xref: /linux/fs/splice.c (revision 8fa5723aa7e053d498336b48448b292fc2e0458b)
1 /*
2  * "splice": joining two ropes together by interweaving their strands.
3  *
4  * This is the "extended pipe" functionality, where a pipe is used as
5  * an arbitrary in-memory buffer. Think of a pipe as a small kernel
6  * buffer that you can use to transfer data from one end to the other.
7  *
8  * The traditional unix read/write is extended with a "splice()" operation
9  * that transfers data buffers to or from a pipe buffer.
10  *
11  * Named by Larry McVoy, original implementation from Linus, extended by
12  * Jens to support splicing to files, network, direct splicing, etc and
13  * fixing lots of bugs.
14  *
15  * Copyright (C) 2005-2006 Jens Axboe <axboe@kernel.dk>
16  * Copyright (C) 2005-2006 Linus Torvalds <torvalds@osdl.org>
17  * Copyright (C) 2006 Ingo Molnar <mingo@elte.hu>
18  *
19  */
20 #include <linux/fs.h>
21 #include <linux/file.h>
22 #include <linux/pagemap.h>
23 #include <linux/splice.h>
24 #include <linux/mm_inline.h>
25 #include <linux/swap.h>
26 #include <linux/writeback.h>
27 #include <linux/buffer_head.h>
28 #include <linux/module.h>
29 #include <linux/syscalls.h>
30 #include <linux/uio.h>
31 #include <linux/security.h>
32 
33 /*
34  * Attempt to steal a page from a pipe buffer. This should perhaps go into
35  * a vm helper function, it's already simplified quite a bit by the
36  * addition of remove_mapping(). If success is returned, the caller may
37  * attempt to reuse this page for another destination.
38  */
39 static int page_cache_pipe_buf_steal(struct pipe_inode_info *pipe,
40 				     struct pipe_buffer *buf)
41 {
42 	struct page *page = buf->page;
43 	struct address_space *mapping;
44 
45 	lock_page(page);
46 
47 	mapping = page_mapping(page);
48 	if (mapping) {
49 		WARN_ON(!PageUptodate(page));
50 
51 		/*
52 		 * At least for ext2 with nobh option, we need to wait on
53 		 * writeback completing on this page, since we'll remove it
54 		 * from the pagecache.  Otherwise truncate wont wait on the
55 		 * page, allowing the disk blocks to be reused by someone else
56 		 * before we actually wrote our data to them. fs corruption
57 		 * ensues.
58 		 */
59 		wait_on_page_writeback(page);
60 
61 		if (PagePrivate(page) && !try_to_release_page(page, GFP_KERNEL))
62 			goto out_unlock;
63 
64 		/*
65 		 * If we succeeded in removing the mapping, set LRU flag
66 		 * and return good.
67 		 */
68 		if (remove_mapping(mapping, page)) {
69 			buf->flags |= PIPE_BUF_FLAG_LRU;
70 			return 0;
71 		}
72 	}
73 
74 	/*
75 	 * Raced with truncate or failed to remove page from current
76 	 * address space, unlock and return failure.
77 	 */
78 out_unlock:
79 	unlock_page(page);
80 	return 1;
81 }
82 
83 static void page_cache_pipe_buf_release(struct pipe_inode_info *pipe,
84 					struct pipe_buffer *buf)
85 {
86 	page_cache_release(buf->page);
87 	buf->flags &= ~PIPE_BUF_FLAG_LRU;
88 }
89 
90 /*
91  * Check whether the contents of buf is OK to access. Since the content
92  * is a page cache page, IO may be in flight.
93  */
94 static int page_cache_pipe_buf_confirm(struct pipe_inode_info *pipe,
95 				       struct pipe_buffer *buf)
96 {
97 	struct page *page = buf->page;
98 	int err;
99 
100 	if (!PageUptodate(page)) {
101 		lock_page(page);
102 
103 		/*
104 		 * Page got truncated/unhashed. This will cause a 0-byte
105 		 * splice, if this is the first page.
106 		 */
107 		if (!page->mapping) {
108 			err = -ENODATA;
109 			goto error;
110 		}
111 
112 		/*
113 		 * Uh oh, read-error from disk.
114 		 */
115 		if (!PageUptodate(page)) {
116 			err = -EIO;
117 			goto error;
118 		}
119 
120 		/*
121 		 * Page is ok afterall, we are done.
122 		 */
123 		unlock_page(page);
124 	}
125 
126 	return 0;
127 error:
128 	unlock_page(page);
129 	return err;
130 }
131 
132 static const struct pipe_buf_operations page_cache_pipe_buf_ops = {
133 	.can_merge = 0,
134 	.map = generic_pipe_buf_map,
135 	.unmap = generic_pipe_buf_unmap,
136 	.confirm = page_cache_pipe_buf_confirm,
137 	.release = page_cache_pipe_buf_release,
138 	.steal = page_cache_pipe_buf_steal,
139 	.get = generic_pipe_buf_get,
140 };
141 
142 static int user_page_pipe_buf_steal(struct pipe_inode_info *pipe,
143 				    struct pipe_buffer *buf)
144 {
145 	if (!(buf->flags & PIPE_BUF_FLAG_GIFT))
146 		return 1;
147 
148 	buf->flags |= PIPE_BUF_FLAG_LRU;
149 	return generic_pipe_buf_steal(pipe, buf);
150 }
151 
152 static const struct pipe_buf_operations user_page_pipe_buf_ops = {
153 	.can_merge = 0,
154 	.map = generic_pipe_buf_map,
155 	.unmap = generic_pipe_buf_unmap,
156 	.confirm = generic_pipe_buf_confirm,
157 	.release = page_cache_pipe_buf_release,
158 	.steal = user_page_pipe_buf_steal,
159 	.get = generic_pipe_buf_get,
160 };
161 
162 /**
163  * splice_to_pipe - fill passed data into a pipe
164  * @pipe:	pipe to fill
165  * @spd:	data to fill
166  *
167  * Description:
168  *    @spd contains a map of pages and len/offset tuples, along with
169  *    the struct pipe_buf_operations associated with these pages. This
170  *    function will link that data to the pipe.
171  *
172  */
173 ssize_t splice_to_pipe(struct pipe_inode_info *pipe,
174 		       struct splice_pipe_desc *spd)
175 {
176 	unsigned int spd_pages = spd->nr_pages;
177 	int ret, do_wakeup, page_nr;
178 
179 	ret = 0;
180 	do_wakeup = 0;
181 	page_nr = 0;
182 
183 	if (pipe->inode)
184 		mutex_lock(&pipe->inode->i_mutex);
185 
186 	for (;;) {
187 		if (!pipe->readers) {
188 			send_sig(SIGPIPE, current, 0);
189 			if (!ret)
190 				ret = -EPIPE;
191 			break;
192 		}
193 
194 		if (pipe->nrbufs < PIPE_BUFFERS) {
195 			int newbuf = (pipe->curbuf + pipe->nrbufs) & (PIPE_BUFFERS - 1);
196 			struct pipe_buffer *buf = pipe->bufs + newbuf;
197 
198 			buf->page = spd->pages[page_nr];
199 			buf->offset = spd->partial[page_nr].offset;
200 			buf->len = spd->partial[page_nr].len;
201 			buf->private = spd->partial[page_nr].private;
202 			buf->ops = spd->ops;
203 			if (spd->flags & SPLICE_F_GIFT)
204 				buf->flags |= PIPE_BUF_FLAG_GIFT;
205 
206 			pipe->nrbufs++;
207 			page_nr++;
208 			ret += buf->len;
209 
210 			if (pipe->inode)
211 				do_wakeup = 1;
212 
213 			if (!--spd->nr_pages)
214 				break;
215 			if (pipe->nrbufs < PIPE_BUFFERS)
216 				continue;
217 
218 			break;
219 		}
220 
221 		if (spd->flags & SPLICE_F_NONBLOCK) {
222 			if (!ret)
223 				ret = -EAGAIN;
224 			break;
225 		}
226 
227 		if (signal_pending(current)) {
228 			if (!ret)
229 				ret = -ERESTARTSYS;
230 			break;
231 		}
232 
233 		if (do_wakeup) {
234 			smp_mb();
235 			if (waitqueue_active(&pipe->wait))
236 				wake_up_interruptible_sync(&pipe->wait);
237 			kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
238 			do_wakeup = 0;
239 		}
240 
241 		pipe->waiting_writers++;
242 		pipe_wait(pipe);
243 		pipe->waiting_writers--;
244 	}
245 
246 	if (pipe->inode) {
247 		mutex_unlock(&pipe->inode->i_mutex);
248 
249 		if (do_wakeup) {
250 			smp_mb();
251 			if (waitqueue_active(&pipe->wait))
252 				wake_up_interruptible(&pipe->wait);
253 			kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
254 		}
255 	}
256 
257 	while (page_nr < spd_pages)
258 		spd->spd_release(spd, page_nr++);
259 
260 	return ret;
261 }
262 
263 static void spd_release_page(struct splice_pipe_desc *spd, unsigned int i)
264 {
265 	page_cache_release(spd->pages[i]);
266 }
267 
268 static int
269 __generic_file_splice_read(struct file *in, loff_t *ppos,
270 			   struct pipe_inode_info *pipe, size_t len,
271 			   unsigned int flags)
272 {
273 	struct address_space *mapping = in->f_mapping;
274 	unsigned int loff, nr_pages, req_pages;
275 	struct page *pages[PIPE_BUFFERS];
276 	struct partial_page partial[PIPE_BUFFERS];
277 	struct page *page;
278 	pgoff_t index, end_index;
279 	loff_t isize;
280 	int error, page_nr;
281 	struct splice_pipe_desc spd = {
282 		.pages = pages,
283 		.partial = partial,
284 		.flags = flags,
285 		.ops = &page_cache_pipe_buf_ops,
286 		.spd_release = spd_release_page,
287 	};
288 
289 	index = *ppos >> PAGE_CACHE_SHIFT;
290 	loff = *ppos & ~PAGE_CACHE_MASK;
291 	req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
292 	nr_pages = min(req_pages, (unsigned)PIPE_BUFFERS);
293 
294 	/*
295 	 * Lookup the (hopefully) full range of pages we need.
296 	 */
297 	spd.nr_pages = find_get_pages_contig(mapping, index, nr_pages, pages);
298 	index += spd.nr_pages;
299 
300 	/*
301 	 * If find_get_pages_contig() returned fewer pages than we needed,
302 	 * readahead/allocate the rest and fill in the holes.
303 	 */
304 	if (spd.nr_pages < nr_pages)
305 		page_cache_sync_readahead(mapping, &in->f_ra, in,
306 				index, req_pages - spd.nr_pages);
307 
308 	error = 0;
309 	while (spd.nr_pages < nr_pages) {
310 		/*
311 		 * Page could be there, find_get_pages_contig() breaks on
312 		 * the first hole.
313 		 */
314 		page = find_get_page(mapping, index);
315 		if (!page) {
316 			/*
317 			 * page didn't exist, allocate one.
318 			 */
319 			page = page_cache_alloc_cold(mapping);
320 			if (!page)
321 				break;
322 
323 			error = add_to_page_cache_lru(page, mapping, index,
324 						mapping_gfp_mask(mapping));
325 			if (unlikely(error)) {
326 				page_cache_release(page);
327 				if (error == -EEXIST)
328 					continue;
329 				break;
330 			}
331 			/*
332 			 * add_to_page_cache() locks the page, unlock it
333 			 * to avoid convoluting the logic below even more.
334 			 */
335 			unlock_page(page);
336 		}
337 
338 		pages[spd.nr_pages++] = page;
339 		index++;
340 	}
341 
342 	/*
343 	 * Now loop over the map and see if we need to start IO on any
344 	 * pages, fill in the partial map, etc.
345 	 */
346 	index = *ppos >> PAGE_CACHE_SHIFT;
347 	nr_pages = spd.nr_pages;
348 	spd.nr_pages = 0;
349 	for (page_nr = 0; page_nr < nr_pages; page_nr++) {
350 		unsigned int this_len;
351 
352 		if (!len)
353 			break;
354 
355 		/*
356 		 * this_len is the max we'll use from this page
357 		 */
358 		this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
359 		page = pages[page_nr];
360 
361 		if (PageReadahead(page))
362 			page_cache_async_readahead(mapping, &in->f_ra, in,
363 					page, index, req_pages - page_nr);
364 
365 		/*
366 		 * If the page isn't uptodate, we may need to start io on it
367 		 */
368 		if (!PageUptodate(page)) {
369 			/*
370 			 * If in nonblock mode then dont block on waiting
371 			 * for an in-flight io page
372 			 */
373 			if (flags & SPLICE_F_NONBLOCK) {
374 				if (!trylock_page(page)) {
375 					error = -EAGAIN;
376 					break;
377 				}
378 			} else
379 				lock_page(page);
380 
381 			/*
382 			 * Page was truncated, or invalidated by the
383 			 * filesystem.  Redo the find/create, but this time the
384 			 * page is kept locked, so there's no chance of another
385 			 * race with truncate/invalidate.
386 			 */
387 			if (!page->mapping) {
388 				unlock_page(page);
389 				page = find_or_create_page(mapping, index,
390 						mapping_gfp_mask(mapping));
391 
392 				if (!page) {
393 					error = -ENOMEM;
394 					break;
395 				}
396 				page_cache_release(pages[page_nr]);
397 				pages[page_nr] = page;
398 			}
399 			/*
400 			 * page was already under io and is now done, great
401 			 */
402 			if (PageUptodate(page)) {
403 				unlock_page(page);
404 				goto fill_it;
405 			}
406 
407 			/*
408 			 * need to read in the page
409 			 */
410 			error = mapping->a_ops->readpage(in, page);
411 			if (unlikely(error)) {
412 				/*
413 				 * We really should re-lookup the page here,
414 				 * but it complicates things a lot. Instead
415 				 * lets just do what we already stored, and
416 				 * we'll get it the next time we are called.
417 				 */
418 				if (error == AOP_TRUNCATED_PAGE)
419 					error = 0;
420 
421 				break;
422 			}
423 		}
424 fill_it:
425 		/*
426 		 * i_size must be checked after PageUptodate.
427 		 */
428 		isize = i_size_read(mapping->host);
429 		end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
430 		if (unlikely(!isize || index > end_index))
431 			break;
432 
433 		/*
434 		 * if this is the last page, see if we need to shrink
435 		 * the length and stop
436 		 */
437 		if (end_index == index) {
438 			unsigned int plen;
439 
440 			/*
441 			 * max good bytes in this page
442 			 */
443 			plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
444 			if (plen <= loff)
445 				break;
446 
447 			/*
448 			 * force quit after adding this page
449 			 */
450 			this_len = min(this_len, plen - loff);
451 			len = this_len;
452 		}
453 
454 		partial[page_nr].offset = loff;
455 		partial[page_nr].len = this_len;
456 		len -= this_len;
457 		loff = 0;
458 		spd.nr_pages++;
459 		index++;
460 	}
461 
462 	/*
463 	 * Release any pages at the end, if we quit early. 'page_nr' is how far
464 	 * we got, 'nr_pages' is how many pages are in the map.
465 	 */
466 	while (page_nr < nr_pages)
467 		page_cache_release(pages[page_nr++]);
468 	in->f_ra.prev_pos = (loff_t)index << PAGE_CACHE_SHIFT;
469 
470 	if (spd.nr_pages)
471 		return splice_to_pipe(pipe, &spd);
472 
473 	return error;
474 }
475 
476 /**
477  * generic_file_splice_read - splice data from file to a pipe
478  * @in:		file to splice from
479  * @ppos:	position in @in
480  * @pipe:	pipe to splice to
481  * @len:	number of bytes to splice
482  * @flags:	splice modifier flags
483  *
484  * Description:
485  *    Will read pages from given file and fill them into a pipe. Can be
486  *    used as long as the address_space operations for the source implements
487  *    a readpage() hook.
488  *
489  */
490 ssize_t generic_file_splice_read(struct file *in, loff_t *ppos,
491 				 struct pipe_inode_info *pipe, size_t len,
492 				 unsigned int flags)
493 {
494 	loff_t isize, left;
495 	int ret;
496 
497 	isize = i_size_read(in->f_mapping->host);
498 	if (unlikely(*ppos >= isize))
499 		return 0;
500 
501 	left = isize - *ppos;
502 	if (unlikely(left < len))
503 		len = left;
504 
505 	ret = __generic_file_splice_read(in, ppos, pipe, len, flags);
506 	if (ret > 0)
507 		*ppos += ret;
508 
509 	return ret;
510 }
511 
512 EXPORT_SYMBOL(generic_file_splice_read);
513 
514 /*
515  * Send 'sd->len' bytes to socket from 'sd->file' at position 'sd->pos'
516  * using sendpage(). Return the number of bytes sent.
517  */
518 static int pipe_to_sendpage(struct pipe_inode_info *pipe,
519 			    struct pipe_buffer *buf, struct splice_desc *sd)
520 {
521 	struct file *file = sd->u.file;
522 	loff_t pos = sd->pos;
523 	int ret, more;
524 
525 	ret = buf->ops->confirm(pipe, buf);
526 	if (!ret) {
527 		more = (sd->flags & SPLICE_F_MORE) || sd->len < sd->total_len;
528 
529 		ret = file->f_op->sendpage(file, buf->page, buf->offset,
530 					   sd->len, &pos, more);
531 	}
532 
533 	return ret;
534 }
535 
536 /*
537  * This is a little more tricky than the file -> pipe splicing. There are
538  * basically three cases:
539  *
540  *	- Destination page already exists in the address space and there
541  *	  are users of it. For that case we have no other option that
542  *	  copying the data. Tough luck.
543  *	- Destination page already exists in the address space, but there
544  *	  are no users of it. Make sure it's uptodate, then drop it. Fall
545  *	  through to last case.
546  *	- Destination page does not exist, we can add the pipe page to
547  *	  the page cache and avoid the copy.
548  *
549  * If asked to move pages to the output file (SPLICE_F_MOVE is set in
550  * sd->flags), we attempt to migrate pages from the pipe to the output
551  * file address space page cache. This is possible if no one else has
552  * the pipe page referenced outside of the pipe and page cache. If
553  * SPLICE_F_MOVE isn't set, or we cannot move the page, we simply create
554  * a new page in the output file page cache and fill/dirty that.
555  */
556 static int pipe_to_file(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
557 			struct splice_desc *sd)
558 {
559 	struct file *file = sd->u.file;
560 	struct address_space *mapping = file->f_mapping;
561 	unsigned int offset, this_len;
562 	struct page *page;
563 	void *fsdata;
564 	int ret;
565 
566 	/*
567 	 * make sure the data in this buffer is uptodate
568 	 */
569 	ret = buf->ops->confirm(pipe, buf);
570 	if (unlikely(ret))
571 		return ret;
572 
573 	offset = sd->pos & ~PAGE_CACHE_MASK;
574 
575 	this_len = sd->len;
576 	if (this_len + offset > PAGE_CACHE_SIZE)
577 		this_len = PAGE_CACHE_SIZE - offset;
578 
579 	ret = pagecache_write_begin(file, mapping, sd->pos, this_len,
580 				AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
581 	if (unlikely(ret))
582 		goto out;
583 
584 	if (buf->page != page) {
585 		/*
586 		 * Careful, ->map() uses KM_USER0!
587 		 */
588 		char *src = buf->ops->map(pipe, buf, 1);
589 		char *dst = kmap_atomic(page, KM_USER1);
590 
591 		memcpy(dst + offset, src + buf->offset, this_len);
592 		flush_dcache_page(page);
593 		kunmap_atomic(dst, KM_USER1);
594 		buf->ops->unmap(pipe, buf, src);
595 	}
596 	ret = pagecache_write_end(file, mapping, sd->pos, this_len, this_len,
597 				page, fsdata);
598 out:
599 	return ret;
600 }
601 
602 /**
603  * __splice_from_pipe - splice data from a pipe to given actor
604  * @pipe:	pipe to splice from
605  * @sd:		information to @actor
606  * @actor:	handler that splices the data
607  *
608  * Description:
609  *    This function does little more than loop over the pipe and call
610  *    @actor to do the actual moving of a single struct pipe_buffer to
611  *    the desired destination. See pipe_to_file, pipe_to_sendpage, or
612  *    pipe_to_user.
613  *
614  */
615 ssize_t __splice_from_pipe(struct pipe_inode_info *pipe, struct splice_desc *sd,
616 			   splice_actor *actor)
617 {
618 	int ret, do_wakeup, err;
619 
620 	ret = 0;
621 	do_wakeup = 0;
622 
623 	for (;;) {
624 		if (pipe->nrbufs) {
625 			struct pipe_buffer *buf = pipe->bufs + pipe->curbuf;
626 			const struct pipe_buf_operations *ops = buf->ops;
627 
628 			sd->len = buf->len;
629 			if (sd->len > sd->total_len)
630 				sd->len = sd->total_len;
631 
632 			err = actor(pipe, buf, sd);
633 			if (err <= 0) {
634 				if (!ret && err != -ENODATA)
635 					ret = err;
636 
637 				break;
638 			}
639 
640 			ret += err;
641 			buf->offset += err;
642 			buf->len -= err;
643 
644 			sd->len -= err;
645 			sd->pos += err;
646 			sd->total_len -= err;
647 			if (sd->len)
648 				continue;
649 
650 			if (!buf->len) {
651 				buf->ops = NULL;
652 				ops->release(pipe, buf);
653 				pipe->curbuf = (pipe->curbuf + 1) & (PIPE_BUFFERS - 1);
654 				pipe->nrbufs--;
655 				if (pipe->inode)
656 					do_wakeup = 1;
657 			}
658 
659 			if (!sd->total_len)
660 				break;
661 		}
662 
663 		if (pipe->nrbufs)
664 			continue;
665 		if (!pipe->writers)
666 			break;
667 		if (!pipe->waiting_writers) {
668 			if (ret)
669 				break;
670 		}
671 
672 		if (sd->flags & SPLICE_F_NONBLOCK) {
673 			if (!ret)
674 				ret = -EAGAIN;
675 			break;
676 		}
677 
678 		if (signal_pending(current)) {
679 			if (!ret)
680 				ret = -ERESTARTSYS;
681 			break;
682 		}
683 
684 		if (do_wakeup) {
685 			smp_mb();
686 			if (waitqueue_active(&pipe->wait))
687 				wake_up_interruptible_sync(&pipe->wait);
688 			kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
689 			do_wakeup = 0;
690 		}
691 
692 		pipe_wait(pipe);
693 	}
694 
695 	if (do_wakeup) {
696 		smp_mb();
697 		if (waitqueue_active(&pipe->wait))
698 			wake_up_interruptible(&pipe->wait);
699 		kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
700 	}
701 
702 	return ret;
703 }
704 EXPORT_SYMBOL(__splice_from_pipe);
705 
706 /**
707  * splice_from_pipe - splice data from a pipe to a file
708  * @pipe:	pipe to splice from
709  * @out:	file to splice to
710  * @ppos:	position in @out
711  * @len:	how many bytes to splice
712  * @flags:	splice modifier flags
713  * @actor:	handler that splices the data
714  *
715  * Description:
716  *    See __splice_from_pipe. This function locks the input and output inodes,
717  *    otherwise it's identical to __splice_from_pipe().
718  *
719  */
720 ssize_t splice_from_pipe(struct pipe_inode_info *pipe, struct file *out,
721 			 loff_t *ppos, size_t len, unsigned int flags,
722 			 splice_actor *actor)
723 {
724 	ssize_t ret;
725 	struct inode *inode = out->f_mapping->host;
726 	struct splice_desc sd = {
727 		.total_len = len,
728 		.flags = flags,
729 		.pos = *ppos,
730 		.u.file = out,
731 	};
732 
733 	/*
734 	 * The actor worker might be calling ->write_begin and
735 	 * ->write_end. Most of the time, these expect i_mutex to
736 	 * be held. Since this may result in an ABBA deadlock with
737 	 * pipe->inode, we have to order lock acquiry here.
738 	 */
739 	inode_double_lock(inode, pipe->inode);
740 	ret = __splice_from_pipe(pipe, &sd, actor);
741 	inode_double_unlock(inode, pipe->inode);
742 
743 	return ret;
744 }
745 
746 /**
747  * generic_file_splice_write_nolock - generic_file_splice_write without mutexes
748  * @pipe:	pipe info
749  * @out:	file to write to
750  * @ppos:	position in @out
751  * @len:	number of bytes to splice
752  * @flags:	splice modifier flags
753  *
754  * Description:
755  *    Will either move or copy pages (determined by @flags options) from
756  *    the given pipe inode to the given file. The caller is responsible
757  *    for acquiring i_mutex on both inodes.
758  *
759  */
760 ssize_t
761 generic_file_splice_write_nolock(struct pipe_inode_info *pipe, struct file *out,
762 				 loff_t *ppos, size_t len, unsigned int flags)
763 {
764 	struct address_space *mapping = out->f_mapping;
765 	struct inode *inode = mapping->host;
766 	struct splice_desc sd = {
767 		.total_len = len,
768 		.flags = flags,
769 		.pos = *ppos,
770 		.u.file = out,
771 	};
772 	ssize_t ret;
773 	int err;
774 
775 	err = file_remove_suid(out);
776 	if (unlikely(err))
777 		return err;
778 
779 	ret = __splice_from_pipe(pipe, &sd, pipe_to_file);
780 	if (ret > 0) {
781 		unsigned long nr_pages;
782 
783 		*ppos += ret;
784 		nr_pages = (ret + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
785 
786 		/*
787 		 * If file or inode is SYNC and we actually wrote some data,
788 		 * sync it.
789 		 */
790 		if (unlikely((out->f_flags & O_SYNC) || IS_SYNC(inode))) {
791 			err = generic_osync_inode(inode, mapping,
792 						  OSYNC_METADATA|OSYNC_DATA);
793 
794 			if (err)
795 				ret = err;
796 		}
797 		balance_dirty_pages_ratelimited_nr(mapping, nr_pages);
798 	}
799 
800 	return ret;
801 }
802 
803 EXPORT_SYMBOL(generic_file_splice_write_nolock);
804 
805 /**
806  * generic_file_splice_write - splice data from a pipe to a file
807  * @pipe:	pipe info
808  * @out:	file to write to
809  * @ppos:	position in @out
810  * @len:	number of bytes to splice
811  * @flags:	splice modifier flags
812  *
813  * Description:
814  *    Will either move or copy pages (determined by @flags options) from
815  *    the given pipe inode to the given file.
816  *
817  */
818 ssize_t
819 generic_file_splice_write(struct pipe_inode_info *pipe, struct file *out,
820 			  loff_t *ppos, size_t len, unsigned int flags)
821 {
822 	struct address_space *mapping = out->f_mapping;
823 	struct inode *inode = mapping->host;
824 	struct splice_desc sd = {
825 		.total_len = len,
826 		.flags = flags,
827 		.pos = *ppos,
828 		.u.file = out,
829 	};
830 	ssize_t ret;
831 
832 	inode_double_lock(inode, pipe->inode);
833 	ret = file_remove_suid(out);
834 	if (likely(!ret))
835 		ret = __splice_from_pipe(pipe, &sd, pipe_to_file);
836 	inode_double_unlock(inode, pipe->inode);
837 	if (ret > 0) {
838 		unsigned long nr_pages;
839 
840 		*ppos += ret;
841 		nr_pages = (ret + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
842 
843 		/*
844 		 * If file or inode is SYNC and we actually wrote some data,
845 		 * sync it.
846 		 */
847 		if (unlikely((out->f_flags & O_SYNC) || IS_SYNC(inode))) {
848 			int err;
849 
850 			mutex_lock(&inode->i_mutex);
851 			err = generic_osync_inode(inode, mapping,
852 						  OSYNC_METADATA|OSYNC_DATA);
853 			mutex_unlock(&inode->i_mutex);
854 
855 			if (err)
856 				ret = err;
857 		}
858 		balance_dirty_pages_ratelimited_nr(mapping, nr_pages);
859 	}
860 
861 	return ret;
862 }
863 
864 EXPORT_SYMBOL(generic_file_splice_write);
865 
866 /**
867  * generic_splice_sendpage - splice data from a pipe to a socket
868  * @pipe:	pipe to splice from
869  * @out:	socket to write to
870  * @ppos:	position in @out
871  * @len:	number of bytes to splice
872  * @flags:	splice modifier flags
873  *
874  * Description:
875  *    Will send @len bytes from the pipe to a network socket. No data copying
876  *    is involved.
877  *
878  */
879 ssize_t generic_splice_sendpage(struct pipe_inode_info *pipe, struct file *out,
880 				loff_t *ppos, size_t len, unsigned int flags)
881 {
882 	return splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_sendpage);
883 }
884 
885 EXPORT_SYMBOL(generic_splice_sendpage);
886 
887 /*
888  * Attempt to initiate a splice from pipe to file.
889  */
890 static long do_splice_from(struct pipe_inode_info *pipe, struct file *out,
891 			   loff_t *ppos, size_t len, unsigned int flags)
892 {
893 	int ret;
894 
895 	if (unlikely(!out->f_op || !out->f_op->splice_write))
896 		return -EINVAL;
897 
898 	if (unlikely(!(out->f_mode & FMODE_WRITE)))
899 		return -EBADF;
900 
901 	if (unlikely(out->f_flags & O_APPEND))
902 		return -EINVAL;
903 
904 	ret = rw_verify_area(WRITE, out, ppos, len);
905 	if (unlikely(ret < 0))
906 		return ret;
907 
908 	return out->f_op->splice_write(pipe, out, ppos, len, flags);
909 }
910 
911 /*
912  * Attempt to initiate a splice from a file to a pipe.
913  */
914 static long do_splice_to(struct file *in, loff_t *ppos,
915 			 struct pipe_inode_info *pipe, size_t len,
916 			 unsigned int flags)
917 {
918 	int ret;
919 
920 	if (unlikely(!in->f_op || !in->f_op->splice_read))
921 		return -EINVAL;
922 
923 	if (unlikely(!(in->f_mode & FMODE_READ)))
924 		return -EBADF;
925 
926 	ret = rw_verify_area(READ, in, ppos, len);
927 	if (unlikely(ret < 0))
928 		return ret;
929 
930 	return in->f_op->splice_read(in, ppos, pipe, len, flags);
931 }
932 
933 /**
934  * splice_direct_to_actor - splices data directly between two non-pipes
935  * @in:		file to splice from
936  * @sd:		actor information on where to splice to
937  * @actor:	handles the data splicing
938  *
939  * Description:
940  *    This is a special case helper to splice directly between two
941  *    points, without requiring an explicit pipe. Internally an allocated
942  *    pipe is cached in the process, and reused during the lifetime of
943  *    that process.
944  *
945  */
946 ssize_t splice_direct_to_actor(struct file *in, struct splice_desc *sd,
947 			       splice_direct_actor *actor)
948 {
949 	struct pipe_inode_info *pipe;
950 	long ret, bytes;
951 	umode_t i_mode;
952 	size_t len;
953 	int i, flags;
954 
955 	/*
956 	 * We require the input being a regular file, as we don't want to
957 	 * randomly drop data for eg socket -> socket splicing. Use the
958 	 * piped splicing for that!
959 	 */
960 	i_mode = in->f_path.dentry->d_inode->i_mode;
961 	if (unlikely(!S_ISREG(i_mode) && !S_ISBLK(i_mode)))
962 		return -EINVAL;
963 
964 	/*
965 	 * neither in nor out is a pipe, setup an internal pipe attached to
966 	 * 'out' and transfer the wanted data from 'in' to 'out' through that
967 	 */
968 	pipe = current->splice_pipe;
969 	if (unlikely(!pipe)) {
970 		pipe = alloc_pipe_info(NULL);
971 		if (!pipe)
972 			return -ENOMEM;
973 
974 		/*
975 		 * We don't have an immediate reader, but we'll read the stuff
976 		 * out of the pipe right after the splice_to_pipe(). So set
977 		 * PIPE_READERS appropriately.
978 		 */
979 		pipe->readers = 1;
980 
981 		current->splice_pipe = pipe;
982 	}
983 
984 	/*
985 	 * Do the splice.
986 	 */
987 	ret = 0;
988 	bytes = 0;
989 	len = sd->total_len;
990 	flags = sd->flags;
991 
992 	/*
993 	 * Don't block on output, we have to drain the direct pipe.
994 	 */
995 	sd->flags &= ~SPLICE_F_NONBLOCK;
996 
997 	while (len) {
998 		size_t read_len;
999 		loff_t pos = sd->pos, prev_pos = pos;
1000 
1001 		ret = do_splice_to(in, &pos, pipe, len, flags);
1002 		if (unlikely(ret <= 0))
1003 			goto out_release;
1004 
1005 		read_len = ret;
1006 		sd->total_len = read_len;
1007 
1008 		/*
1009 		 * NOTE: nonblocking mode only applies to the input. We
1010 		 * must not do the output in nonblocking mode as then we
1011 		 * could get stuck data in the internal pipe:
1012 		 */
1013 		ret = actor(pipe, sd);
1014 		if (unlikely(ret <= 0)) {
1015 			sd->pos = prev_pos;
1016 			goto out_release;
1017 		}
1018 
1019 		bytes += ret;
1020 		len -= ret;
1021 		sd->pos = pos;
1022 
1023 		if (ret < read_len) {
1024 			sd->pos = prev_pos + ret;
1025 			goto out_release;
1026 		}
1027 	}
1028 
1029 done:
1030 	pipe->nrbufs = pipe->curbuf = 0;
1031 	file_accessed(in);
1032 	return bytes;
1033 
1034 out_release:
1035 	/*
1036 	 * If we did an incomplete transfer we must release
1037 	 * the pipe buffers in question:
1038 	 */
1039 	for (i = 0; i < PIPE_BUFFERS; i++) {
1040 		struct pipe_buffer *buf = pipe->bufs + i;
1041 
1042 		if (buf->ops) {
1043 			buf->ops->release(pipe, buf);
1044 			buf->ops = NULL;
1045 		}
1046 	}
1047 
1048 	if (!bytes)
1049 		bytes = ret;
1050 
1051 	goto done;
1052 }
1053 EXPORT_SYMBOL(splice_direct_to_actor);
1054 
1055 static int direct_splice_actor(struct pipe_inode_info *pipe,
1056 			       struct splice_desc *sd)
1057 {
1058 	struct file *file = sd->u.file;
1059 
1060 	return do_splice_from(pipe, file, &sd->pos, sd->total_len, sd->flags);
1061 }
1062 
1063 /**
1064  * do_splice_direct - splices data directly between two files
1065  * @in:		file to splice from
1066  * @ppos:	input file offset
1067  * @out:	file to splice to
1068  * @len:	number of bytes to splice
1069  * @flags:	splice modifier flags
1070  *
1071  * Description:
1072  *    For use by do_sendfile(). splice can easily emulate sendfile, but
1073  *    doing it in the application would incur an extra system call
1074  *    (splice in + splice out, as compared to just sendfile()). So this helper
1075  *    can splice directly through a process-private pipe.
1076  *
1077  */
1078 long do_splice_direct(struct file *in, loff_t *ppos, struct file *out,
1079 		      size_t len, unsigned int flags)
1080 {
1081 	struct splice_desc sd = {
1082 		.len		= len,
1083 		.total_len	= len,
1084 		.flags		= flags,
1085 		.pos		= *ppos,
1086 		.u.file		= out,
1087 	};
1088 	long ret;
1089 
1090 	ret = splice_direct_to_actor(in, &sd, direct_splice_actor);
1091 	if (ret > 0)
1092 		*ppos = sd.pos;
1093 
1094 	return ret;
1095 }
1096 
1097 /*
1098  * After the inode slimming patch, i_pipe/i_bdev/i_cdev share the same
1099  * location, so checking ->i_pipe is not enough to verify that this is a
1100  * pipe.
1101  */
1102 static inline struct pipe_inode_info *pipe_info(struct inode *inode)
1103 {
1104 	if (S_ISFIFO(inode->i_mode))
1105 		return inode->i_pipe;
1106 
1107 	return NULL;
1108 }
1109 
1110 /*
1111  * Determine where to splice to/from.
1112  */
1113 static long do_splice(struct file *in, loff_t __user *off_in,
1114 		      struct file *out, loff_t __user *off_out,
1115 		      size_t len, unsigned int flags)
1116 {
1117 	struct pipe_inode_info *pipe;
1118 	loff_t offset, *off;
1119 	long ret;
1120 
1121 	pipe = pipe_info(in->f_path.dentry->d_inode);
1122 	if (pipe) {
1123 		if (off_in)
1124 			return -ESPIPE;
1125 		if (off_out) {
1126 			if (out->f_op->llseek == no_llseek)
1127 				return -EINVAL;
1128 			if (copy_from_user(&offset, off_out, sizeof(loff_t)))
1129 				return -EFAULT;
1130 			off = &offset;
1131 		} else
1132 			off = &out->f_pos;
1133 
1134 		ret = do_splice_from(pipe, out, off, len, flags);
1135 
1136 		if (off_out && copy_to_user(off_out, off, sizeof(loff_t)))
1137 			ret = -EFAULT;
1138 
1139 		return ret;
1140 	}
1141 
1142 	pipe = pipe_info(out->f_path.dentry->d_inode);
1143 	if (pipe) {
1144 		if (off_out)
1145 			return -ESPIPE;
1146 		if (off_in) {
1147 			if (in->f_op->llseek == no_llseek)
1148 				return -EINVAL;
1149 			if (copy_from_user(&offset, off_in, sizeof(loff_t)))
1150 				return -EFAULT;
1151 			off = &offset;
1152 		} else
1153 			off = &in->f_pos;
1154 
1155 		ret = do_splice_to(in, off, pipe, len, flags);
1156 
1157 		if (off_in && copy_to_user(off_in, off, sizeof(loff_t)))
1158 			ret = -EFAULT;
1159 
1160 		return ret;
1161 	}
1162 
1163 	return -EINVAL;
1164 }
1165 
1166 /*
1167  * Map an iov into an array of pages and offset/length tupples. With the
1168  * partial_page structure, we can map several non-contiguous ranges into
1169  * our ones pages[] map instead of splitting that operation into pieces.
1170  * Could easily be exported as a generic helper for other users, in which
1171  * case one would probably want to add a 'max_nr_pages' parameter as well.
1172  */
1173 static int get_iovec_page_array(const struct iovec __user *iov,
1174 				unsigned int nr_vecs, struct page **pages,
1175 				struct partial_page *partial, int aligned)
1176 {
1177 	int buffers = 0, error = 0;
1178 
1179 	while (nr_vecs) {
1180 		unsigned long off, npages;
1181 		struct iovec entry;
1182 		void __user *base;
1183 		size_t len;
1184 		int i;
1185 
1186 		error = -EFAULT;
1187 		if (copy_from_user(&entry, iov, sizeof(entry)))
1188 			break;
1189 
1190 		base = entry.iov_base;
1191 		len = entry.iov_len;
1192 
1193 		/*
1194 		 * Sanity check this iovec. 0 read succeeds.
1195 		 */
1196 		error = 0;
1197 		if (unlikely(!len))
1198 			break;
1199 		error = -EFAULT;
1200 		if (!access_ok(VERIFY_READ, base, len))
1201 			break;
1202 
1203 		/*
1204 		 * Get this base offset and number of pages, then map
1205 		 * in the user pages.
1206 		 */
1207 		off = (unsigned long) base & ~PAGE_MASK;
1208 
1209 		/*
1210 		 * If asked for alignment, the offset must be zero and the
1211 		 * length a multiple of the PAGE_SIZE.
1212 		 */
1213 		error = -EINVAL;
1214 		if (aligned && (off || len & ~PAGE_MASK))
1215 			break;
1216 
1217 		npages = (off + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1218 		if (npages > PIPE_BUFFERS - buffers)
1219 			npages = PIPE_BUFFERS - buffers;
1220 
1221 		error = get_user_pages_fast((unsigned long)base, npages,
1222 					0, &pages[buffers]);
1223 
1224 		if (unlikely(error <= 0))
1225 			break;
1226 
1227 		/*
1228 		 * Fill this contiguous range into the partial page map.
1229 		 */
1230 		for (i = 0; i < error; i++) {
1231 			const int plen = min_t(size_t, len, PAGE_SIZE - off);
1232 
1233 			partial[buffers].offset = off;
1234 			partial[buffers].len = plen;
1235 
1236 			off = 0;
1237 			len -= plen;
1238 			buffers++;
1239 		}
1240 
1241 		/*
1242 		 * We didn't complete this iov, stop here since it probably
1243 		 * means we have to move some of this into a pipe to
1244 		 * be able to continue.
1245 		 */
1246 		if (len)
1247 			break;
1248 
1249 		/*
1250 		 * Don't continue if we mapped fewer pages than we asked for,
1251 		 * or if we mapped the max number of pages that we have
1252 		 * room for.
1253 		 */
1254 		if (error < npages || buffers == PIPE_BUFFERS)
1255 			break;
1256 
1257 		nr_vecs--;
1258 		iov++;
1259 	}
1260 
1261 	if (buffers)
1262 		return buffers;
1263 
1264 	return error;
1265 }
1266 
1267 static int pipe_to_user(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1268 			struct splice_desc *sd)
1269 {
1270 	char *src;
1271 	int ret;
1272 
1273 	ret = buf->ops->confirm(pipe, buf);
1274 	if (unlikely(ret))
1275 		return ret;
1276 
1277 	/*
1278 	 * See if we can use the atomic maps, by prefaulting in the
1279 	 * pages and doing an atomic copy
1280 	 */
1281 	if (!fault_in_pages_writeable(sd->u.userptr, sd->len)) {
1282 		src = buf->ops->map(pipe, buf, 1);
1283 		ret = __copy_to_user_inatomic(sd->u.userptr, src + buf->offset,
1284 							sd->len);
1285 		buf->ops->unmap(pipe, buf, src);
1286 		if (!ret) {
1287 			ret = sd->len;
1288 			goto out;
1289 		}
1290 	}
1291 
1292 	/*
1293 	 * No dice, use slow non-atomic map and copy
1294  	 */
1295 	src = buf->ops->map(pipe, buf, 0);
1296 
1297 	ret = sd->len;
1298 	if (copy_to_user(sd->u.userptr, src + buf->offset, sd->len))
1299 		ret = -EFAULT;
1300 
1301 	buf->ops->unmap(pipe, buf, src);
1302 out:
1303 	if (ret > 0)
1304 		sd->u.userptr += ret;
1305 	return ret;
1306 }
1307 
1308 /*
1309  * For lack of a better implementation, implement vmsplice() to userspace
1310  * as a simple copy of the pipes pages to the user iov.
1311  */
1312 static long vmsplice_to_user(struct file *file, const struct iovec __user *iov,
1313 			     unsigned long nr_segs, unsigned int flags)
1314 {
1315 	struct pipe_inode_info *pipe;
1316 	struct splice_desc sd;
1317 	ssize_t size;
1318 	int error;
1319 	long ret;
1320 
1321 	pipe = pipe_info(file->f_path.dentry->d_inode);
1322 	if (!pipe)
1323 		return -EBADF;
1324 
1325 	if (pipe->inode)
1326 		mutex_lock(&pipe->inode->i_mutex);
1327 
1328 	error = ret = 0;
1329 	while (nr_segs) {
1330 		void __user *base;
1331 		size_t len;
1332 
1333 		/*
1334 		 * Get user address base and length for this iovec.
1335 		 */
1336 		error = get_user(base, &iov->iov_base);
1337 		if (unlikely(error))
1338 			break;
1339 		error = get_user(len, &iov->iov_len);
1340 		if (unlikely(error))
1341 			break;
1342 
1343 		/*
1344 		 * Sanity check this iovec. 0 read succeeds.
1345 		 */
1346 		if (unlikely(!len))
1347 			break;
1348 		if (unlikely(!base)) {
1349 			error = -EFAULT;
1350 			break;
1351 		}
1352 
1353 		if (unlikely(!access_ok(VERIFY_WRITE, base, len))) {
1354 			error = -EFAULT;
1355 			break;
1356 		}
1357 
1358 		sd.len = 0;
1359 		sd.total_len = len;
1360 		sd.flags = flags;
1361 		sd.u.userptr = base;
1362 		sd.pos = 0;
1363 
1364 		size = __splice_from_pipe(pipe, &sd, pipe_to_user);
1365 		if (size < 0) {
1366 			if (!ret)
1367 				ret = size;
1368 
1369 			break;
1370 		}
1371 
1372 		ret += size;
1373 
1374 		if (size < len)
1375 			break;
1376 
1377 		nr_segs--;
1378 		iov++;
1379 	}
1380 
1381 	if (pipe->inode)
1382 		mutex_unlock(&pipe->inode->i_mutex);
1383 
1384 	if (!ret)
1385 		ret = error;
1386 
1387 	return ret;
1388 }
1389 
1390 /*
1391  * vmsplice splices a user address range into a pipe. It can be thought of
1392  * as splice-from-memory, where the regular splice is splice-from-file (or
1393  * to file). In both cases the output is a pipe, naturally.
1394  */
1395 static long vmsplice_to_pipe(struct file *file, const struct iovec __user *iov,
1396 			     unsigned long nr_segs, unsigned int flags)
1397 {
1398 	struct pipe_inode_info *pipe;
1399 	struct page *pages[PIPE_BUFFERS];
1400 	struct partial_page partial[PIPE_BUFFERS];
1401 	struct splice_pipe_desc spd = {
1402 		.pages = pages,
1403 		.partial = partial,
1404 		.flags = flags,
1405 		.ops = &user_page_pipe_buf_ops,
1406 		.spd_release = spd_release_page,
1407 	};
1408 
1409 	pipe = pipe_info(file->f_path.dentry->d_inode);
1410 	if (!pipe)
1411 		return -EBADF;
1412 
1413 	spd.nr_pages = get_iovec_page_array(iov, nr_segs, pages, partial,
1414 					    flags & SPLICE_F_GIFT);
1415 	if (spd.nr_pages <= 0)
1416 		return spd.nr_pages;
1417 
1418 	return splice_to_pipe(pipe, &spd);
1419 }
1420 
1421 /*
1422  * Note that vmsplice only really supports true splicing _from_ user memory
1423  * to a pipe, not the other way around. Splicing from user memory is a simple
1424  * operation that can be supported without any funky alignment restrictions
1425  * or nasty vm tricks. We simply map in the user memory and fill them into
1426  * a pipe. The reverse isn't quite as easy, though. There are two possible
1427  * solutions for that:
1428  *
1429  *	- memcpy() the data internally, at which point we might as well just
1430  *	  do a regular read() on the buffer anyway.
1431  *	- Lots of nasty vm tricks, that are neither fast nor flexible (it
1432  *	  has restriction limitations on both ends of the pipe).
1433  *
1434  * Currently we punt and implement it as a normal copy, see pipe_to_user().
1435  *
1436  */
1437 asmlinkage long sys_vmsplice(int fd, const struct iovec __user *iov,
1438 			     unsigned long nr_segs, unsigned int flags)
1439 {
1440 	struct file *file;
1441 	long error;
1442 	int fput;
1443 
1444 	if (unlikely(nr_segs > UIO_MAXIOV))
1445 		return -EINVAL;
1446 	else if (unlikely(!nr_segs))
1447 		return 0;
1448 
1449 	error = -EBADF;
1450 	file = fget_light(fd, &fput);
1451 	if (file) {
1452 		if (file->f_mode & FMODE_WRITE)
1453 			error = vmsplice_to_pipe(file, iov, nr_segs, flags);
1454 		else if (file->f_mode & FMODE_READ)
1455 			error = vmsplice_to_user(file, iov, nr_segs, flags);
1456 
1457 		fput_light(file, fput);
1458 	}
1459 
1460 	return error;
1461 }
1462 
1463 asmlinkage long sys_splice(int fd_in, loff_t __user *off_in,
1464 			   int fd_out, loff_t __user *off_out,
1465 			   size_t len, unsigned int flags)
1466 {
1467 	long error;
1468 	struct file *in, *out;
1469 	int fput_in, fput_out;
1470 
1471 	if (unlikely(!len))
1472 		return 0;
1473 
1474 	error = -EBADF;
1475 	in = fget_light(fd_in, &fput_in);
1476 	if (in) {
1477 		if (in->f_mode & FMODE_READ) {
1478 			out = fget_light(fd_out, &fput_out);
1479 			if (out) {
1480 				if (out->f_mode & FMODE_WRITE)
1481 					error = do_splice(in, off_in,
1482 							  out, off_out,
1483 							  len, flags);
1484 				fput_light(out, fput_out);
1485 			}
1486 		}
1487 
1488 		fput_light(in, fput_in);
1489 	}
1490 
1491 	return error;
1492 }
1493 
1494 /*
1495  * Make sure there's data to read. Wait for input if we can, otherwise
1496  * return an appropriate error.
1497  */
1498 static int link_ipipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1499 {
1500 	int ret;
1501 
1502 	/*
1503 	 * Check ->nrbufs without the inode lock first. This function
1504 	 * is speculative anyways, so missing one is ok.
1505 	 */
1506 	if (pipe->nrbufs)
1507 		return 0;
1508 
1509 	ret = 0;
1510 	mutex_lock(&pipe->inode->i_mutex);
1511 
1512 	while (!pipe->nrbufs) {
1513 		if (signal_pending(current)) {
1514 			ret = -ERESTARTSYS;
1515 			break;
1516 		}
1517 		if (!pipe->writers)
1518 			break;
1519 		if (!pipe->waiting_writers) {
1520 			if (flags & SPLICE_F_NONBLOCK) {
1521 				ret = -EAGAIN;
1522 				break;
1523 			}
1524 		}
1525 		pipe_wait(pipe);
1526 	}
1527 
1528 	mutex_unlock(&pipe->inode->i_mutex);
1529 	return ret;
1530 }
1531 
1532 /*
1533  * Make sure there's writeable room. Wait for room if we can, otherwise
1534  * return an appropriate error.
1535  */
1536 static int link_opipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1537 {
1538 	int ret;
1539 
1540 	/*
1541 	 * Check ->nrbufs without the inode lock first. This function
1542 	 * is speculative anyways, so missing one is ok.
1543 	 */
1544 	if (pipe->nrbufs < PIPE_BUFFERS)
1545 		return 0;
1546 
1547 	ret = 0;
1548 	mutex_lock(&pipe->inode->i_mutex);
1549 
1550 	while (pipe->nrbufs >= PIPE_BUFFERS) {
1551 		if (!pipe->readers) {
1552 			send_sig(SIGPIPE, current, 0);
1553 			ret = -EPIPE;
1554 			break;
1555 		}
1556 		if (flags & SPLICE_F_NONBLOCK) {
1557 			ret = -EAGAIN;
1558 			break;
1559 		}
1560 		if (signal_pending(current)) {
1561 			ret = -ERESTARTSYS;
1562 			break;
1563 		}
1564 		pipe->waiting_writers++;
1565 		pipe_wait(pipe);
1566 		pipe->waiting_writers--;
1567 	}
1568 
1569 	mutex_unlock(&pipe->inode->i_mutex);
1570 	return ret;
1571 }
1572 
1573 /*
1574  * Link contents of ipipe to opipe.
1575  */
1576 static int link_pipe(struct pipe_inode_info *ipipe,
1577 		     struct pipe_inode_info *opipe,
1578 		     size_t len, unsigned int flags)
1579 {
1580 	struct pipe_buffer *ibuf, *obuf;
1581 	int ret = 0, i = 0, nbuf;
1582 
1583 	/*
1584 	 * Potential ABBA deadlock, work around it by ordering lock
1585 	 * grabbing by inode address. Otherwise two different processes
1586 	 * could deadlock (one doing tee from A -> B, the other from B -> A).
1587 	 */
1588 	inode_double_lock(ipipe->inode, opipe->inode);
1589 
1590 	do {
1591 		if (!opipe->readers) {
1592 			send_sig(SIGPIPE, current, 0);
1593 			if (!ret)
1594 				ret = -EPIPE;
1595 			break;
1596 		}
1597 
1598 		/*
1599 		 * If we have iterated all input buffers or ran out of
1600 		 * output room, break.
1601 		 */
1602 		if (i >= ipipe->nrbufs || opipe->nrbufs >= PIPE_BUFFERS)
1603 			break;
1604 
1605 		ibuf = ipipe->bufs + ((ipipe->curbuf + i) & (PIPE_BUFFERS - 1));
1606 		nbuf = (opipe->curbuf + opipe->nrbufs) & (PIPE_BUFFERS - 1);
1607 
1608 		/*
1609 		 * Get a reference to this pipe buffer,
1610 		 * so we can copy the contents over.
1611 		 */
1612 		ibuf->ops->get(ipipe, ibuf);
1613 
1614 		obuf = opipe->bufs + nbuf;
1615 		*obuf = *ibuf;
1616 
1617 		/*
1618 		 * Don't inherit the gift flag, we need to
1619 		 * prevent multiple steals of this page.
1620 		 */
1621 		obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1622 
1623 		if (obuf->len > len)
1624 			obuf->len = len;
1625 
1626 		opipe->nrbufs++;
1627 		ret += obuf->len;
1628 		len -= obuf->len;
1629 		i++;
1630 	} while (len);
1631 
1632 	/*
1633 	 * return EAGAIN if we have the potential of some data in the
1634 	 * future, otherwise just return 0
1635 	 */
1636 	if (!ret && ipipe->waiting_writers && (flags & SPLICE_F_NONBLOCK))
1637 		ret = -EAGAIN;
1638 
1639 	inode_double_unlock(ipipe->inode, opipe->inode);
1640 
1641 	/*
1642 	 * If we put data in the output pipe, wakeup any potential readers.
1643 	 */
1644 	if (ret > 0) {
1645 		smp_mb();
1646 		if (waitqueue_active(&opipe->wait))
1647 			wake_up_interruptible(&opipe->wait);
1648 		kill_fasync(&opipe->fasync_readers, SIGIO, POLL_IN);
1649 	}
1650 
1651 	return ret;
1652 }
1653 
1654 /*
1655  * This is a tee(1) implementation that works on pipes. It doesn't copy
1656  * any data, it simply references the 'in' pages on the 'out' pipe.
1657  * The 'flags' used are the SPLICE_F_* variants, currently the only
1658  * applicable one is SPLICE_F_NONBLOCK.
1659  */
1660 static long do_tee(struct file *in, struct file *out, size_t len,
1661 		   unsigned int flags)
1662 {
1663 	struct pipe_inode_info *ipipe = pipe_info(in->f_path.dentry->d_inode);
1664 	struct pipe_inode_info *opipe = pipe_info(out->f_path.dentry->d_inode);
1665 	int ret = -EINVAL;
1666 
1667 	/*
1668 	 * Duplicate the contents of ipipe to opipe without actually
1669 	 * copying the data.
1670 	 */
1671 	if (ipipe && opipe && ipipe != opipe) {
1672 		/*
1673 		 * Keep going, unless we encounter an error. The ipipe/opipe
1674 		 * ordering doesn't really matter.
1675 		 */
1676 		ret = link_ipipe_prep(ipipe, flags);
1677 		if (!ret) {
1678 			ret = link_opipe_prep(opipe, flags);
1679 			if (!ret)
1680 				ret = link_pipe(ipipe, opipe, len, flags);
1681 		}
1682 	}
1683 
1684 	return ret;
1685 }
1686 
1687 asmlinkage long sys_tee(int fdin, int fdout, size_t len, unsigned int flags)
1688 {
1689 	struct file *in;
1690 	int error, fput_in;
1691 
1692 	if (unlikely(!len))
1693 		return 0;
1694 
1695 	error = -EBADF;
1696 	in = fget_light(fdin, &fput_in);
1697 	if (in) {
1698 		if (in->f_mode & FMODE_READ) {
1699 			int fput_out;
1700 			struct file *out = fget_light(fdout, &fput_out);
1701 
1702 			if (out) {
1703 				if (out->f_mode & FMODE_WRITE)
1704 					error = do_tee(in, out, len, flags);
1705 				fput_light(out, fput_out);
1706 			}
1707 		}
1708  		fput_light(in, fput_in);
1709  	}
1710 
1711 	return error;
1712 }
1713