 57 * ensues. 58 */ 59 wait_on_page_writeback(page); 60 61 if (PagePrivate(page)) 62 try_to_release_page(page, GFP_KERNEL); 63 64 /* 65 * If we succeeded in removing the mapping, set LRU flag 66 * and return good. 67 */ 68 if (remove_mapping(mapping, page)) { 69 buf->flags |= PIPE_BUF_FLAG_LRU; 70 return 0; 71 } 72 } 73 74 /* 75 * Raced with truncate or failed to remove page from current 76 * address space, unlock and return failure. 77 */ 78 unlock_page(page); 79 return 1; 80 } 81 82 static void page_cache_pipe_buf_release(struct pipe_inode_info *pipe, 83 struct pipe_buffer *buf) 84 { 85 page_cache_release(buf->page); 86 buf->flags &= ~PIPE_BUF_FLAG_LRU; 87 } 88 89 /* 90 * Check whether the contents of buf is OK to access. Since the content 91 * is a page cache page, IO may be in flight. 92 */ 93 static int page_cache_pipe_buf_confirm(struct pipe_inode_info *pipe, 94 struct pipe_buffer *buf) 95 { 96 struct page *page = buf->page; 97 int err; 98 99 if (!PageUptodate(page)) { 100 lock_page(page); 101 102 /* 103 * Page got truncated/unhashed. This will cause a 0-byte 104 * splice, if this is the first page. 105 */ 106 if (!page->mapping) { 107 err = -ENODATA; 108 goto error; 109 } 110 111 /* 112 * Uh oh, read-error from disk. 113 */ 114 if (!PageUptodate(page)) { 115 err = -EIO; 116 goto error; 117 } 118 119 /* 120 * Page is ok afterall, we are done. 121 */ 122 unlock_page(page); 123 } 124 125 return 0; 126 error: 127 unlock_page(page); 128 return err; 129 } 130 131 static const struct pipe_buf_operations page_cache_pipe_buf_ops = { 132 .can_merge = 0, 133 .map = generic_pipe_buf_map, 134 .unmap = generic_pipe_buf_unmap, 135 .confirm = page_cache_pipe_buf_confirm, 136 .release = page_cache_pipe_buf_release, 137 .steal = page_cache_pipe_buf_steal, 138 .get = generic_pipe_buf_get, 139 }; 140 141 static int user_page_pipe_buf_steal(struct pipe_inode_info *pipe, 142 struct pipe_buffer *buf) 143 { 144 if (!(buf->flags & PIPE_BUF_FLAG_GIFT)) 145 return 1; 146 147 buf->flags |= PIPE_BUF_FLAG_LRU; 148 return generic_pipe_buf_steal(pipe, buf); 149 } 150 151 static const struct pipe_buf_operations user_page_pipe_buf_ops = { 152 .can_merge = 0, 153 .map = generic_pipe_buf_map, 154 .unmap = generic_pipe_buf_unmap, 155 .confirm = generic_pipe_buf_confirm, 156 .release = page_cache_pipe_buf_release, 157 .steal = user_page_pipe_buf_steal, 158 .get = generic_pipe_buf_get, 159 }; 160 161 /** 162 * splice_to_pipe - fill passed data into a pipe 163 * @pipe: pipe to fill 164 * @spd: data to fill 165 * 166 * Description: 167 * @spd contains a map of pages and len/offset tuples, along with 168 * the struct pipe_buf_operations associated with these pages. This 169 * function will link that data to the pipe. 170 * 171 */ 172 ssize_t splice_to_pipe(struct pipe_inode_info *pipe, 173 struct splice_pipe_desc *spd) 174 { 175 unsigned int spd_pages = spd->nr_pages; 176 int ret, do_wakeup, page_nr; 177 178 ret = 0; 179 do_wakeup = 0; 180 page_nr = 0; 181 182 if (pipe->inode) 183 mutex_lock(&pipe->inode->i_mutex); 184 185 for (;;) { 186 if (!pipe->readers) { 187 send_sig(SIGPIPE, current, 0); 188 if (!ret) 189 ret = -EPIPE; 190 break; 191 } 192 193 if (pipe->nrbufs < PIPE_BUFFERS) { 194 int newbuf = (pipe->curbuf + pipe->nrbufs) & (PIPE_BUFFERS - 1); 195 struct pipe_buffer *buf = pipe->bufs + newbuf; 196 197 buf->page = spd->pages[page_nr]; 198 buf->offset = spd->partial[page_nr].offset; 199 buf->len = spd->partial[page_nr].len; 200 buf->private = spd->partial[page_nr].private; 201 buf->ops = spd->ops; 202 if (spd->flags & SPLICE_F_GIFT) 203 buf->flags |= PIPE_BUF_FLAG_GIFT; 204 205 pipe->nrbufs++; 206 page_nr++; 207 ret += buf->len; 208 209 if (pipe->inode) 210 do_wakeup = 1; 211 212 if (!--spd->nr_pages) 213 break; 214 if (pipe->nrbufs < PIPE_BUFFERS) 215 continue; 216 217 break; 218 } 219 220 if (spd->flags & SPLICE_F_NONBLOCK) { 221 if (!ret) 222 ret = -EAGAIN; 223 break; 224 } 225 226 if (signal_pending(current)) { 227 if (!ret) 228 ret = -ERESTARTSYS; 229 break; 230 } 231 232 if (do_wakeup) { 233 smp_mb(); 234 if (waitqueue_active(&pipe->wait)) 235 wake_up_interruptible_sync(&pipe->wait); 236 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN); 237 do_wakeup = 0; 238 } 239 240 pipe->waiting_writers++; 241 pipe_wait(pipe); 242 pipe->waiting_writers--; 243 } 244 245 if (pipe->inode) { 246 mutex_unlock(&pipe->inode->i_mutex); 247 248 if (do_wakeup) { 249 smp_mb(); 250 if (waitqueue_active(&pipe->wait)) 251 wake_up_interruptible(&pipe->wait); 252 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN); 253 } 254 } 255 256 while (page_nr < spd_pages) 257 page_cache_release(spd->pages[page_nr++]); 258 259 return ret; 260 } 261 262 static int 263 __generic_file_splice_read(struct file *in, loff_t *ppos, 264 struct pipe_inode_info *pipe, size_t len, 265 unsigned int flags) 266 { 267 struct address_space *mapping = in->f_mapping; 268 unsigned int loff, nr_pages, req_pages; 269 struct page *pages[PIPE_BUFFERS]; 270 struct partial_page partial[PIPE_BUFFERS]; 271 struct page *page; 272 pgoff_t index, end_index; 273 loff_t isize; 274 int error, page_nr; 275 struct splice_pipe_desc spd = { 276 .pages = pages, 277 .partial = partial, 278 .flags = flags, 279 .ops = &page_cache_pipe_buf_ops, 280 }; 281 282 index = *ppos >> PAGE_CACHE_SHIFT; 283 loff = *ppos & ~PAGE_CACHE_MASK; 284 req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; 285 nr_pages = min(req_pages, (unsigned)PIPE_BUFFERS); 286 287 /* 288 * Lookup the (hopefully) full range of pages we need. 289 */ 290 spd.nr_pages = find_get_pages_contig(mapping, index, nr_pages, pages); 291 index += spd.nr_pages; 292 293 /* 294 * If find_get_pages_contig() returned fewer pages than we needed, 295 * readahead/allocate the rest and fill in the holes. 296 */ 297 if (spd.nr_pages < nr_pages) 298 page_cache_sync_readahead(mapping, &in->f_ra, in, 299 index, req_pages - spd.nr_pages); 300 301 error = 0; 302 while (spd.nr_pages < nr_pages) { 303 /* 304 * Page could be there, find_get_pages_contig() breaks on 305 * the first hole. 306 */ 307 page = find_get_page(mapping, index); 308 if (!page) { 309 /* 310 * page didn't exist, allocate one. 311 */ 312 page = page_cache_alloc_cold(mapping); 313 if (!page) 314 break; 315 316 error = add_to_page_cache_lru(page, mapping, index, 317 GFP_KERNEL); 318 if (unlikely(error)) { 319 page_cache_release(page); 320 if (error == -EEXIST) 321 continue; 322 break; 323 } 324 /* 325 * add_to_page_cache() locks the page, unlock it 326 * to avoid convoluting the logic below even more. 327 */ 328 unlock_page(page); 329 } 330 331 pages[spd.nr_pages++] = page; 332 index++; 333 } 334 335 /* 336 * Now loop over the map and see if we need to start IO on any 337 * pages, fill in the partial map, etc. 338 */ 339 index = *ppos >> PAGE_CACHE_SHIFT; 340 nr_pages = spd.nr_pages; 341 spd.nr_pages = 0; 342 for (page_nr = 0; page_nr < nr_pages; page_nr++) { 343 unsigned int this_len; 344 345 if (!len) 346 break; 347 348 /* 349 * this_len is the max we'll use from this page 350 */ 351 this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff); 352 page = pages[page_nr]; 353 354 if (PageReadahead(page)) 355 page_cache_async_readahead(mapping, &in->f_ra, in, 356 page, index, req_pages - page_nr); 357 358 /* 359 * If the page isn't uptodate, we may need to start io on it 360 */ 361 if (!PageUptodate(page)) { 362 /* 363 * If in nonblock mode then dont block on waiting 364 * for an in-flight io page 365 */ 366 if (flags & SPLICE_F_NONBLOCK) { 367 if (TestSetPageLocked(page)) 368 break; 369 } else 370 lock_page(page); 371 372 /* 373 * page was truncated, stop here. if this isn't the 374 * first page, we'll just complete what we already 375 * added 376 */ 377 if (!page->mapping) { 378 unlock_page(page); 379 break; 380 } 381 /* 382 * page was already under io and is now done, great 383 */ 384 if (PageUptodate(page)) { 385 unlock_page(page); 386 goto fill_it; 387 } 388 389 /* 390 * need to read in the page 391 */ 392 error = mapping->a_ops->readpage(in, page); 393 if (unlikely(error)) { 394 /* 395 * We really should re-lookup the page here, 396 * but it complicates things a lot. Instead 397 * lets just do what we already stored, and 398 * we'll get it the next time we are called. 399 */ 400 if (error == AOP_TRUNCATED_PAGE) 401 error = 0; 402 403 break; 404 } 405 } 406 fill_it: 407 /* 408 * i_size must be checked after PageUptodate. 409 */ 410 isize = i_size_read(mapping->host); 411 end_index = (isize - 1) >> PAGE_CACHE_SHIFT; 412 if (unlikely(!isize || index > end_index)) 413 break; 414 415 /* 416 * if this is the last page, see if we need to shrink 417 * the length and stop 418 */ 419 if (end_index == index) { 420 unsigned int plen; 421 422 /* 423 * max good bytes in this page 424 */ 425 plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1; 426 if (plen <= loff) 427 break; 428 429 /* 430 * force quit after adding this page 431 */ 432 this_len = min(this_len, plen - loff); 433 len = this_len; 434 } 435 436 partial[page_nr].offset = loff; 437 partial[page_nr].len = this_len; 438 len -= this_len; 439 loff = 0; 440 spd.nr_pages++; 441 index++; 442 } 443 444 /* 445 * Release any pages at the end, if we quit early. 'page_nr' is how far 446 * we got, 'nr_pages' is how many pages are in the map. 447 */ 448 while (page_nr < nr_pages) 449 page_cache_release(pages[page_nr++]); 450 in->f_ra.prev_pos = (loff_t)index << PAGE_CACHE_SHIFT; 451 452 if (spd.nr_pages) 453 return splice_to_pipe(pipe, &spd); 454 455 return error; 456 } 457 458 /** 459 * generic_file_splice_read - splice data from file to a pipe 460 * @in: file to splice from 461 * @ppos: position in @in 462 * @pipe: pipe to splice to 463 * @len: number of bytes to splice 464 * @flags: splice modifier flags 465 * 466 * Description: 467 * Will read pages from given file and fill them into a pipe. Can be 468 * used as long as the address_space operations for the source implements 469 * a readpage() hook. 470 * 471 */ 472 ssize_t generic_file_splice_read(struct file *in, loff_t *ppos, 473 struct pipe_inode_info *pipe, size_t len, 474 unsigned int flags) 475 { 476 ssize_t spliced; 477 int ret; 478 loff_t isize, left; 479 480 isize = i_size_read(in->f_mapping->host); 481 if (unlikely(*ppos >= isize)) 482 return 0; 483 484 left = isize - *ppos; 485 if (unlikely(left < len)) 486 len = left; 487 488 ret = 0; 489 spliced = 0; 490 while (len && !spliced) { 491 ret = __generic_file_splice_read(in, ppos, pipe, len, flags); 492 493 if (ret < 0) 494 break; 495 else if (!ret) { 496 if (spliced) 497 break; 498 if (flags & SPLICE_F_NONBLOCK) { 499 ret = -EAGAIN; 500 break; 501 } 502 } 503 504 *ppos += ret; 505 len -= ret; 506 spliced += ret; 507 } 508 509 if (spliced) 510 return spliced; 511 512 return ret; 513 } 514 515 EXPORT_SYMBOL(generic_file_splice_read); 516 517 /* 518 * Send 'sd->len' bytes to socket from 'sd->file' at position 'sd->pos' 519 * using sendpage(). Return the number of bytes sent. 520 */ 521 static int pipe_to_sendpage(struct pipe_inode_info *pipe, 522 struct pipe_buffer *buf, struct splice_desc *sd) 523 { 524 struct file *file = sd->u.file; 525 loff_t pos = sd->pos; 526 int ret, more; 527 528 ret = buf->ops->confirm(pipe, buf); 529 if (!ret) { 530 more = (sd->flags & SPLICE_F_MORE) || sd->len < sd->total_len; 531 532 ret = file->f_op->sendpage(file, buf->page, buf->offset, 533 sd->len, &pos, more); 534 } 535 536 return ret; 537 } 538 539 /* 540 * This is a little more tricky than the file -> pipe splicing. There are 541 * basically three cases: 542 * 543 * - Destination page already exists in the address space and there 544 * are users of it. For that case we have no other option that 545 * copying the data. Tough luck. 546 * - Destination page already exists in the address space, but there 547 * are no users of it. Make sure it's uptodate, then drop it. Fall 548 * through to last case. 549 * - Destination page does not exist, we can add the pipe page to 550 * the page cache and avoid the copy. 551 * 552 * If asked to move pages to the output file (SPLICE_F_MOVE is set in 553 * sd->flags), we attempt to migrate pages from the pipe to the output 554 * file address space page cache. This is possible if no one else has 555 * the pipe page referenced outside of the pipe and page cache. If 556 * SPLICE_F_MOVE isn't set, or we cannot move the page, we simply create 557 * a new page in the output file page cache and fill/dirty that. 558 */ 559 static int pipe_to_file(struct pipe_inode_info *pipe, struct pipe_buffer *buf, 560 struct splice_desc *sd) 561 { 562 struct file *file = sd->u.file; 563 struct address_space *mapping = file->f_mapping; 564 unsigned int offset, this_len; 565 struct page *page; 566 void *fsdata; 567 int ret; 568 569 /* 570 * make sure the data in this buffer is uptodate 571 */ 572 ret = buf->ops->confirm(pipe, buf); 573 if (unlikely(ret)) 574 return ret; 575 576 offset = sd->pos & ~PAGE_CACHE_MASK; 577 578 this_len = sd->len; 579 if (this_len + offset > PAGE_CACHE_SIZE) 580 this_len = PAGE_CACHE_SIZE - offset; 581 582 ret = pagecache_write_begin(file, mapping, sd->pos, this_len, 583 AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata); 584 if (unlikely(ret)) 585 goto out; 586 587 if (buf->page != page) { 588 /* 589 * Careful, ->map() uses KM_USER0! 590 */ 591 char *src = buf->ops->map(pipe, buf, 1); 592 char *dst = kmap_atomic(page, KM_USER1); 593 594 memcpy(dst + offset, src + buf->offset, this_len); 595 flush_dcache_page(page); 596 kunmap_atomic(dst, KM_USER1); 597 buf->ops->unmap(pipe, buf, src); 598 } 599 ret = pagecache_write_end(file, mapping, sd->pos, this_len, this_len, 600 page, fsdata); 601 out: 602 return ret; 603 } 604 605 /** 606 * __splice_from_pipe - splice data from a pipe to given actor 607 * @pipe: pipe to splice from 608 * @sd: information to @actor 609 * @actor: handler that splices the data 610 * 611 * Description: 612 * This function does little more than loop over the pipe and call 613 * @actor to do the actual moving of a single struct pipe_buffer to 614 * the desired destination. See pipe_to_file, pipe_to_sendpage, or 615 * pipe_to_user. 616 * 617 */ 618 ssize_t __splice_from_pipe(struct pipe_inode_info *pipe, struct splice_desc *sd, 619 splice_actor *actor) 620 { 621 int ret, do_wakeup, err; 622 623 ret = 0; 624 do_wakeup = 0; 625 626 for (;;) { 627 if (pipe->nrbufs) { 628 struct pipe_buffer *buf = pipe->bufs + pipe->curbuf; 629 const struct pipe_buf_operations *ops = buf->ops; 630 631 sd->len = buf->len; 632 if (sd->len > sd->total_len) 633 sd->len = sd->total_len; 634 635 err = actor(pipe, buf, sd); 636 if (err <= 0) { 637 if (!ret && err != -ENODATA) 638 ret = err; 639 640 break; 641 } 642 643 ret += err; 644 buf->offset += err; 645 buf->len -= err; 646 647 sd->len -= err; 648 sd->pos += err; 649 sd->total_len -= err; 650 if (sd->len) 651 continue; 652 653 if (!buf->len) { 654 buf->ops = NULL; 655 ops->release(pipe, buf); 656 pipe->curbuf = (pipe->curbuf + 1) & (PIPE_BUFFERS - 1); 657 pipe->nrbufs--; 658 if (pipe->inode) 659 do_wakeup = 1; 660 } 661 662 if (!sd->total_len) 663 break; 664 } 665 666 if (pipe->nrbufs) 667 continue; 668 if (!pipe->writers) 669 break; 670 if (!pipe->waiting_writers) { 671 if (ret) 672 break; 673 } 674 675 if (sd->flags & SPLICE_F_NONBLOCK) { 676 if (!ret) 677 ret = -EAGAIN; 678 break; 679 } 680 681 if (signal_pending(current)) { 682 if (!ret) 683 ret = -ERESTARTSYS; 684 break; 685 } 686 687 if (do_wakeup) { 688 smp_mb(); 689 if (waitqueue_active(&pipe->wait)) 690 wake_up_interruptible_sync(&pipe->wait); 691 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT); 692 do_wakeup = 0; 693 } 694 695 pipe_wait(pipe); 696 } 697 698 if (do_wakeup) { 699 smp_mb(); 700 if (waitqueue_active(&pipe->wait)) 701 wake_up_interruptible(&pipe->wait); 702 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT); 703 } 704 705 return ret; 706 } 707 EXPORT_SYMBOL(__splice_from_pipe); 708 709 /** 710 * splice_from_pipe - splice data from a pipe to a file 711 * @pipe: pipe to splice from 712 * @out: file to splice to 713 * @ppos: position in @out 714 * @len: how many bytes to splice 715 * @flags: splice modifier flags 716 * @actor: handler that splices the data 717 * 718 * Description: 719 * See __splice_from_pipe. This function locks the input and output inodes, 720 * otherwise it's identical to __splice_from_pipe(). 721 * 722 */ 723 ssize_t splice_from_pipe(struct pipe_inode_info *pipe, struct file *out, 724 loff_t *ppos, size_t len, unsigned int flags, 725 splice_actor *actor) 726 { 727 ssize_t ret; 728 struct inode *inode = out->f_mapping->host; 729 struct splice_desc sd = { 730 .total_len = len, 731 .flags = flags, 732 .pos = *ppos, 733 .u.file = out, 734 }; 735 736 /* 737 * The actor worker might be calling ->prepare_write and 738 * ->commit_write. Most of the time, these expect i_mutex to 739 * be held. Since this may result in an ABBA deadlock with 740 * pipe->inode, we have to order lock acquiry here. 741 */ 742 inode_double_lock(inode, pipe->inode); 743 ret = __splice_from_pipe(pipe, &sd, actor); 744 inode_double_unlock(inode, pipe->inode); 745 746 return ret; 747 } 748 749 /** 750 * generic_file_splice_write_nolock - generic_file_splice_write without mutexes 751 * @pipe: pipe info 752 * @out: file to write to 753 * @ppos: position in @out 754 * @len: number of bytes to splice 755 * @flags: splice modifier flags 756 * 757 * Description: 758 * Will either move or copy pages (determined by @flags options) from 759 * the given pipe inode to the given file. The caller is responsible 760 * for acquiring i_mutex on both inodes. 761 * 762 */ 763 ssize_t 764 generic_file_splice_write_nolock(struct pipe_inode_info *pipe, struct file *out, 765 loff_t *ppos, size_t len, unsigned int flags) 766 { 767 struct address_space *mapping = out->f_mapping; 768 struct inode *inode = mapping->host; 769 struct splice_desc sd = { 770 .total_len = len, 771 .flags = flags, 772 .pos = *ppos, 773 .u.file = out, 774 }; 775 ssize_t ret; 776 int err; 777 778 err = remove_suid(out->f_path.dentry); 779 if (unlikely(err)) 780 return err; 781 782 ret = __splice_from_pipe(pipe, &sd, pipe_to_file); 783 if (ret > 0) { 784 unsigned long nr_pages; 785 786 *ppos += ret; 787 nr_pages = (ret + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; 788 789 /* 790 * If file or inode is SYNC and we actually wrote some data, 791 * sync it. 792 */ 793 if (unlikely((out->f_flags & O_SYNC) || IS_SYNC(inode))) { 794 err = generic_osync_inode(inode, mapping, 795 OSYNC_METADATA|OSYNC_DATA); 796 797 if (err) 798 ret = err; 799 } 800 balance_dirty_pages_ratelimited_nr(mapping, nr_pages); 801 } 802 803 return ret; 804 } 805 806 EXPORT_SYMBOL(generic_file_splice_write_nolock); 807 808 /** 809 * generic_file_splice_write - splice data from a pipe to a file 810 * @pipe: pipe info 811 * @out: file to write to 812 * @ppos: position in @out 813 * @len: number of bytes to splice 814 * @flags: splice modifier flags 815 * 816 * Description: 817 * Will either move or copy pages (determined by @flags options) from 818 * the given pipe inode to the given file. 819 * 820 */ 821 ssize_t 822 generic_file_splice_write(struct pipe_inode_info *pipe, struct file *out, 823 loff_t *ppos, size_t len, unsigned int flags) 824 { 825 struct address_space *mapping = out->f_mapping; 826 struct inode *inode = mapping->host; 827 int killsuid, killpriv; 828 ssize_t ret; 829 int err = 0; 830 831 killpriv = security_inode_need_killpriv(out->f_path.dentry); 832 killsuid = should_remove_suid(out->f_path.dentry); 833 if (unlikely(killsuid || killpriv)) { 834 mutex_lock(&inode->i_mutex); 835 if (killpriv) 836 err = security_inode_killpriv(out->f_path.dentry); 837 if (!err && killsuid) 838 err = __remove_suid(out->f_path.dentry, killsuid); 839 mutex_unlock(&inode->i_mutex); 840 if (err) 841 return err; 842 } 843 844 ret = splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_file); 845 if (ret > 0) { 846 unsigned long nr_pages; 847 848 *ppos += ret; 849 nr_pages = (ret + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; 850 851 /* 852 * If file or inode is SYNC and we actually wrote some data, 853 * sync it. 854 */ 855 if (unlikely((out->f_flags & O_SYNC) || IS_SYNC(inode))) { 856 mutex_lock(&inode->i_mutex); 857 err = generic_osync_inode(inode, mapping, 858 OSYNC_METADATA|OSYNC_DATA); 859 mutex_unlock(&inode->i_mutex); 860 861 if (err) 862 ret = err; 863 } 864 balance_dirty_pages_ratelimited_nr(mapping, nr_pages); 865 } 866 867 return ret; 868 } 869 870 EXPORT_SYMBOL(generic_file_splice_write); 871 872 /** 873 * generic_splice_sendpage - splice data from a pipe to a socket 874 * @pipe: pipe to splice from 875 * @out: socket to write to 876 * @ppos: position in @out 877 * @len: number of bytes to splice 878 * @flags: splice modifier flags 879 * 880 * Description: 881 * Will send @len bytes from the pipe to a network socket. No data copying 882 * is involved. 883 * 884 */ 885 ssize_t generic_splice_sendpage(struct pipe_inode_info *pipe, struct file *out, 886 loff_t *ppos, size_t len, unsigned int flags) 887 { 888 return splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_sendpage); 889 } 890 891 EXPORT_SYMBOL(generic_splice_sendpage); 892 893 /* 894 * Attempt to initiate a splice from pipe to file. 895 */ 896 static long do_splice_from(struct pipe_inode_info *pipe, struct file *out, 897 loff_t *ppos, size_t len, unsigned int flags) 898 { 899 int ret; 900 901 if (unlikely(!out->f_op || !out->f_op->splice_write)) 902 return -EINVAL; 903 904 if (unlikely(!(out->f_mode & FMODE_WRITE))) 905 return -EBADF; 906 907 ret = rw_verify_area(WRITE, out, ppos, len); 908 if (unlikely(ret < 0)) 909 return ret; 910 911 ret = security_file_permission(out, MAY_WRITE); 912 if (unlikely(ret < 0)) 913 return ret; 914 915 return out->f_op->splice_write(pipe, out, ppos, len, flags); 916 } 917 918 /* 919 * Attempt to initiate a splice from a file to a pipe. 920 */ 921 static long do_splice_to(struct file *in, loff_t *ppos, 922 struct pipe_inode_info *pipe, size_t len, 923 unsigned int flags) 924 { 925 int ret; 926 927 if (unlikely(!in->f_op || !in->f_op->splice_read)) 928 return -EINVAL; 929 930 if (unlikely(!(in->f_mode & FMODE_READ))) 931 return -EBADF; 932 933 ret = rw_verify_area(READ, in, ppos, len); 934 if (unlikely(ret < 0)) 935 return ret; 936 937 ret = security_file_permission(in, MAY_READ); 938 if (unlikely(ret < 0)) 939 return ret; 940 941 return in->f_op->splice_read(in, ppos, pipe, len, flags); 942 } 943 944 /** 945 * splice_direct_to_actor - splices data directly between two non-pipes 946 * @in: file to splice from 947 * @sd: actor information on where to splice to 948 * @actor: handles the data splicing 949 * 950 * Description: 951 * This is a special case helper to splice directly between two 952 * points, without requiring an explicit pipe. Internally an allocated 953 * pipe is cached in the process, and reused during the lifetime of 954 * that process. 955 * 956 */ 957 ssize_t splice_direct_to_actor(struct file *in, struct splice_desc *sd, 958 splice_direct_actor *actor) 959 { 960 struct pipe_inode_info *pipe; 961 long ret, bytes; 962 umode_t i_mode; 963 size_t len; 964 int i, flags; 965 966 /* 967 * We require the input being a regular file, as we don't want to 968 * randomly drop data for eg socket -> socket splicing. Use the 969 * piped splicing for that! 970 */ 971 i_mode = in->f_path.dentry->d_inode->i_mode; 972 if (unlikely(!S_ISREG(i_mode) && !S_ISBLK(i_mode))) 973 return -EINVAL; 974 975 /* 976 * neither in nor out is a pipe, setup an internal pipe attached to 977 * 'out' and transfer the wanted data from 'in' to 'out' through that 978 */ 979 pipe = current->splice_pipe; 980 if (unlikely(!pipe)) { 981 pipe = alloc_pipe_info(NULL); 982 if (!pipe) 983 return -ENOMEM; 984 985 /* 986 * We don't have an immediate reader, but we'll read the stuff 987 * out of the pipe right after the splice_to_pipe(). So set 988 * PIPE_READERS appropriately. 989 */ 990 pipe->readers = 1; 991 992 current->splice_pipe = pipe; 993 } 994 995 /* 996 * Do the splice. 997 */ 998 ret = 0; 999 bytes = 0; 1000 len = sd->total_len; 1001 flags = sd->flags; 1002 1003 /* 1004 * Don't block on output, we have to drain the direct pipe. 1005 */ 1006 sd->flags &= ~SPLICE_F_NONBLOCK; 1007 1008 while (len) { 1009 size_t read_len; 1010 loff_t pos = sd->pos; 1011 1012 ret = do_splice_to(in, &pos, pipe, len, flags); 1013 if (unlikely(ret <= 0)) 1014 goto out_release; 1015 1016 read_len = ret; 1017 sd->total_len = read_len; 1018 1019 /* 1020 * NOTE: nonblocking mode only applies to the input. We 1021 * must not do the output in nonblocking mode as then we 1022 * could get stuck data in the internal pipe: 1023 */ 1024 ret = actor(pipe, sd); 1025 if (unlikely(ret <= 0)) 1026 goto out_release; 1027 1028 bytes += ret; 1029 len -= ret; 1030 sd->pos = pos; 1031 1032 if (ret < read_len) 1033 goto out_release; 1034 } 1035 1036 pipe->nrbufs = pipe->curbuf = 0; 1037 return bytes; 1038 1039 out_release: 1040 /* 1041 * If we did an incomplete transfer we must release 1042 * the pipe buffers in question: 1043 */ 1044 for (i = 0; i < PIPE_BUFFERS; i++) { 1045 struct pipe_buffer *buf = pipe->bufs + i; 1046 1047 if (buf->ops) { 1048 buf->ops->release(pipe, buf); 1049 buf->ops = NULL; 1050 } 1051 } 1052 pipe->nrbufs = pipe->curbuf = 0; 1053 1054 /* 1055 * If we transferred some data, return the number of bytes: 1056 */ 1057 if (bytes > 0) 1058 return bytes; 1059 1060 return ret; 1061 1062 } 1063 EXPORT_SYMBOL(splice_direct_to_actor); 1064 1065 static int direct_splice_actor(struct pipe_inode_info *pipe, 1066 struct splice_desc *sd) 1067 { 1068 struct file *file = sd->u.file; 1069 1070 return do_splice_from(pipe, file, &sd->pos, sd->total_len, sd->flags); 1071 } 1072 1073 /** 1074 * do_splice_direct - splices data directly between two files 1075 * @in: file to splice from 1076 * @ppos: input file offset 1077 * @out: file to splice to 1078 * @len: number of bytes to splice 1079 * @flags: splice modifier flags 1080 * 1081 * Description: 1082 * For use by do_sendfile(). splice can easily emulate sendfile, but 1083 * doing it in the application would incur an extra system call 1084 * (splice in + splice out, as compared to just sendfile()). So this helper 1085 * can splice directly through a process-private pipe. 1086 * 1087 */ 1088 long do_splice_direct(struct file *in, loff_t *ppos, struct file *out, 1089 size_t len, unsigned int flags) 1090 { 1091 struct splice_desc sd = { 1092 .len = len, 1093 .total_len = len, 1094 .flags = flags, 1095 .pos = *ppos, 1096 .u.file = out, 1097 }; 1098 long ret; 1099 1100 ret = splice_direct_to_actor(in, &sd, direct_splice_actor); 1101 if (ret > 0) 1102 *ppos += ret; 1103 1104 return ret; 1105 } 1106 1107 /* 1108 * After the inode slimming patch, i_pipe/i_bdev/i_cdev share the same 1109 * location, so checking ->i_pipe is not enough to verify that this is a 1110 * pipe. 1111 */ 1112 static inline struct pipe_inode_info *pipe_info(struct inode *inode) 1113 { 1114 if (S_ISFIFO(inode->i_mode)) 1115 return inode->i_pipe; 1116 1117 return NULL; 1118 } 1119 1120 /* 1121 * Determine where to splice to/from. 1122 */ 1123 static long do_splice(struct file *in, loff_t __user *off_in, 1124 struct file *out, loff_t __user *off_out, 1125 size_t len, unsigned int flags) 1126 { 1127 struct pipe_inode_info *pipe; 1128 loff_t offset, *off; 1129 long ret; 1130 1131 pipe = pipe_info(in->f_path.dentry->d_inode); 1132 if (pipe) { 1133 if (off_in) 1134 return -ESPIPE; 1135 if (off_out) { 1136 if (out->f_op->llseek == no_llseek) 1137 return -EINVAL; 1138 if (copy_from_user(&offset, off_out, sizeof(loff_t))) 1139 return -EFAULT; 1140 off = &offset; 1141 } else 1142 off = &out->f_pos; 1143 1144 ret = do_splice_from(pipe, out, off, len, flags); 1145 1146 if (off_out && copy_to_user(off_out, off, sizeof(loff_t))) 1147 ret = -EFAULT; 1148 1149 return ret; 1150 } 1151 1152 pipe = pipe_info(out->f_path.dentry->d_inode); 1153 if (pipe) { 1154 if (off_out) 1155 return -ESPIPE; 1156 if (off_in) { 1157 if (in->f_op->llseek == no_llseek) 1158 return -EINVAL; 1159 if (copy_from_user(&offset, off_in, sizeof(loff_t))) 1160 return -EFAULT; 1161 off = &offset; 1162 } else 1163 off = &in->f_pos; 1164 1165 ret = do_splice_to(in, off, pipe, len, flags); 1166 1167 if (off_in && copy_to_user(off_in, off, sizeof(loff_t))) 1168 ret = -EFAULT; 1169 1170 return ret; 1171 } 1172 1173 return -EINVAL; 1174 } 1175 1176 /* 1177 * Do a copy-from-user while holding the mmap_semaphore for reading, in a 1178 * manner safe from deadlocking with simultaneous mmap() (grabbing mmap_sem 1179 * for writing) and page faulting on the user memory pointed to by src. 1180 * This assumes that we will very rarely hit the partial != 0 path, or this 1181 * will not be a win. 1182 */ 1183 static int copy_from_user_mmap_sem(void *dst, const void __user *src, size_t n) 1184 { 1185 int partial; 1186 1187 pagefault_disable(); 1188 partial = __copy_from_user_inatomic(dst, src, n); 1189 pagefault_enable(); 1190 1191 /* 1192 * Didn't copy everything, drop the mmap_sem and do a faulting copy 1193 */ 1194 if (unlikely(partial)) { 1195 up_read(¤t->mm->mmap_sem); 1196 partial = copy_from_user(dst, src, n); 1197 down_read(¤t->mm->mmap_sem); 1198 } 1199 1200 return partial; 1201 } 1202 1203 /* 1204 * Map an iov into an array of pages and offset/length tupples. With the 1205 * partial_page structure, we can map several non-contiguous ranges into 1206 * our ones pages[] map instead of splitting that operation into pieces. 1207 * Could easily be exported as a generic helper for other users, in which 1208 * case one would probably want to add a 'max_nr_pages' parameter as well. 1209 */ 1210 static int get_iovec_page_array(const struct iovec __user *iov, 1211 unsigned int nr_vecs, struct page **pages, 1212 struct partial_page *partial, int aligned) 1213 { 1214 int buffers = 0, error = 0; 1215 1216 down_read(¤t->mm->mmap_sem); 1217 1218 while (nr_vecs) { 1219 unsigned long off, npages; 1220 struct iovec entry; 1221 void __user *base; 1222 size_t len; 1223 int i; 1224 1225 error = -EFAULT; 1226 if (copy_from_user_mmap_sem(&entry, iov, sizeof(entry))) 1227 break; 1228 1229 base = entry.iov_base; 1230 len = entry.iov_len; 1231 1232 /* 1233 * Sanity check this iovec. 0 read succeeds. 1234 */ 1235 error = 0; 1236 if (unlikely(!len)) 1237 break; 1238 error = -EFAULT; 1239 if (unlikely(!base)) 1240 break; 1241 1242 /* 1243 * Get this base offset and number of pages, then map 1244 * in the user pages. 1245 */ 1246 off = (unsigned long) base & ~PAGE_MASK; 1247 1248 /* 1249 * If asked for alignment, the offset must be zero and the 1250 * length a multiple of the PAGE_SIZE. 1251 */ 1252 error = -EINVAL; 1253 if (aligned && (off || len & ~PAGE_MASK)) 1254 break; 1255 1256 npages = (off + len + PAGE_SIZE - 1) >> PAGE_SHIFT; 1257 if (npages > PIPE_BUFFERS - buffers) 1258 npages = PIPE_BUFFERS - buffers; 1259 1260 error = get_user_pages(current, current->mm, 1261 (unsigned long) base, npages, 0, 0, 1262 &pages[buffers], NULL); 1263 1264 if (unlikely(error <= 0)) 1265 break; 1266 1267 /* 1268 * Fill this contiguous range into the partial page map. 1269 */ 1270 for (i = 0; i < error; i++) { 1271 const int plen = min_t(size_t, len, PAGE_SIZE - off); 1272 1273 partial[buffers].offset = off; 1274 partial[buffers].len = plen; 1275 1276 off = 0; 1277 len -= plen; 1278 buffers++; 1279 } 1280 1281 /* 1282 * We didn't complete this iov, stop here since it probably 1283 * means we have to move some of this into a pipe to 1284 * be able to continue. 1285 */ 1286 if (len) 1287 break; 1288 1289 /* 1290 * Don't continue if we mapped fewer pages than we asked for, 1291 * or if we mapped the max number of pages that we have 1292 * room for. 1293 */ 1294 if (error < npages || buffers == PIPE_BUFFERS) 1295 break; 1296 1297 nr_vecs--; 1298 iov++; 1299 } 1300 1301 up_read(¤t->mm->mmap_sem); 1302 1303 if (buffers) 1304 return buffers; 1305 1306 return error; 1307 } 1308 1309 static int pipe_to_user(struct pipe_inode_info *pipe, struct pipe_buffer *buf, 1310 struct splice_desc *sd) 1311 { 1312 char *src; 1313 int ret; 1314 1315 ret = buf->ops->confirm(pipe, buf); 1316 if (unlikely(ret)) 1317 return ret; 1318 1319 /* 1320 * See if we can use the atomic maps, by prefaulting in the 1321 * pages and doing an atomic copy 1322 */ 1323 if (!fault_in_pages_writeable(sd->u.userptr, sd->len)) { 1324 src = buf->ops->map(pipe, buf, 1); 1325 ret = __copy_to_user_inatomic(sd->u.userptr, src + buf->offset, 1326 sd->len); 1327 buf->ops->unmap(pipe, buf, src); 1328 if (!ret) { 1329 ret = sd->len; 1330 goto out; 1331 } 1332 } 1333 1334 /* 1335 * No dice, use slow non-atomic map and copy 1336 */ 1337 src = buf->ops->map(pipe, buf, 0); 1338 1339 ret = sd->len; 1340 if (copy_to_user(sd->u.userptr, src + buf->offset, sd->len)) 1341 ret = -EFAULT; 1342 1343 buf->ops->unmap(pipe, buf, src); 1344 out: 1345 if (ret > 0) 1346 sd->u.userptr += ret; 1347 return ret; 1348 } 1349 1350 /* 1351 * For lack of a better implementation, implement vmsplice() to userspace 1352 * as a simple copy of the pipes pages to the user iov. 1353 */ 1354 static long vmsplice_to_user(struct file *file, const struct iovec __user *iov, 1355 unsigned long nr_segs, unsigned int flags) 1356 { 1357 struct pipe_inode_info *pipe; 1358 struct splice_desc sd; 1359 ssize_t size; 1360 int error; 1361 long ret; 1362 1363 pipe = pipe_info(file->f_path.dentry->d_inode); 1364 if (!pipe) 1365 return -EBADF; 1366 1367 if (pipe->inode) 1368 mutex_lock(&pipe->inode->i_mutex); 1369 1370 error = ret = 0; 1371 while (nr_segs) { 1372 void __user *base; 1373 size_t len; 1374 1375 /* 1376 * Get user address base and length for this iovec. 1377 */ 1378 error = get_user(base, &iov->iov_base); 1379 if (unlikely(error)) 1380 break; 1381 error = get_user(len, &iov->iov_len); 1382 if (unlikely(error)) 1383 break; 1384 1385 /* 1386 * Sanity check this iovec. 0 read succeeds. 1387 */ 1388 if (unlikely(!len)) 1389 break; 1390 if (unlikely(!base)) { 1391 error = -EFAULT; 1392 break; 1393 } 1394 1395 sd.len = 0; 1396 sd.total_len = len; 1397 sd.flags = flags; 1398 sd.u.userptr = base; 1399 sd.pos = 0; 1400 1401 size = __splice_from_pipe(pipe, &sd, pipe_to_user); 1402 if (size < 0) { 1403 if (!ret) 1404 ret = size; 1405 1406 break; 1407 } 1408 1409 ret += size; 1410 1411 if (size < len) 1412 break; 1413 1414 nr_segs--; 1415 iov++; 1416 } 1417 1418 if (pipe->inode) 1419 mutex_unlock(&pipe->inode->i_mutex); 1420 1421 if (!ret) 1422 ret = error; 1423 1424 return ret; 1425 } 1426 1427 /* 1428 * vmsplice splices a user address range into a pipe. It can be thought of 1429 * as splice-from-memory, where the regular splice is splice-from-file (or 1430 * to file). In both cases the output is a pipe, naturally. 1431 */ 1432 static long vmsplice_to_pipe(struct file *file, const struct iovec __user *iov, 1433 unsigned long nr_segs, unsigned int flags) 1434 { 1435 struct pipe_inode_info *pipe; 1436 struct page *pages[PIPE_BUFFERS]; 1437 struct partial_page partial[PIPE_BUFFERS]; 1438 struct splice_pipe_desc spd = { 1439 .pages = pages, 1440 .partial = partial, 1441 .flags = flags, 1442 .ops = &user_page_pipe_buf_ops, 1443 }; 1444 1445 pipe = pipe_info(file->f_path.dentry->d_inode); 1446 if (!pipe) 1447 return -EBADF; 1448 1449 spd.nr_pages = get_iovec_page_array(iov, nr_segs, pages, partial, 1450 flags & SPLICE_F_GIFT); 1451 if (spd.nr_pages <= 0) 1452 return spd.nr_pages; 1453 1454 return splice_to_pipe(pipe, &spd); 1455 } 1456 1457 /* 1458 * Note that vmsplice only really supports true splicing _from_ user memory 1459 * to a pipe, not the other way around. Splicing from user memory is a simple 1460 * operation that can be supported without any funky alignment restrictions 1461 * or nasty vm tricks. We simply map in the user memory and fill them into 1462 * a pipe. The reverse isn't quite as easy, though. There are two possible 1463 * solutions for that: 1464 * 1465 * - memcpy() the data internally, at which point we might as well just 1466 * do a regular read() on the buffer anyway. 1467 * - Lots of nasty vm tricks, that are neither fast nor flexible (it 1468 * has restriction limitations on both ends of the pipe). 1469 * 1470 * Currently we punt and implement it as a normal copy, see pipe_to_user(). 1471 * 1472 */ 1473 asmlinkage long sys_vmsplice(int fd, const struct iovec __user *iov, 1474 unsigned long nr_segs, unsigned int flags) 1475 { 1476 struct file *file; 1477 long error; 1478 int fput; 1479 1480 if (unlikely(nr_segs > UIO_MAXIOV)) 1481 return -EINVAL; 1482 else if (unlikely(!nr_segs)) 1483 return 0; 1484 1485 error = -EBADF; 1486 file = fget_light(fd, &fput); 1487 if (file) { 1488 if (file->f_mode & FMODE_WRITE) 1489 error = vmsplice_to_pipe(file, iov, nr_segs, flags); 1490 else if (file->f_mode & FMODE_READ) 1491 error = vmsplice_to_user(file, iov, nr_segs, flags); 1492 1493 fput_light(file, fput); 1494 } 1495 1496 return error; 1497 } 1498 1499 asmlinkage long sys_splice(int fd_in, loff_t __user *off_in, 1500 int fd_out, loff_t __user *off_out, 1501 size_t len, unsigned int flags) 1502 { 1503 long error; 1504 struct file *in, *out; 1505 int fput_in, fput_out; 1506 1507 if (unlikely(!len)) 1508 return 0; 1509 1510 error = -EBADF; 1511 in = fget_light(fd_in, &fput_in); 1512 if (in) { 1513 if (in->f_mode & FMODE_READ) { 1514 out = fget_light(fd_out, &fput_out); 1515 if (out) { 1516 if (out->f_mode & FMODE_WRITE) 1517 error = do_splice(in, off_in, 1518 out, off_out, 1519 len, flags); 1520 fput_light(out, fput_out); 1521 } 1522 } 1523 1524 fput_light(in, fput_in); 1525 } 1526 1527 return error; 1528 } 1529 1530 /* 1531 * Make sure there's data to read. Wait for input if we can, otherwise 1532 * return an appropriate error. 1533 */ 1534 static int link_ipipe_prep(struct pipe_inode_info *pipe, unsigned int flags) 1535 { 1536 int ret; 1537 1538 /* 1539 * Check ->nrbufs without the inode lock first. This function 1540 * is speculative anyways, so missing one is ok. 1541 */ 1542 if (pipe->nrbufs) 1543 return 0; 1544 1545 ret = 0; 1546 mutex_lock(&pipe->inode->i_mutex); 1547 1548 while (!pipe->nrbufs) { 1549 if (signal_pending(current)) { 1550 ret = -ERESTARTSYS; 1551 break; 1552 } 1553 if (!pipe->writers) 1554 break; 1555 if (!pipe->waiting_writers) { 1556 if (flags & SPLICE_F_NONBLOCK) { 1557 ret = -EAGAIN; 1558 break; 1559 } 1560 } 1561 pipe_wait(pipe); 1562 } 1563 1564 mutex_unlock(&pipe->inode->i_mutex); 1565 return ret; 1566 } 1567 1568 /* 1569 * Make sure there's writeable room. Wait for room if we can, otherwise 1570 * return an appropriate error. 1571 */ 1572 static int link_opipe_prep(struct pipe_inode_info *pipe, unsigned int flags) 1573 { 1574 int ret; 1575 1576 /* 1577 * Check ->nrbufs without the inode lock first. This function 1578 * is speculative anyways, so missing one is ok. 1579 */ 1580 if (pipe->nrbufs < PIPE_BUFFERS) 1581 return 0; 1582 1583 ret = 0; 1584 mutex_lock(&pipe->inode->i_mutex); 1585 1586 while (pipe->nrbufs >= PIPE_BUFFERS) { 1587 if (!pipe->readers) { 1588 send_sig(SIGPIPE, current, 0); 1589 ret = -EPIPE; 1590 break; 1591 } 1592 if (flags & SPLICE_F_NONBLOCK) { 1593 ret = -EAGAIN; 1594 break; 1595 } 1596 if (signal_pending(current)) { 1597 ret = -ERESTARTSYS; 1598 break; 1599 } 1600 pipe->waiting_writers++; 1601 pipe_wait(pipe); 1602 pipe->waiting_writers--; 1603 } 1604 1605 mutex_unlock(&pipe->inode->i_mutex); 1606 return ret; 1607 } 1608 1609 /* 1610 * Link contents of ipipe to opipe. 1611 */ 1612 static int link_pipe(struct pipe_inode_info *ipipe, 1613 struct pipe_inode_info *opipe, 1614 size_t len, unsigned int flags) 1615 { 1616 struct pipe_buffer *ibuf, *obuf; 1617 int ret = 0, i = 0, nbuf; 1618 1619 /* 1620 * Potential ABBA deadlock, work around it by ordering lock 1621 * grabbing by inode address. Otherwise two different processes 1622 * could deadlock (one doing tee from A -> B, the other from B -> A). 1623 */ 1624 inode_double_lock(ipipe->inode, opipe->inode); 1625 1626 do { 1627 if (!opipe->readers) { 1628 send_sig(SIGPIPE, current, 0); 1629 if (!ret) 1630 ret = -EPIPE; 1631 break; 1632 } 1633 1634 /* 1635 * If we have iterated all input buffers or ran out of 1636 * output room, break. 1637 */ 1638 if (i >= ipipe->nrbufs || opipe->nrbufs >= PIPE_BUFFERS) 1639 break; 1640 1641 ibuf = ipipe->bufs + ((ipipe->curbuf + i) & (PIPE_BUFFERS - 1)); 1642 nbuf = (opipe->curbuf + opipe->nrbufs) & (PIPE_BUFFERS - 1); 1643 1644 /* 1645 * Get a reference to this pipe buffer, 1646 * so we can copy the contents over. 1647 */ 1648 ibuf->ops->get(ipipe, ibuf); 1649 1650 obuf = opipe->bufs + nbuf; 1651 *obuf = *ibuf; 1652 1653 /* 1654 * Don't inherit the gift flag, we need to 1655 * prevent multiple steals of this page. 1656 */ 1657 obuf->flags &= ~PIPE_BUF_FLAG_GIFT; 1658 1659 if (obuf->len > len) 1660 obuf->len = len; 1661 1662 opipe->nrbufs++; 1663 ret += obuf->len; 1664 len -= obuf->len; 1665 i++; 1666 } while (len); 1667 1668 inode_double_unlock(ipipe->inode, opipe->inode); 1669 1670 /* 1671 * If we put data in the output pipe, wakeup any potential readers. 1672 */ 1673 if (ret > 0) { 1674 smp_mb(); 1675 if (waitqueue_active(&opipe->wait)) 1676 wake_up_interruptible(&opipe->wait); 1677 kill_fasync(&opipe->fasync_readers, SIGIO, POLL_IN); 1678 } 1679 1680 return ret; 1681 } 1682 1683 /* 1684 * This is a tee(1) implementation that works on pipes. It doesn't copy 1685 * any data, it simply references the 'in' pages on the 'out' pipe. 1686 * The 'flags' used are the SPLICE_F_* variants, currently the only 1687 * applicable one is SPLICE_F_NONBLOCK. 1688 */ 1689 static long do_tee(struct file *in, struct file *out, size_t len, 1690 unsigned int flags) 1691 { 1692 struct pipe_inode_info *ipipe = pipe_info(in->f_path.dentry->d_inode); 1693 struct pipe_inode_info *opipe = pipe_info(out->f_path.dentry->d_inode); 1694 int ret = -EINVAL; 1695 1696 /* 1697 * Duplicate the contents of ipipe to opipe without actually 1698 * copying the data. 1699 */ 1700 if (ipipe && opipe && ipipe != opipe) { 1701 /* 1702 * Keep going, unless we encounter an error. The ipipe/opipe 1703 * ordering doesn't really matter. 1704 */ 1705 ret = link_ipipe_prep(ipipe, flags); 1706 if (!ret) { 1707 ret = link_opipe_prep(opipe, flags); 1708 if (!ret) { 1709 ret = link_pipe(ipipe, opipe, len, flags); 1710 if (!ret && (flags & SPLICE_F_NONBLOCK)) 1711 ret = -EAGAIN; 1712 } 1713 } 1714 } 1715 1716 return ret; 1717 } 1718 1719 asmlinkage long sys_tee(int fdin, int fdout, size_t len, unsigned int flags) 1720 { 1721 struct file *in; 1722 int error, fput_in; 1723 1724 if (unlikely(!len)) 1725 return 0; 1726 1727 error = -EBADF; 1728 in = fget_light(fdin, &fput_in); 1729 if (in) { 1730 if (in->f_mode & FMODE_READ) { 1731 int fput_out; 1732 struct file *out = fget_light(fdout, &fput_out); 1733 1734 if (out) { 1735 if (out->f_mode & FMODE_WRITE) 1736 error = do_tee(in, out, len, flags); 1737 fput_light(out, fput_out); 1738 } 1739 } 1740 fput_light(in, fput_in); 1741 } 1742 1743 return error; 1744 } 1745