1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * "splice": joining two ropes together by interweaving their strands. 4 * 5 * This is the "extended pipe" functionality, where a pipe is used as 6 * an arbitrary in-memory buffer. Think of a pipe as a small kernel 7 * buffer that you can use to transfer data from one end to the other. 8 * 9 * The traditional unix read/write is extended with a "splice()" operation 10 * that transfers data buffers to or from a pipe buffer. 11 * 12 * Named by Larry McVoy, original implementation from Linus, extended by 13 * Jens to support splicing to files, network, direct splicing, etc and 14 * fixing lots of bugs. 15 * 16 * Copyright (C) 2005-2006 Jens Axboe <axboe@kernel.dk> 17 * Copyright (C) 2005-2006 Linus Torvalds <torvalds@osdl.org> 18 * Copyright (C) 2006 Ingo Molnar <mingo@elte.hu> 19 * 20 */ 21 #include <linux/bvec.h> 22 #include <linux/fs.h> 23 #include <linux/file.h> 24 #include <linux/pagemap.h> 25 #include <linux/splice.h> 26 #include <linux/memcontrol.h> 27 #include <linux/mm_inline.h> 28 #include <linux/swap.h> 29 #include <linux/writeback.h> 30 #include <linux/export.h> 31 #include <linux/syscalls.h> 32 #include <linux/uio.h> 33 #include <linux/fsnotify.h> 34 #include <linux/security.h> 35 #include <linux/gfp.h> 36 #include <linux/net.h> 37 #include <linux/socket.h> 38 #include <linux/sched/signal.h> 39 40 #include "internal.h" 41 42 /* 43 * Splice doesn't support FMODE_NOWAIT. Since pipes may set this flag to 44 * indicate they support non-blocking reads or writes, we must clear it 45 * here if set to avoid blocking other users of this pipe if splice is 46 * being done on it. 47 */ 48 static noinline void pipe_clear_nowait(struct file *file) 49 { 50 fmode_t fmode = READ_ONCE(file->f_mode); 51 52 do { 53 if (!(fmode & FMODE_NOWAIT)) 54 break; 55 } while (!try_cmpxchg(&file->f_mode, &fmode, fmode & ~FMODE_NOWAIT)); 56 } 57 58 /* 59 * Attempt to steal a page from a pipe buffer. This should perhaps go into 60 * a vm helper function, it's already simplified quite a bit by the 61 * addition of remove_mapping(). If success is returned, the caller may 62 * attempt to reuse this page for another destination. 63 */ 64 static bool page_cache_pipe_buf_try_steal(struct pipe_inode_info *pipe, 65 struct pipe_buffer *buf) 66 { 67 struct folio *folio = page_folio(buf->page); 68 struct address_space *mapping; 69 70 folio_lock(folio); 71 72 mapping = folio_mapping(folio); 73 if (mapping) { 74 WARN_ON(!folio_test_uptodate(folio)); 75 76 /* 77 * At least for ext2 with nobh option, we need to wait on 78 * writeback completing on this folio, since we'll remove it 79 * from the pagecache. Otherwise truncate wont wait on the 80 * folio, allowing the disk blocks to be reused by someone else 81 * before we actually wrote our data to them. fs corruption 82 * ensues. 83 */ 84 folio_wait_writeback(folio); 85 86 if (!filemap_release_folio(folio, GFP_KERNEL)) 87 goto out_unlock; 88 89 /* 90 * If we succeeded in removing the mapping, set LRU flag 91 * and return good. 92 */ 93 if (remove_mapping(mapping, folio)) { 94 buf->flags |= PIPE_BUF_FLAG_LRU; 95 return true; 96 } 97 } 98 99 /* 100 * Raced with truncate or failed to remove folio from current 101 * address space, unlock and return failure. 102 */ 103 out_unlock: 104 folio_unlock(folio); 105 return false; 106 } 107 108 static void page_cache_pipe_buf_release(struct pipe_inode_info *pipe, 109 struct pipe_buffer *buf) 110 { 111 put_page(buf->page); 112 buf->flags &= ~PIPE_BUF_FLAG_LRU; 113 } 114 115 /* 116 * Check whether the contents of buf is OK to access. Since the content 117 * is a page cache page, IO may be in flight. 118 */ 119 static int page_cache_pipe_buf_confirm(struct pipe_inode_info *pipe, 120 struct pipe_buffer *buf) 121 { 122 struct folio *folio = page_folio(buf->page); 123 int err; 124 125 if (!folio_test_uptodate(folio)) { 126 folio_lock(folio); 127 128 /* 129 * Folio got truncated/unhashed. This will cause a 0-byte 130 * splice, if this is the first page. 131 */ 132 if (!folio->mapping) { 133 err = -ENODATA; 134 goto error; 135 } 136 137 /* 138 * Uh oh, read-error from disk. 139 */ 140 if (!folio_test_uptodate(folio)) { 141 err = -EIO; 142 goto error; 143 } 144 145 /* Folio is ok after all, we are done */ 146 folio_unlock(folio); 147 } 148 149 return 0; 150 error: 151 folio_unlock(folio); 152 return err; 153 } 154 155 const struct pipe_buf_operations page_cache_pipe_buf_ops = { 156 .confirm = page_cache_pipe_buf_confirm, 157 .release = page_cache_pipe_buf_release, 158 .try_steal = page_cache_pipe_buf_try_steal, 159 .get = generic_pipe_buf_get, 160 }; 161 162 static bool user_page_pipe_buf_try_steal(struct pipe_inode_info *pipe, 163 struct pipe_buffer *buf) 164 { 165 if (!(buf->flags & PIPE_BUF_FLAG_GIFT)) 166 return false; 167 168 buf->flags |= PIPE_BUF_FLAG_LRU; 169 return generic_pipe_buf_try_steal(pipe, buf); 170 } 171 172 static const struct pipe_buf_operations user_page_pipe_buf_ops = { 173 .release = page_cache_pipe_buf_release, 174 .try_steal = user_page_pipe_buf_try_steal, 175 .get = generic_pipe_buf_get, 176 }; 177 178 static void wakeup_pipe_readers(struct pipe_inode_info *pipe) 179 { 180 smp_mb(); 181 if (waitqueue_active(&pipe->rd_wait)) 182 wake_up_interruptible(&pipe->rd_wait); 183 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN); 184 } 185 186 /** 187 * splice_to_pipe - fill passed data into a pipe 188 * @pipe: pipe to fill 189 * @spd: data to fill 190 * 191 * Description: 192 * @spd contains a map of pages and len/offset tuples, along with 193 * the struct pipe_buf_operations associated with these pages. This 194 * function will link that data to the pipe. 195 * 196 */ 197 ssize_t splice_to_pipe(struct pipe_inode_info *pipe, 198 struct splice_pipe_desc *spd) 199 { 200 unsigned int spd_pages = spd->nr_pages; 201 unsigned int tail = pipe->tail; 202 unsigned int head = pipe->head; 203 ssize_t ret = 0; 204 int page_nr = 0; 205 206 if (!spd_pages) 207 return 0; 208 209 if (unlikely(!pipe->readers)) { 210 send_sig(SIGPIPE, current, 0); 211 ret = -EPIPE; 212 goto out; 213 } 214 215 while (!pipe_full(head, tail, pipe->max_usage)) { 216 struct pipe_buffer *buf = pipe_buf(pipe, head); 217 218 buf->page = spd->pages[page_nr]; 219 buf->offset = spd->partial[page_nr].offset; 220 buf->len = spd->partial[page_nr].len; 221 buf->private = spd->partial[page_nr].private; 222 buf->ops = spd->ops; 223 buf->flags = 0; 224 225 head++; 226 pipe->head = head; 227 page_nr++; 228 ret += buf->len; 229 230 if (!--spd->nr_pages) 231 break; 232 } 233 234 if (!ret) 235 ret = -EAGAIN; 236 237 out: 238 while (page_nr < spd_pages) 239 spd->spd_release(spd, page_nr++); 240 241 return ret; 242 } 243 EXPORT_SYMBOL_GPL(splice_to_pipe); 244 245 ssize_t add_to_pipe(struct pipe_inode_info *pipe, struct pipe_buffer *buf) 246 { 247 unsigned int head = pipe->head; 248 unsigned int tail = pipe->tail; 249 int ret; 250 251 if (unlikely(!pipe->readers)) { 252 send_sig(SIGPIPE, current, 0); 253 ret = -EPIPE; 254 } else if (pipe_full(head, tail, pipe->max_usage)) { 255 ret = -EAGAIN; 256 } else { 257 *pipe_buf(pipe, head) = *buf; 258 pipe->head = head + 1; 259 return buf->len; 260 } 261 pipe_buf_release(pipe, buf); 262 return ret; 263 } 264 EXPORT_SYMBOL(add_to_pipe); 265 266 /* 267 * Check if we need to grow the arrays holding pages and partial page 268 * descriptions. 269 */ 270 int splice_grow_spd(const struct pipe_inode_info *pipe, struct splice_pipe_desc *spd) 271 { 272 unsigned int max_usage = READ_ONCE(pipe->max_usage); 273 274 spd->nr_pages_max = max_usage; 275 if (max_usage <= PIPE_DEF_BUFFERS) 276 return 0; 277 278 spd->pages = kmalloc_array(max_usage, sizeof(struct page *), GFP_KERNEL); 279 spd->partial = kmalloc_array(max_usage, sizeof(struct partial_page), 280 GFP_KERNEL); 281 282 if (spd->pages && spd->partial) 283 return 0; 284 285 kfree(spd->pages); 286 kfree(spd->partial); 287 return -ENOMEM; 288 } 289 290 void splice_shrink_spd(struct splice_pipe_desc *spd) 291 { 292 if (spd->nr_pages_max <= PIPE_DEF_BUFFERS) 293 return; 294 295 kfree(spd->pages); 296 kfree(spd->partial); 297 } 298 299 /** 300 * copy_splice_read - Copy data from a file and splice the copy into a pipe 301 * @in: The file to read from 302 * @ppos: Pointer to the file position to read from 303 * @pipe: The pipe to splice into 304 * @len: The amount to splice 305 * @flags: The SPLICE_F_* flags 306 * 307 * This function allocates a bunch of pages sufficient to hold the requested 308 * amount of data (but limited by the remaining pipe capacity), passes it to 309 * the file's ->read_iter() to read into and then splices the used pages into 310 * the pipe. 311 * 312 * Return: On success, the number of bytes read will be returned and *@ppos 313 * will be updated if appropriate; 0 will be returned if there is no more data 314 * to be read; -EAGAIN will be returned if the pipe had no space, and some 315 * other negative error code will be returned on error. A short read may occur 316 * if the pipe has insufficient space, we reach the end of the data or we hit a 317 * hole. 318 */ 319 ssize_t copy_splice_read(struct file *in, loff_t *ppos, 320 struct pipe_inode_info *pipe, 321 size_t len, unsigned int flags) 322 { 323 struct iov_iter to; 324 struct bio_vec *bv; 325 struct kiocb kiocb; 326 struct page **pages; 327 ssize_t ret; 328 size_t used, npages, chunk, remain, keep = 0; 329 int i; 330 331 /* Work out how much data we can actually add into the pipe */ 332 used = pipe_buf_usage(pipe); 333 npages = max_t(ssize_t, pipe->max_usage - used, 0); 334 len = min_t(size_t, len, npages * PAGE_SIZE); 335 npages = DIV_ROUND_UP(len, PAGE_SIZE); 336 337 bv = kzalloc(array_size(npages, sizeof(bv[0])) + 338 array_size(npages, sizeof(struct page *)), GFP_KERNEL); 339 if (!bv) 340 return -ENOMEM; 341 342 pages = (struct page **)(bv + npages); 343 npages = alloc_pages_bulk(GFP_USER, npages, pages); 344 if (!npages) { 345 kfree(bv); 346 return -ENOMEM; 347 } 348 349 remain = len = min_t(size_t, len, npages * PAGE_SIZE); 350 351 for (i = 0; i < npages; i++) { 352 chunk = min_t(size_t, PAGE_SIZE, remain); 353 bv[i].bv_page = pages[i]; 354 bv[i].bv_offset = 0; 355 bv[i].bv_len = chunk; 356 remain -= chunk; 357 } 358 359 /* Do the I/O */ 360 iov_iter_bvec(&to, ITER_DEST, bv, npages, len); 361 init_sync_kiocb(&kiocb, in); 362 kiocb.ki_pos = *ppos; 363 ret = in->f_op->read_iter(&kiocb, &to); 364 365 if (ret > 0) { 366 keep = DIV_ROUND_UP(ret, PAGE_SIZE); 367 *ppos = kiocb.ki_pos; 368 } 369 370 /* 371 * Callers of ->splice_read() expect -EAGAIN on "can't put anything in 372 * there", rather than -EFAULT. 373 */ 374 if (ret == -EFAULT) 375 ret = -EAGAIN; 376 377 /* Free any pages that didn't get touched at all. */ 378 if (keep < npages) 379 release_pages(pages + keep, npages - keep); 380 381 /* Push the remaining pages into the pipe. */ 382 remain = ret; 383 for (i = 0; i < keep; i++) { 384 struct pipe_buffer *buf = pipe_head_buf(pipe); 385 386 chunk = min_t(size_t, remain, PAGE_SIZE); 387 *buf = (struct pipe_buffer) { 388 .ops = &default_pipe_buf_ops, 389 .page = bv[i].bv_page, 390 .offset = 0, 391 .len = chunk, 392 }; 393 pipe->head++; 394 remain -= chunk; 395 } 396 397 kfree(bv); 398 return ret; 399 } 400 EXPORT_SYMBOL(copy_splice_read); 401 402 const struct pipe_buf_operations default_pipe_buf_ops = { 403 .release = generic_pipe_buf_release, 404 .try_steal = generic_pipe_buf_try_steal, 405 .get = generic_pipe_buf_get, 406 }; 407 408 /* Pipe buffer operations for a socket and similar. */ 409 const struct pipe_buf_operations nosteal_pipe_buf_ops = { 410 .release = generic_pipe_buf_release, 411 .get = generic_pipe_buf_get, 412 }; 413 EXPORT_SYMBOL(nosteal_pipe_buf_ops); 414 415 static void wakeup_pipe_writers(struct pipe_inode_info *pipe) 416 { 417 smp_mb(); 418 if (waitqueue_active(&pipe->wr_wait)) 419 wake_up_interruptible(&pipe->wr_wait); 420 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT); 421 } 422 423 /** 424 * splice_from_pipe_feed - feed available data from a pipe to a file 425 * @pipe: pipe to splice from 426 * @sd: information to @actor 427 * @actor: handler that splices the data 428 * 429 * Description: 430 * This function loops over the pipe and calls @actor to do the 431 * actual moving of a single struct pipe_buffer to the desired 432 * destination. It returns when there's no more buffers left in 433 * the pipe or if the requested number of bytes (@sd->total_len) 434 * have been copied. It returns a positive number (one) if the 435 * pipe needs to be filled with more data, zero if the required 436 * number of bytes have been copied and -errno on error. 437 * 438 * This, together with splice_from_pipe_{begin,end,next}, may be 439 * used to implement the functionality of __splice_from_pipe() when 440 * locking is required around copying the pipe buffers to the 441 * destination. 442 */ 443 static int splice_from_pipe_feed(struct pipe_inode_info *pipe, struct splice_desc *sd, 444 splice_actor *actor) 445 { 446 unsigned int head = pipe->head; 447 unsigned int tail = pipe->tail; 448 int ret; 449 450 while (!pipe_empty(head, tail)) { 451 struct pipe_buffer *buf = pipe_buf(pipe, tail); 452 453 sd->len = buf->len; 454 if (sd->len > sd->total_len) 455 sd->len = sd->total_len; 456 457 ret = pipe_buf_confirm(pipe, buf); 458 if (unlikely(ret)) { 459 if (ret == -ENODATA) 460 ret = 0; 461 return ret; 462 } 463 464 ret = actor(pipe, buf, sd); 465 if (ret <= 0) 466 return ret; 467 468 buf->offset += ret; 469 buf->len -= ret; 470 471 sd->num_spliced += ret; 472 sd->len -= ret; 473 sd->pos += ret; 474 sd->total_len -= ret; 475 476 if (!buf->len) { 477 pipe_buf_release(pipe, buf); 478 tail++; 479 pipe->tail = tail; 480 if (pipe->files) 481 sd->need_wakeup = true; 482 } 483 484 if (!sd->total_len) 485 return 0; 486 } 487 488 return 1; 489 } 490 491 /* We know we have a pipe buffer, but maybe it's empty? */ 492 static inline bool eat_empty_buffer(struct pipe_inode_info *pipe) 493 { 494 unsigned int tail = pipe->tail; 495 struct pipe_buffer *buf = pipe_buf(pipe, tail); 496 497 if (unlikely(!buf->len)) { 498 pipe_buf_release(pipe, buf); 499 pipe->tail = tail+1; 500 return true; 501 } 502 503 return false; 504 } 505 506 /** 507 * splice_from_pipe_next - wait for some data to splice from 508 * @pipe: pipe to splice from 509 * @sd: information about the splice operation 510 * 511 * Description: 512 * This function will wait for some data and return a positive 513 * value (one) if pipe buffers are available. It will return zero 514 * or -errno if no more data needs to be spliced. 515 */ 516 static int splice_from_pipe_next(struct pipe_inode_info *pipe, struct splice_desc *sd) 517 { 518 /* 519 * Check for signal early to make process killable when there are 520 * always buffers available 521 */ 522 if (signal_pending(current)) 523 return -ERESTARTSYS; 524 525 repeat: 526 while (pipe_is_empty(pipe)) { 527 if (!pipe->writers) 528 return 0; 529 530 if (sd->num_spliced) 531 return 0; 532 533 if (sd->flags & SPLICE_F_NONBLOCK) 534 return -EAGAIN; 535 536 if (signal_pending(current)) 537 return -ERESTARTSYS; 538 539 if (sd->need_wakeup) { 540 wakeup_pipe_writers(pipe); 541 sd->need_wakeup = false; 542 } 543 544 pipe_wait_readable(pipe); 545 } 546 547 if (eat_empty_buffer(pipe)) 548 goto repeat; 549 550 return 1; 551 } 552 553 /** 554 * splice_from_pipe_begin - start splicing from pipe 555 * @sd: information about the splice operation 556 * 557 * Description: 558 * This function should be called before a loop containing 559 * splice_from_pipe_next() and splice_from_pipe_feed() to 560 * initialize the necessary fields of @sd. 561 */ 562 static void splice_from_pipe_begin(struct splice_desc *sd) 563 { 564 sd->num_spliced = 0; 565 sd->need_wakeup = false; 566 } 567 568 /** 569 * splice_from_pipe_end - finish splicing from pipe 570 * @pipe: pipe to splice from 571 * @sd: information about the splice operation 572 * 573 * Description: 574 * This function will wake up pipe writers if necessary. It should 575 * be called after a loop containing splice_from_pipe_next() and 576 * splice_from_pipe_feed(). 577 */ 578 static void splice_from_pipe_end(struct pipe_inode_info *pipe, struct splice_desc *sd) 579 { 580 if (sd->need_wakeup) 581 wakeup_pipe_writers(pipe); 582 } 583 584 /** 585 * __splice_from_pipe - splice data from a pipe to given actor 586 * @pipe: pipe to splice from 587 * @sd: information to @actor 588 * @actor: handler that splices the data 589 * 590 * Description: 591 * This function does little more than loop over the pipe and call 592 * @actor to do the actual moving of a single struct pipe_buffer to 593 * the desired destination. See pipe_to_file, pipe_to_sendmsg, or 594 * pipe_to_user. 595 * 596 */ 597 ssize_t __splice_from_pipe(struct pipe_inode_info *pipe, struct splice_desc *sd, 598 splice_actor *actor) 599 { 600 int ret; 601 602 splice_from_pipe_begin(sd); 603 do { 604 cond_resched(); 605 ret = splice_from_pipe_next(pipe, sd); 606 if (ret > 0) 607 ret = splice_from_pipe_feed(pipe, sd, actor); 608 } while (ret > 0); 609 splice_from_pipe_end(pipe, sd); 610 611 return sd->num_spliced ? sd->num_spliced : ret; 612 } 613 EXPORT_SYMBOL(__splice_from_pipe); 614 615 /** 616 * splice_from_pipe - splice data from a pipe to a file 617 * @pipe: pipe to splice from 618 * @out: file to splice to 619 * @ppos: position in @out 620 * @len: how many bytes to splice 621 * @flags: splice modifier flags 622 * @actor: handler that splices the data 623 * 624 * Description: 625 * See __splice_from_pipe. This function locks the pipe inode, 626 * otherwise it's identical to __splice_from_pipe(). 627 * 628 */ 629 ssize_t splice_from_pipe(struct pipe_inode_info *pipe, struct file *out, 630 loff_t *ppos, size_t len, unsigned int flags, 631 splice_actor *actor) 632 { 633 ssize_t ret; 634 struct splice_desc sd = { 635 .total_len = len, 636 .flags = flags, 637 .pos = *ppos, 638 .u.file = out, 639 }; 640 641 pipe_lock(pipe); 642 ret = __splice_from_pipe(pipe, &sd, actor); 643 pipe_unlock(pipe); 644 645 return ret; 646 } 647 648 /** 649 * iter_file_splice_write - splice data from a pipe to a file 650 * @pipe: pipe info 651 * @out: file to write to 652 * @ppos: position in @out 653 * @len: number of bytes to splice 654 * @flags: splice modifier flags 655 * 656 * Description: 657 * Will either move or copy pages (determined by @flags options) from 658 * the given pipe inode to the given file. 659 * This one is ->write_iter-based. 660 * 661 */ 662 ssize_t 663 iter_file_splice_write(struct pipe_inode_info *pipe, struct file *out, 664 loff_t *ppos, size_t len, unsigned int flags) 665 { 666 struct splice_desc sd = { 667 .total_len = len, 668 .flags = flags, 669 .pos = *ppos, 670 .u.file = out, 671 }; 672 int nbufs = pipe->max_usage; 673 struct bio_vec *array; 674 ssize_t ret; 675 676 if (!out->f_op->write_iter) 677 return -EINVAL; 678 679 array = kcalloc(nbufs, sizeof(struct bio_vec), GFP_KERNEL); 680 if (unlikely(!array)) 681 return -ENOMEM; 682 683 pipe_lock(pipe); 684 685 splice_from_pipe_begin(&sd); 686 while (sd.total_len) { 687 struct kiocb kiocb; 688 struct iov_iter from; 689 unsigned int head, tail; 690 size_t left; 691 int n; 692 693 ret = splice_from_pipe_next(pipe, &sd); 694 if (ret <= 0) 695 break; 696 697 if (unlikely(nbufs < pipe->max_usage)) { 698 kfree(array); 699 nbufs = pipe->max_usage; 700 array = kcalloc(nbufs, sizeof(struct bio_vec), 701 GFP_KERNEL); 702 if (!array) { 703 ret = -ENOMEM; 704 break; 705 } 706 } 707 708 head = pipe->head; 709 tail = pipe->tail; 710 711 /* build the vector */ 712 left = sd.total_len; 713 for (n = 0; !pipe_empty(head, tail) && left && n < nbufs; tail++) { 714 struct pipe_buffer *buf = pipe_buf(pipe, tail); 715 size_t this_len = buf->len; 716 717 /* zero-length bvecs are not supported, skip them */ 718 if (!this_len) 719 continue; 720 this_len = min(this_len, left); 721 722 ret = pipe_buf_confirm(pipe, buf); 723 if (unlikely(ret)) { 724 if (ret == -ENODATA) 725 ret = 0; 726 goto done; 727 } 728 729 bvec_set_page(&array[n], buf->page, this_len, 730 buf->offset); 731 left -= this_len; 732 n++; 733 } 734 735 iov_iter_bvec(&from, ITER_SOURCE, array, n, sd.total_len - left); 736 init_sync_kiocb(&kiocb, out); 737 kiocb.ki_pos = sd.pos; 738 ret = out->f_op->write_iter(&kiocb, &from); 739 sd.pos = kiocb.ki_pos; 740 if (ret <= 0) 741 break; 742 743 sd.num_spliced += ret; 744 sd.total_len -= ret; 745 *ppos = sd.pos; 746 747 /* dismiss the fully eaten buffers, adjust the partial one */ 748 tail = pipe->tail; 749 while (ret) { 750 struct pipe_buffer *buf = pipe_buf(pipe, tail); 751 if (ret >= buf->len) { 752 ret -= buf->len; 753 buf->len = 0; 754 pipe_buf_release(pipe, buf); 755 tail++; 756 pipe->tail = tail; 757 if (pipe->files) 758 sd.need_wakeup = true; 759 } else { 760 buf->offset += ret; 761 buf->len -= ret; 762 ret = 0; 763 } 764 } 765 } 766 done: 767 kfree(array); 768 splice_from_pipe_end(pipe, &sd); 769 770 pipe_unlock(pipe); 771 772 if (sd.num_spliced) 773 ret = sd.num_spliced; 774 775 return ret; 776 } 777 778 EXPORT_SYMBOL(iter_file_splice_write); 779 780 #ifdef CONFIG_NET 781 /** 782 * splice_to_socket - splice data from a pipe to a socket 783 * @pipe: pipe to splice from 784 * @out: socket to write to 785 * @ppos: position in @out 786 * @len: number of bytes to splice 787 * @flags: splice modifier flags 788 * 789 * Description: 790 * Will send @len bytes from the pipe to a network socket. No data copying 791 * is involved. 792 * 793 */ 794 ssize_t splice_to_socket(struct pipe_inode_info *pipe, struct file *out, 795 loff_t *ppos, size_t len, unsigned int flags) 796 { 797 struct socket *sock = sock_from_file(out); 798 struct bio_vec bvec[16]; 799 struct msghdr msg = {}; 800 ssize_t ret = 0; 801 size_t spliced = 0; 802 bool need_wakeup = false; 803 804 pipe_lock(pipe); 805 806 while (len > 0) { 807 unsigned int head, tail, bc = 0; 808 size_t remain = len; 809 810 /* 811 * Check for signal early to make process killable when there 812 * are always buffers available 813 */ 814 ret = -ERESTARTSYS; 815 if (signal_pending(current)) 816 break; 817 818 while (pipe_is_empty(pipe)) { 819 ret = 0; 820 if (!pipe->writers) 821 goto out; 822 823 if (spliced) 824 goto out; 825 826 ret = -EAGAIN; 827 if (flags & SPLICE_F_NONBLOCK) 828 goto out; 829 830 ret = -ERESTARTSYS; 831 if (signal_pending(current)) 832 goto out; 833 834 if (need_wakeup) { 835 wakeup_pipe_writers(pipe); 836 need_wakeup = false; 837 } 838 839 pipe_wait_readable(pipe); 840 } 841 842 head = pipe->head; 843 tail = pipe->tail; 844 845 while (!pipe_empty(head, tail)) { 846 struct pipe_buffer *buf = pipe_buf(pipe, tail); 847 size_t seg; 848 849 if (!buf->len) { 850 tail++; 851 continue; 852 } 853 854 seg = min_t(size_t, remain, buf->len); 855 856 ret = pipe_buf_confirm(pipe, buf); 857 if (unlikely(ret)) { 858 if (ret == -ENODATA) 859 ret = 0; 860 break; 861 } 862 863 bvec_set_page(&bvec[bc++], buf->page, seg, buf->offset); 864 remain -= seg; 865 if (remain == 0 || bc >= ARRAY_SIZE(bvec)) 866 break; 867 tail++; 868 } 869 870 if (!bc) 871 break; 872 873 msg.msg_flags = MSG_SPLICE_PAGES; 874 if (flags & SPLICE_F_MORE) 875 msg.msg_flags |= MSG_MORE; 876 if (remain && pipe_occupancy(pipe->head, tail) > 0) 877 msg.msg_flags |= MSG_MORE; 878 if (out->f_flags & O_NONBLOCK) 879 msg.msg_flags |= MSG_DONTWAIT; 880 881 iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, bvec, bc, 882 len - remain); 883 ret = sock_sendmsg(sock, &msg); 884 if (ret <= 0) 885 break; 886 887 spliced += ret; 888 len -= ret; 889 tail = pipe->tail; 890 while (ret > 0) { 891 struct pipe_buffer *buf = pipe_buf(pipe, tail); 892 size_t seg = min_t(size_t, ret, buf->len); 893 894 buf->offset += seg; 895 buf->len -= seg; 896 ret -= seg; 897 898 if (!buf->len) { 899 pipe_buf_release(pipe, buf); 900 tail++; 901 } 902 } 903 904 if (tail != pipe->tail) { 905 pipe->tail = tail; 906 if (pipe->files) 907 need_wakeup = true; 908 } 909 } 910 911 out: 912 pipe_unlock(pipe); 913 if (need_wakeup) 914 wakeup_pipe_writers(pipe); 915 return spliced ?: ret; 916 } 917 #endif 918 919 static int warn_unsupported(struct file *file, const char *op) 920 { 921 pr_debug_ratelimited( 922 "splice %s not supported for file %pD4 (pid: %d comm: %.20s)\n", 923 op, file, current->pid, current->comm); 924 return -EINVAL; 925 } 926 927 /* 928 * Attempt to initiate a splice from pipe to file. 929 */ 930 static ssize_t do_splice_from(struct pipe_inode_info *pipe, struct file *out, 931 loff_t *ppos, size_t len, unsigned int flags) 932 { 933 if (unlikely(!out->f_op->splice_write)) 934 return warn_unsupported(out, "write"); 935 return out->f_op->splice_write(pipe, out, ppos, len, flags); 936 } 937 938 /* 939 * Indicate to the caller that there was a premature EOF when reading from the 940 * source and the caller didn't indicate they would be sending more data after 941 * this. 942 */ 943 static void do_splice_eof(struct splice_desc *sd) 944 { 945 if (sd->splice_eof) 946 sd->splice_eof(sd); 947 } 948 949 /* 950 * Callers already called rw_verify_area() on the entire range. 951 * No need to call it for sub ranges. 952 */ 953 static ssize_t do_splice_read(struct file *in, loff_t *ppos, 954 struct pipe_inode_info *pipe, size_t len, 955 unsigned int flags) 956 { 957 unsigned int p_space; 958 959 if (unlikely(!(in->f_mode & FMODE_READ))) 960 return -EBADF; 961 if (!len) 962 return 0; 963 964 /* Don't try to read more the pipe has space for. */ 965 p_space = pipe->max_usage - pipe_buf_usage(pipe); 966 len = min_t(size_t, len, p_space << PAGE_SHIFT); 967 968 if (unlikely(len > MAX_RW_COUNT)) 969 len = MAX_RW_COUNT; 970 971 if (unlikely(!in->f_op->splice_read)) 972 return warn_unsupported(in, "read"); 973 /* 974 * O_DIRECT and DAX don't deal with the pagecache, so we allocate a 975 * buffer, copy into it and splice that into the pipe. 976 */ 977 if ((in->f_flags & O_DIRECT) || IS_DAX(in->f_mapping->host)) 978 return copy_splice_read(in, ppos, pipe, len, flags); 979 return in->f_op->splice_read(in, ppos, pipe, len, flags); 980 } 981 982 /** 983 * vfs_splice_read - Read data from a file and splice it into a pipe 984 * @in: File to splice from 985 * @ppos: Input file offset 986 * @pipe: Pipe to splice to 987 * @len: Number of bytes to splice 988 * @flags: Splice modifier flags (SPLICE_F_*) 989 * 990 * Splice the requested amount of data from the input file to the pipe. This 991 * is synchronous as the caller must hold the pipe lock across the entire 992 * operation. 993 * 994 * If successful, it returns the amount of data spliced, 0 if it hit the EOF or 995 * a hole and a negative error code otherwise. 996 */ 997 ssize_t vfs_splice_read(struct file *in, loff_t *ppos, 998 struct pipe_inode_info *pipe, size_t len, 999 unsigned int flags) 1000 { 1001 ssize_t ret; 1002 1003 ret = rw_verify_area(READ, in, ppos, len); 1004 if (unlikely(ret < 0)) 1005 return ret; 1006 1007 return do_splice_read(in, ppos, pipe, len, flags); 1008 } 1009 EXPORT_SYMBOL_GPL(vfs_splice_read); 1010 1011 /** 1012 * splice_direct_to_actor - splices data directly between two non-pipes 1013 * @in: file to splice from 1014 * @sd: actor information on where to splice to 1015 * @actor: handles the data splicing 1016 * 1017 * Description: 1018 * This is a special case helper to splice directly between two 1019 * points, without requiring an explicit pipe. Internally an allocated 1020 * pipe is cached in the process, and reused during the lifetime of 1021 * that process. 1022 * 1023 */ 1024 ssize_t splice_direct_to_actor(struct file *in, struct splice_desc *sd, 1025 splice_direct_actor *actor) 1026 { 1027 struct pipe_inode_info *pipe; 1028 ssize_t ret, bytes; 1029 size_t len; 1030 int i, flags, more; 1031 1032 /* 1033 * We require the input to be seekable, as we don't want to randomly 1034 * drop data for eg socket -> socket splicing. Use the piped splicing 1035 * for that! 1036 */ 1037 if (unlikely(!(in->f_mode & FMODE_LSEEK))) 1038 return -EINVAL; 1039 1040 /* 1041 * neither in nor out is a pipe, setup an internal pipe attached to 1042 * 'out' and transfer the wanted data from 'in' to 'out' through that 1043 */ 1044 pipe = current->splice_pipe; 1045 if (unlikely(!pipe)) { 1046 pipe = alloc_pipe_info(); 1047 if (!pipe) 1048 return -ENOMEM; 1049 1050 /* 1051 * We don't have an immediate reader, but we'll read the stuff 1052 * out of the pipe right after the splice_to_pipe(). So set 1053 * PIPE_READERS appropriately. 1054 */ 1055 pipe->readers = 1; 1056 1057 current->splice_pipe = pipe; 1058 } 1059 1060 /* 1061 * Do the splice. 1062 */ 1063 bytes = 0; 1064 len = sd->total_len; 1065 1066 /* Don't block on output, we have to drain the direct pipe. */ 1067 flags = sd->flags; 1068 sd->flags &= ~SPLICE_F_NONBLOCK; 1069 1070 /* 1071 * We signal MORE until we've read sufficient data to fulfill the 1072 * request and we keep signalling it if the caller set it. 1073 */ 1074 more = sd->flags & SPLICE_F_MORE; 1075 sd->flags |= SPLICE_F_MORE; 1076 1077 WARN_ON_ONCE(!pipe_is_empty(pipe)); 1078 1079 while (len) { 1080 size_t read_len; 1081 loff_t pos = sd->pos, prev_pos = pos; 1082 1083 ret = do_splice_read(in, &pos, pipe, len, flags); 1084 if (unlikely(ret <= 0)) 1085 goto read_failure; 1086 1087 read_len = ret; 1088 sd->total_len = read_len; 1089 1090 /* 1091 * If we now have sufficient data to fulfill the request then 1092 * we clear SPLICE_F_MORE if it was not set initially. 1093 */ 1094 if (read_len >= len && !more) 1095 sd->flags &= ~SPLICE_F_MORE; 1096 1097 /* 1098 * NOTE: nonblocking mode only applies to the input. We 1099 * must not do the output in nonblocking mode as then we 1100 * could get stuck data in the internal pipe: 1101 */ 1102 ret = actor(pipe, sd); 1103 if (unlikely(ret <= 0)) { 1104 sd->pos = prev_pos; 1105 goto out_release; 1106 } 1107 1108 bytes += ret; 1109 len -= ret; 1110 sd->pos = pos; 1111 1112 if (ret < read_len) { 1113 sd->pos = prev_pos + ret; 1114 goto out_release; 1115 } 1116 } 1117 1118 done: 1119 pipe->tail = pipe->head = 0; 1120 file_accessed(in); 1121 return bytes; 1122 1123 read_failure: 1124 /* 1125 * If the user did *not* set SPLICE_F_MORE *and* we didn't hit that 1126 * "use all of len" case that cleared SPLICE_F_MORE, *and* we did a 1127 * "->splice_in()" that returned EOF (ie zero) *and* we have sent at 1128 * least 1 byte *then* we will also do the ->splice_eof() call. 1129 */ 1130 if (ret == 0 && !more && len > 0 && bytes) 1131 do_splice_eof(sd); 1132 out_release: 1133 /* 1134 * If we did an incomplete transfer we must release 1135 * the pipe buffers in question: 1136 */ 1137 for (i = 0; i < pipe->ring_size; i++) { 1138 struct pipe_buffer *buf = &pipe->bufs[i]; 1139 1140 if (buf->ops) 1141 pipe_buf_release(pipe, buf); 1142 } 1143 1144 if (!bytes) 1145 bytes = ret; 1146 1147 goto done; 1148 } 1149 EXPORT_SYMBOL(splice_direct_to_actor); 1150 1151 static int direct_splice_actor(struct pipe_inode_info *pipe, 1152 struct splice_desc *sd) 1153 { 1154 struct file *file = sd->u.file; 1155 long ret; 1156 1157 file_start_write(file); 1158 ret = do_splice_from(pipe, file, sd->opos, sd->total_len, sd->flags); 1159 file_end_write(file); 1160 return ret; 1161 } 1162 1163 static int splice_file_range_actor(struct pipe_inode_info *pipe, 1164 struct splice_desc *sd) 1165 { 1166 struct file *file = sd->u.file; 1167 1168 return do_splice_from(pipe, file, sd->opos, sd->total_len, sd->flags); 1169 } 1170 1171 static void direct_file_splice_eof(struct splice_desc *sd) 1172 { 1173 struct file *file = sd->u.file; 1174 1175 if (file->f_op->splice_eof) 1176 file->f_op->splice_eof(file); 1177 } 1178 1179 static ssize_t do_splice_direct_actor(struct file *in, loff_t *ppos, 1180 struct file *out, loff_t *opos, 1181 size_t len, unsigned int flags, 1182 splice_direct_actor *actor) 1183 { 1184 struct splice_desc sd = { 1185 .len = len, 1186 .total_len = len, 1187 .flags = flags, 1188 .pos = *ppos, 1189 .u.file = out, 1190 .splice_eof = direct_file_splice_eof, 1191 .opos = opos, 1192 }; 1193 ssize_t ret; 1194 1195 if (unlikely(!(out->f_mode & FMODE_WRITE))) 1196 return -EBADF; 1197 1198 if (unlikely(out->f_flags & O_APPEND)) 1199 return -EINVAL; 1200 1201 ret = splice_direct_to_actor(in, &sd, actor); 1202 if (ret > 0) 1203 *ppos = sd.pos; 1204 1205 return ret; 1206 } 1207 /** 1208 * do_splice_direct - splices data directly between two files 1209 * @in: file to splice from 1210 * @ppos: input file offset 1211 * @out: file to splice to 1212 * @opos: output file offset 1213 * @len: number of bytes to splice 1214 * @flags: splice modifier flags 1215 * 1216 * Description: 1217 * For use by do_sendfile(). splice can easily emulate sendfile, but 1218 * doing it in the application would incur an extra system call 1219 * (splice in + splice out, as compared to just sendfile()). So this helper 1220 * can splice directly through a process-private pipe. 1221 * 1222 * Callers already called rw_verify_area() on the entire range. 1223 */ 1224 ssize_t do_splice_direct(struct file *in, loff_t *ppos, struct file *out, 1225 loff_t *opos, size_t len, unsigned int flags) 1226 { 1227 return do_splice_direct_actor(in, ppos, out, opos, len, flags, 1228 direct_splice_actor); 1229 } 1230 EXPORT_SYMBOL(do_splice_direct); 1231 1232 /** 1233 * splice_file_range - splices data between two files for copy_file_range() 1234 * @in: file to splice from 1235 * @ppos: input file offset 1236 * @out: file to splice to 1237 * @opos: output file offset 1238 * @len: number of bytes to splice 1239 * 1240 * Description: 1241 * For use by ->copy_file_range() methods. 1242 * Like do_splice_direct(), but vfs_copy_file_range() already holds 1243 * start_file_write() on @out file. 1244 * 1245 * Callers already called rw_verify_area() on the entire range. 1246 */ 1247 ssize_t splice_file_range(struct file *in, loff_t *ppos, struct file *out, 1248 loff_t *opos, size_t len) 1249 { 1250 lockdep_assert(file_write_started(out)); 1251 1252 return do_splice_direct_actor(in, ppos, out, opos, 1253 min_t(size_t, len, MAX_RW_COUNT), 1254 0, splice_file_range_actor); 1255 } 1256 EXPORT_SYMBOL(splice_file_range); 1257 1258 static int wait_for_space(struct pipe_inode_info *pipe, unsigned flags) 1259 { 1260 for (;;) { 1261 if (unlikely(!pipe->readers)) { 1262 send_sig(SIGPIPE, current, 0); 1263 return -EPIPE; 1264 } 1265 if (!pipe_is_full(pipe)) 1266 return 0; 1267 if (flags & SPLICE_F_NONBLOCK) 1268 return -EAGAIN; 1269 if (signal_pending(current)) 1270 return -ERESTARTSYS; 1271 pipe_wait_writable(pipe); 1272 } 1273 } 1274 1275 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe, 1276 struct pipe_inode_info *opipe, 1277 size_t len, unsigned int flags); 1278 1279 ssize_t splice_file_to_pipe(struct file *in, 1280 struct pipe_inode_info *opipe, 1281 loff_t *offset, 1282 size_t len, unsigned int flags) 1283 { 1284 ssize_t ret; 1285 1286 pipe_lock(opipe); 1287 ret = wait_for_space(opipe, flags); 1288 if (!ret) 1289 ret = do_splice_read(in, offset, opipe, len, flags); 1290 pipe_unlock(opipe); 1291 if (ret > 0) 1292 wakeup_pipe_readers(opipe); 1293 return ret; 1294 } 1295 1296 /* 1297 * Determine where to splice to/from. 1298 */ 1299 ssize_t do_splice(struct file *in, loff_t *off_in, struct file *out, 1300 loff_t *off_out, size_t len, unsigned int flags) 1301 { 1302 struct pipe_inode_info *ipipe; 1303 struct pipe_inode_info *opipe; 1304 loff_t offset; 1305 ssize_t ret; 1306 1307 if (unlikely(!(in->f_mode & FMODE_READ) || 1308 !(out->f_mode & FMODE_WRITE))) 1309 return -EBADF; 1310 1311 ipipe = get_pipe_info(in, true); 1312 opipe = get_pipe_info(out, true); 1313 1314 if (ipipe && opipe) { 1315 if (off_in || off_out) 1316 return -ESPIPE; 1317 1318 /* Splicing to self would be fun, but... */ 1319 if (ipipe == opipe) 1320 return -EINVAL; 1321 1322 if ((in->f_flags | out->f_flags) & O_NONBLOCK) 1323 flags |= SPLICE_F_NONBLOCK; 1324 1325 ret = splice_pipe_to_pipe(ipipe, opipe, len, flags); 1326 } else if (ipipe) { 1327 if (off_in) 1328 return -ESPIPE; 1329 if (off_out) { 1330 if (!(out->f_mode & FMODE_PWRITE)) 1331 return -EINVAL; 1332 offset = *off_out; 1333 } else { 1334 offset = out->f_pos; 1335 } 1336 1337 if (unlikely(out->f_flags & O_APPEND)) 1338 return -EINVAL; 1339 1340 ret = rw_verify_area(WRITE, out, &offset, len); 1341 if (unlikely(ret < 0)) 1342 return ret; 1343 1344 if (in->f_flags & O_NONBLOCK) 1345 flags |= SPLICE_F_NONBLOCK; 1346 1347 file_start_write(out); 1348 ret = do_splice_from(ipipe, out, &offset, len, flags); 1349 file_end_write(out); 1350 1351 if (!off_out) 1352 out->f_pos = offset; 1353 else 1354 *off_out = offset; 1355 } else if (opipe) { 1356 if (off_out) 1357 return -ESPIPE; 1358 if (off_in) { 1359 if (!(in->f_mode & FMODE_PREAD)) 1360 return -EINVAL; 1361 offset = *off_in; 1362 } else { 1363 offset = in->f_pos; 1364 } 1365 1366 ret = rw_verify_area(READ, in, &offset, len); 1367 if (unlikely(ret < 0)) 1368 return ret; 1369 1370 if (out->f_flags & O_NONBLOCK) 1371 flags |= SPLICE_F_NONBLOCK; 1372 1373 ret = splice_file_to_pipe(in, opipe, &offset, len, flags); 1374 1375 if (!off_in) 1376 in->f_pos = offset; 1377 else 1378 *off_in = offset; 1379 } else { 1380 ret = -EINVAL; 1381 } 1382 1383 if (ret > 0) { 1384 /* 1385 * Generate modify out before access in: 1386 * do_splice_from() may've already sent modify out, 1387 * and this ensures the events get merged. 1388 */ 1389 fsnotify_modify(out); 1390 fsnotify_access(in); 1391 } 1392 1393 return ret; 1394 } 1395 1396 static ssize_t __do_splice(struct file *in, loff_t __user *off_in, 1397 struct file *out, loff_t __user *off_out, 1398 size_t len, unsigned int flags) 1399 { 1400 struct pipe_inode_info *ipipe; 1401 struct pipe_inode_info *opipe; 1402 loff_t offset, *__off_in = NULL, *__off_out = NULL; 1403 ssize_t ret; 1404 1405 ipipe = get_pipe_info(in, true); 1406 opipe = get_pipe_info(out, true); 1407 1408 if (ipipe) { 1409 if (off_in) 1410 return -ESPIPE; 1411 pipe_clear_nowait(in); 1412 } 1413 if (opipe) { 1414 if (off_out) 1415 return -ESPIPE; 1416 pipe_clear_nowait(out); 1417 } 1418 1419 if (off_out) { 1420 if (copy_from_user(&offset, off_out, sizeof(loff_t))) 1421 return -EFAULT; 1422 __off_out = &offset; 1423 } 1424 if (off_in) { 1425 if (copy_from_user(&offset, off_in, sizeof(loff_t))) 1426 return -EFAULT; 1427 __off_in = &offset; 1428 } 1429 1430 ret = do_splice(in, __off_in, out, __off_out, len, flags); 1431 if (ret < 0) 1432 return ret; 1433 1434 if (__off_out && copy_to_user(off_out, __off_out, sizeof(loff_t))) 1435 return -EFAULT; 1436 if (__off_in && copy_to_user(off_in, __off_in, sizeof(loff_t))) 1437 return -EFAULT; 1438 1439 return ret; 1440 } 1441 1442 static ssize_t iter_to_pipe(struct iov_iter *from, 1443 struct pipe_inode_info *pipe, 1444 unsigned int flags) 1445 { 1446 struct pipe_buffer buf = { 1447 .ops = &user_page_pipe_buf_ops, 1448 .flags = flags 1449 }; 1450 size_t total = 0; 1451 ssize_t ret = 0; 1452 1453 while (iov_iter_count(from)) { 1454 struct page *pages[16]; 1455 ssize_t left; 1456 size_t start; 1457 int i, n; 1458 1459 left = iov_iter_get_pages2(from, pages, ~0UL, 16, &start); 1460 if (left <= 0) { 1461 ret = left; 1462 break; 1463 } 1464 1465 n = DIV_ROUND_UP(left + start, PAGE_SIZE); 1466 for (i = 0; i < n; i++) { 1467 int size = min_t(int, left, PAGE_SIZE - start); 1468 1469 buf.page = pages[i]; 1470 buf.offset = start; 1471 buf.len = size; 1472 ret = add_to_pipe(pipe, &buf); 1473 if (unlikely(ret < 0)) { 1474 iov_iter_revert(from, left); 1475 // this one got dropped by add_to_pipe() 1476 while (++i < n) 1477 put_page(pages[i]); 1478 goto out; 1479 } 1480 total += ret; 1481 left -= size; 1482 start = 0; 1483 } 1484 } 1485 out: 1486 return total ? total : ret; 1487 } 1488 1489 static int pipe_to_user(struct pipe_inode_info *pipe, struct pipe_buffer *buf, 1490 struct splice_desc *sd) 1491 { 1492 int n = copy_page_to_iter(buf->page, buf->offset, sd->len, sd->u.data); 1493 return n == sd->len ? n : -EFAULT; 1494 } 1495 1496 /* 1497 * For lack of a better implementation, implement vmsplice() to userspace 1498 * as a simple copy of the pipes pages to the user iov. 1499 */ 1500 static ssize_t vmsplice_to_user(struct file *file, struct iov_iter *iter, 1501 unsigned int flags) 1502 { 1503 struct pipe_inode_info *pipe = get_pipe_info(file, true); 1504 struct splice_desc sd = { 1505 .total_len = iov_iter_count(iter), 1506 .flags = flags, 1507 .u.data = iter 1508 }; 1509 ssize_t ret = 0; 1510 1511 if (!pipe) 1512 return -EBADF; 1513 1514 pipe_clear_nowait(file); 1515 1516 if (sd.total_len) { 1517 pipe_lock(pipe); 1518 ret = __splice_from_pipe(pipe, &sd, pipe_to_user); 1519 pipe_unlock(pipe); 1520 } 1521 1522 if (ret > 0) 1523 fsnotify_access(file); 1524 1525 return ret; 1526 } 1527 1528 /* 1529 * vmsplice splices a user address range into a pipe. It can be thought of 1530 * as splice-from-memory, where the regular splice is splice-from-file (or 1531 * to file). In both cases the output is a pipe, naturally. 1532 */ 1533 static ssize_t vmsplice_to_pipe(struct file *file, struct iov_iter *iter, 1534 unsigned int flags) 1535 { 1536 struct pipe_inode_info *pipe; 1537 ssize_t ret = 0; 1538 unsigned buf_flag = 0; 1539 1540 if (flags & SPLICE_F_GIFT) 1541 buf_flag = PIPE_BUF_FLAG_GIFT; 1542 1543 pipe = get_pipe_info(file, true); 1544 if (!pipe) 1545 return -EBADF; 1546 1547 pipe_clear_nowait(file); 1548 1549 pipe_lock(pipe); 1550 ret = wait_for_space(pipe, flags); 1551 if (!ret) 1552 ret = iter_to_pipe(iter, pipe, buf_flag); 1553 pipe_unlock(pipe); 1554 if (ret > 0) { 1555 wakeup_pipe_readers(pipe); 1556 fsnotify_modify(file); 1557 } 1558 return ret; 1559 } 1560 1561 /* 1562 * Note that vmsplice only really supports true splicing _from_ user memory 1563 * to a pipe, not the other way around. Splicing from user memory is a simple 1564 * operation that can be supported without any funky alignment restrictions 1565 * or nasty vm tricks. We simply map in the user memory and fill them into 1566 * a pipe. The reverse isn't quite as easy, though. There are two possible 1567 * solutions for that: 1568 * 1569 * - memcpy() the data internally, at which point we might as well just 1570 * do a regular read() on the buffer anyway. 1571 * - Lots of nasty vm tricks, that are neither fast nor flexible (it 1572 * has restriction limitations on both ends of the pipe). 1573 * 1574 * Currently we punt and implement it as a normal copy, see pipe_to_user(). 1575 * 1576 */ 1577 SYSCALL_DEFINE4(vmsplice, int, fd, const struct iovec __user *, uiov, 1578 unsigned long, nr_segs, unsigned int, flags) 1579 { 1580 struct iovec iovstack[UIO_FASTIOV]; 1581 struct iovec *iov = iovstack; 1582 struct iov_iter iter; 1583 ssize_t error; 1584 int type; 1585 1586 if (unlikely(flags & ~SPLICE_F_ALL)) 1587 return -EINVAL; 1588 1589 CLASS(fd, f)(fd); 1590 if (fd_empty(f)) 1591 return -EBADF; 1592 if (fd_file(f)->f_mode & FMODE_WRITE) 1593 type = ITER_SOURCE; 1594 else if (fd_file(f)->f_mode & FMODE_READ) 1595 type = ITER_DEST; 1596 else 1597 return -EBADF; 1598 1599 error = import_iovec(type, uiov, nr_segs, 1600 ARRAY_SIZE(iovstack), &iov, &iter); 1601 if (error < 0) 1602 return error; 1603 1604 if (!iov_iter_count(&iter)) 1605 error = 0; 1606 else if (type == ITER_SOURCE) 1607 error = vmsplice_to_pipe(fd_file(f), &iter, flags); 1608 else 1609 error = vmsplice_to_user(fd_file(f), &iter, flags); 1610 1611 kfree(iov); 1612 return error; 1613 } 1614 1615 SYSCALL_DEFINE6(splice, int, fd_in, loff_t __user *, off_in, 1616 int, fd_out, loff_t __user *, off_out, 1617 size_t, len, unsigned int, flags) 1618 { 1619 if (unlikely(!len)) 1620 return 0; 1621 1622 if (unlikely(flags & ~SPLICE_F_ALL)) 1623 return -EINVAL; 1624 1625 CLASS(fd, in)(fd_in); 1626 if (fd_empty(in)) 1627 return -EBADF; 1628 1629 CLASS(fd, out)(fd_out); 1630 if (fd_empty(out)) 1631 return -EBADF; 1632 1633 return __do_splice(fd_file(in), off_in, fd_file(out), off_out, 1634 len, flags); 1635 } 1636 1637 /* 1638 * Make sure there's data to read. Wait for input if we can, otherwise 1639 * return an appropriate error. 1640 */ 1641 static int ipipe_prep(struct pipe_inode_info *pipe, unsigned int flags) 1642 { 1643 int ret; 1644 1645 /* 1646 * Check the pipe occupancy without the inode lock first. This function 1647 * is speculative anyways, so missing one is ok. 1648 */ 1649 if (!pipe_is_empty(pipe)) 1650 return 0; 1651 1652 ret = 0; 1653 pipe_lock(pipe); 1654 1655 while (pipe_is_empty(pipe)) { 1656 if (signal_pending(current)) { 1657 ret = -ERESTARTSYS; 1658 break; 1659 } 1660 if (!pipe->writers) 1661 break; 1662 if (flags & SPLICE_F_NONBLOCK) { 1663 ret = -EAGAIN; 1664 break; 1665 } 1666 pipe_wait_readable(pipe); 1667 } 1668 1669 pipe_unlock(pipe); 1670 return ret; 1671 } 1672 1673 /* 1674 * Make sure there's writeable room. Wait for room if we can, otherwise 1675 * return an appropriate error. 1676 */ 1677 static int opipe_prep(struct pipe_inode_info *pipe, unsigned int flags) 1678 { 1679 int ret; 1680 1681 /* 1682 * Check pipe occupancy without the inode lock first. This function 1683 * is speculative anyways, so missing one is ok. 1684 */ 1685 if (!pipe_is_full(pipe)) 1686 return 0; 1687 1688 ret = 0; 1689 pipe_lock(pipe); 1690 1691 while (pipe_is_full(pipe)) { 1692 if (!pipe->readers) { 1693 send_sig(SIGPIPE, current, 0); 1694 ret = -EPIPE; 1695 break; 1696 } 1697 if (flags & SPLICE_F_NONBLOCK) { 1698 ret = -EAGAIN; 1699 break; 1700 } 1701 if (signal_pending(current)) { 1702 ret = -ERESTARTSYS; 1703 break; 1704 } 1705 pipe_wait_writable(pipe); 1706 } 1707 1708 pipe_unlock(pipe); 1709 return ret; 1710 } 1711 1712 /* 1713 * Splice contents of ipipe to opipe. 1714 */ 1715 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe, 1716 struct pipe_inode_info *opipe, 1717 size_t len, unsigned int flags) 1718 { 1719 struct pipe_buffer *ibuf, *obuf; 1720 unsigned int i_head, o_head; 1721 unsigned int i_tail, o_tail; 1722 int ret = 0; 1723 bool input_wakeup = false; 1724 1725 1726 retry: 1727 ret = ipipe_prep(ipipe, flags); 1728 if (ret) 1729 return ret; 1730 1731 ret = opipe_prep(opipe, flags); 1732 if (ret) 1733 return ret; 1734 1735 /* 1736 * Potential ABBA deadlock, work around it by ordering lock 1737 * grabbing by pipe info address. Otherwise two different processes 1738 * could deadlock (one doing tee from A -> B, the other from B -> A). 1739 */ 1740 pipe_double_lock(ipipe, opipe); 1741 1742 i_tail = ipipe->tail; 1743 o_head = opipe->head; 1744 1745 do { 1746 size_t o_len; 1747 1748 if (!opipe->readers) { 1749 send_sig(SIGPIPE, current, 0); 1750 if (!ret) 1751 ret = -EPIPE; 1752 break; 1753 } 1754 1755 i_head = ipipe->head; 1756 o_tail = opipe->tail; 1757 1758 if (pipe_empty(i_head, i_tail) && !ipipe->writers) 1759 break; 1760 1761 /* 1762 * Cannot make any progress, because either the input 1763 * pipe is empty or the output pipe is full. 1764 */ 1765 if (pipe_empty(i_head, i_tail) || 1766 pipe_full(o_head, o_tail, opipe->max_usage)) { 1767 /* Already processed some buffers, break */ 1768 if (ret) 1769 break; 1770 1771 if (flags & SPLICE_F_NONBLOCK) { 1772 ret = -EAGAIN; 1773 break; 1774 } 1775 1776 /* 1777 * We raced with another reader/writer and haven't 1778 * managed to process any buffers. A zero return 1779 * value means EOF, so retry instead. 1780 */ 1781 pipe_unlock(ipipe); 1782 pipe_unlock(opipe); 1783 goto retry; 1784 } 1785 1786 ibuf = pipe_buf(ipipe, i_tail); 1787 obuf = pipe_buf(opipe, o_head); 1788 1789 if (len >= ibuf->len) { 1790 /* 1791 * Simply move the whole buffer from ipipe to opipe 1792 */ 1793 *obuf = *ibuf; 1794 ibuf->ops = NULL; 1795 i_tail++; 1796 ipipe->tail = i_tail; 1797 input_wakeup = true; 1798 o_len = obuf->len; 1799 o_head++; 1800 opipe->head = o_head; 1801 } else { 1802 /* 1803 * Get a reference to this pipe buffer, 1804 * so we can copy the contents over. 1805 */ 1806 if (!pipe_buf_get(ipipe, ibuf)) { 1807 if (ret == 0) 1808 ret = -EFAULT; 1809 break; 1810 } 1811 *obuf = *ibuf; 1812 1813 /* 1814 * Don't inherit the gift and merge flags, we need to 1815 * prevent multiple steals of this page. 1816 */ 1817 obuf->flags &= ~PIPE_BUF_FLAG_GIFT; 1818 obuf->flags &= ~PIPE_BUF_FLAG_CAN_MERGE; 1819 1820 obuf->len = len; 1821 ibuf->offset += len; 1822 ibuf->len -= len; 1823 o_len = len; 1824 o_head++; 1825 opipe->head = o_head; 1826 } 1827 ret += o_len; 1828 len -= o_len; 1829 } while (len); 1830 1831 pipe_unlock(ipipe); 1832 pipe_unlock(opipe); 1833 1834 /* 1835 * If we put data in the output pipe, wakeup any potential readers. 1836 */ 1837 if (ret > 0) 1838 wakeup_pipe_readers(opipe); 1839 1840 if (input_wakeup) 1841 wakeup_pipe_writers(ipipe); 1842 1843 return ret; 1844 } 1845 1846 /* 1847 * Link contents of ipipe to opipe. 1848 */ 1849 static ssize_t link_pipe(struct pipe_inode_info *ipipe, 1850 struct pipe_inode_info *opipe, 1851 size_t len, unsigned int flags) 1852 { 1853 struct pipe_buffer *ibuf, *obuf; 1854 unsigned int i_head, o_head; 1855 unsigned int i_tail, o_tail; 1856 ssize_t ret = 0; 1857 1858 /* 1859 * Potential ABBA deadlock, work around it by ordering lock 1860 * grabbing by pipe info address. Otherwise two different processes 1861 * could deadlock (one doing tee from A -> B, the other from B -> A). 1862 */ 1863 pipe_double_lock(ipipe, opipe); 1864 1865 i_tail = ipipe->tail; 1866 o_head = opipe->head; 1867 1868 do { 1869 if (!opipe->readers) { 1870 send_sig(SIGPIPE, current, 0); 1871 if (!ret) 1872 ret = -EPIPE; 1873 break; 1874 } 1875 1876 i_head = ipipe->head; 1877 o_tail = opipe->tail; 1878 1879 /* 1880 * If we have iterated all input buffers or run out of 1881 * output room, break. 1882 */ 1883 if (pipe_empty(i_head, i_tail) || 1884 pipe_full(o_head, o_tail, opipe->max_usage)) 1885 break; 1886 1887 ibuf = pipe_buf(ipipe, i_tail); 1888 obuf = pipe_buf(opipe, o_head); 1889 1890 /* 1891 * Get a reference to this pipe buffer, 1892 * so we can copy the contents over. 1893 */ 1894 if (!pipe_buf_get(ipipe, ibuf)) { 1895 if (ret == 0) 1896 ret = -EFAULT; 1897 break; 1898 } 1899 1900 *obuf = *ibuf; 1901 1902 /* 1903 * Don't inherit the gift and merge flag, we need to prevent 1904 * multiple steals of this page. 1905 */ 1906 obuf->flags &= ~PIPE_BUF_FLAG_GIFT; 1907 obuf->flags &= ~PIPE_BUF_FLAG_CAN_MERGE; 1908 1909 if (obuf->len > len) 1910 obuf->len = len; 1911 ret += obuf->len; 1912 len -= obuf->len; 1913 1914 o_head++; 1915 opipe->head = o_head; 1916 i_tail++; 1917 } while (len); 1918 1919 pipe_unlock(ipipe); 1920 pipe_unlock(opipe); 1921 1922 /* 1923 * If we put data in the output pipe, wakeup any potential readers. 1924 */ 1925 if (ret > 0) 1926 wakeup_pipe_readers(opipe); 1927 1928 return ret; 1929 } 1930 1931 /* 1932 * This is a tee(1) implementation that works on pipes. It doesn't copy 1933 * any data, it simply references the 'in' pages on the 'out' pipe. 1934 * The 'flags' used are the SPLICE_F_* variants, currently the only 1935 * applicable one is SPLICE_F_NONBLOCK. 1936 */ 1937 ssize_t do_tee(struct file *in, struct file *out, size_t len, 1938 unsigned int flags) 1939 { 1940 struct pipe_inode_info *ipipe = get_pipe_info(in, true); 1941 struct pipe_inode_info *opipe = get_pipe_info(out, true); 1942 ssize_t ret = -EINVAL; 1943 1944 if (unlikely(!(in->f_mode & FMODE_READ) || 1945 !(out->f_mode & FMODE_WRITE))) 1946 return -EBADF; 1947 1948 /* 1949 * Duplicate the contents of ipipe to opipe without actually 1950 * copying the data. 1951 */ 1952 if (ipipe && opipe && ipipe != opipe) { 1953 if ((in->f_flags | out->f_flags) & O_NONBLOCK) 1954 flags |= SPLICE_F_NONBLOCK; 1955 1956 /* 1957 * Keep going, unless we encounter an error. The ipipe/opipe 1958 * ordering doesn't really matter. 1959 */ 1960 ret = ipipe_prep(ipipe, flags); 1961 if (!ret) { 1962 ret = opipe_prep(opipe, flags); 1963 if (!ret) 1964 ret = link_pipe(ipipe, opipe, len, flags); 1965 } 1966 } 1967 1968 if (ret > 0) { 1969 fsnotify_access(in); 1970 fsnotify_modify(out); 1971 } 1972 1973 return ret; 1974 } 1975 1976 SYSCALL_DEFINE4(tee, int, fdin, int, fdout, size_t, len, unsigned int, flags) 1977 { 1978 if (unlikely(flags & ~SPLICE_F_ALL)) 1979 return -EINVAL; 1980 1981 if (unlikely(!len)) 1982 return 0; 1983 1984 CLASS(fd, in)(fdin); 1985 if (fd_empty(in)) 1986 return -EBADF; 1987 1988 CLASS(fd, out)(fdout); 1989 if (fd_empty(out)) 1990 return -EBADF; 1991 1992 return do_tee(fd_file(in), fd_file(out), len, flags); 1993 } 1994