1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * "splice": joining two ropes together by interweaving their strands. 4 * 5 * This is the "extended pipe" functionality, where a pipe is used as 6 * an arbitrary in-memory buffer. Think of a pipe as a small kernel 7 * buffer that you can use to transfer data from one end to the other. 8 * 9 * The traditional unix read/write is extended with a "splice()" operation 10 * that transfers data buffers to or from a pipe buffer. 11 * 12 * Named by Larry McVoy, original implementation from Linus, extended by 13 * Jens to support splicing to files, network, direct splicing, etc and 14 * fixing lots of bugs. 15 * 16 * Copyright (C) 2005-2006 Jens Axboe <axboe@kernel.dk> 17 * Copyright (C) 2005-2006 Linus Torvalds <torvalds@osdl.org> 18 * Copyright (C) 2006 Ingo Molnar <mingo@elte.hu> 19 * 20 */ 21 #include <linux/bvec.h> 22 #include <linux/fs.h> 23 #include <linux/file.h> 24 #include <linux/pagemap.h> 25 #include <linux/splice.h> 26 #include <linux/memcontrol.h> 27 #include <linux/mm_inline.h> 28 #include <linux/swap.h> 29 #include <linux/writeback.h> 30 #include <linux/export.h> 31 #include <linux/syscalls.h> 32 #include <linux/uio.h> 33 #include <linux/fsnotify.h> 34 #include <linux/security.h> 35 #include <linux/gfp.h> 36 #include <linux/net.h> 37 #include <linux/socket.h> 38 #include <linux/sched/signal.h> 39 40 #include "internal.h" 41 42 /* 43 * Splice doesn't support FMODE_NOWAIT. Since pipes may set this flag to 44 * indicate they support non-blocking reads or writes, we must clear it 45 * here if set to avoid blocking other users of this pipe if splice is 46 * being done on it. 47 */ 48 static noinline void noinline pipe_clear_nowait(struct file *file) 49 { 50 fmode_t fmode = READ_ONCE(file->f_mode); 51 52 do { 53 if (!(fmode & FMODE_NOWAIT)) 54 break; 55 } while (!try_cmpxchg(&file->f_mode, &fmode, fmode & ~FMODE_NOWAIT)); 56 } 57 58 /* 59 * Attempt to steal a page from a pipe buffer. This should perhaps go into 60 * a vm helper function, it's already simplified quite a bit by the 61 * addition of remove_mapping(). If success is returned, the caller may 62 * attempt to reuse this page for another destination. 63 */ 64 static bool page_cache_pipe_buf_try_steal(struct pipe_inode_info *pipe, 65 struct pipe_buffer *buf) 66 { 67 struct folio *folio = page_folio(buf->page); 68 struct address_space *mapping; 69 70 folio_lock(folio); 71 72 mapping = folio_mapping(folio); 73 if (mapping) { 74 WARN_ON(!folio_test_uptodate(folio)); 75 76 /* 77 * At least for ext2 with nobh option, we need to wait on 78 * writeback completing on this folio, since we'll remove it 79 * from the pagecache. Otherwise truncate wont wait on the 80 * folio, allowing the disk blocks to be reused by someone else 81 * before we actually wrote our data to them. fs corruption 82 * ensues. 83 */ 84 folio_wait_writeback(folio); 85 86 if (!filemap_release_folio(folio, GFP_KERNEL)) 87 goto out_unlock; 88 89 /* 90 * If we succeeded in removing the mapping, set LRU flag 91 * and return good. 92 */ 93 if (remove_mapping(mapping, folio)) { 94 buf->flags |= PIPE_BUF_FLAG_LRU; 95 return true; 96 } 97 } 98 99 /* 100 * Raced with truncate or failed to remove folio from current 101 * address space, unlock and return failure. 102 */ 103 out_unlock: 104 folio_unlock(folio); 105 return false; 106 } 107 108 static void page_cache_pipe_buf_release(struct pipe_inode_info *pipe, 109 struct pipe_buffer *buf) 110 { 111 put_page(buf->page); 112 buf->flags &= ~PIPE_BUF_FLAG_LRU; 113 } 114 115 /* 116 * Check whether the contents of buf is OK to access. Since the content 117 * is a page cache page, IO may be in flight. 118 */ 119 static int page_cache_pipe_buf_confirm(struct pipe_inode_info *pipe, 120 struct pipe_buffer *buf) 121 { 122 struct folio *folio = page_folio(buf->page); 123 int err; 124 125 if (!folio_test_uptodate(folio)) { 126 folio_lock(folio); 127 128 /* 129 * Folio got truncated/unhashed. This will cause a 0-byte 130 * splice, if this is the first page. 131 */ 132 if (!folio->mapping) { 133 err = -ENODATA; 134 goto error; 135 } 136 137 /* 138 * Uh oh, read-error from disk. 139 */ 140 if (!folio_test_uptodate(folio)) { 141 err = -EIO; 142 goto error; 143 } 144 145 /* Folio is ok after all, we are done */ 146 folio_unlock(folio); 147 } 148 149 return 0; 150 error: 151 folio_unlock(folio); 152 return err; 153 } 154 155 const struct pipe_buf_operations page_cache_pipe_buf_ops = { 156 .confirm = page_cache_pipe_buf_confirm, 157 .release = page_cache_pipe_buf_release, 158 .try_steal = page_cache_pipe_buf_try_steal, 159 .get = generic_pipe_buf_get, 160 }; 161 162 static bool user_page_pipe_buf_try_steal(struct pipe_inode_info *pipe, 163 struct pipe_buffer *buf) 164 { 165 if (!(buf->flags & PIPE_BUF_FLAG_GIFT)) 166 return false; 167 168 buf->flags |= PIPE_BUF_FLAG_LRU; 169 return generic_pipe_buf_try_steal(pipe, buf); 170 } 171 172 static const struct pipe_buf_operations user_page_pipe_buf_ops = { 173 .release = page_cache_pipe_buf_release, 174 .try_steal = user_page_pipe_buf_try_steal, 175 .get = generic_pipe_buf_get, 176 }; 177 178 static void wakeup_pipe_readers(struct pipe_inode_info *pipe) 179 { 180 smp_mb(); 181 if (waitqueue_active(&pipe->rd_wait)) 182 wake_up_interruptible(&pipe->rd_wait); 183 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN); 184 } 185 186 /** 187 * splice_to_pipe - fill passed data into a pipe 188 * @pipe: pipe to fill 189 * @spd: data to fill 190 * 191 * Description: 192 * @spd contains a map of pages and len/offset tuples, along with 193 * the struct pipe_buf_operations associated with these pages. This 194 * function will link that data to the pipe. 195 * 196 */ 197 ssize_t splice_to_pipe(struct pipe_inode_info *pipe, 198 struct splice_pipe_desc *spd) 199 { 200 unsigned int spd_pages = spd->nr_pages; 201 unsigned int tail = pipe->tail; 202 unsigned int head = pipe->head; 203 unsigned int mask = pipe->ring_size - 1; 204 ssize_t ret = 0; 205 int page_nr = 0; 206 207 if (!spd_pages) 208 return 0; 209 210 if (unlikely(!pipe->readers)) { 211 send_sig(SIGPIPE, current, 0); 212 ret = -EPIPE; 213 goto out; 214 } 215 216 while (!pipe_full(head, tail, pipe->max_usage)) { 217 struct pipe_buffer *buf = &pipe->bufs[head & mask]; 218 219 buf->page = spd->pages[page_nr]; 220 buf->offset = spd->partial[page_nr].offset; 221 buf->len = spd->partial[page_nr].len; 222 buf->private = spd->partial[page_nr].private; 223 buf->ops = spd->ops; 224 buf->flags = 0; 225 226 head++; 227 pipe->head = head; 228 page_nr++; 229 ret += buf->len; 230 231 if (!--spd->nr_pages) 232 break; 233 } 234 235 if (!ret) 236 ret = -EAGAIN; 237 238 out: 239 while (page_nr < spd_pages) 240 spd->spd_release(spd, page_nr++); 241 242 return ret; 243 } 244 EXPORT_SYMBOL_GPL(splice_to_pipe); 245 246 ssize_t add_to_pipe(struct pipe_inode_info *pipe, struct pipe_buffer *buf) 247 { 248 unsigned int head = pipe->head; 249 unsigned int tail = pipe->tail; 250 unsigned int mask = pipe->ring_size - 1; 251 int ret; 252 253 if (unlikely(!pipe->readers)) { 254 send_sig(SIGPIPE, current, 0); 255 ret = -EPIPE; 256 } else if (pipe_full(head, tail, pipe->max_usage)) { 257 ret = -EAGAIN; 258 } else { 259 pipe->bufs[head & mask] = *buf; 260 pipe->head = head + 1; 261 return buf->len; 262 } 263 pipe_buf_release(pipe, buf); 264 return ret; 265 } 266 EXPORT_SYMBOL(add_to_pipe); 267 268 /* 269 * Check if we need to grow the arrays holding pages and partial page 270 * descriptions. 271 */ 272 int splice_grow_spd(const struct pipe_inode_info *pipe, struct splice_pipe_desc *spd) 273 { 274 unsigned int max_usage = READ_ONCE(pipe->max_usage); 275 276 spd->nr_pages_max = max_usage; 277 if (max_usage <= PIPE_DEF_BUFFERS) 278 return 0; 279 280 spd->pages = kmalloc_array(max_usage, sizeof(struct page *), GFP_KERNEL); 281 spd->partial = kmalloc_array(max_usage, sizeof(struct partial_page), 282 GFP_KERNEL); 283 284 if (spd->pages && spd->partial) 285 return 0; 286 287 kfree(spd->pages); 288 kfree(spd->partial); 289 return -ENOMEM; 290 } 291 292 void splice_shrink_spd(struct splice_pipe_desc *spd) 293 { 294 if (spd->nr_pages_max <= PIPE_DEF_BUFFERS) 295 return; 296 297 kfree(spd->pages); 298 kfree(spd->partial); 299 } 300 301 /** 302 * copy_splice_read - Copy data from a file and splice the copy into a pipe 303 * @in: The file to read from 304 * @ppos: Pointer to the file position to read from 305 * @pipe: The pipe to splice into 306 * @len: The amount to splice 307 * @flags: The SPLICE_F_* flags 308 * 309 * This function allocates a bunch of pages sufficient to hold the requested 310 * amount of data (but limited by the remaining pipe capacity), passes it to 311 * the file's ->read_iter() to read into and then splices the used pages into 312 * the pipe. 313 * 314 * Return: On success, the number of bytes read will be returned and *@ppos 315 * will be updated if appropriate; 0 will be returned if there is no more data 316 * to be read; -EAGAIN will be returned if the pipe had no space, and some 317 * other negative error code will be returned on error. A short read may occur 318 * if the pipe has insufficient space, we reach the end of the data or we hit a 319 * hole. 320 */ 321 ssize_t copy_splice_read(struct file *in, loff_t *ppos, 322 struct pipe_inode_info *pipe, 323 size_t len, unsigned int flags) 324 { 325 struct iov_iter to; 326 struct bio_vec *bv; 327 struct kiocb kiocb; 328 struct page **pages; 329 ssize_t ret; 330 size_t used, npages, chunk, remain, keep = 0; 331 int i; 332 333 /* Work out how much data we can actually add into the pipe */ 334 used = pipe_occupancy(pipe->head, pipe->tail); 335 npages = max_t(ssize_t, pipe->max_usage - used, 0); 336 len = min_t(size_t, len, npages * PAGE_SIZE); 337 npages = DIV_ROUND_UP(len, PAGE_SIZE); 338 339 bv = kzalloc(array_size(npages, sizeof(bv[0])) + 340 array_size(npages, sizeof(struct page *)), GFP_KERNEL); 341 if (!bv) 342 return -ENOMEM; 343 344 pages = (struct page **)(bv + npages); 345 npages = alloc_pages_bulk_array(GFP_USER, npages, pages); 346 if (!npages) { 347 kfree(bv); 348 return -ENOMEM; 349 } 350 351 remain = len = min_t(size_t, len, npages * PAGE_SIZE); 352 353 for (i = 0; i < npages; i++) { 354 chunk = min_t(size_t, PAGE_SIZE, remain); 355 bv[i].bv_page = pages[i]; 356 bv[i].bv_offset = 0; 357 bv[i].bv_len = chunk; 358 remain -= chunk; 359 } 360 361 /* Do the I/O */ 362 iov_iter_bvec(&to, ITER_DEST, bv, npages, len); 363 init_sync_kiocb(&kiocb, in); 364 kiocb.ki_pos = *ppos; 365 ret = in->f_op->read_iter(&kiocb, &to); 366 367 if (ret > 0) { 368 keep = DIV_ROUND_UP(ret, PAGE_SIZE); 369 *ppos = kiocb.ki_pos; 370 } 371 372 /* 373 * Callers of ->splice_read() expect -EAGAIN on "can't put anything in 374 * there", rather than -EFAULT. 375 */ 376 if (ret == -EFAULT) 377 ret = -EAGAIN; 378 379 /* Free any pages that didn't get touched at all. */ 380 if (keep < npages) 381 release_pages(pages + keep, npages - keep); 382 383 /* Push the remaining pages into the pipe. */ 384 remain = ret; 385 for (i = 0; i < keep; i++) { 386 struct pipe_buffer *buf = pipe_head_buf(pipe); 387 388 chunk = min_t(size_t, remain, PAGE_SIZE); 389 *buf = (struct pipe_buffer) { 390 .ops = &default_pipe_buf_ops, 391 .page = bv[i].bv_page, 392 .offset = 0, 393 .len = chunk, 394 }; 395 pipe->head++; 396 remain -= chunk; 397 } 398 399 kfree(bv); 400 return ret; 401 } 402 EXPORT_SYMBOL(copy_splice_read); 403 404 const struct pipe_buf_operations default_pipe_buf_ops = { 405 .release = generic_pipe_buf_release, 406 .try_steal = generic_pipe_buf_try_steal, 407 .get = generic_pipe_buf_get, 408 }; 409 410 /* Pipe buffer operations for a socket and similar. */ 411 const struct pipe_buf_operations nosteal_pipe_buf_ops = { 412 .release = generic_pipe_buf_release, 413 .get = generic_pipe_buf_get, 414 }; 415 EXPORT_SYMBOL(nosteal_pipe_buf_ops); 416 417 static void wakeup_pipe_writers(struct pipe_inode_info *pipe) 418 { 419 smp_mb(); 420 if (waitqueue_active(&pipe->wr_wait)) 421 wake_up_interruptible(&pipe->wr_wait); 422 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT); 423 } 424 425 /** 426 * splice_from_pipe_feed - feed available data from a pipe to a file 427 * @pipe: pipe to splice from 428 * @sd: information to @actor 429 * @actor: handler that splices the data 430 * 431 * Description: 432 * This function loops over the pipe and calls @actor to do the 433 * actual moving of a single struct pipe_buffer to the desired 434 * destination. It returns when there's no more buffers left in 435 * the pipe or if the requested number of bytes (@sd->total_len) 436 * have been copied. It returns a positive number (one) if the 437 * pipe needs to be filled with more data, zero if the required 438 * number of bytes have been copied and -errno on error. 439 * 440 * This, together with splice_from_pipe_{begin,end,next}, may be 441 * used to implement the functionality of __splice_from_pipe() when 442 * locking is required around copying the pipe buffers to the 443 * destination. 444 */ 445 static int splice_from_pipe_feed(struct pipe_inode_info *pipe, struct splice_desc *sd, 446 splice_actor *actor) 447 { 448 unsigned int head = pipe->head; 449 unsigned int tail = pipe->tail; 450 unsigned int mask = pipe->ring_size - 1; 451 int ret; 452 453 while (!pipe_empty(head, tail)) { 454 struct pipe_buffer *buf = &pipe->bufs[tail & mask]; 455 456 sd->len = buf->len; 457 if (sd->len > sd->total_len) 458 sd->len = sd->total_len; 459 460 ret = pipe_buf_confirm(pipe, buf); 461 if (unlikely(ret)) { 462 if (ret == -ENODATA) 463 ret = 0; 464 return ret; 465 } 466 467 ret = actor(pipe, buf, sd); 468 if (ret <= 0) 469 return ret; 470 471 buf->offset += ret; 472 buf->len -= ret; 473 474 sd->num_spliced += ret; 475 sd->len -= ret; 476 sd->pos += ret; 477 sd->total_len -= ret; 478 479 if (!buf->len) { 480 pipe_buf_release(pipe, buf); 481 tail++; 482 pipe->tail = tail; 483 if (pipe->files) 484 sd->need_wakeup = true; 485 } 486 487 if (!sd->total_len) 488 return 0; 489 } 490 491 return 1; 492 } 493 494 /* We know we have a pipe buffer, but maybe it's empty? */ 495 static inline bool eat_empty_buffer(struct pipe_inode_info *pipe) 496 { 497 unsigned int tail = pipe->tail; 498 unsigned int mask = pipe->ring_size - 1; 499 struct pipe_buffer *buf = &pipe->bufs[tail & mask]; 500 501 if (unlikely(!buf->len)) { 502 pipe_buf_release(pipe, buf); 503 pipe->tail = tail+1; 504 return true; 505 } 506 507 return false; 508 } 509 510 /** 511 * splice_from_pipe_next - wait for some data to splice from 512 * @pipe: pipe to splice from 513 * @sd: information about the splice operation 514 * 515 * Description: 516 * This function will wait for some data and return a positive 517 * value (one) if pipe buffers are available. It will return zero 518 * or -errno if no more data needs to be spliced. 519 */ 520 static int splice_from_pipe_next(struct pipe_inode_info *pipe, struct splice_desc *sd) 521 { 522 /* 523 * Check for signal early to make process killable when there are 524 * always buffers available 525 */ 526 if (signal_pending(current)) 527 return -ERESTARTSYS; 528 529 repeat: 530 while (pipe_empty(pipe->head, pipe->tail)) { 531 if (!pipe->writers) 532 return 0; 533 534 if (sd->num_spliced) 535 return 0; 536 537 if (sd->flags & SPLICE_F_NONBLOCK) 538 return -EAGAIN; 539 540 if (signal_pending(current)) 541 return -ERESTARTSYS; 542 543 if (sd->need_wakeup) { 544 wakeup_pipe_writers(pipe); 545 sd->need_wakeup = false; 546 } 547 548 pipe_wait_readable(pipe); 549 } 550 551 if (eat_empty_buffer(pipe)) 552 goto repeat; 553 554 return 1; 555 } 556 557 /** 558 * splice_from_pipe_begin - start splicing from pipe 559 * @sd: information about the splice operation 560 * 561 * Description: 562 * This function should be called before a loop containing 563 * splice_from_pipe_next() and splice_from_pipe_feed() to 564 * initialize the necessary fields of @sd. 565 */ 566 static void splice_from_pipe_begin(struct splice_desc *sd) 567 { 568 sd->num_spliced = 0; 569 sd->need_wakeup = false; 570 } 571 572 /** 573 * splice_from_pipe_end - finish splicing from pipe 574 * @pipe: pipe to splice from 575 * @sd: information about the splice operation 576 * 577 * Description: 578 * This function will wake up pipe writers if necessary. It should 579 * be called after a loop containing splice_from_pipe_next() and 580 * splice_from_pipe_feed(). 581 */ 582 static void splice_from_pipe_end(struct pipe_inode_info *pipe, struct splice_desc *sd) 583 { 584 if (sd->need_wakeup) 585 wakeup_pipe_writers(pipe); 586 } 587 588 /** 589 * __splice_from_pipe - splice data from a pipe to given actor 590 * @pipe: pipe to splice from 591 * @sd: information to @actor 592 * @actor: handler that splices the data 593 * 594 * Description: 595 * This function does little more than loop over the pipe and call 596 * @actor to do the actual moving of a single struct pipe_buffer to 597 * the desired destination. See pipe_to_file, pipe_to_sendmsg, or 598 * pipe_to_user. 599 * 600 */ 601 ssize_t __splice_from_pipe(struct pipe_inode_info *pipe, struct splice_desc *sd, 602 splice_actor *actor) 603 { 604 int ret; 605 606 splice_from_pipe_begin(sd); 607 do { 608 cond_resched(); 609 ret = splice_from_pipe_next(pipe, sd); 610 if (ret > 0) 611 ret = splice_from_pipe_feed(pipe, sd, actor); 612 } while (ret > 0); 613 splice_from_pipe_end(pipe, sd); 614 615 return sd->num_spliced ? sd->num_spliced : ret; 616 } 617 EXPORT_SYMBOL(__splice_from_pipe); 618 619 /** 620 * splice_from_pipe - splice data from a pipe to a file 621 * @pipe: pipe to splice from 622 * @out: file to splice to 623 * @ppos: position in @out 624 * @len: how many bytes to splice 625 * @flags: splice modifier flags 626 * @actor: handler that splices the data 627 * 628 * Description: 629 * See __splice_from_pipe. This function locks the pipe inode, 630 * otherwise it's identical to __splice_from_pipe(). 631 * 632 */ 633 ssize_t splice_from_pipe(struct pipe_inode_info *pipe, struct file *out, 634 loff_t *ppos, size_t len, unsigned int flags, 635 splice_actor *actor) 636 { 637 ssize_t ret; 638 struct splice_desc sd = { 639 .total_len = len, 640 .flags = flags, 641 .pos = *ppos, 642 .u.file = out, 643 }; 644 645 pipe_lock(pipe); 646 ret = __splice_from_pipe(pipe, &sd, actor); 647 pipe_unlock(pipe); 648 649 return ret; 650 } 651 652 /** 653 * iter_file_splice_write - splice data from a pipe to a file 654 * @pipe: pipe info 655 * @out: file to write to 656 * @ppos: position in @out 657 * @len: number of bytes to splice 658 * @flags: splice modifier flags 659 * 660 * Description: 661 * Will either move or copy pages (determined by @flags options) from 662 * the given pipe inode to the given file. 663 * This one is ->write_iter-based. 664 * 665 */ 666 ssize_t 667 iter_file_splice_write(struct pipe_inode_info *pipe, struct file *out, 668 loff_t *ppos, size_t len, unsigned int flags) 669 { 670 struct splice_desc sd = { 671 .total_len = len, 672 .flags = flags, 673 .pos = *ppos, 674 .u.file = out, 675 }; 676 int nbufs = pipe->max_usage; 677 struct bio_vec *array; 678 ssize_t ret; 679 680 if (!out->f_op->write_iter) 681 return -EINVAL; 682 683 array = kcalloc(nbufs, sizeof(struct bio_vec), GFP_KERNEL); 684 if (unlikely(!array)) 685 return -ENOMEM; 686 687 pipe_lock(pipe); 688 689 splice_from_pipe_begin(&sd); 690 while (sd.total_len) { 691 struct kiocb kiocb; 692 struct iov_iter from; 693 unsigned int head, tail, mask; 694 size_t left; 695 int n; 696 697 ret = splice_from_pipe_next(pipe, &sd); 698 if (ret <= 0) 699 break; 700 701 if (unlikely(nbufs < pipe->max_usage)) { 702 kfree(array); 703 nbufs = pipe->max_usage; 704 array = kcalloc(nbufs, sizeof(struct bio_vec), 705 GFP_KERNEL); 706 if (!array) { 707 ret = -ENOMEM; 708 break; 709 } 710 } 711 712 head = pipe->head; 713 tail = pipe->tail; 714 mask = pipe->ring_size - 1; 715 716 /* build the vector */ 717 left = sd.total_len; 718 for (n = 0; !pipe_empty(head, tail) && left && n < nbufs; tail++) { 719 struct pipe_buffer *buf = &pipe->bufs[tail & mask]; 720 size_t this_len = buf->len; 721 722 /* zero-length bvecs are not supported, skip them */ 723 if (!this_len) 724 continue; 725 this_len = min(this_len, left); 726 727 ret = pipe_buf_confirm(pipe, buf); 728 if (unlikely(ret)) { 729 if (ret == -ENODATA) 730 ret = 0; 731 goto done; 732 } 733 734 bvec_set_page(&array[n], buf->page, this_len, 735 buf->offset); 736 left -= this_len; 737 n++; 738 } 739 740 iov_iter_bvec(&from, ITER_SOURCE, array, n, sd.total_len - left); 741 init_sync_kiocb(&kiocb, out); 742 kiocb.ki_pos = sd.pos; 743 ret = out->f_op->write_iter(&kiocb, &from); 744 sd.pos = kiocb.ki_pos; 745 if (ret <= 0) 746 break; 747 748 sd.num_spliced += ret; 749 sd.total_len -= ret; 750 *ppos = sd.pos; 751 752 /* dismiss the fully eaten buffers, adjust the partial one */ 753 tail = pipe->tail; 754 while (ret) { 755 struct pipe_buffer *buf = &pipe->bufs[tail & mask]; 756 if (ret >= buf->len) { 757 ret -= buf->len; 758 buf->len = 0; 759 pipe_buf_release(pipe, buf); 760 tail++; 761 pipe->tail = tail; 762 if (pipe->files) 763 sd.need_wakeup = true; 764 } else { 765 buf->offset += ret; 766 buf->len -= ret; 767 ret = 0; 768 } 769 } 770 } 771 done: 772 kfree(array); 773 splice_from_pipe_end(pipe, &sd); 774 775 pipe_unlock(pipe); 776 777 if (sd.num_spliced) 778 ret = sd.num_spliced; 779 780 return ret; 781 } 782 783 EXPORT_SYMBOL(iter_file_splice_write); 784 785 #ifdef CONFIG_NET 786 /** 787 * splice_to_socket - splice data from a pipe to a socket 788 * @pipe: pipe to splice from 789 * @out: socket to write to 790 * @ppos: position in @out 791 * @len: number of bytes to splice 792 * @flags: splice modifier flags 793 * 794 * Description: 795 * Will send @len bytes from the pipe to a network socket. No data copying 796 * is involved. 797 * 798 */ 799 ssize_t splice_to_socket(struct pipe_inode_info *pipe, struct file *out, 800 loff_t *ppos, size_t len, unsigned int flags) 801 { 802 struct socket *sock = sock_from_file(out); 803 struct bio_vec bvec[16]; 804 struct msghdr msg = {}; 805 ssize_t ret = 0; 806 size_t spliced = 0; 807 bool need_wakeup = false; 808 809 pipe_lock(pipe); 810 811 while (len > 0) { 812 unsigned int head, tail, mask, bc = 0; 813 size_t remain = len; 814 815 /* 816 * Check for signal early to make process killable when there 817 * are always buffers available 818 */ 819 ret = -ERESTARTSYS; 820 if (signal_pending(current)) 821 break; 822 823 while (pipe_empty(pipe->head, pipe->tail)) { 824 ret = 0; 825 if (!pipe->writers) 826 goto out; 827 828 if (spliced) 829 goto out; 830 831 ret = -EAGAIN; 832 if (flags & SPLICE_F_NONBLOCK) 833 goto out; 834 835 ret = -ERESTARTSYS; 836 if (signal_pending(current)) 837 goto out; 838 839 if (need_wakeup) { 840 wakeup_pipe_writers(pipe); 841 need_wakeup = false; 842 } 843 844 pipe_wait_readable(pipe); 845 } 846 847 head = pipe->head; 848 tail = pipe->tail; 849 mask = pipe->ring_size - 1; 850 851 while (!pipe_empty(head, tail)) { 852 struct pipe_buffer *buf = &pipe->bufs[tail & mask]; 853 size_t seg; 854 855 if (!buf->len) { 856 tail++; 857 continue; 858 } 859 860 seg = min_t(size_t, remain, buf->len); 861 862 ret = pipe_buf_confirm(pipe, buf); 863 if (unlikely(ret)) { 864 if (ret == -ENODATA) 865 ret = 0; 866 break; 867 } 868 869 bvec_set_page(&bvec[bc++], buf->page, seg, buf->offset); 870 remain -= seg; 871 if (remain == 0 || bc >= ARRAY_SIZE(bvec)) 872 break; 873 tail++; 874 } 875 876 if (!bc) 877 break; 878 879 msg.msg_flags = MSG_SPLICE_PAGES; 880 if (flags & SPLICE_F_MORE) 881 msg.msg_flags |= MSG_MORE; 882 if (remain && pipe_occupancy(pipe->head, tail) > 0) 883 msg.msg_flags |= MSG_MORE; 884 if (out->f_flags & O_NONBLOCK) 885 msg.msg_flags |= MSG_DONTWAIT; 886 887 iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, bvec, bc, 888 len - remain); 889 ret = sock_sendmsg(sock, &msg); 890 if (ret <= 0) 891 break; 892 893 spliced += ret; 894 len -= ret; 895 tail = pipe->tail; 896 while (ret > 0) { 897 struct pipe_buffer *buf = &pipe->bufs[tail & mask]; 898 size_t seg = min_t(size_t, ret, buf->len); 899 900 buf->offset += seg; 901 buf->len -= seg; 902 ret -= seg; 903 904 if (!buf->len) { 905 pipe_buf_release(pipe, buf); 906 tail++; 907 } 908 } 909 910 if (tail != pipe->tail) { 911 pipe->tail = tail; 912 if (pipe->files) 913 need_wakeup = true; 914 } 915 } 916 917 out: 918 pipe_unlock(pipe); 919 if (need_wakeup) 920 wakeup_pipe_writers(pipe); 921 return spliced ?: ret; 922 } 923 #endif 924 925 static int warn_unsupported(struct file *file, const char *op) 926 { 927 pr_debug_ratelimited( 928 "splice %s not supported for file %pD4 (pid: %d comm: %.20s)\n", 929 op, file, current->pid, current->comm); 930 return -EINVAL; 931 } 932 933 /* 934 * Attempt to initiate a splice from pipe to file. 935 */ 936 static ssize_t do_splice_from(struct pipe_inode_info *pipe, struct file *out, 937 loff_t *ppos, size_t len, unsigned int flags) 938 { 939 if (unlikely(!out->f_op->splice_write)) 940 return warn_unsupported(out, "write"); 941 return out->f_op->splice_write(pipe, out, ppos, len, flags); 942 } 943 944 /* 945 * Indicate to the caller that there was a premature EOF when reading from the 946 * source and the caller didn't indicate they would be sending more data after 947 * this. 948 */ 949 static void do_splice_eof(struct splice_desc *sd) 950 { 951 if (sd->splice_eof) 952 sd->splice_eof(sd); 953 } 954 955 /* 956 * Callers already called rw_verify_area() on the entire range. 957 * No need to call it for sub ranges. 958 */ 959 static ssize_t do_splice_read(struct file *in, loff_t *ppos, 960 struct pipe_inode_info *pipe, size_t len, 961 unsigned int flags) 962 { 963 unsigned int p_space; 964 965 if (unlikely(!(in->f_mode & FMODE_READ))) 966 return -EBADF; 967 if (!len) 968 return 0; 969 970 /* Don't try to read more the pipe has space for. */ 971 p_space = pipe->max_usage - pipe_occupancy(pipe->head, pipe->tail); 972 len = min_t(size_t, len, p_space << PAGE_SHIFT); 973 974 if (unlikely(len > MAX_RW_COUNT)) 975 len = MAX_RW_COUNT; 976 977 if (unlikely(!in->f_op->splice_read)) 978 return warn_unsupported(in, "read"); 979 /* 980 * O_DIRECT and DAX don't deal with the pagecache, so we allocate a 981 * buffer, copy into it and splice that into the pipe. 982 */ 983 if ((in->f_flags & O_DIRECT) || IS_DAX(in->f_mapping->host)) 984 return copy_splice_read(in, ppos, pipe, len, flags); 985 return in->f_op->splice_read(in, ppos, pipe, len, flags); 986 } 987 988 /** 989 * vfs_splice_read - Read data from a file and splice it into a pipe 990 * @in: File to splice from 991 * @ppos: Input file offset 992 * @pipe: Pipe to splice to 993 * @len: Number of bytes to splice 994 * @flags: Splice modifier flags (SPLICE_F_*) 995 * 996 * Splice the requested amount of data from the input file to the pipe. This 997 * is synchronous as the caller must hold the pipe lock across the entire 998 * operation. 999 * 1000 * If successful, it returns the amount of data spliced, 0 if it hit the EOF or 1001 * a hole and a negative error code otherwise. 1002 */ 1003 ssize_t vfs_splice_read(struct file *in, loff_t *ppos, 1004 struct pipe_inode_info *pipe, size_t len, 1005 unsigned int flags) 1006 { 1007 ssize_t ret; 1008 1009 ret = rw_verify_area(READ, in, ppos, len); 1010 if (unlikely(ret < 0)) 1011 return ret; 1012 1013 return do_splice_read(in, ppos, pipe, len, flags); 1014 } 1015 EXPORT_SYMBOL_GPL(vfs_splice_read); 1016 1017 /** 1018 * splice_direct_to_actor - splices data directly between two non-pipes 1019 * @in: file to splice from 1020 * @sd: actor information on where to splice to 1021 * @actor: handles the data splicing 1022 * 1023 * Description: 1024 * This is a special case helper to splice directly between two 1025 * points, without requiring an explicit pipe. Internally an allocated 1026 * pipe is cached in the process, and reused during the lifetime of 1027 * that process. 1028 * 1029 */ 1030 ssize_t splice_direct_to_actor(struct file *in, struct splice_desc *sd, 1031 splice_direct_actor *actor) 1032 { 1033 struct pipe_inode_info *pipe; 1034 ssize_t ret, bytes; 1035 size_t len; 1036 int i, flags, more; 1037 1038 /* 1039 * We require the input to be seekable, as we don't want to randomly 1040 * drop data for eg socket -> socket splicing. Use the piped splicing 1041 * for that! 1042 */ 1043 if (unlikely(!(in->f_mode & FMODE_LSEEK))) 1044 return -EINVAL; 1045 1046 /* 1047 * neither in nor out is a pipe, setup an internal pipe attached to 1048 * 'out' and transfer the wanted data from 'in' to 'out' through that 1049 */ 1050 pipe = current->splice_pipe; 1051 if (unlikely(!pipe)) { 1052 pipe = alloc_pipe_info(); 1053 if (!pipe) 1054 return -ENOMEM; 1055 1056 /* 1057 * We don't have an immediate reader, but we'll read the stuff 1058 * out of the pipe right after the splice_to_pipe(). So set 1059 * PIPE_READERS appropriately. 1060 */ 1061 pipe->readers = 1; 1062 1063 current->splice_pipe = pipe; 1064 } 1065 1066 /* 1067 * Do the splice. 1068 */ 1069 bytes = 0; 1070 len = sd->total_len; 1071 1072 /* Don't block on output, we have to drain the direct pipe. */ 1073 flags = sd->flags; 1074 sd->flags &= ~SPLICE_F_NONBLOCK; 1075 1076 /* 1077 * We signal MORE until we've read sufficient data to fulfill the 1078 * request and we keep signalling it if the caller set it. 1079 */ 1080 more = sd->flags & SPLICE_F_MORE; 1081 sd->flags |= SPLICE_F_MORE; 1082 1083 WARN_ON_ONCE(!pipe_empty(pipe->head, pipe->tail)); 1084 1085 while (len) { 1086 size_t read_len; 1087 loff_t pos = sd->pos, prev_pos = pos; 1088 1089 ret = do_splice_read(in, &pos, pipe, len, flags); 1090 if (unlikely(ret <= 0)) 1091 goto read_failure; 1092 1093 read_len = ret; 1094 sd->total_len = read_len; 1095 1096 /* 1097 * If we now have sufficient data to fulfill the request then 1098 * we clear SPLICE_F_MORE if it was not set initially. 1099 */ 1100 if (read_len >= len && !more) 1101 sd->flags &= ~SPLICE_F_MORE; 1102 1103 /* 1104 * NOTE: nonblocking mode only applies to the input. We 1105 * must not do the output in nonblocking mode as then we 1106 * could get stuck data in the internal pipe: 1107 */ 1108 ret = actor(pipe, sd); 1109 if (unlikely(ret <= 0)) { 1110 sd->pos = prev_pos; 1111 goto out_release; 1112 } 1113 1114 bytes += ret; 1115 len -= ret; 1116 sd->pos = pos; 1117 1118 if (ret < read_len) { 1119 sd->pos = prev_pos + ret; 1120 goto out_release; 1121 } 1122 } 1123 1124 done: 1125 pipe->tail = pipe->head = 0; 1126 file_accessed(in); 1127 return bytes; 1128 1129 read_failure: 1130 /* 1131 * If the user did *not* set SPLICE_F_MORE *and* we didn't hit that 1132 * "use all of len" case that cleared SPLICE_F_MORE, *and* we did a 1133 * "->splice_in()" that returned EOF (ie zero) *and* we have sent at 1134 * least 1 byte *then* we will also do the ->splice_eof() call. 1135 */ 1136 if (ret == 0 && !more && len > 0 && bytes) 1137 do_splice_eof(sd); 1138 out_release: 1139 /* 1140 * If we did an incomplete transfer we must release 1141 * the pipe buffers in question: 1142 */ 1143 for (i = 0; i < pipe->ring_size; i++) { 1144 struct pipe_buffer *buf = &pipe->bufs[i]; 1145 1146 if (buf->ops) 1147 pipe_buf_release(pipe, buf); 1148 } 1149 1150 if (!bytes) 1151 bytes = ret; 1152 1153 goto done; 1154 } 1155 EXPORT_SYMBOL(splice_direct_to_actor); 1156 1157 static int direct_splice_actor(struct pipe_inode_info *pipe, 1158 struct splice_desc *sd) 1159 { 1160 struct file *file = sd->u.file; 1161 long ret; 1162 1163 file_start_write(file); 1164 ret = do_splice_from(pipe, file, sd->opos, sd->total_len, sd->flags); 1165 file_end_write(file); 1166 return ret; 1167 } 1168 1169 static int splice_file_range_actor(struct pipe_inode_info *pipe, 1170 struct splice_desc *sd) 1171 { 1172 struct file *file = sd->u.file; 1173 1174 return do_splice_from(pipe, file, sd->opos, sd->total_len, sd->flags); 1175 } 1176 1177 static void direct_file_splice_eof(struct splice_desc *sd) 1178 { 1179 struct file *file = sd->u.file; 1180 1181 if (file->f_op->splice_eof) 1182 file->f_op->splice_eof(file); 1183 } 1184 1185 static ssize_t do_splice_direct_actor(struct file *in, loff_t *ppos, 1186 struct file *out, loff_t *opos, 1187 size_t len, unsigned int flags, 1188 splice_direct_actor *actor) 1189 { 1190 struct splice_desc sd = { 1191 .len = len, 1192 .total_len = len, 1193 .flags = flags, 1194 .pos = *ppos, 1195 .u.file = out, 1196 .splice_eof = direct_file_splice_eof, 1197 .opos = opos, 1198 }; 1199 ssize_t ret; 1200 1201 if (unlikely(!(out->f_mode & FMODE_WRITE))) 1202 return -EBADF; 1203 1204 if (unlikely(out->f_flags & O_APPEND)) 1205 return -EINVAL; 1206 1207 ret = splice_direct_to_actor(in, &sd, actor); 1208 if (ret > 0) 1209 *ppos = sd.pos; 1210 1211 return ret; 1212 } 1213 /** 1214 * do_splice_direct - splices data directly between two files 1215 * @in: file to splice from 1216 * @ppos: input file offset 1217 * @out: file to splice to 1218 * @opos: output file offset 1219 * @len: number of bytes to splice 1220 * @flags: splice modifier flags 1221 * 1222 * Description: 1223 * For use by do_sendfile(). splice can easily emulate sendfile, but 1224 * doing it in the application would incur an extra system call 1225 * (splice in + splice out, as compared to just sendfile()). So this helper 1226 * can splice directly through a process-private pipe. 1227 * 1228 * Callers already called rw_verify_area() on the entire range. 1229 */ 1230 ssize_t do_splice_direct(struct file *in, loff_t *ppos, struct file *out, 1231 loff_t *opos, size_t len, unsigned int flags) 1232 { 1233 return do_splice_direct_actor(in, ppos, out, opos, len, flags, 1234 direct_splice_actor); 1235 } 1236 EXPORT_SYMBOL(do_splice_direct); 1237 1238 /** 1239 * splice_file_range - splices data between two files for copy_file_range() 1240 * @in: file to splice from 1241 * @ppos: input file offset 1242 * @out: file to splice to 1243 * @opos: output file offset 1244 * @len: number of bytes to splice 1245 * 1246 * Description: 1247 * For use by ->copy_file_range() methods. 1248 * Like do_splice_direct(), but vfs_copy_file_range() already holds 1249 * start_file_write() on @out file. 1250 * 1251 * Callers already called rw_verify_area() on the entire range. 1252 */ 1253 ssize_t splice_file_range(struct file *in, loff_t *ppos, struct file *out, 1254 loff_t *opos, size_t len) 1255 { 1256 lockdep_assert(file_write_started(out)); 1257 1258 return do_splice_direct_actor(in, ppos, out, opos, 1259 min_t(size_t, len, MAX_RW_COUNT), 1260 0, splice_file_range_actor); 1261 } 1262 EXPORT_SYMBOL(splice_file_range); 1263 1264 static int wait_for_space(struct pipe_inode_info *pipe, unsigned flags) 1265 { 1266 for (;;) { 1267 if (unlikely(!pipe->readers)) { 1268 send_sig(SIGPIPE, current, 0); 1269 return -EPIPE; 1270 } 1271 if (!pipe_full(pipe->head, pipe->tail, pipe->max_usage)) 1272 return 0; 1273 if (flags & SPLICE_F_NONBLOCK) 1274 return -EAGAIN; 1275 if (signal_pending(current)) 1276 return -ERESTARTSYS; 1277 pipe_wait_writable(pipe); 1278 } 1279 } 1280 1281 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe, 1282 struct pipe_inode_info *opipe, 1283 size_t len, unsigned int flags); 1284 1285 ssize_t splice_file_to_pipe(struct file *in, 1286 struct pipe_inode_info *opipe, 1287 loff_t *offset, 1288 size_t len, unsigned int flags) 1289 { 1290 ssize_t ret; 1291 1292 pipe_lock(opipe); 1293 ret = wait_for_space(opipe, flags); 1294 if (!ret) 1295 ret = do_splice_read(in, offset, opipe, len, flags); 1296 pipe_unlock(opipe); 1297 if (ret > 0) 1298 wakeup_pipe_readers(opipe); 1299 return ret; 1300 } 1301 1302 /* 1303 * Determine where to splice to/from. 1304 */ 1305 ssize_t do_splice(struct file *in, loff_t *off_in, struct file *out, 1306 loff_t *off_out, size_t len, unsigned int flags) 1307 { 1308 struct pipe_inode_info *ipipe; 1309 struct pipe_inode_info *opipe; 1310 loff_t offset; 1311 ssize_t ret; 1312 1313 if (unlikely(!(in->f_mode & FMODE_READ) || 1314 !(out->f_mode & FMODE_WRITE))) 1315 return -EBADF; 1316 1317 ipipe = get_pipe_info(in, true); 1318 opipe = get_pipe_info(out, true); 1319 1320 if (ipipe && opipe) { 1321 if (off_in || off_out) 1322 return -ESPIPE; 1323 1324 /* Splicing to self would be fun, but... */ 1325 if (ipipe == opipe) 1326 return -EINVAL; 1327 1328 if ((in->f_flags | out->f_flags) & O_NONBLOCK) 1329 flags |= SPLICE_F_NONBLOCK; 1330 1331 ret = splice_pipe_to_pipe(ipipe, opipe, len, flags); 1332 } else if (ipipe) { 1333 if (off_in) 1334 return -ESPIPE; 1335 if (off_out) { 1336 if (!(out->f_mode & FMODE_PWRITE)) 1337 return -EINVAL; 1338 offset = *off_out; 1339 } else { 1340 offset = out->f_pos; 1341 } 1342 1343 if (unlikely(out->f_flags & O_APPEND)) 1344 return -EINVAL; 1345 1346 ret = rw_verify_area(WRITE, out, &offset, len); 1347 if (unlikely(ret < 0)) 1348 return ret; 1349 1350 if (in->f_flags & O_NONBLOCK) 1351 flags |= SPLICE_F_NONBLOCK; 1352 1353 file_start_write(out); 1354 ret = do_splice_from(ipipe, out, &offset, len, flags); 1355 file_end_write(out); 1356 1357 if (!off_out) 1358 out->f_pos = offset; 1359 else 1360 *off_out = offset; 1361 } else if (opipe) { 1362 if (off_out) 1363 return -ESPIPE; 1364 if (off_in) { 1365 if (!(in->f_mode & FMODE_PREAD)) 1366 return -EINVAL; 1367 offset = *off_in; 1368 } else { 1369 offset = in->f_pos; 1370 } 1371 1372 ret = rw_verify_area(READ, in, &offset, len); 1373 if (unlikely(ret < 0)) 1374 return ret; 1375 1376 if (out->f_flags & O_NONBLOCK) 1377 flags |= SPLICE_F_NONBLOCK; 1378 1379 ret = splice_file_to_pipe(in, opipe, &offset, len, flags); 1380 1381 if (!off_in) 1382 in->f_pos = offset; 1383 else 1384 *off_in = offset; 1385 } else { 1386 ret = -EINVAL; 1387 } 1388 1389 if (ret > 0) { 1390 /* 1391 * Generate modify out before access in: 1392 * do_splice_from() may've already sent modify out, 1393 * and this ensures the events get merged. 1394 */ 1395 fsnotify_modify(out); 1396 fsnotify_access(in); 1397 } 1398 1399 return ret; 1400 } 1401 1402 static ssize_t __do_splice(struct file *in, loff_t __user *off_in, 1403 struct file *out, loff_t __user *off_out, 1404 size_t len, unsigned int flags) 1405 { 1406 struct pipe_inode_info *ipipe; 1407 struct pipe_inode_info *opipe; 1408 loff_t offset, *__off_in = NULL, *__off_out = NULL; 1409 ssize_t ret; 1410 1411 ipipe = get_pipe_info(in, true); 1412 opipe = get_pipe_info(out, true); 1413 1414 if (ipipe) { 1415 if (off_in) 1416 return -ESPIPE; 1417 pipe_clear_nowait(in); 1418 } 1419 if (opipe) { 1420 if (off_out) 1421 return -ESPIPE; 1422 pipe_clear_nowait(out); 1423 } 1424 1425 if (off_out) { 1426 if (copy_from_user(&offset, off_out, sizeof(loff_t))) 1427 return -EFAULT; 1428 __off_out = &offset; 1429 } 1430 if (off_in) { 1431 if (copy_from_user(&offset, off_in, sizeof(loff_t))) 1432 return -EFAULT; 1433 __off_in = &offset; 1434 } 1435 1436 ret = do_splice(in, __off_in, out, __off_out, len, flags); 1437 if (ret < 0) 1438 return ret; 1439 1440 if (__off_out && copy_to_user(off_out, __off_out, sizeof(loff_t))) 1441 return -EFAULT; 1442 if (__off_in && copy_to_user(off_in, __off_in, sizeof(loff_t))) 1443 return -EFAULT; 1444 1445 return ret; 1446 } 1447 1448 static ssize_t iter_to_pipe(struct iov_iter *from, 1449 struct pipe_inode_info *pipe, 1450 unsigned int flags) 1451 { 1452 struct pipe_buffer buf = { 1453 .ops = &user_page_pipe_buf_ops, 1454 .flags = flags 1455 }; 1456 size_t total = 0; 1457 ssize_t ret = 0; 1458 1459 while (iov_iter_count(from)) { 1460 struct page *pages[16]; 1461 ssize_t left; 1462 size_t start; 1463 int i, n; 1464 1465 left = iov_iter_get_pages2(from, pages, ~0UL, 16, &start); 1466 if (left <= 0) { 1467 ret = left; 1468 break; 1469 } 1470 1471 n = DIV_ROUND_UP(left + start, PAGE_SIZE); 1472 for (i = 0; i < n; i++) { 1473 int size = min_t(int, left, PAGE_SIZE - start); 1474 1475 buf.page = pages[i]; 1476 buf.offset = start; 1477 buf.len = size; 1478 ret = add_to_pipe(pipe, &buf); 1479 if (unlikely(ret < 0)) { 1480 iov_iter_revert(from, left); 1481 // this one got dropped by add_to_pipe() 1482 while (++i < n) 1483 put_page(pages[i]); 1484 goto out; 1485 } 1486 total += ret; 1487 left -= size; 1488 start = 0; 1489 } 1490 } 1491 out: 1492 return total ? total : ret; 1493 } 1494 1495 static int pipe_to_user(struct pipe_inode_info *pipe, struct pipe_buffer *buf, 1496 struct splice_desc *sd) 1497 { 1498 int n = copy_page_to_iter(buf->page, buf->offset, sd->len, sd->u.data); 1499 return n == sd->len ? n : -EFAULT; 1500 } 1501 1502 /* 1503 * For lack of a better implementation, implement vmsplice() to userspace 1504 * as a simple copy of the pipes pages to the user iov. 1505 */ 1506 static ssize_t vmsplice_to_user(struct file *file, struct iov_iter *iter, 1507 unsigned int flags) 1508 { 1509 struct pipe_inode_info *pipe = get_pipe_info(file, true); 1510 struct splice_desc sd = { 1511 .total_len = iov_iter_count(iter), 1512 .flags = flags, 1513 .u.data = iter 1514 }; 1515 ssize_t ret = 0; 1516 1517 if (!pipe) 1518 return -EBADF; 1519 1520 pipe_clear_nowait(file); 1521 1522 if (sd.total_len) { 1523 pipe_lock(pipe); 1524 ret = __splice_from_pipe(pipe, &sd, pipe_to_user); 1525 pipe_unlock(pipe); 1526 } 1527 1528 if (ret > 0) 1529 fsnotify_access(file); 1530 1531 return ret; 1532 } 1533 1534 /* 1535 * vmsplice splices a user address range into a pipe. It can be thought of 1536 * as splice-from-memory, where the regular splice is splice-from-file (or 1537 * to file). In both cases the output is a pipe, naturally. 1538 */ 1539 static ssize_t vmsplice_to_pipe(struct file *file, struct iov_iter *iter, 1540 unsigned int flags) 1541 { 1542 struct pipe_inode_info *pipe; 1543 ssize_t ret = 0; 1544 unsigned buf_flag = 0; 1545 1546 if (flags & SPLICE_F_GIFT) 1547 buf_flag = PIPE_BUF_FLAG_GIFT; 1548 1549 pipe = get_pipe_info(file, true); 1550 if (!pipe) 1551 return -EBADF; 1552 1553 pipe_clear_nowait(file); 1554 1555 pipe_lock(pipe); 1556 ret = wait_for_space(pipe, flags); 1557 if (!ret) 1558 ret = iter_to_pipe(iter, pipe, buf_flag); 1559 pipe_unlock(pipe); 1560 if (ret > 0) { 1561 wakeup_pipe_readers(pipe); 1562 fsnotify_modify(file); 1563 } 1564 return ret; 1565 } 1566 1567 static int vmsplice_type(struct fd f, int *type) 1568 { 1569 if (!fd_file(f)) 1570 return -EBADF; 1571 if (fd_file(f)->f_mode & FMODE_WRITE) { 1572 *type = ITER_SOURCE; 1573 } else if (fd_file(f)->f_mode & FMODE_READ) { 1574 *type = ITER_DEST; 1575 } else { 1576 fdput(f); 1577 return -EBADF; 1578 } 1579 return 0; 1580 } 1581 1582 /* 1583 * Note that vmsplice only really supports true splicing _from_ user memory 1584 * to a pipe, not the other way around. Splicing from user memory is a simple 1585 * operation that can be supported without any funky alignment restrictions 1586 * or nasty vm tricks. We simply map in the user memory and fill them into 1587 * a pipe. The reverse isn't quite as easy, though. There are two possible 1588 * solutions for that: 1589 * 1590 * - memcpy() the data internally, at which point we might as well just 1591 * do a regular read() on the buffer anyway. 1592 * - Lots of nasty vm tricks, that are neither fast nor flexible (it 1593 * has restriction limitations on both ends of the pipe). 1594 * 1595 * Currently we punt and implement it as a normal copy, see pipe_to_user(). 1596 * 1597 */ 1598 SYSCALL_DEFINE4(vmsplice, int, fd, const struct iovec __user *, uiov, 1599 unsigned long, nr_segs, unsigned int, flags) 1600 { 1601 struct iovec iovstack[UIO_FASTIOV]; 1602 struct iovec *iov = iovstack; 1603 struct iov_iter iter; 1604 ssize_t error; 1605 struct fd f; 1606 int type; 1607 1608 if (unlikely(flags & ~SPLICE_F_ALL)) 1609 return -EINVAL; 1610 1611 f = fdget(fd); 1612 error = vmsplice_type(f, &type); 1613 if (error) 1614 return error; 1615 1616 error = import_iovec(type, uiov, nr_segs, 1617 ARRAY_SIZE(iovstack), &iov, &iter); 1618 if (error < 0) 1619 goto out_fdput; 1620 1621 if (!iov_iter_count(&iter)) 1622 error = 0; 1623 else if (type == ITER_SOURCE) 1624 error = vmsplice_to_pipe(fd_file(f), &iter, flags); 1625 else 1626 error = vmsplice_to_user(fd_file(f), &iter, flags); 1627 1628 kfree(iov); 1629 out_fdput: 1630 fdput(f); 1631 return error; 1632 } 1633 1634 SYSCALL_DEFINE6(splice, int, fd_in, loff_t __user *, off_in, 1635 int, fd_out, loff_t __user *, off_out, 1636 size_t, len, unsigned int, flags) 1637 { 1638 struct fd in, out; 1639 ssize_t error; 1640 1641 if (unlikely(!len)) 1642 return 0; 1643 1644 if (unlikely(flags & ~SPLICE_F_ALL)) 1645 return -EINVAL; 1646 1647 error = -EBADF; 1648 in = fdget(fd_in); 1649 if (fd_file(in)) { 1650 out = fdget(fd_out); 1651 if (fd_file(out)) { 1652 error = __do_splice(fd_file(in), off_in, fd_file(out), off_out, 1653 len, flags); 1654 fdput(out); 1655 } 1656 fdput(in); 1657 } 1658 return error; 1659 } 1660 1661 /* 1662 * Make sure there's data to read. Wait for input if we can, otherwise 1663 * return an appropriate error. 1664 */ 1665 static int ipipe_prep(struct pipe_inode_info *pipe, unsigned int flags) 1666 { 1667 int ret; 1668 1669 /* 1670 * Check the pipe occupancy without the inode lock first. This function 1671 * is speculative anyways, so missing one is ok. 1672 */ 1673 if (!pipe_empty(pipe->head, pipe->tail)) 1674 return 0; 1675 1676 ret = 0; 1677 pipe_lock(pipe); 1678 1679 while (pipe_empty(pipe->head, pipe->tail)) { 1680 if (signal_pending(current)) { 1681 ret = -ERESTARTSYS; 1682 break; 1683 } 1684 if (!pipe->writers) 1685 break; 1686 if (flags & SPLICE_F_NONBLOCK) { 1687 ret = -EAGAIN; 1688 break; 1689 } 1690 pipe_wait_readable(pipe); 1691 } 1692 1693 pipe_unlock(pipe); 1694 return ret; 1695 } 1696 1697 /* 1698 * Make sure there's writeable room. Wait for room if we can, otherwise 1699 * return an appropriate error. 1700 */ 1701 static int opipe_prep(struct pipe_inode_info *pipe, unsigned int flags) 1702 { 1703 int ret; 1704 1705 /* 1706 * Check pipe occupancy without the inode lock first. This function 1707 * is speculative anyways, so missing one is ok. 1708 */ 1709 if (!pipe_full(pipe->head, pipe->tail, pipe->max_usage)) 1710 return 0; 1711 1712 ret = 0; 1713 pipe_lock(pipe); 1714 1715 while (pipe_full(pipe->head, pipe->tail, pipe->max_usage)) { 1716 if (!pipe->readers) { 1717 send_sig(SIGPIPE, current, 0); 1718 ret = -EPIPE; 1719 break; 1720 } 1721 if (flags & SPLICE_F_NONBLOCK) { 1722 ret = -EAGAIN; 1723 break; 1724 } 1725 if (signal_pending(current)) { 1726 ret = -ERESTARTSYS; 1727 break; 1728 } 1729 pipe_wait_writable(pipe); 1730 } 1731 1732 pipe_unlock(pipe); 1733 return ret; 1734 } 1735 1736 /* 1737 * Splice contents of ipipe to opipe. 1738 */ 1739 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe, 1740 struct pipe_inode_info *opipe, 1741 size_t len, unsigned int flags) 1742 { 1743 struct pipe_buffer *ibuf, *obuf; 1744 unsigned int i_head, o_head; 1745 unsigned int i_tail, o_tail; 1746 unsigned int i_mask, o_mask; 1747 int ret = 0; 1748 bool input_wakeup = false; 1749 1750 1751 retry: 1752 ret = ipipe_prep(ipipe, flags); 1753 if (ret) 1754 return ret; 1755 1756 ret = opipe_prep(opipe, flags); 1757 if (ret) 1758 return ret; 1759 1760 /* 1761 * Potential ABBA deadlock, work around it by ordering lock 1762 * grabbing by pipe info address. Otherwise two different processes 1763 * could deadlock (one doing tee from A -> B, the other from B -> A). 1764 */ 1765 pipe_double_lock(ipipe, opipe); 1766 1767 i_tail = ipipe->tail; 1768 i_mask = ipipe->ring_size - 1; 1769 o_head = opipe->head; 1770 o_mask = opipe->ring_size - 1; 1771 1772 do { 1773 size_t o_len; 1774 1775 if (!opipe->readers) { 1776 send_sig(SIGPIPE, current, 0); 1777 if (!ret) 1778 ret = -EPIPE; 1779 break; 1780 } 1781 1782 i_head = ipipe->head; 1783 o_tail = opipe->tail; 1784 1785 if (pipe_empty(i_head, i_tail) && !ipipe->writers) 1786 break; 1787 1788 /* 1789 * Cannot make any progress, because either the input 1790 * pipe is empty or the output pipe is full. 1791 */ 1792 if (pipe_empty(i_head, i_tail) || 1793 pipe_full(o_head, o_tail, opipe->max_usage)) { 1794 /* Already processed some buffers, break */ 1795 if (ret) 1796 break; 1797 1798 if (flags & SPLICE_F_NONBLOCK) { 1799 ret = -EAGAIN; 1800 break; 1801 } 1802 1803 /* 1804 * We raced with another reader/writer and haven't 1805 * managed to process any buffers. A zero return 1806 * value means EOF, so retry instead. 1807 */ 1808 pipe_unlock(ipipe); 1809 pipe_unlock(opipe); 1810 goto retry; 1811 } 1812 1813 ibuf = &ipipe->bufs[i_tail & i_mask]; 1814 obuf = &opipe->bufs[o_head & o_mask]; 1815 1816 if (len >= ibuf->len) { 1817 /* 1818 * Simply move the whole buffer from ipipe to opipe 1819 */ 1820 *obuf = *ibuf; 1821 ibuf->ops = NULL; 1822 i_tail++; 1823 ipipe->tail = i_tail; 1824 input_wakeup = true; 1825 o_len = obuf->len; 1826 o_head++; 1827 opipe->head = o_head; 1828 } else { 1829 /* 1830 * Get a reference to this pipe buffer, 1831 * so we can copy the contents over. 1832 */ 1833 if (!pipe_buf_get(ipipe, ibuf)) { 1834 if (ret == 0) 1835 ret = -EFAULT; 1836 break; 1837 } 1838 *obuf = *ibuf; 1839 1840 /* 1841 * Don't inherit the gift and merge flags, we need to 1842 * prevent multiple steals of this page. 1843 */ 1844 obuf->flags &= ~PIPE_BUF_FLAG_GIFT; 1845 obuf->flags &= ~PIPE_BUF_FLAG_CAN_MERGE; 1846 1847 obuf->len = len; 1848 ibuf->offset += len; 1849 ibuf->len -= len; 1850 o_len = len; 1851 o_head++; 1852 opipe->head = o_head; 1853 } 1854 ret += o_len; 1855 len -= o_len; 1856 } while (len); 1857 1858 pipe_unlock(ipipe); 1859 pipe_unlock(opipe); 1860 1861 /* 1862 * If we put data in the output pipe, wakeup any potential readers. 1863 */ 1864 if (ret > 0) 1865 wakeup_pipe_readers(opipe); 1866 1867 if (input_wakeup) 1868 wakeup_pipe_writers(ipipe); 1869 1870 return ret; 1871 } 1872 1873 /* 1874 * Link contents of ipipe to opipe. 1875 */ 1876 static ssize_t link_pipe(struct pipe_inode_info *ipipe, 1877 struct pipe_inode_info *opipe, 1878 size_t len, unsigned int flags) 1879 { 1880 struct pipe_buffer *ibuf, *obuf; 1881 unsigned int i_head, o_head; 1882 unsigned int i_tail, o_tail; 1883 unsigned int i_mask, o_mask; 1884 ssize_t ret = 0; 1885 1886 /* 1887 * Potential ABBA deadlock, work around it by ordering lock 1888 * grabbing by pipe info address. Otherwise two different processes 1889 * could deadlock (one doing tee from A -> B, the other from B -> A). 1890 */ 1891 pipe_double_lock(ipipe, opipe); 1892 1893 i_tail = ipipe->tail; 1894 i_mask = ipipe->ring_size - 1; 1895 o_head = opipe->head; 1896 o_mask = opipe->ring_size - 1; 1897 1898 do { 1899 if (!opipe->readers) { 1900 send_sig(SIGPIPE, current, 0); 1901 if (!ret) 1902 ret = -EPIPE; 1903 break; 1904 } 1905 1906 i_head = ipipe->head; 1907 o_tail = opipe->tail; 1908 1909 /* 1910 * If we have iterated all input buffers or run out of 1911 * output room, break. 1912 */ 1913 if (pipe_empty(i_head, i_tail) || 1914 pipe_full(o_head, o_tail, opipe->max_usage)) 1915 break; 1916 1917 ibuf = &ipipe->bufs[i_tail & i_mask]; 1918 obuf = &opipe->bufs[o_head & o_mask]; 1919 1920 /* 1921 * Get a reference to this pipe buffer, 1922 * so we can copy the contents over. 1923 */ 1924 if (!pipe_buf_get(ipipe, ibuf)) { 1925 if (ret == 0) 1926 ret = -EFAULT; 1927 break; 1928 } 1929 1930 *obuf = *ibuf; 1931 1932 /* 1933 * Don't inherit the gift and merge flag, we need to prevent 1934 * multiple steals of this page. 1935 */ 1936 obuf->flags &= ~PIPE_BUF_FLAG_GIFT; 1937 obuf->flags &= ~PIPE_BUF_FLAG_CAN_MERGE; 1938 1939 if (obuf->len > len) 1940 obuf->len = len; 1941 ret += obuf->len; 1942 len -= obuf->len; 1943 1944 o_head++; 1945 opipe->head = o_head; 1946 i_tail++; 1947 } while (len); 1948 1949 pipe_unlock(ipipe); 1950 pipe_unlock(opipe); 1951 1952 /* 1953 * If we put data in the output pipe, wakeup any potential readers. 1954 */ 1955 if (ret > 0) 1956 wakeup_pipe_readers(opipe); 1957 1958 return ret; 1959 } 1960 1961 /* 1962 * This is a tee(1) implementation that works on pipes. It doesn't copy 1963 * any data, it simply references the 'in' pages on the 'out' pipe. 1964 * The 'flags' used are the SPLICE_F_* variants, currently the only 1965 * applicable one is SPLICE_F_NONBLOCK. 1966 */ 1967 ssize_t do_tee(struct file *in, struct file *out, size_t len, 1968 unsigned int flags) 1969 { 1970 struct pipe_inode_info *ipipe = get_pipe_info(in, true); 1971 struct pipe_inode_info *opipe = get_pipe_info(out, true); 1972 ssize_t ret = -EINVAL; 1973 1974 if (unlikely(!(in->f_mode & FMODE_READ) || 1975 !(out->f_mode & FMODE_WRITE))) 1976 return -EBADF; 1977 1978 /* 1979 * Duplicate the contents of ipipe to opipe without actually 1980 * copying the data. 1981 */ 1982 if (ipipe && opipe && ipipe != opipe) { 1983 if ((in->f_flags | out->f_flags) & O_NONBLOCK) 1984 flags |= SPLICE_F_NONBLOCK; 1985 1986 /* 1987 * Keep going, unless we encounter an error. The ipipe/opipe 1988 * ordering doesn't really matter. 1989 */ 1990 ret = ipipe_prep(ipipe, flags); 1991 if (!ret) { 1992 ret = opipe_prep(opipe, flags); 1993 if (!ret) 1994 ret = link_pipe(ipipe, opipe, len, flags); 1995 } 1996 } 1997 1998 if (ret > 0) { 1999 fsnotify_access(in); 2000 fsnotify_modify(out); 2001 } 2002 2003 return ret; 2004 } 2005 2006 SYSCALL_DEFINE4(tee, int, fdin, int, fdout, size_t, len, unsigned int, flags) 2007 { 2008 struct fd in, out; 2009 ssize_t error; 2010 2011 if (unlikely(flags & ~SPLICE_F_ALL)) 2012 return -EINVAL; 2013 2014 if (unlikely(!len)) 2015 return 0; 2016 2017 error = -EBADF; 2018 in = fdget(fdin); 2019 if (fd_file(in)) { 2020 out = fdget(fdout); 2021 if (fd_file(out)) { 2022 error = do_tee(fd_file(in), fd_file(out), len, flags); 2023 fdput(out); 2024 } 2025 fdput(in); 2026 } 2027 2028 return error; 2029 } 2030