xref: /linux/fs/splice.c (revision 5a0e3ad6af8660be21ca98a971cd00f331318c05)
1 /*
2  * "splice": joining two ropes together by interweaving their strands.
3  *
4  * This is the "extended pipe" functionality, where a pipe is used as
5  * an arbitrary in-memory buffer. Think of a pipe as a small kernel
6  * buffer that you can use to transfer data from one end to the other.
7  *
8  * The traditional unix read/write is extended with a "splice()" operation
9  * that transfers data buffers to or from a pipe buffer.
10  *
11  * Named by Larry McVoy, original implementation from Linus, extended by
12  * Jens to support splicing to files, network, direct splicing, etc and
13  * fixing lots of bugs.
14  *
15  * Copyright (C) 2005-2006 Jens Axboe <axboe@kernel.dk>
16  * Copyright (C) 2005-2006 Linus Torvalds <torvalds@osdl.org>
17  * Copyright (C) 2006 Ingo Molnar <mingo@elte.hu>
18  *
19  */
20 #include <linux/fs.h>
21 #include <linux/file.h>
22 #include <linux/pagemap.h>
23 #include <linux/splice.h>
24 #include <linux/memcontrol.h>
25 #include <linux/mm_inline.h>
26 #include <linux/swap.h>
27 #include <linux/writeback.h>
28 #include <linux/buffer_head.h>
29 #include <linux/module.h>
30 #include <linux/syscalls.h>
31 #include <linux/uio.h>
32 #include <linux/security.h>
33 #include <linux/gfp.h>
34 
35 /*
36  * Attempt to steal a page from a pipe buffer. This should perhaps go into
37  * a vm helper function, it's already simplified quite a bit by the
38  * addition of remove_mapping(). If success is returned, the caller may
39  * attempt to reuse this page for another destination.
40  */
41 static int page_cache_pipe_buf_steal(struct pipe_inode_info *pipe,
42 				     struct pipe_buffer *buf)
43 {
44 	struct page *page = buf->page;
45 	struct address_space *mapping;
46 
47 	lock_page(page);
48 
49 	mapping = page_mapping(page);
50 	if (mapping) {
51 		WARN_ON(!PageUptodate(page));
52 
53 		/*
54 		 * At least for ext2 with nobh option, we need to wait on
55 		 * writeback completing on this page, since we'll remove it
56 		 * from the pagecache.  Otherwise truncate wont wait on the
57 		 * page, allowing the disk blocks to be reused by someone else
58 		 * before we actually wrote our data to them. fs corruption
59 		 * ensues.
60 		 */
61 		wait_on_page_writeback(page);
62 
63 		if (page_has_private(page) &&
64 		    !try_to_release_page(page, GFP_KERNEL))
65 			goto out_unlock;
66 
67 		/*
68 		 * If we succeeded in removing the mapping, set LRU flag
69 		 * and return good.
70 		 */
71 		if (remove_mapping(mapping, page)) {
72 			buf->flags |= PIPE_BUF_FLAG_LRU;
73 			return 0;
74 		}
75 	}
76 
77 	/*
78 	 * Raced with truncate or failed to remove page from current
79 	 * address space, unlock and return failure.
80 	 */
81 out_unlock:
82 	unlock_page(page);
83 	return 1;
84 }
85 
86 static void page_cache_pipe_buf_release(struct pipe_inode_info *pipe,
87 					struct pipe_buffer *buf)
88 {
89 	page_cache_release(buf->page);
90 	buf->flags &= ~PIPE_BUF_FLAG_LRU;
91 }
92 
93 /*
94  * Check whether the contents of buf is OK to access. Since the content
95  * is a page cache page, IO may be in flight.
96  */
97 static int page_cache_pipe_buf_confirm(struct pipe_inode_info *pipe,
98 				       struct pipe_buffer *buf)
99 {
100 	struct page *page = buf->page;
101 	int err;
102 
103 	if (!PageUptodate(page)) {
104 		lock_page(page);
105 
106 		/*
107 		 * Page got truncated/unhashed. This will cause a 0-byte
108 		 * splice, if this is the first page.
109 		 */
110 		if (!page->mapping) {
111 			err = -ENODATA;
112 			goto error;
113 		}
114 
115 		/*
116 		 * Uh oh, read-error from disk.
117 		 */
118 		if (!PageUptodate(page)) {
119 			err = -EIO;
120 			goto error;
121 		}
122 
123 		/*
124 		 * Page is ok afterall, we are done.
125 		 */
126 		unlock_page(page);
127 	}
128 
129 	return 0;
130 error:
131 	unlock_page(page);
132 	return err;
133 }
134 
135 static const struct pipe_buf_operations page_cache_pipe_buf_ops = {
136 	.can_merge = 0,
137 	.map = generic_pipe_buf_map,
138 	.unmap = generic_pipe_buf_unmap,
139 	.confirm = page_cache_pipe_buf_confirm,
140 	.release = page_cache_pipe_buf_release,
141 	.steal = page_cache_pipe_buf_steal,
142 	.get = generic_pipe_buf_get,
143 };
144 
145 static int user_page_pipe_buf_steal(struct pipe_inode_info *pipe,
146 				    struct pipe_buffer *buf)
147 {
148 	if (!(buf->flags & PIPE_BUF_FLAG_GIFT))
149 		return 1;
150 
151 	buf->flags |= PIPE_BUF_FLAG_LRU;
152 	return generic_pipe_buf_steal(pipe, buf);
153 }
154 
155 static const struct pipe_buf_operations user_page_pipe_buf_ops = {
156 	.can_merge = 0,
157 	.map = generic_pipe_buf_map,
158 	.unmap = generic_pipe_buf_unmap,
159 	.confirm = generic_pipe_buf_confirm,
160 	.release = page_cache_pipe_buf_release,
161 	.steal = user_page_pipe_buf_steal,
162 	.get = generic_pipe_buf_get,
163 };
164 
165 /**
166  * splice_to_pipe - fill passed data into a pipe
167  * @pipe:	pipe to fill
168  * @spd:	data to fill
169  *
170  * Description:
171  *    @spd contains a map of pages and len/offset tuples, along with
172  *    the struct pipe_buf_operations associated with these pages. This
173  *    function will link that data to the pipe.
174  *
175  */
176 ssize_t splice_to_pipe(struct pipe_inode_info *pipe,
177 		       struct splice_pipe_desc *spd)
178 {
179 	unsigned int spd_pages = spd->nr_pages;
180 	int ret, do_wakeup, page_nr;
181 
182 	ret = 0;
183 	do_wakeup = 0;
184 	page_nr = 0;
185 
186 	pipe_lock(pipe);
187 
188 	for (;;) {
189 		if (!pipe->readers) {
190 			send_sig(SIGPIPE, current, 0);
191 			if (!ret)
192 				ret = -EPIPE;
193 			break;
194 		}
195 
196 		if (pipe->nrbufs < PIPE_BUFFERS) {
197 			int newbuf = (pipe->curbuf + pipe->nrbufs) & (PIPE_BUFFERS - 1);
198 			struct pipe_buffer *buf = pipe->bufs + newbuf;
199 
200 			buf->page = spd->pages[page_nr];
201 			buf->offset = spd->partial[page_nr].offset;
202 			buf->len = spd->partial[page_nr].len;
203 			buf->private = spd->partial[page_nr].private;
204 			buf->ops = spd->ops;
205 			if (spd->flags & SPLICE_F_GIFT)
206 				buf->flags |= PIPE_BUF_FLAG_GIFT;
207 
208 			pipe->nrbufs++;
209 			page_nr++;
210 			ret += buf->len;
211 
212 			if (pipe->inode)
213 				do_wakeup = 1;
214 
215 			if (!--spd->nr_pages)
216 				break;
217 			if (pipe->nrbufs < PIPE_BUFFERS)
218 				continue;
219 
220 			break;
221 		}
222 
223 		if (spd->flags & SPLICE_F_NONBLOCK) {
224 			if (!ret)
225 				ret = -EAGAIN;
226 			break;
227 		}
228 
229 		if (signal_pending(current)) {
230 			if (!ret)
231 				ret = -ERESTARTSYS;
232 			break;
233 		}
234 
235 		if (do_wakeup) {
236 			smp_mb();
237 			if (waitqueue_active(&pipe->wait))
238 				wake_up_interruptible_sync(&pipe->wait);
239 			kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
240 			do_wakeup = 0;
241 		}
242 
243 		pipe->waiting_writers++;
244 		pipe_wait(pipe);
245 		pipe->waiting_writers--;
246 	}
247 
248 	pipe_unlock(pipe);
249 
250 	if (do_wakeup) {
251 		smp_mb();
252 		if (waitqueue_active(&pipe->wait))
253 			wake_up_interruptible(&pipe->wait);
254 		kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
255 	}
256 
257 	while (page_nr < spd_pages)
258 		spd->spd_release(spd, page_nr++);
259 
260 	return ret;
261 }
262 
263 static void spd_release_page(struct splice_pipe_desc *spd, unsigned int i)
264 {
265 	page_cache_release(spd->pages[i]);
266 }
267 
268 static int
269 __generic_file_splice_read(struct file *in, loff_t *ppos,
270 			   struct pipe_inode_info *pipe, size_t len,
271 			   unsigned int flags)
272 {
273 	struct address_space *mapping = in->f_mapping;
274 	unsigned int loff, nr_pages, req_pages;
275 	struct page *pages[PIPE_BUFFERS];
276 	struct partial_page partial[PIPE_BUFFERS];
277 	struct page *page;
278 	pgoff_t index, end_index;
279 	loff_t isize;
280 	int error, page_nr;
281 	struct splice_pipe_desc spd = {
282 		.pages = pages,
283 		.partial = partial,
284 		.flags = flags,
285 		.ops = &page_cache_pipe_buf_ops,
286 		.spd_release = spd_release_page,
287 	};
288 
289 	index = *ppos >> PAGE_CACHE_SHIFT;
290 	loff = *ppos & ~PAGE_CACHE_MASK;
291 	req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
292 	nr_pages = min(req_pages, (unsigned)PIPE_BUFFERS);
293 
294 	/*
295 	 * Lookup the (hopefully) full range of pages we need.
296 	 */
297 	spd.nr_pages = find_get_pages_contig(mapping, index, nr_pages, pages);
298 	index += spd.nr_pages;
299 
300 	/*
301 	 * If find_get_pages_contig() returned fewer pages than we needed,
302 	 * readahead/allocate the rest and fill in the holes.
303 	 */
304 	if (spd.nr_pages < nr_pages)
305 		page_cache_sync_readahead(mapping, &in->f_ra, in,
306 				index, req_pages - spd.nr_pages);
307 
308 	error = 0;
309 	while (spd.nr_pages < nr_pages) {
310 		/*
311 		 * Page could be there, find_get_pages_contig() breaks on
312 		 * the first hole.
313 		 */
314 		page = find_get_page(mapping, index);
315 		if (!page) {
316 			/*
317 			 * page didn't exist, allocate one.
318 			 */
319 			page = page_cache_alloc_cold(mapping);
320 			if (!page)
321 				break;
322 
323 			error = add_to_page_cache_lru(page, mapping, index,
324 						mapping_gfp_mask(mapping));
325 			if (unlikely(error)) {
326 				page_cache_release(page);
327 				if (error == -EEXIST)
328 					continue;
329 				break;
330 			}
331 			/*
332 			 * add_to_page_cache() locks the page, unlock it
333 			 * to avoid convoluting the logic below even more.
334 			 */
335 			unlock_page(page);
336 		}
337 
338 		pages[spd.nr_pages++] = page;
339 		index++;
340 	}
341 
342 	/*
343 	 * Now loop over the map and see if we need to start IO on any
344 	 * pages, fill in the partial map, etc.
345 	 */
346 	index = *ppos >> PAGE_CACHE_SHIFT;
347 	nr_pages = spd.nr_pages;
348 	spd.nr_pages = 0;
349 	for (page_nr = 0; page_nr < nr_pages; page_nr++) {
350 		unsigned int this_len;
351 
352 		if (!len)
353 			break;
354 
355 		/*
356 		 * this_len is the max we'll use from this page
357 		 */
358 		this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
359 		page = pages[page_nr];
360 
361 		if (PageReadahead(page))
362 			page_cache_async_readahead(mapping, &in->f_ra, in,
363 					page, index, req_pages - page_nr);
364 
365 		/*
366 		 * If the page isn't uptodate, we may need to start io on it
367 		 */
368 		if (!PageUptodate(page)) {
369 			/*
370 			 * If in nonblock mode then dont block on waiting
371 			 * for an in-flight io page
372 			 */
373 			if (flags & SPLICE_F_NONBLOCK) {
374 				if (!trylock_page(page)) {
375 					error = -EAGAIN;
376 					break;
377 				}
378 			} else
379 				lock_page(page);
380 
381 			/*
382 			 * Page was truncated, or invalidated by the
383 			 * filesystem.  Redo the find/create, but this time the
384 			 * page is kept locked, so there's no chance of another
385 			 * race with truncate/invalidate.
386 			 */
387 			if (!page->mapping) {
388 				unlock_page(page);
389 				page = find_or_create_page(mapping, index,
390 						mapping_gfp_mask(mapping));
391 
392 				if (!page) {
393 					error = -ENOMEM;
394 					break;
395 				}
396 				page_cache_release(pages[page_nr]);
397 				pages[page_nr] = page;
398 			}
399 			/*
400 			 * page was already under io and is now done, great
401 			 */
402 			if (PageUptodate(page)) {
403 				unlock_page(page);
404 				goto fill_it;
405 			}
406 
407 			/*
408 			 * need to read in the page
409 			 */
410 			error = mapping->a_ops->readpage(in, page);
411 			if (unlikely(error)) {
412 				/*
413 				 * We really should re-lookup the page here,
414 				 * but it complicates things a lot. Instead
415 				 * lets just do what we already stored, and
416 				 * we'll get it the next time we are called.
417 				 */
418 				if (error == AOP_TRUNCATED_PAGE)
419 					error = 0;
420 
421 				break;
422 			}
423 		}
424 fill_it:
425 		/*
426 		 * i_size must be checked after PageUptodate.
427 		 */
428 		isize = i_size_read(mapping->host);
429 		end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
430 		if (unlikely(!isize || index > end_index))
431 			break;
432 
433 		/*
434 		 * if this is the last page, see if we need to shrink
435 		 * the length and stop
436 		 */
437 		if (end_index == index) {
438 			unsigned int plen;
439 
440 			/*
441 			 * max good bytes in this page
442 			 */
443 			plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
444 			if (plen <= loff)
445 				break;
446 
447 			/*
448 			 * force quit after adding this page
449 			 */
450 			this_len = min(this_len, plen - loff);
451 			len = this_len;
452 		}
453 
454 		partial[page_nr].offset = loff;
455 		partial[page_nr].len = this_len;
456 		len -= this_len;
457 		loff = 0;
458 		spd.nr_pages++;
459 		index++;
460 	}
461 
462 	/*
463 	 * Release any pages at the end, if we quit early. 'page_nr' is how far
464 	 * we got, 'nr_pages' is how many pages are in the map.
465 	 */
466 	while (page_nr < nr_pages)
467 		page_cache_release(pages[page_nr++]);
468 	in->f_ra.prev_pos = (loff_t)index << PAGE_CACHE_SHIFT;
469 
470 	if (spd.nr_pages)
471 		return splice_to_pipe(pipe, &spd);
472 
473 	return error;
474 }
475 
476 /**
477  * generic_file_splice_read - splice data from file to a pipe
478  * @in:		file to splice from
479  * @ppos:	position in @in
480  * @pipe:	pipe to splice to
481  * @len:	number of bytes to splice
482  * @flags:	splice modifier flags
483  *
484  * Description:
485  *    Will read pages from given file and fill them into a pipe. Can be
486  *    used as long as the address_space operations for the source implements
487  *    a readpage() hook.
488  *
489  */
490 ssize_t generic_file_splice_read(struct file *in, loff_t *ppos,
491 				 struct pipe_inode_info *pipe, size_t len,
492 				 unsigned int flags)
493 {
494 	loff_t isize, left;
495 	int ret;
496 
497 	isize = i_size_read(in->f_mapping->host);
498 	if (unlikely(*ppos >= isize))
499 		return 0;
500 
501 	left = isize - *ppos;
502 	if (unlikely(left < len))
503 		len = left;
504 
505 	ret = __generic_file_splice_read(in, ppos, pipe, len, flags);
506 	if (ret > 0) {
507 		*ppos += ret;
508 		file_accessed(in);
509 	}
510 
511 	return ret;
512 }
513 EXPORT_SYMBOL(generic_file_splice_read);
514 
515 static const struct pipe_buf_operations default_pipe_buf_ops = {
516 	.can_merge = 0,
517 	.map = generic_pipe_buf_map,
518 	.unmap = generic_pipe_buf_unmap,
519 	.confirm = generic_pipe_buf_confirm,
520 	.release = generic_pipe_buf_release,
521 	.steal = generic_pipe_buf_steal,
522 	.get = generic_pipe_buf_get,
523 };
524 
525 static ssize_t kernel_readv(struct file *file, const struct iovec *vec,
526 			    unsigned long vlen, loff_t offset)
527 {
528 	mm_segment_t old_fs;
529 	loff_t pos = offset;
530 	ssize_t res;
531 
532 	old_fs = get_fs();
533 	set_fs(get_ds());
534 	/* The cast to a user pointer is valid due to the set_fs() */
535 	res = vfs_readv(file, (const struct iovec __user *)vec, vlen, &pos);
536 	set_fs(old_fs);
537 
538 	return res;
539 }
540 
541 static ssize_t kernel_write(struct file *file, const char *buf, size_t count,
542 			    loff_t pos)
543 {
544 	mm_segment_t old_fs;
545 	ssize_t res;
546 
547 	old_fs = get_fs();
548 	set_fs(get_ds());
549 	/* The cast to a user pointer is valid due to the set_fs() */
550 	res = vfs_write(file, (const char __user *)buf, count, &pos);
551 	set_fs(old_fs);
552 
553 	return res;
554 }
555 
556 ssize_t default_file_splice_read(struct file *in, loff_t *ppos,
557 				 struct pipe_inode_info *pipe, size_t len,
558 				 unsigned int flags)
559 {
560 	unsigned int nr_pages;
561 	unsigned int nr_freed;
562 	size_t offset;
563 	struct page *pages[PIPE_BUFFERS];
564 	struct partial_page partial[PIPE_BUFFERS];
565 	struct iovec vec[PIPE_BUFFERS];
566 	pgoff_t index;
567 	ssize_t res;
568 	size_t this_len;
569 	int error;
570 	int i;
571 	struct splice_pipe_desc spd = {
572 		.pages = pages,
573 		.partial = partial,
574 		.flags = flags,
575 		.ops = &default_pipe_buf_ops,
576 		.spd_release = spd_release_page,
577 	};
578 
579 	index = *ppos >> PAGE_CACHE_SHIFT;
580 	offset = *ppos & ~PAGE_CACHE_MASK;
581 	nr_pages = (len + offset + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
582 
583 	for (i = 0; i < nr_pages && i < PIPE_BUFFERS && len; i++) {
584 		struct page *page;
585 
586 		page = alloc_page(GFP_USER);
587 		error = -ENOMEM;
588 		if (!page)
589 			goto err;
590 
591 		this_len = min_t(size_t, len, PAGE_CACHE_SIZE - offset);
592 		vec[i].iov_base = (void __user *) page_address(page);
593 		vec[i].iov_len = this_len;
594 		pages[i] = page;
595 		spd.nr_pages++;
596 		len -= this_len;
597 		offset = 0;
598 	}
599 
600 	res = kernel_readv(in, vec, spd.nr_pages, *ppos);
601 	if (res < 0) {
602 		error = res;
603 		goto err;
604 	}
605 
606 	error = 0;
607 	if (!res)
608 		goto err;
609 
610 	nr_freed = 0;
611 	for (i = 0; i < spd.nr_pages; i++) {
612 		this_len = min_t(size_t, vec[i].iov_len, res);
613 		partial[i].offset = 0;
614 		partial[i].len = this_len;
615 		if (!this_len) {
616 			__free_page(pages[i]);
617 			pages[i] = NULL;
618 			nr_freed++;
619 		}
620 		res -= this_len;
621 	}
622 	spd.nr_pages -= nr_freed;
623 
624 	res = splice_to_pipe(pipe, &spd);
625 	if (res > 0)
626 		*ppos += res;
627 
628 	return res;
629 
630 err:
631 	for (i = 0; i < spd.nr_pages; i++)
632 		__free_page(pages[i]);
633 
634 	return error;
635 }
636 EXPORT_SYMBOL(default_file_splice_read);
637 
638 /*
639  * Send 'sd->len' bytes to socket from 'sd->file' at position 'sd->pos'
640  * using sendpage(). Return the number of bytes sent.
641  */
642 static int pipe_to_sendpage(struct pipe_inode_info *pipe,
643 			    struct pipe_buffer *buf, struct splice_desc *sd)
644 {
645 	struct file *file = sd->u.file;
646 	loff_t pos = sd->pos;
647 	int ret, more;
648 
649 	ret = buf->ops->confirm(pipe, buf);
650 	if (!ret) {
651 		more = (sd->flags & SPLICE_F_MORE) || sd->len < sd->total_len;
652 		if (file->f_op && file->f_op->sendpage)
653 			ret = file->f_op->sendpage(file, buf->page, buf->offset,
654 						   sd->len, &pos, more);
655 		else
656 			ret = -EINVAL;
657 	}
658 
659 	return ret;
660 }
661 
662 /*
663  * This is a little more tricky than the file -> pipe splicing. There are
664  * basically three cases:
665  *
666  *	- Destination page already exists in the address space and there
667  *	  are users of it. For that case we have no other option that
668  *	  copying the data. Tough luck.
669  *	- Destination page already exists in the address space, but there
670  *	  are no users of it. Make sure it's uptodate, then drop it. Fall
671  *	  through to last case.
672  *	- Destination page does not exist, we can add the pipe page to
673  *	  the page cache and avoid the copy.
674  *
675  * If asked to move pages to the output file (SPLICE_F_MOVE is set in
676  * sd->flags), we attempt to migrate pages from the pipe to the output
677  * file address space page cache. This is possible if no one else has
678  * the pipe page referenced outside of the pipe and page cache. If
679  * SPLICE_F_MOVE isn't set, or we cannot move the page, we simply create
680  * a new page in the output file page cache and fill/dirty that.
681  */
682 int pipe_to_file(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
683 		 struct splice_desc *sd)
684 {
685 	struct file *file = sd->u.file;
686 	struct address_space *mapping = file->f_mapping;
687 	unsigned int offset, this_len;
688 	struct page *page;
689 	void *fsdata;
690 	int ret;
691 
692 	/*
693 	 * make sure the data in this buffer is uptodate
694 	 */
695 	ret = buf->ops->confirm(pipe, buf);
696 	if (unlikely(ret))
697 		return ret;
698 
699 	offset = sd->pos & ~PAGE_CACHE_MASK;
700 
701 	this_len = sd->len;
702 	if (this_len + offset > PAGE_CACHE_SIZE)
703 		this_len = PAGE_CACHE_SIZE - offset;
704 
705 	ret = pagecache_write_begin(file, mapping, sd->pos, this_len,
706 				AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
707 	if (unlikely(ret))
708 		goto out;
709 
710 	if (buf->page != page) {
711 		/*
712 		 * Careful, ->map() uses KM_USER0!
713 		 */
714 		char *src = buf->ops->map(pipe, buf, 1);
715 		char *dst = kmap_atomic(page, KM_USER1);
716 
717 		memcpy(dst + offset, src + buf->offset, this_len);
718 		flush_dcache_page(page);
719 		kunmap_atomic(dst, KM_USER1);
720 		buf->ops->unmap(pipe, buf, src);
721 	}
722 	ret = pagecache_write_end(file, mapping, sd->pos, this_len, this_len,
723 				page, fsdata);
724 out:
725 	return ret;
726 }
727 EXPORT_SYMBOL(pipe_to_file);
728 
729 static void wakeup_pipe_writers(struct pipe_inode_info *pipe)
730 {
731 	smp_mb();
732 	if (waitqueue_active(&pipe->wait))
733 		wake_up_interruptible(&pipe->wait);
734 	kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
735 }
736 
737 /**
738  * splice_from_pipe_feed - feed available data from a pipe to a file
739  * @pipe:	pipe to splice from
740  * @sd:		information to @actor
741  * @actor:	handler that splices the data
742  *
743  * Description:
744  *    This function loops over the pipe and calls @actor to do the
745  *    actual moving of a single struct pipe_buffer to the desired
746  *    destination.  It returns when there's no more buffers left in
747  *    the pipe or if the requested number of bytes (@sd->total_len)
748  *    have been copied.  It returns a positive number (one) if the
749  *    pipe needs to be filled with more data, zero if the required
750  *    number of bytes have been copied and -errno on error.
751  *
752  *    This, together with splice_from_pipe_{begin,end,next}, may be
753  *    used to implement the functionality of __splice_from_pipe() when
754  *    locking is required around copying the pipe buffers to the
755  *    destination.
756  */
757 int splice_from_pipe_feed(struct pipe_inode_info *pipe, struct splice_desc *sd,
758 			  splice_actor *actor)
759 {
760 	int ret;
761 
762 	while (pipe->nrbufs) {
763 		struct pipe_buffer *buf = pipe->bufs + pipe->curbuf;
764 		const struct pipe_buf_operations *ops = buf->ops;
765 
766 		sd->len = buf->len;
767 		if (sd->len > sd->total_len)
768 			sd->len = sd->total_len;
769 
770 		ret = actor(pipe, buf, sd);
771 		if (ret <= 0) {
772 			if (ret == -ENODATA)
773 				ret = 0;
774 			return ret;
775 		}
776 		buf->offset += ret;
777 		buf->len -= ret;
778 
779 		sd->num_spliced += ret;
780 		sd->len -= ret;
781 		sd->pos += ret;
782 		sd->total_len -= ret;
783 
784 		if (!buf->len) {
785 			buf->ops = NULL;
786 			ops->release(pipe, buf);
787 			pipe->curbuf = (pipe->curbuf + 1) & (PIPE_BUFFERS - 1);
788 			pipe->nrbufs--;
789 			if (pipe->inode)
790 				sd->need_wakeup = true;
791 		}
792 
793 		if (!sd->total_len)
794 			return 0;
795 	}
796 
797 	return 1;
798 }
799 EXPORT_SYMBOL(splice_from_pipe_feed);
800 
801 /**
802  * splice_from_pipe_next - wait for some data to splice from
803  * @pipe:	pipe to splice from
804  * @sd:		information about the splice operation
805  *
806  * Description:
807  *    This function will wait for some data and return a positive
808  *    value (one) if pipe buffers are available.  It will return zero
809  *    or -errno if no more data needs to be spliced.
810  */
811 int splice_from_pipe_next(struct pipe_inode_info *pipe, struct splice_desc *sd)
812 {
813 	while (!pipe->nrbufs) {
814 		if (!pipe->writers)
815 			return 0;
816 
817 		if (!pipe->waiting_writers && sd->num_spliced)
818 			return 0;
819 
820 		if (sd->flags & SPLICE_F_NONBLOCK)
821 			return -EAGAIN;
822 
823 		if (signal_pending(current))
824 			return -ERESTARTSYS;
825 
826 		if (sd->need_wakeup) {
827 			wakeup_pipe_writers(pipe);
828 			sd->need_wakeup = false;
829 		}
830 
831 		pipe_wait(pipe);
832 	}
833 
834 	return 1;
835 }
836 EXPORT_SYMBOL(splice_from_pipe_next);
837 
838 /**
839  * splice_from_pipe_begin - start splicing from pipe
840  * @sd:		information about the splice operation
841  *
842  * Description:
843  *    This function should be called before a loop containing
844  *    splice_from_pipe_next() and splice_from_pipe_feed() to
845  *    initialize the necessary fields of @sd.
846  */
847 void splice_from_pipe_begin(struct splice_desc *sd)
848 {
849 	sd->num_spliced = 0;
850 	sd->need_wakeup = false;
851 }
852 EXPORT_SYMBOL(splice_from_pipe_begin);
853 
854 /**
855  * splice_from_pipe_end - finish splicing from pipe
856  * @pipe:	pipe to splice from
857  * @sd:		information about the splice operation
858  *
859  * Description:
860  *    This function will wake up pipe writers if necessary.  It should
861  *    be called after a loop containing splice_from_pipe_next() and
862  *    splice_from_pipe_feed().
863  */
864 void splice_from_pipe_end(struct pipe_inode_info *pipe, struct splice_desc *sd)
865 {
866 	if (sd->need_wakeup)
867 		wakeup_pipe_writers(pipe);
868 }
869 EXPORT_SYMBOL(splice_from_pipe_end);
870 
871 /**
872  * __splice_from_pipe - splice data from a pipe to given actor
873  * @pipe:	pipe to splice from
874  * @sd:		information to @actor
875  * @actor:	handler that splices the data
876  *
877  * Description:
878  *    This function does little more than loop over the pipe and call
879  *    @actor to do the actual moving of a single struct pipe_buffer to
880  *    the desired destination. See pipe_to_file, pipe_to_sendpage, or
881  *    pipe_to_user.
882  *
883  */
884 ssize_t __splice_from_pipe(struct pipe_inode_info *pipe, struct splice_desc *sd,
885 			   splice_actor *actor)
886 {
887 	int ret;
888 
889 	splice_from_pipe_begin(sd);
890 	do {
891 		ret = splice_from_pipe_next(pipe, sd);
892 		if (ret > 0)
893 			ret = splice_from_pipe_feed(pipe, sd, actor);
894 	} while (ret > 0);
895 	splice_from_pipe_end(pipe, sd);
896 
897 	return sd->num_spliced ? sd->num_spliced : ret;
898 }
899 EXPORT_SYMBOL(__splice_from_pipe);
900 
901 /**
902  * splice_from_pipe - splice data from a pipe to a file
903  * @pipe:	pipe to splice from
904  * @out:	file to splice to
905  * @ppos:	position in @out
906  * @len:	how many bytes to splice
907  * @flags:	splice modifier flags
908  * @actor:	handler that splices the data
909  *
910  * Description:
911  *    See __splice_from_pipe. This function locks the pipe inode,
912  *    otherwise it's identical to __splice_from_pipe().
913  *
914  */
915 ssize_t splice_from_pipe(struct pipe_inode_info *pipe, struct file *out,
916 			 loff_t *ppos, size_t len, unsigned int flags,
917 			 splice_actor *actor)
918 {
919 	ssize_t ret;
920 	struct splice_desc sd = {
921 		.total_len = len,
922 		.flags = flags,
923 		.pos = *ppos,
924 		.u.file = out,
925 	};
926 
927 	pipe_lock(pipe);
928 	ret = __splice_from_pipe(pipe, &sd, actor);
929 	pipe_unlock(pipe);
930 
931 	return ret;
932 }
933 
934 /**
935  * generic_file_splice_write - splice data from a pipe to a file
936  * @pipe:	pipe info
937  * @out:	file to write to
938  * @ppos:	position in @out
939  * @len:	number of bytes to splice
940  * @flags:	splice modifier flags
941  *
942  * Description:
943  *    Will either move or copy pages (determined by @flags options) from
944  *    the given pipe inode to the given file.
945  *
946  */
947 ssize_t
948 generic_file_splice_write(struct pipe_inode_info *pipe, struct file *out,
949 			  loff_t *ppos, size_t len, unsigned int flags)
950 {
951 	struct address_space *mapping = out->f_mapping;
952 	struct inode *inode = mapping->host;
953 	struct splice_desc sd = {
954 		.total_len = len,
955 		.flags = flags,
956 		.pos = *ppos,
957 		.u.file = out,
958 	};
959 	ssize_t ret;
960 
961 	pipe_lock(pipe);
962 
963 	splice_from_pipe_begin(&sd);
964 	do {
965 		ret = splice_from_pipe_next(pipe, &sd);
966 		if (ret <= 0)
967 			break;
968 
969 		mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
970 		ret = file_remove_suid(out);
971 		if (!ret) {
972 			file_update_time(out);
973 			ret = splice_from_pipe_feed(pipe, &sd, pipe_to_file);
974 		}
975 		mutex_unlock(&inode->i_mutex);
976 	} while (ret > 0);
977 	splice_from_pipe_end(pipe, &sd);
978 
979 	pipe_unlock(pipe);
980 
981 	if (sd.num_spliced)
982 		ret = sd.num_spliced;
983 
984 	if (ret > 0) {
985 		unsigned long nr_pages;
986 		int err;
987 
988 		nr_pages = (ret + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
989 
990 		err = generic_write_sync(out, *ppos, ret);
991 		if (err)
992 			ret = err;
993 		else
994 			*ppos += ret;
995 		balance_dirty_pages_ratelimited_nr(mapping, nr_pages);
996 	}
997 
998 	return ret;
999 }
1000 
1001 EXPORT_SYMBOL(generic_file_splice_write);
1002 
1003 static int write_pipe_buf(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1004 			  struct splice_desc *sd)
1005 {
1006 	int ret;
1007 	void *data;
1008 
1009 	ret = buf->ops->confirm(pipe, buf);
1010 	if (ret)
1011 		return ret;
1012 
1013 	data = buf->ops->map(pipe, buf, 0);
1014 	ret = kernel_write(sd->u.file, data + buf->offset, sd->len, sd->pos);
1015 	buf->ops->unmap(pipe, buf, data);
1016 
1017 	return ret;
1018 }
1019 
1020 static ssize_t default_file_splice_write(struct pipe_inode_info *pipe,
1021 					 struct file *out, loff_t *ppos,
1022 					 size_t len, unsigned int flags)
1023 {
1024 	ssize_t ret;
1025 
1026 	ret = splice_from_pipe(pipe, out, ppos, len, flags, write_pipe_buf);
1027 	if (ret > 0)
1028 		*ppos += ret;
1029 
1030 	return ret;
1031 }
1032 
1033 /**
1034  * generic_splice_sendpage - splice data from a pipe to a socket
1035  * @pipe:	pipe to splice from
1036  * @out:	socket to write to
1037  * @ppos:	position in @out
1038  * @len:	number of bytes to splice
1039  * @flags:	splice modifier flags
1040  *
1041  * Description:
1042  *    Will send @len bytes from the pipe to a network socket. No data copying
1043  *    is involved.
1044  *
1045  */
1046 ssize_t generic_splice_sendpage(struct pipe_inode_info *pipe, struct file *out,
1047 				loff_t *ppos, size_t len, unsigned int flags)
1048 {
1049 	return splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_sendpage);
1050 }
1051 
1052 EXPORT_SYMBOL(generic_splice_sendpage);
1053 
1054 /*
1055  * Attempt to initiate a splice from pipe to file.
1056  */
1057 static long do_splice_from(struct pipe_inode_info *pipe, struct file *out,
1058 			   loff_t *ppos, size_t len, unsigned int flags)
1059 {
1060 	ssize_t (*splice_write)(struct pipe_inode_info *, struct file *,
1061 				loff_t *, size_t, unsigned int);
1062 	int ret;
1063 
1064 	if (unlikely(!(out->f_mode & FMODE_WRITE)))
1065 		return -EBADF;
1066 
1067 	if (unlikely(out->f_flags & O_APPEND))
1068 		return -EINVAL;
1069 
1070 	ret = rw_verify_area(WRITE, out, ppos, len);
1071 	if (unlikely(ret < 0))
1072 		return ret;
1073 
1074 	if (out->f_op && out->f_op->splice_write)
1075 		splice_write = out->f_op->splice_write;
1076 	else
1077 		splice_write = default_file_splice_write;
1078 
1079 	return splice_write(pipe, out, ppos, len, flags);
1080 }
1081 
1082 /*
1083  * Attempt to initiate a splice from a file to a pipe.
1084  */
1085 static long do_splice_to(struct file *in, loff_t *ppos,
1086 			 struct pipe_inode_info *pipe, size_t len,
1087 			 unsigned int flags)
1088 {
1089 	ssize_t (*splice_read)(struct file *, loff_t *,
1090 			       struct pipe_inode_info *, size_t, unsigned int);
1091 	int ret;
1092 
1093 	if (unlikely(!(in->f_mode & FMODE_READ)))
1094 		return -EBADF;
1095 
1096 	ret = rw_verify_area(READ, in, ppos, len);
1097 	if (unlikely(ret < 0))
1098 		return ret;
1099 
1100 	if (in->f_op && in->f_op->splice_read)
1101 		splice_read = in->f_op->splice_read;
1102 	else
1103 		splice_read = default_file_splice_read;
1104 
1105 	return splice_read(in, ppos, pipe, len, flags);
1106 }
1107 
1108 /**
1109  * splice_direct_to_actor - splices data directly between two non-pipes
1110  * @in:		file to splice from
1111  * @sd:		actor information on where to splice to
1112  * @actor:	handles the data splicing
1113  *
1114  * Description:
1115  *    This is a special case helper to splice directly between two
1116  *    points, without requiring an explicit pipe. Internally an allocated
1117  *    pipe is cached in the process, and reused during the lifetime of
1118  *    that process.
1119  *
1120  */
1121 ssize_t splice_direct_to_actor(struct file *in, struct splice_desc *sd,
1122 			       splice_direct_actor *actor)
1123 {
1124 	struct pipe_inode_info *pipe;
1125 	long ret, bytes;
1126 	umode_t i_mode;
1127 	size_t len;
1128 	int i, flags;
1129 
1130 	/*
1131 	 * We require the input being a regular file, as we don't want to
1132 	 * randomly drop data for eg socket -> socket splicing. Use the
1133 	 * piped splicing for that!
1134 	 */
1135 	i_mode = in->f_path.dentry->d_inode->i_mode;
1136 	if (unlikely(!S_ISREG(i_mode) && !S_ISBLK(i_mode)))
1137 		return -EINVAL;
1138 
1139 	/*
1140 	 * neither in nor out is a pipe, setup an internal pipe attached to
1141 	 * 'out' and transfer the wanted data from 'in' to 'out' through that
1142 	 */
1143 	pipe = current->splice_pipe;
1144 	if (unlikely(!pipe)) {
1145 		pipe = alloc_pipe_info(NULL);
1146 		if (!pipe)
1147 			return -ENOMEM;
1148 
1149 		/*
1150 		 * We don't have an immediate reader, but we'll read the stuff
1151 		 * out of the pipe right after the splice_to_pipe(). So set
1152 		 * PIPE_READERS appropriately.
1153 		 */
1154 		pipe->readers = 1;
1155 
1156 		current->splice_pipe = pipe;
1157 	}
1158 
1159 	/*
1160 	 * Do the splice.
1161 	 */
1162 	ret = 0;
1163 	bytes = 0;
1164 	len = sd->total_len;
1165 	flags = sd->flags;
1166 
1167 	/*
1168 	 * Don't block on output, we have to drain the direct pipe.
1169 	 */
1170 	sd->flags &= ~SPLICE_F_NONBLOCK;
1171 
1172 	while (len) {
1173 		size_t read_len;
1174 		loff_t pos = sd->pos, prev_pos = pos;
1175 
1176 		ret = do_splice_to(in, &pos, pipe, len, flags);
1177 		if (unlikely(ret <= 0))
1178 			goto out_release;
1179 
1180 		read_len = ret;
1181 		sd->total_len = read_len;
1182 
1183 		/*
1184 		 * NOTE: nonblocking mode only applies to the input. We
1185 		 * must not do the output in nonblocking mode as then we
1186 		 * could get stuck data in the internal pipe:
1187 		 */
1188 		ret = actor(pipe, sd);
1189 		if (unlikely(ret <= 0)) {
1190 			sd->pos = prev_pos;
1191 			goto out_release;
1192 		}
1193 
1194 		bytes += ret;
1195 		len -= ret;
1196 		sd->pos = pos;
1197 
1198 		if (ret < read_len) {
1199 			sd->pos = prev_pos + ret;
1200 			goto out_release;
1201 		}
1202 	}
1203 
1204 done:
1205 	pipe->nrbufs = pipe->curbuf = 0;
1206 	file_accessed(in);
1207 	return bytes;
1208 
1209 out_release:
1210 	/*
1211 	 * If we did an incomplete transfer we must release
1212 	 * the pipe buffers in question:
1213 	 */
1214 	for (i = 0; i < PIPE_BUFFERS; i++) {
1215 		struct pipe_buffer *buf = pipe->bufs + i;
1216 
1217 		if (buf->ops) {
1218 			buf->ops->release(pipe, buf);
1219 			buf->ops = NULL;
1220 		}
1221 	}
1222 
1223 	if (!bytes)
1224 		bytes = ret;
1225 
1226 	goto done;
1227 }
1228 EXPORT_SYMBOL(splice_direct_to_actor);
1229 
1230 static int direct_splice_actor(struct pipe_inode_info *pipe,
1231 			       struct splice_desc *sd)
1232 {
1233 	struct file *file = sd->u.file;
1234 
1235 	return do_splice_from(pipe, file, &sd->pos, sd->total_len, sd->flags);
1236 }
1237 
1238 /**
1239  * do_splice_direct - splices data directly between two files
1240  * @in:		file to splice from
1241  * @ppos:	input file offset
1242  * @out:	file to splice to
1243  * @len:	number of bytes to splice
1244  * @flags:	splice modifier flags
1245  *
1246  * Description:
1247  *    For use by do_sendfile(). splice can easily emulate sendfile, but
1248  *    doing it in the application would incur an extra system call
1249  *    (splice in + splice out, as compared to just sendfile()). So this helper
1250  *    can splice directly through a process-private pipe.
1251  *
1252  */
1253 long do_splice_direct(struct file *in, loff_t *ppos, struct file *out,
1254 		      size_t len, unsigned int flags)
1255 {
1256 	struct splice_desc sd = {
1257 		.len		= len,
1258 		.total_len	= len,
1259 		.flags		= flags,
1260 		.pos		= *ppos,
1261 		.u.file		= out,
1262 	};
1263 	long ret;
1264 
1265 	ret = splice_direct_to_actor(in, &sd, direct_splice_actor);
1266 	if (ret > 0)
1267 		*ppos = sd.pos;
1268 
1269 	return ret;
1270 }
1271 
1272 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1273 			       struct pipe_inode_info *opipe,
1274 			       size_t len, unsigned int flags);
1275 /*
1276  * After the inode slimming patch, i_pipe/i_bdev/i_cdev share the same
1277  * location, so checking ->i_pipe is not enough to verify that this is a
1278  * pipe.
1279  */
1280 static inline struct pipe_inode_info *pipe_info(struct inode *inode)
1281 {
1282 	if (S_ISFIFO(inode->i_mode))
1283 		return inode->i_pipe;
1284 
1285 	return NULL;
1286 }
1287 
1288 /*
1289  * Determine where to splice to/from.
1290  */
1291 static long do_splice(struct file *in, loff_t __user *off_in,
1292 		      struct file *out, loff_t __user *off_out,
1293 		      size_t len, unsigned int flags)
1294 {
1295 	struct pipe_inode_info *ipipe;
1296 	struct pipe_inode_info *opipe;
1297 	loff_t offset, *off;
1298 	long ret;
1299 
1300 	ipipe = pipe_info(in->f_path.dentry->d_inode);
1301 	opipe = pipe_info(out->f_path.dentry->d_inode);
1302 
1303 	if (ipipe && opipe) {
1304 		if (off_in || off_out)
1305 			return -ESPIPE;
1306 
1307 		if (!(in->f_mode & FMODE_READ))
1308 			return -EBADF;
1309 
1310 		if (!(out->f_mode & FMODE_WRITE))
1311 			return -EBADF;
1312 
1313 		/* Splicing to self would be fun, but... */
1314 		if (ipipe == opipe)
1315 			return -EINVAL;
1316 
1317 		return splice_pipe_to_pipe(ipipe, opipe, len, flags);
1318 	}
1319 
1320 	if (ipipe) {
1321 		if (off_in)
1322 			return -ESPIPE;
1323 		if (off_out) {
1324 			if (!out->f_op || !out->f_op->llseek ||
1325 			    out->f_op->llseek == no_llseek)
1326 				return -EINVAL;
1327 			if (copy_from_user(&offset, off_out, sizeof(loff_t)))
1328 				return -EFAULT;
1329 			off = &offset;
1330 		} else
1331 			off = &out->f_pos;
1332 
1333 		ret = do_splice_from(ipipe, out, off, len, flags);
1334 
1335 		if (off_out && copy_to_user(off_out, off, sizeof(loff_t)))
1336 			ret = -EFAULT;
1337 
1338 		return ret;
1339 	}
1340 
1341 	if (opipe) {
1342 		if (off_out)
1343 			return -ESPIPE;
1344 		if (off_in) {
1345 			if (!in->f_op || !in->f_op->llseek ||
1346 			    in->f_op->llseek == no_llseek)
1347 				return -EINVAL;
1348 			if (copy_from_user(&offset, off_in, sizeof(loff_t)))
1349 				return -EFAULT;
1350 			off = &offset;
1351 		} else
1352 			off = &in->f_pos;
1353 
1354 		ret = do_splice_to(in, off, opipe, len, flags);
1355 
1356 		if (off_in && copy_to_user(off_in, off, sizeof(loff_t)))
1357 			ret = -EFAULT;
1358 
1359 		return ret;
1360 	}
1361 
1362 	return -EINVAL;
1363 }
1364 
1365 /*
1366  * Map an iov into an array of pages and offset/length tupples. With the
1367  * partial_page structure, we can map several non-contiguous ranges into
1368  * our ones pages[] map instead of splitting that operation into pieces.
1369  * Could easily be exported as a generic helper for other users, in which
1370  * case one would probably want to add a 'max_nr_pages' parameter as well.
1371  */
1372 static int get_iovec_page_array(const struct iovec __user *iov,
1373 				unsigned int nr_vecs, struct page **pages,
1374 				struct partial_page *partial, int aligned)
1375 {
1376 	int buffers = 0, error = 0;
1377 
1378 	while (nr_vecs) {
1379 		unsigned long off, npages;
1380 		struct iovec entry;
1381 		void __user *base;
1382 		size_t len;
1383 		int i;
1384 
1385 		error = -EFAULT;
1386 		if (copy_from_user(&entry, iov, sizeof(entry)))
1387 			break;
1388 
1389 		base = entry.iov_base;
1390 		len = entry.iov_len;
1391 
1392 		/*
1393 		 * Sanity check this iovec. 0 read succeeds.
1394 		 */
1395 		error = 0;
1396 		if (unlikely(!len))
1397 			break;
1398 		error = -EFAULT;
1399 		if (!access_ok(VERIFY_READ, base, len))
1400 			break;
1401 
1402 		/*
1403 		 * Get this base offset and number of pages, then map
1404 		 * in the user pages.
1405 		 */
1406 		off = (unsigned long) base & ~PAGE_MASK;
1407 
1408 		/*
1409 		 * If asked for alignment, the offset must be zero and the
1410 		 * length a multiple of the PAGE_SIZE.
1411 		 */
1412 		error = -EINVAL;
1413 		if (aligned && (off || len & ~PAGE_MASK))
1414 			break;
1415 
1416 		npages = (off + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1417 		if (npages > PIPE_BUFFERS - buffers)
1418 			npages = PIPE_BUFFERS - buffers;
1419 
1420 		error = get_user_pages_fast((unsigned long)base, npages,
1421 					0, &pages[buffers]);
1422 
1423 		if (unlikely(error <= 0))
1424 			break;
1425 
1426 		/*
1427 		 * Fill this contiguous range into the partial page map.
1428 		 */
1429 		for (i = 0; i < error; i++) {
1430 			const int plen = min_t(size_t, len, PAGE_SIZE - off);
1431 
1432 			partial[buffers].offset = off;
1433 			partial[buffers].len = plen;
1434 
1435 			off = 0;
1436 			len -= plen;
1437 			buffers++;
1438 		}
1439 
1440 		/*
1441 		 * We didn't complete this iov, stop here since it probably
1442 		 * means we have to move some of this into a pipe to
1443 		 * be able to continue.
1444 		 */
1445 		if (len)
1446 			break;
1447 
1448 		/*
1449 		 * Don't continue if we mapped fewer pages than we asked for,
1450 		 * or if we mapped the max number of pages that we have
1451 		 * room for.
1452 		 */
1453 		if (error < npages || buffers == PIPE_BUFFERS)
1454 			break;
1455 
1456 		nr_vecs--;
1457 		iov++;
1458 	}
1459 
1460 	if (buffers)
1461 		return buffers;
1462 
1463 	return error;
1464 }
1465 
1466 static int pipe_to_user(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1467 			struct splice_desc *sd)
1468 {
1469 	char *src;
1470 	int ret;
1471 
1472 	ret = buf->ops->confirm(pipe, buf);
1473 	if (unlikely(ret))
1474 		return ret;
1475 
1476 	/*
1477 	 * See if we can use the atomic maps, by prefaulting in the
1478 	 * pages and doing an atomic copy
1479 	 */
1480 	if (!fault_in_pages_writeable(sd->u.userptr, sd->len)) {
1481 		src = buf->ops->map(pipe, buf, 1);
1482 		ret = __copy_to_user_inatomic(sd->u.userptr, src + buf->offset,
1483 							sd->len);
1484 		buf->ops->unmap(pipe, buf, src);
1485 		if (!ret) {
1486 			ret = sd->len;
1487 			goto out;
1488 		}
1489 	}
1490 
1491 	/*
1492 	 * No dice, use slow non-atomic map and copy
1493  	 */
1494 	src = buf->ops->map(pipe, buf, 0);
1495 
1496 	ret = sd->len;
1497 	if (copy_to_user(sd->u.userptr, src + buf->offset, sd->len))
1498 		ret = -EFAULT;
1499 
1500 	buf->ops->unmap(pipe, buf, src);
1501 out:
1502 	if (ret > 0)
1503 		sd->u.userptr += ret;
1504 	return ret;
1505 }
1506 
1507 /*
1508  * For lack of a better implementation, implement vmsplice() to userspace
1509  * as a simple copy of the pipes pages to the user iov.
1510  */
1511 static long vmsplice_to_user(struct file *file, const struct iovec __user *iov,
1512 			     unsigned long nr_segs, unsigned int flags)
1513 {
1514 	struct pipe_inode_info *pipe;
1515 	struct splice_desc sd;
1516 	ssize_t size;
1517 	int error;
1518 	long ret;
1519 
1520 	pipe = pipe_info(file->f_path.dentry->d_inode);
1521 	if (!pipe)
1522 		return -EBADF;
1523 
1524 	pipe_lock(pipe);
1525 
1526 	error = ret = 0;
1527 	while (nr_segs) {
1528 		void __user *base;
1529 		size_t len;
1530 
1531 		/*
1532 		 * Get user address base and length for this iovec.
1533 		 */
1534 		error = get_user(base, &iov->iov_base);
1535 		if (unlikely(error))
1536 			break;
1537 		error = get_user(len, &iov->iov_len);
1538 		if (unlikely(error))
1539 			break;
1540 
1541 		/*
1542 		 * Sanity check this iovec. 0 read succeeds.
1543 		 */
1544 		if (unlikely(!len))
1545 			break;
1546 		if (unlikely(!base)) {
1547 			error = -EFAULT;
1548 			break;
1549 		}
1550 
1551 		if (unlikely(!access_ok(VERIFY_WRITE, base, len))) {
1552 			error = -EFAULT;
1553 			break;
1554 		}
1555 
1556 		sd.len = 0;
1557 		sd.total_len = len;
1558 		sd.flags = flags;
1559 		sd.u.userptr = base;
1560 		sd.pos = 0;
1561 
1562 		size = __splice_from_pipe(pipe, &sd, pipe_to_user);
1563 		if (size < 0) {
1564 			if (!ret)
1565 				ret = size;
1566 
1567 			break;
1568 		}
1569 
1570 		ret += size;
1571 
1572 		if (size < len)
1573 			break;
1574 
1575 		nr_segs--;
1576 		iov++;
1577 	}
1578 
1579 	pipe_unlock(pipe);
1580 
1581 	if (!ret)
1582 		ret = error;
1583 
1584 	return ret;
1585 }
1586 
1587 /*
1588  * vmsplice splices a user address range into a pipe. It can be thought of
1589  * as splice-from-memory, where the regular splice is splice-from-file (or
1590  * to file). In both cases the output is a pipe, naturally.
1591  */
1592 static long vmsplice_to_pipe(struct file *file, const struct iovec __user *iov,
1593 			     unsigned long nr_segs, unsigned int flags)
1594 {
1595 	struct pipe_inode_info *pipe;
1596 	struct page *pages[PIPE_BUFFERS];
1597 	struct partial_page partial[PIPE_BUFFERS];
1598 	struct splice_pipe_desc spd = {
1599 		.pages = pages,
1600 		.partial = partial,
1601 		.flags = flags,
1602 		.ops = &user_page_pipe_buf_ops,
1603 		.spd_release = spd_release_page,
1604 	};
1605 
1606 	pipe = pipe_info(file->f_path.dentry->d_inode);
1607 	if (!pipe)
1608 		return -EBADF;
1609 
1610 	spd.nr_pages = get_iovec_page_array(iov, nr_segs, pages, partial,
1611 					    flags & SPLICE_F_GIFT);
1612 	if (spd.nr_pages <= 0)
1613 		return spd.nr_pages;
1614 
1615 	return splice_to_pipe(pipe, &spd);
1616 }
1617 
1618 /*
1619  * Note that vmsplice only really supports true splicing _from_ user memory
1620  * to a pipe, not the other way around. Splicing from user memory is a simple
1621  * operation that can be supported without any funky alignment restrictions
1622  * or nasty vm tricks. We simply map in the user memory and fill them into
1623  * a pipe. The reverse isn't quite as easy, though. There are two possible
1624  * solutions for that:
1625  *
1626  *	- memcpy() the data internally, at which point we might as well just
1627  *	  do a regular read() on the buffer anyway.
1628  *	- Lots of nasty vm tricks, that are neither fast nor flexible (it
1629  *	  has restriction limitations on both ends of the pipe).
1630  *
1631  * Currently we punt and implement it as a normal copy, see pipe_to_user().
1632  *
1633  */
1634 SYSCALL_DEFINE4(vmsplice, int, fd, const struct iovec __user *, iov,
1635 		unsigned long, nr_segs, unsigned int, flags)
1636 {
1637 	struct file *file;
1638 	long error;
1639 	int fput;
1640 
1641 	if (unlikely(nr_segs > UIO_MAXIOV))
1642 		return -EINVAL;
1643 	else if (unlikely(!nr_segs))
1644 		return 0;
1645 
1646 	error = -EBADF;
1647 	file = fget_light(fd, &fput);
1648 	if (file) {
1649 		if (file->f_mode & FMODE_WRITE)
1650 			error = vmsplice_to_pipe(file, iov, nr_segs, flags);
1651 		else if (file->f_mode & FMODE_READ)
1652 			error = vmsplice_to_user(file, iov, nr_segs, flags);
1653 
1654 		fput_light(file, fput);
1655 	}
1656 
1657 	return error;
1658 }
1659 
1660 SYSCALL_DEFINE6(splice, int, fd_in, loff_t __user *, off_in,
1661 		int, fd_out, loff_t __user *, off_out,
1662 		size_t, len, unsigned int, flags)
1663 {
1664 	long error;
1665 	struct file *in, *out;
1666 	int fput_in, fput_out;
1667 
1668 	if (unlikely(!len))
1669 		return 0;
1670 
1671 	error = -EBADF;
1672 	in = fget_light(fd_in, &fput_in);
1673 	if (in) {
1674 		if (in->f_mode & FMODE_READ) {
1675 			out = fget_light(fd_out, &fput_out);
1676 			if (out) {
1677 				if (out->f_mode & FMODE_WRITE)
1678 					error = do_splice(in, off_in,
1679 							  out, off_out,
1680 							  len, flags);
1681 				fput_light(out, fput_out);
1682 			}
1683 		}
1684 
1685 		fput_light(in, fput_in);
1686 	}
1687 
1688 	return error;
1689 }
1690 
1691 /*
1692  * Make sure there's data to read. Wait for input if we can, otherwise
1693  * return an appropriate error.
1694  */
1695 static int ipipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1696 {
1697 	int ret;
1698 
1699 	/*
1700 	 * Check ->nrbufs without the inode lock first. This function
1701 	 * is speculative anyways, so missing one is ok.
1702 	 */
1703 	if (pipe->nrbufs)
1704 		return 0;
1705 
1706 	ret = 0;
1707 	pipe_lock(pipe);
1708 
1709 	while (!pipe->nrbufs) {
1710 		if (signal_pending(current)) {
1711 			ret = -ERESTARTSYS;
1712 			break;
1713 		}
1714 		if (!pipe->writers)
1715 			break;
1716 		if (!pipe->waiting_writers) {
1717 			if (flags & SPLICE_F_NONBLOCK) {
1718 				ret = -EAGAIN;
1719 				break;
1720 			}
1721 		}
1722 		pipe_wait(pipe);
1723 	}
1724 
1725 	pipe_unlock(pipe);
1726 	return ret;
1727 }
1728 
1729 /*
1730  * Make sure there's writeable room. Wait for room if we can, otherwise
1731  * return an appropriate error.
1732  */
1733 static int opipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1734 {
1735 	int ret;
1736 
1737 	/*
1738 	 * Check ->nrbufs without the inode lock first. This function
1739 	 * is speculative anyways, so missing one is ok.
1740 	 */
1741 	if (pipe->nrbufs < PIPE_BUFFERS)
1742 		return 0;
1743 
1744 	ret = 0;
1745 	pipe_lock(pipe);
1746 
1747 	while (pipe->nrbufs >= PIPE_BUFFERS) {
1748 		if (!pipe->readers) {
1749 			send_sig(SIGPIPE, current, 0);
1750 			ret = -EPIPE;
1751 			break;
1752 		}
1753 		if (flags & SPLICE_F_NONBLOCK) {
1754 			ret = -EAGAIN;
1755 			break;
1756 		}
1757 		if (signal_pending(current)) {
1758 			ret = -ERESTARTSYS;
1759 			break;
1760 		}
1761 		pipe->waiting_writers++;
1762 		pipe_wait(pipe);
1763 		pipe->waiting_writers--;
1764 	}
1765 
1766 	pipe_unlock(pipe);
1767 	return ret;
1768 }
1769 
1770 /*
1771  * Splice contents of ipipe to opipe.
1772  */
1773 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1774 			       struct pipe_inode_info *opipe,
1775 			       size_t len, unsigned int flags)
1776 {
1777 	struct pipe_buffer *ibuf, *obuf;
1778 	int ret = 0, nbuf;
1779 	bool input_wakeup = false;
1780 
1781 
1782 retry:
1783 	ret = ipipe_prep(ipipe, flags);
1784 	if (ret)
1785 		return ret;
1786 
1787 	ret = opipe_prep(opipe, flags);
1788 	if (ret)
1789 		return ret;
1790 
1791 	/*
1792 	 * Potential ABBA deadlock, work around it by ordering lock
1793 	 * grabbing by pipe info address. Otherwise two different processes
1794 	 * could deadlock (one doing tee from A -> B, the other from B -> A).
1795 	 */
1796 	pipe_double_lock(ipipe, opipe);
1797 
1798 	do {
1799 		if (!opipe->readers) {
1800 			send_sig(SIGPIPE, current, 0);
1801 			if (!ret)
1802 				ret = -EPIPE;
1803 			break;
1804 		}
1805 
1806 		if (!ipipe->nrbufs && !ipipe->writers)
1807 			break;
1808 
1809 		/*
1810 		 * Cannot make any progress, because either the input
1811 		 * pipe is empty or the output pipe is full.
1812 		 */
1813 		if (!ipipe->nrbufs || opipe->nrbufs >= PIPE_BUFFERS) {
1814 			/* Already processed some buffers, break */
1815 			if (ret)
1816 				break;
1817 
1818 			if (flags & SPLICE_F_NONBLOCK) {
1819 				ret = -EAGAIN;
1820 				break;
1821 			}
1822 
1823 			/*
1824 			 * We raced with another reader/writer and haven't
1825 			 * managed to process any buffers.  A zero return
1826 			 * value means EOF, so retry instead.
1827 			 */
1828 			pipe_unlock(ipipe);
1829 			pipe_unlock(opipe);
1830 			goto retry;
1831 		}
1832 
1833 		ibuf = ipipe->bufs + ipipe->curbuf;
1834 		nbuf = (opipe->curbuf + opipe->nrbufs) % PIPE_BUFFERS;
1835 		obuf = opipe->bufs + nbuf;
1836 
1837 		if (len >= ibuf->len) {
1838 			/*
1839 			 * Simply move the whole buffer from ipipe to opipe
1840 			 */
1841 			*obuf = *ibuf;
1842 			ibuf->ops = NULL;
1843 			opipe->nrbufs++;
1844 			ipipe->curbuf = (ipipe->curbuf + 1) % PIPE_BUFFERS;
1845 			ipipe->nrbufs--;
1846 			input_wakeup = true;
1847 		} else {
1848 			/*
1849 			 * Get a reference to this pipe buffer,
1850 			 * so we can copy the contents over.
1851 			 */
1852 			ibuf->ops->get(ipipe, ibuf);
1853 			*obuf = *ibuf;
1854 
1855 			/*
1856 			 * Don't inherit the gift flag, we need to
1857 			 * prevent multiple steals of this page.
1858 			 */
1859 			obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1860 
1861 			obuf->len = len;
1862 			opipe->nrbufs++;
1863 			ibuf->offset += obuf->len;
1864 			ibuf->len -= obuf->len;
1865 		}
1866 		ret += obuf->len;
1867 		len -= obuf->len;
1868 	} while (len);
1869 
1870 	pipe_unlock(ipipe);
1871 	pipe_unlock(opipe);
1872 
1873 	/*
1874 	 * If we put data in the output pipe, wakeup any potential readers.
1875 	 */
1876 	if (ret > 0) {
1877 		smp_mb();
1878 		if (waitqueue_active(&opipe->wait))
1879 			wake_up_interruptible(&opipe->wait);
1880 		kill_fasync(&opipe->fasync_readers, SIGIO, POLL_IN);
1881 	}
1882 	if (input_wakeup)
1883 		wakeup_pipe_writers(ipipe);
1884 
1885 	return ret;
1886 }
1887 
1888 /*
1889  * Link contents of ipipe to opipe.
1890  */
1891 static int link_pipe(struct pipe_inode_info *ipipe,
1892 		     struct pipe_inode_info *opipe,
1893 		     size_t len, unsigned int flags)
1894 {
1895 	struct pipe_buffer *ibuf, *obuf;
1896 	int ret = 0, i = 0, nbuf;
1897 
1898 	/*
1899 	 * Potential ABBA deadlock, work around it by ordering lock
1900 	 * grabbing by pipe info address. Otherwise two different processes
1901 	 * could deadlock (one doing tee from A -> B, the other from B -> A).
1902 	 */
1903 	pipe_double_lock(ipipe, opipe);
1904 
1905 	do {
1906 		if (!opipe->readers) {
1907 			send_sig(SIGPIPE, current, 0);
1908 			if (!ret)
1909 				ret = -EPIPE;
1910 			break;
1911 		}
1912 
1913 		/*
1914 		 * If we have iterated all input buffers or ran out of
1915 		 * output room, break.
1916 		 */
1917 		if (i >= ipipe->nrbufs || opipe->nrbufs >= PIPE_BUFFERS)
1918 			break;
1919 
1920 		ibuf = ipipe->bufs + ((ipipe->curbuf + i) & (PIPE_BUFFERS - 1));
1921 		nbuf = (opipe->curbuf + opipe->nrbufs) & (PIPE_BUFFERS - 1);
1922 
1923 		/*
1924 		 * Get a reference to this pipe buffer,
1925 		 * so we can copy the contents over.
1926 		 */
1927 		ibuf->ops->get(ipipe, ibuf);
1928 
1929 		obuf = opipe->bufs + nbuf;
1930 		*obuf = *ibuf;
1931 
1932 		/*
1933 		 * Don't inherit the gift flag, we need to
1934 		 * prevent multiple steals of this page.
1935 		 */
1936 		obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1937 
1938 		if (obuf->len > len)
1939 			obuf->len = len;
1940 
1941 		opipe->nrbufs++;
1942 		ret += obuf->len;
1943 		len -= obuf->len;
1944 		i++;
1945 	} while (len);
1946 
1947 	/*
1948 	 * return EAGAIN if we have the potential of some data in the
1949 	 * future, otherwise just return 0
1950 	 */
1951 	if (!ret && ipipe->waiting_writers && (flags & SPLICE_F_NONBLOCK))
1952 		ret = -EAGAIN;
1953 
1954 	pipe_unlock(ipipe);
1955 	pipe_unlock(opipe);
1956 
1957 	/*
1958 	 * If we put data in the output pipe, wakeup any potential readers.
1959 	 */
1960 	if (ret > 0) {
1961 		smp_mb();
1962 		if (waitqueue_active(&opipe->wait))
1963 			wake_up_interruptible(&opipe->wait);
1964 		kill_fasync(&opipe->fasync_readers, SIGIO, POLL_IN);
1965 	}
1966 
1967 	return ret;
1968 }
1969 
1970 /*
1971  * This is a tee(1) implementation that works on pipes. It doesn't copy
1972  * any data, it simply references the 'in' pages on the 'out' pipe.
1973  * The 'flags' used are the SPLICE_F_* variants, currently the only
1974  * applicable one is SPLICE_F_NONBLOCK.
1975  */
1976 static long do_tee(struct file *in, struct file *out, size_t len,
1977 		   unsigned int flags)
1978 {
1979 	struct pipe_inode_info *ipipe = pipe_info(in->f_path.dentry->d_inode);
1980 	struct pipe_inode_info *opipe = pipe_info(out->f_path.dentry->d_inode);
1981 	int ret = -EINVAL;
1982 
1983 	/*
1984 	 * Duplicate the contents of ipipe to opipe without actually
1985 	 * copying the data.
1986 	 */
1987 	if (ipipe && opipe && ipipe != opipe) {
1988 		/*
1989 		 * Keep going, unless we encounter an error. The ipipe/opipe
1990 		 * ordering doesn't really matter.
1991 		 */
1992 		ret = ipipe_prep(ipipe, flags);
1993 		if (!ret) {
1994 			ret = opipe_prep(opipe, flags);
1995 			if (!ret)
1996 				ret = link_pipe(ipipe, opipe, len, flags);
1997 		}
1998 	}
1999 
2000 	return ret;
2001 }
2002 
2003 SYSCALL_DEFINE4(tee, int, fdin, int, fdout, size_t, len, unsigned int, flags)
2004 {
2005 	struct file *in;
2006 	int error, fput_in;
2007 
2008 	if (unlikely(!len))
2009 		return 0;
2010 
2011 	error = -EBADF;
2012 	in = fget_light(fdin, &fput_in);
2013 	if (in) {
2014 		if (in->f_mode & FMODE_READ) {
2015 			int fput_out;
2016 			struct file *out = fget_light(fdout, &fput_out);
2017 
2018 			if (out) {
2019 				if (out->f_mode & FMODE_WRITE)
2020 					error = do_tee(in, out, len, flags);
2021 				fput_light(out, fput_out);
2022 			}
2023 		}
2024  		fput_light(in, fput_in);
2025  	}
2026 
2027 	return error;
2028 }
2029