1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * "splice": joining two ropes together by interweaving their strands. 4 * 5 * This is the "extended pipe" functionality, where a pipe is used as 6 * an arbitrary in-memory buffer. Think of a pipe as a small kernel 7 * buffer that you can use to transfer data from one end to the other. 8 * 9 * The traditional unix read/write is extended with a "splice()" operation 10 * that transfers data buffers to or from a pipe buffer. 11 * 12 * Named by Larry McVoy, original implementation from Linus, extended by 13 * Jens to support splicing to files, network, direct splicing, etc and 14 * fixing lots of bugs. 15 * 16 * Copyright (C) 2005-2006 Jens Axboe <axboe@kernel.dk> 17 * Copyright (C) 2005-2006 Linus Torvalds <torvalds@osdl.org> 18 * Copyright (C) 2006 Ingo Molnar <mingo@elte.hu> 19 * 20 */ 21 #include <linux/bvec.h> 22 #include <linux/fs.h> 23 #include <linux/file.h> 24 #include <linux/pagemap.h> 25 #include <linux/splice.h> 26 #include <linux/memcontrol.h> 27 #include <linux/mm_inline.h> 28 #include <linux/swap.h> 29 #include <linux/writeback.h> 30 #include <linux/export.h> 31 #include <linux/syscalls.h> 32 #include <linux/uio.h> 33 #include <linux/security.h> 34 #include <linux/gfp.h> 35 #include <linux/socket.h> 36 #include <linux/compat.h> 37 #include <linux/sched/signal.h> 38 39 #include "internal.h" 40 41 /* 42 * Attempt to steal a page from a pipe buffer. This should perhaps go into 43 * a vm helper function, it's already simplified quite a bit by the 44 * addition of remove_mapping(). If success is returned, the caller may 45 * attempt to reuse this page for another destination. 46 */ 47 static int page_cache_pipe_buf_steal(struct pipe_inode_info *pipe, 48 struct pipe_buffer *buf) 49 { 50 struct page *page = buf->page; 51 struct address_space *mapping; 52 53 lock_page(page); 54 55 mapping = page_mapping(page); 56 if (mapping) { 57 WARN_ON(!PageUptodate(page)); 58 59 /* 60 * At least for ext2 with nobh option, we need to wait on 61 * writeback completing on this page, since we'll remove it 62 * from the pagecache. Otherwise truncate wont wait on the 63 * page, allowing the disk blocks to be reused by someone else 64 * before we actually wrote our data to them. fs corruption 65 * ensues. 66 */ 67 wait_on_page_writeback(page); 68 69 if (page_has_private(page) && 70 !try_to_release_page(page, GFP_KERNEL)) 71 goto out_unlock; 72 73 /* 74 * If we succeeded in removing the mapping, set LRU flag 75 * and return good. 76 */ 77 if (remove_mapping(mapping, page)) { 78 buf->flags |= PIPE_BUF_FLAG_LRU; 79 return 0; 80 } 81 } 82 83 /* 84 * Raced with truncate or failed to remove page from current 85 * address space, unlock and return failure. 86 */ 87 out_unlock: 88 unlock_page(page); 89 return 1; 90 } 91 92 static void page_cache_pipe_buf_release(struct pipe_inode_info *pipe, 93 struct pipe_buffer *buf) 94 { 95 put_page(buf->page); 96 buf->flags &= ~PIPE_BUF_FLAG_LRU; 97 } 98 99 /* 100 * Check whether the contents of buf is OK to access. Since the content 101 * is a page cache page, IO may be in flight. 102 */ 103 static int page_cache_pipe_buf_confirm(struct pipe_inode_info *pipe, 104 struct pipe_buffer *buf) 105 { 106 struct page *page = buf->page; 107 int err; 108 109 if (!PageUptodate(page)) { 110 lock_page(page); 111 112 /* 113 * Page got truncated/unhashed. This will cause a 0-byte 114 * splice, if this is the first page. 115 */ 116 if (!page->mapping) { 117 err = -ENODATA; 118 goto error; 119 } 120 121 /* 122 * Uh oh, read-error from disk. 123 */ 124 if (!PageUptodate(page)) { 125 err = -EIO; 126 goto error; 127 } 128 129 /* 130 * Page is ok afterall, we are done. 131 */ 132 unlock_page(page); 133 } 134 135 return 0; 136 error: 137 unlock_page(page); 138 return err; 139 } 140 141 const struct pipe_buf_operations page_cache_pipe_buf_ops = { 142 .confirm = page_cache_pipe_buf_confirm, 143 .release = page_cache_pipe_buf_release, 144 .steal = page_cache_pipe_buf_steal, 145 .get = generic_pipe_buf_get, 146 }; 147 148 static int user_page_pipe_buf_steal(struct pipe_inode_info *pipe, 149 struct pipe_buffer *buf) 150 { 151 if (!(buf->flags & PIPE_BUF_FLAG_GIFT)) 152 return 1; 153 154 buf->flags |= PIPE_BUF_FLAG_LRU; 155 return generic_pipe_buf_steal(pipe, buf); 156 } 157 158 static const struct pipe_buf_operations user_page_pipe_buf_ops = { 159 .confirm = generic_pipe_buf_confirm, 160 .release = page_cache_pipe_buf_release, 161 .steal = user_page_pipe_buf_steal, 162 .get = generic_pipe_buf_get, 163 }; 164 165 static void wakeup_pipe_readers(struct pipe_inode_info *pipe) 166 { 167 smp_mb(); 168 if (waitqueue_active(&pipe->rd_wait)) 169 wake_up_interruptible(&pipe->rd_wait); 170 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN); 171 } 172 173 /** 174 * splice_to_pipe - fill passed data into a pipe 175 * @pipe: pipe to fill 176 * @spd: data to fill 177 * 178 * Description: 179 * @spd contains a map of pages and len/offset tuples, along with 180 * the struct pipe_buf_operations associated with these pages. This 181 * function will link that data to the pipe. 182 * 183 */ 184 ssize_t splice_to_pipe(struct pipe_inode_info *pipe, 185 struct splice_pipe_desc *spd) 186 { 187 unsigned int spd_pages = spd->nr_pages; 188 unsigned int tail = pipe->tail; 189 unsigned int head = pipe->head; 190 unsigned int mask = pipe->ring_size - 1; 191 int ret = 0, page_nr = 0; 192 193 if (!spd_pages) 194 return 0; 195 196 if (unlikely(!pipe->readers)) { 197 send_sig(SIGPIPE, current, 0); 198 ret = -EPIPE; 199 goto out; 200 } 201 202 while (!pipe_full(head, tail, pipe->max_usage)) { 203 struct pipe_buffer *buf = &pipe->bufs[head & mask]; 204 205 buf->page = spd->pages[page_nr]; 206 buf->offset = spd->partial[page_nr].offset; 207 buf->len = spd->partial[page_nr].len; 208 buf->private = spd->partial[page_nr].private; 209 buf->ops = spd->ops; 210 buf->flags = 0; 211 212 head++; 213 pipe->head = head; 214 page_nr++; 215 ret += buf->len; 216 217 if (!--spd->nr_pages) 218 break; 219 } 220 221 if (!ret) 222 ret = -EAGAIN; 223 224 out: 225 while (page_nr < spd_pages) 226 spd->spd_release(spd, page_nr++); 227 228 return ret; 229 } 230 EXPORT_SYMBOL_GPL(splice_to_pipe); 231 232 ssize_t add_to_pipe(struct pipe_inode_info *pipe, struct pipe_buffer *buf) 233 { 234 unsigned int head = pipe->head; 235 unsigned int tail = pipe->tail; 236 unsigned int mask = pipe->ring_size - 1; 237 int ret; 238 239 if (unlikely(!pipe->readers)) { 240 send_sig(SIGPIPE, current, 0); 241 ret = -EPIPE; 242 } else if (pipe_full(head, tail, pipe->max_usage)) { 243 ret = -EAGAIN; 244 } else { 245 pipe->bufs[head & mask] = *buf; 246 pipe->head = head + 1; 247 return buf->len; 248 } 249 pipe_buf_release(pipe, buf); 250 return ret; 251 } 252 EXPORT_SYMBOL(add_to_pipe); 253 254 /* 255 * Check if we need to grow the arrays holding pages and partial page 256 * descriptions. 257 */ 258 int splice_grow_spd(const struct pipe_inode_info *pipe, struct splice_pipe_desc *spd) 259 { 260 unsigned int max_usage = READ_ONCE(pipe->max_usage); 261 262 spd->nr_pages_max = max_usage; 263 if (max_usage <= PIPE_DEF_BUFFERS) 264 return 0; 265 266 spd->pages = kmalloc_array(max_usage, sizeof(struct page *), GFP_KERNEL); 267 spd->partial = kmalloc_array(max_usage, sizeof(struct partial_page), 268 GFP_KERNEL); 269 270 if (spd->pages && spd->partial) 271 return 0; 272 273 kfree(spd->pages); 274 kfree(spd->partial); 275 return -ENOMEM; 276 } 277 278 void splice_shrink_spd(struct splice_pipe_desc *spd) 279 { 280 if (spd->nr_pages_max <= PIPE_DEF_BUFFERS) 281 return; 282 283 kfree(spd->pages); 284 kfree(spd->partial); 285 } 286 287 /** 288 * generic_file_splice_read - splice data from file to a pipe 289 * @in: file to splice from 290 * @ppos: position in @in 291 * @pipe: pipe to splice to 292 * @len: number of bytes to splice 293 * @flags: splice modifier flags 294 * 295 * Description: 296 * Will read pages from given file and fill them into a pipe. Can be 297 * used as long as it has more or less sane ->read_iter(). 298 * 299 */ 300 ssize_t generic_file_splice_read(struct file *in, loff_t *ppos, 301 struct pipe_inode_info *pipe, size_t len, 302 unsigned int flags) 303 { 304 struct iov_iter to; 305 struct kiocb kiocb; 306 unsigned int i_head; 307 int ret; 308 309 iov_iter_pipe(&to, READ, pipe, len); 310 i_head = to.head; 311 init_sync_kiocb(&kiocb, in); 312 kiocb.ki_pos = *ppos; 313 ret = call_read_iter(in, &kiocb, &to); 314 if (ret > 0) { 315 *ppos = kiocb.ki_pos; 316 file_accessed(in); 317 } else if (ret < 0) { 318 to.head = i_head; 319 to.iov_offset = 0; 320 iov_iter_advance(&to, 0); /* to free what was emitted */ 321 /* 322 * callers of ->splice_read() expect -EAGAIN on 323 * "can't put anything in there", rather than -EFAULT. 324 */ 325 if (ret == -EFAULT) 326 ret = -EAGAIN; 327 } 328 329 return ret; 330 } 331 EXPORT_SYMBOL(generic_file_splice_read); 332 333 const struct pipe_buf_operations default_pipe_buf_ops = { 334 .confirm = generic_pipe_buf_confirm, 335 .release = generic_pipe_buf_release, 336 .steal = generic_pipe_buf_steal, 337 .get = generic_pipe_buf_get, 338 }; 339 340 int generic_pipe_buf_nosteal(struct pipe_inode_info *pipe, 341 struct pipe_buffer *buf) 342 { 343 return 1; 344 } 345 346 /* Pipe buffer operations for a socket and similar. */ 347 const struct pipe_buf_operations nosteal_pipe_buf_ops = { 348 .confirm = generic_pipe_buf_confirm, 349 .release = generic_pipe_buf_release, 350 .steal = generic_pipe_buf_nosteal, 351 .get = generic_pipe_buf_get, 352 }; 353 EXPORT_SYMBOL(nosteal_pipe_buf_ops); 354 355 static ssize_t kernel_readv(struct file *file, const struct kvec *vec, 356 unsigned long vlen, loff_t offset) 357 { 358 mm_segment_t old_fs; 359 loff_t pos = offset; 360 ssize_t res; 361 362 old_fs = get_fs(); 363 set_fs(KERNEL_DS); 364 /* The cast to a user pointer is valid due to the set_fs() */ 365 res = vfs_readv(file, (const struct iovec __user *)vec, vlen, &pos, 0); 366 set_fs(old_fs); 367 368 return res; 369 } 370 371 static ssize_t default_file_splice_read(struct file *in, loff_t *ppos, 372 struct pipe_inode_info *pipe, size_t len, 373 unsigned int flags) 374 { 375 struct kvec *vec, __vec[PIPE_DEF_BUFFERS]; 376 struct iov_iter to; 377 struct page **pages; 378 unsigned int nr_pages; 379 unsigned int mask; 380 size_t offset, base, copied = 0; 381 ssize_t res; 382 int i; 383 384 if (pipe_full(pipe->head, pipe->tail, pipe->max_usage)) 385 return -EAGAIN; 386 387 /* 388 * Try to keep page boundaries matching to source pagecache ones - 389 * it probably won't be much help, but... 390 */ 391 offset = *ppos & ~PAGE_MASK; 392 393 iov_iter_pipe(&to, READ, pipe, len + offset); 394 395 res = iov_iter_get_pages_alloc(&to, &pages, len + offset, &base); 396 if (res <= 0) 397 return -ENOMEM; 398 399 nr_pages = DIV_ROUND_UP(res + base, PAGE_SIZE); 400 401 vec = __vec; 402 if (nr_pages > PIPE_DEF_BUFFERS) { 403 vec = kmalloc_array(nr_pages, sizeof(struct kvec), GFP_KERNEL); 404 if (unlikely(!vec)) { 405 res = -ENOMEM; 406 goto out; 407 } 408 } 409 410 mask = pipe->ring_size - 1; 411 pipe->bufs[to.head & mask].offset = offset; 412 pipe->bufs[to.head & mask].len -= offset; 413 414 for (i = 0; i < nr_pages; i++) { 415 size_t this_len = min_t(size_t, len, PAGE_SIZE - offset); 416 vec[i].iov_base = page_address(pages[i]) + offset; 417 vec[i].iov_len = this_len; 418 len -= this_len; 419 offset = 0; 420 } 421 422 res = kernel_readv(in, vec, nr_pages, *ppos); 423 if (res > 0) { 424 copied = res; 425 *ppos += res; 426 } 427 428 if (vec != __vec) 429 kfree(vec); 430 out: 431 for (i = 0; i < nr_pages; i++) 432 put_page(pages[i]); 433 kvfree(pages); 434 iov_iter_advance(&to, copied); /* truncates and discards */ 435 return res; 436 } 437 438 /* 439 * Send 'sd->len' bytes to socket from 'sd->file' at position 'sd->pos' 440 * using sendpage(). Return the number of bytes sent. 441 */ 442 static int pipe_to_sendpage(struct pipe_inode_info *pipe, 443 struct pipe_buffer *buf, struct splice_desc *sd) 444 { 445 struct file *file = sd->u.file; 446 loff_t pos = sd->pos; 447 int more; 448 449 if (!likely(file->f_op->sendpage)) 450 return -EINVAL; 451 452 more = (sd->flags & SPLICE_F_MORE) ? MSG_MORE : 0; 453 454 if (sd->len < sd->total_len && 455 pipe_occupancy(pipe->head, pipe->tail) > 1) 456 more |= MSG_SENDPAGE_NOTLAST; 457 458 return file->f_op->sendpage(file, buf->page, buf->offset, 459 sd->len, &pos, more); 460 } 461 462 static void wakeup_pipe_writers(struct pipe_inode_info *pipe) 463 { 464 smp_mb(); 465 if (waitqueue_active(&pipe->wr_wait)) 466 wake_up_interruptible(&pipe->wr_wait); 467 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT); 468 } 469 470 /** 471 * splice_from_pipe_feed - feed available data from a pipe to a file 472 * @pipe: pipe to splice from 473 * @sd: information to @actor 474 * @actor: handler that splices the data 475 * 476 * Description: 477 * This function loops over the pipe and calls @actor to do the 478 * actual moving of a single struct pipe_buffer to the desired 479 * destination. It returns when there's no more buffers left in 480 * the pipe or if the requested number of bytes (@sd->total_len) 481 * have been copied. It returns a positive number (one) if the 482 * pipe needs to be filled with more data, zero if the required 483 * number of bytes have been copied and -errno on error. 484 * 485 * This, together with splice_from_pipe_{begin,end,next}, may be 486 * used to implement the functionality of __splice_from_pipe() when 487 * locking is required around copying the pipe buffers to the 488 * destination. 489 */ 490 static int splice_from_pipe_feed(struct pipe_inode_info *pipe, struct splice_desc *sd, 491 splice_actor *actor) 492 { 493 unsigned int head = pipe->head; 494 unsigned int tail = pipe->tail; 495 unsigned int mask = pipe->ring_size - 1; 496 int ret; 497 498 while (!pipe_empty(head, tail)) { 499 struct pipe_buffer *buf = &pipe->bufs[tail & mask]; 500 501 sd->len = buf->len; 502 if (sd->len > sd->total_len) 503 sd->len = sd->total_len; 504 505 ret = pipe_buf_confirm(pipe, buf); 506 if (unlikely(ret)) { 507 if (ret == -ENODATA) 508 ret = 0; 509 return ret; 510 } 511 512 ret = actor(pipe, buf, sd); 513 if (ret <= 0) 514 return ret; 515 516 buf->offset += ret; 517 buf->len -= ret; 518 519 sd->num_spliced += ret; 520 sd->len -= ret; 521 sd->pos += ret; 522 sd->total_len -= ret; 523 524 if (!buf->len) { 525 pipe_buf_release(pipe, buf); 526 tail++; 527 pipe->tail = tail; 528 if (pipe->files) 529 sd->need_wakeup = true; 530 } 531 532 if (!sd->total_len) 533 return 0; 534 } 535 536 return 1; 537 } 538 539 /** 540 * splice_from_pipe_next - wait for some data to splice from 541 * @pipe: pipe to splice from 542 * @sd: information about the splice operation 543 * 544 * Description: 545 * This function will wait for some data and return a positive 546 * value (one) if pipe buffers are available. It will return zero 547 * or -errno if no more data needs to be spliced. 548 */ 549 static int splice_from_pipe_next(struct pipe_inode_info *pipe, struct splice_desc *sd) 550 { 551 /* 552 * Check for signal early to make process killable when there are 553 * always buffers available 554 */ 555 if (signal_pending(current)) 556 return -ERESTARTSYS; 557 558 while (pipe_empty(pipe->head, pipe->tail)) { 559 if (!pipe->writers) 560 return 0; 561 562 if (sd->num_spliced) 563 return 0; 564 565 if (sd->flags & SPLICE_F_NONBLOCK) 566 return -EAGAIN; 567 568 if (signal_pending(current)) 569 return -ERESTARTSYS; 570 571 if (sd->need_wakeup) { 572 wakeup_pipe_writers(pipe); 573 sd->need_wakeup = false; 574 } 575 576 pipe_wait(pipe); 577 } 578 579 return 1; 580 } 581 582 /** 583 * splice_from_pipe_begin - start splicing from pipe 584 * @sd: information about the splice operation 585 * 586 * Description: 587 * This function should be called before a loop containing 588 * splice_from_pipe_next() and splice_from_pipe_feed() to 589 * initialize the necessary fields of @sd. 590 */ 591 static void splice_from_pipe_begin(struct splice_desc *sd) 592 { 593 sd->num_spliced = 0; 594 sd->need_wakeup = false; 595 } 596 597 /** 598 * splice_from_pipe_end - finish splicing from pipe 599 * @pipe: pipe to splice from 600 * @sd: information about the splice operation 601 * 602 * Description: 603 * This function will wake up pipe writers if necessary. It should 604 * be called after a loop containing splice_from_pipe_next() and 605 * splice_from_pipe_feed(). 606 */ 607 static void splice_from_pipe_end(struct pipe_inode_info *pipe, struct splice_desc *sd) 608 { 609 if (sd->need_wakeup) 610 wakeup_pipe_writers(pipe); 611 } 612 613 /** 614 * __splice_from_pipe - splice data from a pipe to given actor 615 * @pipe: pipe to splice from 616 * @sd: information to @actor 617 * @actor: handler that splices the data 618 * 619 * Description: 620 * This function does little more than loop over the pipe and call 621 * @actor to do the actual moving of a single struct pipe_buffer to 622 * the desired destination. See pipe_to_file, pipe_to_sendpage, or 623 * pipe_to_user. 624 * 625 */ 626 ssize_t __splice_from_pipe(struct pipe_inode_info *pipe, struct splice_desc *sd, 627 splice_actor *actor) 628 { 629 int ret; 630 631 splice_from_pipe_begin(sd); 632 do { 633 cond_resched(); 634 ret = splice_from_pipe_next(pipe, sd); 635 if (ret > 0) 636 ret = splice_from_pipe_feed(pipe, sd, actor); 637 } while (ret > 0); 638 splice_from_pipe_end(pipe, sd); 639 640 return sd->num_spliced ? sd->num_spliced : ret; 641 } 642 EXPORT_SYMBOL(__splice_from_pipe); 643 644 /** 645 * splice_from_pipe - splice data from a pipe to a file 646 * @pipe: pipe to splice from 647 * @out: file to splice to 648 * @ppos: position in @out 649 * @len: how many bytes to splice 650 * @flags: splice modifier flags 651 * @actor: handler that splices the data 652 * 653 * Description: 654 * See __splice_from_pipe. This function locks the pipe inode, 655 * otherwise it's identical to __splice_from_pipe(). 656 * 657 */ 658 ssize_t splice_from_pipe(struct pipe_inode_info *pipe, struct file *out, 659 loff_t *ppos, size_t len, unsigned int flags, 660 splice_actor *actor) 661 { 662 ssize_t ret; 663 struct splice_desc sd = { 664 .total_len = len, 665 .flags = flags, 666 .pos = *ppos, 667 .u.file = out, 668 }; 669 670 pipe_lock(pipe); 671 ret = __splice_from_pipe(pipe, &sd, actor); 672 pipe_unlock(pipe); 673 674 return ret; 675 } 676 677 /** 678 * iter_file_splice_write - splice data from a pipe to a file 679 * @pipe: pipe info 680 * @out: file to write to 681 * @ppos: position in @out 682 * @len: number of bytes to splice 683 * @flags: splice modifier flags 684 * 685 * Description: 686 * Will either move or copy pages (determined by @flags options) from 687 * the given pipe inode to the given file. 688 * This one is ->write_iter-based. 689 * 690 */ 691 ssize_t 692 iter_file_splice_write(struct pipe_inode_info *pipe, struct file *out, 693 loff_t *ppos, size_t len, unsigned int flags) 694 { 695 struct splice_desc sd = { 696 .total_len = len, 697 .flags = flags, 698 .pos = *ppos, 699 .u.file = out, 700 }; 701 int nbufs = pipe->max_usage; 702 struct bio_vec *array = kcalloc(nbufs, sizeof(struct bio_vec), 703 GFP_KERNEL); 704 ssize_t ret; 705 706 if (unlikely(!array)) 707 return -ENOMEM; 708 709 pipe_lock(pipe); 710 711 splice_from_pipe_begin(&sd); 712 while (sd.total_len) { 713 struct iov_iter from; 714 unsigned int head, tail, mask; 715 size_t left; 716 int n; 717 718 ret = splice_from_pipe_next(pipe, &sd); 719 if (ret <= 0) 720 break; 721 722 if (unlikely(nbufs < pipe->max_usage)) { 723 kfree(array); 724 nbufs = pipe->max_usage; 725 array = kcalloc(nbufs, sizeof(struct bio_vec), 726 GFP_KERNEL); 727 if (!array) { 728 ret = -ENOMEM; 729 break; 730 } 731 } 732 733 head = pipe->head; 734 tail = pipe->tail; 735 mask = pipe->ring_size - 1; 736 737 /* build the vector */ 738 left = sd.total_len; 739 for (n = 0; !pipe_empty(head, tail) && left && n < nbufs; tail++, n++) { 740 struct pipe_buffer *buf = &pipe->bufs[tail & mask]; 741 size_t this_len = buf->len; 742 743 if (this_len > left) 744 this_len = left; 745 746 ret = pipe_buf_confirm(pipe, buf); 747 if (unlikely(ret)) { 748 if (ret == -ENODATA) 749 ret = 0; 750 goto done; 751 } 752 753 array[n].bv_page = buf->page; 754 array[n].bv_len = this_len; 755 array[n].bv_offset = buf->offset; 756 left -= this_len; 757 } 758 759 iov_iter_bvec(&from, WRITE, array, n, sd.total_len - left); 760 ret = vfs_iter_write(out, &from, &sd.pos, 0); 761 if (ret <= 0) 762 break; 763 764 sd.num_spliced += ret; 765 sd.total_len -= ret; 766 *ppos = sd.pos; 767 768 /* dismiss the fully eaten buffers, adjust the partial one */ 769 tail = pipe->tail; 770 while (ret) { 771 struct pipe_buffer *buf = &pipe->bufs[tail & mask]; 772 if (ret >= buf->len) { 773 ret -= buf->len; 774 buf->len = 0; 775 pipe_buf_release(pipe, buf); 776 tail++; 777 pipe->tail = tail; 778 if (pipe->files) 779 sd.need_wakeup = true; 780 } else { 781 buf->offset += ret; 782 buf->len -= ret; 783 ret = 0; 784 } 785 } 786 } 787 done: 788 kfree(array); 789 splice_from_pipe_end(pipe, &sd); 790 791 pipe_unlock(pipe); 792 793 if (sd.num_spliced) 794 ret = sd.num_spliced; 795 796 return ret; 797 } 798 799 EXPORT_SYMBOL(iter_file_splice_write); 800 801 static int write_pipe_buf(struct pipe_inode_info *pipe, struct pipe_buffer *buf, 802 struct splice_desc *sd) 803 { 804 int ret; 805 void *data; 806 loff_t tmp = sd->pos; 807 808 data = kmap(buf->page); 809 ret = __kernel_write(sd->u.file, data + buf->offset, sd->len, &tmp); 810 kunmap(buf->page); 811 812 return ret; 813 } 814 815 static ssize_t default_file_splice_write(struct pipe_inode_info *pipe, 816 struct file *out, loff_t *ppos, 817 size_t len, unsigned int flags) 818 { 819 ssize_t ret; 820 821 ret = splice_from_pipe(pipe, out, ppos, len, flags, write_pipe_buf); 822 if (ret > 0) 823 *ppos += ret; 824 825 return ret; 826 } 827 828 /** 829 * generic_splice_sendpage - splice data from a pipe to a socket 830 * @pipe: pipe to splice from 831 * @out: socket to write to 832 * @ppos: position in @out 833 * @len: number of bytes to splice 834 * @flags: splice modifier flags 835 * 836 * Description: 837 * Will send @len bytes from the pipe to a network socket. No data copying 838 * is involved. 839 * 840 */ 841 ssize_t generic_splice_sendpage(struct pipe_inode_info *pipe, struct file *out, 842 loff_t *ppos, size_t len, unsigned int flags) 843 { 844 return splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_sendpage); 845 } 846 847 EXPORT_SYMBOL(generic_splice_sendpage); 848 849 /* 850 * Attempt to initiate a splice from pipe to file. 851 */ 852 static long do_splice_from(struct pipe_inode_info *pipe, struct file *out, 853 loff_t *ppos, size_t len, unsigned int flags) 854 { 855 ssize_t (*splice_write)(struct pipe_inode_info *, struct file *, 856 loff_t *, size_t, unsigned int); 857 858 if (out->f_op->splice_write) 859 splice_write = out->f_op->splice_write; 860 else 861 splice_write = default_file_splice_write; 862 863 return splice_write(pipe, out, ppos, len, flags); 864 } 865 866 /* 867 * Attempt to initiate a splice from a file to a pipe. 868 */ 869 static long do_splice_to(struct file *in, loff_t *ppos, 870 struct pipe_inode_info *pipe, size_t len, 871 unsigned int flags) 872 { 873 ssize_t (*splice_read)(struct file *, loff_t *, 874 struct pipe_inode_info *, size_t, unsigned int); 875 int ret; 876 877 if (unlikely(!(in->f_mode & FMODE_READ))) 878 return -EBADF; 879 880 ret = rw_verify_area(READ, in, ppos, len); 881 if (unlikely(ret < 0)) 882 return ret; 883 884 if (unlikely(len > MAX_RW_COUNT)) 885 len = MAX_RW_COUNT; 886 887 if (in->f_op->splice_read) 888 splice_read = in->f_op->splice_read; 889 else 890 splice_read = default_file_splice_read; 891 892 return splice_read(in, ppos, pipe, len, flags); 893 } 894 895 /** 896 * splice_direct_to_actor - splices data directly between two non-pipes 897 * @in: file to splice from 898 * @sd: actor information on where to splice to 899 * @actor: handles the data splicing 900 * 901 * Description: 902 * This is a special case helper to splice directly between two 903 * points, without requiring an explicit pipe. Internally an allocated 904 * pipe is cached in the process, and reused during the lifetime of 905 * that process. 906 * 907 */ 908 ssize_t splice_direct_to_actor(struct file *in, struct splice_desc *sd, 909 splice_direct_actor *actor) 910 { 911 struct pipe_inode_info *pipe; 912 long ret, bytes; 913 umode_t i_mode; 914 size_t len; 915 int i, flags, more; 916 917 /* 918 * We require the input being a regular file, as we don't want to 919 * randomly drop data for eg socket -> socket splicing. Use the 920 * piped splicing for that! 921 */ 922 i_mode = file_inode(in)->i_mode; 923 if (unlikely(!S_ISREG(i_mode) && !S_ISBLK(i_mode))) 924 return -EINVAL; 925 926 /* 927 * neither in nor out is a pipe, setup an internal pipe attached to 928 * 'out' and transfer the wanted data from 'in' to 'out' through that 929 */ 930 pipe = current->splice_pipe; 931 if (unlikely(!pipe)) { 932 pipe = alloc_pipe_info(); 933 if (!pipe) 934 return -ENOMEM; 935 936 /* 937 * We don't have an immediate reader, but we'll read the stuff 938 * out of the pipe right after the splice_to_pipe(). So set 939 * PIPE_READERS appropriately. 940 */ 941 pipe->readers = 1; 942 943 current->splice_pipe = pipe; 944 } 945 946 /* 947 * Do the splice. 948 */ 949 ret = 0; 950 bytes = 0; 951 len = sd->total_len; 952 flags = sd->flags; 953 954 /* 955 * Don't block on output, we have to drain the direct pipe. 956 */ 957 sd->flags &= ~SPLICE_F_NONBLOCK; 958 more = sd->flags & SPLICE_F_MORE; 959 960 WARN_ON_ONCE(!pipe_empty(pipe->head, pipe->tail)); 961 962 while (len) { 963 unsigned int p_space; 964 size_t read_len; 965 loff_t pos = sd->pos, prev_pos = pos; 966 967 /* Don't try to read more the pipe has space for. */ 968 p_space = pipe->max_usage - 969 pipe_occupancy(pipe->head, pipe->tail); 970 read_len = min_t(size_t, len, p_space << PAGE_SHIFT); 971 ret = do_splice_to(in, &pos, pipe, read_len, flags); 972 if (unlikely(ret <= 0)) 973 goto out_release; 974 975 read_len = ret; 976 sd->total_len = read_len; 977 978 /* 979 * If more data is pending, set SPLICE_F_MORE 980 * If this is the last data and SPLICE_F_MORE was not set 981 * initially, clears it. 982 */ 983 if (read_len < len) 984 sd->flags |= SPLICE_F_MORE; 985 else if (!more) 986 sd->flags &= ~SPLICE_F_MORE; 987 /* 988 * NOTE: nonblocking mode only applies to the input. We 989 * must not do the output in nonblocking mode as then we 990 * could get stuck data in the internal pipe: 991 */ 992 ret = actor(pipe, sd); 993 if (unlikely(ret <= 0)) { 994 sd->pos = prev_pos; 995 goto out_release; 996 } 997 998 bytes += ret; 999 len -= ret; 1000 sd->pos = pos; 1001 1002 if (ret < read_len) { 1003 sd->pos = prev_pos + ret; 1004 goto out_release; 1005 } 1006 } 1007 1008 done: 1009 pipe->tail = pipe->head = 0; 1010 file_accessed(in); 1011 return bytes; 1012 1013 out_release: 1014 /* 1015 * If we did an incomplete transfer we must release 1016 * the pipe buffers in question: 1017 */ 1018 for (i = 0; i < pipe->ring_size; i++) { 1019 struct pipe_buffer *buf = &pipe->bufs[i]; 1020 1021 if (buf->ops) 1022 pipe_buf_release(pipe, buf); 1023 } 1024 1025 if (!bytes) 1026 bytes = ret; 1027 1028 goto done; 1029 } 1030 EXPORT_SYMBOL(splice_direct_to_actor); 1031 1032 static int direct_splice_actor(struct pipe_inode_info *pipe, 1033 struct splice_desc *sd) 1034 { 1035 struct file *file = sd->u.file; 1036 1037 return do_splice_from(pipe, file, sd->opos, sd->total_len, 1038 sd->flags); 1039 } 1040 1041 /** 1042 * do_splice_direct - splices data directly between two files 1043 * @in: file to splice from 1044 * @ppos: input file offset 1045 * @out: file to splice to 1046 * @opos: output file offset 1047 * @len: number of bytes to splice 1048 * @flags: splice modifier flags 1049 * 1050 * Description: 1051 * For use by do_sendfile(). splice can easily emulate sendfile, but 1052 * doing it in the application would incur an extra system call 1053 * (splice in + splice out, as compared to just sendfile()). So this helper 1054 * can splice directly through a process-private pipe. 1055 * 1056 */ 1057 long do_splice_direct(struct file *in, loff_t *ppos, struct file *out, 1058 loff_t *opos, size_t len, unsigned int flags) 1059 { 1060 struct splice_desc sd = { 1061 .len = len, 1062 .total_len = len, 1063 .flags = flags, 1064 .pos = *ppos, 1065 .u.file = out, 1066 .opos = opos, 1067 }; 1068 long ret; 1069 1070 if (unlikely(!(out->f_mode & FMODE_WRITE))) 1071 return -EBADF; 1072 1073 if (unlikely(out->f_flags & O_APPEND)) 1074 return -EINVAL; 1075 1076 ret = rw_verify_area(WRITE, out, opos, len); 1077 if (unlikely(ret < 0)) 1078 return ret; 1079 1080 ret = splice_direct_to_actor(in, &sd, direct_splice_actor); 1081 if (ret > 0) 1082 *ppos = sd.pos; 1083 1084 return ret; 1085 } 1086 EXPORT_SYMBOL(do_splice_direct); 1087 1088 static int wait_for_space(struct pipe_inode_info *pipe, unsigned flags) 1089 { 1090 for (;;) { 1091 if (unlikely(!pipe->readers)) { 1092 send_sig(SIGPIPE, current, 0); 1093 return -EPIPE; 1094 } 1095 if (!pipe_full(pipe->head, pipe->tail, pipe->max_usage)) 1096 return 0; 1097 if (flags & SPLICE_F_NONBLOCK) 1098 return -EAGAIN; 1099 if (signal_pending(current)) 1100 return -ERESTARTSYS; 1101 pipe_wait(pipe); 1102 } 1103 } 1104 1105 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe, 1106 struct pipe_inode_info *opipe, 1107 size_t len, unsigned int flags); 1108 1109 /* 1110 * Determine where to splice to/from. 1111 */ 1112 long do_splice(struct file *in, loff_t __user *off_in, 1113 struct file *out, loff_t __user *off_out, 1114 size_t len, unsigned int flags) 1115 { 1116 struct pipe_inode_info *ipipe; 1117 struct pipe_inode_info *opipe; 1118 loff_t offset; 1119 long ret; 1120 1121 if (unlikely(!(in->f_mode & FMODE_READ) || 1122 !(out->f_mode & FMODE_WRITE))) 1123 return -EBADF; 1124 1125 ipipe = get_pipe_info(in); 1126 opipe = get_pipe_info(out); 1127 1128 if (ipipe && opipe) { 1129 if (off_in || off_out) 1130 return -ESPIPE; 1131 1132 /* Splicing to self would be fun, but... */ 1133 if (ipipe == opipe) 1134 return -EINVAL; 1135 1136 if ((in->f_flags | out->f_flags) & O_NONBLOCK) 1137 flags |= SPLICE_F_NONBLOCK; 1138 1139 return splice_pipe_to_pipe(ipipe, opipe, len, flags); 1140 } 1141 1142 if (ipipe) { 1143 if (off_in) 1144 return -ESPIPE; 1145 if (off_out) { 1146 if (!(out->f_mode & FMODE_PWRITE)) 1147 return -EINVAL; 1148 if (copy_from_user(&offset, off_out, sizeof(loff_t))) 1149 return -EFAULT; 1150 } else { 1151 offset = out->f_pos; 1152 } 1153 1154 if (unlikely(out->f_flags & O_APPEND)) 1155 return -EINVAL; 1156 1157 ret = rw_verify_area(WRITE, out, &offset, len); 1158 if (unlikely(ret < 0)) 1159 return ret; 1160 1161 if (in->f_flags & O_NONBLOCK) 1162 flags |= SPLICE_F_NONBLOCK; 1163 1164 file_start_write(out); 1165 ret = do_splice_from(ipipe, out, &offset, len, flags); 1166 file_end_write(out); 1167 1168 if (!off_out) 1169 out->f_pos = offset; 1170 else if (copy_to_user(off_out, &offset, sizeof(loff_t))) 1171 ret = -EFAULT; 1172 1173 return ret; 1174 } 1175 1176 if (opipe) { 1177 if (off_out) 1178 return -ESPIPE; 1179 if (off_in) { 1180 if (!(in->f_mode & FMODE_PREAD)) 1181 return -EINVAL; 1182 if (copy_from_user(&offset, off_in, sizeof(loff_t))) 1183 return -EFAULT; 1184 } else { 1185 offset = in->f_pos; 1186 } 1187 1188 if (out->f_flags & O_NONBLOCK) 1189 flags |= SPLICE_F_NONBLOCK; 1190 1191 pipe_lock(opipe); 1192 ret = wait_for_space(opipe, flags); 1193 if (!ret) { 1194 unsigned int p_space; 1195 1196 /* Don't try to read more the pipe has space for. */ 1197 p_space = opipe->max_usage - pipe_occupancy(opipe->head, opipe->tail); 1198 len = min_t(size_t, len, p_space << PAGE_SHIFT); 1199 1200 ret = do_splice_to(in, &offset, opipe, len, flags); 1201 } 1202 pipe_unlock(opipe); 1203 if (ret > 0) 1204 wakeup_pipe_readers(opipe); 1205 if (!off_in) 1206 in->f_pos = offset; 1207 else if (copy_to_user(off_in, &offset, sizeof(loff_t))) 1208 ret = -EFAULT; 1209 1210 return ret; 1211 } 1212 1213 return -EINVAL; 1214 } 1215 1216 static int iter_to_pipe(struct iov_iter *from, 1217 struct pipe_inode_info *pipe, 1218 unsigned flags) 1219 { 1220 struct pipe_buffer buf = { 1221 .ops = &user_page_pipe_buf_ops, 1222 .flags = flags 1223 }; 1224 size_t total = 0; 1225 int ret = 0; 1226 bool failed = false; 1227 1228 while (iov_iter_count(from) && !failed) { 1229 struct page *pages[16]; 1230 ssize_t copied; 1231 size_t start; 1232 int n; 1233 1234 copied = iov_iter_get_pages(from, pages, ~0UL, 16, &start); 1235 if (copied <= 0) { 1236 ret = copied; 1237 break; 1238 } 1239 1240 for (n = 0; copied; n++, start = 0) { 1241 int size = min_t(int, copied, PAGE_SIZE - start); 1242 if (!failed) { 1243 buf.page = pages[n]; 1244 buf.offset = start; 1245 buf.len = size; 1246 ret = add_to_pipe(pipe, &buf); 1247 if (unlikely(ret < 0)) { 1248 failed = true; 1249 } else { 1250 iov_iter_advance(from, ret); 1251 total += ret; 1252 } 1253 } else { 1254 put_page(pages[n]); 1255 } 1256 copied -= size; 1257 } 1258 } 1259 return total ? total : ret; 1260 } 1261 1262 static int pipe_to_user(struct pipe_inode_info *pipe, struct pipe_buffer *buf, 1263 struct splice_desc *sd) 1264 { 1265 int n = copy_page_to_iter(buf->page, buf->offset, sd->len, sd->u.data); 1266 return n == sd->len ? n : -EFAULT; 1267 } 1268 1269 /* 1270 * For lack of a better implementation, implement vmsplice() to userspace 1271 * as a simple copy of the pipes pages to the user iov. 1272 */ 1273 static long vmsplice_to_user(struct file *file, struct iov_iter *iter, 1274 unsigned int flags) 1275 { 1276 struct pipe_inode_info *pipe = get_pipe_info(file); 1277 struct splice_desc sd = { 1278 .total_len = iov_iter_count(iter), 1279 .flags = flags, 1280 .u.data = iter 1281 }; 1282 long ret = 0; 1283 1284 if (!pipe) 1285 return -EBADF; 1286 1287 if (sd.total_len) { 1288 pipe_lock(pipe); 1289 ret = __splice_from_pipe(pipe, &sd, pipe_to_user); 1290 pipe_unlock(pipe); 1291 } 1292 1293 return ret; 1294 } 1295 1296 /* 1297 * vmsplice splices a user address range into a pipe. It can be thought of 1298 * as splice-from-memory, where the regular splice is splice-from-file (or 1299 * to file). In both cases the output is a pipe, naturally. 1300 */ 1301 static long vmsplice_to_pipe(struct file *file, struct iov_iter *iter, 1302 unsigned int flags) 1303 { 1304 struct pipe_inode_info *pipe; 1305 long ret = 0; 1306 unsigned buf_flag = 0; 1307 1308 if (flags & SPLICE_F_GIFT) 1309 buf_flag = PIPE_BUF_FLAG_GIFT; 1310 1311 pipe = get_pipe_info(file); 1312 if (!pipe) 1313 return -EBADF; 1314 1315 pipe_lock(pipe); 1316 ret = wait_for_space(pipe, flags); 1317 if (!ret) 1318 ret = iter_to_pipe(iter, pipe, buf_flag); 1319 pipe_unlock(pipe); 1320 if (ret > 0) 1321 wakeup_pipe_readers(pipe); 1322 return ret; 1323 } 1324 1325 static int vmsplice_type(struct fd f, int *type) 1326 { 1327 if (!f.file) 1328 return -EBADF; 1329 if (f.file->f_mode & FMODE_WRITE) { 1330 *type = WRITE; 1331 } else if (f.file->f_mode & FMODE_READ) { 1332 *type = READ; 1333 } else { 1334 fdput(f); 1335 return -EBADF; 1336 } 1337 return 0; 1338 } 1339 1340 /* 1341 * Note that vmsplice only really supports true splicing _from_ user memory 1342 * to a pipe, not the other way around. Splicing from user memory is a simple 1343 * operation that can be supported without any funky alignment restrictions 1344 * or nasty vm tricks. We simply map in the user memory and fill them into 1345 * a pipe. The reverse isn't quite as easy, though. There are two possible 1346 * solutions for that: 1347 * 1348 * - memcpy() the data internally, at which point we might as well just 1349 * do a regular read() on the buffer anyway. 1350 * - Lots of nasty vm tricks, that are neither fast nor flexible (it 1351 * has restriction limitations on both ends of the pipe). 1352 * 1353 * Currently we punt and implement it as a normal copy, see pipe_to_user(). 1354 * 1355 */ 1356 static long do_vmsplice(struct file *f, struct iov_iter *iter, unsigned int flags) 1357 { 1358 if (unlikely(flags & ~SPLICE_F_ALL)) 1359 return -EINVAL; 1360 1361 if (!iov_iter_count(iter)) 1362 return 0; 1363 1364 if (iov_iter_rw(iter) == WRITE) 1365 return vmsplice_to_pipe(f, iter, flags); 1366 else 1367 return vmsplice_to_user(f, iter, flags); 1368 } 1369 1370 SYSCALL_DEFINE4(vmsplice, int, fd, const struct iovec __user *, uiov, 1371 unsigned long, nr_segs, unsigned int, flags) 1372 { 1373 struct iovec iovstack[UIO_FASTIOV]; 1374 struct iovec *iov = iovstack; 1375 struct iov_iter iter; 1376 ssize_t error; 1377 struct fd f; 1378 int type; 1379 1380 f = fdget(fd); 1381 error = vmsplice_type(f, &type); 1382 if (error) 1383 return error; 1384 1385 error = import_iovec(type, uiov, nr_segs, 1386 ARRAY_SIZE(iovstack), &iov, &iter); 1387 if (error >= 0) { 1388 error = do_vmsplice(f.file, &iter, flags); 1389 kfree(iov); 1390 } 1391 fdput(f); 1392 return error; 1393 } 1394 1395 #ifdef CONFIG_COMPAT 1396 COMPAT_SYSCALL_DEFINE4(vmsplice, int, fd, const struct compat_iovec __user *, iov32, 1397 unsigned int, nr_segs, unsigned int, flags) 1398 { 1399 struct iovec iovstack[UIO_FASTIOV]; 1400 struct iovec *iov = iovstack; 1401 struct iov_iter iter; 1402 ssize_t error; 1403 struct fd f; 1404 int type; 1405 1406 f = fdget(fd); 1407 error = vmsplice_type(f, &type); 1408 if (error) 1409 return error; 1410 1411 error = compat_import_iovec(type, iov32, nr_segs, 1412 ARRAY_SIZE(iovstack), &iov, &iter); 1413 if (error >= 0) { 1414 error = do_vmsplice(f.file, &iter, flags); 1415 kfree(iov); 1416 } 1417 fdput(f); 1418 return error; 1419 } 1420 #endif 1421 1422 SYSCALL_DEFINE6(splice, int, fd_in, loff_t __user *, off_in, 1423 int, fd_out, loff_t __user *, off_out, 1424 size_t, len, unsigned int, flags) 1425 { 1426 struct fd in, out; 1427 long error; 1428 1429 if (unlikely(!len)) 1430 return 0; 1431 1432 if (unlikely(flags & ~SPLICE_F_ALL)) 1433 return -EINVAL; 1434 1435 error = -EBADF; 1436 in = fdget(fd_in); 1437 if (in.file) { 1438 out = fdget(fd_out); 1439 if (out.file) { 1440 error = do_splice(in.file, off_in, out.file, off_out, 1441 len, flags); 1442 fdput(out); 1443 } 1444 fdput(in); 1445 } 1446 return error; 1447 } 1448 1449 /* 1450 * Make sure there's data to read. Wait for input if we can, otherwise 1451 * return an appropriate error. 1452 */ 1453 static int ipipe_prep(struct pipe_inode_info *pipe, unsigned int flags) 1454 { 1455 int ret; 1456 1457 /* 1458 * Check the pipe occupancy without the inode lock first. This function 1459 * is speculative anyways, so missing one is ok. 1460 */ 1461 if (!pipe_empty(pipe->head, pipe->tail)) 1462 return 0; 1463 1464 ret = 0; 1465 pipe_lock(pipe); 1466 1467 while (pipe_empty(pipe->head, pipe->tail)) { 1468 if (signal_pending(current)) { 1469 ret = -ERESTARTSYS; 1470 break; 1471 } 1472 if (!pipe->writers) 1473 break; 1474 if (flags & SPLICE_F_NONBLOCK) { 1475 ret = -EAGAIN; 1476 break; 1477 } 1478 pipe_wait(pipe); 1479 } 1480 1481 pipe_unlock(pipe); 1482 return ret; 1483 } 1484 1485 /* 1486 * Make sure there's writeable room. Wait for room if we can, otherwise 1487 * return an appropriate error. 1488 */ 1489 static int opipe_prep(struct pipe_inode_info *pipe, unsigned int flags) 1490 { 1491 int ret; 1492 1493 /* 1494 * Check pipe occupancy without the inode lock first. This function 1495 * is speculative anyways, so missing one is ok. 1496 */ 1497 if (!pipe_full(pipe->head, pipe->tail, pipe->max_usage)) 1498 return 0; 1499 1500 ret = 0; 1501 pipe_lock(pipe); 1502 1503 while (pipe_full(pipe->head, pipe->tail, pipe->max_usage)) { 1504 if (!pipe->readers) { 1505 send_sig(SIGPIPE, current, 0); 1506 ret = -EPIPE; 1507 break; 1508 } 1509 if (flags & SPLICE_F_NONBLOCK) { 1510 ret = -EAGAIN; 1511 break; 1512 } 1513 if (signal_pending(current)) { 1514 ret = -ERESTARTSYS; 1515 break; 1516 } 1517 pipe_wait(pipe); 1518 } 1519 1520 pipe_unlock(pipe); 1521 return ret; 1522 } 1523 1524 /* 1525 * Splice contents of ipipe to opipe. 1526 */ 1527 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe, 1528 struct pipe_inode_info *opipe, 1529 size_t len, unsigned int flags) 1530 { 1531 struct pipe_buffer *ibuf, *obuf; 1532 unsigned int i_head, o_head; 1533 unsigned int i_tail, o_tail; 1534 unsigned int i_mask, o_mask; 1535 int ret = 0; 1536 bool input_wakeup = false; 1537 1538 1539 retry: 1540 ret = ipipe_prep(ipipe, flags); 1541 if (ret) 1542 return ret; 1543 1544 ret = opipe_prep(opipe, flags); 1545 if (ret) 1546 return ret; 1547 1548 /* 1549 * Potential ABBA deadlock, work around it by ordering lock 1550 * grabbing by pipe info address. Otherwise two different processes 1551 * could deadlock (one doing tee from A -> B, the other from B -> A). 1552 */ 1553 pipe_double_lock(ipipe, opipe); 1554 1555 i_tail = ipipe->tail; 1556 i_mask = ipipe->ring_size - 1; 1557 o_head = opipe->head; 1558 o_mask = opipe->ring_size - 1; 1559 1560 do { 1561 size_t o_len; 1562 1563 if (!opipe->readers) { 1564 send_sig(SIGPIPE, current, 0); 1565 if (!ret) 1566 ret = -EPIPE; 1567 break; 1568 } 1569 1570 i_head = ipipe->head; 1571 o_tail = opipe->tail; 1572 1573 if (pipe_empty(i_head, i_tail) && !ipipe->writers) 1574 break; 1575 1576 /* 1577 * Cannot make any progress, because either the input 1578 * pipe is empty or the output pipe is full. 1579 */ 1580 if (pipe_empty(i_head, i_tail) || 1581 pipe_full(o_head, o_tail, opipe->max_usage)) { 1582 /* Already processed some buffers, break */ 1583 if (ret) 1584 break; 1585 1586 if (flags & SPLICE_F_NONBLOCK) { 1587 ret = -EAGAIN; 1588 break; 1589 } 1590 1591 /* 1592 * We raced with another reader/writer and haven't 1593 * managed to process any buffers. A zero return 1594 * value means EOF, so retry instead. 1595 */ 1596 pipe_unlock(ipipe); 1597 pipe_unlock(opipe); 1598 goto retry; 1599 } 1600 1601 ibuf = &ipipe->bufs[i_tail & i_mask]; 1602 obuf = &opipe->bufs[o_head & o_mask]; 1603 1604 if (len >= ibuf->len) { 1605 /* 1606 * Simply move the whole buffer from ipipe to opipe 1607 */ 1608 *obuf = *ibuf; 1609 ibuf->ops = NULL; 1610 i_tail++; 1611 ipipe->tail = i_tail; 1612 input_wakeup = true; 1613 o_len = obuf->len; 1614 o_head++; 1615 opipe->head = o_head; 1616 } else { 1617 /* 1618 * Get a reference to this pipe buffer, 1619 * so we can copy the contents over. 1620 */ 1621 if (!pipe_buf_get(ipipe, ibuf)) { 1622 if (ret == 0) 1623 ret = -EFAULT; 1624 break; 1625 } 1626 *obuf = *ibuf; 1627 1628 /* 1629 * Don't inherit the gift flag, we need to 1630 * prevent multiple steals of this page. 1631 */ 1632 obuf->flags &= ~PIPE_BUF_FLAG_GIFT; 1633 1634 pipe_buf_mark_unmergeable(obuf); 1635 1636 obuf->len = len; 1637 ibuf->offset += len; 1638 ibuf->len -= len; 1639 o_len = len; 1640 o_head++; 1641 opipe->head = o_head; 1642 } 1643 ret += o_len; 1644 len -= o_len; 1645 } while (len); 1646 1647 pipe_unlock(ipipe); 1648 pipe_unlock(opipe); 1649 1650 /* 1651 * If we put data in the output pipe, wakeup any potential readers. 1652 */ 1653 if (ret > 0) 1654 wakeup_pipe_readers(opipe); 1655 1656 if (input_wakeup) 1657 wakeup_pipe_writers(ipipe); 1658 1659 return ret; 1660 } 1661 1662 /* 1663 * Link contents of ipipe to opipe. 1664 */ 1665 static int link_pipe(struct pipe_inode_info *ipipe, 1666 struct pipe_inode_info *opipe, 1667 size_t len, unsigned int flags) 1668 { 1669 struct pipe_buffer *ibuf, *obuf; 1670 unsigned int i_head, o_head; 1671 unsigned int i_tail, o_tail; 1672 unsigned int i_mask, o_mask; 1673 int ret = 0; 1674 1675 /* 1676 * Potential ABBA deadlock, work around it by ordering lock 1677 * grabbing by pipe info address. Otherwise two different processes 1678 * could deadlock (one doing tee from A -> B, the other from B -> A). 1679 */ 1680 pipe_double_lock(ipipe, opipe); 1681 1682 i_tail = ipipe->tail; 1683 i_mask = ipipe->ring_size - 1; 1684 o_head = opipe->head; 1685 o_mask = opipe->ring_size - 1; 1686 1687 do { 1688 if (!opipe->readers) { 1689 send_sig(SIGPIPE, current, 0); 1690 if (!ret) 1691 ret = -EPIPE; 1692 break; 1693 } 1694 1695 i_head = ipipe->head; 1696 o_tail = opipe->tail; 1697 1698 /* 1699 * If we have iterated all input buffers or run out of 1700 * output room, break. 1701 */ 1702 if (pipe_empty(i_head, i_tail) || 1703 pipe_full(o_head, o_tail, opipe->max_usage)) 1704 break; 1705 1706 ibuf = &ipipe->bufs[i_tail & i_mask]; 1707 obuf = &opipe->bufs[o_head & o_mask]; 1708 1709 /* 1710 * Get a reference to this pipe buffer, 1711 * so we can copy the contents over. 1712 */ 1713 if (!pipe_buf_get(ipipe, ibuf)) { 1714 if (ret == 0) 1715 ret = -EFAULT; 1716 break; 1717 } 1718 1719 *obuf = *ibuf; 1720 1721 /* 1722 * Don't inherit the gift flag, we need to 1723 * prevent multiple steals of this page. 1724 */ 1725 obuf->flags &= ~PIPE_BUF_FLAG_GIFT; 1726 1727 pipe_buf_mark_unmergeable(obuf); 1728 1729 if (obuf->len > len) 1730 obuf->len = len; 1731 ret += obuf->len; 1732 len -= obuf->len; 1733 1734 o_head++; 1735 opipe->head = o_head; 1736 i_tail++; 1737 } while (len); 1738 1739 pipe_unlock(ipipe); 1740 pipe_unlock(opipe); 1741 1742 /* 1743 * If we put data in the output pipe, wakeup any potential readers. 1744 */ 1745 if (ret > 0) 1746 wakeup_pipe_readers(opipe); 1747 1748 return ret; 1749 } 1750 1751 /* 1752 * This is a tee(1) implementation that works on pipes. It doesn't copy 1753 * any data, it simply references the 'in' pages on the 'out' pipe. 1754 * The 'flags' used are the SPLICE_F_* variants, currently the only 1755 * applicable one is SPLICE_F_NONBLOCK. 1756 */ 1757 static long do_tee(struct file *in, struct file *out, size_t len, 1758 unsigned int flags) 1759 { 1760 struct pipe_inode_info *ipipe = get_pipe_info(in); 1761 struct pipe_inode_info *opipe = get_pipe_info(out); 1762 int ret = -EINVAL; 1763 1764 if (unlikely(!(in->f_mode & FMODE_READ) || 1765 !(out->f_mode & FMODE_WRITE))) 1766 return -EBADF; 1767 1768 /* 1769 * Duplicate the contents of ipipe to opipe without actually 1770 * copying the data. 1771 */ 1772 if (ipipe && opipe && ipipe != opipe) { 1773 if ((in->f_flags | out->f_flags) & O_NONBLOCK) 1774 flags |= SPLICE_F_NONBLOCK; 1775 1776 /* 1777 * Keep going, unless we encounter an error. The ipipe/opipe 1778 * ordering doesn't really matter. 1779 */ 1780 ret = ipipe_prep(ipipe, flags); 1781 if (!ret) { 1782 ret = opipe_prep(opipe, flags); 1783 if (!ret) 1784 ret = link_pipe(ipipe, opipe, len, flags); 1785 } 1786 } 1787 1788 return ret; 1789 } 1790 1791 SYSCALL_DEFINE4(tee, int, fdin, int, fdout, size_t, len, unsigned int, flags) 1792 { 1793 struct fd in, out; 1794 int error; 1795 1796 if (unlikely(flags & ~SPLICE_F_ALL)) 1797 return -EINVAL; 1798 1799 if (unlikely(!len)) 1800 return 0; 1801 1802 error = -EBADF; 1803 in = fdget(fdin); 1804 if (in.file) { 1805 out = fdget(fdout); 1806 if (out.file) { 1807 error = do_tee(in.file, out.file, len, flags); 1808 fdput(out); 1809 } 1810 fdput(in); 1811 } 1812 1813 return error; 1814 } 1815