xref: /linux/fs/splice.c (revision 8bc7c5e525584903ea83332e18a2118ed3b1985e)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * "splice": joining two ropes together by interweaving their strands.
4  *
5  * This is the "extended pipe" functionality, where a pipe is used as
6  * an arbitrary in-memory buffer. Think of a pipe as a small kernel
7  * buffer that you can use to transfer data from one end to the other.
8  *
9  * The traditional unix read/write is extended with a "splice()" operation
10  * that transfers data buffers to or from a pipe buffer.
11  *
12  * Named by Larry McVoy, original implementation from Linus, extended by
13  * Jens to support splicing to files, network, direct splicing, etc and
14  * fixing lots of bugs.
15  *
16  * Copyright (C) 2005-2006 Jens Axboe <axboe@kernel.dk>
17  * Copyright (C) 2005-2006 Linus Torvalds <torvalds@osdl.org>
18  * Copyright (C) 2006 Ingo Molnar <mingo@elte.hu>
19  *
20  */
21 #include <linux/bvec.h>
22 #include <linux/fs.h>
23 #include <linux/file.h>
24 #include <linux/pagemap.h>
25 #include <linux/splice.h>
26 #include <linux/memcontrol.h>
27 #include <linux/mm_inline.h>
28 #include <linux/swap.h>
29 #include <linux/writeback.h>
30 #include <linux/export.h>
31 #include <linux/syscalls.h>
32 #include <linux/uio.h>
33 #include <linux/fsnotify.h>
34 #include <linux/security.h>
35 #include <linux/gfp.h>
36 #include <linux/net.h>
37 #include <linux/socket.h>
38 #include <linux/sched/signal.h>
39 
40 #include "internal.h"
41 
42 /*
43  * Splice doesn't support FMODE_NOWAIT. Since pipes may set this flag to
44  * indicate they support non-blocking reads or writes, we must clear it
45  * here if set to avoid blocking other users of this pipe if splice is
46  * being done on it.
47  */
48 static noinline void noinline pipe_clear_nowait(struct file *file)
49 {
50 	fmode_t fmode = READ_ONCE(file->f_mode);
51 
52 	do {
53 		if (!(fmode & FMODE_NOWAIT))
54 			break;
55 	} while (!try_cmpxchg(&file->f_mode, &fmode, fmode & ~FMODE_NOWAIT));
56 }
57 
58 /*
59  * Attempt to steal a page from a pipe buffer. This should perhaps go into
60  * a vm helper function, it's already simplified quite a bit by the
61  * addition of remove_mapping(). If success is returned, the caller may
62  * attempt to reuse this page for another destination.
63  */
64 static bool page_cache_pipe_buf_try_steal(struct pipe_inode_info *pipe,
65 		struct pipe_buffer *buf)
66 {
67 	struct folio *folio = page_folio(buf->page);
68 	struct address_space *mapping;
69 
70 	folio_lock(folio);
71 
72 	mapping = folio_mapping(folio);
73 	if (mapping) {
74 		WARN_ON(!folio_test_uptodate(folio));
75 
76 		/*
77 		 * At least for ext2 with nobh option, we need to wait on
78 		 * writeback completing on this folio, since we'll remove it
79 		 * from the pagecache.  Otherwise truncate wont wait on the
80 		 * folio, allowing the disk blocks to be reused by someone else
81 		 * before we actually wrote our data to them. fs corruption
82 		 * ensues.
83 		 */
84 		folio_wait_writeback(folio);
85 
86 		if (!filemap_release_folio(folio, GFP_KERNEL))
87 			goto out_unlock;
88 
89 		/*
90 		 * If we succeeded in removing the mapping, set LRU flag
91 		 * and return good.
92 		 */
93 		if (remove_mapping(mapping, folio)) {
94 			buf->flags |= PIPE_BUF_FLAG_LRU;
95 			return true;
96 		}
97 	}
98 
99 	/*
100 	 * Raced with truncate or failed to remove folio from current
101 	 * address space, unlock and return failure.
102 	 */
103 out_unlock:
104 	folio_unlock(folio);
105 	return false;
106 }
107 
108 static void page_cache_pipe_buf_release(struct pipe_inode_info *pipe,
109 					struct pipe_buffer *buf)
110 {
111 	put_page(buf->page);
112 	buf->flags &= ~PIPE_BUF_FLAG_LRU;
113 }
114 
115 /*
116  * Check whether the contents of buf is OK to access. Since the content
117  * is a page cache page, IO may be in flight.
118  */
119 static int page_cache_pipe_buf_confirm(struct pipe_inode_info *pipe,
120 				       struct pipe_buffer *buf)
121 {
122 	struct folio *folio = page_folio(buf->page);
123 	int err;
124 
125 	if (!folio_test_uptodate(folio)) {
126 		folio_lock(folio);
127 
128 		/*
129 		 * Folio got truncated/unhashed. This will cause a 0-byte
130 		 * splice, if this is the first page.
131 		 */
132 		if (!folio->mapping) {
133 			err = -ENODATA;
134 			goto error;
135 		}
136 
137 		/*
138 		 * Uh oh, read-error from disk.
139 		 */
140 		if (!folio_test_uptodate(folio)) {
141 			err = -EIO;
142 			goto error;
143 		}
144 
145 		/* Folio is ok after all, we are done */
146 		folio_unlock(folio);
147 	}
148 
149 	return 0;
150 error:
151 	folio_unlock(folio);
152 	return err;
153 }
154 
155 const struct pipe_buf_operations page_cache_pipe_buf_ops = {
156 	.confirm	= page_cache_pipe_buf_confirm,
157 	.release	= page_cache_pipe_buf_release,
158 	.try_steal	= page_cache_pipe_buf_try_steal,
159 	.get		= generic_pipe_buf_get,
160 };
161 
162 static bool user_page_pipe_buf_try_steal(struct pipe_inode_info *pipe,
163 		struct pipe_buffer *buf)
164 {
165 	if (!(buf->flags & PIPE_BUF_FLAG_GIFT))
166 		return false;
167 
168 	buf->flags |= PIPE_BUF_FLAG_LRU;
169 	return generic_pipe_buf_try_steal(pipe, buf);
170 }
171 
172 static const struct pipe_buf_operations user_page_pipe_buf_ops = {
173 	.release	= page_cache_pipe_buf_release,
174 	.try_steal	= user_page_pipe_buf_try_steal,
175 	.get		= generic_pipe_buf_get,
176 };
177 
178 static void wakeup_pipe_readers(struct pipe_inode_info *pipe)
179 {
180 	smp_mb();
181 	if (waitqueue_active(&pipe->rd_wait))
182 		wake_up_interruptible(&pipe->rd_wait);
183 	kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
184 }
185 
186 /**
187  * splice_to_pipe - fill passed data into a pipe
188  * @pipe:	pipe to fill
189  * @spd:	data to fill
190  *
191  * Description:
192  *    @spd contains a map of pages and len/offset tuples, along with
193  *    the struct pipe_buf_operations associated with these pages. This
194  *    function will link that data to the pipe.
195  *
196  */
197 ssize_t splice_to_pipe(struct pipe_inode_info *pipe,
198 		       struct splice_pipe_desc *spd)
199 {
200 	unsigned int spd_pages = spd->nr_pages;
201 	unsigned int tail = pipe->tail;
202 	unsigned int head = pipe->head;
203 	unsigned int mask = pipe->ring_size - 1;
204 	ssize_t ret = 0;
205 	int page_nr = 0;
206 
207 	if (!spd_pages)
208 		return 0;
209 
210 	if (unlikely(!pipe->readers)) {
211 		send_sig(SIGPIPE, current, 0);
212 		ret = -EPIPE;
213 		goto out;
214 	}
215 
216 	while (!pipe_full(head, tail, pipe->max_usage)) {
217 		struct pipe_buffer *buf = &pipe->bufs[head & mask];
218 
219 		buf->page = spd->pages[page_nr];
220 		buf->offset = spd->partial[page_nr].offset;
221 		buf->len = spd->partial[page_nr].len;
222 		buf->private = spd->partial[page_nr].private;
223 		buf->ops = spd->ops;
224 		buf->flags = 0;
225 
226 		head++;
227 		pipe->head = head;
228 		page_nr++;
229 		ret += buf->len;
230 
231 		if (!--spd->nr_pages)
232 			break;
233 	}
234 
235 	if (!ret)
236 		ret = -EAGAIN;
237 
238 out:
239 	while (page_nr < spd_pages)
240 		spd->spd_release(spd, page_nr++);
241 
242 	return ret;
243 }
244 EXPORT_SYMBOL_GPL(splice_to_pipe);
245 
246 ssize_t add_to_pipe(struct pipe_inode_info *pipe, struct pipe_buffer *buf)
247 {
248 	unsigned int head = pipe->head;
249 	unsigned int tail = pipe->tail;
250 	unsigned int mask = pipe->ring_size - 1;
251 	int ret;
252 
253 	if (unlikely(!pipe->readers)) {
254 		send_sig(SIGPIPE, current, 0);
255 		ret = -EPIPE;
256 	} else if (pipe_full(head, tail, pipe->max_usage)) {
257 		ret = -EAGAIN;
258 	} else {
259 		pipe->bufs[head & mask] = *buf;
260 		pipe->head = head + 1;
261 		return buf->len;
262 	}
263 	pipe_buf_release(pipe, buf);
264 	return ret;
265 }
266 EXPORT_SYMBOL(add_to_pipe);
267 
268 /*
269  * Check if we need to grow the arrays holding pages and partial page
270  * descriptions.
271  */
272 int splice_grow_spd(const struct pipe_inode_info *pipe, struct splice_pipe_desc *spd)
273 {
274 	unsigned int max_usage = READ_ONCE(pipe->max_usage);
275 
276 	spd->nr_pages_max = max_usage;
277 	if (max_usage <= PIPE_DEF_BUFFERS)
278 		return 0;
279 
280 	spd->pages = kmalloc_array(max_usage, sizeof(struct page *), GFP_KERNEL);
281 	spd->partial = kmalloc_array(max_usage, sizeof(struct partial_page),
282 				     GFP_KERNEL);
283 
284 	if (spd->pages && spd->partial)
285 		return 0;
286 
287 	kfree(spd->pages);
288 	kfree(spd->partial);
289 	return -ENOMEM;
290 }
291 
292 void splice_shrink_spd(struct splice_pipe_desc *spd)
293 {
294 	if (spd->nr_pages_max <= PIPE_DEF_BUFFERS)
295 		return;
296 
297 	kfree(spd->pages);
298 	kfree(spd->partial);
299 }
300 
301 /**
302  * copy_splice_read -  Copy data from a file and splice the copy into a pipe
303  * @in: The file to read from
304  * @ppos: Pointer to the file position to read from
305  * @pipe: The pipe to splice into
306  * @len: The amount to splice
307  * @flags: The SPLICE_F_* flags
308  *
309  * This function allocates a bunch of pages sufficient to hold the requested
310  * amount of data (but limited by the remaining pipe capacity), passes it to
311  * the file's ->read_iter() to read into and then splices the used pages into
312  * the pipe.
313  *
314  * Return: On success, the number of bytes read will be returned and *@ppos
315  * will be updated if appropriate; 0 will be returned if there is no more data
316  * to be read; -EAGAIN will be returned if the pipe had no space, and some
317  * other negative error code will be returned on error.  A short read may occur
318  * if the pipe has insufficient space, we reach the end of the data or we hit a
319  * hole.
320  */
321 ssize_t copy_splice_read(struct file *in, loff_t *ppos,
322 			 struct pipe_inode_info *pipe,
323 			 size_t len, unsigned int flags)
324 {
325 	struct iov_iter to;
326 	struct bio_vec *bv;
327 	struct kiocb kiocb;
328 	struct page **pages;
329 	ssize_t ret;
330 	size_t used, npages, chunk, remain, keep = 0;
331 	int i;
332 
333 	/* Work out how much data we can actually add into the pipe */
334 	used = pipe_occupancy(pipe->head, pipe->tail);
335 	npages = max_t(ssize_t, pipe->max_usage - used, 0);
336 	len = min_t(size_t, len, npages * PAGE_SIZE);
337 	npages = DIV_ROUND_UP(len, PAGE_SIZE);
338 
339 	bv = kzalloc(array_size(npages, sizeof(bv[0])) +
340 		     array_size(npages, sizeof(struct page *)), GFP_KERNEL);
341 	if (!bv)
342 		return -ENOMEM;
343 
344 	pages = (struct page **)(bv + npages);
345 	npages = alloc_pages_bulk_array(GFP_USER, npages, pages);
346 	if (!npages) {
347 		kfree(bv);
348 		return -ENOMEM;
349 	}
350 
351 	remain = len = min_t(size_t, len, npages * PAGE_SIZE);
352 
353 	for (i = 0; i < npages; i++) {
354 		chunk = min_t(size_t, PAGE_SIZE, remain);
355 		bv[i].bv_page = pages[i];
356 		bv[i].bv_offset = 0;
357 		bv[i].bv_len = chunk;
358 		remain -= chunk;
359 	}
360 
361 	/* Do the I/O */
362 	iov_iter_bvec(&to, ITER_DEST, bv, npages, len);
363 	init_sync_kiocb(&kiocb, in);
364 	kiocb.ki_pos = *ppos;
365 	ret = in->f_op->read_iter(&kiocb, &to);
366 
367 	if (ret > 0) {
368 		keep = DIV_ROUND_UP(ret, PAGE_SIZE);
369 		*ppos = kiocb.ki_pos;
370 	}
371 
372 	/*
373 	 * Callers of ->splice_read() expect -EAGAIN on "can't put anything in
374 	 * there", rather than -EFAULT.
375 	 */
376 	if (ret == -EFAULT)
377 		ret = -EAGAIN;
378 
379 	/* Free any pages that didn't get touched at all. */
380 	if (keep < npages)
381 		release_pages(pages + keep, npages - keep);
382 
383 	/* Push the remaining pages into the pipe. */
384 	remain = ret;
385 	for (i = 0; i < keep; i++) {
386 		struct pipe_buffer *buf = pipe_head_buf(pipe);
387 
388 		chunk = min_t(size_t, remain, PAGE_SIZE);
389 		*buf = (struct pipe_buffer) {
390 			.ops	= &default_pipe_buf_ops,
391 			.page	= bv[i].bv_page,
392 			.offset	= 0,
393 			.len	= chunk,
394 		};
395 		pipe->head++;
396 		remain -= chunk;
397 	}
398 
399 	kfree(bv);
400 	return ret;
401 }
402 EXPORT_SYMBOL(copy_splice_read);
403 
404 const struct pipe_buf_operations default_pipe_buf_ops = {
405 	.release	= generic_pipe_buf_release,
406 	.try_steal	= generic_pipe_buf_try_steal,
407 	.get		= generic_pipe_buf_get,
408 };
409 
410 /* Pipe buffer operations for a socket and similar. */
411 const struct pipe_buf_operations nosteal_pipe_buf_ops = {
412 	.release	= generic_pipe_buf_release,
413 	.get		= generic_pipe_buf_get,
414 };
415 EXPORT_SYMBOL(nosteal_pipe_buf_ops);
416 
417 static void wakeup_pipe_writers(struct pipe_inode_info *pipe)
418 {
419 	smp_mb();
420 	if (waitqueue_active(&pipe->wr_wait))
421 		wake_up_interruptible(&pipe->wr_wait);
422 	kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
423 }
424 
425 /**
426  * splice_from_pipe_feed - feed available data from a pipe to a file
427  * @pipe:	pipe to splice from
428  * @sd:		information to @actor
429  * @actor:	handler that splices the data
430  *
431  * Description:
432  *    This function loops over the pipe and calls @actor to do the
433  *    actual moving of a single struct pipe_buffer to the desired
434  *    destination.  It returns when there's no more buffers left in
435  *    the pipe or if the requested number of bytes (@sd->total_len)
436  *    have been copied.  It returns a positive number (one) if the
437  *    pipe needs to be filled with more data, zero if the required
438  *    number of bytes have been copied and -errno on error.
439  *
440  *    This, together with splice_from_pipe_{begin,end,next}, may be
441  *    used to implement the functionality of __splice_from_pipe() when
442  *    locking is required around copying the pipe buffers to the
443  *    destination.
444  */
445 static int splice_from_pipe_feed(struct pipe_inode_info *pipe, struct splice_desc *sd,
446 			  splice_actor *actor)
447 {
448 	unsigned int head = pipe->head;
449 	unsigned int tail = pipe->tail;
450 	unsigned int mask = pipe->ring_size - 1;
451 	int ret;
452 
453 	while (!pipe_empty(head, tail)) {
454 		struct pipe_buffer *buf = &pipe->bufs[tail & mask];
455 
456 		sd->len = buf->len;
457 		if (sd->len > sd->total_len)
458 			sd->len = sd->total_len;
459 
460 		ret = pipe_buf_confirm(pipe, buf);
461 		if (unlikely(ret)) {
462 			if (ret == -ENODATA)
463 				ret = 0;
464 			return ret;
465 		}
466 
467 		ret = actor(pipe, buf, sd);
468 		if (ret <= 0)
469 			return ret;
470 
471 		buf->offset += ret;
472 		buf->len -= ret;
473 
474 		sd->num_spliced += ret;
475 		sd->len -= ret;
476 		sd->pos += ret;
477 		sd->total_len -= ret;
478 
479 		if (!buf->len) {
480 			pipe_buf_release(pipe, buf);
481 			tail++;
482 			pipe->tail = tail;
483 			if (pipe->files)
484 				sd->need_wakeup = true;
485 		}
486 
487 		if (!sd->total_len)
488 			return 0;
489 	}
490 
491 	return 1;
492 }
493 
494 /* We know we have a pipe buffer, but maybe it's empty? */
495 static inline bool eat_empty_buffer(struct pipe_inode_info *pipe)
496 {
497 	unsigned int tail = pipe->tail;
498 	unsigned int mask = pipe->ring_size - 1;
499 	struct pipe_buffer *buf = &pipe->bufs[tail & mask];
500 
501 	if (unlikely(!buf->len)) {
502 		pipe_buf_release(pipe, buf);
503 		pipe->tail = tail+1;
504 		return true;
505 	}
506 
507 	return false;
508 }
509 
510 /**
511  * splice_from_pipe_next - wait for some data to splice from
512  * @pipe:	pipe to splice from
513  * @sd:		information about the splice operation
514  *
515  * Description:
516  *    This function will wait for some data and return a positive
517  *    value (one) if pipe buffers are available.  It will return zero
518  *    or -errno if no more data needs to be spliced.
519  */
520 static int splice_from_pipe_next(struct pipe_inode_info *pipe, struct splice_desc *sd)
521 {
522 	/*
523 	 * Check for signal early to make process killable when there are
524 	 * always buffers available
525 	 */
526 	if (signal_pending(current))
527 		return -ERESTARTSYS;
528 
529 repeat:
530 	while (pipe_empty(pipe->head, pipe->tail)) {
531 		if (!pipe->writers)
532 			return 0;
533 
534 		if (sd->num_spliced)
535 			return 0;
536 
537 		if (sd->flags & SPLICE_F_NONBLOCK)
538 			return -EAGAIN;
539 
540 		if (signal_pending(current))
541 			return -ERESTARTSYS;
542 
543 		if (sd->need_wakeup) {
544 			wakeup_pipe_writers(pipe);
545 			sd->need_wakeup = false;
546 		}
547 
548 		pipe_wait_readable(pipe);
549 	}
550 
551 	if (eat_empty_buffer(pipe))
552 		goto repeat;
553 
554 	return 1;
555 }
556 
557 /**
558  * splice_from_pipe_begin - start splicing from pipe
559  * @sd:		information about the splice operation
560  *
561  * Description:
562  *    This function should be called before a loop containing
563  *    splice_from_pipe_next() and splice_from_pipe_feed() to
564  *    initialize the necessary fields of @sd.
565  */
566 static void splice_from_pipe_begin(struct splice_desc *sd)
567 {
568 	sd->num_spliced = 0;
569 	sd->need_wakeup = false;
570 }
571 
572 /**
573  * splice_from_pipe_end - finish splicing from pipe
574  * @pipe:	pipe to splice from
575  * @sd:		information about the splice operation
576  *
577  * Description:
578  *    This function will wake up pipe writers if necessary.  It should
579  *    be called after a loop containing splice_from_pipe_next() and
580  *    splice_from_pipe_feed().
581  */
582 static void splice_from_pipe_end(struct pipe_inode_info *pipe, struct splice_desc *sd)
583 {
584 	if (sd->need_wakeup)
585 		wakeup_pipe_writers(pipe);
586 }
587 
588 /**
589  * __splice_from_pipe - splice data from a pipe to given actor
590  * @pipe:	pipe to splice from
591  * @sd:		information to @actor
592  * @actor:	handler that splices the data
593  *
594  * Description:
595  *    This function does little more than loop over the pipe and call
596  *    @actor to do the actual moving of a single struct pipe_buffer to
597  *    the desired destination. See pipe_to_file, pipe_to_sendmsg, or
598  *    pipe_to_user.
599  *
600  */
601 ssize_t __splice_from_pipe(struct pipe_inode_info *pipe, struct splice_desc *sd,
602 			   splice_actor *actor)
603 {
604 	int ret;
605 
606 	splice_from_pipe_begin(sd);
607 	do {
608 		cond_resched();
609 		ret = splice_from_pipe_next(pipe, sd);
610 		if (ret > 0)
611 			ret = splice_from_pipe_feed(pipe, sd, actor);
612 	} while (ret > 0);
613 	splice_from_pipe_end(pipe, sd);
614 
615 	return sd->num_spliced ? sd->num_spliced : ret;
616 }
617 EXPORT_SYMBOL(__splice_from_pipe);
618 
619 /**
620  * splice_from_pipe - splice data from a pipe to a file
621  * @pipe:	pipe to splice from
622  * @out:	file to splice to
623  * @ppos:	position in @out
624  * @len:	how many bytes to splice
625  * @flags:	splice modifier flags
626  * @actor:	handler that splices the data
627  *
628  * Description:
629  *    See __splice_from_pipe. This function locks the pipe inode,
630  *    otherwise it's identical to __splice_from_pipe().
631  *
632  */
633 ssize_t splice_from_pipe(struct pipe_inode_info *pipe, struct file *out,
634 			 loff_t *ppos, size_t len, unsigned int flags,
635 			 splice_actor *actor)
636 {
637 	ssize_t ret;
638 	struct splice_desc sd = {
639 		.total_len = len,
640 		.flags = flags,
641 		.pos = *ppos,
642 		.u.file = out,
643 	};
644 
645 	pipe_lock(pipe);
646 	ret = __splice_from_pipe(pipe, &sd, actor);
647 	pipe_unlock(pipe);
648 
649 	return ret;
650 }
651 
652 /**
653  * iter_file_splice_write - splice data from a pipe to a file
654  * @pipe:	pipe info
655  * @out:	file to write to
656  * @ppos:	position in @out
657  * @len:	number of bytes to splice
658  * @flags:	splice modifier flags
659  *
660  * Description:
661  *    Will either move or copy pages (determined by @flags options) from
662  *    the given pipe inode to the given file.
663  *    This one is ->write_iter-based.
664  *
665  */
666 ssize_t
667 iter_file_splice_write(struct pipe_inode_info *pipe, struct file *out,
668 			  loff_t *ppos, size_t len, unsigned int flags)
669 {
670 	struct splice_desc sd = {
671 		.total_len = len,
672 		.flags = flags,
673 		.pos = *ppos,
674 		.u.file = out,
675 	};
676 	int nbufs = pipe->max_usage;
677 	struct bio_vec *array;
678 	ssize_t ret;
679 
680 	if (!out->f_op->write_iter)
681 		return -EINVAL;
682 
683 	array = kcalloc(nbufs, sizeof(struct bio_vec), GFP_KERNEL);
684 	if (unlikely(!array))
685 		return -ENOMEM;
686 
687 	pipe_lock(pipe);
688 
689 	splice_from_pipe_begin(&sd);
690 	while (sd.total_len) {
691 		struct kiocb kiocb;
692 		struct iov_iter from;
693 		unsigned int head, tail, mask;
694 		size_t left;
695 		int n;
696 
697 		ret = splice_from_pipe_next(pipe, &sd);
698 		if (ret <= 0)
699 			break;
700 
701 		if (unlikely(nbufs < pipe->max_usage)) {
702 			kfree(array);
703 			nbufs = pipe->max_usage;
704 			array = kcalloc(nbufs, sizeof(struct bio_vec),
705 					GFP_KERNEL);
706 			if (!array) {
707 				ret = -ENOMEM;
708 				break;
709 			}
710 		}
711 
712 		head = pipe->head;
713 		tail = pipe->tail;
714 		mask = pipe->ring_size - 1;
715 
716 		/* build the vector */
717 		left = sd.total_len;
718 		for (n = 0; !pipe_empty(head, tail) && left && n < nbufs; tail++) {
719 			struct pipe_buffer *buf = &pipe->bufs[tail & mask];
720 			size_t this_len = buf->len;
721 
722 			/* zero-length bvecs are not supported, skip them */
723 			if (!this_len)
724 				continue;
725 			this_len = min(this_len, left);
726 
727 			ret = pipe_buf_confirm(pipe, buf);
728 			if (unlikely(ret)) {
729 				if (ret == -ENODATA)
730 					ret = 0;
731 				goto done;
732 			}
733 
734 			bvec_set_page(&array[n], buf->page, this_len,
735 				      buf->offset);
736 			left -= this_len;
737 			n++;
738 		}
739 
740 		iov_iter_bvec(&from, ITER_SOURCE, array, n, sd.total_len - left);
741 		init_sync_kiocb(&kiocb, out);
742 		kiocb.ki_pos = sd.pos;
743 		ret = out->f_op->write_iter(&kiocb, &from);
744 		sd.pos = kiocb.ki_pos;
745 		if (ret <= 0)
746 			break;
747 
748 		sd.num_spliced += ret;
749 		sd.total_len -= ret;
750 		*ppos = sd.pos;
751 
752 		/* dismiss the fully eaten buffers, adjust the partial one */
753 		tail = pipe->tail;
754 		while (ret) {
755 			struct pipe_buffer *buf = &pipe->bufs[tail & mask];
756 			if (ret >= buf->len) {
757 				ret -= buf->len;
758 				buf->len = 0;
759 				pipe_buf_release(pipe, buf);
760 				tail++;
761 				pipe->tail = tail;
762 				if (pipe->files)
763 					sd.need_wakeup = true;
764 			} else {
765 				buf->offset += ret;
766 				buf->len -= ret;
767 				ret = 0;
768 			}
769 		}
770 	}
771 done:
772 	kfree(array);
773 	splice_from_pipe_end(pipe, &sd);
774 
775 	pipe_unlock(pipe);
776 
777 	if (sd.num_spliced)
778 		ret = sd.num_spliced;
779 
780 	return ret;
781 }
782 
783 EXPORT_SYMBOL(iter_file_splice_write);
784 
785 #ifdef CONFIG_NET
786 /**
787  * splice_to_socket - splice data from a pipe to a socket
788  * @pipe:	pipe to splice from
789  * @out:	socket to write to
790  * @ppos:	position in @out
791  * @len:	number of bytes to splice
792  * @flags:	splice modifier flags
793  *
794  * Description:
795  *    Will send @len bytes from the pipe to a network socket. No data copying
796  *    is involved.
797  *
798  */
799 ssize_t splice_to_socket(struct pipe_inode_info *pipe, struct file *out,
800 			 loff_t *ppos, size_t len, unsigned int flags)
801 {
802 	struct socket *sock = sock_from_file(out);
803 	struct bio_vec bvec[16];
804 	struct msghdr msg = {};
805 	ssize_t ret = 0;
806 	size_t spliced = 0;
807 	bool need_wakeup = false;
808 
809 	pipe_lock(pipe);
810 
811 	while (len > 0) {
812 		unsigned int head, tail, mask, bc = 0;
813 		size_t remain = len;
814 
815 		/*
816 		 * Check for signal early to make process killable when there
817 		 * are always buffers available
818 		 */
819 		ret = -ERESTARTSYS;
820 		if (signal_pending(current))
821 			break;
822 
823 		while (pipe_empty(pipe->head, pipe->tail)) {
824 			ret = 0;
825 			if (!pipe->writers)
826 				goto out;
827 
828 			if (spliced)
829 				goto out;
830 
831 			ret = -EAGAIN;
832 			if (flags & SPLICE_F_NONBLOCK)
833 				goto out;
834 
835 			ret = -ERESTARTSYS;
836 			if (signal_pending(current))
837 				goto out;
838 
839 			if (need_wakeup) {
840 				wakeup_pipe_writers(pipe);
841 				need_wakeup = false;
842 			}
843 
844 			pipe_wait_readable(pipe);
845 		}
846 
847 		head = pipe->head;
848 		tail = pipe->tail;
849 		mask = pipe->ring_size - 1;
850 
851 		while (!pipe_empty(head, tail)) {
852 			struct pipe_buffer *buf = &pipe->bufs[tail & mask];
853 			size_t seg;
854 
855 			if (!buf->len) {
856 				tail++;
857 				continue;
858 			}
859 
860 			seg = min_t(size_t, remain, buf->len);
861 
862 			ret = pipe_buf_confirm(pipe, buf);
863 			if (unlikely(ret)) {
864 				if (ret == -ENODATA)
865 					ret = 0;
866 				break;
867 			}
868 
869 			bvec_set_page(&bvec[bc++], buf->page, seg, buf->offset);
870 			remain -= seg;
871 			if (remain == 0 || bc >= ARRAY_SIZE(bvec))
872 				break;
873 			tail++;
874 		}
875 
876 		if (!bc)
877 			break;
878 
879 		msg.msg_flags = MSG_SPLICE_PAGES;
880 		if (flags & SPLICE_F_MORE)
881 			msg.msg_flags |= MSG_MORE;
882 		if (remain && pipe_occupancy(pipe->head, tail) > 0)
883 			msg.msg_flags |= MSG_MORE;
884 		if (out->f_flags & O_NONBLOCK)
885 			msg.msg_flags |= MSG_DONTWAIT;
886 
887 		iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, bvec, bc,
888 			      len - remain);
889 		ret = sock_sendmsg(sock, &msg);
890 		if (ret <= 0)
891 			break;
892 
893 		spliced += ret;
894 		len -= ret;
895 		tail = pipe->tail;
896 		while (ret > 0) {
897 			struct pipe_buffer *buf = &pipe->bufs[tail & mask];
898 			size_t seg = min_t(size_t, ret, buf->len);
899 
900 			buf->offset += seg;
901 			buf->len -= seg;
902 			ret -= seg;
903 
904 			if (!buf->len) {
905 				pipe_buf_release(pipe, buf);
906 				tail++;
907 			}
908 		}
909 
910 		if (tail != pipe->tail) {
911 			pipe->tail = tail;
912 			if (pipe->files)
913 				need_wakeup = true;
914 		}
915 	}
916 
917 out:
918 	pipe_unlock(pipe);
919 	if (need_wakeup)
920 		wakeup_pipe_writers(pipe);
921 	return spliced ?: ret;
922 }
923 #endif
924 
925 static int warn_unsupported(struct file *file, const char *op)
926 {
927 	pr_debug_ratelimited(
928 		"splice %s not supported for file %pD4 (pid: %d comm: %.20s)\n",
929 		op, file, current->pid, current->comm);
930 	return -EINVAL;
931 }
932 
933 /*
934  * Attempt to initiate a splice from pipe to file.
935  */
936 static ssize_t do_splice_from(struct pipe_inode_info *pipe, struct file *out,
937 			      loff_t *ppos, size_t len, unsigned int flags)
938 {
939 	if (unlikely(!out->f_op->splice_write))
940 		return warn_unsupported(out, "write");
941 	return out->f_op->splice_write(pipe, out, ppos, len, flags);
942 }
943 
944 /*
945  * Indicate to the caller that there was a premature EOF when reading from the
946  * source and the caller didn't indicate they would be sending more data after
947  * this.
948  */
949 static void do_splice_eof(struct splice_desc *sd)
950 {
951 	if (sd->splice_eof)
952 		sd->splice_eof(sd);
953 }
954 
955 /*
956  * Callers already called rw_verify_area() on the entire range.
957  * No need to call it for sub ranges.
958  */
959 static ssize_t do_splice_read(struct file *in, loff_t *ppos,
960 			      struct pipe_inode_info *pipe, size_t len,
961 			      unsigned int flags)
962 {
963 	unsigned int p_space;
964 
965 	if (unlikely(!(in->f_mode & FMODE_READ)))
966 		return -EBADF;
967 	if (!len)
968 		return 0;
969 
970 	/* Don't try to read more the pipe has space for. */
971 	p_space = pipe->max_usage - pipe_occupancy(pipe->head, pipe->tail);
972 	len = min_t(size_t, len, p_space << PAGE_SHIFT);
973 
974 	if (unlikely(len > MAX_RW_COUNT))
975 		len = MAX_RW_COUNT;
976 
977 	if (unlikely(!in->f_op->splice_read))
978 		return warn_unsupported(in, "read");
979 	/*
980 	 * O_DIRECT and DAX don't deal with the pagecache, so we allocate a
981 	 * buffer, copy into it and splice that into the pipe.
982 	 */
983 	if ((in->f_flags & O_DIRECT) || IS_DAX(in->f_mapping->host))
984 		return copy_splice_read(in, ppos, pipe, len, flags);
985 	return in->f_op->splice_read(in, ppos, pipe, len, flags);
986 }
987 
988 /**
989  * vfs_splice_read - Read data from a file and splice it into a pipe
990  * @in:		File to splice from
991  * @ppos:	Input file offset
992  * @pipe:	Pipe to splice to
993  * @len:	Number of bytes to splice
994  * @flags:	Splice modifier flags (SPLICE_F_*)
995  *
996  * Splice the requested amount of data from the input file to the pipe.  This
997  * is synchronous as the caller must hold the pipe lock across the entire
998  * operation.
999  *
1000  * If successful, it returns the amount of data spliced, 0 if it hit the EOF or
1001  * a hole and a negative error code otherwise.
1002  */
1003 ssize_t vfs_splice_read(struct file *in, loff_t *ppos,
1004 			struct pipe_inode_info *pipe, size_t len,
1005 			unsigned int flags)
1006 {
1007 	ssize_t ret;
1008 
1009 	ret = rw_verify_area(READ, in, ppos, len);
1010 	if (unlikely(ret < 0))
1011 		return ret;
1012 
1013 	return do_splice_read(in, ppos, pipe, len, flags);
1014 }
1015 EXPORT_SYMBOL_GPL(vfs_splice_read);
1016 
1017 /**
1018  * splice_direct_to_actor - splices data directly between two non-pipes
1019  * @in:		file to splice from
1020  * @sd:		actor information on where to splice to
1021  * @actor:	handles the data splicing
1022  *
1023  * Description:
1024  *    This is a special case helper to splice directly between two
1025  *    points, without requiring an explicit pipe. Internally an allocated
1026  *    pipe is cached in the process, and reused during the lifetime of
1027  *    that process.
1028  *
1029  */
1030 ssize_t splice_direct_to_actor(struct file *in, struct splice_desc *sd,
1031 			       splice_direct_actor *actor)
1032 {
1033 	struct pipe_inode_info *pipe;
1034 	ssize_t ret, bytes;
1035 	size_t len;
1036 	int i, flags, more;
1037 
1038 	/*
1039 	 * We require the input to be seekable, as we don't want to randomly
1040 	 * drop data for eg socket -> socket splicing. Use the piped splicing
1041 	 * for that!
1042 	 */
1043 	if (unlikely(!(in->f_mode & FMODE_LSEEK)))
1044 		return -EINVAL;
1045 
1046 	/*
1047 	 * neither in nor out is a pipe, setup an internal pipe attached to
1048 	 * 'out' and transfer the wanted data from 'in' to 'out' through that
1049 	 */
1050 	pipe = current->splice_pipe;
1051 	if (unlikely(!pipe)) {
1052 		pipe = alloc_pipe_info();
1053 		if (!pipe)
1054 			return -ENOMEM;
1055 
1056 		/*
1057 		 * We don't have an immediate reader, but we'll read the stuff
1058 		 * out of the pipe right after the splice_to_pipe(). So set
1059 		 * PIPE_READERS appropriately.
1060 		 */
1061 		pipe->readers = 1;
1062 
1063 		current->splice_pipe = pipe;
1064 	}
1065 
1066 	/*
1067 	 * Do the splice.
1068 	 */
1069 	bytes = 0;
1070 	len = sd->total_len;
1071 
1072 	/* Don't block on output, we have to drain the direct pipe. */
1073 	flags = sd->flags;
1074 	sd->flags &= ~SPLICE_F_NONBLOCK;
1075 
1076 	/*
1077 	 * We signal MORE until we've read sufficient data to fulfill the
1078 	 * request and we keep signalling it if the caller set it.
1079 	 */
1080 	more = sd->flags & SPLICE_F_MORE;
1081 	sd->flags |= SPLICE_F_MORE;
1082 
1083 	WARN_ON_ONCE(!pipe_empty(pipe->head, pipe->tail));
1084 
1085 	while (len) {
1086 		size_t read_len;
1087 		loff_t pos = sd->pos, prev_pos = pos;
1088 
1089 		ret = do_splice_read(in, &pos, pipe, len, flags);
1090 		if (unlikely(ret <= 0))
1091 			goto read_failure;
1092 
1093 		read_len = ret;
1094 		sd->total_len = read_len;
1095 
1096 		/*
1097 		 * If we now have sufficient data to fulfill the request then
1098 		 * we clear SPLICE_F_MORE if it was not set initially.
1099 		 */
1100 		if (read_len >= len && !more)
1101 			sd->flags &= ~SPLICE_F_MORE;
1102 
1103 		/*
1104 		 * NOTE: nonblocking mode only applies to the input. We
1105 		 * must not do the output in nonblocking mode as then we
1106 		 * could get stuck data in the internal pipe:
1107 		 */
1108 		ret = actor(pipe, sd);
1109 		if (unlikely(ret <= 0)) {
1110 			sd->pos = prev_pos;
1111 			goto out_release;
1112 		}
1113 
1114 		bytes += ret;
1115 		len -= ret;
1116 		sd->pos = pos;
1117 
1118 		if (ret < read_len) {
1119 			sd->pos = prev_pos + ret;
1120 			goto out_release;
1121 		}
1122 	}
1123 
1124 done:
1125 	pipe->tail = pipe->head = 0;
1126 	file_accessed(in);
1127 	return bytes;
1128 
1129 read_failure:
1130 	/*
1131 	 * If the user did *not* set SPLICE_F_MORE *and* we didn't hit that
1132 	 * "use all of len" case that cleared SPLICE_F_MORE, *and* we did a
1133 	 * "->splice_in()" that returned EOF (ie zero) *and* we have sent at
1134 	 * least 1 byte *then* we will also do the ->splice_eof() call.
1135 	 */
1136 	if (ret == 0 && !more && len > 0 && bytes)
1137 		do_splice_eof(sd);
1138 out_release:
1139 	/*
1140 	 * If we did an incomplete transfer we must release
1141 	 * the pipe buffers in question:
1142 	 */
1143 	for (i = 0; i < pipe->ring_size; i++) {
1144 		struct pipe_buffer *buf = &pipe->bufs[i];
1145 
1146 		if (buf->ops)
1147 			pipe_buf_release(pipe, buf);
1148 	}
1149 
1150 	if (!bytes)
1151 		bytes = ret;
1152 
1153 	goto done;
1154 }
1155 EXPORT_SYMBOL(splice_direct_to_actor);
1156 
1157 static int direct_splice_actor(struct pipe_inode_info *pipe,
1158 			       struct splice_desc *sd)
1159 {
1160 	struct file *file = sd->u.file;
1161 	long ret;
1162 
1163 	file_start_write(file);
1164 	ret = do_splice_from(pipe, file, sd->opos, sd->total_len, sd->flags);
1165 	file_end_write(file);
1166 	return ret;
1167 }
1168 
1169 static int splice_file_range_actor(struct pipe_inode_info *pipe,
1170 					struct splice_desc *sd)
1171 {
1172 	struct file *file = sd->u.file;
1173 
1174 	return do_splice_from(pipe, file, sd->opos, sd->total_len, sd->flags);
1175 }
1176 
1177 static void direct_file_splice_eof(struct splice_desc *sd)
1178 {
1179 	struct file *file = sd->u.file;
1180 
1181 	if (file->f_op->splice_eof)
1182 		file->f_op->splice_eof(file);
1183 }
1184 
1185 static ssize_t do_splice_direct_actor(struct file *in, loff_t *ppos,
1186 				      struct file *out, loff_t *opos,
1187 				      size_t len, unsigned int flags,
1188 				      splice_direct_actor *actor)
1189 {
1190 	struct splice_desc sd = {
1191 		.len		= len,
1192 		.total_len	= len,
1193 		.flags		= flags,
1194 		.pos		= *ppos,
1195 		.u.file		= out,
1196 		.splice_eof	= direct_file_splice_eof,
1197 		.opos		= opos,
1198 	};
1199 	ssize_t ret;
1200 
1201 	if (unlikely(!(out->f_mode & FMODE_WRITE)))
1202 		return -EBADF;
1203 
1204 	if (unlikely(out->f_flags & O_APPEND))
1205 		return -EINVAL;
1206 
1207 	ret = splice_direct_to_actor(in, &sd, actor);
1208 	if (ret > 0)
1209 		*ppos = sd.pos;
1210 
1211 	return ret;
1212 }
1213 /**
1214  * do_splice_direct - splices data directly between two files
1215  * @in:		file to splice from
1216  * @ppos:	input file offset
1217  * @out:	file to splice to
1218  * @opos:	output file offset
1219  * @len:	number of bytes to splice
1220  * @flags:	splice modifier flags
1221  *
1222  * Description:
1223  *    For use by do_sendfile(). splice can easily emulate sendfile, but
1224  *    doing it in the application would incur an extra system call
1225  *    (splice in + splice out, as compared to just sendfile()). So this helper
1226  *    can splice directly through a process-private pipe.
1227  *
1228  * Callers already called rw_verify_area() on the entire range.
1229  */
1230 ssize_t do_splice_direct(struct file *in, loff_t *ppos, struct file *out,
1231 			 loff_t *opos, size_t len, unsigned int flags)
1232 {
1233 	return do_splice_direct_actor(in, ppos, out, opos, len, flags,
1234 				      direct_splice_actor);
1235 }
1236 EXPORT_SYMBOL(do_splice_direct);
1237 
1238 /**
1239  * splice_file_range - splices data between two files for copy_file_range()
1240  * @in:		file to splice from
1241  * @ppos:	input file offset
1242  * @out:	file to splice to
1243  * @opos:	output file offset
1244  * @len:	number of bytes to splice
1245  *
1246  * Description:
1247  *    For use by ->copy_file_range() methods.
1248  *    Like do_splice_direct(), but vfs_copy_file_range() already holds
1249  *    start_file_write() on @out file.
1250  *
1251  * Callers already called rw_verify_area() on the entire range.
1252  */
1253 ssize_t splice_file_range(struct file *in, loff_t *ppos, struct file *out,
1254 			  loff_t *opos, size_t len)
1255 {
1256 	lockdep_assert(file_write_started(out));
1257 
1258 	return do_splice_direct_actor(in, ppos, out, opos,
1259 				      min_t(size_t, len, MAX_RW_COUNT),
1260 				      0, splice_file_range_actor);
1261 }
1262 EXPORT_SYMBOL(splice_file_range);
1263 
1264 static int wait_for_space(struct pipe_inode_info *pipe, unsigned flags)
1265 {
1266 	for (;;) {
1267 		if (unlikely(!pipe->readers)) {
1268 			send_sig(SIGPIPE, current, 0);
1269 			return -EPIPE;
1270 		}
1271 		if (!pipe_full(pipe->head, pipe->tail, pipe->max_usage))
1272 			return 0;
1273 		if (flags & SPLICE_F_NONBLOCK)
1274 			return -EAGAIN;
1275 		if (signal_pending(current))
1276 			return -ERESTARTSYS;
1277 		pipe_wait_writable(pipe);
1278 	}
1279 }
1280 
1281 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1282 			       struct pipe_inode_info *opipe,
1283 			       size_t len, unsigned int flags);
1284 
1285 ssize_t splice_file_to_pipe(struct file *in,
1286 			    struct pipe_inode_info *opipe,
1287 			    loff_t *offset,
1288 			    size_t len, unsigned int flags)
1289 {
1290 	ssize_t ret;
1291 
1292 	pipe_lock(opipe);
1293 	ret = wait_for_space(opipe, flags);
1294 	if (!ret)
1295 		ret = do_splice_read(in, offset, opipe, len, flags);
1296 	pipe_unlock(opipe);
1297 	if (ret > 0)
1298 		wakeup_pipe_readers(opipe);
1299 	return ret;
1300 }
1301 
1302 /*
1303  * Determine where to splice to/from.
1304  */
1305 ssize_t do_splice(struct file *in, loff_t *off_in, struct file *out,
1306 		  loff_t *off_out, size_t len, unsigned int flags)
1307 {
1308 	struct pipe_inode_info *ipipe;
1309 	struct pipe_inode_info *opipe;
1310 	loff_t offset;
1311 	ssize_t ret;
1312 
1313 	if (unlikely(!(in->f_mode & FMODE_READ) ||
1314 		     !(out->f_mode & FMODE_WRITE)))
1315 		return -EBADF;
1316 
1317 	ipipe = get_pipe_info(in, true);
1318 	opipe = get_pipe_info(out, true);
1319 
1320 	if (ipipe && opipe) {
1321 		if (off_in || off_out)
1322 			return -ESPIPE;
1323 
1324 		/* Splicing to self would be fun, but... */
1325 		if (ipipe == opipe)
1326 			return -EINVAL;
1327 
1328 		if ((in->f_flags | out->f_flags) & O_NONBLOCK)
1329 			flags |= SPLICE_F_NONBLOCK;
1330 
1331 		ret = splice_pipe_to_pipe(ipipe, opipe, len, flags);
1332 	} else if (ipipe) {
1333 		if (off_in)
1334 			return -ESPIPE;
1335 		if (off_out) {
1336 			if (!(out->f_mode & FMODE_PWRITE))
1337 				return -EINVAL;
1338 			offset = *off_out;
1339 		} else {
1340 			offset = out->f_pos;
1341 		}
1342 
1343 		if (unlikely(out->f_flags & O_APPEND))
1344 			return -EINVAL;
1345 
1346 		ret = rw_verify_area(WRITE, out, &offset, len);
1347 		if (unlikely(ret < 0))
1348 			return ret;
1349 
1350 		if (in->f_flags & O_NONBLOCK)
1351 			flags |= SPLICE_F_NONBLOCK;
1352 
1353 		file_start_write(out);
1354 		ret = do_splice_from(ipipe, out, &offset, len, flags);
1355 		file_end_write(out);
1356 
1357 		if (!off_out)
1358 			out->f_pos = offset;
1359 		else
1360 			*off_out = offset;
1361 	} else if (opipe) {
1362 		if (off_out)
1363 			return -ESPIPE;
1364 		if (off_in) {
1365 			if (!(in->f_mode & FMODE_PREAD))
1366 				return -EINVAL;
1367 			offset = *off_in;
1368 		} else {
1369 			offset = in->f_pos;
1370 		}
1371 
1372 		ret = rw_verify_area(READ, in, &offset, len);
1373 		if (unlikely(ret < 0))
1374 			return ret;
1375 
1376 		if (out->f_flags & O_NONBLOCK)
1377 			flags |= SPLICE_F_NONBLOCK;
1378 
1379 		ret = splice_file_to_pipe(in, opipe, &offset, len, flags);
1380 
1381 		if (!off_in)
1382 			in->f_pos = offset;
1383 		else
1384 			*off_in = offset;
1385 	} else {
1386 		ret = -EINVAL;
1387 	}
1388 
1389 	if (ret > 0) {
1390 		/*
1391 		 * Generate modify out before access in:
1392 		 * do_splice_from() may've already sent modify out,
1393 		 * and this ensures the events get merged.
1394 		 */
1395 		fsnotify_modify(out);
1396 		fsnotify_access(in);
1397 	}
1398 
1399 	return ret;
1400 }
1401 
1402 static ssize_t __do_splice(struct file *in, loff_t __user *off_in,
1403 			   struct file *out, loff_t __user *off_out,
1404 			   size_t len, unsigned int flags)
1405 {
1406 	struct pipe_inode_info *ipipe;
1407 	struct pipe_inode_info *opipe;
1408 	loff_t offset, *__off_in = NULL, *__off_out = NULL;
1409 	ssize_t ret;
1410 
1411 	ipipe = get_pipe_info(in, true);
1412 	opipe = get_pipe_info(out, true);
1413 
1414 	if (ipipe) {
1415 		if (off_in)
1416 			return -ESPIPE;
1417 		pipe_clear_nowait(in);
1418 	}
1419 	if (opipe) {
1420 		if (off_out)
1421 			return -ESPIPE;
1422 		pipe_clear_nowait(out);
1423 	}
1424 
1425 	if (off_out) {
1426 		if (copy_from_user(&offset, off_out, sizeof(loff_t)))
1427 			return -EFAULT;
1428 		__off_out = &offset;
1429 	}
1430 	if (off_in) {
1431 		if (copy_from_user(&offset, off_in, sizeof(loff_t)))
1432 			return -EFAULT;
1433 		__off_in = &offset;
1434 	}
1435 
1436 	ret = do_splice(in, __off_in, out, __off_out, len, flags);
1437 	if (ret < 0)
1438 		return ret;
1439 
1440 	if (__off_out && copy_to_user(off_out, __off_out, sizeof(loff_t)))
1441 		return -EFAULT;
1442 	if (__off_in && copy_to_user(off_in, __off_in, sizeof(loff_t)))
1443 		return -EFAULT;
1444 
1445 	return ret;
1446 }
1447 
1448 static ssize_t iter_to_pipe(struct iov_iter *from,
1449 			    struct pipe_inode_info *pipe,
1450 			    unsigned int flags)
1451 {
1452 	struct pipe_buffer buf = {
1453 		.ops = &user_page_pipe_buf_ops,
1454 		.flags = flags
1455 	};
1456 	size_t total = 0;
1457 	ssize_t ret = 0;
1458 
1459 	while (iov_iter_count(from)) {
1460 		struct page *pages[16];
1461 		ssize_t left;
1462 		size_t start;
1463 		int i, n;
1464 
1465 		left = iov_iter_get_pages2(from, pages, ~0UL, 16, &start);
1466 		if (left <= 0) {
1467 			ret = left;
1468 			break;
1469 		}
1470 
1471 		n = DIV_ROUND_UP(left + start, PAGE_SIZE);
1472 		for (i = 0; i < n; i++) {
1473 			int size = min_t(int, left, PAGE_SIZE - start);
1474 
1475 			buf.page = pages[i];
1476 			buf.offset = start;
1477 			buf.len = size;
1478 			ret = add_to_pipe(pipe, &buf);
1479 			if (unlikely(ret < 0)) {
1480 				iov_iter_revert(from, left);
1481 				// this one got dropped by add_to_pipe()
1482 				while (++i < n)
1483 					put_page(pages[i]);
1484 				goto out;
1485 			}
1486 			total += ret;
1487 			left -= size;
1488 			start = 0;
1489 		}
1490 	}
1491 out:
1492 	return total ? total : ret;
1493 }
1494 
1495 static int pipe_to_user(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1496 			struct splice_desc *sd)
1497 {
1498 	int n = copy_page_to_iter(buf->page, buf->offset, sd->len, sd->u.data);
1499 	return n == sd->len ? n : -EFAULT;
1500 }
1501 
1502 /*
1503  * For lack of a better implementation, implement vmsplice() to userspace
1504  * as a simple copy of the pipes pages to the user iov.
1505  */
1506 static ssize_t vmsplice_to_user(struct file *file, struct iov_iter *iter,
1507 				unsigned int flags)
1508 {
1509 	struct pipe_inode_info *pipe = get_pipe_info(file, true);
1510 	struct splice_desc sd = {
1511 		.total_len = iov_iter_count(iter),
1512 		.flags = flags,
1513 		.u.data = iter
1514 	};
1515 	ssize_t ret = 0;
1516 
1517 	if (!pipe)
1518 		return -EBADF;
1519 
1520 	pipe_clear_nowait(file);
1521 
1522 	if (sd.total_len) {
1523 		pipe_lock(pipe);
1524 		ret = __splice_from_pipe(pipe, &sd, pipe_to_user);
1525 		pipe_unlock(pipe);
1526 	}
1527 
1528 	if (ret > 0)
1529 		fsnotify_access(file);
1530 
1531 	return ret;
1532 }
1533 
1534 /*
1535  * vmsplice splices a user address range into a pipe. It can be thought of
1536  * as splice-from-memory, where the regular splice is splice-from-file (or
1537  * to file). In both cases the output is a pipe, naturally.
1538  */
1539 static ssize_t vmsplice_to_pipe(struct file *file, struct iov_iter *iter,
1540 				unsigned int flags)
1541 {
1542 	struct pipe_inode_info *pipe;
1543 	ssize_t ret = 0;
1544 	unsigned buf_flag = 0;
1545 
1546 	if (flags & SPLICE_F_GIFT)
1547 		buf_flag = PIPE_BUF_FLAG_GIFT;
1548 
1549 	pipe = get_pipe_info(file, true);
1550 	if (!pipe)
1551 		return -EBADF;
1552 
1553 	pipe_clear_nowait(file);
1554 
1555 	pipe_lock(pipe);
1556 	ret = wait_for_space(pipe, flags);
1557 	if (!ret)
1558 		ret = iter_to_pipe(iter, pipe, buf_flag);
1559 	pipe_unlock(pipe);
1560 	if (ret > 0) {
1561 		wakeup_pipe_readers(pipe);
1562 		fsnotify_modify(file);
1563 	}
1564 	return ret;
1565 }
1566 
1567 static int vmsplice_type(struct fd f, int *type)
1568 {
1569 	if (!f.file)
1570 		return -EBADF;
1571 	if (f.file->f_mode & FMODE_WRITE) {
1572 		*type = ITER_SOURCE;
1573 	} else if (f.file->f_mode & FMODE_READ) {
1574 		*type = ITER_DEST;
1575 	} else {
1576 		fdput(f);
1577 		return -EBADF;
1578 	}
1579 	return 0;
1580 }
1581 
1582 /*
1583  * Note that vmsplice only really supports true splicing _from_ user memory
1584  * to a pipe, not the other way around. Splicing from user memory is a simple
1585  * operation that can be supported without any funky alignment restrictions
1586  * or nasty vm tricks. We simply map in the user memory and fill them into
1587  * a pipe. The reverse isn't quite as easy, though. There are two possible
1588  * solutions for that:
1589  *
1590  *	- memcpy() the data internally, at which point we might as well just
1591  *	  do a regular read() on the buffer anyway.
1592  *	- Lots of nasty vm tricks, that are neither fast nor flexible (it
1593  *	  has restriction limitations on both ends of the pipe).
1594  *
1595  * Currently we punt and implement it as a normal copy, see pipe_to_user().
1596  *
1597  */
1598 SYSCALL_DEFINE4(vmsplice, int, fd, const struct iovec __user *, uiov,
1599 		unsigned long, nr_segs, unsigned int, flags)
1600 {
1601 	struct iovec iovstack[UIO_FASTIOV];
1602 	struct iovec *iov = iovstack;
1603 	struct iov_iter iter;
1604 	ssize_t error;
1605 	struct fd f;
1606 	int type;
1607 
1608 	if (unlikely(flags & ~SPLICE_F_ALL))
1609 		return -EINVAL;
1610 
1611 	f = fdget(fd);
1612 	error = vmsplice_type(f, &type);
1613 	if (error)
1614 		return error;
1615 
1616 	error = import_iovec(type, uiov, nr_segs,
1617 			     ARRAY_SIZE(iovstack), &iov, &iter);
1618 	if (error < 0)
1619 		goto out_fdput;
1620 
1621 	if (!iov_iter_count(&iter))
1622 		error = 0;
1623 	else if (type == ITER_SOURCE)
1624 		error = vmsplice_to_pipe(f.file, &iter, flags);
1625 	else
1626 		error = vmsplice_to_user(f.file, &iter, flags);
1627 
1628 	kfree(iov);
1629 out_fdput:
1630 	fdput(f);
1631 	return error;
1632 }
1633 
1634 SYSCALL_DEFINE6(splice, int, fd_in, loff_t __user *, off_in,
1635 		int, fd_out, loff_t __user *, off_out,
1636 		size_t, len, unsigned int, flags)
1637 {
1638 	struct fd in, out;
1639 	ssize_t error;
1640 
1641 	if (unlikely(!len))
1642 		return 0;
1643 
1644 	if (unlikely(flags & ~SPLICE_F_ALL))
1645 		return -EINVAL;
1646 
1647 	error = -EBADF;
1648 	in = fdget(fd_in);
1649 	if (in.file) {
1650 		out = fdget(fd_out);
1651 		if (out.file) {
1652 			error = __do_splice(in.file, off_in, out.file, off_out,
1653 					    len, flags);
1654 			fdput(out);
1655 		}
1656 		fdput(in);
1657 	}
1658 	return error;
1659 }
1660 
1661 /*
1662  * Make sure there's data to read. Wait for input if we can, otherwise
1663  * return an appropriate error.
1664  */
1665 static int ipipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1666 {
1667 	int ret;
1668 
1669 	/*
1670 	 * Check the pipe occupancy without the inode lock first. This function
1671 	 * is speculative anyways, so missing one is ok.
1672 	 */
1673 	if (!pipe_empty(pipe->head, pipe->tail))
1674 		return 0;
1675 
1676 	ret = 0;
1677 	pipe_lock(pipe);
1678 
1679 	while (pipe_empty(pipe->head, pipe->tail)) {
1680 		if (signal_pending(current)) {
1681 			ret = -ERESTARTSYS;
1682 			break;
1683 		}
1684 		if (!pipe->writers)
1685 			break;
1686 		if (flags & SPLICE_F_NONBLOCK) {
1687 			ret = -EAGAIN;
1688 			break;
1689 		}
1690 		pipe_wait_readable(pipe);
1691 	}
1692 
1693 	pipe_unlock(pipe);
1694 	return ret;
1695 }
1696 
1697 /*
1698  * Make sure there's writeable room. Wait for room if we can, otherwise
1699  * return an appropriate error.
1700  */
1701 static int opipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1702 {
1703 	int ret;
1704 
1705 	/*
1706 	 * Check pipe occupancy without the inode lock first. This function
1707 	 * is speculative anyways, so missing one is ok.
1708 	 */
1709 	if (!pipe_full(pipe->head, pipe->tail, pipe->max_usage))
1710 		return 0;
1711 
1712 	ret = 0;
1713 	pipe_lock(pipe);
1714 
1715 	while (pipe_full(pipe->head, pipe->tail, pipe->max_usage)) {
1716 		if (!pipe->readers) {
1717 			send_sig(SIGPIPE, current, 0);
1718 			ret = -EPIPE;
1719 			break;
1720 		}
1721 		if (flags & SPLICE_F_NONBLOCK) {
1722 			ret = -EAGAIN;
1723 			break;
1724 		}
1725 		if (signal_pending(current)) {
1726 			ret = -ERESTARTSYS;
1727 			break;
1728 		}
1729 		pipe_wait_writable(pipe);
1730 	}
1731 
1732 	pipe_unlock(pipe);
1733 	return ret;
1734 }
1735 
1736 /*
1737  * Splice contents of ipipe to opipe.
1738  */
1739 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1740 			       struct pipe_inode_info *opipe,
1741 			       size_t len, unsigned int flags)
1742 {
1743 	struct pipe_buffer *ibuf, *obuf;
1744 	unsigned int i_head, o_head;
1745 	unsigned int i_tail, o_tail;
1746 	unsigned int i_mask, o_mask;
1747 	int ret = 0;
1748 	bool input_wakeup = false;
1749 
1750 
1751 retry:
1752 	ret = ipipe_prep(ipipe, flags);
1753 	if (ret)
1754 		return ret;
1755 
1756 	ret = opipe_prep(opipe, flags);
1757 	if (ret)
1758 		return ret;
1759 
1760 	/*
1761 	 * Potential ABBA deadlock, work around it by ordering lock
1762 	 * grabbing by pipe info address. Otherwise two different processes
1763 	 * could deadlock (one doing tee from A -> B, the other from B -> A).
1764 	 */
1765 	pipe_double_lock(ipipe, opipe);
1766 
1767 	i_tail = ipipe->tail;
1768 	i_mask = ipipe->ring_size - 1;
1769 	o_head = opipe->head;
1770 	o_mask = opipe->ring_size - 1;
1771 
1772 	do {
1773 		size_t o_len;
1774 
1775 		if (!opipe->readers) {
1776 			send_sig(SIGPIPE, current, 0);
1777 			if (!ret)
1778 				ret = -EPIPE;
1779 			break;
1780 		}
1781 
1782 		i_head = ipipe->head;
1783 		o_tail = opipe->tail;
1784 
1785 		if (pipe_empty(i_head, i_tail) && !ipipe->writers)
1786 			break;
1787 
1788 		/*
1789 		 * Cannot make any progress, because either the input
1790 		 * pipe is empty or the output pipe is full.
1791 		 */
1792 		if (pipe_empty(i_head, i_tail) ||
1793 		    pipe_full(o_head, o_tail, opipe->max_usage)) {
1794 			/* Already processed some buffers, break */
1795 			if (ret)
1796 				break;
1797 
1798 			if (flags & SPLICE_F_NONBLOCK) {
1799 				ret = -EAGAIN;
1800 				break;
1801 			}
1802 
1803 			/*
1804 			 * We raced with another reader/writer and haven't
1805 			 * managed to process any buffers.  A zero return
1806 			 * value means EOF, so retry instead.
1807 			 */
1808 			pipe_unlock(ipipe);
1809 			pipe_unlock(opipe);
1810 			goto retry;
1811 		}
1812 
1813 		ibuf = &ipipe->bufs[i_tail & i_mask];
1814 		obuf = &opipe->bufs[o_head & o_mask];
1815 
1816 		if (len >= ibuf->len) {
1817 			/*
1818 			 * Simply move the whole buffer from ipipe to opipe
1819 			 */
1820 			*obuf = *ibuf;
1821 			ibuf->ops = NULL;
1822 			i_tail++;
1823 			ipipe->tail = i_tail;
1824 			input_wakeup = true;
1825 			o_len = obuf->len;
1826 			o_head++;
1827 			opipe->head = o_head;
1828 		} else {
1829 			/*
1830 			 * Get a reference to this pipe buffer,
1831 			 * so we can copy the contents over.
1832 			 */
1833 			if (!pipe_buf_get(ipipe, ibuf)) {
1834 				if (ret == 0)
1835 					ret = -EFAULT;
1836 				break;
1837 			}
1838 			*obuf = *ibuf;
1839 
1840 			/*
1841 			 * Don't inherit the gift and merge flags, we need to
1842 			 * prevent multiple steals of this page.
1843 			 */
1844 			obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1845 			obuf->flags &= ~PIPE_BUF_FLAG_CAN_MERGE;
1846 
1847 			obuf->len = len;
1848 			ibuf->offset += len;
1849 			ibuf->len -= len;
1850 			o_len = len;
1851 			o_head++;
1852 			opipe->head = o_head;
1853 		}
1854 		ret += o_len;
1855 		len -= o_len;
1856 	} while (len);
1857 
1858 	pipe_unlock(ipipe);
1859 	pipe_unlock(opipe);
1860 
1861 	/*
1862 	 * If we put data in the output pipe, wakeup any potential readers.
1863 	 */
1864 	if (ret > 0)
1865 		wakeup_pipe_readers(opipe);
1866 
1867 	if (input_wakeup)
1868 		wakeup_pipe_writers(ipipe);
1869 
1870 	return ret;
1871 }
1872 
1873 /*
1874  * Link contents of ipipe to opipe.
1875  */
1876 static ssize_t link_pipe(struct pipe_inode_info *ipipe,
1877 			 struct pipe_inode_info *opipe,
1878 			 size_t len, unsigned int flags)
1879 {
1880 	struct pipe_buffer *ibuf, *obuf;
1881 	unsigned int i_head, o_head;
1882 	unsigned int i_tail, o_tail;
1883 	unsigned int i_mask, o_mask;
1884 	ssize_t ret = 0;
1885 
1886 	/*
1887 	 * Potential ABBA deadlock, work around it by ordering lock
1888 	 * grabbing by pipe info address. Otherwise two different processes
1889 	 * could deadlock (one doing tee from A -> B, the other from B -> A).
1890 	 */
1891 	pipe_double_lock(ipipe, opipe);
1892 
1893 	i_tail = ipipe->tail;
1894 	i_mask = ipipe->ring_size - 1;
1895 	o_head = opipe->head;
1896 	o_mask = opipe->ring_size - 1;
1897 
1898 	do {
1899 		if (!opipe->readers) {
1900 			send_sig(SIGPIPE, current, 0);
1901 			if (!ret)
1902 				ret = -EPIPE;
1903 			break;
1904 		}
1905 
1906 		i_head = ipipe->head;
1907 		o_tail = opipe->tail;
1908 
1909 		/*
1910 		 * If we have iterated all input buffers or run out of
1911 		 * output room, break.
1912 		 */
1913 		if (pipe_empty(i_head, i_tail) ||
1914 		    pipe_full(o_head, o_tail, opipe->max_usage))
1915 			break;
1916 
1917 		ibuf = &ipipe->bufs[i_tail & i_mask];
1918 		obuf = &opipe->bufs[o_head & o_mask];
1919 
1920 		/*
1921 		 * Get a reference to this pipe buffer,
1922 		 * so we can copy the contents over.
1923 		 */
1924 		if (!pipe_buf_get(ipipe, ibuf)) {
1925 			if (ret == 0)
1926 				ret = -EFAULT;
1927 			break;
1928 		}
1929 
1930 		*obuf = *ibuf;
1931 
1932 		/*
1933 		 * Don't inherit the gift and merge flag, we need to prevent
1934 		 * multiple steals of this page.
1935 		 */
1936 		obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1937 		obuf->flags &= ~PIPE_BUF_FLAG_CAN_MERGE;
1938 
1939 		if (obuf->len > len)
1940 			obuf->len = len;
1941 		ret += obuf->len;
1942 		len -= obuf->len;
1943 
1944 		o_head++;
1945 		opipe->head = o_head;
1946 		i_tail++;
1947 	} while (len);
1948 
1949 	pipe_unlock(ipipe);
1950 	pipe_unlock(opipe);
1951 
1952 	/*
1953 	 * If we put data in the output pipe, wakeup any potential readers.
1954 	 */
1955 	if (ret > 0)
1956 		wakeup_pipe_readers(opipe);
1957 
1958 	return ret;
1959 }
1960 
1961 /*
1962  * This is a tee(1) implementation that works on pipes. It doesn't copy
1963  * any data, it simply references the 'in' pages on the 'out' pipe.
1964  * The 'flags' used are the SPLICE_F_* variants, currently the only
1965  * applicable one is SPLICE_F_NONBLOCK.
1966  */
1967 ssize_t do_tee(struct file *in, struct file *out, size_t len,
1968 	       unsigned int flags)
1969 {
1970 	struct pipe_inode_info *ipipe = get_pipe_info(in, true);
1971 	struct pipe_inode_info *opipe = get_pipe_info(out, true);
1972 	ssize_t ret = -EINVAL;
1973 
1974 	if (unlikely(!(in->f_mode & FMODE_READ) ||
1975 		     !(out->f_mode & FMODE_WRITE)))
1976 		return -EBADF;
1977 
1978 	/*
1979 	 * Duplicate the contents of ipipe to opipe without actually
1980 	 * copying the data.
1981 	 */
1982 	if (ipipe && opipe && ipipe != opipe) {
1983 		if ((in->f_flags | out->f_flags) & O_NONBLOCK)
1984 			flags |= SPLICE_F_NONBLOCK;
1985 
1986 		/*
1987 		 * Keep going, unless we encounter an error. The ipipe/opipe
1988 		 * ordering doesn't really matter.
1989 		 */
1990 		ret = ipipe_prep(ipipe, flags);
1991 		if (!ret) {
1992 			ret = opipe_prep(opipe, flags);
1993 			if (!ret)
1994 				ret = link_pipe(ipipe, opipe, len, flags);
1995 		}
1996 	}
1997 
1998 	if (ret > 0) {
1999 		fsnotify_access(in);
2000 		fsnotify_modify(out);
2001 	}
2002 
2003 	return ret;
2004 }
2005 
2006 SYSCALL_DEFINE4(tee, int, fdin, int, fdout, size_t, len, unsigned int, flags)
2007 {
2008 	struct fd in, out;
2009 	ssize_t error;
2010 
2011 	if (unlikely(flags & ~SPLICE_F_ALL))
2012 		return -EINVAL;
2013 
2014 	if (unlikely(!len))
2015 		return 0;
2016 
2017 	error = -EBADF;
2018 	in = fdget(fdin);
2019 	if (in.file) {
2020 		out = fdget(fdout);
2021 		if (out.file) {
2022 			error = do_tee(in.file, out.file, len, flags);
2023 			fdput(out);
2024 		}
2025  		fdput(in);
2026  	}
2027 
2028 	return error;
2029 }
2030