xref: /linux/fs/splice.c (revision 41797f75486d8ca3b98d7658c2a506ac7879a8e5)
1 /*
2  * "splice": joining two ropes together by interweaving their strands.
3  *
4  * This is the "extended pipe" functionality, where a pipe is used as
5  * an arbitrary in-memory buffer. Think of a pipe as a small kernel
6  * buffer that you can use to transfer data from one end to the other.
7  *
8  * The traditional unix read/write is extended with a "splice()" operation
9  * that transfers data buffers to or from a pipe buffer.
10  *
11  * Named by Larry McVoy, original implementation from Linus, extended by
12  * Jens to support splicing to files, network, direct splicing, etc and
13  * fixing lots of bugs.
14  *
15  * Copyright (C) 2005-2006 Jens Axboe <axboe@kernel.dk>
16  * Copyright (C) 2005-2006 Linus Torvalds <torvalds@osdl.org>
17  * Copyright (C) 2006 Ingo Molnar <mingo@elte.hu>
18  *
19  */
20 #include <linux/fs.h>
21 #include <linux/file.h>
22 #include <linux/pagemap.h>
23 #include <linux/splice.h>
24 #include <linux/memcontrol.h>
25 #include <linux/mm_inline.h>
26 #include <linux/swap.h>
27 #include <linux/writeback.h>
28 #include <linux/export.h>
29 #include <linux/syscalls.h>
30 #include <linux/uio.h>
31 #include <linux/security.h>
32 #include <linux/gfp.h>
33 #include <linux/socket.h>
34 
35 /*
36  * Attempt to steal a page from a pipe buffer. This should perhaps go into
37  * a vm helper function, it's already simplified quite a bit by the
38  * addition of remove_mapping(). If success is returned, the caller may
39  * attempt to reuse this page for another destination.
40  */
41 static int page_cache_pipe_buf_steal(struct pipe_inode_info *pipe,
42 				     struct pipe_buffer *buf)
43 {
44 	struct page *page = buf->page;
45 	struct address_space *mapping;
46 
47 	lock_page(page);
48 
49 	mapping = page_mapping(page);
50 	if (mapping) {
51 		WARN_ON(!PageUptodate(page));
52 
53 		/*
54 		 * At least for ext2 with nobh option, we need to wait on
55 		 * writeback completing on this page, since we'll remove it
56 		 * from the pagecache.  Otherwise truncate wont wait on the
57 		 * page, allowing the disk blocks to be reused by someone else
58 		 * before we actually wrote our data to them. fs corruption
59 		 * ensues.
60 		 */
61 		wait_on_page_writeback(page);
62 
63 		if (page_has_private(page) &&
64 		    !try_to_release_page(page, GFP_KERNEL))
65 			goto out_unlock;
66 
67 		/*
68 		 * If we succeeded in removing the mapping, set LRU flag
69 		 * and return good.
70 		 */
71 		if (remove_mapping(mapping, page)) {
72 			buf->flags |= PIPE_BUF_FLAG_LRU;
73 			return 0;
74 		}
75 	}
76 
77 	/*
78 	 * Raced with truncate or failed to remove page from current
79 	 * address space, unlock and return failure.
80 	 */
81 out_unlock:
82 	unlock_page(page);
83 	return 1;
84 }
85 
86 static void page_cache_pipe_buf_release(struct pipe_inode_info *pipe,
87 					struct pipe_buffer *buf)
88 {
89 	page_cache_release(buf->page);
90 	buf->flags &= ~PIPE_BUF_FLAG_LRU;
91 }
92 
93 /*
94  * Check whether the contents of buf is OK to access. Since the content
95  * is a page cache page, IO may be in flight.
96  */
97 static int page_cache_pipe_buf_confirm(struct pipe_inode_info *pipe,
98 				       struct pipe_buffer *buf)
99 {
100 	struct page *page = buf->page;
101 	int err;
102 
103 	if (!PageUptodate(page)) {
104 		lock_page(page);
105 
106 		/*
107 		 * Page got truncated/unhashed. This will cause a 0-byte
108 		 * splice, if this is the first page.
109 		 */
110 		if (!page->mapping) {
111 			err = -ENODATA;
112 			goto error;
113 		}
114 
115 		/*
116 		 * Uh oh, read-error from disk.
117 		 */
118 		if (!PageUptodate(page)) {
119 			err = -EIO;
120 			goto error;
121 		}
122 
123 		/*
124 		 * Page is ok afterall, we are done.
125 		 */
126 		unlock_page(page);
127 	}
128 
129 	return 0;
130 error:
131 	unlock_page(page);
132 	return err;
133 }
134 
135 const struct pipe_buf_operations page_cache_pipe_buf_ops = {
136 	.can_merge = 0,
137 	.map = generic_pipe_buf_map,
138 	.unmap = generic_pipe_buf_unmap,
139 	.confirm = page_cache_pipe_buf_confirm,
140 	.release = page_cache_pipe_buf_release,
141 	.steal = page_cache_pipe_buf_steal,
142 	.get = generic_pipe_buf_get,
143 };
144 
145 static int user_page_pipe_buf_steal(struct pipe_inode_info *pipe,
146 				    struct pipe_buffer *buf)
147 {
148 	if (!(buf->flags & PIPE_BUF_FLAG_GIFT))
149 		return 1;
150 
151 	buf->flags |= PIPE_BUF_FLAG_LRU;
152 	return generic_pipe_buf_steal(pipe, buf);
153 }
154 
155 static const struct pipe_buf_operations user_page_pipe_buf_ops = {
156 	.can_merge = 0,
157 	.map = generic_pipe_buf_map,
158 	.unmap = generic_pipe_buf_unmap,
159 	.confirm = generic_pipe_buf_confirm,
160 	.release = page_cache_pipe_buf_release,
161 	.steal = user_page_pipe_buf_steal,
162 	.get = generic_pipe_buf_get,
163 };
164 
165 static void wakeup_pipe_readers(struct pipe_inode_info *pipe)
166 {
167 	smp_mb();
168 	if (waitqueue_active(&pipe->wait))
169 		wake_up_interruptible(&pipe->wait);
170 	kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
171 }
172 
173 /**
174  * splice_to_pipe - fill passed data into a pipe
175  * @pipe:	pipe to fill
176  * @spd:	data to fill
177  *
178  * Description:
179  *    @spd contains a map of pages and len/offset tuples, along with
180  *    the struct pipe_buf_operations associated with these pages. This
181  *    function will link that data to the pipe.
182  *
183  */
184 ssize_t splice_to_pipe(struct pipe_inode_info *pipe,
185 		       struct splice_pipe_desc *spd)
186 {
187 	unsigned int spd_pages = spd->nr_pages;
188 	int ret, do_wakeup, page_nr;
189 
190 	ret = 0;
191 	do_wakeup = 0;
192 	page_nr = 0;
193 
194 	pipe_lock(pipe);
195 
196 	for (;;) {
197 		if (!pipe->readers) {
198 			send_sig(SIGPIPE, current, 0);
199 			if (!ret)
200 				ret = -EPIPE;
201 			break;
202 		}
203 
204 		if (pipe->nrbufs < pipe->buffers) {
205 			int newbuf = (pipe->curbuf + pipe->nrbufs) & (pipe->buffers - 1);
206 			struct pipe_buffer *buf = pipe->bufs + newbuf;
207 
208 			buf->page = spd->pages[page_nr];
209 			buf->offset = spd->partial[page_nr].offset;
210 			buf->len = spd->partial[page_nr].len;
211 			buf->private = spd->partial[page_nr].private;
212 			buf->ops = spd->ops;
213 			if (spd->flags & SPLICE_F_GIFT)
214 				buf->flags |= PIPE_BUF_FLAG_GIFT;
215 
216 			pipe->nrbufs++;
217 			page_nr++;
218 			ret += buf->len;
219 
220 			if (pipe->inode)
221 				do_wakeup = 1;
222 
223 			if (!--spd->nr_pages)
224 				break;
225 			if (pipe->nrbufs < pipe->buffers)
226 				continue;
227 
228 			break;
229 		}
230 
231 		if (spd->flags & SPLICE_F_NONBLOCK) {
232 			if (!ret)
233 				ret = -EAGAIN;
234 			break;
235 		}
236 
237 		if (signal_pending(current)) {
238 			if (!ret)
239 				ret = -ERESTARTSYS;
240 			break;
241 		}
242 
243 		if (do_wakeup) {
244 			smp_mb();
245 			if (waitqueue_active(&pipe->wait))
246 				wake_up_interruptible_sync(&pipe->wait);
247 			kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
248 			do_wakeup = 0;
249 		}
250 
251 		pipe->waiting_writers++;
252 		pipe_wait(pipe);
253 		pipe->waiting_writers--;
254 	}
255 
256 	pipe_unlock(pipe);
257 
258 	if (do_wakeup)
259 		wakeup_pipe_readers(pipe);
260 
261 	while (page_nr < spd_pages)
262 		spd->spd_release(spd, page_nr++);
263 
264 	return ret;
265 }
266 
267 void spd_release_page(struct splice_pipe_desc *spd, unsigned int i)
268 {
269 	page_cache_release(spd->pages[i]);
270 }
271 
272 /*
273  * Check if we need to grow the arrays holding pages and partial page
274  * descriptions.
275  */
276 int splice_grow_spd(struct pipe_inode_info *pipe, struct splice_pipe_desc *spd)
277 {
278 	if (pipe->buffers <= PIPE_DEF_BUFFERS)
279 		return 0;
280 
281 	spd->pages = kmalloc(pipe->buffers * sizeof(struct page *), GFP_KERNEL);
282 	spd->partial = kmalloc(pipe->buffers * sizeof(struct partial_page), GFP_KERNEL);
283 
284 	if (spd->pages && spd->partial)
285 		return 0;
286 
287 	kfree(spd->pages);
288 	kfree(spd->partial);
289 	return -ENOMEM;
290 }
291 
292 void splice_shrink_spd(struct pipe_inode_info *pipe,
293 		       struct splice_pipe_desc *spd)
294 {
295 	if (pipe->buffers <= PIPE_DEF_BUFFERS)
296 		return;
297 
298 	kfree(spd->pages);
299 	kfree(spd->partial);
300 }
301 
302 static int
303 __generic_file_splice_read(struct file *in, loff_t *ppos,
304 			   struct pipe_inode_info *pipe, size_t len,
305 			   unsigned int flags)
306 {
307 	struct address_space *mapping = in->f_mapping;
308 	unsigned int loff, nr_pages, req_pages;
309 	struct page *pages[PIPE_DEF_BUFFERS];
310 	struct partial_page partial[PIPE_DEF_BUFFERS];
311 	struct page *page;
312 	pgoff_t index, end_index;
313 	loff_t isize;
314 	int error, page_nr;
315 	struct splice_pipe_desc spd = {
316 		.pages = pages,
317 		.partial = partial,
318 		.flags = flags,
319 		.ops = &page_cache_pipe_buf_ops,
320 		.spd_release = spd_release_page,
321 	};
322 
323 	if (splice_grow_spd(pipe, &spd))
324 		return -ENOMEM;
325 
326 	index = *ppos >> PAGE_CACHE_SHIFT;
327 	loff = *ppos & ~PAGE_CACHE_MASK;
328 	req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
329 	nr_pages = min(req_pages, pipe->buffers);
330 
331 	/*
332 	 * Lookup the (hopefully) full range of pages we need.
333 	 */
334 	spd.nr_pages = find_get_pages_contig(mapping, index, nr_pages, spd.pages);
335 	index += spd.nr_pages;
336 
337 	/*
338 	 * If find_get_pages_contig() returned fewer pages than we needed,
339 	 * readahead/allocate the rest and fill in the holes.
340 	 */
341 	if (spd.nr_pages < nr_pages)
342 		page_cache_sync_readahead(mapping, &in->f_ra, in,
343 				index, req_pages - spd.nr_pages);
344 
345 	error = 0;
346 	while (spd.nr_pages < nr_pages) {
347 		/*
348 		 * Page could be there, find_get_pages_contig() breaks on
349 		 * the first hole.
350 		 */
351 		page = find_get_page(mapping, index);
352 		if (!page) {
353 			/*
354 			 * page didn't exist, allocate one.
355 			 */
356 			page = page_cache_alloc_cold(mapping);
357 			if (!page)
358 				break;
359 
360 			error = add_to_page_cache_lru(page, mapping, index,
361 						GFP_KERNEL);
362 			if (unlikely(error)) {
363 				page_cache_release(page);
364 				if (error == -EEXIST)
365 					continue;
366 				break;
367 			}
368 			/*
369 			 * add_to_page_cache() locks the page, unlock it
370 			 * to avoid convoluting the logic below even more.
371 			 */
372 			unlock_page(page);
373 		}
374 
375 		spd.pages[spd.nr_pages++] = page;
376 		index++;
377 	}
378 
379 	/*
380 	 * Now loop over the map and see if we need to start IO on any
381 	 * pages, fill in the partial map, etc.
382 	 */
383 	index = *ppos >> PAGE_CACHE_SHIFT;
384 	nr_pages = spd.nr_pages;
385 	spd.nr_pages = 0;
386 	for (page_nr = 0; page_nr < nr_pages; page_nr++) {
387 		unsigned int this_len;
388 
389 		if (!len)
390 			break;
391 
392 		/*
393 		 * this_len is the max we'll use from this page
394 		 */
395 		this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
396 		page = spd.pages[page_nr];
397 
398 		if (PageReadahead(page))
399 			page_cache_async_readahead(mapping, &in->f_ra, in,
400 					page, index, req_pages - page_nr);
401 
402 		/*
403 		 * If the page isn't uptodate, we may need to start io on it
404 		 */
405 		if (!PageUptodate(page)) {
406 			lock_page(page);
407 
408 			/*
409 			 * Page was truncated, or invalidated by the
410 			 * filesystem.  Redo the find/create, but this time the
411 			 * page is kept locked, so there's no chance of another
412 			 * race with truncate/invalidate.
413 			 */
414 			if (!page->mapping) {
415 				unlock_page(page);
416 				page = find_or_create_page(mapping, index,
417 						mapping_gfp_mask(mapping));
418 
419 				if (!page) {
420 					error = -ENOMEM;
421 					break;
422 				}
423 				page_cache_release(spd.pages[page_nr]);
424 				spd.pages[page_nr] = page;
425 			}
426 			/*
427 			 * page was already under io and is now done, great
428 			 */
429 			if (PageUptodate(page)) {
430 				unlock_page(page);
431 				goto fill_it;
432 			}
433 
434 			/*
435 			 * need to read in the page
436 			 */
437 			error = mapping->a_ops->readpage(in, page);
438 			if (unlikely(error)) {
439 				/*
440 				 * We really should re-lookup the page here,
441 				 * but it complicates things a lot. Instead
442 				 * lets just do what we already stored, and
443 				 * we'll get it the next time we are called.
444 				 */
445 				if (error == AOP_TRUNCATED_PAGE)
446 					error = 0;
447 
448 				break;
449 			}
450 		}
451 fill_it:
452 		/*
453 		 * i_size must be checked after PageUptodate.
454 		 */
455 		isize = i_size_read(mapping->host);
456 		end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
457 		if (unlikely(!isize || index > end_index))
458 			break;
459 
460 		/*
461 		 * if this is the last page, see if we need to shrink
462 		 * the length and stop
463 		 */
464 		if (end_index == index) {
465 			unsigned int plen;
466 
467 			/*
468 			 * max good bytes in this page
469 			 */
470 			plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
471 			if (plen <= loff)
472 				break;
473 
474 			/*
475 			 * force quit after adding this page
476 			 */
477 			this_len = min(this_len, plen - loff);
478 			len = this_len;
479 		}
480 
481 		spd.partial[page_nr].offset = loff;
482 		spd.partial[page_nr].len = this_len;
483 		len -= this_len;
484 		loff = 0;
485 		spd.nr_pages++;
486 		index++;
487 	}
488 
489 	/*
490 	 * Release any pages at the end, if we quit early. 'page_nr' is how far
491 	 * we got, 'nr_pages' is how many pages are in the map.
492 	 */
493 	while (page_nr < nr_pages)
494 		page_cache_release(spd.pages[page_nr++]);
495 	in->f_ra.prev_pos = (loff_t)index << PAGE_CACHE_SHIFT;
496 
497 	if (spd.nr_pages)
498 		error = splice_to_pipe(pipe, &spd);
499 
500 	splice_shrink_spd(pipe, &spd);
501 	return error;
502 }
503 
504 /**
505  * generic_file_splice_read - splice data from file to a pipe
506  * @in:		file to splice from
507  * @ppos:	position in @in
508  * @pipe:	pipe to splice to
509  * @len:	number of bytes to splice
510  * @flags:	splice modifier flags
511  *
512  * Description:
513  *    Will read pages from given file and fill them into a pipe. Can be
514  *    used as long as the address_space operations for the source implements
515  *    a readpage() hook.
516  *
517  */
518 ssize_t generic_file_splice_read(struct file *in, loff_t *ppos,
519 				 struct pipe_inode_info *pipe, size_t len,
520 				 unsigned int flags)
521 {
522 	loff_t isize, left;
523 	int ret;
524 
525 	isize = i_size_read(in->f_mapping->host);
526 	if (unlikely(*ppos >= isize))
527 		return 0;
528 
529 	left = isize - *ppos;
530 	if (unlikely(left < len))
531 		len = left;
532 
533 	ret = __generic_file_splice_read(in, ppos, pipe, len, flags);
534 	if (ret > 0) {
535 		*ppos += ret;
536 		file_accessed(in);
537 	}
538 
539 	return ret;
540 }
541 EXPORT_SYMBOL(generic_file_splice_read);
542 
543 static const struct pipe_buf_operations default_pipe_buf_ops = {
544 	.can_merge = 0,
545 	.map = generic_pipe_buf_map,
546 	.unmap = generic_pipe_buf_unmap,
547 	.confirm = generic_pipe_buf_confirm,
548 	.release = generic_pipe_buf_release,
549 	.steal = generic_pipe_buf_steal,
550 	.get = generic_pipe_buf_get,
551 };
552 
553 static ssize_t kernel_readv(struct file *file, const struct iovec *vec,
554 			    unsigned long vlen, loff_t offset)
555 {
556 	mm_segment_t old_fs;
557 	loff_t pos = offset;
558 	ssize_t res;
559 
560 	old_fs = get_fs();
561 	set_fs(get_ds());
562 	/* The cast to a user pointer is valid due to the set_fs() */
563 	res = vfs_readv(file, (const struct iovec __user *)vec, vlen, &pos);
564 	set_fs(old_fs);
565 
566 	return res;
567 }
568 
569 static ssize_t kernel_write(struct file *file, const char *buf, size_t count,
570 			    loff_t pos)
571 {
572 	mm_segment_t old_fs;
573 	ssize_t res;
574 
575 	old_fs = get_fs();
576 	set_fs(get_ds());
577 	/* The cast to a user pointer is valid due to the set_fs() */
578 	res = vfs_write(file, (const char __user *)buf, count, &pos);
579 	set_fs(old_fs);
580 
581 	return res;
582 }
583 
584 ssize_t default_file_splice_read(struct file *in, loff_t *ppos,
585 				 struct pipe_inode_info *pipe, size_t len,
586 				 unsigned int flags)
587 {
588 	unsigned int nr_pages;
589 	unsigned int nr_freed;
590 	size_t offset;
591 	struct page *pages[PIPE_DEF_BUFFERS];
592 	struct partial_page partial[PIPE_DEF_BUFFERS];
593 	struct iovec *vec, __vec[PIPE_DEF_BUFFERS];
594 	ssize_t res;
595 	size_t this_len;
596 	int error;
597 	int i;
598 	struct splice_pipe_desc spd = {
599 		.pages = pages,
600 		.partial = partial,
601 		.flags = flags,
602 		.ops = &default_pipe_buf_ops,
603 		.spd_release = spd_release_page,
604 	};
605 
606 	if (splice_grow_spd(pipe, &spd))
607 		return -ENOMEM;
608 
609 	res = -ENOMEM;
610 	vec = __vec;
611 	if (pipe->buffers > PIPE_DEF_BUFFERS) {
612 		vec = kmalloc(pipe->buffers * sizeof(struct iovec), GFP_KERNEL);
613 		if (!vec)
614 			goto shrink_ret;
615 	}
616 
617 	offset = *ppos & ~PAGE_CACHE_MASK;
618 	nr_pages = (len + offset + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
619 
620 	for (i = 0; i < nr_pages && i < pipe->buffers && len; i++) {
621 		struct page *page;
622 
623 		page = alloc_page(GFP_USER);
624 		error = -ENOMEM;
625 		if (!page)
626 			goto err;
627 
628 		this_len = min_t(size_t, len, PAGE_CACHE_SIZE - offset);
629 		vec[i].iov_base = (void __user *) page_address(page);
630 		vec[i].iov_len = this_len;
631 		spd.pages[i] = page;
632 		spd.nr_pages++;
633 		len -= this_len;
634 		offset = 0;
635 	}
636 
637 	res = kernel_readv(in, vec, spd.nr_pages, *ppos);
638 	if (res < 0) {
639 		error = res;
640 		goto err;
641 	}
642 
643 	error = 0;
644 	if (!res)
645 		goto err;
646 
647 	nr_freed = 0;
648 	for (i = 0; i < spd.nr_pages; i++) {
649 		this_len = min_t(size_t, vec[i].iov_len, res);
650 		spd.partial[i].offset = 0;
651 		spd.partial[i].len = this_len;
652 		if (!this_len) {
653 			__free_page(spd.pages[i]);
654 			spd.pages[i] = NULL;
655 			nr_freed++;
656 		}
657 		res -= this_len;
658 	}
659 	spd.nr_pages -= nr_freed;
660 
661 	res = splice_to_pipe(pipe, &spd);
662 	if (res > 0)
663 		*ppos += res;
664 
665 shrink_ret:
666 	if (vec != __vec)
667 		kfree(vec);
668 	splice_shrink_spd(pipe, &spd);
669 	return res;
670 
671 err:
672 	for (i = 0; i < spd.nr_pages; i++)
673 		__free_page(spd.pages[i]);
674 
675 	res = error;
676 	goto shrink_ret;
677 }
678 EXPORT_SYMBOL(default_file_splice_read);
679 
680 /*
681  * Send 'sd->len' bytes to socket from 'sd->file' at position 'sd->pos'
682  * using sendpage(). Return the number of bytes sent.
683  */
684 static int pipe_to_sendpage(struct pipe_inode_info *pipe,
685 			    struct pipe_buffer *buf, struct splice_desc *sd)
686 {
687 	struct file *file = sd->u.file;
688 	loff_t pos = sd->pos;
689 	int more;
690 
691 	if (!likely(file->f_op && file->f_op->sendpage))
692 		return -EINVAL;
693 
694 	more = (sd->flags & SPLICE_F_MORE) ? MSG_MORE : 0;
695 	if (sd->len < sd->total_len)
696 		more |= MSG_SENDPAGE_NOTLAST;
697 	return file->f_op->sendpage(file, buf->page, buf->offset,
698 				    sd->len, &pos, more);
699 }
700 
701 /*
702  * This is a little more tricky than the file -> pipe splicing. There are
703  * basically three cases:
704  *
705  *	- Destination page already exists in the address space and there
706  *	  are users of it. For that case we have no other option that
707  *	  copying the data. Tough luck.
708  *	- Destination page already exists in the address space, but there
709  *	  are no users of it. Make sure it's uptodate, then drop it. Fall
710  *	  through to last case.
711  *	- Destination page does not exist, we can add the pipe page to
712  *	  the page cache and avoid the copy.
713  *
714  * If asked to move pages to the output file (SPLICE_F_MOVE is set in
715  * sd->flags), we attempt to migrate pages from the pipe to the output
716  * file address space page cache. This is possible if no one else has
717  * the pipe page referenced outside of the pipe and page cache. If
718  * SPLICE_F_MOVE isn't set, or we cannot move the page, we simply create
719  * a new page in the output file page cache and fill/dirty that.
720  */
721 int pipe_to_file(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
722 		 struct splice_desc *sd)
723 {
724 	struct file *file = sd->u.file;
725 	struct address_space *mapping = file->f_mapping;
726 	unsigned int offset, this_len;
727 	struct page *page;
728 	void *fsdata;
729 	int ret;
730 
731 	offset = sd->pos & ~PAGE_CACHE_MASK;
732 
733 	this_len = sd->len;
734 	if (this_len + offset > PAGE_CACHE_SIZE)
735 		this_len = PAGE_CACHE_SIZE - offset;
736 
737 	ret = pagecache_write_begin(file, mapping, sd->pos, this_len,
738 				AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
739 	if (unlikely(ret))
740 		goto out;
741 
742 	if (buf->page != page) {
743 		char *src = buf->ops->map(pipe, buf, 1);
744 		char *dst = kmap_atomic(page);
745 
746 		memcpy(dst + offset, src + buf->offset, this_len);
747 		flush_dcache_page(page);
748 		kunmap_atomic(dst);
749 		buf->ops->unmap(pipe, buf, src);
750 	}
751 	ret = pagecache_write_end(file, mapping, sd->pos, this_len, this_len,
752 				page, fsdata);
753 out:
754 	return ret;
755 }
756 EXPORT_SYMBOL(pipe_to_file);
757 
758 static void wakeup_pipe_writers(struct pipe_inode_info *pipe)
759 {
760 	smp_mb();
761 	if (waitqueue_active(&pipe->wait))
762 		wake_up_interruptible(&pipe->wait);
763 	kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
764 }
765 
766 /**
767  * splice_from_pipe_feed - feed available data from a pipe to a file
768  * @pipe:	pipe to splice from
769  * @sd:		information to @actor
770  * @actor:	handler that splices the data
771  *
772  * Description:
773  *    This function loops over the pipe and calls @actor to do the
774  *    actual moving of a single struct pipe_buffer to the desired
775  *    destination.  It returns when there's no more buffers left in
776  *    the pipe or if the requested number of bytes (@sd->total_len)
777  *    have been copied.  It returns a positive number (one) if the
778  *    pipe needs to be filled with more data, zero if the required
779  *    number of bytes have been copied and -errno on error.
780  *
781  *    This, together with splice_from_pipe_{begin,end,next}, may be
782  *    used to implement the functionality of __splice_from_pipe() when
783  *    locking is required around copying the pipe buffers to the
784  *    destination.
785  */
786 int splice_from_pipe_feed(struct pipe_inode_info *pipe, struct splice_desc *sd,
787 			  splice_actor *actor)
788 {
789 	int ret;
790 
791 	while (pipe->nrbufs) {
792 		struct pipe_buffer *buf = pipe->bufs + pipe->curbuf;
793 		const struct pipe_buf_operations *ops = buf->ops;
794 
795 		sd->len = buf->len;
796 		if (sd->len > sd->total_len)
797 			sd->len = sd->total_len;
798 
799 		ret = buf->ops->confirm(pipe, buf);
800 		if (unlikely(ret)) {
801 			if (ret == -ENODATA)
802 				ret = 0;
803 			return ret;
804 		}
805 
806 		ret = actor(pipe, buf, sd);
807 		if (ret <= 0)
808 			return ret;
809 
810 		buf->offset += ret;
811 		buf->len -= ret;
812 
813 		sd->num_spliced += ret;
814 		sd->len -= ret;
815 		sd->pos += ret;
816 		sd->total_len -= ret;
817 
818 		if (!buf->len) {
819 			buf->ops = NULL;
820 			ops->release(pipe, buf);
821 			pipe->curbuf = (pipe->curbuf + 1) & (pipe->buffers - 1);
822 			pipe->nrbufs--;
823 			if (pipe->inode)
824 				sd->need_wakeup = true;
825 		}
826 
827 		if (!sd->total_len)
828 			return 0;
829 	}
830 
831 	return 1;
832 }
833 EXPORT_SYMBOL(splice_from_pipe_feed);
834 
835 /**
836  * splice_from_pipe_next - wait for some data to splice from
837  * @pipe:	pipe to splice from
838  * @sd:		information about the splice operation
839  *
840  * Description:
841  *    This function will wait for some data and return a positive
842  *    value (one) if pipe buffers are available.  It will return zero
843  *    or -errno if no more data needs to be spliced.
844  */
845 int splice_from_pipe_next(struct pipe_inode_info *pipe, struct splice_desc *sd)
846 {
847 	while (!pipe->nrbufs) {
848 		if (!pipe->writers)
849 			return 0;
850 
851 		if (!pipe->waiting_writers && sd->num_spliced)
852 			return 0;
853 
854 		if (sd->flags & SPLICE_F_NONBLOCK)
855 			return -EAGAIN;
856 
857 		if (signal_pending(current))
858 			return -ERESTARTSYS;
859 
860 		if (sd->need_wakeup) {
861 			wakeup_pipe_writers(pipe);
862 			sd->need_wakeup = false;
863 		}
864 
865 		pipe_wait(pipe);
866 	}
867 
868 	return 1;
869 }
870 EXPORT_SYMBOL(splice_from_pipe_next);
871 
872 /**
873  * splice_from_pipe_begin - start splicing from pipe
874  * @sd:		information about the splice operation
875  *
876  * Description:
877  *    This function should be called before a loop containing
878  *    splice_from_pipe_next() and splice_from_pipe_feed() to
879  *    initialize the necessary fields of @sd.
880  */
881 void splice_from_pipe_begin(struct splice_desc *sd)
882 {
883 	sd->num_spliced = 0;
884 	sd->need_wakeup = false;
885 }
886 EXPORT_SYMBOL(splice_from_pipe_begin);
887 
888 /**
889  * splice_from_pipe_end - finish splicing from pipe
890  * @pipe:	pipe to splice from
891  * @sd:		information about the splice operation
892  *
893  * Description:
894  *    This function will wake up pipe writers if necessary.  It should
895  *    be called after a loop containing splice_from_pipe_next() and
896  *    splice_from_pipe_feed().
897  */
898 void splice_from_pipe_end(struct pipe_inode_info *pipe, struct splice_desc *sd)
899 {
900 	if (sd->need_wakeup)
901 		wakeup_pipe_writers(pipe);
902 }
903 EXPORT_SYMBOL(splice_from_pipe_end);
904 
905 /**
906  * __splice_from_pipe - splice data from a pipe to given actor
907  * @pipe:	pipe to splice from
908  * @sd:		information to @actor
909  * @actor:	handler that splices the data
910  *
911  * Description:
912  *    This function does little more than loop over the pipe and call
913  *    @actor to do the actual moving of a single struct pipe_buffer to
914  *    the desired destination. See pipe_to_file, pipe_to_sendpage, or
915  *    pipe_to_user.
916  *
917  */
918 ssize_t __splice_from_pipe(struct pipe_inode_info *pipe, struct splice_desc *sd,
919 			   splice_actor *actor)
920 {
921 	int ret;
922 
923 	splice_from_pipe_begin(sd);
924 	do {
925 		ret = splice_from_pipe_next(pipe, sd);
926 		if (ret > 0)
927 			ret = splice_from_pipe_feed(pipe, sd, actor);
928 	} while (ret > 0);
929 	splice_from_pipe_end(pipe, sd);
930 
931 	return sd->num_spliced ? sd->num_spliced : ret;
932 }
933 EXPORT_SYMBOL(__splice_from_pipe);
934 
935 /**
936  * splice_from_pipe - splice data from a pipe to a file
937  * @pipe:	pipe to splice from
938  * @out:	file to splice to
939  * @ppos:	position in @out
940  * @len:	how many bytes to splice
941  * @flags:	splice modifier flags
942  * @actor:	handler that splices the data
943  *
944  * Description:
945  *    See __splice_from_pipe. This function locks the pipe inode,
946  *    otherwise it's identical to __splice_from_pipe().
947  *
948  */
949 ssize_t splice_from_pipe(struct pipe_inode_info *pipe, struct file *out,
950 			 loff_t *ppos, size_t len, unsigned int flags,
951 			 splice_actor *actor)
952 {
953 	ssize_t ret;
954 	struct splice_desc sd = {
955 		.total_len = len,
956 		.flags = flags,
957 		.pos = *ppos,
958 		.u.file = out,
959 	};
960 
961 	pipe_lock(pipe);
962 	ret = __splice_from_pipe(pipe, &sd, actor);
963 	pipe_unlock(pipe);
964 
965 	return ret;
966 }
967 
968 /**
969  * generic_file_splice_write - splice data from a pipe to a file
970  * @pipe:	pipe info
971  * @out:	file to write to
972  * @ppos:	position in @out
973  * @len:	number of bytes to splice
974  * @flags:	splice modifier flags
975  *
976  * Description:
977  *    Will either move or copy pages (determined by @flags options) from
978  *    the given pipe inode to the given file.
979  *
980  */
981 ssize_t
982 generic_file_splice_write(struct pipe_inode_info *pipe, struct file *out,
983 			  loff_t *ppos, size_t len, unsigned int flags)
984 {
985 	struct address_space *mapping = out->f_mapping;
986 	struct inode *inode = mapping->host;
987 	struct splice_desc sd = {
988 		.total_len = len,
989 		.flags = flags,
990 		.pos = *ppos,
991 		.u.file = out,
992 	};
993 	ssize_t ret;
994 
995 	pipe_lock(pipe);
996 
997 	splice_from_pipe_begin(&sd);
998 	do {
999 		ret = splice_from_pipe_next(pipe, &sd);
1000 		if (ret <= 0)
1001 			break;
1002 
1003 		mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
1004 		ret = file_remove_suid(out);
1005 		if (!ret) {
1006 			file_update_time(out);
1007 			ret = splice_from_pipe_feed(pipe, &sd, pipe_to_file);
1008 		}
1009 		mutex_unlock(&inode->i_mutex);
1010 	} while (ret > 0);
1011 	splice_from_pipe_end(pipe, &sd);
1012 
1013 	pipe_unlock(pipe);
1014 
1015 	if (sd.num_spliced)
1016 		ret = sd.num_spliced;
1017 
1018 	if (ret > 0) {
1019 		unsigned long nr_pages;
1020 		int err;
1021 
1022 		nr_pages = (ret + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1023 
1024 		err = generic_write_sync(out, *ppos, ret);
1025 		if (err)
1026 			ret = err;
1027 		else
1028 			*ppos += ret;
1029 		balance_dirty_pages_ratelimited_nr(mapping, nr_pages);
1030 	}
1031 
1032 	return ret;
1033 }
1034 
1035 EXPORT_SYMBOL(generic_file_splice_write);
1036 
1037 static int write_pipe_buf(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1038 			  struct splice_desc *sd)
1039 {
1040 	int ret;
1041 	void *data;
1042 
1043 	data = buf->ops->map(pipe, buf, 0);
1044 	ret = kernel_write(sd->u.file, data + buf->offset, sd->len, sd->pos);
1045 	buf->ops->unmap(pipe, buf, data);
1046 
1047 	return ret;
1048 }
1049 
1050 static ssize_t default_file_splice_write(struct pipe_inode_info *pipe,
1051 					 struct file *out, loff_t *ppos,
1052 					 size_t len, unsigned int flags)
1053 {
1054 	ssize_t ret;
1055 
1056 	ret = splice_from_pipe(pipe, out, ppos, len, flags, write_pipe_buf);
1057 	if (ret > 0)
1058 		*ppos += ret;
1059 
1060 	return ret;
1061 }
1062 
1063 /**
1064  * generic_splice_sendpage - splice data from a pipe to a socket
1065  * @pipe:	pipe to splice from
1066  * @out:	socket to write to
1067  * @ppos:	position in @out
1068  * @len:	number of bytes to splice
1069  * @flags:	splice modifier flags
1070  *
1071  * Description:
1072  *    Will send @len bytes from the pipe to a network socket. No data copying
1073  *    is involved.
1074  *
1075  */
1076 ssize_t generic_splice_sendpage(struct pipe_inode_info *pipe, struct file *out,
1077 				loff_t *ppos, size_t len, unsigned int flags)
1078 {
1079 	return splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_sendpage);
1080 }
1081 
1082 EXPORT_SYMBOL(generic_splice_sendpage);
1083 
1084 /*
1085  * Attempt to initiate a splice from pipe to file.
1086  */
1087 static long do_splice_from(struct pipe_inode_info *pipe, struct file *out,
1088 			   loff_t *ppos, size_t len, unsigned int flags)
1089 {
1090 	ssize_t (*splice_write)(struct pipe_inode_info *, struct file *,
1091 				loff_t *, size_t, unsigned int);
1092 	int ret;
1093 
1094 	if (unlikely(!(out->f_mode & FMODE_WRITE)))
1095 		return -EBADF;
1096 
1097 	if (unlikely(out->f_flags & O_APPEND))
1098 		return -EINVAL;
1099 
1100 	ret = rw_verify_area(WRITE, out, ppos, len);
1101 	if (unlikely(ret < 0))
1102 		return ret;
1103 
1104 	if (out->f_op && out->f_op->splice_write)
1105 		splice_write = out->f_op->splice_write;
1106 	else
1107 		splice_write = default_file_splice_write;
1108 
1109 	return splice_write(pipe, out, ppos, len, flags);
1110 }
1111 
1112 /*
1113  * Attempt to initiate a splice from a file to a pipe.
1114  */
1115 static long do_splice_to(struct file *in, loff_t *ppos,
1116 			 struct pipe_inode_info *pipe, size_t len,
1117 			 unsigned int flags)
1118 {
1119 	ssize_t (*splice_read)(struct file *, loff_t *,
1120 			       struct pipe_inode_info *, size_t, unsigned int);
1121 	int ret;
1122 
1123 	if (unlikely(!(in->f_mode & FMODE_READ)))
1124 		return -EBADF;
1125 
1126 	ret = rw_verify_area(READ, in, ppos, len);
1127 	if (unlikely(ret < 0))
1128 		return ret;
1129 
1130 	if (in->f_op && in->f_op->splice_read)
1131 		splice_read = in->f_op->splice_read;
1132 	else
1133 		splice_read = default_file_splice_read;
1134 
1135 	return splice_read(in, ppos, pipe, len, flags);
1136 }
1137 
1138 /**
1139  * splice_direct_to_actor - splices data directly between two non-pipes
1140  * @in:		file to splice from
1141  * @sd:		actor information on where to splice to
1142  * @actor:	handles the data splicing
1143  *
1144  * Description:
1145  *    This is a special case helper to splice directly between two
1146  *    points, without requiring an explicit pipe. Internally an allocated
1147  *    pipe is cached in the process, and reused during the lifetime of
1148  *    that process.
1149  *
1150  */
1151 ssize_t splice_direct_to_actor(struct file *in, struct splice_desc *sd,
1152 			       splice_direct_actor *actor)
1153 {
1154 	struct pipe_inode_info *pipe;
1155 	long ret, bytes;
1156 	umode_t i_mode;
1157 	size_t len;
1158 	int i, flags;
1159 
1160 	/*
1161 	 * We require the input being a regular file, as we don't want to
1162 	 * randomly drop data for eg socket -> socket splicing. Use the
1163 	 * piped splicing for that!
1164 	 */
1165 	i_mode = in->f_path.dentry->d_inode->i_mode;
1166 	if (unlikely(!S_ISREG(i_mode) && !S_ISBLK(i_mode)))
1167 		return -EINVAL;
1168 
1169 	/*
1170 	 * neither in nor out is a pipe, setup an internal pipe attached to
1171 	 * 'out' and transfer the wanted data from 'in' to 'out' through that
1172 	 */
1173 	pipe = current->splice_pipe;
1174 	if (unlikely(!pipe)) {
1175 		pipe = alloc_pipe_info(NULL);
1176 		if (!pipe)
1177 			return -ENOMEM;
1178 
1179 		/*
1180 		 * We don't have an immediate reader, but we'll read the stuff
1181 		 * out of the pipe right after the splice_to_pipe(). So set
1182 		 * PIPE_READERS appropriately.
1183 		 */
1184 		pipe->readers = 1;
1185 
1186 		current->splice_pipe = pipe;
1187 	}
1188 
1189 	/*
1190 	 * Do the splice.
1191 	 */
1192 	ret = 0;
1193 	bytes = 0;
1194 	len = sd->total_len;
1195 	flags = sd->flags;
1196 
1197 	/*
1198 	 * Don't block on output, we have to drain the direct pipe.
1199 	 */
1200 	sd->flags &= ~SPLICE_F_NONBLOCK;
1201 
1202 	while (len) {
1203 		size_t read_len;
1204 		loff_t pos = sd->pos, prev_pos = pos;
1205 
1206 		ret = do_splice_to(in, &pos, pipe, len, flags);
1207 		if (unlikely(ret <= 0))
1208 			goto out_release;
1209 
1210 		read_len = ret;
1211 		sd->total_len = read_len;
1212 
1213 		/*
1214 		 * NOTE: nonblocking mode only applies to the input. We
1215 		 * must not do the output in nonblocking mode as then we
1216 		 * could get stuck data in the internal pipe:
1217 		 */
1218 		ret = actor(pipe, sd);
1219 		if (unlikely(ret <= 0)) {
1220 			sd->pos = prev_pos;
1221 			goto out_release;
1222 		}
1223 
1224 		bytes += ret;
1225 		len -= ret;
1226 		sd->pos = pos;
1227 
1228 		if (ret < read_len) {
1229 			sd->pos = prev_pos + ret;
1230 			goto out_release;
1231 		}
1232 	}
1233 
1234 done:
1235 	pipe->nrbufs = pipe->curbuf = 0;
1236 	file_accessed(in);
1237 	return bytes;
1238 
1239 out_release:
1240 	/*
1241 	 * If we did an incomplete transfer we must release
1242 	 * the pipe buffers in question:
1243 	 */
1244 	for (i = 0; i < pipe->buffers; i++) {
1245 		struct pipe_buffer *buf = pipe->bufs + i;
1246 
1247 		if (buf->ops) {
1248 			buf->ops->release(pipe, buf);
1249 			buf->ops = NULL;
1250 		}
1251 	}
1252 
1253 	if (!bytes)
1254 		bytes = ret;
1255 
1256 	goto done;
1257 }
1258 EXPORT_SYMBOL(splice_direct_to_actor);
1259 
1260 static int direct_splice_actor(struct pipe_inode_info *pipe,
1261 			       struct splice_desc *sd)
1262 {
1263 	struct file *file = sd->u.file;
1264 
1265 	return do_splice_from(pipe, file, &file->f_pos, sd->total_len,
1266 			      sd->flags);
1267 }
1268 
1269 /**
1270  * do_splice_direct - splices data directly between two files
1271  * @in:		file to splice from
1272  * @ppos:	input file offset
1273  * @out:	file to splice to
1274  * @len:	number of bytes to splice
1275  * @flags:	splice modifier flags
1276  *
1277  * Description:
1278  *    For use by do_sendfile(). splice can easily emulate sendfile, but
1279  *    doing it in the application would incur an extra system call
1280  *    (splice in + splice out, as compared to just sendfile()). So this helper
1281  *    can splice directly through a process-private pipe.
1282  *
1283  */
1284 long do_splice_direct(struct file *in, loff_t *ppos, struct file *out,
1285 		      size_t len, unsigned int flags)
1286 {
1287 	struct splice_desc sd = {
1288 		.len		= len,
1289 		.total_len	= len,
1290 		.flags		= flags,
1291 		.pos		= *ppos,
1292 		.u.file		= out,
1293 	};
1294 	long ret;
1295 
1296 	ret = splice_direct_to_actor(in, &sd, direct_splice_actor);
1297 	if (ret > 0)
1298 		*ppos = sd.pos;
1299 
1300 	return ret;
1301 }
1302 
1303 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1304 			       struct pipe_inode_info *opipe,
1305 			       size_t len, unsigned int flags);
1306 
1307 /*
1308  * Determine where to splice to/from.
1309  */
1310 static long do_splice(struct file *in, loff_t __user *off_in,
1311 		      struct file *out, loff_t __user *off_out,
1312 		      size_t len, unsigned int flags)
1313 {
1314 	struct pipe_inode_info *ipipe;
1315 	struct pipe_inode_info *opipe;
1316 	loff_t offset, *off;
1317 	long ret;
1318 
1319 	ipipe = get_pipe_info(in);
1320 	opipe = get_pipe_info(out);
1321 
1322 	if (ipipe && opipe) {
1323 		if (off_in || off_out)
1324 			return -ESPIPE;
1325 
1326 		if (!(in->f_mode & FMODE_READ))
1327 			return -EBADF;
1328 
1329 		if (!(out->f_mode & FMODE_WRITE))
1330 			return -EBADF;
1331 
1332 		/* Splicing to self would be fun, but... */
1333 		if (ipipe == opipe)
1334 			return -EINVAL;
1335 
1336 		return splice_pipe_to_pipe(ipipe, opipe, len, flags);
1337 	}
1338 
1339 	if (ipipe) {
1340 		if (off_in)
1341 			return -ESPIPE;
1342 		if (off_out) {
1343 			if (!(out->f_mode & FMODE_PWRITE))
1344 				return -EINVAL;
1345 			if (copy_from_user(&offset, off_out, sizeof(loff_t)))
1346 				return -EFAULT;
1347 			off = &offset;
1348 		} else
1349 			off = &out->f_pos;
1350 
1351 		ret = do_splice_from(ipipe, out, off, len, flags);
1352 
1353 		if (off_out && copy_to_user(off_out, off, sizeof(loff_t)))
1354 			ret = -EFAULT;
1355 
1356 		return ret;
1357 	}
1358 
1359 	if (opipe) {
1360 		if (off_out)
1361 			return -ESPIPE;
1362 		if (off_in) {
1363 			if (!(in->f_mode & FMODE_PREAD))
1364 				return -EINVAL;
1365 			if (copy_from_user(&offset, off_in, sizeof(loff_t)))
1366 				return -EFAULT;
1367 			off = &offset;
1368 		} else
1369 			off = &in->f_pos;
1370 
1371 		ret = do_splice_to(in, off, opipe, len, flags);
1372 
1373 		if (off_in && copy_to_user(off_in, off, sizeof(loff_t)))
1374 			ret = -EFAULT;
1375 
1376 		return ret;
1377 	}
1378 
1379 	return -EINVAL;
1380 }
1381 
1382 /*
1383  * Map an iov into an array of pages and offset/length tupples. With the
1384  * partial_page structure, we can map several non-contiguous ranges into
1385  * our ones pages[] map instead of splitting that operation into pieces.
1386  * Could easily be exported as a generic helper for other users, in which
1387  * case one would probably want to add a 'max_nr_pages' parameter as well.
1388  */
1389 static int get_iovec_page_array(const struct iovec __user *iov,
1390 				unsigned int nr_vecs, struct page **pages,
1391 				struct partial_page *partial, int aligned,
1392 				unsigned int pipe_buffers)
1393 {
1394 	int buffers = 0, error = 0;
1395 
1396 	while (nr_vecs) {
1397 		unsigned long off, npages;
1398 		struct iovec entry;
1399 		void __user *base;
1400 		size_t len;
1401 		int i;
1402 
1403 		error = -EFAULT;
1404 		if (copy_from_user(&entry, iov, sizeof(entry)))
1405 			break;
1406 
1407 		base = entry.iov_base;
1408 		len = entry.iov_len;
1409 
1410 		/*
1411 		 * Sanity check this iovec. 0 read succeeds.
1412 		 */
1413 		error = 0;
1414 		if (unlikely(!len))
1415 			break;
1416 		error = -EFAULT;
1417 		if (!access_ok(VERIFY_READ, base, len))
1418 			break;
1419 
1420 		/*
1421 		 * Get this base offset and number of pages, then map
1422 		 * in the user pages.
1423 		 */
1424 		off = (unsigned long) base & ~PAGE_MASK;
1425 
1426 		/*
1427 		 * If asked for alignment, the offset must be zero and the
1428 		 * length a multiple of the PAGE_SIZE.
1429 		 */
1430 		error = -EINVAL;
1431 		if (aligned && (off || len & ~PAGE_MASK))
1432 			break;
1433 
1434 		npages = (off + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1435 		if (npages > pipe_buffers - buffers)
1436 			npages = pipe_buffers - buffers;
1437 
1438 		error = get_user_pages_fast((unsigned long)base, npages,
1439 					0, &pages[buffers]);
1440 
1441 		if (unlikely(error <= 0))
1442 			break;
1443 
1444 		/*
1445 		 * Fill this contiguous range into the partial page map.
1446 		 */
1447 		for (i = 0; i < error; i++) {
1448 			const int plen = min_t(size_t, len, PAGE_SIZE - off);
1449 
1450 			partial[buffers].offset = off;
1451 			partial[buffers].len = plen;
1452 
1453 			off = 0;
1454 			len -= plen;
1455 			buffers++;
1456 		}
1457 
1458 		/*
1459 		 * We didn't complete this iov, stop here since it probably
1460 		 * means we have to move some of this into a pipe to
1461 		 * be able to continue.
1462 		 */
1463 		if (len)
1464 			break;
1465 
1466 		/*
1467 		 * Don't continue if we mapped fewer pages than we asked for,
1468 		 * or if we mapped the max number of pages that we have
1469 		 * room for.
1470 		 */
1471 		if (error < npages || buffers == pipe_buffers)
1472 			break;
1473 
1474 		nr_vecs--;
1475 		iov++;
1476 	}
1477 
1478 	if (buffers)
1479 		return buffers;
1480 
1481 	return error;
1482 }
1483 
1484 static int pipe_to_user(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1485 			struct splice_desc *sd)
1486 {
1487 	char *src;
1488 	int ret;
1489 
1490 	/*
1491 	 * See if we can use the atomic maps, by prefaulting in the
1492 	 * pages and doing an atomic copy
1493 	 */
1494 	if (!fault_in_pages_writeable(sd->u.userptr, sd->len)) {
1495 		src = buf->ops->map(pipe, buf, 1);
1496 		ret = __copy_to_user_inatomic(sd->u.userptr, src + buf->offset,
1497 							sd->len);
1498 		buf->ops->unmap(pipe, buf, src);
1499 		if (!ret) {
1500 			ret = sd->len;
1501 			goto out;
1502 		}
1503 	}
1504 
1505 	/*
1506 	 * No dice, use slow non-atomic map and copy
1507  	 */
1508 	src = buf->ops->map(pipe, buf, 0);
1509 
1510 	ret = sd->len;
1511 	if (copy_to_user(sd->u.userptr, src + buf->offset, sd->len))
1512 		ret = -EFAULT;
1513 
1514 	buf->ops->unmap(pipe, buf, src);
1515 out:
1516 	if (ret > 0)
1517 		sd->u.userptr += ret;
1518 	return ret;
1519 }
1520 
1521 /*
1522  * For lack of a better implementation, implement vmsplice() to userspace
1523  * as a simple copy of the pipes pages to the user iov.
1524  */
1525 static long vmsplice_to_user(struct file *file, const struct iovec __user *iov,
1526 			     unsigned long nr_segs, unsigned int flags)
1527 {
1528 	struct pipe_inode_info *pipe;
1529 	struct splice_desc sd;
1530 	ssize_t size;
1531 	int error;
1532 	long ret;
1533 
1534 	pipe = get_pipe_info(file);
1535 	if (!pipe)
1536 		return -EBADF;
1537 
1538 	pipe_lock(pipe);
1539 
1540 	error = ret = 0;
1541 	while (nr_segs) {
1542 		void __user *base;
1543 		size_t len;
1544 
1545 		/*
1546 		 * Get user address base and length for this iovec.
1547 		 */
1548 		error = get_user(base, &iov->iov_base);
1549 		if (unlikely(error))
1550 			break;
1551 		error = get_user(len, &iov->iov_len);
1552 		if (unlikely(error))
1553 			break;
1554 
1555 		/*
1556 		 * Sanity check this iovec. 0 read succeeds.
1557 		 */
1558 		if (unlikely(!len))
1559 			break;
1560 		if (unlikely(!base)) {
1561 			error = -EFAULT;
1562 			break;
1563 		}
1564 
1565 		if (unlikely(!access_ok(VERIFY_WRITE, base, len))) {
1566 			error = -EFAULT;
1567 			break;
1568 		}
1569 
1570 		sd.len = 0;
1571 		sd.total_len = len;
1572 		sd.flags = flags;
1573 		sd.u.userptr = base;
1574 		sd.pos = 0;
1575 
1576 		size = __splice_from_pipe(pipe, &sd, pipe_to_user);
1577 		if (size < 0) {
1578 			if (!ret)
1579 				ret = size;
1580 
1581 			break;
1582 		}
1583 
1584 		ret += size;
1585 
1586 		if (size < len)
1587 			break;
1588 
1589 		nr_segs--;
1590 		iov++;
1591 	}
1592 
1593 	pipe_unlock(pipe);
1594 
1595 	if (!ret)
1596 		ret = error;
1597 
1598 	return ret;
1599 }
1600 
1601 /*
1602  * vmsplice splices a user address range into a pipe. It can be thought of
1603  * as splice-from-memory, where the regular splice is splice-from-file (or
1604  * to file). In both cases the output is a pipe, naturally.
1605  */
1606 static long vmsplice_to_pipe(struct file *file, const struct iovec __user *iov,
1607 			     unsigned long nr_segs, unsigned int flags)
1608 {
1609 	struct pipe_inode_info *pipe;
1610 	struct page *pages[PIPE_DEF_BUFFERS];
1611 	struct partial_page partial[PIPE_DEF_BUFFERS];
1612 	struct splice_pipe_desc spd = {
1613 		.pages = pages,
1614 		.partial = partial,
1615 		.flags = flags,
1616 		.ops = &user_page_pipe_buf_ops,
1617 		.spd_release = spd_release_page,
1618 	};
1619 	long ret;
1620 
1621 	pipe = get_pipe_info(file);
1622 	if (!pipe)
1623 		return -EBADF;
1624 
1625 	if (splice_grow_spd(pipe, &spd))
1626 		return -ENOMEM;
1627 
1628 	spd.nr_pages = get_iovec_page_array(iov, nr_segs, spd.pages,
1629 					    spd.partial, flags & SPLICE_F_GIFT,
1630 					    pipe->buffers);
1631 	if (spd.nr_pages <= 0)
1632 		ret = spd.nr_pages;
1633 	else
1634 		ret = splice_to_pipe(pipe, &spd);
1635 
1636 	splice_shrink_spd(pipe, &spd);
1637 	return ret;
1638 }
1639 
1640 /*
1641  * Note that vmsplice only really supports true splicing _from_ user memory
1642  * to a pipe, not the other way around. Splicing from user memory is a simple
1643  * operation that can be supported without any funky alignment restrictions
1644  * or nasty vm tricks. We simply map in the user memory and fill them into
1645  * a pipe. The reverse isn't quite as easy, though. There are two possible
1646  * solutions for that:
1647  *
1648  *	- memcpy() the data internally, at which point we might as well just
1649  *	  do a regular read() on the buffer anyway.
1650  *	- Lots of nasty vm tricks, that are neither fast nor flexible (it
1651  *	  has restriction limitations on both ends of the pipe).
1652  *
1653  * Currently we punt and implement it as a normal copy, see pipe_to_user().
1654  *
1655  */
1656 SYSCALL_DEFINE4(vmsplice, int, fd, const struct iovec __user *, iov,
1657 		unsigned long, nr_segs, unsigned int, flags)
1658 {
1659 	struct file *file;
1660 	long error;
1661 	int fput;
1662 
1663 	if (unlikely(nr_segs > UIO_MAXIOV))
1664 		return -EINVAL;
1665 	else if (unlikely(!nr_segs))
1666 		return 0;
1667 
1668 	error = -EBADF;
1669 	file = fget_light(fd, &fput);
1670 	if (file) {
1671 		if (file->f_mode & FMODE_WRITE)
1672 			error = vmsplice_to_pipe(file, iov, nr_segs, flags);
1673 		else if (file->f_mode & FMODE_READ)
1674 			error = vmsplice_to_user(file, iov, nr_segs, flags);
1675 
1676 		fput_light(file, fput);
1677 	}
1678 
1679 	return error;
1680 }
1681 
1682 SYSCALL_DEFINE6(splice, int, fd_in, loff_t __user *, off_in,
1683 		int, fd_out, loff_t __user *, off_out,
1684 		size_t, len, unsigned int, flags)
1685 {
1686 	long error;
1687 	struct file *in, *out;
1688 	int fput_in, fput_out;
1689 
1690 	if (unlikely(!len))
1691 		return 0;
1692 
1693 	error = -EBADF;
1694 	in = fget_light(fd_in, &fput_in);
1695 	if (in) {
1696 		if (in->f_mode & FMODE_READ) {
1697 			out = fget_light(fd_out, &fput_out);
1698 			if (out) {
1699 				if (out->f_mode & FMODE_WRITE)
1700 					error = do_splice(in, off_in,
1701 							  out, off_out,
1702 							  len, flags);
1703 				fput_light(out, fput_out);
1704 			}
1705 		}
1706 
1707 		fput_light(in, fput_in);
1708 	}
1709 
1710 	return error;
1711 }
1712 
1713 /*
1714  * Make sure there's data to read. Wait for input if we can, otherwise
1715  * return an appropriate error.
1716  */
1717 static int ipipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1718 {
1719 	int ret;
1720 
1721 	/*
1722 	 * Check ->nrbufs without the inode lock first. This function
1723 	 * is speculative anyways, so missing one is ok.
1724 	 */
1725 	if (pipe->nrbufs)
1726 		return 0;
1727 
1728 	ret = 0;
1729 	pipe_lock(pipe);
1730 
1731 	while (!pipe->nrbufs) {
1732 		if (signal_pending(current)) {
1733 			ret = -ERESTARTSYS;
1734 			break;
1735 		}
1736 		if (!pipe->writers)
1737 			break;
1738 		if (!pipe->waiting_writers) {
1739 			if (flags & SPLICE_F_NONBLOCK) {
1740 				ret = -EAGAIN;
1741 				break;
1742 			}
1743 		}
1744 		pipe_wait(pipe);
1745 	}
1746 
1747 	pipe_unlock(pipe);
1748 	return ret;
1749 }
1750 
1751 /*
1752  * Make sure there's writeable room. Wait for room if we can, otherwise
1753  * return an appropriate error.
1754  */
1755 static int opipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1756 {
1757 	int ret;
1758 
1759 	/*
1760 	 * Check ->nrbufs without the inode lock first. This function
1761 	 * is speculative anyways, so missing one is ok.
1762 	 */
1763 	if (pipe->nrbufs < pipe->buffers)
1764 		return 0;
1765 
1766 	ret = 0;
1767 	pipe_lock(pipe);
1768 
1769 	while (pipe->nrbufs >= pipe->buffers) {
1770 		if (!pipe->readers) {
1771 			send_sig(SIGPIPE, current, 0);
1772 			ret = -EPIPE;
1773 			break;
1774 		}
1775 		if (flags & SPLICE_F_NONBLOCK) {
1776 			ret = -EAGAIN;
1777 			break;
1778 		}
1779 		if (signal_pending(current)) {
1780 			ret = -ERESTARTSYS;
1781 			break;
1782 		}
1783 		pipe->waiting_writers++;
1784 		pipe_wait(pipe);
1785 		pipe->waiting_writers--;
1786 	}
1787 
1788 	pipe_unlock(pipe);
1789 	return ret;
1790 }
1791 
1792 /*
1793  * Splice contents of ipipe to opipe.
1794  */
1795 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1796 			       struct pipe_inode_info *opipe,
1797 			       size_t len, unsigned int flags)
1798 {
1799 	struct pipe_buffer *ibuf, *obuf;
1800 	int ret = 0, nbuf;
1801 	bool input_wakeup = false;
1802 
1803 
1804 retry:
1805 	ret = ipipe_prep(ipipe, flags);
1806 	if (ret)
1807 		return ret;
1808 
1809 	ret = opipe_prep(opipe, flags);
1810 	if (ret)
1811 		return ret;
1812 
1813 	/*
1814 	 * Potential ABBA deadlock, work around it by ordering lock
1815 	 * grabbing by pipe info address. Otherwise two different processes
1816 	 * could deadlock (one doing tee from A -> B, the other from B -> A).
1817 	 */
1818 	pipe_double_lock(ipipe, opipe);
1819 
1820 	do {
1821 		if (!opipe->readers) {
1822 			send_sig(SIGPIPE, current, 0);
1823 			if (!ret)
1824 				ret = -EPIPE;
1825 			break;
1826 		}
1827 
1828 		if (!ipipe->nrbufs && !ipipe->writers)
1829 			break;
1830 
1831 		/*
1832 		 * Cannot make any progress, because either the input
1833 		 * pipe is empty or the output pipe is full.
1834 		 */
1835 		if (!ipipe->nrbufs || opipe->nrbufs >= opipe->buffers) {
1836 			/* Already processed some buffers, break */
1837 			if (ret)
1838 				break;
1839 
1840 			if (flags & SPLICE_F_NONBLOCK) {
1841 				ret = -EAGAIN;
1842 				break;
1843 			}
1844 
1845 			/*
1846 			 * We raced with another reader/writer and haven't
1847 			 * managed to process any buffers.  A zero return
1848 			 * value means EOF, so retry instead.
1849 			 */
1850 			pipe_unlock(ipipe);
1851 			pipe_unlock(opipe);
1852 			goto retry;
1853 		}
1854 
1855 		ibuf = ipipe->bufs + ipipe->curbuf;
1856 		nbuf = (opipe->curbuf + opipe->nrbufs) & (opipe->buffers - 1);
1857 		obuf = opipe->bufs + nbuf;
1858 
1859 		if (len >= ibuf->len) {
1860 			/*
1861 			 * Simply move the whole buffer from ipipe to opipe
1862 			 */
1863 			*obuf = *ibuf;
1864 			ibuf->ops = NULL;
1865 			opipe->nrbufs++;
1866 			ipipe->curbuf = (ipipe->curbuf + 1) & (ipipe->buffers - 1);
1867 			ipipe->nrbufs--;
1868 			input_wakeup = true;
1869 		} else {
1870 			/*
1871 			 * Get a reference to this pipe buffer,
1872 			 * so we can copy the contents over.
1873 			 */
1874 			ibuf->ops->get(ipipe, ibuf);
1875 			*obuf = *ibuf;
1876 
1877 			/*
1878 			 * Don't inherit the gift flag, we need to
1879 			 * prevent multiple steals of this page.
1880 			 */
1881 			obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1882 
1883 			obuf->len = len;
1884 			opipe->nrbufs++;
1885 			ibuf->offset += obuf->len;
1886 			ibuf->len -= obuf->len;
1887 		}
1888 		ret += obuf->len;
1889 		len -= obuf->len;
1890 	} while (len);
1891 
1892 	pipe_unlock(ipipe);
1893 	pipe_unlock(opipe);
1894 
1895 	/*
1896 	 * If we put data in the output pipe, wakeup any potential readers.
1897 	 */
1898 	if (ret > 0)
1899 		wakeup_pipe_readers(opipe);
1900 
1901 	if (input_wakeup)
1902 		wakeup_pipe_writers(ipipe);
1903 
1904 	return ret;
1905 }
1906 
1907 /*
1908  * Link contents of ipipe to opipe.
1909  */
1910 static int link_pipe(struct pipe_inode_info *ipipe,
1911 		     struct pipe_inode_info *opipe,
1912 		     size_t len, unsigned int flags)
1913 {
1914 	struct pipe_buffer *ibuf, *obuf;
1915 	int ret = 0, i = 0, nbuf;
1916 
1917 	/*
1918 	 * Potential ABBA deadlock, work around it by ordering lock
1919 	 * grabbing by pipe info address. Otherwise two different processes
1920 	 * could deadlock (one doing tee from A -> B, the other from B -> A).
1921 	 */
1922 	pipe_double_lock(ipipe, opipe);
1923 
1924 	do {
1925 		if (!opipe->readers) {
1926 			send_sig(SIGPIPE, current, 0);
1927 			if (!ret)
1928 				ret = -EPIPE;
1929 			break;
1930 		}
1931 
1932 		/*
1933 		 * If we have iterated all input buffers or ran out of
1934 		 * output room, break.
1935 		 */
1936 		if (i >= ipipe->nrbufs || opipe->nrbufs >= opipe->buffers)
1937 			break;
1938 
1939 		ibuf = ipipe->bufs + ((ipipe->curbuf + i) & (ipipe->buffers-1));
1940 		nbuf = (opipe->curbuf + opipe->nrbufs) & (opipe->buffers - 1);
1941 
1942 		/*
1943 		 * Get a reference to this pipe buffer,
1944 		 * so we can copy the contents over.
1945 		 */
1946 		ibuf->ops->get(ipipe, ibuf);
1947 
1948 		obuf = opipe->bufs + nbuf;
1949 		*obuf = *ibuf;
1950 
1951 		/*
1952 		 * Don't inherit the gift flag, we need to
1953 		 * prevent multiple steals of this page.
1954 		 */
1955 		obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1956 
1957 		if (obuf->len > len)
1958 			obuf->len = len;
1959 
1960 		opipe->nrbufs++;
1961 		ret += obuf->len;
1962 		len -= obuf->len;
1963 		i++;
1964 	} while (len);
1965 
1966 	/*
1967 	 * return EAGAIN if we have the potential of some data in the
1968 	 * future, otherwise just return 0
1969 	 */
1970 	if (!ret && ipipe->waiting_writers && (flags & SPLICE_F_NONBLOCK))
1971 		ret = -EAGAIN;
1972 
1973 	pipe_unlock(ipipe);
1974 	pipe_unlock(opipe);
1975 
1976 	/*
1977 	 * If we put data in the output pipe, wakeup any potential readers.
1978 	 */
1979 	if (ret > 0)
1980 		wakeup_pipe_readers(opipe);
1981 
1982 	return ret;
1983 }
1984 
1985 /*
1986  * This is a tee(1) implementation that works on pipes. It doesn't copy
1987  * any data, it simply references the 'in' pages on the 'out' pipe.
1988  * The 'flags' used are the SPLICE_F_* variants, currently the only
1989  * applicable one is SPLICE_F_NONBLOCK.
1990  */
1991 static long do_tee(struct file *in, struct file *out, size_t len,
1992 		   unsigned int flags)
1993 {
1994 	struct pipe_inode_info *ipipe = get_pipe_info(in);
1995 	struct pipe_inode_info *opipe = get_pipe_info(out);
1996 	int ret = -EINVAL;
1997 
1998 	/*
1999 	 * Duplicate the contents of ipipe to opipe without actually
2000 	 * copying the data.
2001 	 */
2002 	if (ipipe && opipe && ipipe != opipe) {
2003 		/*
2004 		 * Keep going, unless we encounter an error. The ipipe/opipe
2005 		 * ordering doesn't really matter.
2006 		 */
2007 		ret = ipipe_prep(ipipe, flags);
2008 		if (!ret) {
2009 			ret = opipe_prep(opipe, flags);
2010 			if (!ret)
2011 				ret = link_pipe(ipipe, opipe, len, flags);
2012 		}
2013 	}
2014 
2015 	return ret;
2016 }
2017 
2018 SYSCALL_DEFINE4(tee, int, fdin, int, fdout, size_t, len, unsigned int, flags)
2019 {
2020 	struct file *in;
2021 	int error, fput_in;
2022 
2023 	if (unlikely(!len))
2024 		return 0;
2025 
2026 	error = -EBADF;
2027 	in = fget_light(fdin, &fput_in);
2028 	if (in) {
2029 		if (in->f_mode & FMODE_READ) {
2030 			int fput_out;
2031 			struct file *out = fget_light(fdout, &fput_out);
2032 
2033 			if (out) {
2034 				if (out->f_mode & FMODE_WRITE)
2035 					error = do_tee(in, out, len, flags);
2036 				fput_light(out, fput_out);
2037 			}
2038 		}
2039  		fput_light(in, fput_in);
2040  	}
2041 
2042 	return error;
2043 }
2044