1 /* 2 * "splice": joining two ropes together by interweaving their strands. 3 * 4 * This is the "extended pipe" functionality, where a pipe is used as 5 * an arbitrary in-memory buffer. Think of a pipe as a small kernel 6 * buffer that you can use to transfer data from one end to the other. 7 * 8 * The traditional unix read/write is extended with a "splice()" operation 9 * that transfers data buffers to or from a pipe buffer. 10 * 11 * Named by Larry McVoy, original implementation from Linus, extended by 12 * Jens to support splicing to files, network, direct splicing, etc and 13 * fixing lots of bugs. 14 * 15 * Copyright (C) 2005-2006 Jens Axboe <axboe@kernel.dk> 16 * Copyright (C) 2005-2006 Linus Torvalds <torvalds@osdl.org> 17 * Copyright (C) 2006 Ingo Molnar <mingo@elte.hu> 18 * 19 */ 20 #include <linux/fs.h> 21 #include <linux/file.h> 22 #include <linux/pagemap.h> 23 #include <linux/splice.h> 24 #include <linux/memcontrol.h> 25 #include <linux/mm_inline.h> 26 #include <linux/swap.h> 27 #include <linux/writeback.h> 28 #include <linux/buffer_head.h> 29 #include <linux/module.h> 30 #include <linux/syscalls.h> 31 #include <linux/uio.h> 32 #include <linux/security.h> 33 34 /* 35 * Attempt to steal a page from a pipe buffer. This should perhaps go into 36 * a vm helper function, it's already simplified quite a bit by the 37 * addition of remove_mapping(). If success is returned, the caller may 38 * attempt to reuse this page for another destination. 39 */ 40 static int page_cache_pipe_buf_steal(struct pipe_inode_info *pipe, 41 struct pipe_buffer *buf) 42 { 43 struct page *page = buf->page; 44 struct address_space *mapping; 45 46 lock_page(page); 47 48 mapping = page_mapping(page); 49 if (mapping) { 50 WARN_ON(!PageUptodate(page)); 51 52 /* 53 * At least for ext2 with nobh option, we need to wait on 54 * writeback completing on this page, since we'll remove it 55 * from the pagecache. Otherwise truncate wont wait on the 56 * page, allowing the disk blocks to be reused by someone else 57 * before we actually wrote our data to them. fs corruption 58 * ensues. 59 */ 60 wait_on_page_writeback(page); 61 62 if (page_has_private(page) && 63 !try_to_release_page(page, GFP_KERNEL)) 64 goto out_unlock; 65 66 /* 67 * If we succeeded in removing the mapping, set LRU flag 68 * and return good. 69 */ 70 if (remove_mapping(mapping, page)) { 71 buf->flags |= PIPE_BUF_FLAG_LRU; 72 return 0; 73 } 74 } 75 76 /* 77 * Raced with truncate or failed to remove page from current 78 * address space, unlock and return failure. 79 */ 80 out_unlock: 81 unlock_page(page); 82 return 1; 83 } 84 85 static void page_cache_pipe_buf_release(struct pipe_inode_info *pipe, 86 struct pipe_buffer *buf) 87 { 88 page_cache_release(buf->page); 89 buf->flags &= ~PIPE_BUF_FLAG_LRU; 90 } 91 92 /* 93 * Check whether the contents of buf is OK to access. Since the content 94 * is a page cache page, IO may be in flight. 95 */ 96 static int page_cache_pipe_buf_confirm(struct pipe_inode_info *pipe, 97 struct pipe_buffer *buf) 98 { 99 struct page *page = buf->page; 100 int err; 101 102 if (!PageUptodate(page)) { 103 lock_page(page); 104 105 /* 106 * Page got truncated/unhashed. This will cause a 0-byte 107 * splice, if this is the first page. 108 */ 109 if (!page->mapping) { 110 err = -ENODATA; 111 goto error; 112 } 113 114 /* 115 * Uh oh, read-error from disk. 116 */ 117 if (!PageUptodate(page)) { 118 err = -EIO; 119 goto error; 120 } 121 122 /* 123 * Page is ok afterall, we are done. 124 */ 125 unlock_page(page); 126 } 127 128 return 0; 129 error: 130 unlock_page(page); 131 return err; 132 } 133 134 static const struct pipe_buf_operations page_cache_pipe_buf_ops = { 135 .can_merge = 0, 136 .map = generic_pipe_buf_map, 137 .unmap = generic_pipe_buf_unmap, 138 .confirm = page_cache_pipe_buf_confirm, 139 .release = page_cache_pipe_buf_release, 140 .steal = page_cache_pipe_buf_steal, 141 .get = generic_pipe_buf_get, 142 }; 143 144 static int user_page_pipe_buf_steal(struct pipe_inode_info *pipe, 145 struct pipe_buffer *buf) 146 { 147 if (!(buf->flags & PIPE_BUF_FLAG_GIFT)) 148 return 1; 149 150 buf->flags |= PIPE_BUF_FLAG_LRU; 151 return generic_pipe_buf_steal(pipe, buf); 152 } 153 154 static const struct pipe_buf_operations user_page_pipe_buf_ops = { 155 .can_merge = 0, 156 .map = generic_pipe_buf_map, 157 .unmap = generic_pipe_buf_unmap, 158 .confirm = generic_pipe_buf_confirm, 159 .release = page_cache_pipe_buf_release, 160 .steal = user_page_pipe_buf_steal, 161 .get = generic_pipe_buf_get, 162 }; 163 164 /** 165 * splice_to_pipe - fill passed data into a pipe 166 * @pipe: pipe to fill 167 * @spd: data to fill 168 * 169 * Description: 170 * @spd contains a map of pages and len/offset tuples, along with 171 * the struct pipe_buf_operations associated with these pages. This 172 * function will link that data to the pipe. 173 * 174 */ 175 ssize_t splice_to_pipe(struct pipe_inode_info *pipe, 176 struct splice_pipe_desc *spd) 177 { 178 unsigned int spd_pages = spd->nr_pages; 179 int ret, do_wakeup, page_nr; 180 181 ret = 0; 182 do_wakeup = 0; 183 page_nr = 0; 184 185 pipe_lock(pipe); 186 187 for (;;) { 188 if (!pipe->readers) { 189 send_sig(SIGPIPE, current, 0); 190 if (!ret) 191 ret = -EPIPE; 192 break; 193 } 194 195 if (pipe->nrbufs < PIPE_BUFFERS) { 196 int newbuf = (pipe->curbuf + pipe->nrbufs) & (PIPE_BUFFERS - 1); 197 struct pipe_buffer *buf = pipe->bufs + newbuf; 198 199 buf->page = spd->pages[page_nr]; 200 buf->offset = spd->partial[page_nr].offset; 201 buf->len = spd->partial[page_nr].len; 202 buf->private = spd->partial[page_nr].private; 203 buf->ops = spd->ops; 204 if (spd->flags & SPLICE_F_GIFT) 205 buf->flags |= PIPE_BUF_FLAG_GIFT; 206 207 pipe->nrbufs++; 208 page_nr++; 209 ret += buf->len; 210 211 if (pipe->inode) 212 do_wakeup = 1; 213 214 if (!--spd->nr_pages) 215 break; 216 if (pipe->nrbufs < PIPE_BUFFERS) 217 continue; 218 219 break; 220 } 221 222 if (spd->flags & SPLICE_F_NONBLOCK) { 223 if (!ret) 224 ret = -EAGAIN; 225 break; 226 } 227 228 if (signal_pending(current)) { 229 if (!ret) 230 ret = -ERESTARTSYS; 231 break; 232 } 233 234 if (do_wakeup) { 235 smp_mb(); 236 if (waitqueue_active(&pipe->wait)) 237 wake_up_interruptible_sync(&pipe->wait); 238 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN); 239 do_wakeup = 0; 240 } 241 242 pipe->waiting_writers++; 243 pipe_wait(pipe); 244 pipe->waiting_writers--; 245 } 246 247 pipe_unlock(pipe); 248 249 if (do_wakeup) { 250 smp_mb(); 251 if (waitqueue_active(&pipe->wait)) 252 wake_up_interruptible(&pipe->wait); 253 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN); 254 } 255 256 while (page_nr < spd_pages) 257 spd->spd_release(spd, page_nr++); 258 259 return ret; 260 } 261 262 static void spd_release_page(struct splice_pipe_desc *spd, unsigned int i) 263 { 264 page_cache_release(spd->pages[i]); 265 } 266 267 static int 268 __generic_file_splice_read(struct file *in, loff_t *ppos, 269 struct pipe_inode_info *pipe, size_t len, 270 unsigned int flags) 271 { 272 struct address_space *mapping = in->f_mapping; 273 unsigned int loff, nr_pages, req_pages; 274 struct page *pages[PIPE_BUFFERS]; 275 struct partial_page partial[PIPE_BUFFERS]; 276 struct page *page; 277 pgoff_t index, end_index; 278 loff_t isize; 279 int error, page_nr; 280 struct splice_pipe_desc spd = { 281 .pages = pages, 282 .partial = partial, 283 .flags = flags, 284 .ops = &page_cache_pipe_buf_ops, 285 .spd_release = spd_release_page, 286 }; 287 288 index = *ppos >> PAGE_CACHE_SHIFT; 289 loff = *ppos & ~PAGE_CACHE_MASK; 290 req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; 291 nr_pages = min(req_pages, (unsigned)PIPE_BUFFERS); 292 293 /* 294 * Lookup the (hopefully) full range of pages we need. 295 */ 296 spd.nr_pages = find_get_pages_contig(mapping, index, nr_pages, pages); 297 index += spd.nr_pages; 298 299 /* 300 * If find_get_pages_contig() returned fewer pages than we needed, 301 * readahead/allocate the rest and fill in the holes. 302 */ 303 if (spd.nr_pages < nr_pages) 304 page_cache_sync_readahead(mapping, &in->f_ra, in, 305 index, req_pages - spd.nr_pages); 306 307 error = 0; 308 while (spd.nr_pages < nr_pages) { 309 /* 310 * Page could be there, find_get_pages_contig() breaks on 311 * the first hole. 312 */ 313 page = find_get_page(mapping, index); 314 if (!page) { 315 /* 316 * page didn't exist, allocate one. 317 */ 318 page = page_cache_alloc_cold(mapping); 319 if (!page) 320 break; 321 322 error = add_to_page_cache_lru(page, mapping, index, 323 mapping_gfp_mask(mapping)); 324 if (unlikely(error)) { 325 page_cache_release(page); 326 if (error == -EEXIST) 327 continue; 328 break; 329 } 330 /* 331 * add_to_page_cache() locks the page, unlock it 332 * to avoid convoluting the logic below even more. 333 */ 334 unlock_page(page); 335 } 336 337 pages[spd.nr_pages++] = page; 338 index++; 339 } 340 341 /* 342 * Now loop over the map and see if we need to start IO on any 343 * pages, fill in the partial map, etc. 344 */ 345 index = *ppos >> PAGE_CACHE_SHIFT; 346 nr_pages = spd.nr_pages; 347 spd.nr_pages = 0; 348 for (page_nr = 0; page_nr < nr_pages; page_nr++) { 349 unsigned int this_len; 350 351 if (!len) 352 break; 353 354 /* 355 * this_len is the max we'll use from this page 356 */ 357 this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff); 358 page = pages[page_nr]; 359 360 if (PageReadahead(page)) 361 page_cache_async_readahead(mapping, &in->f_ra, in, 362 page, index, req_pages - page_nr); 363 364 /* 365 * If the page isn't uptodate, we may need to start io on it 366 */ 367 if (!PageUptodate(page)) { 368 /* 369 * If in nonblock mode then dont block on waiting 370 * for an in-flight io page 371 */ 372 if (flags & SPLICE_F_NONBLOCK) { 373 if (!trylock_page(page)) { 374 error = -EAGAIN; 375 break; 376 } 377 } else 378 lock_page(page); 379 380 /* 381 * Page was truncated, or invalidated by the 382 * filesystem. Redo the find/create, but this time the 383 * page is kept locked, so there's no chance of another 384 * race with truncate/invalidate. 385 */ 386 if (!page->mapping) { 387 unlock_page(page); 388 page = find_or_create_page(mapping, index, 389 mapping_gfp_mask(mapping)); 390 391 if (!page) { 392 error = -ENOMEM; 393 break; 394 } 395 page_cache_release(pages[page_nr]); 396 pages[page_nr] = page; 397 } 398 /* 399 * page was already under io and is now done, great 400 */ 401 if (PageUptodate(page)) { 402 unlock_page(page); 403 goto fill_it; 404 } 405 406 /* 407 * need to read in the page 408 */ 409 error = mapping->a_ops->readpage(in, page); 410 if (unlikely(error)) { 411 /* 412 * We really should re-lookup the page here, 413 * but it complicates things a lot. Instead 414 * lets just do what we already stored, and 415 * we'll get it the next time we are called. 416 */ 417 if (error == AOP_TRUNCATED_PAGE) 418 error = 0; 419 420 break; 421 } 422 } 423 fill_it: 424 /* 425 * i_size must be checked after PageUptodate. 426 */ 427 isize = i_size_read(mapping->host); 428 end_index = (isize - 1) >> PAGE_CACHE_SHIFT; 429 if (unlikely(!isize || index > end_index)) 430 break; 431 432 /* 433 * if this is the last page, see if we need to shrink 434 * the length and stop 435 */ 436 if (end_index == index) { 437 unsigned int plen; 438 439 /* 440 * max good bytes in this page 441 */ 442 plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1; 443 if (plen <= loff) 444 break; 445 446 /* 447 * force quit after adding this page 448 */ 449 this_len = min(this_len, plen - loff); 450 len = this_len; 451 } 452 453 partial[page_nr].offset = loff; 454 partial[page_nr].len = this_len; 455 len -= this_len; 456 loff = 0; 457 spd.nr_pages++; 458 index++; 459 } 460 461 /* 462 * Release any pages at the end, if we quit early. 'page_nr' is how far 463 * we got, 'nr_pages' is how many pages are in the map. 464 */ 465 while (page_nr < nr_pages) 466 page_cache_release(pages[page_nr++]); 467 in->f_ra.prev_pos = (loff_t)index << PAGE_CACHE_SHIFT; 468 469 if (spd.nr_pages) 470 return splice_to_pipe(pipe, &spd); 471 472 return error; 473 } 474 475 /** 476 * generic_file_splice_read - splice data from file to a pipe 477 * @in: file to splice from 478 * @ppos: position in @in 479 * @pipe: pipe to splice to 480 * @len: number of bytes to splice 481 * @flags: splice modifier flags 482 * 483 * Description: 484 * Will read pages from given file and fill them into a pipe. Can be 485 * used as long as the address_space operations for the source implements 486 * a readpage() hook. 487 * 488 */ 489 ssize_t generic_file_splice_read(struct file *in, loff_t *ppos, 490 struct pipe_inode_info *pipe, size_t len, 491 unsigned int flags) 492 { 493 loff_t isize, left; 494 int ret; 495 496 isize = i_size_read(in->f_mapping->host); 497 if (unlikely(*ppos >= isize)) 498 return 0; 499 500 left = isize - *ppos; 501 if (unlikely(left < len)) 502 len = left; 503 504 ret = __generic_file_splice_read(in, ppos, pipe, len, flags); 505 if (ret > 0) { 506 *ppos += ret; 507 file_accessed(in); 508 } 509 510 return ret; 511 } 512 EXPORT_SYMBOL(generic_file_splice_read); 513 514 static const struct pipe_buf_operations default_pipe_buf_ops = { 515 .can_merge = 0, 516 .map = generic_pipe_buf_map, 517 .unmap = generic_pipe_buf_unmap, 518 .confirm = generic_pipe_buf_confirm, 519 .release = generic_pipe_buf_release, 520 .steal = generic_pipe_buf_steal, 521 .get = generic_pipe_buf_get, 522 }; 523 524 static ssize_t kernel_readv(struct file *file, const struct iovec *vec, 525 unsigned long vlen, loff_t offset) 526 { 527 mm_segment_t old_fs; 528 loff_t pos = offset; 529 ssize_t res; 530 531 old_fs = get_fs(); 532 set_fs(get_ds()); 533 /* The cast to a user pointer is valid due to the set_fs() */ 534 res = vfs_readv(file, (const struct iovec __user *)vec, vlen, &pos); 535 set_fs(old_fs); 536 537 return res; 538 } 539 540 static ssize_t kernel_write(struct file *file, const char *buf, size_t count, 541 loff_t pos) 542 { 543 mm_segment_t old_fs; 544 ssize_t res; 545 546 old_fs = get_fs(); 547 set_fs(get_ds()); 548 /* The cast to a user pointer is valid due to the set_fs() */ 549 res = vfs_write(file, (const char __user *)buf, count, &pos); 550 set_fs(old_fs); 551 552 return res; 553 } 554 555 ssize_t default_file_splice_read(struct file *in, loff_t *ppos, 556 struct pipe_inode_info *pipe, size_t len, 557 unsigned int flags) 558 { 559 unsigned int nr_pages; 560 unsigned int nr_freed; 561 size_t offset; 562 struct page *pages[PIPE_BUFFERS]; 563 struct partial_page partial[PIPE_BUFFERS]; 564 struct iovec vec[PIPE_BUFFERS]; 565 pgoff_t index; 566 ssize_t res; 567 size_t this_len; 568 int error; 569 int i; 570 struct splice_pipe_desc spd = { 571 .pages = pages, 572 .partial = partial, 573 .flags = flags, 574 .ops = &default_pipe_buf_ops, 575 .spd_release = spd_release_page, 576 }; 577 578 index = *ppos >> PAGE_CACHE_SHIFT; 579 offset = *ppos & ~PAGE_CACHE_MASK; 580 nr_pages = (len + offset + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; 581 582 for (i = 0; i < nr_pages && i < PIPE_BUFFERS && len; i++) { 583 struct page *page; 584 585 page = alloc_page(GFP_USER); 586 error = -ENOMEM; 587 if (!page) 588 goto err; 589 590 this_len = min_t(size_t, len, PAGE_CACHE_SIZE - offset); 591 vec[i].iov_base = (void __user *) page_address(page); 592 vec[i].iov_len = this_len; 593 pages[i] = page; 594 spd.nr_pages++; 595 len -= this_len; 596 offset = 0; 597 } 598 599 res = kernel_readv(in, vec, spd.nr_pages, *ppos); 600 if (res < 0) { 601 error = res; 602 goto err; 603 } 604 605 error = 0; 606 if (!res) 607 goto err; 608 609 nr_freed = 0; 610 for (i = 0; i < spd.nr_pages; i++) { 611 this_len = min_t(size_t, vec[i].iov_len, res); 612 partial[i].offset = 0; 613 partial[i].len = this_len; 614 if (!this_len) { 615 __free_page(pages[i]); 616 pages[i] = NULL; 617 nr_freed++; 618 } 619 res -= this_len; 620 } 621 spd.nr_pages -= nr_freed; 622 623 res = splice_to_pipe(pipe, &spd); 624 if (res > 0) 625 *ppos += res; 626 627 return res; 628 629 err: 630 for (i = 0; i < spd.nr_pages; i++) 631 __free_page(pages[i]); 632 633 return error; 634 } 635 EXPORT_SYMBOL(default_file_splice_read); 636 637 /* 638 * Send 'sd->len' bytes to socket from 'sd->file' at position 'sd->pos' 639 * using sendpage(). Return the number of bytes sent. 640 */ 641 static int pipe_to_sendpage(struct pipe_inode_info *pipe, 642 struct pipe_buffer *buf, struct splice_desc *sd) 643 { 644 struct file *file = sd->u.file; 645 loff_t pos = sd->pos; 646 int ret, more; 647 648 ret = buf->ops->confirm(pipe, buf); 649 if (!ret) { 650 more = (sd->flags & SPLICE_F_MORE) || sd->len < sd->total_len; 651 652 ret = file->f_op->sendpage(file, buf->page, buf->offset, 653 sd->len, &pos, more); 654 } 655 656 return ret; 657 } 658 659 /* 660 * This is a little more tricky than the file -> pipe splicing. There are 661 * basically three cases: 662 * 663 * - Destination page already exists in the address space and there 664 * are users of it. For that case we have no other option that 665 * copying the data. Tough luck. 666 * - Destination page already exists in the address space, but there 667 * are no users of it. Make sure it's uptodate, then drop it. Fall 668 * through to last case. 669 * - Destination page does not exist, we can add the pipe page to 670 * the page cache and avoid the copy. 671 * 672 * If asked to move pages to the output file (SPLICE_F_MOVE is set in 673 * sd->flags), we attempt to migrate pages from the pipe to the output 674 * file address space page cache. This is possible if no one else has 675 * the pipe page referenced outside of the pipe and page cache. If 676 * SPLICE_F_MOVE isn't set, or we cannot move the page, we simply create 677 * a new page in the output file page cache and fill/dirty that. 678 */ 679 int pipe_to_file(struct pipe_inode_info *pipe, struct pipe_buffer *buf, 680 struct splice_desc *sd) 681 { 682 struct file *file = sd->u.file; 683 struct address_space *mapping = file->f_mapping; 684 unsigned int offset, this_len; 685 struct page *page; 686 void *fsdata; 687 int ret; 688 689 /* 690 * make sure the data in this buffer is uptodate 691 */ 692 ret = buf->ops->confirm(pipe, buf); 693 if (unlikely(ret)) 694 return ret; 695 696 offset = sd->pos & ~PAGE_CACHE_MASK; 697 698 this_len = sd->len; 699 if (this_len + offset > PAGE_CACHE_SIZE) 700 this_len = PAGE_CACHE_SIZE - offset; 701 702 ret = pagecache_write_begin(file, mapping, sd->pos, this_len, 703 AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata); 704 if (unlikely(ret)) 705 goto out; 706 707 if (buf->page != page) { 708 /* 709 * Careful, ->map() uses KM_USER0! 710 */ 711 char *src = buf->ops->map(pipe, buf, 1); 712 char *dst = kmap_atomic(page, KM_USER1); 713 714 memcpy(dst + offset, src + buf->offset, this_len); 715 flush_dcache_page(page); 716 kunmap_atomic(dst, KM_USER1); 717 buf->ops->unmap(pipe, buf, src); 718 } 719 ret = pagecache_write_end(file, mapping, sd->pos, this_len, this_len, 720 page, fsdata); 721 out: 722 return ret; 723 } 724 EXPORT_SYMBOL(pipe_to_file); 725 726 static void wakeup_pipe_writers(struct pipe_inode_info *pipe) 727 { 728 smp_mb(); 729 if (waitqueue_active(&pipe->wait)) 730 wake_up_interruptible(&pipe->wait); 731 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT); 732 } 733 734 /** 735 * splice_from_pipe_feed - feed available data from a pipe to a file 736 * @pipe: pipe to splice from 737 * @sd: information to @actor 738 * @actor: handler that splices the data 739 * 740 * Description: 741 * This function loops over the pipe and calls @actor to do the 742 * actual moving of a single struct pipe_buffer to the desired 743 * destination. It returns when there's no more buffers left in 744 * the pipe or if the requested number of bytes (@sd->total_len) 745 * have been copied. It returns a positive number (one) if the 746 * pipe needs to be filled with more data, zero if the required 747 * number of bytes have been copied and -errno on error. 748 * 749 * This, together with splice_from_pipe_{begin,end,next}, may be 750 * used to implement the functionality of __splice_from_pipe() when 751 * locking is required around copying the pipe buffers to the 752 * destination. 753 */ 754 int splice_from_pipe_feed(struct pipe_inode_info *pipe, struct splice_desc *sd, 755 splice_actor *actor) 756 { 757 int ret; 758 759 while (pipe->nrbufs) { 760 struct pipe_buffer *buf = pipe->bufs + pipe->curbuf; 761 const struct pipe_buf_operations *ops = buf->ops; 762 763 sd->len = buf->len; 764 if (sd->len > sd->total_len) 765 sd->len = sd->total_len; 766 767 ret = actor(pipe, buf, sd); 768 if (ret <= 0) { 769 if (ret == -ENODATA) 770 ret = 0; 771 return ret; 772 } 773 buf->offset += ret; 774 buf->len -= ret; 775 776 sd->num_spliced += ret; 777 sd->len -= ret; 778 sd->pos += ret; 779 sd->total_len -= ret; 780 781 if (!buf->len) { 782 buf->ops = NULL; 783 ops->release(pipe, buf); 784 pipe->curbuf = (pipe->curbuf + 1) & (PIPE_BUFFERS - 1); 785 pipe->nrbufs--; 786 if (pipe->inode) 787 sd->need_wakeup = true; 788 } 789 790 if (!sd->total_len) 791 return 0; 792 } 793 794 return 1; 795 } 796 EXPORT_SYMBOL(splice_from_pipe_feed); 797 798 /** 799 * splice_from_pipe_next - wait for some data to splice from 800 * @pipe: pipe to splice from 801 * @sd: information about the splice operation 802 * 803 * Description: 804 * This function will wait for some data and return a positive 805 * value (one) if pipe buffers are available. It will return zero 806 * or -errno if no more data needs to be spliced. 807 */ 808 int splice_from_pipe_next(struct pipe_inode_info *pipe, struct splice_desc *sd) 809 { 810 while (!pipe->nrbufs) { 811 if (!pipe->writers) 812 return 0; 813 814 if (!pipe->waiting_writers && sd->num_spliced) 815 return 0; 816 817 if (sd->flags & SPLICE_F_NONBLOCK) 818 return -EAGAIN; 819 820 if (signal_pending(current)) 821 return -ERESTARTSYS; 822 823 if (sd->need_wakeup) { 824 wakeup_pipe_writers(pipe); 825 sd->need_wakeup = false; 826 } 827 828 pipe_wait(pipe); 829 } 830 831 return 1; 832 } 833 EXPORT_SYMBOL(splice_from_pipe_next); 834 835 /** 836 * splice_from_pipe_begin - start splicing from pipe 837 * @sd: information about the splice operation 838 * 839 * Description: 840 * This function should be called before a loop containing 841 * splice_from_pipe_next() and splice_from_pipe_feed() to 842 * initialize the necessary fields of @sd. 843 */ 844 void splice_from_pipe_begin(struct splice_desc *sd) 845 { 846 sd->num_spliced = 0; 847 sd->need_wakeup = false; 848 } 849 EXPORT_SYMBOL(splice_from_pipe_begin); 850 851 /** 852 * splice_from_pipe_end - finish splicing from pipe 853 * @pipe: pipe to splice from 854 * @sd: information about the splice operation 855 * 856 * Description: 857 * This function will wake up pipe writers if necessary. It should 858 * be called after a loop containing splice_from_pipe_next() and 859 * splice_from_pipe_feed(). 860 */ 861 void splice_from_pipe_end(struct pipe_inode_info *pipe, struct splice_desc *sd) 862 { 863 if (sd->need_wakeup) 864 wakeup_pipe_writers(pipe); 865 } 866 EXPORT_SYMBOL(splice_from_pipe_end); 867 868 /** 869 * __splice_from_pipe - splice data from a pipe to given actor 870 * @pipe: pipe to splice from 871 * @sd: information to @actor 872 * @actor: handler that splices the data 873 * 874 * Description: 875 * This function does little more than loop over the pipe and call 876 * @actor to do the actual moving of a single struct pipe_buffer to 877 * the desired destination. See pipe_to_file, pipe_to_sendpage, or 878 * pipe_to_user. 879 * 880 */ 881 ssize_t __splice_from_pipe(struct pipe_inode_info *pipe, struct splice_desc *sd, 882 splice_actor *actor) 883 { 884 int ret; 885 886 splice_from_pipe_begin(sd); 887 do { 888 ret = splice_from_pipe_next(pipe, sd); 889 if (ret > 0) 890 ret = splice_from_pipe_feed(pipe, sd, actor); 891 } while (ret > 0); 892 splice_from_pipe_end(pipe, sd); 893 894 return sd->num_spliced ? sd->num_spliced : ret; 895 } 896 EXPORT_SYMBOL(__splice_from_pipe); 897 898 /** 899 * splice_from_pipe - splice data from a pipe to a file 900 * @pipe: pipe to splice from 901 * @out: file to splice to 902 * @ppos: position in @out 903 * @len: how many bytes to splice 904 * @flags: splice modifier flags 905 * @actor: handler that splices the data 906 * 907 * Description: 908 * See __splice_from_pipe. This function locks the pipe inode, 909 * otherwise it's identical to __splice_from_pipe(). 910 * 911 */ 912 ssize_t splice_from_pipe(struct pipe_inode_info *pipe, struct file *out, 913 loff_t *ppos, size_t len, unsigned int flags, 914 splice_actor *actor) 915 { 916 ssize_t ret; 917 struct splice_desc sd = { 918 .total_len = len, 919 .flags = flags, 920 .pos = *ppos, 921 .u.file = out, 922 }; 923 924 pipe_lock(pipe); 925 ret = __splice_from_pipe(pipe, &sd, actor); 926 pipe_unlock(pipe); 927 928 return ret; 929 } 930 931 /** 932 * generic_file_splice_write - splice data from a pipe to a file 933 * @pipe: pipe info 934 * @out: file to write to 935 * @ppos: position in @out 936 * @len: number of bytes to splice 937 * @flags: splice modifier flags 938 * 939 * Description: 940 * Will either move or copy pages (determined by @flags options) from 941 * the given pipe inode to the given file. 942 * 943 */ 944 ssize_t 945 generic_file_splice_write(struct pipe_inode_info *pipe, struct file *out, 946 loff_t *ppos, size_t len, unsigned int flags) 947 { 948 struct address_space *mapping = out->f_mapping; 949 struct inode *inode = mapping->host; 950 struct splice_desc sd = { 951 .total_len = len, 952 .flags = flags, 953 .pos = *ppos, 954 .u.file = out, 955 }; 956 ssize_t ret; 957 958 pipe_lock(pipe); 959 960 splice_from_pipe_begin(&sd); 961 do { 962 ret = splice_from_pipe_next(pipe, &sd); 963 if (ret <= 0) 964 break; 965 966 mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD); 967 ret = file_remove_suid(out); 968 if (!ret) { 969 file_update_time(out); 970 ret = splice_from_pipe_feed(pipe, &sd, pipe_to_file); 971 } 972 mutex_unlock(&inode->i_mutex); 973 } while (ret > 0); 974 splice_from_pipe_end(pipe, &sd); 975 976 pipe_unlock(pipe); 977 978 if (sd.num_spliced) 979 ret = sd.num_spliced; 980 981 if (ret > 0) { 982 unsigned long nr_pages; 983 int err; 984 985 nr_pages = (ret + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; 986 987 err = generic_write_sync(out, *ppos, ret); 988 if (err) 989 ret = err; 990 else 991 *ppos += ret; 992 balance_dirty_pages_ratelimited_nr(mapping, nr_pages); 993 } 994 995 return ret; 996 } 997 998 EXPORT_SYMBOL(generic_file_splice_write); 999 1000 static int write_pipe_buf(struct pipe_inode_info *pipe, struct pipe_buffer *buf, 1001 struct splice_desc *sd) 1002 { 1003 int ret; 1004 void *data; 1005 1006 ret = buf->ops->confirm(pipe, buf); 1007 if (ret) 1008 return ret; 1009 1010 data = buf->ops->map(pipe, buf, 0); 1011 ret = kernel_write(sd->u.file, data + buf->offset, sd->len, sd->pos); 1012 buf->ops->unmap(pipe, buf, data); 1013 1014 return ret; 1015 } 1016 1017 static ssize_t default_file_splice_write(struct pipe_inode_info *pipe, 1018 struct file *out, loff_t *ppos, 1019 size_t len, unsigned int flags) 1020 { 1021 ssize_t ret; 1022 1023 ret = splice_from_pipe(pipe, out, ppos, len, flags, write_pipe_buf); 1024 if (ret > 0) 1025 *ppos += ret; 1026 1027 return ret; 1028 } 1029 1030 /** 1031 * generic_splice_sendpage - splice data from a pipe to a socket 1032 * @pipe: pipe to splice from 1033 * @out: socket to write to 1034 * @ppos: position in @out 1035 * @len: number of bytes to splice 1036 * @flags: splice modifier flags 1037 * 1038 * Description: 1039 * Will send @len bytes from the pipe to a network socket. No data copying 1040 * is involved. 1041 * 1042 */ 1043 ssize_t generic_splice_sendpage(struct pipe_inode_info *pipe, struct file *out, 1044 loff_t *ppos, size_t len, unsigned int flags) 1045 { 1046 return splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_sendpage); 1047 } 1048 1049 EXPORT_SYMBOL(generic_splice_sendpage); 1050 1051 /* 1052 * Attempt to initiate a splice from pipe to file. 1053 */ 1054 static long do_splice_from(struct pipe_inode_info *pipe, struct file *out, 1055 loff_t *ppos, size_t len, unsigned int flags) 1056 { 1057 ssize_t (*splice_write)(struct pipe_inode_info *, struct file *, 1058 loff_t *, size_t, unsigned int); 1059 int ret; 1060 1061 if (unlikely(!(out->f_mode & FMODE_WRITE))) 1062 return -EBADF; 1063 1064 if (unlikely(out->f_flags & O_APPEND)) 1065 return -EINVAL; 1066 1067 ret = rw_verify_area(WRITE, out, ppos, len); 1068 if (unlikely(ret < 0)) 1069 return ret; 1070 1071 splice_write = out->f_op->splice_write; 1072 if (!splice_write) 1073 splice_write = default_file_splice_write; 1074 1075 return splice_write(pipe, out, ppos, len, flags); 1076 } 1077 1078 /* 1079 * Attempt to initiate a splice from a file to a pipe. 1080 */ 1081 static long do_splice_to(struct file *in, loff_t *ppos, 1082 struct pipe_inode_info *pipe, size_t len, 1083 unsigned int flags) 1084 { 1085 ssize_t (*splice_read)(struct file *, loff_t *, 1086 struct pipe_inode_info *, size_t, unsigned int); 1087 int ret; 1088 1089 if (unlikely(!(in->f_mode & FMODE_READ))) 1090 return -EBADF; 1091 1092 ret = rw_verify_area(READ, in, ppos, len); 1093 if (unlikely(ret < 0)) 1094 return ret; 1095 1096 splice_read = in->f_op->splice_read; 1097 if (!splice_read) 1098 splice_read = default_file_splice_read; 1099 1100 return splice_read(in, ppos, pipe, len, flags); 1101 } 1102 1103 /** 1104 * splice_direct_to_actor - splices data directly between two non-pipes 1105 * @in: file to splice from 1106 * @sd: actor information on where to splice to 1107 * @actor: handles the data splicing 1108 * 1109 * Description: 1110 * This is a special case helper to splice directly between two 1111 * points, without requiring an explicit pipe. Internally an allocated 1112 * pipe is cached in the process, and reused during the lifetime of 1113 * that process. 1114 * 1115 */ 1116 ssize_t splice_direct_to_actor(struct file *in, struct splice_desc *sd, 1117 splice_direct_actor *actor) 1118 { 1119 struct pipe_inode_info *pipe; 1120 long ret, bytes; 1121 umode_t i_mode; 1122 size_t len; 1123 int i, flags; 1124 1125 /* 1126 * We require the input being a regular file, as we don't want to 1127 * randomly drop data for eg socket -> socket splicing. Use the 1128 * piped splicing for that! 1129 */ 1130 i_mode = in->f_path.dentry->d_inode->i_mode; 1131 if (unlikely(!S_ISREG(i_mode) && !S_ISBLK(i_mode))) 1132 return -EINVAL; 1133 1134 /* 1135 * neither in nor out is a pipe, setup an internal pipe attached to 1136 * 'out' and transfer the wanted data from 'in' to 'out' through that 1137 */ 1138 pipe = current->splice_pipe; 1139 if (unlikely(!pipe)) { 1140 pipe = alloc_pipe_info(NULL); 1141 if (!pipe) 1142 return -ENOMEM; 1143 1144 /* 1145 * We don't have an immediate reader, but we'll read the stuff 1146 * out of the pipe right after the splice_to_pipe(). So set 1147 * PIPE_READERS appropriately. 1148 */ 1149 pipe->readers = 1; 1150 1151 current->splice_pipe = pipe; 1152 } 1153 1154 /* 1155 * Do the splice. 1156 */ 1157 ret = 0; 1158 bytes = 0; 1159 len = sd->total_len; 1160 flags = sd->flags; 1161 1162 /* 1163 * Don't block on output, we have to drain the direct pipe. 1164 */ 1165 sd->flags &= ~SPLICE_F_NONBLOCK; 1166 1167 while (len) { 1168 size_t read_len; 1169 loff_t pos = sd->pos, prev_pos = pos; 1170 1171 ret = do_splice_to(in, &pos, pipe, len, flags); 1172 if (unlikely(ret <= 0)) 1173 goto out_release; 1174 1175 read_len = ret; 1176 sd->total_len = read_len; 1177 1178 /* 1179 * NOTE: nonblocking mode only applies to the input. We 1180 * must not do the output in nonblocking mode as then we 1181 * could get stuck data in the internal pipe: 1182 */ 1183 ret = actor(pipe, sd); 1184 if (unlikely(ret <= 0)) { 1185 sd->pos = prev_pos; 1186 goto out_release; 1187 } 1188 1189 bytes += ret; 1190 len -= ret; 1191 sd->pos = pos; 1192 1193 if (ret < read_len) { 1194 sd->pos = prev_pos + ret; 1195 goto out_release; 1196 } 1197 } 1198 1199 done: 1200 pipe->nrbufs = pipe->curbuf = 0; 1201 file_accessed(in); 1202 return bytes; 1203 1204 out_release: 1205 /* 1206 * If we did an incomplete transfer we must release 1207 * the pipe buffers in question: 1208 */ 1209 for (i = 0; i < PIPE_BUFFERS; i++) { 1210 struct pipe_buffer *buf = pipe->bufs + i; 1211 1212 if (buf->ops) { 1213 buf->ops->release(pipe, buf); 1214 buf->ops = NULL; 1215 } 1216 } 1217 1218 if (!bytes) 1219 bytes = ret; 1220 1221 goto done; 1222 } 1223 EXPORT_SYMBOL(splice_direct_to_actor); 1224 1225 static int direct_splice_actor(struct pipe_inode_info *pipe, 1226 struct splice_desc *sd) 1227 { 1228 struct file *file = sd->u.file; 1229 1230 return do_splice_from(pipe, file, &sd->pos, sd->total_len, sd->flags); 1231 } 1232 1233 /** 1234 * do_splice_direct - splices data directly between two files 1235 * @in: file to splice from 1236 * @ppos: input file offset 1237 * @out: file to splice to 1238 * @len: number of bytes to splice 1239 * @flags: splice modifier flags 1240 * 1241 * Description: 1242 * For use by do_sendfile(). splice can easily emulate sendfile, but 1243 * doing it in the application would incur an extra system call 1244 * (splice in + splice out, as compared to just sendfile()). So this helper 1245 * can splice directly through a process-private pipe. 1246 * 1247 */ 1248 long do_splice_direct(struct file *in, loff_t *ppos, struct file *out, 1249 size_t len, unsigned int flags) 1250 { 1251 struct splice_desc sd = { 1252 .len = len, 1253 .total_len = len, 1254 .flags = flags, 1255 .pos = *ppos, 1256 .u.file = out, 1257 }; 1258 long ret; 1259 1260 ret = splice_direct_to_actor(in, &sd, direct_splice_actor); 1261 if (ret > 0) 1262 *ppos = sd.pos; 1263 1264 return ret; 1265 } 1266 1267 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe, 1268 struct pipe_inode_info *opipe, 1269 size_t len, unsigned int flags); 1270 /* 1271 * After the inode slimming patch, i_pipe/i_bdev/i_cdev share the same 1272 * location, so checking ->i_pipe is not enough to verify that this is a 1273 * pipe. 1274 */ 1275 static inline struct pipe_inode_info *pipe_info(struct inode *inode) 1276 { 1277 if (S_ISFIFO(inode->i_mode)) 1278 return inode->i_pipe; 1279 1280 return NULL; 1281 } 1282 1283 /* 1284 * Determine where to splice to/from. 1285 */ 1286 static long do_splice(struct file *in, loff_t __user *off_in, 1287 struct file *out, loff_t __user *off_out, 1288 size_t len, unsigned int flags) 1289 { 1290 struct pipe_inode_info *ipipe; 1291 struct pipe_inode_info *opipe; 1292 loff_t offset, *off; 1293 long ret; 1294 1295 ipipe = pipe_info(in->f_path.dentry->d_inode); 1296 opipe = pipe_info(out->f_path.dentry->d_inode); 1297 1298 if (ipipe && opipe) { 1299 if (off_in || off_out) 1300 return -ESPIPE; 1301 1302 if (!(in->f_mode & FMODE_READ)) 1303 return -EBADF; 1304 1305 if (!(out->f_mode & FMODE_WRITE)) 1306 return -EBADF; 1307 1308 /* Splicing to self would be fun, but... */ 1309 if (ipipe == opipe) 1310 return -EINVAL; 1311 1312 return splice_pipe_to_pipe(ipipe, opipe, len, flags); 1313 } 1314 1315 if (ipipe) { 1316 if (off_in) 1317 return -ESPIPE; 1318 if (off_out) { 1319 if (out->f_op->llseek == no_llseek) 1320 return -EINVAL; 1321 if (copy_from_user(&offset, off_out, sizeof(loff_t))) 1322 return -EFAULT; 1323 off = &offset; 1324 } else 1325 off = &out->f_pos; 1326 1327 ret = do_splice_from(ipipe, out, off, len, flags); 1328 1329 if (off_out && copy_to_user(off_out, off, sizeof(loff_t))) 1330 ret = -EFAULT; 1331 1332 return ret; 1333 } 1334 1335 if (opipe) { 1336 if (off_out) 1337 return -ESPIPE; 1338 if (off_in) { 1339 if (in->f_op->llseek == no_llseek) 1340 return -EINVAL; 1341 if (copy_from_user(&offset, off_in, sizeof(loff_t))) 1342 return -EFAULT; 1343 off = &offset; 1344 } else 1345 off = &in->f_pos; 1346 1347 ret = do_splice_to(in, off, opipe, len, flags); 1348 1349 if (off_in && copy_to_user(off_in, off, sizeof(loff_t))) 1350 ret = -EFAULT; 1351 1352 return ret; 1353 } 1354 1355 return -EINVAL; 1356 } 1357 1358 /* 1359 * Map an iov into an array of pages and offset/length tupples. With the 1360 * partial_page structure, we can map several non-contiguous ranges into 1361 * our ones pages[] map instead of splitting that operation into pieces. 1362 * Could easily be exported as a generic helper for other users, in which 1363 * case one would probably want to add a 'max_nr_pages' parameter as well. 1364 */ 1365 static int get_iovec_page_array(const struct iovec __user *iov, 1366 unsigned int nr_vecs, struct page **pages, 1367 struct partial_page *partial, int aligned) 1368 { 1369 int buffers = 0, error = 0; 1370 1371 while (nr_vecs) { 1372 unsigned long off, npages; 1373 struct iovec entry; 1374 void __user *base; 1375 size_t len; 1376 int i; 1377 1378 error = -EFAULT; 1379 if (copy_from_user(&entry, iov, sizeof(entry))) 1380 break; 1381 1382 base = entry.iov_base; 1383 len = entry.iov_len; 1384 1385 /* 1386 * Sanity check this iovec. 0 read succeeds. 1387 */ 1388 error = 0; 1389 if (unlikely(!len)) 1390 break; 1391 error = -EFAULT; 1392 if (!access_ok(VERIFY_READ, base, len)) 1393 break; 1394 1395 /* 1396 * Get this base offset and number of pages, then map 1397 * in the user pages. 1398 */ 1399 off = (unsigned long) base & ~PAGE_MASK; 1400 1401 /* 1402 * If asked for alignment, the offset must be zero and the 1403 * length a multiple of the PAGE_SIZE. 1404 */ 1405 error = -EINVAL; 1406 if (aligned && (off || len & ~PAGE_MASK)) 1407 break; 1408 1409 npages = (off + len + PAGE_SIZE - 1) >> PAGE_SHIFT; 1410 if (npages > PIPE_BUFFERS - buffers) 1411 npages = PIPE_BUFFERS - buffers; 1412 1413 error = get_user_pages_fast((unsigned long)base, npages, 1414 0, &pages[buffers]); 1415 1416 if (unlikely(error <= 0)) 1417 break; 1418 1419 /* 1420 * Fill this contiguous range into the partial page map. 1421 */ 1422 for (i = 0; i < error; i++) { 1423 const int plen = min_t(size_t, len, PAGE_SIZE - off); 1424 1425 partial[buffers].offset = off; 1426 partial[buffers].len = plen; 1427 1428 off = 0; 1429 len -= plen; 1430 buffers++; 1431 } 1432 1433 /* 1434 * We didn't complete this iov, stop here since it probably 1435 * means we have to move some of this into a pipe to 1436 * be able to continue. 1437 */ 1438 if (len) 1439 break; 1440 1441 /* 1442 * Don't continue if we mapped fewer pages than we asked for, 1443 * or if we mapped the max number of pages that we have 1444 * room for. 1445 */ 1446 if (error < npages || buffers == PIPE_BUFFERS) 1447 break; 1448 1449 nr_vecs--; 1450 iov++; 1451 } 1452 1453 if (buffers) 1454 return buffers; 1455 1456 return error; 1457 } 1458 1459 static int pipe_to_user(struct pipe_inode_info *pipe, struct pipe_buffer *buf, 1460 struct splice_desc *sd) 1461 { 1462 char *src; 1463 int ret; 1464 1465 ret = buf->ops->confirm(pipe, buf); 1466 if (unlikely(ret)) 1467 return ret; 1468 1469 /* 1470 * See if we can use the atomic maps, by prefaulting in the 1471 * pages and doing an atomic copy 1472 */ 1473 if (!fault_in_pages_writeable(sd->u.userptr, sd->len)) { 1474 src = buf->ops->map(pipe, buf, 1); 1475 ret = __copy_to_user_inatomic(sd->u.userptr, src + buf->offset, 1476 sd->len); 1477 buf->ops->unmap(pipe, buf, src); 1478 if (!ret) { 1479 ret = sd->len; 1480 goto out; 1481 } 1482 } 1483 1484 /* 1485 * No dice, use slow non-atomic map and copy 1486 */ 1487 src = buf->ops->map(pipe, buf, 0); 1488 1489 ret = sd->len; 1490 if (copy_to_user(sd->u.userptr, src + buf->offset, sd->len)) 1491 ret = -EFAULT; 1492 1493 buf->ops->unmap(pipe, buf, src); 1494 out: 1495 if (ret > 0) 1496 sd->u.userptr += ret; 1497 return ret; 1498 } 1499 1500 /* 1501 * For lack of a better implementation, implement vmsplice() to userspace 1502 * as a simple copy of the pipes pages to the user iov. 1503 */ 1504 static long vmsplice_to_user(struct file *file, const struct iovec __user *iov, 1505 unsigned long nr_segs, unsigned int flags) 1506 { 1507 struct pipe_inode_info *pipe; 1508 struct splice_desc sd; 1509 ssize_t size; 1510 int error; 1511 long ret; 1512 1513 pipe = pipe_info(file->f_path.dentry->d_inode); 1514 if (!pipe) 1515 return -EBADF; 1516 1517 pipe_lock(pipe); 1518 1519 error = ret = 0; 1520 while (nr_segs) { 1521 void __user *base; 1522 size_t len; 1523 1524 /* 1525 * Get user address base and length for this iovec. 1526 */ 1527 error = get_user(base, &iov->iov_base); 1528 if (unlikely(error)) 1529 break; 1530 error = get_user(len, &iov->iov_len); 1531 if (unlikely(error)) 1532 break; 1533 1534 /* 1535 * Sanity check this iovec. 0 read succeeds. 1536 */ 1537 if (unlikely(!len)) 1538 break; 1539 if (unlikely(!base)) { 1540 error = -EFAULT; 1541 break; 1542 } 1543 1544 if (unlikely(!access_ok(VERIFY_WRITE, base, len))) { 1545 error = -EFAULT; 1546 break; 1547 } 1548 1549 sd.len = 0; 1550 sd.total_len = len; 1551 sd.flags = flags; 1552 sd.u.userptr = base; 1553 sd.pos = 0; 1554 1555 size = __splice_from_pipe(pipe, &sd, pipe_to_user); 1556 if (size < 0) { 1557 if (!ret) 1558 ret = size; 1559 1560 break; 1561 } 1562 1563 ret += size; 1564 1565 if (size < len) 1566 break; 1567 1568 nr_segs--; 1569 iov++; 1570 } 1571 1572 pipe_unlock(pipe); 1573 1574 if (!ret) 1575 ret = error; 1576 1577 return ret; 1578 } 1579 1580 /* 1581 * vmsplice splices a user address range into a pipe. It can be thought of 1582 * as splice-from-memory, where the regular splice is splice-from-file (or 1583 * to file). In both cases the output is a pipe, naturally. 1584 */ 1585 static long vmsplice_to_pipe(struct file *file, const struct iovec __user *iov, 1586 unsigned long nr_segs, unsigned int flags) 1587 { 1588 struct pipe_inode_info *pipe; 1589 struct page *pages[PIPE_BUFFERS]; 1590 struct partial_page partial[PIPE_BUFFERS]; 1591 struct splice_pipe_desc spd = { 1592 .pages = pages, 1593 .partial = partial, 1594 .flags = flags, 1595 .ops = &user_page_pipe_buf_ops, 1596 .spd_release = spd_release_page, 1597 }; 1598 1599 pipe = pipe_info(file->f_path.dentry->d_inode); 1600 if (!pipe) 1601 return -EBADF; 1602 1603 spd.nr_pages = get_iovec_page_array(iov, nr_segs, pages, partial, 1604 flags & SPLICE_F_GIFT); 1605 if (spd.nr_pages <= 0) 1606 return spd.nr_pages; 1607 1608 return splice_to_pipe(pipe, &spd); 1609 } 1610 1611 /* 1612 * Note that vmsplice only really supports true splicing _from_ user memory 1613 * to a pipe, not the other way around. Splicing from user memory is a simple 1614 * operation that can be supported without any funky alignment restrictions 1615 * or nasty vm tricks. We simply map in the user memory and fill them into 1616 * a pipe. The reverse isn't quite as easy, though. There are two possible 1617 * solutions for that: 1618 * 1619 * - memcpy() the data internally, at which point we might as well just 1620 * do a regular read() on the buffer anyway. 1621 * - Lots of nasty vm tricks, that are neither fast nor flexible (it 1622 * has restriction limitations on both ends of the pipe). 1623 * 1624 * Currently we punt and implement it as a normal copy, see pipe_to_user(). 1625 * 1626 */ 1627 SYSCALL_DEFINE4(vmsplice, int, fd, const struct iovec __user *, iov, 1628 unsigned long, nr_segs, unsigned int, flags) 1629 { 1630 struct file *file; 1631 long error; 1632 int fput; 1633 1634 if (unlikely(nr_segs > UIO_MAXIOV)) 1635 return -EINVAL; 1636 else if (unlikely(!nr_segs)) 1637 return 0; 1638 1639 error = -EBADF; 1640 file = fget_light(fd, &fput); 1641 if (file) { 1642 if (file->f_mode & FMODE_WRITE) 1643 error = vmsplice_to_pipe(file, iov, nr_segs, flags); 1644 else if (file->f_mode & FMODE_READ) 1645 error = vmsplice_to_user(file, iov, nr_segs, flags); 1646 1647 fput_light(file, fput); 1648 } 1649 1650 return error; 1651 } 1652 1653 SYSCALL_DEFINE6(splice, int, fd_in, loff_t __user *, off_in, 1654 int, fd_out, loff_t __user *, off_out, 1655 size_t, len, unsigned int, flags) 1656 { 1657 long error; 1658 struct file *in, *out; 1659 int fput_in, fput_out; 1660 1661 if (unlikely(!len)) 1662 return 0; 1663 1664 error = -EBADF; 1665 in = fget_light(fd_in, &fput_in); 1666 if (in) { 1667 if (in->f_mode & FMODE_READ) { 1668 out = fget_light(fd_out, &fput_out); 1669 if (out) { 1670 if (out->f_mode & FMODE_WRITE) 1671 error = do_splice(in, off_in, 1672 out, off_out, 1673 len, flags); 1674 fput_light(out, fput_out); 1675 } 1676 } 1677 1678 fput_light(in, fput_in); 1679 } 1680 1681 return error; 1682 } 1683 1684 /* 1685 * Make sure there's data to read. Wait for input if we can, otherwise 1686 * return an appropriate error. 1687 */ 1688 static int ipipe_prep(struct pipe_inode_info *pipe, unsigned int flags) 1689 { 1690 int ret; 1691 1692 /* 1693 * Check ->nrbufs without the inode lock first. This function 1694 * is speculative anyways, so missing one is ok. 1695 */ 1696 if (pipe->nrbufs) 1697 return 0; 1698 1699 ret = 0; 1700 pipe_lock(pipe); 1701 1702 while (!pipe->nrbufs) { 1703 if (signal_pending(current)) { 1704 ret = -ERESTARTSYS; 1705 break; 1706 } 1707 if (!pipe->writers) 1708 break; 1709 if (!pipe->waiting_writers) { 1710 if (flags & SPLICE_F_NONBLOCK) { 1711 ret = -EAGAIN; 1712 break; 1713 } 1714 } 1715 pipe_wait(pipe); 1716 } 1717 1718 pipe_unlock(pipe); 1719 return ret; 1720 } 1721 1722 /* 1723 * Make sure there's writeable room. Wait for room if we can, otherwise 1724 * return an appropriate error. 1725 */ 1726 static int opipe_prep(struct pipe_inode_info *pipe, unsigned int flags) 1727 { 1728 int ret; 1729 1730 /* 1731 * Check ->nrbufs without the inode lock first. This function 1732 * is speculative anyways, so missing one is ok. 1733 */ 1734 if (pipe->nrbufs < PIPE_BUFFERS) 1735 return 0; 1736 1737 ret = 0; 1738 pipe_lock(pipe); 1739 1740 while (pipe->nrbufs >= PIPE_BUFFERS) { 1741 if (!pipe->readers) { 1742 send_sig(SIGPIPE, current, 0); 1743 ret = -EPIPE; 1744 break; 1745 } 1746 if (flags & SPLICE_F_NONBLOCK) { 1747 ret = -EAGAIN; 1748 break; 1749 } 1750 if (signal_pending(current)) { 1751 ret = -ERESTARTSYS; 1752 break; 1753 } 1754 pipe->waiting_writers++; 1755 pipe_wait(pipe); 1756 pipe->waiting_writers--; 1757 } 1758 1759 pipe_unlock(pipe); 1760 return ret; 1761 } 1762 1763 /* 1764 * Splice contents of ipipe to opipe. 1765 */ 1766 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe, 1767 struct pipe_inode_info *opipe, 1768 size_t len, unsigned int flags) 1769 { 1770 struct pipe_buffer *ibuf, *obuf; 1771 int ret = 0, nbuf; 1772 bool input_wakeup = false; 1773 1774 1775 retry: 1776 ret = ipipe_prep(ipipe, flags); 1777 if (ret) 1778 return ret; 1779 1780 ret = opipe_prep(opipe, flags); 1781 if (ret) 1782 return ret; 1783 1784 /* 1785 * Potential ABBA deadlock, work around it by ordering lock 1786 * grabbing by pipe info address. Otherwise two different processes 1787 * could deadlock (one doing tee from A -> B, the other from B -> A). 1788 */ 1789 pipe_double_lock(ipipe, opipe); 1790 1791 do { 1792 if (!opipe->readers) { 1793 send_sig(SIGPIPE, current, 0); 1794 if (!ret) 1795 ret = -EPIPE; 1796 break; 1797 } 1798 1799 if (!ipipe->nrbufs && !ipipe->writers) 1800 break; 1801 1802 /* 1803 * Cannot make any progress, because either the input 1804 * pipe is empty or the output pipe is full. 1805 */ 1806 if (!ipipe->nrbufs || opipe->nrbufs >= PIPE_BUFFERS) { 1807 /* Already processed some buffers, break */ 1808 if (ret) 1809 break; 1810 1811 if (flags & SPLICE_F_NONBLOCK) { 1812 ret = -EAGAIN; 1813 break; 1814 } 1815 1816 /* 1817 * We raced with another reader/writer and haven't 1818 * managed to process any buffers. A zero return 1819 * value means EOF, so retry instead. 1820 */ 1821 pipe_unlock(ipipe); 1822 pipe_unlock(opipe); 1823 goto retry; 1824 } 1825 1826 ibuf = ipipe->bufs + ipipe->curbuf; 1827 nbuf = (opipe->curbuf + opipe->nrbufs) % PIPE_BUFFERS; 1828 obuf = opipe->bufs + nbuf; 1829 1830 if (len >= ibuf->len) { 1831 /* 1832 * Simply move the whole buffer from ipipe to opipe 1833 */ 1834 *obuf = *ibuf; 1835 ibuf->ops = NULL; 1836 opipe->nrbufs++; 1837 ipipe->curbuf = (ipipe->curbuf + 1) % PIPE_BUFFERS; 1838 ipipe->nrbufs--; 1839 input_wakeup = true; 1840 } else { 1841 /* 1842 * Get a reference to this pipe buffer, 1843 * so we can copy the contents over. 1844 */ 1845 ibuf->ops->get(ipipe, ibuf); 1846 *obuf = *ibuf; 1847 1848 /* 1849 * Don't inherit the gift flag, we need to 1850 * prevent multiple steals of this page. 1851 */ 1852 obuf->flags &= ~PIPE_BUF_FLAG_GIFT; 1853 1854 obuf->len = len; 1855 opipe->nrbufs++; 1856 ibuf->offset += obuf->len; 1857 ibuf->len -= obuf->len; 1858 } 1859 ret += obuf->len; 1860 len -= obuf->len; 1861 } while (len); 1862 1863 pipe_unlock(ipipe); 1864 pipe_unlock(opipe); 1865 1866 /* 1867 * If we put data in the output pipe, wakeup any potential readers. 1868 */ 1869 if (ret > 0) { 1870 smp_mb(); 1871 if (waitqueue_active(&opipe->wait)) 1872 wake_up_interruptible(&opipe->wait); 1873 kill_fasync(&opipe->fasync_readers, SIGIO, POLL_IN); 1874 } 1875 if (input_wakeup) 1876 wakeup_pipe_writers(ipipe); 1877 1878 return ret; 1879 } 1880 1881 /* 1882 * Link contents of ipipe to opipe. 1883 */ 1884 static int link_pipe(struct pipe_inode_info *ipipe, 1885 struct pipe_inode_info *opipe, 1886 size_t len, unsigned int flags) 1887 { 1888 struct pipe_buffer *ibuf, *obuf; 1889 int ret = 0, i = 0, nbuf; 1890 1891 /* 1892 * Potential ABBA deadlock, work around it by ordering lock 1893 * grabbing by pipe info address. Otherwise two different processes 1894 * could deadlock (one doing tee from A -> B, the other from B -> A). 1895 */ 1896 pipe_double_lock(ipipe, opipe); 1897 1898 do { 1899 if (!opipe->readers) { 1900 send_sig(SIGPIPE, current, 0); 1901 if (!ret) 1902 ret = -EPIPE; 1903 break; 1904 } 1905 1906 /* 1907 * If we have iterated all input buffers or ran out of 1908 * output room, break. 1909 */ 1910 if (i >= ipipe->nrbufs || opipe->nrbufs >= PIPE_BUFFERS) 1911 break; 1912 1913 ibuf = ipipe->bufs + ((ipipe->curbuf + i) & (PIPE_BUFFERS - 1)); 1914 nbuf = (opipe->curbuf + opipe->nrbufs) & (PIPE_BUFFERS - 1); 1915 1916 /* 1917 * Get a reference to this pipe buffer, 1918 * so we can copy the contents over. 1919 */ 1920 ibuf->ops->get(ipipe, ibuf); 1921 1922 obuf = opipe->bufs + nbuf; 1923 *obuf = *ibuf; 1924 1925 /* 1926 * Don't inherit the gift flag, we need to 1927 * prevent multiple steals of this page. 1928 */ 1929 obuf->flags &= ~PIPE_BUF_FLAG_GIFT; 1930 1931 if (obuf->len > len) 1932 obuf->len = len; 1933 1934 opipe->nrbufs++; 1935 ret += obuf->len; 1936 len -= obuf->len; 1937 i++; 1938 } while (len); 1939 1940 /* 1941 * return EAGAIN if we have the potential of some data in the 1942 * future, otherwise just return 0 1943 */ 1944 if (!ret && ipipe->waiting_writers && (flags & SPLICE_F_NONBLOCK)) 1945 ret = -EAGAIN; 1946 1947 pipe_unlock(ipipe); 1948 pipe_unlock(opipe); 1949 1950 /* 1951 * If we put data in the output pipe, wakeup any potential readers. 1952 */ 1953 if (ret > 0) { 1954 smp_mb(); 1955 if (waitqueue_active(&opipe->wait)) 1956 wake_up_interruptible(&opipe->wait); 1957 kill_fasync(&opipe->fasync_readers, SIGIO, POLL_IN); 1958 } 1959 1960 return ret; 1961 } 1962 1963 /* 1964 * This is a tee(1) implementation that works on pipes. It doesn't copy 1965 * any data, it simply references the 'in' pages on the 'out' pipe. 1966 * The 'flags' used are the SPLICE_F_* variants, currently the only 1967 * applicable one is SPLICE_F_NONBLOCK. 1968 */ 1969 static long do_tee(struct file *in, struct file *out, size_t len, 1970 unsigned int flags) 1971 { 1972 struct pipe_inode_info *ipipe = pipe_info(in->f_path.dentry->d_inode); 1973 struct pipe_inode_info *opipe = pipe_info(out->f_path.dentry->d_inode); 1974 int ret = -EINVAL; 1975 1976 /* 1977 * Duplicate the contents of ipipe to opipe without actually 1978 * copying the data. 1979 */ 1980 if (ipipe && opipe && ipipe != opipe) { 1981 /* 1982 * Keep going, unless we encounter an error. The ipipe/opipe 1983 * ordering doesn't really matter. 1984 */ 1985 ret = ipipe_prep(ipipe, flags); 1986 if (!ret) { 1987 ret = opipe_prep(opipe, flags); 1988 if (!ret) 1989 ret = link_pipe(ipipe, opipe, len, flags); 1990 } 1991 } 1992 1993 return ret; 1994 } 1995 1996 SYSCALL_DEFINE4(tee, int, fdin, int, fdout, size_t, len, unsigned int, flags) 1997 { 1998 struct file *in; 1999 int error, fput_in; 2000 2001 if (unlikely(!len)) 2002 return 0; 2003 2004 error = -EBADF; 2005 in = fget_light(fdin, &fput_in); 2006 if (in) { 2007 if (in->f_mode & FMODE_READ) { 2008 int fput_out; 2009 struct file *out = fget_light(fdout, &fput_out); 2010 2011 if (out) { 2012 if (out->f_mode & FMODE_WRITE) 2013 error = do_tee(in, out, len, flags); 2014 fput_light(out, fput_out); 2015 } 2016 } 2017 fput_light(in, fput_in); 2018 } 2019 2020 return error; 2021 } 2022