xref: /linux/fs/splice.c (revision 37744feebc086908fd89760650f458ab19071750)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * "splice": joining two ropes together by interweaving their strands.
4  *
5  * This is the "extended pipe" functionality, where a pipe is used as
6  * an arbitrary in-memory buffer. Think of a pipe as a small kernel
7  * buffer that you can use to transfer data from one end to the other.
8  *
9  * The traditional unix read/write is extended with a "splice()" operation
10  * that transfers data buffers to or from a pipe buffer.
11  *
12  * Named by Larry McVoy, original implementation from Linus, extended by
13  * Jens to support splicing to files, network, direct splicing, etc and
14  * fixing lots of bugs.
15  *
16  * Copyright (C) 2005-2006 Jens Axboe <axboe@kernel.dk>
17  * Copyright (C) 2005-2006 Linus Torvalds <torvalds@osdl.org>
18  * Copyright (C) 2006 Ingo Molnar <mingo@elte.hu>
19  *
20  */
21 #include <linux/bvec.h>
22 #include <linux/fs.h>
23 #include <linux/file.h>
24 #include <linux/pagemap.h>
25 #include <linux/splice.h>
26 #include <linux/memcontrol.h>
27 #include <linux/mm_inline.h>
28 #include <linux/swap.h>
29 #include <linux/writeback.h>
30 #include <linux/export.h>
31 #include <linux/syscalls.h>
32 #include <linux/uio.h>
33 #include <linux/security.h>
34 #include <linux/gfp.h>
35 #include <linux/socket.h>
36 #include <linux/compat.h>
37 #include <linux/sched/signal.h>
38 
39 #include "internal.h"
40 
41 /*
42  * Attempt to steal a page from a pipe buffer. This should perhaps go into
43  * a vm helper function, it's already simplified quite a bit by the
44  * addition of remove_mapping(). If success is returned, the caller may
45  * attempt to reuse this page for another destination.
46  */
47 static int page_cache_pipe_buf_steal(struct pipe_inode_info *pipe,
48 				     struct pipe_buffer *buf)
49 {
50 	struct page *page = buf->page;
51 	struct address_space *mapping;
52 
53 	lock_page(page);
54 
55 	mapping = page_mapping(page);
56 	if (mapping) {
57 		WARN_ON(!PageUptodate(page));
58 
59 		/*
60 		 * At least for ext2 with nobh option, we need to wait on
61 		 * writeback completing on this page, since we'll remove it
62 		 * from the pagecache.  Otherwise truncate wont wait on the
63 		 * page, allowing the disk blocks to be reused by someone else
64 		 * before we actually wrote our data to them. fs corruption
65 		 * ensues.
66 		 */
67 		wait_on_page_writeback(page);
68 
69 		if (page_has_private(page) &&
70 		    !try_to_release_page(page, GFP_KERNEL))
71 			goto out_unlock;
72 
73 		/*
74 		 * If we succeeded in removing the mapping, set LRU flag
75 		 * and return good.
76 		 */
77 		if (remove_mapping(mapping, page)) {
78 			buf->flags |= PIPE_BUF_FLAG_LRU;
79 			return 0;
80 		}
81 	}
82 
83 	/*
84 	 * Raced with truncate or failed to remove page from current
85 	 * address space, unlock and return failure.
86 	 */
87 out_unlock:
88 	unlock_page(page);
89 	return 1;
90 }
91 
92 static void page_cache_pipe_buf_release(struct pipe_inode_info *pipe,
93 					struct pipe_buffer *buf)
94 {
95 	put_page(buf->page);
96 	buf->flags &= ~PIPE_BUF_FLAG_LRU;
97 }
98 
99 /*
100  * Check whether the contents of buf is OK to access. Since the content
101  * is a page cache page, IO may be in flight.
102  */
103 static int page_cache_pipe_buf_confirm(struct pipe_inode_info *pipe,
104 				       struct pipe_buffer *buf)
105 {
106 	struct page *page = buf->page;
107 	int err;
108 
109 	if (!PageUptodate(page)) {
110 		lock_page(page);
111 
112 		/*
113 		 * Page got truncated/unhashed. This will cause a 0-byte
114 		 * splice, if this is the first page.
115 		 */
116 		if (!page->mapping) {
117 			err = -ENODATA;
118 			goto error;
119 		}
120 
121 		/*
122 		 * Uh oh, read-error from disk.
123 		 */
124 		if (!PageUptodate(page)) {
125 			err = -EIO;
126 			goto error;
127 		}
128 
129 		/*
130 		 * Page is ok afterall, we are done.
131 		 */
132 		unlock_page(page);
133 	}
134 
135 	return 0;
136 error:
137 	unlock_page(page);
138 	return err;
139 }
140 
141 const struct pipe_buf_operations page_cache_pipe_buf_ops = {
142 	.confirm = page_cache_pipe_buf_confirm,
143 	.release = page_cache_pipe_buf_release,
144 	.steal = page_cache_pipe_buf_steal,
145 	.get = generic_pipe_buf_get,
146 };
147 
148 static int user_page_pipe_buf_steal(struct pipe_inode_info *pipe,
149 				    struct pipe_buffer *buf)
150 {
151 	if (!(buf->flags & PIPE_BUF_FLAG_GIFT))
152 		return 1;
153 
154 	buf->flags |= PIPE_BUF_FLAG_LRU;
155 	return generic_pipe_buf_steal(pipe, buf);
156 }
157 
158 static const struct pipe_buf_operations user_page_pipe_buf_ops = {
159 	.confirm = generic_pipe_buf_confirm,
160 	.release = page_cache_pipe_buf_release,
161 	.steal = user_page_pipe_buf_steal,
162 	.get = generic_pipe_buf_get,
163 };
164 
165 static void wakeup_pipe_readers(struct pipe_inode_info *pipe)
166 {
167 	smp_mb();
168 	if (waitqueue_active(&pipe->rd_wait))
169 		wake_up_interruptible(&pipe->rd_wait);
170 	kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
171 }
172 
173 /**
174  * splice_to_pipe - fill passed data into a pipe
175  * @pipe:	pipe to fill
176  * @spd:	data to fill
177  *
178  * Description:
179  *    @spd contains a map of pages and len/offset tuples, along with
180  *    the struct pipe_buf_operations associated with these pages. This
181  *    function will link that data to the pipe.
182  *
183  */
184 ssize_t splice_to_pipe(struct pipe_inode_info *pipe,
185 		       struct splice_pipe_desc *spd)
186 {
187 	unsigned int spd_pages = spd->nr_pages;
188 	unsigned int tail = pipe->tail;
189 	unsigned int head = pipe->head;
190 	unsigned int mask = pipe->ring_size - 1;
191 	int ret = 0, page_nr = 0;
192 
193 	if (!spd_pages)
194 		return 0;
195 
196 	if (unlikely(!pipe->readers)) {
197 		send_sig(SIGPIPE, current, 0);
198 		ret = -EPIPE;
199 		goto out;
200 	}
201 
202 	while (!pipe_full(head, tail, pipe->max_usage)) {
203 		struct pipe_buffer *buf = &pipe->bufs[head & mask];
204 
205 		buf->page = spd->pages[page_nr];
206 		buf->offset = spd->partial[page_nr].offset;
207 		buf->len = spd->partial[page_nr].len;
208 		buf->private = spd->partial[page_nr].private;
209 		buf->ops = spd->ops;
210 		buf->flags = 0;
211 
212 		head++;
213 		pipe->head = head;
214 		page_nr++;
215 		ret += buf->len;
216 
217 		if (!--spd->nr_pages)
218 			break;
219 	}
220 
221 	if (!ret)
222 		ret = -EAGAIN;
223 
224 out:
225 	while (page_nr < spd_pages)
226 		spd->spd_release(spd, page_nr++);
227 
228 	return ret;
229 }
230 EXPORT_SYMBOL_GPL(splice_to_pipe);
231 
232 ssize_t add_to_pipe(struct pipe_inode_info *pipe, struct pipe_buffer *buf)
233 {
234 	unsigned int head = pipe->head;
235 	unsigned int tail = pipe->tail;
236 	unsigned int mask = pipe->ring_size - 1;
237 	int ret;
238 
239 	if (unlikely(!pipe->readers)) {
240 		send_sig(SIGPIPE, current, 0);
241 		ret = -EPIPE;
242 	} else if (pipe_full(head, tail, pipe->max_usage)) {
243 		ret = -EAGAIN;
244 	} else {
245 		pipe->bufs[head & mask] = *buf;
246 		pipe->head = head + 1;
247 		return buf->len;
248 	}
249 	pipe_buf_release(pipe, buf);
250 	return ret;
251 }
252 EXPORT_SYMBOL(add_to_pipe);
253 
254 /*
255  * Check if we need to grow the arrays holding pages and partial page
256  * descriptions.
257  */
258 int splice_grow_spd(const struct pipe_inode_info *pipe, struct splice_pipe_desc *spd)
259 {
260 	unsigned int max_usage = READ_ONCE(pipe->max_usage);
261 
262 	spd->nr_pages_max = max_usage;
263 	if (max_usage <= PIPE_DEF_BUFFERS)
264 		return 0;
265 
266 	spd->pages = kmalloc_array(max_usage, sizeof(struct page *), GFP_KERNEL);
267 	spd->partial = kmalloc_array(max_usage, sizeof(struct partial_page),
268 				     GFP_KERNEL);
269 
270 	if (spd->pages && spd->partial)
271 		return 0;
272 
273 	kfree(spd->pages);
274 	kfree(spd->partial);
275 	return -ENOMEM;
276 }
277 
278 void splice_shrink_spd(struct splice_pipe_desc *spd)
279 {
280 	if (spd->nr_pages_max <= PIPE_DEF_BUFFERS)
281 		return;
282 
283 	kfree(spd->pages);
284 	kfree(spd->partial);
285 }
286 
287 /**
288  * generic_file_splice_read - splice data from file to a pipe
289  * @in:		file to splice from
290  * @ppos:	position in @in
291  * @pipe:	pipe to splice to
292  * @len:	number of bytes to splice
293  * @flags:	splice modifier flags
294  *
295  * Description:
296  *    Will read pages from given file and fill them into a pipe. Can be
297  *    used as long as it has more or less sane ->read_iter().
298  *
299  */
300 ssize_t generic_file_splice_read(struct file *in, loff_t *ppos,
301 				 struct pipe_inode_info *pipe, size_t len,
302 				 unsigned int flags)
303 {
304 	struct iov_iter to;
305 	struct kiocb kiocb;
306 	unsigned int i_head;
307 	int ret;
308 
309 	iov_iter_pipe(&to, READ, pipe, len);
310 	i_head = to.head;
311 	init_sync_kiocb(&kiocb, in);
312 	kiocb.ki_pos = *ppos;
313 	ret = call_read_iter(in, &kiocb, &to);
314 	if (ret > 0) {
315 		*ppos = kiocb.ki_pos;
316 		file_accessed(in);
317 	} else if (ret < 0) {
318 		to.head = i_head;
319 		to.iov_offset = 0;
320 		iov_iter_advance(&to, 0); /* to free what was emitted */
321 		/*
322 		 * callers of ->splice_read() expect -EAGAIN on
323 		 * "can't put anything in there", rather than -EFAULT.
324 		 */
325 		if (ret == -EFAULT)
326 			ret = -EAGAIN;
327 	}
328 
329 	return ret;
330 }
331 EXPORT_SYMBOL(generic_file_splice_read);
332 
333 const struct pipe_buf_operations default_pipe_buf_ops = {
334 	.confirm = generic_pipe_buf_confirm,
335 	.release = generic_pipe_buf_release,
336 	.steal = generic_pipe_buf_steal,
337 	.get = generic_pipe_buf_get,
338 };
339 
340 int generic_pipe_buf_nosteal(struct pipe_inode_info *pipe,
341 			     struct pipe_buffer *buf)
342 {
343 	return 1;
344 }
345 
346 /* Pipe buffer operations for a socket and similar. */
347 const struct pipe_buf_operations nosteal_pipe_buf_ops = {
348 	.confirm = generic_pipe_buf_confirm,
349 	.release = generic_pipe_buf_release,
350 	.steal = generic_pipe_buf_nosteal,
351 	.get = generic_pipe_buf_get,
352 };
353 EXPORT_SYMBOL(nosteal_pipe_buf_ops);
354 
355 static ssize_t kernel_readv(struct file *file, const struct kvec *vec,
356 			    unsigned long vlen, loff_t offset)
357 {
358 	mm_segment_t old_fs;
359 	loff_t pos = offset;
360 	ssize_t res;
361 
362 	old_fs = get_fs();
363 	set_fs(KERNEL_DS);
364 	/* The cast to a user pointer is valid due to the set_fs() */
365 	res = vfs_readv(file, (const struct iovec __user *)vec, vlen, &pos, 0);
366 	set_fs(old_fs);
367 
368 	return res;
369 }
370 
371 static ssize_t default_file_splice_read(struct file *in, loff_t *ppos,
372 				 struct pipe_inode_info *pipe, size_t len,
373 				 unsigned int flags)
374 {
375 	struct kvec *vec, __vec[PIPE_DEF_BUFFERS];
376 	struct iov_iter to;
377 	struct page **pages;
378 	unsigned int nr_pages;
379 	unsigned int mask;
380 	size_t offset, base, copied = 0;
381 	ssize_t res;
382 	int i;
383 
384 	if (pipe_full(pipe->head, pipe->tail, pipe->max_usage))
385 		return -EAGAIN;
386 
387 	/*
388 	 * Try to keep page boundaries matching to source pagecache ones -
389 	 * it probably won't be much help, but...
390 	 */
391 	offset = *ppos & ~PAGE_MASK;
392 
393 	iov_iter_pipe(&to, READ, pipe, len + offset);
394 
395 	res = iov_iter_get_pages_alloc(&to, &pages, len + offset, &base);
396 	if (res <= 0)
397 		return -ENOMEM;
398 
399 	nr_pages = DIV_ROUND_UP(res + base, PAGE_SIZE);
400 
401 	vec = __vec;
402 	if (nr_pages > PIPE_DEF_BUFFERS) {
403 		vec = kmalloc_array(nr_pages, sizeof(struct kvec), GFP_KERNEL);
404 		if (unlikely(!vec)) {
405 			res = -ENOMEM;
406 			goto out;
407 		}
408 	}
409 
410 	mask = pipe->ring_size - 1;
411 	pipe->bufs[to.head & mask].offset = offset;
412 	pipe->bufs[to.head & mask].len -= offset;
413 
414 	for (i = 0; i < nr_pages; i++) {
415 		size_t this_len = min_t(size_t, len, PAGE_SIZE - offset);
416 		vec[i].iov_base = page_address(pages[i]) + offset;
417 		vec[i].iov_len = this_len;
418 		len -= this_len;
419 		offset = 0;
420 	}
421 
422 	res = kernel_readv(in, vec, nr_pages, *ppos);
423 	if (res > 0) {
424 		copied = res;
425 		*ppos += res;
426 	}
427 
428 	if (vec != __vec)
429 		kfree(vec);
430 out:
431 	for (i = 0; i < nr_pages; i++)
432 		put_page(pages[i]);
433 	kvfree(pages);
434 	iov_iter_advance(&to, copied);	/* truncates and discards */
435 	return res;
436 }
437 
438 /*
439  * Send 'sd->len' bytes to socket from 'sd->file' at position 'sd->pos'
440  * using sendpage(). Return the number of bytes sent.
441  */
442 static int pipe_to_sendpage(struct pipe_inode_info *pipe,
443 			    struct pipe_buffer *buf, struct splice_desc *sd)
444 {
445 	struct file *file = sd->u.file;
446 	loff_t pos = sd->pos;
447 	int more;
448 
449 	if (!likely(file->f_op->sendpage))
450 		return -EINVAL;
451 
452 	more = (sd->flags & SPLICE_F_MORE) ? MSG_MORE : 0;
453 
454 	if (sd->len < sd->total_len &&
455 	    pipe_occupancy(pipe->head, pipe->tail) > 1)
456 		more |= MSG_SENDPAGE_NOTLAST;
457 
458 	return file->f_op->sendpage(file, buf->page, buf->offset,
459 				    sd->len, &pos, more);
460 }
461 
462 static void wakeup_pipe_writers(struct pipe_inode_info *pipe)
463 {
464 	smp_mb();
465 	if (waitqueue_active(&pipe->wr_wait))
466 		wake_up_interruptible(&pipe->wr_wait);
467 	kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
468 }
469 
470 /**
471  * splice_from_pipe_feed - feed available data from a pipe to a file
472  * @pipe:	pipe to splice from
473  * @sd:		information to @actor
474  * @actor:	handler that splices the data
475  *
476  * Description:
477  *    This function loops over the pipe and calls @actor to do the
478  *    actual moving of a single struct pipe_buffer to the desired
479  *    destination.  It returns when there's no more buffers left in
480  *    the pipe or if the requested number of bytes (@sd->total_len)
481  *    have been copied.  It returns a positive number (one) if the
482  *    pipe needs to be filled with more data, zero if the required
483  *    number of bytes have been copied and -errno on error.
484  *
485  *    This, together with splice_from_pipe_{begin,end,next}, may be
486  *    used to implement the functionality of __splice_from_pipe() when
487  *    locking is required around copying the pipe buffers to the
488  *    destination.
489  */
490 static int splice_from_pipe_feed(struct pipe_inode_info *pipe, struct splice_desc *sd,
491 			  splice_actor *actor)
492 {
493 	unsigned int head = pipe->head;
494 	unsigned int tail = pipe->tail;
495 	unsigned int mask = pipe->ring_size - 1;
496 	int ret;
497 
498 	while (!pipe_empty(head, tail)) {
499 		struct pipe_buffer *buf = &pipe->bufs[tail & mask];
500 
501 		sd->len = buf->len;
502 		if (sd->len > sd->total_len)
503 			sd->len = sd->total_len;
504 
505 		ret = pipe_buf_confirm(pipe, buf);
506 		if (unlikely(ret)) {
507 			if (ret == -ENODATA)
508 				ret = 0;
509 			return ret;
510 		}
511 
512 		ret = actor(pipe, buf, sd);
513 		if (ret <= 0)
514 			return ret;
515 
516 		buf->offset += ret;
517 		buf->len -= ret;
518 
519 		sd->num_spliced += ret;
520 		sd->len -= ret;
521 		sd->pos += ret;
522 		sd->total_len -= ret;
523 
524 		if (!buf->len) {
525 			pipe_buf_release(pipe, buf);
526 			tail++;
527 			pipe->tail = tail;
528 			if (pipe->files)
529 				sd->need_wakeup = true;
530 		}
531 
532 		if (!sd->total_len)
533 			return 0;
534 	}
535 
536 	return 1;
537 }
538 
539 /**
540  * splice_from_pipe_next - wait for some data to splice from
541  * @pipe:	pipe to splice from
542  * @sd:		information about the splice operation
543  *
544  * Description:
545  *    This function will wait for some data and return a positive
546  *    value (one) if pipe buffers are available.  It will return zero
547  *    or -errno if no more data needs to be spliced.
548  */
549 static int splice_from_pipe_next(struct pipe_inode_info *pipe, struct splice_desc *sd)
550 {
551 	/*
552 	 * Check for signal early to make process killable when there are
553 	 * always buffers available
554 	 */
555 	if (signal_pending(current))
556 		return -ERESTARTSYS;
557 
558 	while (pipe_empty(pipe->head, pipe->tail)) {
559 		if (!pipe->writers)
560 			return 0;
561 
562 		if (sd->num_spliced)
563 			return 0;
564 
565 		if (sd->flags & SPLICE_F_NONBLOCK)
566 			return -EAGAIN;
567 
568 		if (signal_pending(current))
569 			return -ERESTARTSYS;
570 
571 		if (sd->need_wakeup) {
572 			wakeup_pipe_writers(pipe);
573 			sd->need_wakeup = false;
574 		}
575 
576 		pipe_wait(pipe);
577 	}
578 
579 	return 1;
580 }
581 
582 /**
583  * splice_from_pipe_begin - start splicing from pipe
584  * @sd:		information about the splice operation
585  *
586  * Description:
587  *    This function should be called before a loop containing
588  *    splice_from_pipe_next() and splice_from_pipe_feed() to
589  *    initialize the necessary fields of @sd.
590  */
591 static void splice_from_pipe_begin(struct splice_desc *sd)
592 {
593 	sd->num_spliced = 0;
594 	sd->need_wakeup = false;
595 }
596 
597 /**
598  * splice_from_pipe_end - finish splicing from pipe
599  * @pipe:	pipe to splice from
600  * @sd:		information about the splice operation
601  *
602  * Description:
603  *    This function will wake up pipe writers if necessary.  It should
604  *    be called after a loop containing splice_from_pipe_next() and
605  *    splice_from_pipe_feed().
606  */
607 static void splice_from_pipe_end(struct pipe_inode_info *pipe, struct splice_desc *sd)
608 {
609 	if (sd->need_wakeup)
610 		wakeup_pipe_writers(pipe);
611 }
612 
613 /**
614  * __splice_from_pipe - splice data from a pipe to given actor
615  * @pipe:	pipe to splice from
616  * @sd:		information to @actor
617  * @actor:	handler that splices the data
618  *
619  * Description:
620  *    This function does little more than loop over the pipe and call
621  *    @actor to do the actual moving of a single struct pipe_buffer to
622  *    the desired destination. See pipe_to_file, pipe_to_sendpage, or
623  *    pipe_to_user.
624  *
625  */
626 ssize_t __splice_from_pipe(struct pipe_inode_info *pipe, struct splice_desc *sd,
627 			   splice_actor *actor)
628 {
629 	int ret;
630 
631 	splice_from_pipe_begin(sd);
632 	do {
633 		cond_resched();
634 		ret = splice_from_pipe_next(pipe, sd);
635 		if (ret > 0)
636 			ret = splice_from_pipe_feed(pipe, sd, actor);
637 	} while (ret > 0);
638 	splice_from_pipe_end(pipe, sd);
639 
640 	return sd->num_spliced ? sd->num_spliced : ret;
641 }
642 EXPORT_SYMBOL(__splice_from_pipe);
643 
644 /**
645  * splice_from_pipe - splice data from a pipe to a file
646  * @pipe:	pipe to splice from
647  * @out:	file to splice to
648  * @ppos:	position in @out
649  * @len:	how many bytes to splice
650  * @flags:	splice modifier flags
651  * @actor:	handler that splices the data
652  *
653  * Description:
654  *    See __splice_from_pipe. This function locks the pipe inode,
655  *    otherwise it's identical to __splice_from_pipe().
656  *
657  */
658 ssize_t splice_from_pipe(struct pipe_inode_info *pipe, struct file *out,
659 			 loff_t *ppos, size_t len, unsigned int flags,
660 			 splice_actor *actor)
661 {
662 	ssize_t ret;
663 	struct splice_desc sd = {
664 		.total_len = len,
665 		.flags = flags,
666 		.pos = *ppos,
667 		.u.file = out,
668 	};
669 
670 	pipe_lock(pipe);
671 	ret = __splice_from_pipe(pipe, &sd, actor);
672 	pipe_unlock(pipe);
673 
674 	return ret;
675 }
676 
677 /**
678  * iter_file_splice_write - splice data from a pipe to a file
679  * @pipe:	pipe info
680  * @out:	file to write to
681  * @ppos:	position in @out
682  * @len:	number of bytes to splice
683  * @flags:	splice modifier flags
684  *
685  * Description:
686  *    Will either move or copy pages (determined by @flags options) from
687  *    the given pipe inode to the given file.
688  *    This one is ->write_iter-based.
689  *
690  */
691 ssize_t
692 iter_file_splice_write(struct pipe_inode_info *pipe, struct file *out,
693 			  loff_t *ppos, size_t len, unsigned int flags)
694 {
695 	struct splice_desc sd = {
696 		.total_len = len,
697 		.flags = flags,
698 		.pos = *ppos,
699 		.u.file = out,
700 	};
701 	int nbufs = pipe->max_usage;
702 	struct bio_vec *array = kcalloc(nbufs, sizeof(struct bio_vec),
703 					GFP_KERNEL);
704 	ssize_t ret;
705 
706 	if (unlikely(!array))
707 		return -ENOMEM;
708 
709 	pipe_lock(pipe);
710 
711 	splice_from_pipe_begin(&sd);
712 	while (sd.total_len) {
713 		struct iov_iter from;
714 		unsigned int head, tail, mask;
715 		size_t left;
716 		int n;
717 
718 		ret = splice_from_pipe_next(pipe, &sd);
719 		if (ret <= 0)
720 			break;
721 
722 		if (unlikely(nbufs < pipe->max_usage)) {
723 			kfree(array);
724 			nbufs = pipe->max_usage;
725 			array = kcalloc(nbufs, sizeof(struct bio_vec),
726 					GFP_KERNEL);
727 			if (!array) {
728 				ret = -ENOMEM;
729 				break;
730 			}
731 		}
732 
733 		head = pipe->head;
734 		tail = pipe->tail;
735 		mask = pipe->ring_size - 1;
736 
737 		/* build the vector */
738 		left = sd.total_len;
739 		for (n = 0; !pipe_empty(head, tail) && left && n < nbufs; tail++, n++) {
740 			struct pipe_buffer *buf = &pipe->bufs[tail & mask];
741 			size_t this_len = buf->len;
742 
743 			if (this_len > left)
744 				this_len = left;
745 
746 			ret = pipe_buf_confirm(pipe, buf);
747 			if (unlikely(ret)) {
748 				if (ret == -ENODATA)
749 					ret = 0;
750 				goto done;
751 			}
752 
753 			array[n].bv_page = buf->page;
754 			array[n].bv_len = this_len;
755 			array[n].bv_offset = buf->offset;
756 			left -= this_len;
757 		}
758 
759 		iov_iter_bvec(&from, WRITE, array, n, sd.total_len - left);
760 		ret = vfs_iter_write(out, &from, &sd.pos, 0);
761 		if (ret <= 0)
762 			break;
763 
764 		sd.num_spliced += ret;
765 		sd.total_len -= ret;
766 		*ppos = sd.pos;
767 
768 		/* dismiss the fully eaten buffers, adjust the partial one */
769 		tail = pipe->tail;
770 		while (ret) {
771 			struct pipe_buffer *buf = &pipe->bufs[tail & mask];
772 			if (ret >= buf->len) {
773 				ret -= buf->len;
774 				buf->len = 0;
775 				pipe_buf_release(pipe, buf);
776 				tail++;
777 				pipe->tail = tail;
778 				if (pipe->files)
779 					sd.need_wakeup = true;
780 			} else {
781 				buf->offset += ret;
782 				buf->len -= ret;
783 				ret = 0;
784 			}
785 		}
786 	}
787 done:
788 	kfree(array);
789 	splice_from_pipe_end(pipe, &sd);
790 
791 	pipe_unlock(pipe);
792 
793 	if (sd.num_spliced)
794 		ret = sd.num_spliced;
795 
796 	return ret;
797 }
798 
799 EXPORT_SYMBOL(iter_file_splice_write);
800 
801 static int write_pipe_buf(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
802 			  struct splice_desc *sd)
803 {
804 	int ret;
805 	void *data;
806 	loff_t tmp = sd->pos;
807 
808 	data = kmap(buf->page);
809 	ret = __kernel_write(sd->u.file, data + buf->offset, sd->len, &tmp);
810 	kunmap(buf->page);
811 
812 	return ret;
813 }
814 
815 static ssize_t default_file_splice_write(struct pipe_inode_info *pipe,
816 					 struct file *out, loff_t *ppos,
817 					 size_t len, unsigned int flags)
818 {
819 	ssize_t ret;
820 
821 	ret = splice_from_pipe(pipe, out, ppos, len, flags, write_pipe_buf);
822 	if (ret > 0)
823 		*ppos += ret;
824 
825 	return ret;
826 }
827 
828 /**
829  * generic_splice_sendpage - splice data from a pipe to a socket
830  * @pipe:	pipe to splice from
831  * @out:	socket to write to
832  * @ppos:	position in @out
833  * @len:	number of bytes to splice
834  * @flags:	splice modifier flags
835  *
836  * Description:
837  *    Will send @len bytes from the pipe to a network socket. No data copying
838  *    is involved.
839  *
840  */
841 ssize_t generic_splice_sendpage(struct pipe_inode_info *pipe, struct file *out,
842 				loff_t *ppos, size_t len, unsigned int flags)
843 {
844 	return splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_sendpage);
845 }
846 
847 EXPORT_SYMBOL(generic_splice_sendpage);
848 
849 /*
850  * Attempt to initiate a splice from pipe to file.
851  */
852 static long do_splice_from(struct pipe_inode_info *pipe, struct file *out,
853 			   loff_t *ppos, size_t len, unsigned int flags)
854 {
855 	ssize_t (*splice_write)(struct pipe_inode_info *, struct file *,
856 				loff_t *, size_t, unsigned int);
857 
858 	if (out->f_op->splice_write)
859 		splice_write = out->f_op->splice_write;
860 	else
861 		splice_write = default_file_splice_write;
862 
863 	return splice_write(pipe, out, ppos, len, flags);
864 }
865 
866 /*
867  * Attempt to initiate a splice from a file to a pipe.
868  */
869 static long do_splice_to(struct file *in, loff_t *ppos,
870 			 struct pipe_inode_info *pipe, size_t len,
871 			 unsigned int flags)
872 {
873 	ssize_t (*splice_read)(struct file *, loff_t *,
874 			       struct pipe_inode_info *, size_t, unsigned int);
875 	int ret;
876 
877 	if (unlikely(!(in->f_mode & FMODE_READ)))
878 		return -EBADF;
879 
880 	ret = rw_verify_area(READ, in, ppos, len);
881 	if (unlikely(ret < 0))
882 		return ret;
883 
884 	if (unlikely(len > MAX_RW_COUNT))
885 		len = MAX_RW_COUNT;
886 
887 	if (in->f_op->splice_read)
888 		splice_read = in->f_op->splice_read;
889 	else
890 		splice_read = default_file_splice_read;
891 
892 	return splice_read(in, ppos, pipe, len, flags);
893 }
894 
895 /**
896  * splice_direct_to_actor - splices data directly between two non-pipes
897  * @in:		file to splice from
898  * @sd:		actor information on where to splice to
899  * @actor:	handles the data splicing
900  *
901  * Description:
902  *    This is a special case helper to splice directly between two
903  *    points, without requiring an explicit pipe. Internally an allocated
904  *    pipe is cached in the process, and reused during the lifetime of
905  *    that process.
906  *
907  */
908 ssize_t splice_direct_to_actor(struct file *in, struct splice_desc *sd,
909 			       splice_direct_actor *actor)
910 {
911 	struct pipe_inode_info *pipe;
912 	long ret, bytes;
913 	umode_t i_mode;
914 	size_t len;
915 	int i, flags, more;
916 
917 	/*
918 	 * We require the input being a regular file, as we don't want to
919 	 * randomly drop data for eg socket -> socket splicing. Use the
920 	 * piped splicing for that!
921 	 */
922 	i_mode = file_inode(in)->i_mode;
923 	if (unlikely(!S_ISREG(i_mode) && !S_ISBLK(i_mode)))
924 		return -EINVAL;
925 
926 	/*
927 	 * neither in nor out is a pipe, setup an internal pipe attached to
928 	 * 'out' and transfer the wanted data from 'in' to 'out' through that
929 	 */
930 	pipe = current->splice_pipe;
931 	if (unlikely(!pipe)) {
932 		pipe = alloc_pipe_info();
933 		if (!pipe)
934 			return -ENOMEM;
935 
936 		/*
937 		 * We don't have an immediate reader, but we'll read the stuff
938 		 * out of the pipe right after the splice_to_pipe(). So set
939 		 * PIPE_READERS appropriately.
940 		 */
941 		pipe->readers = 1;
942 
943 		current->splice_pipe = pipe;
944 	}
945 
946 	/*
947 	 * Do the splice.
948 	 */
949 	ret = 0;
950 	bytes = 0;
951 	len = sd->total_len;
952 	flags = sd->flags;
953 
954 	/*
955 	 * Don't block on output, we have to drain the direct pipe.
956 	 */
957 	sd->flags &= ~SPLICE_F_NONBLOCK;
958 	more = sd->flags & SPLICE_F_MORE;
959 
960 	WARN_ON_ONCE(!pipe_empty(pipe->head, pipe->tail));
961 
962 	while (len) {
963 		unsigned int p_space;
964 		size_t read_len;
965 		loff_t pos = sd->pos, prev_pos = pos;
966 
967 		/* Don't try to read more the pipe has space for. */
968 		p_space = pipe->max_usage -
969 			pipe_occupancy(pipe->head, pipe->tail);
970 		read_len = min_t(size_t, len, p_space << PAGE_SHIFT);
971 		ret = do_splice_to(in, &pos, pipe, read_len, flags);
972 		if (unlikely(ret <= 0))
973 			goto out_release;
974 
975 		read_len = ret;
976 		sd->total_len = read_len;
977 
978 		/*
979 		 * If more data is pending, set SPLICE_F_MORE
980 		 * If this is the last data and SPLICE_F_MORE was not set
981 		 * initially, clears it.
982 		 */
983 		if (read_len < len)
984 			sd->flags |= SPLICE_F_MORE;
985 		else if (!more)
986 			sd->flags &= ~SPLICE_F_MORE;
987 		/*
988 		 * NOTE: nonblocking mode only applies to the input. We
989 		 * must not do the output in nonblocking mode as then we
990 		 * could get stuck data in the internal pipe:
991 		 */
992 		ret = actor(pipe, sd);
993 		if (unlikely(ret <= 0)) {
994 			sd->pos = prev_pos;
995 			goto out_release;
996 		}
997 
998 		bytes += ret;
999 		len -= ret;
1000 		sd->pos = pos;
1001 
1002 		if (ret < read_len) {
1003 			sd->pos = prev_pos + ret;
1004 			goto out_release;
1005 		}
1006 	}
1007 
1008 done:
1009 	pipe->tail = pipe->head = 0;
1010 	file_accessed(in);
1011 	return bytes;
1012 
1013 out_release:
1014 	/*
1015 	 * If we did an incomplete transfer we must release
1016 	 * the pipe buffers in question:
1017 	 */
1018 	for (i = 0; i < pipe->ring_size; i++) {
1019 		struct pipe_buffer *buf = &pipe->bufs[i];
1020 
1021 		if (buf->ops)
1022 			pipe_buf_release(pipe, buf);
1023 	}
1024 
1025 	if (!bytes)
1026 		bytes = ret;
1027 
1028 	goto done;
1029 }
1030 EXPORT_SYMBOL(splice_direct_to_actor);
1031 
1032 static int direct_splice_actor(struct pipe_inode_info *pipe,
1033 			       struct splice_desc *sd)
1034 {
1035 	struct file *file = sd->u.file;
1036 
1037 	return do_splice_from(pipe, file, sd->opos, sd->total_len,
1038 			      sd->flags);
1039 }
1040 
1041 /**
1042  * do_splice_direct - splices data directly between two files
1043  * @in:		file to splice from
1044  * @ppos:	input file offset
1045  * @out:	file to splice to
1046  * @opos:	output file offset
1047  * @len:	number of bytes to splice
1048  * @flags:	splice modifier flags
1049  *
1050  * Description:
1051  *    For use by do_sendfile(). splice can easily emulate sendfile, but
1052  *    doing it in the application would incur an extra system call
1053  *    (splice in + splice out, as compared to just sendfile()). So this helper
1054  *    can splice directly through a process-private pipe.
1055  *
1056  */
1057 long do_splice_direct(struct file *in, loff_t *ppos, struct file *out,
1058 		      loff_t *opos, size_t len, unsigned int flags)
1059 {
1060 	struct splice_desc sd = {
1061 		.len		= len,
1062 		.total_len	= len,
1063 		.flags		= flags,
1064 		.pos		= *ppos,
1065 		.u.file		= out,
1066 		.opos		= opos,
1067 	};
1068 	long ret;
1069 
1070 	if (unlikely(!(out->f_mode & FMODE_WRITE)))
1071 		return -EBADF;
1072 
1073 	if (unlikely(out->f_flags & O_APPEND))
1074 		return -EINVAL;
1075 
1076 	ret = rw_verify_area(WRITE, out, opos, len);
1077 	if (unlikely(ret < 0))
1078 		return ret;
1079 
1080 	ret = splice_direct_to_actor(in, &sd, direct_splice_actor);
1081 	if (ret > 0)
1082 		*ppos = sd.pos;
1083 
1084 	return ret;
1085 }
1086 EXPORT_SYMBOL(do_splice_direct);
1087 
1088 static int wait_for_space(struct pipe_inode_info *pipe, unsigned flags)
1089 {
1090 	for (;;) {
1091 		if (unlikely(!pipe->readers)) {
1092 			send_sig(SIGPIPE, current, 0);
1093 			return -EPIPE;
1094 		}
1095 		if (!pipe_full(pipe->head, pipe->tail, pipe->max_usage))
1096 			return 0;
1097 		if (flags & SPLICE_F_NONBLOCK)
1098 			return -EAGAIN;
1099 		if (signal_pending(current))
1100 			return -ERESTARTSYS;
1101 		pipe_wait(pipe);
1102 	}
1103 }
1104 
1105 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1106 			       struct pipe_inode_info *opipe,
1107 			       size_t len, unsigned int flags);
1108 
1109 /*
1110  * Determine where to splice to/from.
1111  */
1112 long do_splice(struct file *in, loff_t __user *off_in,
1113 		struct file *out, loff_t __user *off_out,
1114 		size_t len, unsigned int flags)
1115 {
1116 	struct pipe_inode_info *ipipe;
1117 	struct pipe_inode_info *opipe;
1118 	loff_t offset;
1119 	long ret;
1120 
1121 	if (unlikely(!(in->f_mode & FMODE_READ) ||
1122 		     !(out->f_mode & FMODE_WRITE)))
1123 		return -EBADF;
1124 
1125 	ipipe = get_pipe_info(in);
1126 	opipe = get_pipe_info(out);
1127 
1128 	if (ipipe && opipe) {
1129 		if (off_in || off_out)
1130 			return -ESPIPE;
1131 
1132 		/* Splicing to self would be fun, but... */
1133 		if (ipipe == opipe)
1134 			return -EINVAL;
1135 
1136 		if ((in->f_flags | out->f_flags) & O_NONBLOCK)
1137 			flags |= SPLICE_F_NONBLOCK;
1138 
1139 		return splice_pipe_to_pipe(ipipe, opipe, len, flags);
1140 	}
1141 
1142 	if (ipipe) {
1143 		if (off_in)
1144 			return -ESPIPE;
1145 		if (off_out) {
1146 			if (!(out->f_mode & FMODE_PWRITE))
1147 				return -EINVAL;
1148 			if (copy_from_user(&offset, off_out, sizeof(loff_t)))
1149 				return -EFAULT;
1150 		} else {
1151 			offset = out->f_pos;
1152 		}
1153 
1154 		if (unlikely(out->f_flags & O_APPEND))
1155 			return -EINVAL;
1156 
1157 		ret = rw_verify_area(WRITE, out, &offset, len);
1158 		if (unlikely(ret < 0))
1159 			return ret;
1160 
1161 		if (in->f_flags & O_NONBLOCK)
1162 			flags |= SPLICE_F_NONBLOCK;
1163 
1164 		file_start_write(out);
1165 		ret = do_splice_from(ipipe, out, &offset, len, flags);
1166 		file_end_write(out);
1167 
1168 		if (!off_out)
1169 			out->f_pos = offset;
1170 		else if (copy_to_user(off_out, &offset, sizeof(loff_t)))
1171 			ret = -EFAULT;
1172 
1173 		return ret;
1174 	}
1175 
1176 	if (opipe) {
1177 		if (off_out)
1178 			return -ESPIPE;
1179 		if (off_in) {
1180 			if (!(in->f_mode & FMODE_PREAD))
1181 				return -EINVAL;
1182 			if (copy_from_user(&offset, off_in, sizeof(loff_t)))
1183 				return -EFAULT;
1184 		} else {
1185 			offset = in->f_pos;
1186 		}
1187 
1188 		if (out->f_flags & O_NONBLOCK)
1189 			flags |= SPLICE_F_NONBLOCK;
1190 
1191 		pipe_lock(opipe);
1192 		ret = wait_for_space(opipe, flags);
1193 		if (!ret) {
1194 			unsigned int p_space;
1195 
1196 			/* Don't try to read more the pipe has space for. */
1197 			p_space = opipe->max_usage - pipe_occupancy(opipe->head, opipe->tail);
1198 			len = min_t(size_t, len, p_space << PAGE_SHIFT);
1199 
1200 			ret = do_splice_to(in, &offset, opipe, len, flags);
1201 		}
1202 		pipe_unlock(opipe);
1203 		if (ret > 0)
1204 			wakeup_pipe_readers(opipe);
1205 		if (!off_in)
1206 			in->f_pos = offset;
1207 		else if (copy_to_user(off_in, &offset, sizeof(loff_t)))
1208 			ret = -EFAULT;
1209 
1210 		return ret;
1211 	}
1212 
1213 	return -EINVAL;
1214 }
1215 
1216 static int iter_to_pipe(struct iov_iter *from,
1217 			struct pipe_inode_info *pipe,
1218 			unsigned flags)
1219 {
1220 	struct pipe_buffer buf = {
1221 		.ops = &user_page_pipe_buf_ops,
1222 		.flags = flags
1223 	};
1224 	size_t total = 0;
1225 	int ret = 0;
1226 	bool failed = false;
1227 
1228 	while (iov_iter_count(from) && !failed) {
1229 		struct page *pages[16];
1230 		ssize_t copied;
1231 		size_t start;
1232 		int n;
1233 
1234 		copied = iov_iter_get_pages(from, pages, ~0UL, 16, &start);
1235 		if (copied <= 0) {
1236 			ret = copied;
1237 			break;
1238 		}
1239 
1240 		for (n = 0; copied; n++, start = 0) {
1241 			int size = min_t(int, copied, PAGE_SIZE - start);
1242 			if (!failed) {
1243 				buf.page = pages[n];
1244 				buf.offset = start;
1245 				buf.len = size;
1246 				ret = add_to_pipe(pipe, &buf);
1247 				if (unlikely(ret < 0)) {
1248 					failed = true;
1249 				} else {
1250 					iov_iter_advance(from, ret);
1251 					total += ret;
1252 				}
1253 			} else {
1254 				put_page(pages[n]);
1255 			}
1256 			copied -= size;
1257 		}
1258 	}
1259 	return total ? total : ret;
1260 }
1261 
1262 static int pipe_to_user(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1263 			struct splice_desc *sd)
1264 {
1265 	int n = copy_page_to_iter(buf->page, buf->offset, sd->len, sd->u.data);
1266 	return n == sd->len ? n : -EFAULT;
1267 }
1268 
1269 /*
1270  * For lack of a better implementation, implement vmsplice() to userspace
1271  * as a simple copy of the pipes pages to the user iov.
1272  */
1273 static long vmsplice_to_user(struct file *file, struct iov_iter *iter,
1274 			     unsigned int flags)
1275 {
1276 	struct pipe_inode_info *pipe = get_pipe_info(file);
1277 	struct splice_desc sd = {
1278 		.total_len = iov_iter_count(iter),
1279 		.flags = flags,
1280 		.u.data = iter
1281 	};
1282 	long ret = 0;
1283 
1284 	if (!pipe)
1285 		return -EBADF;
1286 
1287 	if (sd.total_len) {
1288 		pipe_lock(pipe);
1289 		ret = __splice_from_pipe(pipe, &sd, pipe_to_user);
1290 		pipe_unlock(pipe);
1291 	}
1292 
1293 	return ret;
1294 }
1295 
1296 /*
1297  * vmsplice splices a user address range into a pipe. It can be thought of
1298  * as splice-from-memory, where the regular splice is splice-from-file (or
1299  * to file). In both cases the output is a pipe, naturally.
1300  */
1301 static long vmsplice_to_pipe(struct file *file, struct iov_iter *iter,
1302 			     unsigned int flags)
1303 {
1304 	struct pipe_inode_info *pipe;
1305 	long ret = 0;
1306 	unsigned buf_flag = 0;
1307 
1308 	if (flags & SPLICE_F_GIFT)
1309 		buf_flag = PIPE_BUF_FLAG_GIFT;
1310 
1311 	pipe = get_pipe_info(file);
1312 	if (!pipe)
1313 		return -EBADF;
1314 
1315 	pipe_lock(pipe);
1316 	ret = wait_for_space(pipe, flags);
1317 	if (!ret)
1318 		ret = iter_to_pipe(iter, pipe, buf_flag);
1319 	pipe_unlock(pipe);
1320 	if (ret > 0)
1321 		wakeup_pipe_readers(pipe);
1322 	return ret;
1323 }
1324 
1325 static int vmsplice_type(struct fd f, int *type)
1326 {
1327 	if (!f.file)
1328 		return -EBADF;
1329 	if (f.file->f_mode & FMODE_WRITE) {
1330 		*type = WRITE;
1331 	} else if (f.file->f_mode & FMODE_READ) {
1332 		*type = READ;
1333 	} else {
1334 		fdput(f);
1335 		return -EBADF;
1336 	}
1337 	return 0;
1338 }
1339 
1340 /*
1341  * Note that vmsplice only really supports true splicing _from_ user memory
1342  * to a pipe, not the other way around. Splicing from user memory is a simple
1343  * operation that can be supported without any funky alignment restrictions
1344  * or nasty vm tricks. We simply map in the user memory and fill them into
1345  * a pipe. The reverse isn't quite as easy, though. There are two possible
1346  * solutions for that:
1347  *
1348  *	- memcpy() the data internally, at which point we might as well just
1349  *	  do a regular read() on the buffer anyway.
1350  *	- Lots of nasty vm tricks, that are neither fast nor flexible (it
1351  *	  has restriction limitations on both ends of the pipe).
1352  *
1353  * Currently we punt and implement it as a normal copy, see pipe_to_user().
1354  *
1355  */
1356 static long do_vmsplice(struct file *f, struct iov_iter *iter, unsigned int flags)
1357 {
1358 	if (unlikely(flags & ~SPLICE_F_ALL))
1359 		return -EINVAL;
1360 
1361 	if (!iov_iter_count(iter))
1362 		return 0;
1363 
1364 	if (iov_iter_rw(iter) == WRITE)
1365 		return vmsplice_to_pipe(f, iter, flags);
1366 	else
1367 		return vmsplice_to_user(f, iter, flags);
1368 }
1369 
1370 SYSCALL_DEFINE4(vmsplice, int, fd, const struct iovec __user *, uiov,
1371 		unsigned long, nr_segs, unsigned int, flags)
1372 {
1373 	struct iovec iovstack[UIO_FASTIOV];
1374 	struct iovec *iov = iovstack;
1375 	struct iov_iter iter;
1376 	ssize_t error;
1377 	struct fd f;
1378 	int type;
1379 
1380 	f = fdget(fd);
1381 	error = vmsplice_type(f, &type);
1382 	if (error)
1383 		return error;
1384 
1385 	error = import_iovec(type, uiov, nr_segs,
1386 			     ARRAY_SIZE(iovstack), &iov, &iter);
1387 	if (error >= 0) {
1388 		error = do_vmsplice(f.file, &iter, flags);
1389 		kfree(iov);
1390 	}
1391 	fdput(f);
1392 	return error;
1393 }
1394 
1395 #ifdef CONFIG_COMPAT
1396 COMPAT_SYSCALL_DEFINE4(vmsplice, int, fd, const struct compat_iovec __user *, iov32,
1397 		    unsigned int, nr_segs, unsigned int, flags)
1398 {
1399 	struct iovec iovstack[UIO_FASTIOV];
1400 	struct iovec *iov = iovstack;
1401 	struct iov_iter iter;
1402 	ssize_t error;
1403 	struct fd f;
1404 	int type;
1405 
1406 	f = fdget(fd);
1407 	error = vmsplice_type(f, &type);
1408 	if (error)
1409 		return error;
1410 
1411 	error = compat_import_iovec(type, iov32, nr_segs,
1412 			     ARRAY_SIZE(iovstack), &iov, &iter);
1413 	if (error >= 0) {
1414 		error = do_vmsplice(f.file, &iter, flags);
1415 		kfree(iov);
1416 	}
1417 	fdput(f);
1418 	return error;
1419 }
1420 #endif
1421 
1422 SYSCALL_DEFINE6(splice, int, fd_in, loff_t __user *, off_in,
1423 		int, fd_out, loff_t __user *, off_out,
1424 		size_t, len, unsigned int, flags)
1425 {
1426 	struct fd in, out;
1427 	long error;
1428 
1429 	if (unlikely(!len))
1430 		return 0;
1431 
1432 	if (unlikely(flags & ~SPLICE_F_ALL))
1433 		return -EINVAL;
1434 
1435 	error = -EBADF;
1436 	in = fdget(fd_in);
1437 	if (in.file) {
1438 		out = fdget(fd_out);
1439 		if (out.file) {
1440 			error = do_splice(in.file, off_in, out.file, off_out,
1441 					  len, flags);
1442 			fdput(out);
1443 		}
1444 		fdput(in);
1445 	}
1446 	return error;
1447 }
1448 
1449 /*
1450  * Make sure there's data to read. Wait for input if we can, otherwise
1451  * return an appropriate error.
1452  */
1453 static int ipipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1454 {
1455 	int ret;
1456 
1457 	/*
1458 	 * Check the pipe occupancy without the inode lock first. This function
1459 	 * is speculative anyways, so missing one is ok.
1460 	 */
1461 	if (!pipe_empty(pipe->head, pipe->tail))
1462 		return 0;
1463 
1464 	ret = 0;
1465 	pipe_lock(pipe);
1466 
1467 	while (pipe_empty(pipe->head, pipe->tail)) {
1468 		if (signal_pending(current)) {
1469 			ret = -ERESTARTSYS;
1470 			break;
1471 		}
1472 		if (!pipe->writers)
1473 			break;
1474 		if (flags & SPLICE_F_NONBLOCK) {
1475 			ret = -EAGAIN;
1476 			break;
1477 		}
1478 		pipe_wait(pipe);
1479 	}
1480 
1481 	pipe_unlock(pipe);
1482 	return ret;
1483 }
1484 
1485 /*
1486  * Make sure there's writeable room. Wait for room if we can, otherwise
1487  * return an appropriate error.
1488  */
1489 static int opipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1490 {
1491 	int ret;
1492 
1493 	/*
1494 	 * Check pipe occupancy without the inode lock first. This function
1495 	 * is speculative anyways, so missing one is ok.
1496 	 */
1497 	if (!pipe_full(pipe->head, pipe->tail, pipe->max_usage))
1498 		return 0;
1499 
1500 	ret = 0;
1501 	pipe_lock(pipe);
1502 
1503 	while (pipe_full(pipe->head, pipe->tail, pipe->max_usage)) {
1504 		if (!pipe->readers) {
1505 			send_sig(SIGPIPE, current, 0);
1506 			ret = -EPIPE;
1507 			break;
1508 		}
1509 		if (flags & SPLICE_F_NONBLOCK) {
1510 			ret = -EAGAIN;
1511 			break;
1512 		}
1513 		if (signal_pending(current)) {
1514 			ret = -ERESTARTSYS;
1515 			break;
1516 		}
1517 		pipe_wait(pipe);
1518 	}
1519 
1520 	pipe_unlock(pipe);
1521 	return ret;
1522 }
1523 
1524 /*
1525  * Splice contents of ipipe to opipe.
1526  */
1527 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1528 			       struct pipe_inode_info *opipe,
1529 			       size_t len, unsigned int flags)
1530 {
1531 	struct pipe_buffer *ibuf, *obuf;
1532 	unsigned int i_head, o_head;
1533 	unsigned int i_tail, o_tail;
1534 	unsigned int i_mask, o_mask;
1535 	int ret = 0;
1536 	bool input_wakeup = false;
1537 
1538 
1539 retry:
1540 	ret = ipipe_prep(ipipe, flags);
1541 	if (ret)
1542 		return ret;
1543 
1544 	ret = opipe_prep(opipe, flags);
1545 	if (ret)
1546 		return ret;
1547 
1548 	/*
1549 	 * Potential ABBA deadlock, work around it by ordering lock
1550 	 * grabbing by pipe info address. Otherwise two different processes
1551 	 * could deadlock (one doing tee from A -> B, the other from B -> A).
1552 	 */
1553 	pipe_double_lock(ipipe, opipe);
1554 
1555 	i_tail = ipipe->tail;
1556 	i_mask = ipipe->ring_size - 1;
1557 	o_head = opipe->head;
1558 	o_mask = opipe->ring_size - 1;
1559 
1560 	do {
1561 		size_t o_len;
1562 
1563 		if (!opipe->readers) {
1564 			send_sig(SIGPIPE, current, 0);
1565 			if (!ret)
1566 				ret = -EPIPE;
1567 			break;
1568 		}
1569 
1570 		i_head = ipipe->head;
1571 		o_tail = opipe->tail;
1572 
1573 		if (pipe_empty(i_head, i_tail) && !ipipe->writers)
1574 			break;
1575 
1576 		/*
1577 		 * Cannot make any progress, because either the input
1578 		 * pipe is empty or the output pipe is full.
1579 		 */
1580 		if (pipe_empty(i_head, i_tail) ||
1581 		    pipe_full(o_head, o_tail, opipe->max_usage)) {
1582 			/* Already processed some buffers, break */
1583 			if (ret)
1584 				break;
1585 
1586 			if (flags & SPLICE_F_NONBLOCK) {
1587 				ret = -EAGAIN;
1588 				break;
1589 			}
1590 
1591 			/*
1592 			 * We raced with another reader/writer and haven't
1593 			 * managed to process any buffers.  A zero return
1594 			 * value means EOF, so retry instead.
1595 			 */
1596 			pipe_unlock(ipipe);
1597 			pipe_unlock(opipe);
1598 			goto retry;
1599 		}
1600 
1601 		ibuf = &ipipe->bufs[i_tail & i_mask];
1602 		obuf = &opipe->bufs[o_head & o_mask];
1603 
1604 		if (len >= ibuf->len) {
1605 			/*
1606 			 * Simply move the whole buffer from ipipe to opipe
1607 			 */
1608 			*obuf = *ibuf;
1609 			ibuf->ops = NULL;
1610 			i_tail++;
1611 			ipipe->tail = i_tail;
1612 			input_wakeup = true;
1613 			o_len = obuf->len;
1614 			o_head++;
1615 			opipe->head = o_head;
1616 		} else {
1617 			/*
1618 			 * Get a reference to this pipe buffer,
1619 			 * so we can copy the contents over.
1620 			 */
1621 			if (!pipe_buf_get(ipipe, ibuf)) {
1622 				if (ret == 0)
1623 					ret = -EFAULT;
1624 				break;
1625 			}
1626 			*obuf = *ibuf;
1627 
1628 			/*
1629 			 * Don't inherit the gift flag, we need to
1630 			 * prevent multiple steals of this page.
1631 			 */
1632 			obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1633 
1634 			pipe_buf_mark_unmergeable(obuf);
1635 
1636 			obuf->len = len;
1637 			ibuf->offset += len;
1638 			ibuf->len -= len;
1639 			o_len = len;
1640 			o_head++;
1641 			opipe->head = o_head;
1642 		}
1643 		ret += o_len;
1644 		len -= o_len;
1645 	} while (len);
1646 
1647 	pipe_unlock(ipipe);
1648 	pipe_unlock(opipe);
1649 
1650 	/*
1651 	 * If we put data in the output pipe, wakeup any potential readers.
1652 	 */
1653 	if (ret > 0)
1654 		wakeup_pipe_readers(opipe);
1655 
1656 	if (input_wakeup)
1657 		wakeup_pipe_writers(ipipe);
1658 
1659 	return ret;
1660 }
1661 
1662 /*
1663  * Link contents of ipipe to opipe.
1664  */
1665 static int link_pipe(struct pipe_inode_info *ipipe,
1666 		     struct pipe_inode_info *opipe,
1667 		     size_t len, unsigned int flags)
1668 {
1669 	struct pipe_buffer *ibuf, *obuf;
1670 	unsigned int i_head, o_head;
1671 	unsigned int i_tail, o_tail;
1672 	unsigned int i_mask, o_mask;
1673 	int ret = 0;
1674 
1675 	/*
1676 	 * Potential ABBA deadlock, work around it by ordering lock
1677 	 * grabbing by pipe info address. Otherwise two different processes
1678 	 * could deadlock (one doing tee from A -> B, the other from B -> A).
1679 	 */
1680 	pipe_double_lock(ipipe, opipe);
1681 
1682 	i_tail = ipipe->tail;
1683 	i_mask = ipipe->ring_size - 1;
1684 	o_head = opipe->head;
1685 	o_mask = opipe->ring_size - 1;
1686 
1687 	do {
1688 		if (!opipe->readers) {
1689 			send_sig(SIGPIPE, current, 0);
1690 			if (!ret)
1691 				ret = -EPIPE;
1692 			break;
1693 		}
1694 
1695 		i_head = ipipe->head;
1696 		o_tail = opipe->tail;
1697 
1698 		/*
1699 		 * If we have iterated all input buffers or run out of
1700 		 * output room, break.
1701 		 */
1702 		if (pipe_empty(i_head, i_tail) ||
1703 		    pipe_full(o_head, o_tail, opipe->max_usage))
1704 			break;
1705 
1706 		ibuf = &ipipe->bufs[i_tail & i_mask];
1707 		obuf = &opipe->bufs[o_head & o_mask];
1708 
1709 		/*
1710 		 * Get a reference to this pipe buffer,
1711 		 * so we can copy the contents over.
1712 		 */
1713 		if (!pipe_buf_get(ipipe, ibuf)) {
1714 			if (ret == 0)
1715 				ret = -EFAULT;
1716 			break;
1717 		}
1718 
1719 		*obuf = *ibuf;
1720 
1721 		/*
1722 		 * Don't inherit the gift flag, we need to
1723 		 * prevent multiple steals of this page.
1724 		 */
1725 		obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1726 
1727 		pipe_buf_mark_unmergeable(obuf);
1728 
1729 		if (obuf->len > len)
1730 			obuf->len = len;
1731 		ret += obuf->len;
1732 		len -= obuf->len;
1733 
1734 		o_head++;
1735 		opipe->head = o_head;
1736 		i_tail++;
1737 	} while (len);
1738 
1739 	pipe_unlock(ipipe);
1740 	pipe_unlock(opipe);
1741 
1742 	/*
1743 	 * If we put data in the output pipe, wakeup any potential readers.
1744 	 */
1745 	if (ret > 0)
1746 		wakeup_pipe_readers(opipe);
1747 
1748 	return ret;
1749 }
1750 
1751 /*
1752  * This is a tee(1) implementation that works on pipes. It doesn't copy
1753  * any data, it simply references the 'in' pages on the 'out' pipe.
1754  * The 'flags' used are the SPLICE_F_* variants, currently the only
1755  * applicable one is SPLICE_F_NONBLOCK.
1756  */
1757 static long do_tee(struct file *in, struct file *out, size_t len,
1758 		   unsigned int flags)
1759 {
1760 	struct pipe_inode_info *ipipe = get_pipe_info(in);
1761 	struct pipe_inode_info *opipe = get_pipe_info(out);
1762 	int ret = -EINVAL;
1763 
1764 	if (unlikely(!(in->f_mode & FMODE_READ) ||
1765 		     !(out->f_mode & FMODE_WRITE)))
1766 		return -EBADF;
1767 
1768 	/*
1769 	 * Duplicate the contents of ipipe to opipe without actually
1770 	 * copying the data.
1771 	 */
1772 	if (ipipe && opipe && ipipe != opipe) {
1773 		if ((in->f_flags | out->f_flags) & O_NONBLOCK)
1774 			flags |= SPLICE_F_NONBLOCK;
1775 
1776 		/*
1777 		 * Keep going, unless we encounter an error. The ipipe/opipe
1778 		 * ordering doesn't really matter.
1779 		 */
1780 		ret = ipipe_prep(ipipe, flags);
1781 		if (!ret) {
1782 			ret = opipe_prep(opipe, flags);
1783 			if (!ret)
1784 				ret = link_pipe(ipipe, opipe, len, flags);
1785 		}
1786 	}
1787 
1788 	return ret;
1789 }
1790 
1791 SYSCALL_DEFINE4(tee, int, fdin, int, fdout, size_t, len, unsigned int, flags)
1792 {
1793 	struct fd in, out;
1794 	int error;
1795 
1796 	if (unlikely(flags & ~SPLICE_F_ALL))
1797 		return -EINVAL;
1798 
1799 	if (unlikely(!len))
1800 		return 0;
1801 
1802 	error = -EBADF;
1803 	in = fdget(fdin);
1804 	if (in.file) {
1805 		out = fdget(fdout);
1806 		if (out.file) {
1807 			error = do_tee(in.file, out.file, len, flags);
1808 			fdput(out);
1809 		}
1810  		fdput(in);
1811  	}
1812 
1813 	return error;
1814 }
1815