xref: /linux/fs/splice.c (revision 8b4a40809e5330c9da5d20107d693d92d73b31dc)
1 /*
2  * "splice": joining two ropes together by interweaving their strands.
3  *
4  * This is the "extended pipe" functionality, where a pipe is used as
5  * an arbitrary in-memory buffer. Think of a pipe as a small kernel
6  * buffer that you can use to transfer data from one end to the other.
7  *
8  * The traditional unix read/write is extended with a "splice()" operation
9  * that transfers data buffers to or from a pipe buffer.
10  *
11  * Named by Larry McVoy, original implementation from Linus, extended by
12  * Jens to support splicing to files, network, direct splicing, etc and
13  * fixing lots of bugs.
14  *
15  * Copyright (C) 2005-2006 Jens Axboe <axboe@kernel.dk>
16  * Copyright (C) 2005-2006 Linus Torvalds <torvalds@osdl.org>
17  * Copyright (C) 2006 Ingo Molnar <mingo@elte.hu>
18  *
19  */
20 #include <linux/fs.h>
21 #include <linux/file.h>
22 #include <linux/pagemap.h>
23 #include <linux/splice.h>
24 #include <linux/mm_inline.h>
25 #include <linux/swap.h>
26 #include <linux/writeback.h>
27 #include <linux/buffer_head.h>
28 #include <linux/module.h>
29 #include <linux/syscalls.h>
30 #include <linux/uio.h>
31 #include <linux/security.h>
32 
33 /*
34  * Attempt to steal a page from a pipe buffer. This should perhaps go into
35  * a vm helper function, it's already simplified quite a bit by the
36  * addition of remove_mapping(). If success is returned, the caller may
37  * attempt to reuse this page for another destination.
38  */
39 static int page_cache_pipe_buf_steal(struct pipe_inode_info *pipe,
40 				     struct pipe_buffer *buf)
41 {
42 	struct page *page = buf->page;
43 	struct address_space *mapping;
44 
45 	lock_page(page);
46 
47 	mapping = page_mapping(page);
48 	if (mapping) {
49 		WARN_ON(!PageUptodate(page));
50 
51 		/*
52 		 * At least for ext2 with nobh option, we need to wait on
53 		 * writeback completing on this page, since we'll remove it
54 		 * from the pagecache.  Otherwise truncate wont wait on the
55 		 * page, allowing the disk blocks to be reused by someone else
56 		 * before we actually wrote our data to them. fs corruption
57 		 * ensues.
58 		 */
59 		wait_on_page_writeback(page);
60 
61 		if (PagePrivate(page))
62 			try_to_release_page(page, GFP_KERNEL);
63 
64 		/*
65 		 * If we succeeded in removing the mapping, set LRU flag
66 		 * and return good.
67 		 */
68 		if (remove_mapping(mapping, page)) {
69 			buf->flags |= PIPE_BUF_FLAG_LRU;
70 			return 0;
71 		}
72 	}
73 
74 	/*
75 	 * Raced with truncate or failed to remove page from current
76 	 * address space, unlock and return failure.
77 	 */
78 	unlock_page(page);
79 	return 1;
80 }
81 
82 static void page_cache_pipe_buf_release(struct pipe_inode_info *pipe,
83 					struct pipe_buffer *buf)
84 {
85 	page_cache_release(buf->page);
86 	buf->flags &= ~PIPE_BUF_FLAG_LRU;
87 }
88 
89 /*
90  * Check whether the contents of buf is OK to access. Since the content
91  * is a page cache page, IO may be in flight.
92  */
93 static int page_cache_pipe_buf_confirm(struct pipe_inode_info *pipe,
94 				       struct pipe_buffer *buf)
95 {
96 	struct page *page = buf->page;
97 	int err;
98 
99 	if (!PageUptodate(page)) {
100 		lock_page(page);
101 
102 		/*
103 		 * Page got truncated/unhashed. This will cause a 0-byte
104 		 * splice, if this is the first page.
105 		 */
106 		if (!page->mapping) {
107 			err = -ENODATA;
108 			goto error;
109 		}
110 
111 		/*
112 		 * Uh oh, read-error from disk.
113 		 */
114 		if (!PageUptodate(page)) {
115 			err = -EIO;
116 			goto error;
117 		}
118 
119 		/*
120 		 * Page is ok afterall, we are done.
121 		 */
122 		unlock_page(page);
123 	}
124 
125 	return 0;
126 error:
127 	unlock_page(page);
128 	return err;
129 }
130 
131 static const struct pipe_buf_operations page_cache_pipe_buf_ops = {
132 	.can_merge = 0,
133 	.map = generic_pipe_buf_map,
134 	.unmap = generic_pipe_buf_unmap,
135 	.confirm = page_cache_pipe_buf_confirm,
136 	.release = page_cache_pipe_buf_release,
137 	.steal = page_cache_pipe_buf_steal,
138 	.get = generic_pipe_buf_get,
139 };
140 
141 static int user_page_pipe_buf_steal(struct pipe_inode_info *pipe,
142 				    struct pipe_buffer *buf)
143 {
144 	if (!(buf->flags & PIPE_BUF_FLAG_GIFT))
145 		return 1;
146 
147 	buf->flags |= PIPE_BUF_FLAG_LRU;
148 	return generic_pipe_buf_steal(pipe, buf);
149 }
150 
151 static const struct pipe_buf_operations user_page_pipe_buf_ops = {
152 	.can_merge = 0,
153 	.map = generic_pipe_buf_map,
154 	.unmap = generic_pipe_buf_unmap,
155 	.confirm = generic_pipe_buf_confirm,
156 	.release = page_cache_pipe_buf_release,
157 	.steal = user_page_pipe_buf_steal,
158 	.get = generic_pipe_buf_get,
159 };
160 
161 /**
162  * splice_to_pipe - fill passed data into a pipe
163  * @pipe:	pipe to fill
164  * @spd:	data to fill
165  *
166  * Description:
167  *    @spd contains a map of pages and len/offset tupples, a long with
168  *    the struct pipe_buf_operations associated with these pages. This
169  *    function will link that data to the pipe.
170  *
171  */
172 ssize_t splice_to_pipe(struct pipe_inode_info *pipe,
173 		       struct splice_pipe_desc *spd)
174 {
175 	unsigned int spd_pages = spd->nr_pages;
176 	int ret, do_wakeup, page_nr;
177 
178 	ret = 0;
179 	do_wakeup = 0;
180 	page_nr = 0;
181 
182 	if (pipe->inode)
183 		mutex_lock(&pipe->inode->i_mutex);
184 
185 	for (;;) {
186 		if (!pipe->readers) {
187 			send_sig(SIGPIPE, current, 0);
188 			if (!ret)
189 				ret = -EPIPE;
190 			break;
191 		}
192 
193 		if (pipe->nrbufs < PIPE_BUFFERS) {
194 			int newbuf = (pipe->curbuf + pipe->nrbufs) & (PIPE_BUFFERS - 1);
195 			struct pipe_buffer *buf = pipe->bufs + newbuf;
196 
197 			buf->page = spd->pages[page_nr];
198 			buf->offset = spd->partial[page_nr].offset;
199 			buf->len = spd->partial[page_nr].len;
200 			buf->private = spd->partial[page_nr].private;
201 			buf->ops = spd->ops;
202 			if (spd->flags & SPLICE_F_GIFT)
203 				buf->flags |= PIPE_BUF_FLAG_GIFT;
204 
205 			pipe->nrbufs++;
206 			page_nr++;
207 			ret += buf->len;
208 
209 			if (pipe->inode)
210 				do_wakeup = 1;
211 
212 			if (!--spd->nr_pages)
213 				break;
214 			if (pipe->nrbufs < PIPE_BUFFERS)
215 				continue;
216 
217 			break;
218 		}
219 
220 		if (spd->flags & SPLICE_F_NONBLOCK) {
221 			if (!ret)
222 				ret = -EAGAIN;
223 			break;
224 		}
225 
226 		if (signal_pending(current)) {
227 			if (!ret)
228 				ret = -ERESTARTSYS;
229 			break;
230 		}
231 
232 		if (do_wakeup) {
233 			smp_mb();
234 			if (waitqueue_active(&pipe->wait))
235 				wake_up_interruptible_sync(&pipe->wait);
236 			kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
237 			do_wakeup = 0;
238 		}
239 
240 		pipe->waiting_writers++;
241 		pipe_wait(pipe);
242 		pipe->waiting_writers--;
243 	}
244 
245 	if (pipe->inode) {
246 		mutex_unlock(&pipe->inode->i_mutex);
247 
248 		if (do_wakeup) {
249 			smp_mb();
250 			if (waitqueue_active(&pipe->wait))
251 				wake_up_interruptible(&pipe->wait);
252 			kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
253 		}
254 	}
255 
256 	while (page_nr < spd_pages)
257 		page_cache_release(spd->pages[page_nr++]);
258 
259 	return ret;
260 }
261 
262 static int
263 __generic_file_splice_read(struct file *in, loff_t *ppos,
264 			   struct pipe_inode_info *pipe, size_t len,
265 			   unsigned int flags)
266 {
267 	struct address_space *mapping = in->f_mapping;
268 	unsigned int loff, nr_pages;
269 	struct page *pages[PIPE_BUFFERS];
270 	struct partial_page partial[PIPE_BUFFERS];
271 	struct page *page;
272 	pgoff_t index, end_index;
273 	loff_t isize;
274 	int error, page_nr;
275 	struct splice_pipe_desc spd = {
276 		.pages = pages,
277 		.partial = partial,
278 		.flags = flags,
279 		.ops = &page_cache_pipe_buf_ops,
280 	};
281 
282 	index = *ppos >> PAGE_CACHE_SHIFT;
283 	loff = *ppos & ~PAGE_CACHE_MASK;
284 	nr_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
285 
286 	if (nr_pages > PIPE_BUFFERS)
287 		nr_pages = PIPE_BUFFERS;
288 
289 	/*
290 	 * Don't try to 2nd guess the read-ahead logic, call into
291 	 * page_cache_readahead() like the page cache reads would do.
292 	 */
293 	page_cache_readahead(mapping, &in->f_ra, in, index, nr_pages);
294 
295 	/*
296 	 * Lookup the (hopefully) full range of pages we need.
297 	 */
298 	spd.nr_pages = find_get_pages_contig(mapping, index, nr_pages, pages);
299 
300 	/*
301 	 * If find_get_pages_contig() returned fewer pages than we needed,
302 	 * allocate the rest and fill in the holes.
303 	 */
304 	error = 0;
305 	index += spd.nr_pages;
306 	while (spd.nr_pages < nr_pages) {
307 		/*
308 		 * Page could be there, find_get_pages_contig() breaks on
309 		 * the first hole.
310 		 */
311 		page = find_get_page(mapping, index);
312 		if (!page) {
313 			/*
314 			 * Make sure the read-ahead engine is notified
315 			 * about this failure.
316 			 */
317 			handle_ra_miss(mapping, &in->f_ra, index);
318 
319 			/*
320 			 * page didn't exist, allocate one.
321 			 */
322 			page = page_cache_alloc_cold(mapping);
323 			if (!page)
324 				break;
325 
326 			error = add_to_page_cache_lru(page, mapping, index,
327 					      GFP_KERNEL);
328 			if (unlikely(error)) {
329 				page_cache_release(page);
330 				if (error == -EEXIST)
331 					continue;
332 				break;
333 			}
334 			/*
335 			 * add_to_page_cache() locks the page, unlock it
336 			 * to avoid convoluting the logic below even more.
337 			 */
338 			unlock_page(page);
339 		}
340 
341 		pages[spd.nr_pages++] = page;
342 		index++;
343 	}
344 
345 	/*
346 	 * Now loop over the map and see if we need to start IO on any
347 	 * pages, fill in the partial map, etc.
348 	 */
349 	index = *ppos >> PAGE_CACHE_SHIFT;
350 	nr_pages = spd.nr_pages;
351 	spd.nr_pages = 0;
352 	for (page_nr = 0; page_nr < nr_pages; page_nr++) {
353 		unsigned int this_len;
354 
355 		if (!len)
356 			break;
357 
358 		/*
359 		 * this_len is the max we'll use from this page
360 		 */
361 		this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
362 		page = pages[page_nr];
363 
364 		/*
365 		 * If the page isn't uptodate, we may need to start io on it
366 		 */
367 		if (!PageUptodate(page)) {
368 			/*
369 			 * If in nonblock mode then dont block on waiting
370 			 * for an in-flight io page
371 			 */
372 			if (flags & SPLICE_F_NONBLOCK) {
373 				if (TestSetPageLocked(page))
374 					break;
375 			} else
376 				lock_page(page);
377 
378 			/*
379 			 * page was truncated, stop here. if this isn't the
380 			 * first page, we'll just complete what we already
381 			 * added
382 			 */
383 			if (!page->mapping) {
384 				unlock_page(page);
385 				break;
386 			}
387 			/*
388 			 * page was already under io and is now done, great
389 			 */
390 			if (PageUptodate(page)) {
391 				unlock_page(page);
392 				goto fill_it;
393 			}
394 
395 			/*
396 			 * need to read in the page
397 			 */
398 			error = mapping->a_ops->readpage(in, page);
399 			if (unlikely(error)) {
400 				/*
401 				 * We really should re-lookup the page here,
402 				 * but it complicates things a lot. Instead
403 				 * lets just do what we already stored, and
404 				 * we'll get it the next time we are called.
405 				 */
406 				if (error == AOP_TRUNCATED_PAGE)
407 					error = 0;
408 
409 				break;
410 			}
411 		}
412 fill_it:
413 		/*
414 		 * i_size must be checked after PageUptodate.
415 		 */
416 		isize = i_size_read(mapping->host);
417 		end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
418 		if (unlikely(!isize || index > end_index))
419 			break;
420 
421 		/*
422 		 * if this is the last page, see if we need to shrink
423 		 * the length and stop
424 		 */
425 		if (end_index == index) {
426 			unsigned int plen;
427 
428 			/*
429 			 * max good bytes in this page
430 			 */
431 			plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
432 			if (plen <= loff)
433 				break;
434 
435 			/*
436 			 * force quit after adding this page
437 			 */
438 			this_len = min(this_len, plen - loff);
439 			len = this_len;
440 		}
441 
442 		partial[page_nr].offset = loff;
443 		partial[page_nr].len = this_len;
444 		len -= this_len;
445 		loff = 0;
446 		spd.nr_pages++;
447 		index++;
448 	}
449 
450 	/*
451 	 * Release any pages at the end, if we quit early. 'page_nr' is how far
452 	 * we got, 'nr_pages' is how many pages are in the map.
453 	 */
454 	while (page_nr < nr_pages)
455 		page_cache_release(pages[page_nr++]);
456 
457 	if (spd.nr_pages)
458 		return splice_to_pipe(pipe, &spd);
459 
460 	return error;
461 }
462 
463 /**
464  * generic_file_splice_read - splice data from file to a pipe
465  * @in:		file to splice from
466  * @ppos:	position in @in
467  * @pipe:	pipe to splice to
468  * @len:	number of bytes to splice
469  * @flags:	splice modifier flags
470  *
471  * Description:
472  *    Will read pages from given file and fill them into a pipe. Can be
473  *    used as long as the address_space operations for the source implements
474  *    a readpage() hook.
475  *
476  */
477 ssize_t generic_file_splice_read(struct file *in, loff_t *ppos,
478 				 struct pipe_inode_info *pipe, size_t len,
479 				 unsigned int flags)
480 {
481 	ssize_t spliced;
482 	int ret;
483 	loff_t isize, left;
484 
485 	isize = i_size_read(in->f_mapping->host);
486 	if (unlikely(*ppos >= isize))
487 		return 0;
488 
489 	left = isize - *ppos;
490 	if (unlikely(left < len))
491 		len = left;
492 
493 	ret = 0;
494 	spliced = 0;
495 	while (len && !spliced) {
496 		ret = __generic_file_splice_read(in, ppos, pipe, len, flags);
497 
498 		if (ret < 0)
499 			break;
500 		else if (!ret) {
501 			if (spliced)
502 				break;
503 			if (flags & SPLICE_F_NONBLOCK) {
504 				ret = -EAGAIN;
505 				break;
506 			}
507 		}
508 
509 		*ppos += ret;
510 		len -= ret;
511 		spliced += ret;
512 	}
513 
514 	if (spliced)
515 		return spliced;
516 
517 	return ret;
518 }
519 
520 EXPORT_SYMBOL(generic_file_splice_read);
521 
522 /*
523  * Send 'sd->len' bytes to socket from 'sd->file' at position 'sd->pos'
524  * using sendpage(). Return the number of bytes sent.
525  */
526 static int pipe_to_sendpage(struct pipe_inode_info *pipe,
527 			    struct pipe_buffer *buf, struct splice_desc *sd)
528 {
529 	struct file *file = sd->u.file;
530 	loff_t pos = sd->pos;
531 	int ret, more;
532 
533 	ret = buf->ops->confirm(pipe, buf);
534 	if (!ret) {
535 		more = (sd->flags & SPLICE_F_MORE) || sd->len < sd->total_len;
536 
537 		ret = file->f_op->sendpage(file, buf->page, buf->offset,
538 					   sd->len, &pos, more);
539 	}
540 
541 	return ret;
542 }
543 
544 /*
545  * This is a little more tricky than the file -> pipe splicing. There are
546  * basically three cases:
547  *
548  *	- Destination page already exists in the address space and there
549  *	  are users of it. For that case we have no other option that
550  *	  copying the data. Tough luck.
551  *	- Destination page already exists in the address space, but there
552  *	  are no users of it. Make sure it's uptodate, then drop it. Fall
553  *	  through to last case.
554  *	- Destination page does not exist, we can add the pipe page to
555  *	  the page cache and avoid the copy.
556  *
557  * If asked to move pages to the output file (SPLICE_F_MOVE is set in
558  * sd->flags), we attempt to migrate pages from the pipe to the output
559  * file address space page cache. This is possible if no one else has
560  * the pipe page referenced outside of the pipe and page cache. If
561  * SPLICE_F_MOVE isn't set, or we cannot move the page, we simply create
562  * a new page in the output file page cache and fill/dirty that.
563  */
564 static int pipe_to_file(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
565 			struct splice_desc *sd)
566 {
567 	struct file *file = sd->u.file;
568 	struct address_space *mapping = file->f_mapping;
569 	unsigned int offset, this_len;
570 	struct page *page;
571 	pgoff_t index;
572 	int ret;
573 
574 	/*
575 	 * make sure the data in this buffer is uptodate
576 	 */
577 	ret = buf->ops->confirm(pipe, buf);
578 	if (unlikely(ret))
579 		return ret;
580 
581 	index = sd->pos >> PAGE_CACHE_SHIFT;
582 	offset = sd->pos & ~PAGE_CACHE_MASK;
583 
584 	this_len = sd->len;
585 	if (this_len + offset > PAGE_CACHE_SIZE)
586 		this_len = PAGE_CACHE_SIZE - offset;
587 
588 find_page:
589 	page = find_lock_page(mapping, index);
590 	if (!page) {
591 		ret = -ENOMEM;
592 		page = page_cache_alloc_cold(mapping);
593 		if (unlikely(!page))
594 			goto out_ret;
595 
596 		/*
597 		 * This will also lock the page
598 		 */
599 		ret = add_to_page_cache_lru(page, mapping, index,
600 					    GFP_KERNEL);
601 		if (unlikely(ret))
602 			goto out;
603 	}
604 
605 	ret = mapping->a_ops->prepare_write(file, page, offset, offset+this_len);
606 	if (unlikely(ret)) {
607 		loff_t isize = i_size_read(mapping->host);
608 
609 		if (ret != AOP_TRUNCATED_PAGE)
610 			unlock_page(page);
611 		page_cache_release(page);
612 		if (ret == AOP_TRUNCATED_PAGE)
613 			goto find_page;
614 
615 		/*
616 		 * prepare_write() may have instantiated a few blocks
617 		 * outside i_size.  Trim these off again.
618 		 */
619 		if (sd->pos + this_len > isize)
620 			vmtruncate(mapping->host, isize);
621 
622 		goto out_ret;
623 	}
624 
625 	if (buf->page != page) {
626 		/*
627 		 * Careful, ->map() uses KM_USER0!
628 		 */
629 		char *src = buf->ops->map(pipe, buf, 1);
630 		char *dst = kmap_atomic(page, KM_USER1);
631 
632 		memcpy(dst + offset, src + buf->offset, this_len);
633 		flush_dcache_page(page);
634 		kunmap_atomic(dst, KM_USER1);
635 		buf->ops->unmap(pipe, buf, src);
636 	}
637 
638 	ret = mapping->a_ops->commit_write(file, page, offset, offset+this_len);
639 	if (ret) {
640 		if (ret == AOP_TRUNCATED_PAGE) {
641 			page_cache_release(page);
642 			goto find_page;
643 		}
644 		if (ret < 0)
645 			goto out;
646 		/*
647 		 * Partial write has happened, so 'ret' already initialized by
648 		 * number of bytes written, Where is nothing we have to do here.
649 		 */
650 	} else
651 		ret = this_len;
652 	/*
653 	 * Return the number of bytes written and mark page as
654 	 * accessed, we are now done!
655 	 */
656 	mark_page_accessed(page);
657 out:
658 	page_cache_release(page);
659 	unlock_page(page);
660 out_ret:
661 	return ret;
662 }
663 
664 /**
665  * __splice_from_pipe - splice data from a pipe to given actor
666  * @pipe:	pipe to splice from
667  * @sd:		information to @actor
668  * @actor:	handler that splices the data
669  *
670  * Description:
671  *    This function does little more than loop over the pipe and call
672  *    @actor to do the actual moving of a single struct pipe_buffer to
673  *    the desired destination. See pipe_to_file, pipe_to_sendpage, or
674  *    pipe_to_user.
675  *
676  */
677 ssize_t __splice_from_pipe(struct pipe_inode_info *pipe, struct splice_desc *sd,
678 			   splice_actor *actor)
679 {
680 	int ret, do_wakeup, err;
681 
682 	ret = 0;
683 	do_wakeup = 0;
684 
685 	for (;;) {
686 		if (pipe->nrbufs) {
687 			struct pipe_buffer *buf = pipe->bufs + pipe->curbuf;
688 			const struct pipe_buf_operations *ops = buf->ops;
689 
690 			sd->len = buf->len;
691 			if (sd->len > sd->total_len)
692 				sd->len = sd->total_len;
693 
694 			err = actor(pipe, buf, sd);
695 			if (err <= 0) {
696 				if (!ret && err != -ENODATA)
697 					ret = err;
698 
699 				break;
700 			}
701 
702 			ret += err;
703 			buf->offset += err;
704 			buf->len -= err;
705 
706 			sd->len -= err;
707 			sd->pos += err;
708 			sd->total_len -= err;
709 			if (sd->len)
710 				continue;
711 
712 			if (!buf->len) {
713 				buf->ops = NULL;
714 				ops->release(pipe, buf);
715 				pipe->curbuf = (pipe->curbuf + 1) & (PIPE_BUFFERS - 1);
716 				pipe->nrbufs--;
717 				if (pipe->inode)
718 					do_wakeup = 1;
719 			}
720 
721 			if (!sd->total_len)
722 				break;
723 		}
724 
725 		if (pipe->nrbufs)
726 			continue;
727 		if (!pipe->writers)
728 			break;
729 		if (!pipe->waiting_writers) {
730 			if (ret)
731 				break;
732 		}
733 
734 		if (sd->flags & SPLICE_F_NONBLOCK) {
735 			if (!ret)
736 				ret = -EAGAIN;
737 			break;
738 		}
739 
740 		if (signal_pending(current)) {
741 			if (!ret)
742 				ret = -ERESTARTSYS;
743 			break;
744 		}
745 
746 		if (do_wakeup) {
747 			smp_mb();
748 			if (waitqueue_active(&pipe->wait))
749 				wake_up_interruptible_sync(&pipe->wait);
750 			kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
751 			do_wakeup = 0;
752 		}
753 
754 		pipe_wait(pipe);
755 	}
756 
757 	if (do_wakeup) {
758 		smp_mb();
759 		if (waitqueue_active(&pipe->wait))
760 			wake_up_interruptible(&pipe->wait);
761 		kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
762 	}
763 
764 	return ret;
765 }
766 EXPORT_SYMBOL(__splice_from_pipe);
767 
768 /**
769  * splice_from_pipe - splice data from a pipe to a file
770  * @pipe:	pipe to splice from
771  * @out:	file to splice to
772  * @ppos:	position in @out
773  * @len:	how many bytes to splice
774  * @flags:	splice modifier flags
775  * @actor:	handler that splices the data
776  *
777  * Description:
778  *    See __splice_from_pipe. This function locks the input and output inodes,
779  *    otherwise it's identical to __splice_from_pipe().
780  *
781  */
782 ssize_t splice_from_pipe(struct pipe_inode_info *pipe, struct file *out,
783 			 loff_t *ppos, size_t len, unsigned int flags,
784 			 splice_actor *actor)
785 {
786 	ssize_t ret;
787 	struct inode *inode = out->f_mapping->host;
788 	struct splice_desc sd = {
789 		.total_len = len,
790 		.flags = flags,
791 		.pos = *ppos,
792 		.u.file = out,
793 	};
794 
795 	/*
796 	 * The actor worker might be calling ->prepare_write and
797 	 * ->commit_write. Most of the time, these expect i_mutex to
798 	 * be held. Since this may result in an ABBA deadlock with
799 	 * pipe->inode, we have to order lock acquiry here.
800 	 */
801 	inode_double_lock(inode, pipe->inode);
802 	ret = __splice_from_pipe(pipe, &sd, actor);
803 	inode_double_unlock(inode, pipe->inode);
804 
805 	return ret;
806 }
807 
808 /**
809  * generic_file_splice_write_nolock - generic_file_splice_write without mutexes
810  * @pipe:	pipe info
811  * @out:	file to write to
812  * @ppos:	position in @out
813  * @len:	number of bytes to splice
814  * @flags:	splice modifier flags
815  *
816  * Description:
817  *    Will either move or copy pages (determined by @flags options) from
818  *    the given pipe inode to the given file. The caller is responsible
819  *    for acquiring i_mutex on both inodes.
820  *
821  */
822 ssize_t
823 generic_file_splice_write_nolock(struct pipe_inode_info *pipe, struct file *out,
824 				 loff_t *ppos, size_t len, unsigned int flags)
825 {
826 	struct address_space *mapping = out->f_mapping;
827 	struct inode *inode = mapping->host;
828 	struct splice_desc sd = {
829 		.total_len = len,
830 		.flags = flags,
831 		.pos = *ppos,
832 		.u.file = out,
833 	};
834 	ssize_t ret;
835 	int err;
836 
837 	err = remove_suid(out->f_path.dentry);
838 	if (unlikely(err))
839 		return err;
840 
841 	ret = __splice_from_pipe(pipe, &sd, pipe_to_file);
842 	if (ret > 0) {
843 		unsigned long nr_pages;
844 
845 		*ppos += ret;
846 		nr_pages = (ret + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
847 
848 		/*
849 		 * If file or inode is SYNC and we actually wrote some data,
850 		 * sync it.
851 		 */
852 		if (unlikely((out->f_flags & O_SYNC) || IS_SYNC(inode))) {
853 			err = generic_osync_inode(inode, mapping,
854 						  OSYNC_METADATA|OSYNC_DATA);
855 
856 			if (err)
857 				ret = err;
858 		}
859 		balance_dirty_pages_ratelimited_nr(mapping, nr_pages);
860 	}
861 
862 	return ret;
863 }
864 
865 EXPORT_SYMBOL(generic_file_splice_write_nolock);
866 
867 /**
868  * generic_file_splice_write - splice data from a pipe to a file
869  * @pipe:	pipe info
870  * @out:	file to write to
871  * @ppos:	position in @out
872  * @len:	number of bytes to splice
873  * @flags:	splice modifier flags
874  *
875  * Description:
876  *    Will either move or copy pages (determined by @flags options) from
877  *    the given pipe inode to the given file.
878  *
879  */
880 ssize_t
881 generic_file_splice_write(struct pipe_inode_info *pipe, struct file *out,
882 			  loff_t *ppos, size_t len, unsigned int flags)
883 {
884 	struct address_space *mapping = out->f_mapping;
885 	struct inode *inode = mapping->host;
886 	ssize_t ret;
887 	int err;
888 
889 	err = should_remove_suid(out->f_path.dentry);
890 	if (unlikely(err)) {
891 		mutex_lock(&inode->i_mutex);
892 		err = __remove_suid(out->f_path.dentry, err);
893 		mutex_unlock(&inode->i_mutex);
894 		if (err)
895 			return err;
896 	}
897 
898 	ret = splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_file);
899 	if (ret > 0) {
900 		unsigned long nr_pages;
901 
902 		*ppos += ret;
903 		nr_pages = (ret + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
904 
905 		/*
906 		 * If file or inode is SYNC and we actually wrote some data,
907 		 * sync it.
908 		 */
909 		if (unlikely((out->f_flags & O_SYNC) || IS_SYNC(inode))) {
910 			mutex_lock(&inode->i_mutex);
911 			err = generic_osync_inode(inode, mapping,
912 						  OSYNC_METADATA|OSYNC_DATA);
913 			mutex_unlock(&inode->i_mutex);
914 
915 			if (err)
916 				ret = err;
917 		}
918 		balance_dirty_pages_ratelimited_nr(mapping, nr_pages);
919 	}
920 
921 	return ret;
922 }
923 
924 EXPORT_SYMBOL(generic_file_splice_write);
925 
926 /**
927  * generic_splice_sendpage - splice data from a pipe to a socket
928  * @pipe:	pipe to splice from
929  * @out:	socket to write to
930  * @ppos:	position in @out
931  * @len:	number of bytes to splice
932  * @flags:	splice modifier flags
933  *
934  * Description:
935  *    Will send @len bytes from the pipe to a network socket. No data copying
936  *    is involved.
937  *
938  */
939 ssize_t generic_splice_sendpage(struct pipe_inode_info *pipe, struct file *out,
940 				loff_t *ppos, size_t len, unsigned int flags)
941 {
942 	return splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_sendpage);
943 }
944 
945 EXPORT_SYMBOL(generic_splice_sendpage);
946 
947 /*
948  * Attempt to initiate a splice from pipe to file.
949  */
950 static long do_splice_from(struct pipe_inode_info *pipe, struct file *out,
951 			   loff_t *ppos, size_t len, unsigned int flags)
952 {
953 	int ret;
954 
955 	if (unlikely(!out->f_op || !out->f_op->splice_write))
956 		return -EINVAL;
957 
958 	if (unlikely(!(out->f_mode & FMODE_WRITE)))
959 		return -EBADF;
960 
961 	ret = rw_verify_area(WRITE, out, ppos, len);
962 	if (unlikely(ret < 0))
963 		return ret;
964 
965 	ret = security_file_permission(out, MAY_WRITE);
966 	if (unlikely(ret < 0))
967 		return ret;
968 
969 	return out->f_op->splice_write(pipe, out, ppos, len, flags);
970 }
971 
972 /*
973  * Attempt to initiate a splice from a file to a pipe.
974  */
975 static long do_splice_to(struct file *in, loff_t *ppos,
976 			 struct pipe_inode_info *pipe, size_t len,
977 			 unsigned int flags)
978 {
979 	int ret;
980 
981 	if (unlikely(!in->f_op || !in->f_op->splice_read))
982 		return -EINVAL;
983 
984 	if (unlikely(!(in->f_mode & FMODE_READ)))
985 		return -EBADF;
986 
987 	ret = rw_verify_area(READ, in, ppos, len);
988 	if (unlikely(ret < 0))
989 		return ret;
990 
991 	ret = security_file_permission(in, MAY_READ);
992 	if (unlikely(ret < 0))
993 		return ret;
994 
995 	return in->f_op->splice_read(in, ppos, pipe, len, flags);
996 }
997 
998 /**
999  * splice_direct_to_actor - splices data directly between two non-pipes
1000  * @in:		file to splice from
1001  * @sd:		actor information on where to splice to
1002  * @actor:	handles the data splicing
1003  *
1004  * Description:
1005  *    This is a special case helper to splice directly between two
1006  *    points, without requiring an explicit pipe. Internally an allocated
1007  *    pipe is cached in the process, and reused during the life time of
1008  *    that process.
1009  *
1010  */
1011 ssize_t splice_direct_to_actor(struct file *in, struct splice_desc *sd,
1012 			       splice_direct_actor *actor)
1013 {
1014 	struct pipe_inode_info *pipe;
1015 	long ret, bytes;
1016 	umode_t i_mode;
1017 	size_t len;
1018 	int i, flags;
1019 
1020 	/*
1021 	 * We require the input being a regular file, as we don't want to
1022 	 * randomly drop data for eg socket -> socket splicing. Use the
1023 	 * piped splicing for that!
1024 	 */
1025 	i_mode = in->f_path.dentry->d_inode->i_mode;
1026 	if (unlikely(!S_ISREG(i_mode) && !S_ISBLK(i_mode)))
1027 		return -EINVAL;
1028 
1029 	/*
1030 	 * neither in nor out is a pipe, setup an internal pipe attached to
1031 	 * 'out' and transfer the wanted data from 'in' to 'out' through that
1032 	 */
1033 	pipe = current->splice_pipe;
1034 	if (unlikely(!pipe)) {
1035 		pipe = alloc_pipe_info(NULL);
1036 		if (!pipe)
1037 			return -ENOMEM;
1038 
1039 		/*
1040 		 * We don't have an immediate reader, but we'll read the stuff
1041 		 * out of the pipe right after the splice_to_pipe(). So set
1042 		 * PIPE_READERS appropriately.
1043 		 */
1044 		pipe->readers = 1;
1045 
1046 		current->splice_pipe = pipe;
1047 	}
1048 
1049 	/*
1050 	 * Do the splice.
1051 	 */
1052 	ret = 0;
1053 	bytes = 0;
1054 	len = sd->total_len;
1055 	flags = sd->flags;
1056 
1057 	/*
1058 	 * Don't block on output, we have to drain the direct pipe.
1059 	 */
1060 	sd->flags &= ~SPLICE_F_NONBLOCK;
1061 
1062 	while (len) {
1063 		size_t read_len;
1064 		loff_t pos = sd->pos;
1065 
1066 		ret = do_splice_to(in, &pos, pipe, len, flags);
1067 		if (unlikely(ret <= 0))
1068 			goto out_release;
1069 
1070 		read_len = ret;
1071 		sd->total_len = read_len;
1072 
1073 		/*
1074 		 * NOTE: nonblocking mode only applies to the input. We
1075 		 * must not do the output in nonblocking mode as then we
1076 		 * could get stuck data in the internal pipe:
1077 		 */
1078 		ret = actor(pipe, sd);
1079 		if (unlikely(ret <= 0))
1080 			goto out_release;
1081 
1082 		bytes += ret;
1083 		len -= ret;
1084 		sd->pos = pos;
1085 
1086 		if (ret < read_len)
1087 			goto out_release;
1088 	}
1089 
1090 	pipe->nrbufs = pipe->curbuf = 0;
1091 	return bytes;
1092 
1093 out_release:
1094 	/*
1095 	 * If we did an incomplete transfer we must release
1096 	 * the pipe buffers in question:
1097 	 */
1098 	for (i = 0; i < PIPE_BUFFERS; i++) {
1099 		struct pipe_buffer *buf = pipe->bufs + i;
1100 
1101 		if (buf->ops) {
1102 			buf->ops->release(pipe, buf);
1103 			buf->ops = NULL;
1104 		}
1105 	}
1106 	pipe->nrbufs = pipe->curbuf = 0;
1107 
1108 	/*
1109 	 * If we transferred some data, return the number of bytes:
1110 	 */
1111 	if (bytes > 0)
1112 		return bytes;
1113 
1114 	return ret;
1115 
1116 }
1117 EXPORT_SYMBOL(splice_direct_to_actor);
1118 
1119 static int direct_splice_actor(struct pipe_inode_info *pipe,
1120 			       struct splice_desc *sd)
1121 {
1122 	struct file *file = sd->u.file;
1123 
1124 	return do_splice_from(pipe, file, &sd->pos, sd->total_len, sd->flags);
1125 }
1126 
1127 /**
1128  * do_splice_direct - splices data directly between two files
1129  * @in:		file to splice from
1130  * @ppos:	input file offset
1131  * @out:	file to splice to
1132  * @len:	number of bytes to splice
1133  * @flags:	splice modifier flags
1134  *
1135  * Description:
1136  *    For use by do_sendfile(). splice can easily emulate sendfile, but
1137  *    doing it in the application would incur an extra system call
1138  *    (splice in + splice out, as compared to just sendfile()). So this helper
1139  *    can splice directly through a process-private pipe.
1140  *
1141  */
1142 long do_splice_direct(struct file *in, loff_t *ppos, struct file *out,
1143 		      size_t len, unsigned int flags)
1144 {
1145 	struct splice_desc sd = {
1146 		.len		= len,
1147 		.total_len	= len,
1148 		.flags		= flags,
1149 		.pos		= *ppos,
1150 		.u.file		= out,
1151 	};
1152 	long ret;
1153 
1154 	ret = splice_direct_to_actor(in, &sd, direct_splice_actor);
1155 	if (ret > 0)
1156 		*ppos += ret;
1157 
1158 	return ret;
1159 }
1160 
1161 /*
1162  * After the inode slimming patch, i_pipe/i_bdev/i_cdev share the same
1163  * location, so checking ->i_pipe is not enough to verify that this is a
1164  * pipe.
1165  */
1166 static inline struct pipe_inode_info *pipe_info(struct inode *inode)
1167 {
1168 	if (S_ISFIFO(inode->i_mode))
1169 		return inode->i_pipe;
1170 
1171 	return NULL;
1172 }
1173 
1174 /*
1175  * Determine where to splice to/from.
1176  */
1177 static long do_splice(struct file *in, loff_t __user *off_in,
1178 		      struct file *out, loff_t __user *off_out,
1179 		      size_t len, unsigned int flags)
1180 {
1181 	struct pipe_inode_info *pipe;
1182 	loff_t offset, *off;
1183 	long ret;
1184 
1185 	pipe = pipe_info(in->f_path.dentry->d_inode);
1186 	if (pipe) {
1187 		if (off_in)
1188 			return -ESPIPE;
1189 		if (off_out) {
1190 			if (out->f_op->llseek == no_llseek)
1191 				return -EINVAL;
1192 			if (copy_from_user(&offset, off_out, sizeof(loff_t)))
1193 				return -EFAULT;
1194 			off = &offset;
1195 		} else
1196 			off = &out->f_pos;
1197 
1198 		ret = do_splice_from(pipe, out, off, len, flags);
1199 
1200 		if (off_out && copy_to_user(off_out, off, sizeof(loff_t)))
1201 			ret = -EFAULT;
1202 
1203 		return ret;
1204 	}
1205 
1206 	pipe = pipe_info(out->f_path.dentry->d_inode);
1207 	if (pipe) {
1208 		if (off_out)
1209 			return -ESPIPE;
1210 		if (off_in) {
1211 			if (in->f_op->llseek == no_llseek)
1212 				return -EINVAL;
1213 			if (copy_from_user(&offset, off_in, sizeof(loff_t)))
1214 				return -EFAULT;
1215 			off = &offset;
1216 		} else
1217 			off = &in->f_pos;
1218 
1219 		ret = do_splice_to(in, off, pipe, len, flags);
1220 
1221 		if (off_in && copy_to_user(off_in, off, sizeof(loff_t)))
1222 			ret = -EFAULT;
1223 
1224 		return ret;
1225 	}
1226 
1227 	return -EINVAL;
1228 }
1229 
1230 /*
1231  * Map an iov into an array of pages and offset/length tupples. With the
1232  * partial_page structure, we can map several non-contiguous ranges into
1233  * our ones pages[] map instead of splitting that operation into pieces.
1234  * Could easily be exported as a generic helper for other users, in which
1235  * case one would probably want to add a 'max_nr_pages' parameter as well.
1236  */
1237 static int get_iovec_page_array(const struct iovec __user *iov,
1238 				unsigned int nr_vecs, struct page **pages,
1239 				struct partial_page *partial, int aligned)
1240 {
1241 	int buffers = 0, error = 0;
1242 
1243 	/*
1244 	 * It's ok to take the mmap_sem for reading, even
1245 	 * across a "get_user()".
1246 	 */
1247 	down_read(&current->mm->mmap_sem);
1248 
1249 	while (nr_vecs) {
1250 		unsigned long off, npages;
1251 		void __user *base;
1252 		size_t len;
1253 		int i;
1254 
1255 		/*
1256 		 * Get user address base and length for this iovec.
1257 		 */
1258 		error = get_user(base, &iov->iov_base);
1259 		if (unlikely(error))
1260 			break;
1261 		error = get_user(len, &iov->iov_len);
1262 		if (unlikely(error))
1263 			break;
1264 
1265 		/*
1266 		 * Sanity check this iovec. 0 read succeeds.
1267 		 */
1268 		if (unlikely(!len))
1269 			break;
1270 		error = -EFAULT;
1271 		if (unlikely(!base))
1272 			break;
1273 
1274 		/*
1275 		 * Get this base offset and number of pages, then map
1276 		 * in the user pages.
1277 		 */
1278 		off = (unsigned long) base & ~PAGE_MASK;
1279 
1280 		/*
1281 		 * If asked for alignment, the offset must be zero and the
1282 		 * length a multiple of the PAGE_SIZE.
1283 		 */
1284 		error = -EINVAL;
1285 		if (aligned && (off || len & ~PAGE_MASK))
1286 			break;
1287 
1288 		npages = (off + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1289 		if (npages > PIPE_BUFFERS - buffers)
1290 			npages = PIPE_BUFFERS - buffers;
1291 
1292 		error = get_user_pages(current, current->mm,
1293 				       (unsigned long) base, npages, 0, 0,
1294 				       &pages[buffers], NULL);
1295 
1296 		if (unlikely(error <= 0))
1297 			break;
1298 
1299 		/*
1300 		 * Fill this contiguous range into the partial page map.
1301 		 */
1302 		for (i = 0; i < error; i++) {
1303 			const int plen = min_t(size_t, len, PAGE_SIZE - off);
1304 
1305 			partial[buffers].offset = off;
1306 			partial[buffers].len = plen;
1307 
1308 			off = 0;
1309 			len -= plen;
1310 			buffers++;
1311 		}
1312 
1313 		/*
1314 		 * We didn't complete this iov, stop here since it probably
1315 		 * means we have to move some of this into a pipe to
1316 		 * be able to continue.
1317 		 */
1318 		if (len)
1319 			break;
1320 
1321 		/*
1322 		 * Don't continue if we mapped fewer pages than we asked for,
1323 		 * or if we mapped the max number of pages that we have
1324 		 * room for.
1325 		 */
1326 		if (error < npages || buffers == PIPE_BUFFERS)
1327 			break;
1328 
1329 		nr_vecs--;
1330 		iov++;
1331 	}
1332 
1333 	up_read(&current->mm->mmap_sem);
1334 
1335 	if (buffers)
1336 		return buffers;
1337 
1338 	return error;
1339 }
1340 
1341 static int pipe_to_user(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1342 			struct splice_desc *sd)
1343 {
1344 	char *src;
1345 	int ret;
1346 
1347 	ret = buf->ops->confirm(pipe, buf);
1348 	if (unlikely(ret))
1349 		return ret;
1350 
1351 	/*
1352 	 * See if we can use the atomic maps, by prefaulting in the
1353 	 * pages and doing an atomic copy
1354 	 */
1355 	if (!fault_in_pages_writeable(sd->u.userptr, sd->len)) {
1356 		src = buf->ops->map(pipe, buf, 1);
1357 		ret = __copy_to_user_inatomic(sd->u.userptr, src + buf->offset,
1358 							sd->len);
1359 		buf->ops->unmap(pipe, buf, src);
1360 		if (!ret) {
1361 			ret = sd->len;
1362 			goto out;
1363 		}
1364 	}
1365 
1366 	/*
1367 	 * No dice, use slow non-atomic map and copy
1368  	 */
1369 	src = buf->ops->map(pipe, buf, 0);
1370 
1371 	ret = sd->len;
1372 	if (copy_to_user(sd->u.userptr, src + buf->offset, sd->len))
1373 		ret = -EFAULT;
1374 
1375 out:
1376 	if (ret > 0)
1377 		sd->u.userptr += ret;
1378 	buf->ops->unmap(pipe, buf, src);
1379 	return ret;
1380 }
1381 
1382 /*
1383  * For lack of a better implementation, implement vmsplice() to userspace
1384  * as a simple copy of the pipes pages to the user iov.
1385  */
1386 static long vmsplice_to_user(struct file *file, const struct iovec __user *iov,
1387 			     unsigned long nr_segs, unsigned int flags)
1388 {
1389 	struct pipe_inode_info *pipe;
1390 	struct splice_desc sd;
1391 	ssize_t size;
1392 	int error;
1393 	long ret;
1394 
1395 	pipe = pipe_info(file->f_path.dentry->d_inode);
1396 	if (!pipe)
1397 		return -EBADF;
1398 
1399 	if (pipe->inode)
1400 		mutex_lock(&pipe->inode->i_mutex);
1401 
1402 	error = ret = 0;
1403 	while (nr_segs) {
1404 		void __user *base;
1405 		size_t len;
1406 
1407 		/*
1408 		 * Get user address base and length for this iovec.
1409 		 */
1410 		error = get_user(base, &iov->iov_base);
1411 		if (unlikely(error))
1412 			break;
1413 		error = get_user(len, &iov->iov_len);
1414 		if (unlikely(error))
1415 			break;
1416 
1417 		/*
1418 		 * Sanity check this iovec. 0 read succeeds.
1419 		 */
1420 		if (unlikely(!len))
1421 			break;
1422 		if (unlikely(!base)) {
1423 			error = -EFAULT;
1424 			break;
1425 		}
1426 
1427 		sd.len = 0;
1428 		sd.total_len = len;
1429 		sd.flags = flags;
1430 		sd.u.userptr = base;
1431 		sd.pos = 0;
1432 
1433 		size = __splice_from_pipe(pipe, &sd, pipe_to_user);
1434 		if (size < 0) {
1435 			if (!ret)
1436 				ret = size;
1437 
1438 			break;
1439 		}
1440 
1441 		ret += size;
1442 
1443 		if (size < len)
1444 			break;
1445 
1446 		nr_segs--;
1447 		iov++;
1448 	}
1449 
1450 	if (pipe->inode)
1451 		mutex_unlock(&pipe->inode->i_mutex);
1452 
1453 	if (!ret)
1454 		ret = error;
1455 
1456 	return ret;
1457 }
1458 
1459 /*
1460  * vmsplice splices a user address range into a pipe. It can be thought of
1461  * as splice-from-memory, where the regular splice is splice-from-file (or
1462  * to file). In both cases the output is a pipe, naturally.
1463  */
1464 static long vmsplice_to_pipe(struct file *file, const struct iovec __user *iov,
1465 			     unsigned long nr_segs, unsigned int flags)
1466 {
1467 	struct pipe_inode_info *pipe;
1468 	struct page *pages[PIPE_BUFFERS];
1469 	struct partial_page partial[PIPE_BUFFERS];
1470 	struct splice_pipe_desc spd = {
1471 		.pages = pages,
1472 		.partial = partial,
1473 		.flags = flags,
1474 		.ops = &user_page_pipe_buf_ops,
1475 	};
1476 
1477 	pipe = pipe_info(file->f_path.dentry->d_inode);
1478 	if (!pipe)
1479 		return -EBADF;
1480 
1481 	spd.nr_pages = get_iovec_page_array(iov, nr_segs, pages, partial,
1482 					    flags & SPLICE_F_GIFT);
1483 	if (spd.nr_pages <= 0)
1484 		return spd.nr_pages;
1485 
1486 	return splice_to_pipe(pipe, &spd);
1487 }
1488 
1489 /*
1490  * Note that vmsplice only really supports true splicing _from_ user memory
1491  * to a pipe, not the other way around. Splicing from user memory is a simple
1492  * operation that can be supported without any funky alignment restrictions
1493  * or nasty vm tricks. We simply map in the user memory and fill them into
1494  * a pipe. The reverse isn't quite as easy, though. There are two possible
1495  * solutions for that:
1496  *
1497  *	- memcpy() the data internally, at which point we might as well just
1498  *	  do a regular read() on the buffer anyway.
1499  *	- Lots of nasty vm tricks, that are neither fast nor flexible (it
1500  *	  has restriction limitations on both ends of the pipe).
1501  *
1502  * Currently we punt and implement it as a normal copy, see pipe_to_user().
1503  *
1504  */
1505 asmlinkage long sys_vmsplice(int fd, const struct iovec __user *iov,
1506 			     unsigned long nr_segs, unsigned int flags)
1507 {
1508 	struct file *file;
1509 	long error;
1510 	int fput;
1511 
1512 	if (unlikely(nr_segs > UIO_MAXIOV))
1513 		return -EINVAL;
1514 	else if (unlikely(!nr_segs))
1515 		return 0;
1516 
1517 	error = -EBADF;
1518 	file = fget_light(fd, &fput);
1519 	if (file) {
1520 		if (file->f_mode & FMODE_WRITE)
1521 			error = vmsplice_to_pipe(file, iov, nr_segs, flags);
1522 		else if (file->f_mode & FMODE_READ)
1523 			error = vmsplice_to_user(file, iov, nr_segs, flags);
1524 
1525 		fput_light(file, fput);
1526 	}
1527 
1528 	return error;
1529 }
1530 
1531 asmlinkage long sys_splice(int fd_in, loff_t __user *off_in,
1532 			   int fd_out, loff_t __user *off_out,
1533 			   size_t len, unsigned int flags)
1534 {
1535 	long error;
1536 	struct file *in, *out;
1537 	int fput_in, fput_out;
1538 
1539 	if (unlikely(!len))
1540 		return 0;
1541 
1542 	error = -EBADF;
1543 	in = fget_light(fd_in, &fput_in);
1544 	if (in) {
1545 		if (in->f_mode & FMODE_READ) {
1546 			out = fget_light(fd_out, &fput_out);
1547 			if (out) {
1548 				if (out->f_mode & FMODE_WRITE)
1549 					error = do_splice(in, off_in,
1550 							  out, off_out,
1551 							  len, flags);
1552 				fput_light(out, fput_out);
1553 			}
1554 		}
1555 
1556 		fput_light(in, fput_in);
1557 	}
1558 
1559 	return error;
1560 }
1561 
1562 /*
1563  * Make sure there's data to read. Wait for input if we can, otherwise
1564  * return an appropriate error.
1565  */
1566 static int link_ipipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1567 {
1568 	int ret;
1569 
1570 	/*
1571 	 * Check ->nrbufs without the inode lock first. This function
1572 	 * is speculative anyways, so missing one is ok.
1573 	 */
1574 	if (pipe->nrbufs)
1575 		return 0;
1576 
1577 	ret = 0;
1578 	mutex_lock(&pipe->inode->i_mutex);
1579 
1580 	while (!pipe->nrbufs) {
1581 		if (signal_pending(current)) {
1582 			ret = -ERESTARTSYS;
1583 			break;
1584 		}
1585 		if (!pipe->writers)
1586 			break;
1587 		if (!pipe->waiting_writers) {
1588 			if (flags & SPLICE_F_NONBLOCK) {
1589 				ret = -EAGAIN;
1590 				break;
1591 			}
1592 		}
1593 		pipe_wait(pipe);
1594 	}
1595 
1596 	mutex_unlock(&pipe->inode->i_mutex);
1597 	return ret;
1598 }
1599 
1600 /*
1601  * Make sure there's writeable room. Wait for room if we can, otherwise
1602  * return an appropriate error.
1603  */
1604 static int link_opipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1605 {
1606 	int ret;
1607 
1608 	/*
1609 	 * Check ->nrbufs without the inode lock first. This function
1610 	 * is speculative anyways, so missing one is ok.
1611 	 */
1612 	if (pipe->nrbufs < PIPE_BUFFERS)
1613 		return 0;
1614 
1615 	ret = 0;
1616 	mutex_lock(&pipe->inode->i_mutex);
1617 
1618 	while (pipe->nrbufs >= PIPE_BUFFERS) {
1619 		if (!pipe->readers) {
1620 			send_sig(SIGPIPE, current, 0);
1621 			ret = -EPIPE;
1622 			break;
1623 		}
1624 		if (flags & SPLICE_F_NONBLOCK) {
1625 			ret = -EAGAIN;
1626 			break;
1627 		}
1628 		if (signal_pending(current)) {
1629 			ret = -ERESTARTSYS;
1630 			break;
1631 		}
1632 		pipe->waiting_writers++;
1633 		pipe_wait(pipe);
1634 		pipe->waiting_writers--;
1635 	}
1636 
1637 	mutex_unlock(&pipe->inode->i_mutex);
1638 	return ret;
1639 }
1640 
1641 /*
1642  * Link contents of ipipe to opipe.
1643  */
1644 static int link_pipe(struct pipe_inode_info *ipipe,
1645 		     struct pipe_inode_info *opipe,
1646 		     size_t len, unsigned int flags)
1647 {
1648 	struct pipe_buffer *ibuf, *obuf;
1649 	int ret = 0, i = 0, nbuf;
1650 
1651 	/*
1652 	 * Potential ABBA deadlock, work around it by ordering lock
1653 	 * grabbing by inode address. Otherwise two different processes
1654 	 * could deadlock (one doing tee from A -> B, the other from B -> A).
1655 	 */
1656 	inode_double_lock(ipipe->inode, opipe->inode);
1657 
1658 	do {
1659 		if (!opipe->readers) {
1660 			send_sig(SIGPIPE, current, 0);
1661 			if (!ret)
1662 				ret = -EPIPE;
1663 			break;
1664 		}
1665 
1666 		/*
1667 		 * If we have iterated all input buffers or ran out of
1668 		 * output room, break.
1669 		 */
1670 		if (i >= ipipe->nrbufs || opipe->nrbufs >= PIPE_BUFFERS)
1671 			break;
1672 
1673 		ibuf = ipipe->bufs + ((ipipe->curbuf + i) & (PIPE_BUFFERS - 1));
1674 		nbuf = (opipe->curbuf + opipe->nrbufs) & (PIPE_BUFFERS - 1);
1675 
1676 		/*
1677 		 * Get a reference to this pipe buffer,
1678 		 * so we can copy the contents over.
1679 		 */
1680 		ibuf->ops->get(ipipe, ibuf);
1681 
1682 		obuf = opipe->bufs + nbuf;
1683 		*obuf = *ibuf;
1684 
1685 		/*
1686 		 * Don't inherit the gift flag, we need to
1687 		 * prevent multiple steals of this page.
1688 		 */
1689 		obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1690 
1691 		if (obuf->len > len)
1692 			obuf->len = len;
1693 
1694 		opipe->nrbufs++;
1695 		ret += obuf->len;
1696 		len -= obuf->len;
1697 		i++;
1698 	} while (len);
1699 
1700 	inode_double_unlock(ipipe->inode, opipe->inode);
1701 
1702 	/*
1703 	 * If we put data in the output pipe, wakeup any potential readers.
1704 	 */
1705 	if (ret > 0) {
1706 		smp_mb();
1707 		if (waitqueue_active(&opipe->wait))
1708 			wake_up_interruptible(&opipe->wait);
1709 		kill_fasync(&opipe->fasync_readers, SIGIO, POLL_IN);
1710 	}
1711 
1712 	return ret;
1713 }
1714 
1715 /*
1716  * This is a tee(1) implementation that works on pipes. It doesn't copy
1717  * any data, it simply references the 'in' pages on the 'out' pipe.
1718  * The 'flags' used are the SPLICE_F_* variants, currently the only
1719  * applicable one is SPLICE_F_NONBLOCK.
1720  */
1721 static long do_tee(struct file *in, struct file *out, size_t len,
1722 		   unsigned int flags)
1723 {
1724 	struct pipe_inode_info *ipipe = pipe_info(in->f_path.dentry->d_inode);
1725 	struct pipe_inode_info *opipe = pipe_info(out->f_path.dentry->d_inode);
1726 	int ret = -EINVAL;
1727 
1728 	/*
1729 	 * Duplicate the contents of ipipe to opipe without actually
1730 	 * copying the data.
1731 	 */
1732 	if (ipipe && opipe && ipipe != opipe) {
1733 		/*
1734 		 * Keep going, unless we encounter an error. The ipipe/opipe
1735 		 * ordering doesn't really matter.
1736 		 */
1737 		ret = link_ipipe_prep(ipipe, flags);
1738 		if (!ret) {
1739 			ret = link_opipe_prep(opipe, flags);
1740 			if (!ret) {
1741 				ret = link_pipe(ipipe, opipe, len, flags);
1742 				if (!ret && (flags & SPLICE_F_NONBLOCK))
1743 					ret = -EAGAIN;
1744 			}
1745 		}
1746 	}
1747 
1748 	return ret;
1749 }
1750 
1751 asmlinkage long sys_tee(int fdin, int fdout, size_t len, unsigned int flags)
1752 {
1753 	struct file *in;
1754 	int error, fput_in;
1755 
1756 	if (unlikely(!len))
1757 		return 0;
1758 
1759 	error = -EBADF;
1760 	in = fget_light(fdin, &fput_in);
1761 	if (in) {
1762 		if (in->f_mode & FMODE_READ) {
1763 			int fput_out;
1764 			struct file *out = fget_light(fdout, &fput_out);
1765 
1766 			if (out) {
1767 				if (out->f_mode & FMODE_WRITE)
1768 					error = do_tee(in, out, len, flags);
1769 				fput_light(out, fput_out);
1770 			}
1771 		}
1772  		fput_light(in, fput_in);
1773  	}
1774 
1775 	return error;
1776 }
1777