xref: /linux/fs/splice.c (revision 6161352142d5fed4cd753b32e5ccde66e705b14e)
1 /*
2  * "splice": joining two ropes together by interweaving their strands.
3  *
4  * This is the "extended pipe" functionality, where a pipe is used as
5  * an arbitrary in-memory buffer. Think of a pipe as a small kernel
6  * buffer that you can use to transfer data from one end to the other.
7  *
8  * The traditional unix read/write is extended with a "splice()" operation
9  * that transfers data buffers to or from a pipe buffer.
10  *
11  * Named by Larry McVoy, original implementation from Linus, extended by
12  * Jens to support splicing to files, network, direct splicing, etc and
13  * fixing lots of bugs.
14  *
15  * Copyright (C) 2005-2006 Jens Axboe <axboe@kernel.dk>
16  * Copyright (C) 2005-2006 Linus Torvalds <torvalds@osdl.org>
17  * Copyright (C) 2006 Ingo Molnar <mingo@elte.hu>
18  *
19  */
20 #include <linux/fs.h>
21 #include <linux/file.h>
22 #include <linux/pagemap.h>
23 #include <linux/splice.h>
24 #include <linux/memcontrol.h>
25 #include <linux/mm_inline.h>
26 #include <linux/swap.h>
27 #include <linux/writeback.h>
28 #include <linux/buffer_head.h>
29 #include <linux/module.h>
30 #include <linux/syscalls.h>
31 #include <linux/uio.h>
32 #include <linux/security.h>
33 
34 /*
35  * Attempt to steal a page from a pipe buffer. This should perhaps go into
36  * a vm helper function, it's already simplified quite a bit by the
37  * addition of remove_mapping(). If success is returned, the caller may
38  * attempt to reuse this page for another destination.
39  */
40 static int page_cache_pipe_buf_steal(struct pipe_inode_info *pipe,
41 				     struct pipe_buffer *buf)
42 {
43 	struct page *page = buf->page;
44 	struct address_space *mapping;
45 
46 	lock_page(page);
47 
48 	mapping = page_mapping(page);
49 	if (mapping) {
50 		WARN_ON(!PageUptodate(page));
51 
52 		/*
53 		 * At least for ext2 with nobh option, we need to wait on
54 		 * writeback completing on this page, since we'll remove it
55 		 * from the pagecache.  Otherwise truncate wont wait on the
56 		 * page, allowing the disk blocks to be reused by someone else
57 		 * before we actually wrote our data to them. fs corruption
58 		 * ensues.
59 		 */
60 		wait_on_page_writeback(page);
61 
62 		if (page_has_private(page) &&
63 		    !try_to_release_page(page, GFP_KERNEL))
64 			goto out_unlock;
65 
66 		/*
67 		 * If we succeeded in removing the mapping, set LRU flag
68 		 * and return good.
69 		 */
70 		if (remove_mapping(mapping, page)) {
71 			buf->flags |= PIPE_BUF_FLAG_LRU;
72 			return 0;
73 		}
74 	}
75 
76 	/*
77 	 * Raced with truncate or failed to remove page from current
78 	 * address space, unlock and return failure.
79 	 */
80 out_unlock:
81 	unlock_page(page);
82 	return 1;
83 }
84 
85 static void page_cache_pipe_buf_release(struct pipe_inode_info *pipe,
86 					struct pipe_buffer *buf)
87 {
88 	page_cache_release(buf->page);
89 	buf->flags &= ~PIPE_BUF_FLAG_LRU;
90 }
91 
92 /*
93  * Check whether the contents of buf is OK to access. Since the content
94  * is a page cache page, IO may be in flight.
95  */
96 static int page_cache_pipe_buf_confirm(struct pipe_inode_info *pipe,
97 				       struct pipe_buffer *buf)
98 {
99 	struct page *page = buf->page;
100 	int err;
101 
102 	if (!PageUptodate(page)) {
103 		lock_page(page);
104 
105 		/*
106 		 * Page got truncated/unhashed. This will cause a 0-byte
107 		 * splice, if this is the first page.
108 		 */
109 		if (!page->mapping) {
110 			err = -ENODATA;
111 			goto error;
112 		}
113 
114 		/*
115 		 * Uh oh, read-error from disk.
116 		 */
117 		if (!PageUptodate(page)) {
118 			err = -EIO;
119 			goto error;
120 		}
121 
122 		/*
123 		 * Page is ok afterall, we are done.
124 		 */
125 		unlock_page(page);
126 	}
127 
128 	return 0;
129 error:
130 	unlock_page(page);
131 	return err;
132 }
133 
134 static const struct pipe_buf_operations page_cache_pipe_buf_ops = {
135 	.can_merge = 0,
136 	.map = generic_pipe_buf_map,
137 	.unmap = generic_pipe_buf_unmap,
138 	.confirm = page_cache_pipe_buf_confirm,
139 	.release = page_cache_pipe_buf_release,
140 	.steal = page_cache_pipe_buf_steal,
141 	.get = generic_pipe_buf_get,
142 };
143 
144 static int user_page_pipe_buf_steal(struct pipe_inode_info *pipe,
145 				    struct pipe_buffer *buf)
146 {
147 	if (!(buf->flags & PIPE_BUF_FLAG_GIFT))
148 		return 1;
149 
150 	buf->flags |= PIPE_BUF_FLAG_LRU;
151 	return generic_pipe_buf_steal(pipe, buf);
152 }
153 
154 static const struct pipe_buf_operations user_page_pipe_buf_ops = {
155 	.can_merge = 0,
156 	.map = generic_pipe_buf_map,
157 	.unmap = generic_pipe_buf_unmap,
158 	.confirm = generic_pipe_buf_confirm,
159 	.release = page_cache_pipe_buf_release,
160 	.steal = user_page_pipe_buf_steal,
161 	.get = generic_pipe_buf_get,
162 };
163 
164 /**
165  * splice_to_pipe - fill passed data into a pipe
166  * @pipe:	pipe to fill
167  * @spd:	data to fill
168  *
169  * Description:
170  *    @spd contains a map of pages and len/offset tuples, along with
171  *    the struct pipe_buf_operations associated with these pages. This
172  *    function will link that data to the pipe.
173  *
174  */
175 ssize_t splice_to_pipe(struct pipe_inode_info *pipe,
176 		       struct splice_pipe_desc *spd)
177 {
178 	unsigned int spd_pages = spd->nr_pages;
179 	int ret, do_wakeup, page_nr;
180 
181 	ret = 0;
182 	do_wakeup = 0;
183 	page_nr = 0;
184 
185 	pipe_lock(pipe);
186 
187 	for (;;) {
188 		if (!pipe->readers) {
189 			send_sig(SIGPIPE, current, 0);
190 			if (!ret)
191 				ret = -EPIPE;
192 			break;
193 		}
194 
195 		if (pipe->nrbufs < PIPE_BUFFERS) {
196 			int newbuf = (pipe->curbuf + pipe->nrbufs) & (PIPE_BUFFERS - 1);
197 			struct pipe_buffer *buf = pipe->bufs + newbuf;
198 
199 			buf->page = spd->pages[page_nr];
200 			buf->offset = spd->partial[page_nr].offset;
201 			buf->len = spd->partial[page_nr].len;
202 			buf->private = spd->partial[page_nr].private;
203 			buf->ops = spd->ops;
204 			if (spd->flags & SPLICE_F_GIFT)
205 				buf->flags |= PIPE_BUF_FLAG_GIFT;
206 
207 			pipe->nrbufs++;
208 			page_nr++;
209 			ret += buf->len;
210 
211 			if (pipe->inode)
212 				do_wakeup = 1;
213 
214 			if (!--spd->nr_pages)
215 				break;
216 			if (pipe->nrbufs < PIPE_BUFFERS)
217 				continue;
218 
219 			break;
220 		}
221 
222 		if (spd->flags & SPLICE_F_NONBLOCK) {
223 			if (!ret)
224 				ret = -EAGAIN;
225 			break;
226 		}
227 
228 		if (signal_pending(current)) {
229 			if (!ret)
230 				ret = -ERESTARTSYS;
231 			break;
232 		}
233 
234 		if (do_wakeup) {
235 			smp_mb();
236 			if (waitqueue_active(&pipe->wait))
237 				wake_up_interruptible_sync(&pipe->wait);
238 			kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
239 			do_wakeup = 0;
240 		}
241 
242 		pipe->waiting_writers++;
243 		pipe_wait(pipe);
244 		pipe->waiting_writers--;
245 	}
246 
247 	pipe_unlock(pipe);
248 
249 	if (do_wakeup) {
250 		smp_mb();
251 		if (waitqueue_active(&pipe->wait))
252 			wake_up_interruptible(&pipe->wait);
253 		kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
254 	}
255 
256 	while (page_nr < spd_pages)
257 		spd->spd_release(spd, page_nr++);
258 
259 	return ret;
260 }
261 
262 static void spd_release_page(struct splice_pipe_desc *spd, unsigned int i)
263 {
264 	page_cache_release(spd->pages[i]);
265 }
266 
267 static int
268 __generic_file_splice_read(struct file *in, loff_t *ppos,
269 			   struct pipe_inode_info *pipe, size_t len,
270 			   unsigned int flags)
271 {
272 	struct address_space *mapping = in->f_mapping;
273 	unsigned int loff, nr_pages, req_pages;
274 	struct page *pages[PIPE_BUFFERS];
275 	struct partial_page partial[PIPE_BUFFERS];
276 	struct page *page;
277 	pgoff_t index, end_index;
278 	loff_t isize;
279 	int error, page_nr;
280 	struct splice_pipe_desc spd = {
281 		.pages = pages,
282 		.partial = partial,
283 		.flags = flags,
284 		.ops = &page_cache_pipe_buf_ops,
285 		.spd_release = spd_release_page,
286 	};
287 
288 	index = *ppos >> PAGE_CACHE_SHIFT;
289 	loff = *ppos & ~PAGE_CACHE_MASK;
290 	req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
291 	nr_pages = min(req_pages, (unsigned)PIPE_BUFFERS);
292 
293 	/*
294 	 * Lookup the (hopefully) full range of pages we need.
295 	 */
296 	spd.nr_pages = find_get_pages_contig(mapping, index, nr_pages, pages);
297 	index += spd.nr_pages;
298 
299 	/*
300 	 * If find_get_pages_contig() returned fewer pages than we needed,
301 	 * readahead/allocate the rest and fill in the holes.
302 	 */
303 	if (spd.nr_pages < nr_pages)
304 		page_cache_sync_readahead(mapping, &in->f_ra, in,
305 				index, req_pages - spd.nr_pages);
306 
307 	error = 0;
308 	while (spd.nr_pages < nr_pages) {
309 		/*
310 		 * Page could be there, find_get_pages_contig() breaks on
311 		 * the first hole.
312 		 */
313 		page = find_get_page(mapping, index);
314 		if (!page) {
315 			/*
316 			 * page didn't exist, allocate one.
317 			 */
318 			page = page_cache_alloc_cold(mapping);
319 			if (!page)
320 				break;
321 
322 			error = add_to_page_cache_lru(page, mapping, index,
323 						mapping_gfp_mask(mapping));
324 			if (unlikely(error)) {
325 				page_cache_release(page);
326 				if (error == -EEXIST)
327 					continue;
328 				break;
329 			}
330 			/*
331 			 * add_to_page_cache() locks the page, unlock it
332 			 * to avoid convoluting the logic below even more.
333 			 */
334 			unlock_page(page);
335 		}
336 
337 		pages[spd.nr_pages++] = page;
338 		index++;
339 	}
340 
341 	/*
342 	 * Now loop over the map and see if we need to start IO on any
343 	 * pages, fill in the partial map, etc.
344 	 */
345 	index = *ppos >> PAGE_CACHE_SHIFT;
346 	nr_pages = spd.nr_pages;
347 	spd.nr_pages = 0;
348 	for (page_nr = 0; page_nr < nr_pages; page_nr++) {
349 		unsigned int this_len;
350 
351 		if (!len)
352 			break;
353 
354 		/*
355 		 * this_len is the max we'll use from this page
356 		 */
357 		this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
358 		page = pages[page_nr];
359 
360 		if (PageReadahead(page))
361 			page_cache_async_readahead(mapping, &in->f_ra, in,
362 					page, index, req_pages - page_nr);
363 
364 		/*
365 		 * If the page isn't uptodate, we may need to start io on it
366 		 */
367 		if (!PageUptodate(page)) {
368 			/*
369 			 * If in nonblock mode then dont block on waiting
370 			 * for an in-flight io page
371 			 */
372 			if (flags & SPLICE_F_NONBLOCK) {
373 				if (!trylock_page(page)) {
374 					error = -EAGAIN;
375 					break;
376 				}
377 			} else
378 				lock_page(page);
379 
380 			/*
381 			 * Page was truncated, or invalidated by the
382 			 * filesystem.  Redo the find/create, but this time the
383 			 * page is kept locked, so there's no chance of another
384 			 * race with truncate/invalidate.
385 			 */
386 			if (!page->mapping) {
387 				unlock_page(page);
388 				page = find_or_create_page(mapping, index,
389 						mapping_gfp_mask(mapping));
390 
391 				if (!page) {
392 					error = -ENOMEM;
393 					break;
394 				}
395 				page_cache_release(pages[page_nr]);
396 				pages[page_nr] = page;
397 			}
398 			/*
399 			 * page was already under io and is now done, great
400 			 */
401 			if (PageUptodate(page)) {
402 				unlock_page(page);
403 				goto fill_it;
404 			}
405 
406 			/*
407 			 * need to read in the page
408 			 */
409 			error = mapping->a_ops->readpage(in, page);
410 			if (unlikely(error)) {
411 				/*
412 				 * We really should re-lookup the page here,
413 				 * but it complicates things a lot. Instead
414 				 * lets just do what we already stored, and
415 				 * we'll get it the next time we are called.
416 				 */
417 				if (error == AOP_TRUNCATED_PAGE)
418 					error = 0;
419 
420 				break;
421 			}
422 		}
423 fill_it:
424 		/*
425 		 * i_size must be checked after PageUptodate.
426 		 */
427 		isize = i_size_read(mapping->host);
428 		end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
429 		if (unlikely(!isize || index > end_index))
430 			break;
431 
432 		/*
433 		 * if this is the last page, see if we need to shrink
434 		 * the length and stop
435 		 */
436 		if (end_index == index) {
437 			unsigned int plen;
438 
439 			/*
440 			 * max good bytes in this page
441 			 */
442 			plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
443 			if (plen <= loff)
444 				break;
445 
446 			/*
447 			 * force quit after adding this page
448 			 */
449 			this_len = min(this_len, plen - loff);
450 			len = this_len;
451 		}
452 
453 		partial[page_nr].offset = loff;
454 		partial[page_nr].len = this_len;
455 		len -= this_len;
456 		loff = 0;
457 		spd.nr_pages++;
458 		index++;
459 	}
460 
461 	/*
462 	 * Release any pages at the end, if we quit early. 'page_nr' is how far
463 	 * we got, 'nr_pages' is how many pages are in the map.
464 	 */
465 	while (page_nr < nr_pages)
466 		page_cache_release(pages[page_nr++]);
467 	in->f_ra.prev_pos = (loff_t)index << PAGE_CACHE_SHIFT;
468 
469 	if (spd.nr_pages)
470 		return splice_to_pipe(pipe, &spd);
471 
472 	return error;
473 }
474 
475 /**
476  * generic_file_splice_read - splice data from file to a pipe
477  * @in:		file to splice from
478  * @ppos:	position in @in
479  * @pipe:	pipe to splice to
480  * @len:	number of bytes to splice
481  * @flags:	splice modifier flags
482  *
483  * Description:
484  *    Will read pages from given file and fill them into a pipe. Can be
485  *    used as long as the address_space operations for the source implements
486  *    a readpage() hook.
487  *
488  */
489 ssize_t generic_file_splice_read(struct file *in, loff_t *ppos,
490 				 struct pipe_inode_info *pipe, size_t len,
491 				 unsigned int flags)
492 {
493 	loff_t isize, left;
494 	int ret;
495 
496 	isize = i_size_read(in->f_mapping->host);
497 	if (unlikely(*ppos >= isize))
498 		return 0;
499 
500 	left = isize - *ppos;
501 	if (unlikely(left < len))
502 		len = left;
503 
504 	ret = __generic_file_splice_read(in, ppos, pipe, len, flags);
505 	if (ret > 0) {
506 		*ppos += ret;
507 		file_accessed(in);
508 	}
509 
510 	return ret;
511 }
512 EXPORT_SYMBOL(generic_file_splice_read);
513 
514 static const struct pipe_buf_operations default_pipe_buf_ops = {
515 	.can_merge = 0,
516 	.map = generic_pipe_buf_map,
517 	.unmap = generic_pipe_buf_unmap,
518 	.confirm = generic_pipe_buf_confirm,
519 	.release = generic_pipe_buf_release,
520 	.steal = generic_pipe_buf_steal,
521 	.get = generic_pipe_buf_get,
522 };
523 
524 static ssize_t kernel_readv(struct file *file, const struct iovec *vec,
525 			    unsigned long vlen, loff_t offset)
526 {
527 	mm_segment_t old_fs;
528 	loff_t pos = offset;
529 	ssize_t res;
530 
531 	old_fs = get_fs();
532 	set_fs(get_ds());
533 	/* The cast to a user pointer is valid due to the set_fs() */
534 	res = vfs_readv(file, (const struct iovec __user *)vec, vlen, &pos);
535 	set_fs(old_fs);
536 
537 	return res;
538 }
539 
540 static ssize_t kernel_write(struct file *file, const char *buf, size_t count,
541 			    loff_t pos)
542 {
543 	mm_segment_t old_fs;
544 	ssize_t res;
545 
546 	old_fs = get_fs();
547 	set_fs(get_ds());
548 	/* The cast to a user pointer is valid due to the set_fs() */
549 	res = vfs_write(file, (const char __user *)buf, count, &pos);
550 	set_fs(old_fs);
551 
552 	return res;
553 }
554 
555 ssize_t default_file_splice_read(struct file *in, loff_t *ppos,
556 				 struct pipe_inode_info *pipe, size_t len,
557 				 unsigned int flags)
558 {
559 	unsigned int nr_pages;
560 	unsigned int nr_freed;
561 	size_t offset;
562 	struct page *pages[PIPE_BUFFERS];
563 	struct partial_page partial[PIPE_BUFFERS];
564 	struct iovec vec[PIPE_BUFFERS];
565 	pgoff_t index;
566 	ssize_t res;
567 	size_t this_len;
568 	int error;
569 	int i;
570 	struct splice_pipe_desc spd = {
571 		.pages = pages,
572 		.partial = partial,
573 		.flags = flags,
574 		.ops = &default_pipe_buf_ops,
575 		.spd_release = spd_release_page,
576 	};
577 
578 	index = *ppos >> PAGE_CACHE_SHIFT;
579 	offset = *ppos & ~PAGE_CACHE_MASK;
580 	nr_pages = (len + offset + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
581 
582 	for (i = 0; i < nr_pages && i < PIPE_BUFFERS && len; i++) {
583 		struct page *page;
584 
585 		page = alloc_page(GFP_USER);
586 		error = -ENOMEM;
587 		if (!page)
588 			goto err;
589 
590 		this_len = min_t(size_t, len, PAGE_CACHE_SIZE - offset);
591 		vec[i].iov_base = (void __user *) page_address(page);
592 		vec[i].iov_len = this_len;
593 		pages[i] = page;
594 		spd.nr_pages++;
595 		len -= this_len;
596 		offset = 0;
597 	}
598 
599 	res = kernel_readv(in, vec, spd.nr_pages, *ppos);
600 	if (res < 0) {
601 		error = res;
602 		goto err;
603 	}
604 
605 	error = 0;
606 	if (!res)
607 		goto err;
608 
609 	nr_freed = 0;
610 	for (i = 0; i < spd.nr_pages; i++) {
611 		this_len = min_t(size_t, vec[i].iov_len, res);
612 		partial[i].offset = 0;
613 		partial[i].len = this_len;
614 		if (!this_len) {
615 			__free_page(pages[i]);
616 			pages[i] = NULL;
617 			nr_freed++;
618 		}
619 		res -= this_len;
620 	}
621 	spd.nr_pages -= nr_freed;
622 
623 	res = splice_to_pipe(pipe, &spd);
624 	if (res > 0)
625 		*ppos += res;
626 
627 	return res;
628 
629 err:
630 	for (i = 0; i < spd.nr_pages; i++)
631 		__free_page(pages[i]);
632 
633 	return error;
634 }
635 EXPORT_SYMBOL(default_file_splice_read);
636 
637 /*
638  * Send 'sd->len' bytes to socket from 'sd->file' at position 'sd->pos'
639  * using sendpage(). Return the number of bytes sent.
640  */
641 static int pipe_to_sendpage(struct pipe_inode_info *pipe,
642 			    struct pipe_buffer *buf, struct splice_desc *sd)
643 {
644 	struct file *file = sd->u.file;
645 	loff_t pos = sd->pos;
646 	int ret, more;
647 
648 	ret = buf->ops->confirm(pipe, buf);
649 	if (!ret) {
650 		more = (sd->flags & SPLICE_F_MORE) || sd->len < sd->total_len;
651 
652 		ret = file->f_op->sendpage(file, buf->page, buf->offset,
653 					   sd->len, &pos, more);
654 	}
655 
656 	return ret;
657 }
658 
659 /*
660  * This is a little more tricky than the file -> pipe splicing. There are
661  * basically three cases:
662  *
663  *	- Destination page already exists in the address space and there
664  *	  are users of it. For that case we have no other option that
665  *	  copying the data. Tough luck.
666  *	- Destination page already exists in the address space, but there
667  *	  are no users of it. Make sure it's uptodate, then drop it. Fall
668  *	  through to last case.
669  *	- Destination page does not exist, we can add the pipe page to
670  *	  the page cache and avoid the copy.
671  *
672  * If asked to move pages to the output file (SPLICE_F_MOVE is set in
673  * sd->flags), we attempt to migrate pages from the pipe to the output
674  * file address space page cache. This is possible if no one else has
675  * the pipe page referenced outside of the pipe and page cache. If
676  * SPLICE_F_MOVE isn't set, or we cannot move the page, we simply create
677  * a new page in the output file page cache and fill/dirty that.
678  */
679 int pipe_to_file(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
680 		 struct splice_desc *sd)
681 {
682 	struct file *file = sd->u.file;
683 	struct address_space *mapping = file->f_mapping;
684 	unsigned int offset, this_len;
685 	struct page *page;
686 	void *fsdata;
687 	int ret;
688 
689 	/*
690 	 * make sure the data in this buffer is uptodate
691 	 */
692 	ret = buf->ops->confirm(pipe, buf);
693 	if (unlikely(ret))
694 		return ret;
695 
696 	offset = sd->pos & ~PAGE_CACHE_MASK;
697 
698 	this_len = sd->len;
699 	if (this_len + offset > PAGE_CACHE_SIZE)
700 		this_len = PAGE_CACHE_SIZE - offset;
701 
702 	ret = pagecache_write_begin(file, mapping, sd->pos, this_len,
703 				AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
704 	if (unlikely(ret))
705 		goto out;
706 
707 	if (buf->page != page) {
708 		/*
709 		 * Careful, ->map() uses KM_USER0!
710 		 */
711 		char *src = buf->ops->map(pipe, buf, 1);
712 		char *dst = kmap_atomic(page, KM_USER1);
713 
714 		memcpy(dst + offset, src + buf->offset, this_len);
715 		flush_dcache_page(page);
716 		kunmap_atomic(dst, KM_USER1);
717 		buf->ops->unmap(pipe, buf, src);
718 	}
719 	ret = pagecache_write_end(file, mapping, sd->pos, this_len, this_len,
720 				page, fsdata);
721 out:
722 	return ret;
723 }
724 EXPORT_SYMBOL(pipe_to_file);
725 
726 static void wakeup_pipe_writers(struct pipe_inode_info *pipe)
727 {
728 	smp_mb();
729 	if (waitqueue_active(&pipe->wait))
730 		wake_up_interruptible(&pipe->wait);
731 	kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
732 }
733 
734 /**
735  * splice_from_pipe_feed - feed available data from a pipe to a file
736  * @pipe:	pipe to splice from
737  * @sd:		information to @actor
738  * @actor:	handler that splices the data
739  *
740  * Description:
741  *    This function loops over the pipe and calls @actor to do the
742  *    actual moving of a single struct pipe_buffer to the desired
743  *    destination.  It returns when there's no more buffers left in
744  *    the pipe or if the requested number of bytes (@sd->total_len)
745  *    have been copied.  It returns a positive number (one) if the
746  *    pipe needs to be filled with more data, zero if the required
747  *    number of bytes have been copied and -errno on error.
748  *
749  *    This, together with splice_from_pipe_{begin,end,next}, may be
750  *    used to implement the functionality of __splice_from_pipe() when
751  *    locking is required around copying the pipe buffers to the
752  *    destination.
753  */
754 int splice_from_pipe_feed(struct pipe_inode_info *pipe, struct splice_desc *sd,
755 			  splice_actor *actor)
756 {
757 	int ret;
758 
759 	while (pipe->nrbufs) {
760 		struct pipe_buffer *buf = pipe->bufs + pipe->curbuf;
761 		const struct pipe_buf_operations *ops = buf->ops;
762 
763 		sd->len = buf->len;
764 		if (sd->len > sd->total_len)
765 			sd->len = sd->total_len;
766 
767 		ret = actor(pipe, buf, sd);
768 		if (ret <= 0) {
769 			if (ret == -ENODATA)
770 				ret = 0;
771 			return ret;
772 		}
773 		buf->offset += ret;
774 		buf->len -= ret;
775 
776 		sd->num_spliced += ret;
777 		sd->len -= ret;
778 		sd->pos += ret;
779 		sd->total_len -= ret;
780 
781 		if (!buf->len) {
782 			buf->ops = NULL;
783 			ops->release(pipe, buf);
784 			pipe->curbuf = (pipe->curbuf + 1) & (PIPE_BUFFERS - 1);
785 			pipe->nrbufs--;
786 			if (pipe->inode)
787 				sd->need_wakeup = true;
788 		}
789 
790 		if (!sd->total_len)
791 			return 0;
792 	}
793 
794 	return 1;
795 }
796 EXPORT_SYMBOL(splice_from_pipe_feed);
797 
798 /**
799  * splice_from_pipe_next - wait for some data to splice from
800  * @pipe:	pipe to splice from
801  * @sd:		information about the splice operation
802  *
803  * Description:
804  *    This function will wait for some data and return a positive
805  *    value (one) if pipe buffers are available.  It will return zero
806  *    or -errno if no more data needs to be spliced.
807  */
808 int splice_from_pipe_next(struct pipe_inode_info *pipe, struct splice_desc *sd)
809 {
810 	while (!pipe->nrbufs) {
811 		if (!pipe->writers)
812 			return 0;
813 
814 		if (!pipe->waiting_writers && sd->num_spliced)
815 			return 0;
816 
817 		if (sd->flags & SPLICE_F_NONBLOCK)
818 			return -EAGAIN;
819 
820 		if (signal_pending(current))
821 			return -ERESTARTSYS;
822 
823 		if (sd->need_wakeup) {
824 			wakeup_pipe_writers(pipe);
825 			sd->need_wakeup = false;
826 		}
827 
828 		pipe_wait(pipe);
829 	}
830 
831 	return 1;
832 }
833 EXPORT_SYMBOL(splice_from_pipe_next);
834 
835 /**
836  * splice_from_pipe_begin - start splicing from pipe
837  * @sd:		information about the splice operation
838  *
839  * Description:
840  *    This function should be called before a loop containing
841  *    splice_from_pipe_next() and splice_from_pipe_feed() to
842  *    initialize the necessary fields of @sd.
843  */
844 void splice_from_pipe_begin(struct splice_desc *sd)
845 {
846 	sd->num_spliced = 0;
847 	sd->need_wakeup = false;
848 }
849 EXPORT_SYMBOL(splice_from_pipe_begin);
850 
851 /**
852  * splice_from_pipe_end - finish splicing from pipe
853  * @pipe:	pipe to splice from
854  * @sd:		information about the splice operation
855  *
856  * Description:
857  *    This function will wake up pipe writers if necessary.  It should
858  *    be called after a loop containing splice_from_pipe_next() and
859  *    splice_from_pipe_feed().
860  */
861 void splice_from_pipe_end(struct pipe_inode_info *pipe, struct splice_desc *sd)
862 {
863 	if (sd->need_wakeup)
864 		wakeup_pipe_writers(pipe);
865 }
866 EXPORT_SYMBOL(splice_from_pipe_end);
867 
868 /**
869  * __splice_from_pipe - splice data from a pipe to given actor
870  * @pipe:	pipe to splice from
871  * @sd:		information to @actor
872  * @actor:	handler that splices the data
873  *
874  * Description:
875  *    This function does little more than loop over the pipe and call
876  *    @actor to do the actual moving of a single struct pipe_buffer to
877  *    the desired destination. See pipe_to_file, pipe_to_sendpage, or
878  *    pipe_to_user.
879  *
880  */
881 ssize_t __splice_from_pipe(struct pipe_inode_info *pipe, struct splice_desc *sd,
882 			   splice_actor *actor)
883 {
884 	int ret;
885 
886 	splice_from_pipe_begin(sd);
887 	do {
888 		ret = splice_from_pipe_next(pipe, sd);
889 		if (ret > 0)
890 			ret = splice_from_pipe_feed(pipe, sd, actor);
891 	} while (ret > 0);
892 	splice_from_pipe_end(pipe, sd);
893 
894 	return sd->num_spliced ? sd->num_spliced : ret;
895 }
896 EXPORT_SYMBOL(__splice_from_pipe);
897 
898 /**
899  * splice_from_pipe - splice data from a pipe to a file
900  * @pipe:	pipe to splice from
901  * @out:	file to splice to
902  * @ppos:	position in @out
903  * @len:	how many bytes to splice
904  * @flags:	splice modifier flags
905  * @actor:	handler that splices the data
906  *
907  * Description:
908  *    See __splice_from_pipe. This function locks the pipe inode,
909  *    otherwise it's identical to __splice_from_pipe().
910  *
911  */
912 ssize_t splice_from_pipe(struct pipe_inode_info *pipe, struct file *out,
913 			 loff_t *ppos, size_t len, unsigned int flags,
914 			 splice_actor *actor)
915 {
916 	ssize_t ret;
917 	struct splice_desc sd = {
918 		.total_len = len,
919 		.flags = flags,
920 		.pos = *ppos,
921 		.u.file = out,
922 	};
923 
924 	pipe_lock(pipe);
925 	ret = __splice_from_pipe(pipe, &sd, actor);
926 	pipe_unlock(pipe);
927 
928 	return ret;
929 }
930 
931 /**
932  * generic_file_splice_write - splice data from a pipe to a file
933  * @pipe:	pipe info
934  * @out:	file to write to
935  * @ppos:	position in @out
936  * @len:	number of bytes to splice
937  * @flags:	splice modifier flags
938  *
939  * Description:
940  *    Will either move or copy pages (determined by @flags options) from
941  *    the given pipe inode to the given file.
942  *
943  */
944 ssize_t
945 generic_file_splice_write(struct pipe_inode_info *pipe, struct file *out,
946 			  loff_t *ppos, size_t len, unsigned int flags)
947 {
948 	struct address_space *mapping = out->f_mapping;
949 	struct inode *inode = mapping->host;
950 	struct splice_desc sd = {
951 		.total_len = len,
952 		.flags = flags,
953 		.pos = *ppos,
954 		.u.file = out,
955 	};
956 	ssize_t ret;
957 
958 	pipe_lock(pipe);
959 
960 	splice_from_pipe_begin(&sd);
961 	do {
962 		ret = splice_from_pipe_next(pipe, &sd);
963 		if (ret <= 0)
964 			break;
965 
966 		mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
967 		ret = file_remove_suid(out);
968 		if (!ret) {
969 			file_update_time(out);
970 			ret = splice_from_pipe_feed(pipe, &sd, pipe_to_file);
971 		}
972 		mutex_unlock(&inode->i_mutex);
973 	} while (ret > 0);
974 	splice_from_pipe_end(pipe, &sd);
975 
976 	pipe_unlock(pipe);
977 
978 	if (sd.num_spliced)
979 		ret = sd.num_spliced;
980 
981 	if (ret > 0) {
982 		unsigned long nr_pages;
983 		int err;
984 
985 		nr_pages = (ret + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
986 
987 		err = generic_write_sync(out, *ppos, ret);
988 		if (err)
989 			ret = err;
990 		else
991 			*ppos += ret;
992 		balance_dirty_pages_ratelimited_nr(mapping, nr_pages);
993 	}
994 
995 	return ret;
996 }
997 
998 EXPORT_SYMBOL(generic_file_splice_write);
999 
1000 static int write_pipe_buf(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1001 			  struct splice_desc *sd)
1002 {
1003 	int ret;
1004 	void *data;
1005 
1006 	ret = buf->ops->confirm(pipe, buf);
1007 	if (ret)
1008 		return ret;
1009 
1010 	data = buf->ops->map(pipe, buf, 0);
1011 	ret = kernel_write(sd->u.file, data + buf->offset, sd->len, sd->pos);
1012 	buf->ops->unmap(pipe, buf, data);
1013 
1014 	return ret;
1015 }
1016 
1017 static ssize_t default_file_splice_write(struct pipe_inode_info *pipe,
1018 					 struct file *out, loff_t *ppos,
1019 					 size_t len, unsigned int flags)
1020 {
1021 	ssize_t ret;
1022 
1023 	ret = splice_from_pipe(pipe, out, ppos, len, flags, write_pipe_buf);
1024 	if (ret > 0)
1025 		*ppos += ret;
1026 
1027 	return ret;
1028 }
1029 
1030 /**
1031  * generic_splice_sendpage - splice data from a pipe to a socket
1032  * @pipe:	pipe to splice from
1033  * @out:	socket to write to
1034  * @ppos:	position in @out
1035  * @len:	number of bytes to splice
1036  * @flags:	splice modifier flags
1037  *
1038  * Description:
1039  *    Will send @len bytes from the pipe to a network socket. No data copying
1040  *    is involved.
1041  *
1042  */
1043 ssize_t generic_splice_sendpage(struct pipe_inode_info *pipe, struct file *out,
1044 				loff_t *ppos, size_t len, unsigned int flags)
1045 {
1046 	return splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_sendpage);
1047 }
1048 
1049 EXPORT_SYMBOL(generic_splice_sendpage);
1050 
1051 /*
1052  * Attempt to initiate a splice from pipe to file.
1053  */
1054 static long do_splice_from(struct pipe_inode_info *pipe, struct file *out,
1055 			   loff_t *ppos, size_t len, unsigned int flags)
1056 {
1057 	ssize_t (*splice_write)(struct pipe_inode_info *, struct file *,
1058 				loff_t *, size_t, unsigned int);
1059 	int ret;
1060 
1061 	if (unlikely(!(out->f_mode & FMODE_WRITE)))
1062 		return -EBADF;
1063 
1064 	if (unlikely(out->f_flags & O_APPEND))
1065 		return -EINVAL;
1066 
1067 	ret = rw_verify_area(WRITE, out, ppos, len);
1068 	if (unlikely(ret < 0))
1069 		return ret;
1070 
1071 	splice_write = out->f_op->splice_write;
1072 	if (!splice_write)
1073 		splice_write = default_file_splice_write;
1074 
1075 	return splice_write(pipe, out, ppos, len, flags);
1076 }
1077 
1078 /*
1079  * Attempt to initiate a splice from a file to a pipe.
1080  */
1081 static long do_splice_to(struct file *in, loff_t *ppos,
1082 			 struct pipe_inode_info *pipe, size_t len,
1083 			 unsigned int flags)
1084 {
1085 	ssize_t (*splice_read)(struct file *, loff_t *,
1086 			       struct pipe_inode_info *, size_t, unsigned int);
1087 	int ret;
1088 
1089 	if (unlikely(!(in->f_mode & FMODE_READ)))
1090 		return -EBADF;
1091 
1092 	ret = rw_verify_area(READ, in, ppos, len);
1093 	if (unlikely(ret < 0))
1094 		return ret;
1095 
1096 	splice_read = in->f_op->splice_read;
1097 	if (!splice_read)
1098 		splice_read = default_file_splice_read;
1099 
1100 	return splice_read(in, ppos, pipe, len, flags);
1101 }
1102 
1103 /**
1104  * splice_direct_to_actor - splices data directly between two non-pipes
1105  * @in:		file to splice from
1106  * @sd:		actor information on where to splice to
1107  * @actor:	handles the data splicing
1108  *
1109  * Description:
1110  *    This is a special case helper to splice directly between two
1111  *    points, without requiring an explicit pipe. Internally an allocated
1112  *    pipe is cached in the process, and reused during the lifetime of
1113  *    that process.
1114  *
1115  */
1116 ssize_t splice_direct_to_actor(struct file *in, struct splice_desc *sd,
1117 			       splice_direct_actor *actor)
1118 {
1119 	struct pipe_inode_info *pipe;
1120 	long ret, bytes;
1121 	umode_t i_mode;
1122 	size_t len;
1123 	int i, flags;
1124 
1125 	/*
1126 	 * We require the input being a regular file, as we don't want to
1127 	 * randomly drop data for eg socket -> socket splicing. Use the
1128 	 * piped splicing for that!
1129 	 */
1130 	i_mode = in->f_path.dentry->d_inode->i_mode;
1131 	if (unlikely(!S_ISREG(i_mode) && !S_ISBLK(i_mode)))
1132 		return -EINVAL;
1133 
1134 	/*
1135 	 * neither in nor out is a pipe, setup an internal pipe attached to
1136 	 * 'out' and transfer the wanted data from 'in' to 'out' through that
1137 	 */
1138 	pipe = current->splice_pipe;
1139 	if (unlikely(!pipe)) {
1140 		pipe = alloc_pipe_info(NULL);
1141 		if (!pipe)
1142 			return -ENOMEM;
1143 
1144 		/*
1145 		 * We don't have an immediate reader, but we'll read the stuff
1146 		 * out of the pipe right after the splice_to_pipe(). So set
1147 		 * PIPE_READERS appropriately.
1148 		 */
1149 		pipe->readers = 1;
1150 
1151 		current->splice_pipe = pipe;
1152 	}
1153 
1154 	/*
1155 	 * Do the splice.
1156 	 */
1157 	ret = 0;
1158 	bytes = 0;
1159 	len = sd->total_len;
1160 	flags = sd->flags;
1161 
1162 	/*
1163 	 * Don't block on output, we have to drain the direct pipe.
1164 	 */
1165 	sd->flags &= ~SPLICE_F_NONBLOCK;
1166 
1167 	while (len) {
1168 		size_t read_len;
1169 		loff_t pos = sd->pos, prev_pos = pos;
1170 
1171 		ret = do_splice_to(in, &pos, pipe, len, flags);
1172 		if (unlikely(ret <= 0))
1173 			goto out_release;
1174 
1175 		read_len = ret;
1176 		sd->total_len = read_len;
1177 
1178 		/*
1179 		 * NOTE: nonblocking mode only applies to the input. We
1180 		 * must not do the output in nonblocking mode as then we
1181 		 * could get stuck data in the internal pipe:
1182 		 */
1183 		ret = actor(pipe, sd);
1184 		if (unlikely(ret <= 0)) {
1185 			sd->pos = prev_pos;
1186 			goto out_release;
1187 		}
1188 
1189 		bytes += ret;
1190 		len -= ret;
1191 		sd->pos = pos;
1192 
1193 		if (ret < read_len) {
1194 			sd->pos = prev_pos + ret;
1195 			goto out_release;
1196 		}
1197 	}
1198 
1199 done:
1200 	pipe->nrbufs = pipe->curbuf = 0;
1201 	file_accessed(in);
1202 	return bytes;
1203 
1204 out_release:
1205 	/*
1206 	 * If we did an incomplete transfer we must release
1207 	 * the pipe buffers in question:
1208 	 */
1209 	for (i = 0; i < PIPE_BUFFERS; i++) {
1210 		struct pipe_buffer *buf = pipe->bufs + i;
1211 
1212 		if (buf->ops) {
1213 			buf->ops->release(pipe, buf);
1214 			buf->ops = NULL;
1215 		}
1216 	}
1217 
1218 	if (!bytes)
1219 		bytes = ret;
1220 
1221 	goto done;
1222 }
1223 EXPORT_SYMBOL(splice_direct_to_actor);
1224 
1225 static int direct_splice_actor(struct pipe_inode_info *pipe,
1226 			       struct splice_desc *sd)
1227 {
1228 	struct file *file = sd->u.file;
1229 
1230 	return do_splice_from(pipe, file, &sd->pos, sd->total_len, sd->flags);
1231 }
1232 
1233 /**
1234  * do_splice_direct - splices data directly between two files
1235  * @in:		file to splice from
1236  * @ppos:	input file offset
1237  * @out:	file to splice to
1238  * @len:	number of bytes to splice
1239  * @flags:	splice modifier flags
1240  *
1241  * Description:
1242  *    For use by do_sendfile(). splice can easily emulate sendfile, but
1243  *    doing it in the application would incur an extra system call
1244  *    (splice in + splice out, as compared to just sendfile()). So this helper
1245  *    can splice directly through a process-private pipe.
1246  *
1247  */
1248 long do_splice_direct(struct file *in, loff_t *ppos, struct file *out,
1249 		      size_t len, unsigned int flags)
1250 {
1251 	struct splice_desc sd = {
1252 		.len		= len,
1253 		.total_len	= len,
1254 		.flags		= flags,
1255 		.pos		= *ppos,
1256 		.u.file		= out,
1257 	};
1258 	long ret;
1259 
1260 	ret = splice_direct_to_actor(in, &sd, direct_splice_actor);
1261 	if (ret > 0)
1262 		*ppos = sd.pos;
1263 
1264 	return ret;
1265 }
1266 
1267 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1268 			       struct pipe_inode_info *opipe,
1269 			       size_t len, unsigned int flags);
1270 /*
1271  * After the inode slimming patch, i_pipe/i_bdev/i_cdev share the same
1272  * location, so checking ->i_pipe is not enough to verify that this is a
1273  * pipe.
1274  */
1275 static inline struct pipe_inode_info *pipe_info(struct inode *inode)
1276 {
1277 	if (S_ISFIFO(inode->i_mode))
1278 		return inode->i_pipe;
1279 
1280 	return NULL;
1281 }
1282 
1283 /*
1284  * Determine where to splice to/from.
1285  */
1286 static long do_splice(struct file *in, loff_t __user *off_in,
1287 		      struct file *out, loff_t __user *off_out,
1288 		      size_t len, unsigned int flags)
1289 {
1290 	struct pipe_inode_info *ipipe;
1291 	struct pipe_inode_info *opipe;
1292 	loff_t offset, *off;
1293 	long ret;
1294 
1295 	ipipe = pipe_info(in->f_path.dentry->d_inode);
1296 	opipe = pipe_info(out->f_path.dentry->d_inode);
1297 
1298 	if (ipipe && opipe) {
1299 		if (off_in || off_out)
1300 			return -ESPIPE;
1301 
1302 		if (!(in->f_mode & FMODE_READ))
1303 			return -EBADF;
1304 
1305 		if (!(out->f_mode & FMODE_WRITE))
1306 			return -EBADF;
1307 
1308 		/* Splicing to self would be fun, but... */
1309 		if (ipipe == opipe)
1310 			return -EINVAL;
1311 
1312 		return splice_pipe_to_pipe(ipipe, opipe, len, flags);
1313 	}
1314 
1315 	if (ipipe) {
1316 		if (off_in)
1317 			return -ESPIPE;
1318 		if (off_out) {
1319 			if (out->f_op->llseek == no_llseek)
1320 				return -EINVAL;
1321 			if (copy_from_user(&offset, off_out, sizeof(loff_t)))
1322 				return -EFAULT;
1323 			off = &offset;
1324 		} else
1325 			off = &out->f_pos;
1326 
1327 		ret = do_splice_from(ipipe, out, off, len, flags);
1328 
1329 		if (off_out && copy_to_user(off_out, off, sizeof(loff_t)))
1330 			ret = -EFAULT;
1331 
1332 		return ret;
1333 	}
1334 
1335 	if (opipe) {
1336 		if (off_out)
1337 			return -ESPIPE;
1338 		if (off_in) {
1339 			if (in->f_op->llseek == no_llseek)
1340 				return -EINVAL;
1341 			if (copy_from_user(&offset, off_in, sizeof(loff_t)))
1342 				return -EFAULT;
1343 			off = &offset;
1344 		} else
1345 			off = &in->f_pos;
1346 
1347 		ret = do_splice_to(in, off, opipe, len, flags);
1348 
1349 		if (off_in && copy_to_user(off_in, off, sizeof(loff_t)))
1350 			ret = -EFAULT;
1351 
1352 		return ret;
1353 	}
1354 
1355 	return -EINVAL;
1356 }
1357 
1358 /*
1359  * Map an iov into an array of pages and offset/length tupples. With the
1360  * partial_page structure, we can map several non-contiguous ranges into
1361  * our ones pages[] map instead of splitting that operation into pieces.
1362  * Could easily be exported as a generic helper for other users, in which
1363  * case one would probably want to add a 'max_nr_pages' parameter as well.
1364  */
1365 static int get_iovec_page_array(const struct iovec __user *iov,
1366 				unsigned int nr_vecs, struct page **pages,
1367 				struct partial_page *partial, int aligned)
1368 {
1369 	int buffers = 0, error = 0;
1370 
1371 	while (nr_vecs) {
1372 		unsigned long off, npages;
1373 		struct iovec entry;
1374 		void __user *base;
1375 		size_t len;
1376 		int i;
1377 
1378 		error = -EFAULT;
1379 		if (copy_from_user(&entry, iov, sizeof(entry)))
1380 			break;
1381 
1382 		base = entry.iov_base;
1383 		len = entry.iov_len;
1384 
1385 		/*
1386 		 * Sanity check this iovec. 0 read succeeds.
1387 		 */
1388 		error = 0;
1389 		if (unlikely(!len))
1390 			break;
1391 		error = -EFAULT;
1392 		if (!access_ok(VERIFY_READ, base, len))
1393 			break;
1394 
1395 		/*
1396 		 * Get this base offset and number of pages, then map
1397 		 * in the user pages.
1398 		 */
1399 		off = (unsigned long) base & ~PAGE_MASK;
1400 
1401 		/*
1402 		 * If asked for alignment, the offset must be zero and the
1403 		 * length a multiple of the PAGE_SIZE.
1404 		 */
1405 		error = -EINVAL;
1406 		if (aligned && (off || len & ~PAGE_MASK))
1407 			break;
1408 
1409 		npages = (off + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1410 		if (npages > PIPE_BUFFERS - buffers)
1411 			npages = PIPE_BUFFERS - buffers;
1412 
1413 		error = get_user_pages_fast((unsigned long)base, npages,
1414 					0, &pages[buffers]);
1415 
1416 		if (unlikely(error <= 0))
1417 			break;
1418 
1419 		/*
1420 		 * Fill this contiguous range into the partial page map.
1421 		 */
1422 		for (i = 0; i < error; i++) {
1423 			const int plen = min_t(size_t, len, PAGE_SIZE - off);
1424 
1425 			partial[buffers].offset = off;
1426 			partial[buffers].len = plen;
1427 
1428 			off = 0;
1429 			len -= plen;
1430 			buffers++;
1431 		}
1432 
1433 		/*
1434 		 * We didn't complete this iov, stop here since it probably
1435 		 * means we have to move some of this into a pipe to
1436 		 * be able to continue.
1437 		 */
1438 		if (len)
1439 			break;
1440 
1441 		/*
1442 		 * Don't continue if we mapped fewer pages than we asked for,
1443 		 * or if we mapped the max number of pages that we have
1444 		 * room for.
1445 		 */
1446 		if (error < npages || buffers == PIPE_BUFFERS)
1447 			break;
1448 
1449 		nr_vecs--;
1450 		iov++;
1451 	}
1452 
1453 	if (buffers)
1454 		return buffers;
1455 
1456 	return error;
1457 }
1458 
1459 static int pipe_to_user(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1460 			struct splice_desc *sd)
1461 {
1462 	char *src;
1463 	int ret;
1464 
1465 	ret = buf->ops->confirm(pipe, buf);
1466 	if (unlikely(ret))
1467 		return ret;
1468 
1469 	/*
1470 	 * See if we can use the atomic maps, by prefaulting in the
1471 	 * pages and doing an atomic copy
1472 	 */
1473 	if (!fault_in_pages_writeable(sd->u.userptr, sd->len)) {
1474 		src = buf->ops->map(pipe, buf, 1);
1475 		ret = __copy_to_user_inatomic(sd->u.userptr, src + buf->offset,
1476 							sd->len);
1477 		buf->ops->unmap(pipe, buf, src);
1478 		if (!ret) {
1479 			ret = sd->len;
1480 			goto out;
1481 		}
1482 	}
1483 
1484 	/*
1485 	 * No dice, use slow non-atomic map and copy
1486  	 */
1487 	src = buf->ops->map(pipe, buf, 0);
1488 
1489 	ret = sd->len;
1490 	if (copy_to_user(sd->u.userptr, src + buf->offset, sd->len))
1491 		ret = -EFAULT;
1492 
1493 	buf->ops->unmap(pipe, buf, src);
1494 out:
1495 	if (ret > 0)
1496 		sd->u.userptr += ret;
1497 	return ret;
1498 }
1499 
1500 /*
1501  * For lack of a better implementation, implement vmsplice() to userspace
1502  * as a simple copy of the pipes pages to the user iov.
1503  */
1504 static long vmsplice_to_user(struct file *file, const struct iovec __user *iov,
1505 			     unsigned long nr_segs, unsigned int flags)
1506 {
1507 	struct pipe_inode_info *pipe;
1508 	struct splice_desc sd;
1509 	ssize_t size;
1510 	int error;
1511 	long ret;
1512 
1513 	pipe = pipe_info(file->f_path.dentry->d_inode);
1514 	if (!pipe)
1515 		return -EBADF;
1516 
1517 	pipe_lock(pipe);
1518 
1519 	error = ret = 0;
1520 	while (nr_segs) {
1521 		void __user *base;
1522 		size_t len;
1523 
1524 		/*
1525 		 * Get user address base and length for this iovec.
1526 		 */
1527 		error = get_user(base, &iov->iov_base);
1528 		if (unlikely(error))
1529 			break;
1530 		error = get_user(len, &iov->iov_len);
1531 		if (unlikely(error))
1532 			break;
1533 
1534 		/*
1535 		 * Sanity check this iovec. 0 read succeeds.
1536 		 */
1537 		if (unlikely(!len))
1538 			break;
1539 		if (unlikely(!base)) {
1540 			error = -EFAULT;
1541 			break;
1542 		}
1543 
1544 		if (unlikely(!access_ok(VERIFY_WRITE, base, len))) {
1545 			error = -EFAULT;
1546 			break;
1547 		}
1548 
1549 		sd.len = 0;
1550 		sd.total_len = len;
1551 		sd.flags = flags;
1552 		sd.u.userptr = base;
1553 		sd.pos = 0;
1554 
1555 		size = __splice_from_pipe(pipe, &sd, pipe_to_user);
1556 		if (size < 0) {
1557 			if (!ret)
1558 				ret = size;
1559 
1560 			break;
1561 		}
1562 
1563 		ret += size;
1564 
1565 		if (size < len)
1566 			break;
1567 
1568 		nr_segs--;
1569 		iov++;
1570 	}
1571 
1572 	pipe_unlock(pipe);
1573 
1574 	if (!ret)
1575 		ret = error;
1576 
1577 	return ret;
1578 }
1579 
1580 /*
1581  * vmsplice splices a user address range into a pipe. It can be thought of
1582  * as splice-from-memory, where the regular splice is splice-from-file (or
1583  * to file). In both cases the output is a pipe, naturally.
1584  */
1585 static long vmsplice_to_pipe(struct file *file, const struct iovec __user *iov,
1586 			     unsigned long nr_segs, unsigned int flags)
1587 {
1588 	struct pipe_inode_info *pipe;
1589 	struct page *pages[PIPE_BUFFERS];
1590 	struct partial_page partial[PIPE_BUFFERS];
1591 	struct splice_pipe_desc spd = {
1592 		.pages = pages,
1593 		.partial = partial,
1594 		.flags = flags,
1595 		.ops = &user_page_pipe_buf_ops,
1596 		.spd_release = spd_release_page,
1597 	};
1598 
1599 	pipe = pipe_info(file->f_path.dentry->d_inode);
1600 	if (!pipe)
1601 		return -EBADF;
1602 
1603 	spd.nr_pages = get_iovec_page_array(iov, nr_segs, pages, partial,
1604 					    flags & SPLICE_F_GIFT);
1605 	if (spd.nr_pages <= 0)
1606 		return spd.nr_pages;
1607 
1608 	return splice_to_pipe(pipe, &spd);
1609 }
1610 
1611 /*
1612  * Note that vmsplice only really supports true splicing _from_ user memory
1613  * to a pipe, not the other way around. Splicing from user memory is a simple
1614  * operation that can be supported without any funky alignment restrictions
1615  * or nasty vm tricks. We simply map in the user memory and fill them into
1616  * a pipe. The reverse isn't quite as easy, though. There are two possible
1617  * solutions for that:
1618  *
1619  *	- memcpy() the data internally, at which point we might as well just
1620  *	  do a regular read() on the buffer anyway.
1621  *	- Lots of nasty vm tricks, that are neither fast nor flexible (it
1622  *	  has restriction limitations on both ends of the pipe).
1623  *
1624  * Currently we punt and implement it as a normal copy, see pipe_to_user().
1625  *
1626  */
1627 SYSCALL_DEFINE4(vmsplice, int, fd, const struct iovec __user *, iov,
1628 		unsigned long, nr_segs, unsigned int, flags)
1629 {
1630 	struct file *file;
1631 	long error;
1632 	int fput;
1633 
1634 	if (unlikely(nr_segs > UIO_MAXIOV))
1635 		return -EINVAL;
1636 	else if (unlikely(!nr_segs))
1637 		return 0;
1638 
1639 	error = -EBADF;
1640 	file = fget_light(fd, &fput);
1641 	if (file) {
1642 		if (file->f_mode & FMODE_WRITE)
1643 			error = vmsplice_to_pipe(file, iov, nr_segs, flags);
1644 		else if (file->f_mode & FMODE_READ)
1645 			error = vmsplice_to_user(file, iov, nr_segs, flags);
1646 
1647 		fput_light(file, fput);
1648 	}
1649 
1650 	return error;
1651 }
1652 
1653 SYSCALL_DEFINE6(splice, int, fd_in, loff_t __user *, off_in,
1654 		int, fd_out, loff_t __user *, off_out,
1655 		size_t, len, unsigned int, flags)
1656 {
1657 	long error;
1658 	struct file *in, *out;
1659 	int fput_in, fput_out;
1660 
1661 	if (unlikely(!len))
1662 		return 0;
1663 
1664 	error = -EBADF;
1665 	in = fget_light(fd_in, &fput_in);
1666 	if (in) {
1667 		if (in->f_mode & FMODE_READ) {
1668 			out = fget_light(fd_out, &fput_out);
1669 			if (out) {
1670 				if (out->f_mode & FMODE_WRITE)
1671 					error = do_splice(in, off_in,
1672 							  out, off_out,
1673 							  len, flags);
1674 				fput_light(out, fput_out);
1675 			}
1676 		}
1677 
1678 		fput_light(in, fput_in);
1679 	}
1680 
1681 	return error;
1682 }
1683 
1684 /*
1685  * Make sure there's data to read. Wait for input if we can, otherwise
1686  * return an appropriate error.
1687  */
1688 static int ipipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1689 {
1690 	int ret;
1691 
1692 	/*
1693 	 * Check ->nrbufs without the inode lock first. This function
1694 	 * is speculative anyways, so missing one is ok.
1695 	 */
1696 	if (pipe->nrbufs)
1697 		return 0;
1698 
1699 	ret = 0;
1700 	pipe_lock(pipe);
1701 
1702 	while (!pipe->nrbufs) {
1703 		if (signal_pending(current)) {
1704 			ret = -ERESTARTSYS;
1705 			break;
1706 		}
1707 		if (!pipe->writers)
1708 			break;
1709 		if (!pipe->waiting_writers) {
1710 			if (flags & SPLICE_F_NONBLOCK) {
1711 				ret = -EAGAIN;
1712 				break;
1713 			}
1714 		}
1715 		pipe_wait(pipe);
1716 	}
1717 
1718 	pipe_unlock(pipe);
1719 	return ret;
1720 }
1721 
1722 /*
1723  * Make sure there's writeable room. Wait for room if we can, otherwise
1724  * return an appropriate error.
1725  */
1726 static int opipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1727 {
1728 	int ret;
1729 
1730 	/*
1731 	 * Check ->nrbufs without the inode lock first. This function
1732 	 * is speculative anyways, so missing one is ok.
1733 	 */
1734 	if (pipe->nrbufs < PIPE_BUFFERS)
1735 		return 0;
1736 
1737 	ret = 0;
1738 	pipe_lock(pipe);
1739 
1740 	while (pipe->nrbufs >= PIPE_BUFFERS) {
1741 		if (!pipe->readers) {
1742 			send_sig(SIGPIPE, current, 0);
1743 			ret = -EPIPE;
1744 			break;
1745 		}
1746 		if (flags & SPLICE_F_NONBLOCK) {
1747 			ret = -EAGAIN;
1748 			break;
1749 		}
1750 		if (signal_pending(current)) {
1751 			ret = -ERESTARTSYS;
1752 			break;
1753 		}
1754 		pipe->waiting_writers++;
1755 		pipe_wait(pipe);
1756 		pipe->waiting_writers--;
1757 	}
1758 
1759 	pipe_unlock(pipe);
1760 	return ret;
1761 }
1762 
1763 /*
1764  * Splice contents of ipipe to opipe.
1765  */
1766 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1767 			       struct pipe_inode_info *opipe,
1768 			       size_t len, unsigned int flags)
1769 {
1770 	struct pipe_buffer *ibuf, *obuf;
1771 	int ret = 0, nbuf;
1772 	bool input_wakeup = false;
1773 
1774 
1775 retry:
1776 	ret = ipipe_prep(ipipe, flags);
1777 	if (ret)
1778 		return ret;
1779 
1780 	ret = opipe_prep(opipe, flags);
1781 	if (ret)
1782 		return ret;
1783 
1784 	/*
1785 	 * Potential ABBA deadlock, work around it by ordering lock
1786 	 * grabbing by pipe info address. Otherwise two different processes
1787 	 * could deadlock (one doing tee from A -> B, the other from B -> A).
1788 	 */
1789 	pipe_double_lock(ipipe, opipe);
1790 
1791 	do {
1792 		if (!opipe->readers) {
1793 			send_sig(SIGPIPE, current, 0);
1794 			if (!ret)
1795 				ret = -EPIPE;
1796 			break;
1797 		}
1798 
1799 		if (!ipipe->nrbufs && !ipipe->writers)
1800 			break;
1801 
1802 		/*
1803 		 * Cannot make any progress, because either the input
1804 		 * pipe is empty or the output pipe is full.
1805 		 */
1806 		if (!ipipe->nrbufs || opipe->nrbufs >= PIPE_BUFFERS) {
1807 			/* Already processed some buffers, break */
1808 			if (ret)
1809 				break;
1810 
1811 			if (flags & SPLICE_F_NONBLOCK) {
1812 				ret = -EAGAIN;
1813 				break;
1814 			}
1815 
1816 			/*
1817 			 * We raced with another reader/writer and haven't
1818 			 * managed to process any buffers.  A zero return
1819 			 * value means EOF, so retry instead.
1820 			 */
1821 			pipe_unlock(ipipe);
1822 			pipe_unlock(opipe);
1823 			goto retry;
1824 		}
1825 
1826 		ibuf = ipipe->bufs + ipipe->curbuf;
1827 		nbuf = (opipe->curbuf + opipe->nrbufs) % PIPE_BUFFERS;
1828 		obuf = opipe->bufs + nbuf;
1829 
1830 		if (len >= ibuf->len) {
1831 			/*
1832 			 * Simply move the whole buffer from ipipe to opipe
1833 			 */
1834 			*obuf = *ibuf;
1835 			ibuf->ops = NULL;
1836 			opipe->nrbufs++;
1837 			ipipe->curbuf = (ipipe->curbuf + 1) % PIPE_BUFFERS;
1838 			ipipe->nrbufs--;
1839 			input_wakeup = true;
1840 		} else {
1841 			/*
1842 			 * Get a reference to this pipe buffer,
1843 			 * so we can copy the contents over.
1844 			 */
1845 			ibuf->ops->get(ipipe, ibuf);
1846 			*obuf = *ibuf;
1847 
1848 			/*
1849 			 * Don't inherit the gift flag, we need to
1850 			 * prevent multiple steals of this page.
1851 			 */
1852 			obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1853 
1854 			obuf->len = len;
1855 			opipe->nrbufs++;
1856 			ibuf->offset += obuf->len;
1857 			ibuf->len -= obuf->len;
1858 		}
1859 		ret += obuf->len;
1860 		len -= obuf->len;
1861 	} while (len);
1862 
1863 	pipe_unlock(ipipe);
1864 	pipe_unlock(opipe);
1865 
1866 	/*
1867 	 * If we put data in the output pipe, wakeup any potential readers.
1868 	 */
1869 	if (ret > 0) {
1870 		smp_mb();
1871 		if (waitqueue_active(&opipe->wait))
1872 			wake_up_interruptible(&opipe->wait);
1873 		kill_fasync(&opipe->fasync_readers, SIGIO, POLL_IN);
1874 	}
1875 	if (input_wakeup)
1876 		wakeup_pipe_writers(ipipe);
1877 
1878 	return ret;
1879 }
1880 
1881 /*
1882  * Link contents of ipipe to opipe.
1883  */
1884 static int link_pipe(struct pipe_inode_info *ipipe,
1885 		     struct pipe_inode_info *opipe,
1886 		     size_t len, unsigned int flags)
1887 {
1888 	struct pipe_buffer *ibuf, *obuf;
1889 	int ret = 0, i = 0, nbuf;
1890 
1891 	/*
1892 	 * Potential ABBA deadlock, work around it by ordering lock
1893 	 * grabbing by pipe info address. Otherwise two different processes
1894 	 * could deadlock (one doing tee from A -> B, the other from B -> A).
1895 	 */
1896 	pipe_double_lock(ipipe, opipe);
1897 
1898 	do {
1899 		if (!opipe->readers) {
1900 			send_sig(SIGPIPE, current, 0);
1901 			if (!ret)
1902 				ret = -EPIPE;
1903 			break;
1904 		}
1905 
1906 		/*
1907 		 * If we have iterated all input buffers or ran out of
1908 		 * output room, break.
1909 		 */
1910 		if (i >= ipipe->nrbufs || opipe->nrbufs >= PIPE_BUFFERS)
1911 			break;
1912 
1913 		ibuf = ipipe->bufs + ((ipipe->curbuf + i) & (PIPE_BUFFERS - 1));
1914 		nbuf = (opipe->curbuf + opipe->nrbufs) & (PIPE_BUFFERS - 1);
1915 
1916 		/*
1917 		 * Get a reference to this pipe buffer,
1918 		 * so we can copy the contents over.
1919 		 */
1920 		ibuf->ops->get(ipipe, ibuf);
1921 
1922 		obuf = opipe->bufs + nbuf;
1923 		*obuf = *ibuf;
1924 
1925 		/*
1926 		 * Don't inherit the gift flag, we need to
1927 		 * prevent multiple steals of this page.
1928 		 */
1929 		obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1930 
1931 		if (obuf->len > len)
1932 			obuf->len = len;
1933 
1934 		opipe->nrbufs++;
1935 		ret += obuf->len;
1936 		len -= obuf->len;
1937 		i++;
1938 	} while (len);
1939 
1940 	/*
1941 	 * return EAGAIN if we have the potential of some data in the
1942 	 * future, otherwise just return 0
1943 	 */
1944 	if (!ret && ipipe->waiting_writers && (flags & SPLICE_F_NONBLOCK))
1945 		ret = -EAGAIN;
1946 
1947 	pipe_unlock(ipipe);
1948 	pipe_unlock(opipe);
1949 
1950 	/*
1951 	 * If we put data in the output pipe, wakeup any potential readers.
1952 	 */
1953 	if (ret > 0) {
1954 		smp_mb();
1955 		if (waitqueue_active(&opipe->wait))
1956 			wake_up_interruptible(&opipe->wait);
1957 		kill_fasync(&opipe->fasync_readers, SIGIO, POLL_IN);
1958 	}
1959 
1960 	return ret;
1961 }
1962 
1963 /*
1964  * This is a tee(1) implementation that works on pipes. It doesn't copy
1965  * any data, it simply references the 'in' pages on the 'out' pipe.
1966  * The 'flags' used are the SPLICE_F_* variants, currently the only
1967  * applicable one is SPLICE_F_NONBLOCK.
1968  */
1969 static long do_tee(struct file *in, struct file *out, size_t len,
1970 		   unsigned int flags)
1971 {
1972 	struct pipe_inode_info *ipipe = pipe_info(in->f_path.dentry->d_inode);
1973 	struct pipe_inode_info *opipe = pipe_info(out->f_path.dentry->d_inode);
1974 	int ret = -EINVAL;
1975 
1976 	/*
1977 	 * Duplicate the contents of ipipe to opipe without actually
1978 	 * copying the data.
1979 	 */
1980 	if (ipipe && opipe && ipipe != opipe) {
1981 		/*
1982 		 * Keep going, unless we encounter an error. The ipipe/opipe
1983 		 * ordering doesn't really matter.
1984 		 */
1985 		ret = ipipe_prep(ipipe, flags);
1986 		if (!ret) {
1987 			ret = opipe_prep(opipe, flags);
1988 			if (!ret)
1989 				ret = link_pipe(ipipe, opipe, len, flags);
1990 		}
1991 	}
1992 
1993 	return ret;
1994 }
1995 
1996 SYSCALL_DEFINE4(tee, int, fdin, int, fdout, size_t, len, unsigned int, flags)
1997 {
1998 	struct file *in;
1999 	int error, fput_in;
2000 
2001 	if (unlikely(!len))
2002 		return 0;
2003 
2004 	error = -EBADF;
2005 	in = fget_light(fdin, &fput_in);
2006 	if (in) {
2007 		if (in->f_mode & FMODE_READ) {
2008 			int fput_out;
2009 			struct file *out = fget_light(fdout, &fput_out);
2010 
2011 			if (out) {
2012 				if (out->f_mode & FMODE_WRITE)
2013 					error = do_tee(in, out, len, flags);
2014 				fput_light(out, fput_out);
2015 			}
2016 		}
2017  		fput_light(in, fput_in);
2018  	}
2019 
2020 	return error;
2021 }
2022