1 /* 2 * "splice": joining two ropes together by interweaving their strands. 3 * 4 * This is the "extended pipe" functionality, where a pipe is used as 5 * an arbitrary in-memory buffer. Think of a pipe as a small kernel 6 * buffer that you can use to transfer data from one end to the other. 7 * 8 * The traditional unix read/write is extended with a "splice()" operation 9 * that transfers data buffers to or from a pipe buffer. 10 * 11 * Named by Larry McVoy, original implementation from Linus, extended by 12 * Jens to support splicing to files, network, direct splicing, etc and 13 * fixing lots of bugs. 14 * 15 * Copyright (C) 2005-2006 Jens Axboe <axboe@kernel.dk> 16 * Copyright (C) 2005-2006 Linus Torvalds <torvalds@osdl.org> 17 * Copyright (C) 2006 Ingo Molnar <mingo@elte.hu> 18 * 19 */ 20 #include <linux/fs.h> 21 #include <linux/file.h> 22 #include <linux/pagemap.h> 23 #include <linux/splice.h> 24 #include <linux/memcontrol.h> 25 #include <linux/mm_inline.h> 26 #include <linux/swap.h> 27 #include <linux/writeback.h> 28 #include <linux/buffer_head.h> 29 #include <linux/module.h> 30 #include <linux/syscalls.h> 31 #include <linux/uio.h> 32 #include <linux/security.h> 33 #include <linux/gfp.h> 34 35 /* 36 * Attempt to steal a page from a pipe buffer. This should perhaps go into 37 * a vm helper function, it's already simplified quite a bit by the 38 * addition of remove_mapping(). If success is returned, the caller may 39 * attempt to reuse this page for another destination. 40 */ 41 static int page_cache_pipe_buf_steal(struct pipe_inode_info *pipe, 42 struct pipe_buffer *buf) 43 { 44 struct page *page = buf->page; 45 struct address_space *mapping; 46 47 lock_page(page); 48 49 mapping = page_mapping(page); 50 if (mapping) { 51 WARN_ON(!PageUptodate(page)); 52 53 /* 54 * At least for ext2 with nobh option, we need to wait on 55 * writeback completing on this page, since we'll remove it 56 * from the pagecache. Otherwise truncate wont wait on the 57 * page, allowing the disk blocks to be reused by someone else 58 * before we actually wrote our data to them. fs corruption 59 * ensues. 60 */ 61 wait_on_page_writeback(page); 62 63 if (page_has_private(page) && 64 !try_to_release_page(page, GFP_KERNEL)) 65 goto out_unlock; 66 67 /* 68 * If we succeeded in removing the mapping, set LRU flag 69 * and return good. 70 */ 71 if (remove_mapping(mapping, page)) { 72 buf->flags |= PIPE_BUF_FLAG_LRU; 73 return 0; 74 } 75 } 76 77 /* 78 * Raced with truncate or failed to remove page from current 79 * address space, unlock and return failure. 80 */ 81 out_unlock: 82 unlock_page(page); 83 return 1; 84 } 85 86 static void page_cache_pipe_buf_release(struct pipe_inode_info *pipe, 87 struct pipe_buffer *buf) 88 { 89 page_cache_release(buf->page); 90 buf->flags &= ~PIPE_BUF_FLAG_LRU; 91 } 92 93 /* 94 * Check whether the contents of buf is OK to access. Since the content 95 * is a page cache page, IO may be in flight. 96 */ 97 static int page_cache_pipe_buf_confirm(struct pipe_inode_info *pipe, 98 struct pipe_buffer *buf) 99 { 100 struct page *page = buf->page; 101 int err; 102 103 if (!PageUptodate(page)) { 104 lock_page(page); 105 106 /* 107 * Page got truncated/unhashed. This will cause a 0-byte 108 * splice, if this is the first page. 109 */ 110 if (!page->mapping) { 111 err = -ENODATA; 112 goto error; 113 } 114 115 /* 116 * Uh oh, read-error from disk. 117 */ 118 if (!PageUptodate(page)) { 119 err = -EIO; 120 goto error; 121 } 122 123 /* 124 * Page is ok afterall, we are done. 125 */ 126 unlock_page(page); 127 } 128 129 return 0; 130 error: 131 unlock_page(page); 132 return err; 133 } 134 135 static const struct pipe_buf_operations page_cache_pipe_buf_ops = { 136 .can_merge = 0, 137 .map = generic_pipe_buf_map, 138 .unmap = generic_pipe_buf_unmap, 139 .confirm = page_cache_pipe_buf_confirm, 140 .release = page_cache_pipe_buf_release, 141 .steal = page_cache_pipe_buf_steal, 142 .get = generic_pipe_buf_get, 143 }; 144 145 static int user_page_pipe_buf_steal(struct pipe_inode_info *pipe, 146 struct pipe_buffer *buf) 147 { 148 if (!(buf->flags & PIPE_BUF_FLAG_GIFT)) 149 return 1; 150 151 buf->flags |= PIPE_BUF_FLAG_LRU; 152 return generic_pipe_buf_steal(pipe, buf); 153 } 154 155 static const struct pipe_buf_operations user_page_pipe_buf_ops = { 156 .can_merge = 0, 157 .map = generic_pipe_buf_map, 158 .unmap = generic_pipe_buf_unmap, 159 .confirm = generic_pipe_buf_confirm, 160 .release = page_cache_pipe_buf_release, 161 .steal = user_page_pipe_buf_steal, 162 .get = generic_pipe_buf_get, 163 }; 164 165 /** 166 * splice_to_pipe - fill passed data into a pipe 167 * @pipe: pipe to fill 168 * @spd: data to fill 169 * 170 * Description: 171 * @spd contains a map of pages and len/offset tuples, along with 172 * the struct pipe_buf_operations associated with these pages. This 173 * function will link that data to the pipe. 174 * 175 */ 176 ssize_t splice_to_pipe(struct pipe_inode_info *pipe, 177 struct splice_pipe_desc *spd) 178 { 179 unsigned int spd_pages = spd->nr_pages; 180 int ret, do_wakeup, page_nr; 181 182 ret = 0; 183 do_wakeup = 0; 184 page_nr = 0; 185 186 pipe_lock(pipe); 187 188 for (;;) { 189 if (!pipe->readers) { 190 send_sig(SIGPIPE, current, 0); 191 if (!ret) 192 ret = -EPIPE; 193 break; 194 } 195 196 if (pipe->nrbufs < PIPE_BUFFERS) { 197 int newbuf = (pipe->curbuf + pipe->nrbufs) & (PIPE_BUFFERS - 1); 198 struct pipe_buffer *buf = pipe->bufs + newbuf; 199 200 buf->page = spd->pages[page_nr]; 201 buf->offset = spd->partial[page_nr].offset; 202 buf->len = spd->partial[page_nr].len; 203 buf->private = spd->partial[page_nr].private; 204 buf->ops = spd->ops; 205 if (spd->flags & SPLICE_F_GIFT) 206 buf->flags |= PIPE_BUF_FLAG_GIFT; 207 208 pipe->nrbufs++; 209 page_nr++; 210 ret += buf->len; 211 212 if (pipe->inode) 213 do_wakeup = 1; 214 215 if (!--spd->nr_pages) 216 break; 217 if (pipe->nrbufs < PIPE_BUFFERS) 218 continue; 219 220 break; 221 } 222 223 if (spd->flags & SPLICE_F_NONBLOCK) { 224 if (!ret) 225 ret = -EAGAIN; 226 break; 227 } 228 229 if (signal_pending(current)) { 230 if (!ret) 231 ret = -ERESTARTSYS; 232 break; 233 } 234 235 if (do_wakeup) { 236 smp_mb(); 237 if (waitqueue_active(&pipe->wait)) 238 wake_up_interruptible_sync(&pipe->wait); 239 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN); 240 do_wakeup = 0; 241 } 242 243 pipe->waiting_writers++; 244 pipe_wait(pipe); 245 pipe->waiting_writers--; 246 } 247 248 pipe_unlock(pipe); 249 250 if (do_wakeup) { 251 smp_mb(); 252 if (waitqueue_active(&pipe->wait)) 253 wake_up_interruptible(&pipe->wait); 254 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN); 255 } 256 257 while (page_nr < spd_pages) 258 spd->spd_release(spd, page_nr++); 259 260 return ret; 261 } 262 263 static void spd_release_page(struct splice_pipe_desc *spd, unsigned int i) 264 { 265 page_cache_release(spd->pages[i]); 266 } 267 268 static int 269 __generic_file_splice_read(struct file *in, loff_t *ppos, 270 struct pipe_inode_info *pipe, size_t len, 271 unsigned int flags) 272 { 273 struct address_space *mapping = in->f_mapping; 274 unsigned int loff, nr_pages, req_pages; 275 struct page *pages[PIPE_BUFFERS]; 276 struct partial_page partial[PIPE_BUFFERS]; 277 struct page *page; 278 pgoff_t index, end_index; 279 loff_t isize; 280 int error, page_nr; 281 struct splice_pipe_desc spd = { 282 .pages = pages, 283 .partial = partial, 284 .flags = flags, 285 .ops = &page_cache_pipe_buf_ops, 286 .spd_release = spd_release_page, 287 }; 288 289 index = *ppos >> PAGE_CACHE_SHIFT; 290 loff = *ppos & ~PAGE_CACHE_MASK; 291 req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; 292 nr_pages = min(req_pages, (unsigned)PIPE_BUFFERS); 293 294 /* 295 * Lookup the (hopefully) full range of pages we need. 296 */ 297 spd.nr_pages = find_get_pages_contig(mapping, index, nr_pages, pages); 298 index += spd.nr_pages; 299 300 /* 301 * If find_get_pages_contig() returned fewer pages than we needed, 302 * readahead/allocate the rest and fill in the holes. 303 */ 304 if (spd.nr_pages < nr_pages) 305 page_cache_sync_readahead(mapping, &in->f_ra, in, 306 index, req_pages - spd.nr_pages); 307 308 error = 0; 309 while (spd.nr_pages < nr_pages) { 310 /* 311 * Page could be there, find_get_pages_contig() breaks on 312 * the first hole. 313 */ 314 page = find_get_page(mapping, index); 315 if (!page) { 316 /* 317 * page didn't exist, allocate one. 318 */ 319 page = page_cache_alloc_cold(mapping); 320 if (!page) 321 break; 322 323 error = add_to_page_cache_lru(page, mapping, index, 324 mapping_gfp_mask(mapping)); 325 if (unlikely(error)) { 326 page_cache_release(page); 327 if (error == -EEXIST) 328 continue; 329 break; 330 } 331 /* 332 * add_to_page_cache() locks the page, unlock it 333 * to avoid convoluting the logic below even more. 334 */ 335 unlock_page(page); 336 } 337 338 pages[spd.nr_pages++] = page; 339 index++; 340 } 341 342 /* 343 * Now loop over the map and see if we need to start IO on any 344 * pages, fill in the partial map, etc. 345 */ 346 index = *ppos >> PAGE_CACHE_SHIFT; 347 nr_pages = spd.nr_pages; 348 spd.nr_pages = 0; 349 for (page_nr = 0; page_nr < nr_pages; page_nr++) { 350 unsigned int this_len; 351 352 if (!len) 353 break; 354 355 /* 356 * this_len is the max we'll use from this page 357 */ 358 this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff); 359 page = pages[page_nr]; 360 361 if (PageReadahead(page)) 362 page_cache_async_readahead(mapping, &in->f_ra, in, 363 page, index, req_pages - page_nr); 364 365 /* 366 * If the page isn't uptodate, we may need to start io on it 367 */ 368 if (!PageUptodate(page)) { 369 /* 370 * If in nonblock mode then dont block on waiting 371 * for an in-flight io page 372 */ 373 if (flags & SPLICE_F_NONBLOCK) { 374 if (!trylock_page(page)) { 375 error = -EAGAIN; 376 break; 377 } 378 } else 379 lock_page(page); 380 381 /* 382 * Page was truncated, or invalidated by the 383 * filesystem. Redo the find/create, but this time the 384 * page is kept locked, so there's no chance of another 385 * race with truncate/invalidate. 386 */ 387 if (!page->mapping) { 388 unlock_page(page); 389 page = find_or_create_page(mapping, index, 390 mapping_gfp_mask(mapping)); 391 392 if (!page) { 393 error = -ENOMEM; 394 break; 395 } 396 page_cache_release(pages[page_nr]); 397 pages[page_nr] = page; 398 } 399 /* 400 * page was already under io and is now done, great 401 */ 402 if (PageUptodate(page)) { 403 unlock_page(page); 404 goto fill_it; 405 } 406 407 /* 408 * need to read in the page 409 */ 410 error = mapping->a_ops->readpage(in, page); 411 if (unlikely(error)) { 412 /* 413 * We really should re-lookup the page here, 414 * but it complicates things a lot. Instead 415 * lets just do what we already stored, and 416 * we'll get it the next time we are called. 417 */ 418 if (error == AOP_TRUNCATED_PAGE) 419 error = 0; 420 421 break; 422 } 423 } 424 fill_it: 425 /* 426 * i_size must be checked after PageUptodate. 427 */ 428 isize = i_size_read(mapping->host); 429 end_index = (isize - 1) >> PAGE_CACHE_SHIFT; 430 if (unlikely(!isize || index > end_index)) 431 break; 432 433 /* 434 * if this is the last page, see if we need to shrink 435 * the length and stop 436 */ 437 if (end_index == index) { 438 unsigned int plen; 439 440 /* 441 * max good bytes in this page 442 */ 443 plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1; 444 if (plen <= loff) 445 break; 446 447 /* 448 * force quit after adding this page 449 */ 450 this_len = min(this_len, plen - loff); 451 len = this_len; 452 } 453 454 partial[page_nr].offset = loff; 455 partial[page_nr].len = this_len; 456 len -= this_len; 457 loff = 0; 458 spd.nr_pages++; 459 index++; 460 } 461 462 /* 463 * Release any pages at the end, if we quit early. 'page_nr' is how far 464 * we got, 'nr_pages' is how many pages are in the map. 465 */ 466 while (page_nr < nr_pages) 467 page_cache_release(pages[page_nr++]); 468 in->f_ra.prev_pos = (loff_t)index << PAGE_CACHE_SHIFT; 469 470 if (spd.nr_pages) 471 return splice_to_pipe(pipe, &spd); 472 473 return error; 474 } 475 476 /** 477 * generic_file_splice_read - splice data from file to a pipe 478 * @in: file to splice from 479 * @ppos: position in @in 480 * @pipe: pipe to splice to 481 * @len: number of bytes to splice 482 * @flags: splice modifier flags 483 * 484 * Description: 485 * Will read pages from given file and fill them into a pipe. Can be 486 * used as long as the address_space operations for the source implements 487 * a readpage() hook. 488 * 489 */ 490 ssize_t generic_file_splice_read(struct file *in, loff_t *ppos, 491 struct pipe_inode_info *pipe, size_t len, 492 unsigned int flags) 493 { 494 loff_t isize, left; 495 int ret; 496 497 isize = i_size_read(in->f_mapping->host); 498 if (unlikely(*ppos >= isize)) 499 return 0; 500 501 left = isize - *ppos; 502 if (unlikely(left < len)) 503 len = left; 504 505 ret = __generic_file_splice_read(in, ppos, pipe, len, flags); 506 if (ret > 0) { 507 *ppos += ret; 508 file_accessed(in); 509 } 510 511 return ret; 512 } 513 EXPORT_SYMBOL(generic_file_splice_read); 514 515 static const struct pipe_buf_operations default_pipe_buf_ops = { 516 .can_merge = 0, 517 .map = generic_pipe_buf_map, 518 .unmap = generic_pipe_buf_unmap, 519 .confirm = generic_pipe_buf_confirm, 520 .release = generic_pipe_buf_release, 521 .steal = generic_pipe_buf_steal, 522 .get = generic_pipe_buf_get, 523 }; 524 525 static ssize_t kernel_readv(struct file *file, const struct iovec *vec, 526 unsigned long vlen, loff_t offset) 527 { 528 mm_segment_t old_fs; 529 loff_t pos = offset; 530 ssize_t res; 531 532 old_fs = get_fs(); 533 set_fs(get_ds()); 534 /* The cast to a user pointer is valid due to the set_fs() */ 535 res = vfs_readv(file, (const struct iovec __user *)vec, vlen, &pos); 536 set_fs(old_fs); 537 538 return res; 539 } 540 541 static ssize_t kernel_write(struct file *file, const char *buf, size_t count, 542 loff_t pos) 543 { 544 mm_segment_t old_fs; 545 ssize_t res; 546 547 old_fs = get_fs(); 548 set_fs(get_ds()); 549 /* The cast to a user pointer is valid due to the set_fs() */ 550 res = vfs_write(file, (const char __user *)buf, count, &pos); 551 set_fs(old_fs); 552 553 return res; 554 } 555 556 ssize_t default_file_splice_read(struct file *in, loff_t *ppos, 557 struct pipe_inode_info *pipe, size_t len, 558 unsigned int flags) 559 { 560 unsigned int nr_pages; 561 unsigned int nr_freed; 562 size_t offset; 563 struct page *pages[PIPE_BUFFERS]; 564 struct partial_page partial[PIPE_BUFFERS]; 565 struct iovec vec[PIPE_BUFFERS]; 566 pgoff_t index; 567 ssize_t res; 568 size_t this_len; 569 int error; 570 int i; 571 struct splice_pipe_desc spd = { 572 .pages = pages, 573 .partial = partial, 574 .flags = flags, 575 .ops = &default_pipe_buf_ops, 576 .spd_release = spd_release_page, 577 }; 578 579 index = *ppos >> PAGE_CACHE_SHIFT; 580 offset = *ppos & ~PAGE_CACHE_MASK; 581 nr_pages = (len + offset + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; 582 583 for (i = 0; i < nr_pages && i < PIPE_BUFFERS && len; i++) { 584 struct page *page; 585 586 page = alloc_page(GFP_USER); 587 error = -ENOMEM; 588 if (!page) 589 goto err; 590 591 this_len = min_t(size_t, len, PAGE_CACHE_SIZE - offset); 592 vec[i].iov_base = (void __user *) page_address(page); 593 vec[i].iov_len = this_len; 594 pages[i] = page; 595 spd.nr_pages++; 596 len -= this_len; 597 offset = 0; 598 } 599 600 res = kernel_readv(in, vec, spd.nr_pages, *ppos); 601 if (res < 0) { 602 error = res; 603 goto err; 604 } 605 606 error = 0; 607 if (!res) 608 goto err; 609 610 nr_freed = 0; 611 for (i = 0; i < spd.nr_pages; i++) { 612 this_len = min_t(size_t, vec[i].iov_len, res); 613 partial[i].offset = 0; 614 partial[i].len = this_len; 615 if (!this_len) { 616 __free_page(pages[i]); 617 pages[i] = NULL; 618 nr_freed++; 619 } 620 res -= this_len; 621 } 622 spd.nr_pages -= nr_freed; 623 624 res = splice_to_pipe(pipe, &spd); 625 if (res > 0) 626 *ppos += res; 627 628 return res; 629 630 err: 631 for (i = 0; i < spd.nr_pages; i++) 632 __free_page(pages[i]); 633 634 return error; 635 } 636 EXPORT_SYMBOL(default_file_splice_read); 637 638 /* 639 * Send 'sd->len' bytes to socket from 'sd->file' at position 'sd->pos' 640 * using sendpage(). Return the number of bytes sent. 641 */ 642 static int pipe_to_sendpage(struct pipe_inode_info *pipe, 643 struct pipe_buffer *buf, struct splice_desc *sd) 644 { 645 struct file *file = sd->u.file; 646 loff_t pos = sd->pos; 647 int ret, more; 648 649 ret = buf->ops->confirm(pipe, buf); 650 if (!ret) { 651 more = (sd->flags & SPLICE_F_MORE) || sd->len < sd->total_len; 652 if (file->f_op && file->f_op->sendpage) 653 ret = file->f_op->sendpage(file, buf->page, buf->offset, 654 sd->len, &pos, more); 655 else 656 ret = -EINVAL; 657 } 658 659 return ret; 660 } 661 662 /* 663 * This is a little more tricky than the file -> pipe splicing. There are 664 * basically three cases: 665 * 666 * - Destination page already exists in the address space and there 667 * are users of it. For that case we have no other option that 668 * copying the data. Tough luck. 669 * - Destination page already exists in the address space, but there 670 * are no users of it. Make sure it's uptodate, then drop it. Fall 671 * through to last case. 672 * - Destination page does not exist, we can add the pipe page to 673 * the page cache and avoid the copy. 674 * 675 * If asked to move pages to the output file (SPLICE_F_MOVE is set in 676 * sd->flags), we attempt to migrate pages from the pipe to the output 677 * file address space page cache. This is possible if no one else has 678 * the pipe page referenced outside of the pipe and page cache. If 679 * SPLICE_F_MOVE isn't set, or we cannot move the page, we simply create 680 * a new page in the output file page cache and fill/dirty that. 681 */ 682 int pipe_to_file(struct pipe_inode_info *pipe, struct pipe_buffer *buf, 683 struct splice_desc *sd) 684 { 685 struct file *file = sd->u.file; 686 struct address_space *mapping = file->f_mapping; 687 unsigned int offset, this_len; 688 struct page *page; 689 void *fsdata; 690 int ret; 691 692 /* 693 * make sure the data in this buffer is uptodate 694 */ 695 ret = buf->ops->confirm(pipe, buf); 696 if (unlikely(ret)) 697 return ret; 698 699 offset = sd->pos & ~PAGE_CACHE_MASK; 700 701 this_len = sd->len; 702 if (this_len + offset > PAGE_CACHE_SIZE) 703 this_len = PAGE_CACHE_SIZE - offset; 704 705 ret = pagecache_write_begin(file, mapping, sd->pos, this_len, 706 AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata); 707 if (unlikely(ret)) 708 goto out; 709 710 if (buf->page != page) { 711 /* 712 * Careful, ->map() uses KM_USER0! 713 */ 714 char *src = buf->ops->map(pipe, buf, 1); 715 char *dst = kmap_atomic(page, KM_USER1); 716 717 memcpy(dst + offset, src + buf->offset, this_len); 718 flush_dcache_page(page); 719 kunmap_atomic(dst, KM_USER1); 720 buf->ops->unmap(pipe, buf, src); 721 } 722 ret = pagecache_write_end(file, mapping, sd->pos, this_len, this_len, 723 page, fsdata); 724 out: 725 return ret; 726 } 727 EXPORT_SYMBOL(pipe_to_file); 728 729 static void wakeup_pipe_writers(struct pipe_inode_info *pipe) 730 { 731 smp_mb(); 732 if (waitqueue_active(&pipe->wait)) 733 wake_up_interruptible(&pipe->wait); 734 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT); 735 } 736 737 /** 738 * splice_from_pipe_feed - feed available data from a pipe to a file 739 * @pipe: pipe to splice from 740 * @sd: information to @actor 741 * @actor: handler that splices the data 742 * 743 * Description: 744 * This function loops over the pipe and calls @actor to do the 745 * actual moving of a single struct pipe_buffer to the desired 746 * destination. It returns when there's no more buffers left in 747 * the pipe or if the requested number of bytes (@sd->total_len) 748 * have been copied. It returns a positive number (one) if the 749 * pipe needs to be filled with more data, zero if the required 750 * number of bytes have been copied and -errno on error. 751 * 752 * This, together with splice_from_pipe_{begin,end,next}, may be 753 * used to implement the functionality of __splice_from_pipe() when 754 * locking is required around copying the pipe buffers to the 755 * destination. 756 */ 757 int splice_from_pipe_feed(struct pipe_inode_info *pipe, struct splice_desc *sd, 758 splice_actor *actor) 759 { 760 int ret; 761 762 while (pipe->nrbufs) { 763 struct pipe_buffer *buf = pipe->bufs + pipe->curbuf; 764 const struct pipe_buf_operations *ops = buf->ops; 765 766 sd->len = buf->len; 767 if (sd->len > sd->total_len) 768 sd->len = sd->total_len; 769 770 ret = actor(pipe, buf, sd); 771 if (ret <= 0) { 772 if (ret == -ENODATA) 773 ret = 0; 774 return ret; 775 } 776 buf->offset += ret; 777 buf->len -= ret; 778 779 sd->num_spliced += ret; 780 sd->len -= ret; 781 sd->pos += ret; 782 sd->total_len -= ret; 783 784 if (!buf->len) { 785 buf->ops = NULL; 786 ops->release(pipe, buf); 787 pipe->curbuf = (pipe->curbuf + 1) & (PIPE_BUFFERS - 1); 788 pipe->nrbufs--; 789 if (pipe->inode) 790 sd->need_wakeup = true; 791 } 792 793 if (!sd->total_len) 794 return 0; 795 } 796 797 return 1; 798 } 799 EXPORT_SYMBOL(splice_from_pipe_feed); 800 801 /** 802 * splice_from_pipe_next - wait for some data to splice from 803 * @pipe: pipe to splice from 804 * @sd: information about the splice operation 805 * 806 * Description: 807 * This function will wait for some data and return a positive 808 * value (one) if pipe buffers are available. It will return zero 809 * or -errno if no more data needs to be spliced. 810 */ 811 int splice_from_pipe_next(struct pipe_inode_info *pipe, struct splice_desc *sd) 812 { 813 while (!pipe->nrbufs) { 814 if (!pipe->writers) 815 return 0; 816 817 if (!pipe->waiting_writers && sd->num_spliced) 818 return 0; 819 820 if (sd->flags & SPLICE_F_NONBLOCK) 821 return -EAGAIN; 822 823 if (signal_pending(current)) 824 return -ERESTARTSYS; 825 826 if (sd->need_wakeup) { 827 wakeup_pipe_writers(pipe); 828 sd->need_wakeup = false; 829 } 830 831 pipe_wait(pipe); 832 } 833 834 return 1; 835 } 836 EXPORT_SYMBOL(splice_from_pipe_next); 837 838 /** 839 * splice_from_pipe_begin - start splicing from pipe 840 * @sd: information about the splice operation 841 * 842 * Description: 843 * This function should be called before a loop containing 844 * splice_from_pipe_next() and splice_from_pipe_feed() to 845 * initialize the necessary fields of @sd. 846 */ 847 void splice_from_pipe_begin(struct splice_desc *sd) 848 { 849 sd->num_spliced = 0; 850 sd->need_wakeup = false; 851 } 852 EXPORT_SYMBOL(splice_from_pipe_begin); 853 854 /** 855 * splice_from_pipe_end - finish splicing from pipe 856 * @pipe: pipe to splice from 857 * @sd: information about the splice operation 858 * 859 * Description: 860 * This function will wake up pipe writers if necessary. It should 861 * be called after a loop containing splice_from_pipe_next() and 862 * splice_from_pipe_feed(). 863 */ 864 void splice_from_pipe_end(struct pipe_inode_info *pipe, struct splice_desc *sd) 865 { 866 if (sd->need_wakeup) 867 wakeup_pipe_writers(pipe); 868 } 869 EXPORT_SYMBOL(splice_from_pipe_end); 870 871 /** 872 * __splice_from_pipe - splice data from a pipe to given actor 873 * @pipe: pipe to splice from 874 * @sd: information to @actor 875 * @actor: handler that splices the data 876 * 877 * Description: 878 * This function does little more than loop over the pipe and call 879 * @actor to do the actual moving of a single struct pipe_buffer to 880 * the desired destination. See pipe_to_file, pipe_to_sendpage, or 881 * pipe_to_user. 882 * 883 */ 884 ssize_t __splice_from_pipe(struct pipe_inode_info *pipe, struct splice_desc *sd, 885 splice_actor *actor) 886 { 887 int ret; 888 889 splice_from_pipe_begin(sd); 890 do { 891 ret = splice_from_pipe_next(pipe, sd); 892 if (ret > 0) 893 ret = splice_from_pipe_feed(pipe, sd, actor); 894 } while (ret > 0); 895 splice_from_pipe_end(pipe, sd); 896 897 return sd->num_spliced ? sd->num_spliced : ret; 898 } 899 EXPORT_SYMBOL(__splice_from_pipe); 900 901 /** 902 * splice_from_pipe - splice data from a pipe to a file 903 * @pipe: pipe to splice from 904 * @out: file to splice to 905 * @ppos: position in @out 906 * @len: how many bytes to splice 907 * @flags: splice modifier flags 908 * @actor: handler that splices the data 909 * 910 * Description: 911 * See __splice_from_pipe. This function locks the pipe inode, 912 * otherwise it's identical to __splice_from_pipe(). 913 * 914 */ 915 ssize_t splice_from_pipe(struct pipe_inode_info *pipe, struct file *out, 916 loff_t *ppos, size_t len, unsigned int flags, 917 splice_actor *actor) 918 { 919 ssize_t ret; 920 struct splice_desc sd = { 921 .total_len = len, 922 .flags = flags, 923 .pos = *ppos, 924 .u.file = out, 925 }; 926 927 pipe_lock(pipe); 928 ret = __splice_from_pipe(pipe, &sd, actor); 929 pipe_unlock(pipe); 930 931 return ret; 932 } 933 934 /** 935 * generic_file_splice_write - splice data from a pipe to a file 936 * @pipe: pipe info 937 * @out: file to write to 938 * @ppos: position in @out 939 * @len: number of bytes to splice 940 * @flags: splice modifier flags 941 * 942 * Description: 943 * Will either move or copy pages (determined by @flags options) from 944 * the given pipe inode to the given file. 945 * 946 */ 947 ssize_t 948 generic_file_splice_write(struct pipe_inode_info *pipe, struct file *out, 949 loff_t *ppos, size_t len, unsigned int flags) 950 { 951 struct address_space *mapping = out->f_mapping; 952 struct inode *inode = mapping->host; 953 struct splice_desc sd = { 954 .total_len = len, 955 .flags = flags, 956 .pos = *ppos, 957 .u.file = out, 958 }; 959 ssize_t ret; 960 961 pipe_lock(pipe); 962 963 splice_from_pipe_begin(&sd); 964 do { 965 ret = splice_from_pipe_next(pipe, &sd); 966 if (ret <= 0) 967 break; 968 969 mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD); 970 ret = file_remove_suid(out); 971 if (!ret) { 972 file_update_time(out); 973 ret = splice_from_pipe_feed(pipe, &sd, pipe_to_file); 974 } 975 mutex_unlock(&inode->i_mutex); 976 } while (ret > 0); 977 splice_from_pipe_end(pipe, &sd); 978 979 pipe_unlock(pipe); 980 981 if (sd.num_spliced) 982 ret = sd.num_spliced; 983 984 if (ret > 0) { 985 unsigned long nr_pages; 986 int err; 987 988 nr_pages = (ret + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; 989 990 err = generic_write_sync(out, *ppos, ret); 991 if (err) 992 ret = err; 993 else 994 *ppos += ret; 995 balance_dirty_pages_ratelimited_nr(mapping, nr_pages); 996 } 997 998 return ret; 999 } 1000 1001 EXPORT_SYMBOL(generic_file_splice_write); 1002 1003 static int write_pipe_buf(struct pipe_inode_info *pipe, struct pipe_buffer *buf, 1004 struct splice_desc *sd) 1005 { 1006 int ret; 1007 void *data; 1008 1009 ret = buf->ops->confirm(pipe, buf); 1010 if (ret) 1011 return ret; 1012 1013 data = buf->ops->map(pipe, buf, 0); 1014 ret = kernel_write(sd->u.file, data + buf->offset, sd->len, sd->pos); 1015 buf->ops->unmap(pipe, buf, data); 1016 1017 return ret; 1018 } 1019 1020 static ssize_t default_file_splice_write(struct pipe_inode_info *pipe, 1021 struct file *out, loff_t *ppos, 1022 size_t len, unsigned int flags) 1023 { 1024 ssize_t ret; 1025 1026 ret = splice_from_pipe(pipe, out, ppos, len, flags, write_pipe_buf); 1027 if (ret > 0) 1028 *ppos += ret; 1029 1030 return ret; 1031 } 1032 1033 /** 1034 * generic_splice_sendpage - splice data from a pipe to a socket 1035 * @pipe: pipe to splice from 1036 * @out: socket to write to 1037 * @ppos: position in @out 1038 * @len: number of bytes to splice 1039 * @flags: splice modifier flags 1040 * 1041 * Description: 1042 * Will send @len bytes from the pipe to a network socket. No data copying 1043 * is involved. 1044 * 1045 */ 1046 ssize_t generic_splice_sendpage(struct pipe_inode_info *pipe, struct file *out, 1047 loff_t *ppos, size_t len, unsigned int flags) 1048 { 1049 return splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_sendpage); 1050 } 1051 1052 EXPORT_SYMBOL(generic_splice_sendpage); 1053 1054 /* 1055 * Attempt to initiate a splice from pipe to file. 1056 */ 1057 static long do_splice_from(struct pipe_inode_info *pipe, struct file *out, 1058 loff_t *ppos, size_t len, unsigned int flags) 1059 { 1060 ssize_t (*splice_write)(struct pipe_inode_info *, struct file *, 1061 loff_t *, size_t, unsigned int); 1062 int ret; 1063 1064 if (unlikely(!(out->f_mode & FMODE_WRITE))) 1065 return -EBADF; 1066 1067 if (unlikely(out->f_flags & O_APPEND)) 1068 return -EINVAL; 1069 1070 ret = rw_verify_area(WRITE, out, ppos, len); 1071 if (unlikely(ret < 0)) 1072 return ret; 1073 1074 if (out->f_op && out->f_op->splice_write) 1075 splice_write = out->f_op->splice_write; 1076 else 1077 splice_write = default_file_splice_write; 1078 1079 return splice_write(pipe, out, ppos, len, flags); 1080 } 1081 1082 /* 1083 * Attempt to initiate a splice from a file to a pipe. 1084 */ 1085 static long do_splice_to(struct file *in, loff_t *ppos, 1086 struct pipe_inode_info *pipe, size_t len, 1087 unsigned int flags) 1088 { 1089 ssize_t (*splice_read)(struct file *, loff_t *, 1090 struct pipe_inode_info *, size_t, unsigned int); 1091 int ret; 1092 1093 if (unlikely(!(in->f_mode & FMODE_READ))) 1094 return -EBADF; 1095 1096 ret = rw_verify_area(READ, in, ppos, len); 1097 if (unlikely(ret < 0)) 1098 return ret; 1099 1100 if (in->f_op && in->f_op->splice_read) 1101 splice_read = in->f_op->splice_read; 1102 else 1103 splice_read = default_file_splice_read; 1104 1105 return splice_read(in, ppos, pipe, len, flags); 1106 } 1107 1108 /** 1109 * splice_direct_to_actor - splices data directly between two non-pipes 1110 * @in: file to splice from 1111 * @sd: actor information on where to splice to 1112 * @actor: handles the data splicing 1113 * 1114 * Description: 1115 * This is a special case helper to splice directly between two 1116 * points, without requiring an explicit pipe. Internally an allocated 1117 * pipe is cached in the process, and reused during the lifetime of 1118 * that process. 1119 * 1120 */ 1121 ssize_t splice_direct_to_actor(struct file *in, struct splice_desc *sd, 1122 splice_direct_actor *actor) 1123 { 1124 struct pipe_inode_info *pipe; 1125 long ret, bytes; 1126 umode_t i_mode; 1127 size_t len; 1128 int i, flags; 1129 1130 /* 1131 * We require the input being a regular file, as we don't want to 1132 * randomly drop data for eg socket -> socket splicing. Use the 1133 * piped splicing for that! 1134 */ 1135 i_mode = in->f_path.dentry->d_inode->i_mode; 1136 if (unlikely(!S_ISREG(i_mode) && !S_ISBLK(i_mode))) 1137 return -EINVAL; 1138 1139 /* 1140 * neither in nor out is a pipe, setup an internal pipe attached to 1141 * 'out' and transfer the wanted data from 'in' to 'out' through that 1142 */ 1143 pipe = current->splice_pipe; 1144 if (unlikely(!pipe)) { 1145 pipe = alloc_pipe_info(NULL); 1146 if (!pipe) 1147 return -ENOMEM; 1148 1149 /* 1150 * We don't have an immediate reader, but we'll read the stuff 1151 * out of the pipe right after the splice_to_pipe(). So set 1152 * PIPE_READERS appropriately. 1153 */ 1154 pipe->readers = 1; 1155 1156 current->splice_pipe = pipe; 1157 } 1158 1159 /* 1160 * Do the splice. 1161 */ 1162 ret = 0; 1163 bytes = 0; 1164 len = sd->total_len; 1165 flags = sd->flags; 1166 1167 /* 1168 * Don't block on output, we have to drain the direct pipe. 1169 */ 1170 sd->flags &= ~SPLICE_F_NONBLOCK; 1171 1172 while (len) { 1173 size_t read_len; 1174 loff_t pos = sd->pos, prev_pos = pos; 1175 1176 ret = do_splice_to(in, &pos, pipe, len, flags); 1177 if (unlikely(ret <= 0)) 1178 goto out_release; 1179 1180 read_len = ret; 1181 sd->total_len = read_len; 1182 1183 /* 1184 * NOTE: nonblocking mode only applies to the input. We 1185 * must not do the output in nonblocking mode as then we 1186 * could get stuck data in the internal pipe: 1187 */ 1188 ret = actor(pipe, sd); 1189 if (unlikely(ret <= 0)) { 1190 sd->pos = prev_pos; 1191 goto out_release; 1192 } 1193 1194 bytes += ret; 1195 len -= ret; 1196 sd->pos = pos; 1197 1198 if (ret < read_len) { 1199 sd->pos = prev_pos + ret; 1200 goto out_release; 1201 } 1202 } 1203 1204 done: 1205 pipe->nrbufs = pipe->curbuf = 0; 1206 file_accessed(in); 1207 return bytes; 1208 1209 out_release: 1210 /* 1211 * If we did an incomplete transfer we must release 1212 * the pipe buffers in question: 1213 */ 1214 for (i = 0; i < PIPE_BUFFERS; i++) { 1215 struct pipe_buffer *buf = pipe->bufs + i; 1216 1217 if (buf->ops) { 1218 buf->ops->release(pipe, buf); 1219 buf->ops = NULL; 1220 } 1221 } 1222 1223 if (!bytes) 1224 bytes = ret; 1225 1226 goto done; 1227 } 1228 EXPORT_SYMBOL(splice_direct_to_actor); 1229 1230 static int direct_splice_actor(struct pipe_inode_info *pipe, 1231 struct splice_desc *sd) 1232 { 1233 struct file *file = sd->u.file; 1234 1235 return do_splice_from(pipe, file, &sd->pos, sd->total_len, sd->flags); 1236 } 1237 1238 /** 1239 * do_splice_direct - splices data directly between two files 1240 * @in: file to splice from 1241 * @ppos: input file offset 1242 * @out: file to splice to 1243 * @len: number of bytes to splice 1244 * @flags: splice modifier flags 1245 * 1246 * Description: 1247 * For use by do_sendfile(). splice can easily emulate sendfile, but 1248 * doing it in the application would incur an extra system call 1249 * (splice in + splice out, as compared to just sendfile()). So this helper 1250 * can splice directly through a process-private pipe. 1251 * 1252 */ 1253 long do_splice_direct(struct file *in, loff_t *ppos, struct file *out, 1254 size_t len, unsigned int flags) 1255 { 1256 struct splice_desc sd = { 1257 .len = len, 1258 .total_len = len, 1259 .flags = flags, 1260 .pos = *ppos, 1261 .u.file = out, 1262 }; 1263 long ret; 1264 1265 ret = splice_direct_to_actor(in, &sd, direct_splice_actor); 1266 if (ret > 0) 1267 *ppos = sd.pos; 1268 1269 return ret; 1270 } 1271 1272 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe, 1273 struct pipe_inode_info *opipe, 1274 size_t len, unsigned int flags); 1275 /* 1276 * After the inode slimming patch, i_pipe/i_bdev/i_cdev share the same 1277 * location, so checking ->i_pipe is not enough to verify that this is a 1278 * pipe. 1279 */ 1280 static inline struct pipe_inode_info *pipe_info(struct inode *inode) 1281 { 1282 if (S_ISFIFO(inode->i_mode)) 1283 return inode->i_pipe; 1284 1285 return NULL; 1286 } 1287 1288 /* 1289 * Determine where to splice to/from. 1290 */ 1291 static long do_splice(struct file *in, loff_t __user *off_in, 1292 struct file *out, loff_t __user *off_out, 1293 size_t len, unsigned int flags) 1294 { 1295 struct pipe_inode_info *ipipe; 1296 struct pipe_inode_info *opipe; 1297 loff_t offset, *off; 1298 long ret; 1299 1300 ipipe = pipe_info(in->f_path.dentry->d_inode); 1301 opipe = pipe_info(out->f_path.dentry->d_inode); 1302 1303 if (ipipe && opipe) { 1304 if (off_in || off_out) 1305 return -ESPIPE; 1306 1307 if (!(in->f_mode & FMODE_READ)) 1308 return -EBADF; 1309 1310 if (!(out->f_mode & FMODE_WRITE)) 1311 return -EBADF; 1312 1313 /* Splicing to self would be fun, but... */ 1314 if (ipipe == opipe) 1315 return -EINVAL; 1316 1317 return splice_pipe_to_pipe(ipipe, opipe, len, flags); 1318 } 1319 1320 if (ipipe) { 1321 if (off_in) 1322 return -ESPIPE; 1323 if (off_out) { 1324 if (!out->f_op || !out->f_op->llseek || 1325 out->f_op->llseek == no_llseek) 1326 return -EINVAL; 1327 if (copy_from_user(&offset, off_out, sizeof(loff_t))) 1328 return -EFAULT; 1329 off = &offset; 1330 } else 1331 off = &out->f_pos; 1332 1333 ret = do_splice_from(ipipe, out, off, len, flags); 1334 1335 if (off_out && copy_to_user(off_out, off, sizeof(loff_t))) 1336 ret = -EFAULT; 1337 1338 return ret; 1339 } 1340 1341 if (opipe) { 1342 if (off_out) 1343 return -ESPIPE; 1344 if (off_in) { 1345 if (!in->f_op || !in->f_op->llseek || 1346 in->f_op->llseek == no_llseek) 1347 return -EINVAL; 1348 if (copy_from_user(&offset, off_in, sizeof(loff_t))) 1349 return -EFAULT; 1350 off = &offset; 1351 } else 1352 off = &in->f_pos; 1353 1354 ret = do_splice_to(in, off, opipe, len, flags); 1355 1356 if (off_in && copy_to_user(off_in, off, sizeof(loff_t))) 1357 ret = -EFAULT; 1358 1359 return ret; 1360 } 1361 1362 return -EINVAL; 1363 } 1364 1365 /* 1366 * Map an iov into an array of pages and offset/length tupples. With the 1367 * partial_page structure, we can map several non-contiguous ranges into 1368 * our ones pages[] map instead of splitting that operation into pieces. 1369 * Could easily be exported as a generic helper for other users, in which 1370 * case one would probably want to add a 'max_nr_pages' parameter as well. 1371 */ 1372 static int get_iovec_page_array(const struct iovec __user *iov, 1373 unsigned int nr_vecs, struct page **pages, 1374 struct partial_page *partial, int aligned) 1375 { 1376 int buffers = 0, error = 0; 1377 1378 while (nr_vecs) { 1379 unsigned long off, npages; 1380 struct iovec entry; 1381 void __user *base; 1382 size_t len; 1383 int i; 1384 1385 error = -EFAULT; 1386 if (copy_from_user(&entry, iov, sizeof(entry))) 1387 break; 1388 1389 base = entry.iov_base; 1390 len = entry.iov_len; 1391 1392 /* 1393 * Sanity check this iovec. 0 read succeeds. 1394 */ 1395 error = 0; 1396 if (unlikely(!len)) 1397 break; 1398 error = -EFAULT; 1399 if (!access_ok(VERIFY_READ, base, len)) 1400 break; 1401 1402 /* 1403 * Get this base offset and number of pages, then map 1404 * in the user pages. 1405 */ 1406 off = (unsigned long) base & ~PAGE_MASK; 1407 1408 /* 1409 * If asked for alignment, the offset must be zero and the 1410 * length a multiple of the PAGE_SIZE. 1411 */ 1412 error = -EINVAL; 1413 if (aligned && (off || len & ~PAGE_MASK)) 1414 break; 1415 1416 npages = (off + len + PAGE_SIZE - 1) >> PAGE_SHIFT; 1417 if (npages > PIPE_BUFFERS - buffers) 1418 npages = PIPE_BUFFERS - buffers; 1419 1420 error = get_user_pages_fast((unsigned long)base, npages, 1421 0, &pages[buffers]); 1422 1423 if (unlikely(error <= 0)) 1424 break; 1425 1426 /* 1427 * Fill this contiguous range into the partial page map. 1428 */ 1429 for (i = 0; i < error; i++) { 1430 const int plen = min_t(size_t, len, PAGE_SIZE - off); 1431 1432 partial[buffers].offset = off; 1433 partial[buffers].len = plen; 1434 1435 off = 0; 1436 len -= plen; 1437 buffers++; 1438 } 1439 1440 /* 1441 * We didn't complete this iov, stop here since it probably 1442 * means we have to move some of this into a pipe to 1443 * be able to continue. 1444 */ 1445 if (len) 1446 break; 1447 1448 /* 1449 * Don't continue if we mapped fewer pages than we asked for, 1450 * or if we mapped the max number of pages that we have 1451 * room for. 1452 */ 1453 if (error < npages || buffers == PIPE_BUFFERS) 1454 break; 1455 1456 nr_vecs--; 1457 iov++; 1458 } 1459 1460 if (buffers) 1461 return buffers; 1462 1463 return error; 1464 } 1465 1466 static int pipe_to_user(struct pipe_inode_info *pipe, struct pipe_buffer *buf, 1467 struct splice_desc *sd) 1468 { 1469 char *src; 1470 int ret; 1471 1472 ret = buf->ops->confirm(pipe, buf); 1473 if (unlikely(ret)) 1474 return ret; 1475 1476 /* 1477 * See if we can use the atomic maps, by prefaulting in the 1478 * pages and doing an atomic copy 1479 */ 1480 if (!fault_in_pages_writeable(sd->u.userptr, sd->len)) { 1481 src = buf->ops->map(pipe, buf, 1); 1482 ret = __copy_to_user_inatomic(sd->u.userptr, src + buf->offset, 1483 sd->len); 1484 buf->ops->unmap(pipe, buf, src); 1485 if (!ret) { 1486 ret = sd->len; 1487 goto out; 1488 } 1489 } 1490 1491 /* 1492 * No dice, use slow non-atomic map and copy 1493 */ 1494 src = buf->ops->map(pipe, buf, 0); 1495 1496 ret = sd->len; 1497 if (copy_to_user(sd->u.userptr, src + buf->offset, sd->len)) 1498 ret = -EFAULT; 1499 1500 buf->ops->unmap(pipe, buf, src); 1501 out: 1502 if (ret > 0) 1503 sd->u.userptr += ret; 1504 return ret; 1505 } 1506 1507 /* 1508 * For lack of a better implementation, implement vmsplice() to userspace 1509 * as a simple copy of the pipes pages to the user iov. 1510 */ 1511 static long vmsplice_to_user(struct file *file, const struct iovec __user *iov, 1512 unsigned long nr_segs, unsigned int flags) 1513 { 1514 struct pipe_inode_info *pipe; 1515 struct splice_desc sd; 1516 ssize_t size; 1517 int error; 1518 long ret; 1519 1520 pipe = pipe_info(file->f_path.dentry->d_inode); 1521 if (!pipe) 1522 return -EBADF; 1523 1524 pipe_lock(pipe); 1525 1526 error = ret = 0; 1527 while (nr_segs) { 1528 void __user *base; 1529 size_t len; 1530 1531 /* 1532 * Get user address base and length for this iovec. 1533 */ 1534 error = get_user(base, &iov->iov_base); 1535 if (unlikely(error)) 1536 break; 1537 error = get_user(len, &iov->iov_len); 1538 if (unlikely(error)) 1539 break; 1540 1541 /* 1542 * Sanity check this iovec. 0 read succeeds. 1543 */ 1544 if (unlikely(!len)) 1545 break; 1546 if (unlikely(!base)) { 1547 error = -EFAULT; 1548 break; 1549 } 1550 1551 if (unlikely(!access_ok(VERIFY_WRITE, base, len))) { 1552 error = -EFAULT; 1553 break; 1554 } 1555 1556 sd.len = 0; 1557 sd.total_len = len; 1558 sd.flags = flags; 1559 sd.u.userptr = base; 1560 sd.pos = 0; 1561 1562 size = __splice_from_pipe(pipe, &sd, pipe_to_user); 1563 if (size < 0) { 1564 if (!ret) 1565 ret = size; 1566 1567 break; 1568 } 1569 1570 ret += size; 1571 1572 if (size < len) 1573 break; 1574 1575 nr_segs--; 1576 iov++; 1577 } 1578 1579 pipe_unlock(pipe); 1580 1581 if (!ret) 1582 ret = error; 1583 1584 return ret; 1585 } 1586 1587 /* 1588 * vmsplice splices a user address range into a pipe. It can be thought of 1589 * as splice-from-memory, where the regular splice is splice-from-file (or 1590 * to file). In both cases the output is a pipe, naturally. 1591 */ 1592 static long vmsplice_to_pipe(struct file *file, const struct iovec __user *iov, 1593 unsigned long nr_segs, unsigned int flags) 1594 { 1595 struct pipe_inode_info *pipe; 1596 struct page *pages[PIPE_BUFFERS]; 1597 struct partial_page partial[PIPE_BUFFERS]; 1598 struct splice_pipe_desc spd = { 1599 .pages = pages, 1600 .partial = partial, 1601 .flags = flags, 1602 .ops = &user_page_pipe_buf_ops, 1603 .spd_release = spd_release_page, 1604 }; 1605 1606 pipe = pipe_info(file->f_path.dentry->d_inode); 1607 if (!pipe) 1608 return -EBADF; 1609 1610 spd.nr_pages = get_iovec_page_array(iov, nr_segs, pages, partial, 1611 flags & SPLICE_F_GIFT); 1612 if (spd.nr_pages <= 0) 1613 return spd.nr_pages; 1614 1615 return splice_to_pipe(pipe, &spd); 1616 } 1617 1618 /* 1619 * Note that vmsplice only really supports true splicing _from_ user memory 1620 * to a pipe, not the other way around. Splicing from user memory is a simple 1621 * operation that can be supported without any funky alignment restrictions 1622 * or nasty vm tricks. We simply map in the user memory and fill them into 1623 * a pipe. The reverse isn't quite as easy, though. There are two possible 1624 * solutions for that: 1625 * 1626 * - memcpy() the data internally, at which point we might as well just 1627 * do a regular read() on the buffer anyway. 1628 * - Lots of nasty vm tricks, that are neither fast nor flexible (it 1629 * has restriction limitations on both ends of the pipe). 1630 * 1631 * Currently we punt and implement it as a normal copy, see pipe_to_user(). 1632 * 1633 */ 1634 SYSCALL_DEFINE4(vmsplice, int, fd, const struct iovec __user *, iov, 1635 unsigned long, nr_segs, unsigned int, flags) 1636 { 1637 struct file *file; 1638 long error; 1639 int fput; 1640 1641 if (unlikely(nr_segs > UIO_MAXIOV)) 1642 return -EINVAL; 1643 else if (unlikely(!nr_segs)) 1644 return 0; 1645 1646 error = -EBADF; 1647 file = fget_light(fd, &fput); 1648 if (file) { 1649 if (file->f_mode & FMODE_WRITE) 1650 error = vmsplice_to_pipe(file, iov, nr_segs, flags); 1651 else if (file->f_mode & FMODE_READ) 1652 error = vmsplice_to_user(file, iov, nr_segs, flags); 1653 1654 fput_light(file, fput); 1655 } 1656 1657 return error; 1658 } 1659 1660 SYSCALL_DEFINE6(splice, int, fd_in, loff_t __user *, off_in, 1661 int, fd_out, loff_t __user *, off_out, 1662 size_t, len, unsigned int, flags) 1663 { 1664 long error; 1665 struct file *in, *out; 1666 int fput_in, fput_out; 1667 1668 if (unlikely(!len)) 1669 return 0; 1670 1671 error = -EBADF; 1672 in = fget_light(fd_in, &fput_in); 1673 if (in) { 1674 if (in->f_mode & FMODE_READ) { 1675 out = fget_light(fd_out, &fput_out); 1676 if (out) { 1677 if (out->f_mode & FMODE_WRITE) 1678 error = do_splice(in, off_in, 1679 out, off_out, 1680 len, flags); 1681 fput_light(out, fput_out); 1682 } 1683 } 1684 1685 fput_light(in, fput_in); 1686 } 1687 1688 return error; 1689 } 1690 1691 /* 1692 * Make sure there's data to read. Wait for input if we can, otherwise 1693 * return an appropriate error. 1694 */ 1695 static int ipipe_prep(struct pipe_inode_info *pipe, unsigned int flags) 1696 { 1697 int ret; 1698 1699 /* 1700 * Check ->nrbufs without the inode lock first. This function 1701 * is speculative anyways, so missing one is ok. 1702 */ 1703 if (pipe->nrbufs) 1704 return 0; 1705 1706 ret = 0; 1707 pipe_lock(pipe); 1708 1709 while (!pipe->nrbufs) { 1710 if (signal_pending(current)) { 1711 ret = -ERESTARTSYS; 1712 break; 1713 } 1714 if (!pipe->writers) 1715 break; 1716 if (!pipe->waiting_writers) { 1717 if (flags & SPLICE_F_NONBLOCK) { 1718 ret = -EAGAIN; 1719 break; 1720 } 1721 } 1722 pipe_wait(pipe); 1723 } 1724 1725 pipe_unlock(pipe); 1726 return ret; 1727 } 1728 1729 /* 1730 * Make sure there's writeable room. Wait for room if we can, otherwise 1731 * return an appropriate error. 1732 */ 1733 static int opipe_prep(struct pipe_inode_info *pipe, unsigned int flags) 1734 { 1735 int ret; 1736 1737 /* 1738 * Check ->nrbufs without the inode lock first. This function 1739 * is speculative anyways, so missing one is ok. 1740 */ 1741 if (pipe->nrbufs < PIPE_BUFFERS) 1742 return 0; 1743 1744 ret = 0; 1745 pipe_lock(pipe); 1746 1747 while (pipe->nrbufs >= PIPE_BUFFERS) { 1748 if (!pipe->readers) { 1749 send_sig(SIGPIPE, current, 0); 1750 ret = -EPIPE; 1751 break; 1752 } 1753 if (flags & SPLICE_F_NONBLOCK) { 1754 ret = -EAGAIN; 1755 break; 1756 } 1757 if (signal_pending(current)) { 1758 ret = -ERESTARTSYS; 1759 break; 1760 } 1761 pipe->waiting_writers++; 1762 pipe_wait(pipe); 1763 pipe->waiting_writers--; 1764 } 1765 1766 pipe_unlock(pipe); 1767 return ret; 1768 } 1769 1770 /* 1771 * Splice contents of ipipe to opipe. 1772 */ 1773 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe, 1774 struct pipe_inode_info *opipe, 1775 size_t len, unsigned int flags) 1776 { 1777 struct pipe_buffer *ibuf, *obuf; 1778 int ret = 0, nbuf; 1779 bool input_wakeup = false; 1780 1781 1782 retry: 1783 ret = ipipe_prep(ipipe, flags); 1784 if (ret) 1785 return ret; 1786 1787 ret = opipe_prep(opipe, flags); 1788 if (ret) 1789 return ret; 1790 1791 /* 1792 * Potential ABBA deadlock, work around it by ordering lock 1793 * grabbing by pipe info address. Otherwise two different processes 1794 * could deadlock (one doing tee from A -> B, the other from B -> A). 1795 */ 1796 pipe_double_lock(ipipe, opipe); 1797 1798 do { 1799 if (!opipe->readers) { 1800 send_sig(SIGPIPE, current, 0); 1801 if (!ret) 1802 ret = -EPIPE; 1803 break; 1804 } 1805 1806 if (!ipipe->nrbufs && !ipipe->writers) 1807 break; 1808 1809 /* 1810 * Cannot make any progress, because either the input 1811 * pipe is empty or the output pipe is full. 1812 */ 1813 if (!ipipe->nrbufs || opipe->nrbufs >= PIPE_BUFFERS) { 1814 /* Already processed some buffers, break */ 1815 if (ret) 1816 break; 1817 1818 if (flags & SPLICE_F_NONBLOCK) { 1819 ret = -EAGAIN; 1820 break; 1821 } 1822 1823 /* 1824 * We raced with another reader/writer and haven't 1825 * managed to process any buffers. A zero return 1826 * value means EOF, so retry instead. 1827 */ 1828 pipe_unlock(ipipe); 1829 pipe_unlock(opipe); 1830 goto retry; 1831 } 1832 1833 ibuf = ipipe->bufs + ipipe->curbuf; 1834 nbuf = (opipe->curbuf + opipe->nrbufs) % PIPE_BUFFERS; 1835 obuf = opipe->bufs + nbuf; 1836 1837 if (len >= ibuf->len) { 1838 /* 1839 * Simply move the whole buffer from ipipe to opipe 1840 */ 1841 *obuf = *ibuf; 1842 ibuf->ops = NULL; 1843 opipe->nrbufs++; 1844 ipipe->curbuf = (ipipe->curbuf + 1) % PIPE_BUFFERS; 1845 ipipe->nrbufs--; 1846 input_wakeup = true; 1847 } else { 1848 /* 1849 * Get a reference to this pipe buffer, 1850 * so we can copy the contents over. 1851 */ 1852 ibuf->ops->get(ipipe, ibuf); 1853 *obuf = *ibuf; 1854 1855 /* 1856 * Don't inherit the gift flag, we need to 1857 * prevent multiple steals of this page. 1858 */ 1859 obuf->flags &= ~PIPE_BUF_FLAG_GIFT; 1860 1861 obuf->len = len; 1862 opipe->nrbufs++; 1863 ibuf->offset += obuf->len; 1864 ibuf->len -= obuf->len; 1865 } 1866 ret += obuf->len; 1867 len -= obuf->len; 1868 } while (len); 1869 1870 pipe_unlock(ipipe); 1871 pipe_unlock(opipe); 1872 1873 /* 1874 * If we put data in the output pipe, wakeup any potential readers. 1875 */ 1876 if (ret > 0) { 1877 smp_mb(); 1878 if (waitqueue_active(&opipe->wait)) 1879 wake_up_interruptible(&opipe->wait); 1880 kill_fasync(&opipe->fasync_readers, SIGIO, POLL_IN); 1881 } 1882 if (input_wakeup) 1883 wakeup_pipe_writers(ipipe); 1884 1885 return ret; 1886 } 1887 1888 /* 1889 * Link contents of ipipe to opipe. 1890 */ 1891 static int link_pipe(struct pipe_inode_info *ipipe, 1892 struct pipe_inode_info *opipe, 1893 size_t len, unsigned int flags) 1894 { 1895 struct pipe_buffer *ibuf, *obuf; 1896 int ret = 0, i = 0, nbuf; 1897 1898 /* 1899 * Potential ABBA deadlock, work around it by ordering lock 1900 * grabbing by pipe info address. Otherwise two different processes 1901 * could deadlock (one doing tee from A -> B, the other from B -> A). 1902 */ 1903 pipe_double_lock(ipipe, opipe); 1904 1905 do { 1906 if (!opipe->readers) { 1907 send_sig(SIGPIPE, current, 0); 1908 if (!ret) 1909 ret = -EPIPE; 1910 break; 1911 } 1912 1913 /* 1914 * If we have iterated all input buffers or ran out of 1915 * output room, break. 1916 */ 1917 if (i >= ipipe->nrbufs || opipe->nrbufs >= PIPE_BUFFERS) 1918 break; 1919 1920 ibuf = ipipe->bufs + ((ipipe->curbuf + i) & (PIPE_BUFFERS - 1)); 1921 nbuf = (opipe->curbuf + opipe->nrbufs) & (PIPE_BUFFERS - 1); 1922 1923 /* 1924 * Get a reference to this pipe buffer, 1925 * so we can copy the contents over. 1926 */ 1927 ibuf->ops->get(ipipe, ibuf); 1928 1929 obuf = opipe->bufs + nbuf; 1930 *obuf = *ibuf; 1931 1932 /* 1933 * Don't inherit the gift flag, we need to 1934 * prevent multiple steals of this page. 1935 */ 1936 obuf->flags &= ~PIPE_BUF_FLAG_GIFT; 1937 1938 if (obuf->len > len) 1939 obuf->len = len; 1940 1941 opipe->nrbufs++; 1942 ret += obuf->len; 1943 len -= obuf->len; 1944 i++; 1945 } while (len); 1946 1947 /* 1948 * return EAGAIN if we have the potential of some data in the 1949 * future, otherwise just return 0 1950 */ 1951 if (!ret && ipipe->waiting_writers && (flags & SPLICE_F_NONBLOCK)) 1952 ret = -EAGAIN; 1953 1954 pipe_unlock(ipipe); 1955 pipe_unlock(opipe); 1956 1957 /* 1958 * If we put data in the output pipe, wakeup any potential readers. 1959 */ 1960 if (ret > 0) { 1961 smp_mb(); 1962 if (waitqueue_active(&opipe->wait)) 1963 wake_up_interruptible(&opipe->wait); 1964 kill_fasync(&opipe->fasync_readers, SIGIO, POLL_IN); 1965 } 1966 1967 return ret; 1968 } 1969 1970 /* 1971 * This is a tee(1) implementation that works on pipes. It doesn't copy 1972 * any data, it simply references the 'in' pages on the 'out' pipe. 1973 * The 'flags' used are the SPLICE_F_* variants, currently the only 1974 * applicable one is SPLICE_F_NONBLOCK. 1975 */ 1976 static long do_tee(struct file *in, struct file *out, size_t len, 1977 unsigned int flags) 1978 { 1979 struct pipe_inode_info *ipipe = pipe_info(in->f_path.dentry->d_inode); 1980 struct pipe_inode_info *opipe = pipe_info(out->f_path.dentry->d_inode); 1981 int ret = -EINVAL; 1982 1983 /* 1984 * Duplicate the contents of ipipe to opipe without actually 1985 * copying the data. 1986 */ 1987 if (ipipe && opipe && ipipe != opipe) { 1988 /* 1989 * Keep going, unless we encounter an error. The ipipe/opipe 1990 * ordering doesn't really matter. 1991 */ 1992 ret = ipipe_prep(ipipe, flags); 1993 if (!ret) { 1994 ret = opipe_prep(opipe, flags); 1995 if (!ret) 1996 ret = link_pipe(ipipe, opipe, len, flags); 1997 } 1998 } 1999 2000 return ret; 2001 } 2002 2003 SYSCALL_DEFINE4(tee, int, fdin, int, fdout, size_t, len, unsigned int, flags) 2004 { 2005 struct file *in; 2006 int error, fput_in; 2007 2008 if (unlikely(!len)) 2009 return 0; 2010 2011 error = -EBADF; 2012 in = fget_light(fdin, &fput_in); 2013 if (in) { 2014 if (in->f_mode & FMODE_READ) { 2015 int fput_out; 2016 struct file *out = fget_light(fdout, &fput_out); 2017 2018 if (out) { 2019 if (out->f_mode & FMODE_WRITE) 2020 error = do_tee(in, out, len, flags); 2021 fput_light(out, fput_out); 2022 } 2023 } 2024 fput_light(in, fput_in); 2025 } 2026 2027 return error; 2028 } 2029