1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * "splice": joining two ropes together by interweaving their strands. 4 * 5 * This is the "extended pipe" functionality, where a pipe is used as 6 * an arbitrary in-memory buffer. Think of a pipe as a small kernel 7 * buffer that you can use to transfer data from one end to the other. 8 * 9 * The traditional unix read/write is extended with a "splice()" operation 10 * that transfers data buffers to or from a pipe buffer. 11 * 12 * Named by Larry McVoy, original implementation from Linus, extended by 13 * Jens to support splicing to files, network, direct splicing, etc and 14 * fixing lots of bugs. 15 * 16 * Copyright (C) 2005-2006 Jens Axboe <axboe@kernel.dk> 17 * Copyright (C) 2005-2006 Linus Torvalds <torvalds@osdl.org> 18 * Copyright (C) 2006 Ingo Molnar <mingo@elte.hu> 19 * 20 */ 21 #include <linux/bvec.h> 22 #include <linux/fs.h> 23 #include <linux/file.h> 24 #include <linux/pagemap.h> 25 #include <linux/splice.h> 26 #include <linux/memcontrol.h> 27 #include <linux/mm_inline.h> 28 #include <linux/swap.h> 29 #include <linux/writeback.h> 30 #include <linux/export.h> 31 #include <linux/syscalls.h> 32 #include <linux/uio.h> 33 #include <linux/fsnotify.h> 34 #include <linux/security.h> 35 #include <linux/gfp.h> 36 #include <linux/net.h> 37 #include <linux/socket.h> 38 #include <linux/sched/signal.h> 39 40 #include "internal.h" 41 42 /* 43 * Splice doesn't support FMODE_NOWAIT. Since pipes may set this flag to 44 * indicate they support non-blocking reads or writes, we must clear it 45 * here if set to avoid blocking other users of this pipe if splice is 46 * being done on it. 47 */ 48 static noinline void pipe_clear_nowait(struct file *file) 49 { 50 fmode_t fmode = READ_ONCE(file->f_mode); 51 52 do { 53 if (!(fmode & FMODE_NOWAIT)) 54 break; 55 } while (!try_cmpxchg(&file->f_mode, &fmode, fmode & ~FMODE_NOWAIT)); 56 } 57 58 /* 59 * Attempt to steal a page from a pipe buffer. This should perhaps go into 60 * a vm helper function, it's already simplified quite a bit by the 61 * addition of remove_mapping(). If success is returned, the caller may 62 * attempt to reuse this page for another destination. 63 */ 64 static bool page_cache_pipe_buf_try_steal(struct pipe_inode_info *pipe, 65 struct pipe_buffer *buf) 66 { 67 struct folio *folio = page_folio(buf->page); 68 struct address_space *mapping; 69 70 folio_lock(folio); 71 72 mapping = folio_mapping(folio); 73 if (mapping) { 74 WARN_ON(!folio_test_uptodate(folio)); 75 76 /* 77 * At least for ext2 with nobh option, we need to wait on 78 * writeback completing on this folio, since we'll remove it 79 * from the pagecache. Otherwise truncate wont wait on the 80 * folio, allowing the disk blocks to be reused by someone else 81 * before we actually wrote our data to them. fs corruption 82 * ensues. 83 */ 84 folio_wait_writeback(folio); 85 86 if (!filemap_release_folio(folio, GFP_KERNEL)) 87 goto out_unlock; 88 89 /* 90 * If we succeeded in removing the mapping, set LRU flag 91 * and return good. 92 */ 93 if (remove_mapping(mapping, folio)) { 94 buf->flags |= PIPE_BUF_FLAG_LRU; 95 return true; 96 } 97 } 98 99 /* 100 * Raced with truncate or failed to remove folio from current 101 * address space, unlock and return failure. 102 */ 103 out_unlock: 104 folio_unlock(folio); 105 return false; 106 } 107 108 static void page_cache_pipe_buf_release(struct pipe_inode_info *pipe, 109 struct pipe_buffer *buf) 110 { 111 put_page(buf->page); 112 buf->flags &= ~PIPE_BUF_FLAG_LRU; 113 } 114 115 /* 116 * Check whether the contents of buf is OK to access. Since the content 117 * is a page cache page, IO may be in flight. 118 */ 119 static int page_cache_pipe_buf_confirm(struct pipe_inode_info *pipe, 120 struct pipe_buffer *buf) 121 { 122 struct folio *folio = page_folio(buf->page); 123 int err; 124 125 if (!folio_test_uptodate(folio)) { 126 folio_lock(folio); 127 128 /* 129 * Folio got truncated/unhashed. This will cause a 0-byte 130 * splice, if this is the first page. 131 */ 132 if (!folio->mapping) { 133 err = -ENODATA; 134 goto error; 135 } 136 137 /* 138 * Uh oh, read-error from disk. 139 */ 140 if (!folio_test_uptodate(folio)) { 141 err = -EIO; 142 goto error; 143 } 144 145 /* Folio is ok after all, we are done */ 146 folio_unlock(folio); 147 } 148 149 return 0; 150 error: 151 folio_unlock(folio); 152 return err; 153 } 154 155 const struct pipe_buf_operations page_cache_pipe_buf_ops = { 156 .confirm = page_cache_pipe_buf_confirm, 157 .release = page_cache_pipe_buf_release, 158 .try_steal = page_cache_pipe_buf_try_steal, 159 .get = generic_pipe_buf_get, 160 }; 161 162 static bool user_page_pipe_buf_try_steal(struct pipe_inode_info *pipe, 163 struct pipe_buffer *buf) 164 { 165 if (!(buf->flags & PIPE_BUF_FLAG_GIFT)) 166 return false; 167 168 buf->flags |= PIPE_BUF_FLAG_LRU; 169 return generic_pipe_buf_try_steal(pipe, buf); 170 } 171 172 static const struct pipe_buf_operations user_page_pipe_buf_ops = { 173 .release = page_cache_pipe_buf_release, 174 .try_steal = user_page_pipe_buf_try_steal, 175 .get = generic_pipe_buf_get, 176 }; 177 178 static void wakeup_pipe_readers(struct pipe_inode_info *pipe) 179 { 180 smp_mb(); 181 if (waitqueue_active(&pipe->rd_wait)) 182 wake_up_interruptible(&pipe->rd_wait); 183 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN); 184 } 185 186 /** 187 * splice_to_pipe - fill passed data into a pipe 188 * @pipe: pipe to fill 189 * @spd: data to fill 190 * 191 * Description: 192 * @spd contains a map of pages and len/offset tuples, along with 193 * the struct pipe_buf_operations associated with these pages. This 194 * function will link that data to the pipe. 195 * 196 */ 197 ssize_t splice_to_pipe(struct pipe_inode_info *pipe, 198 struct splice_pipe_desc *spd) 199 { 200 unsigned int spd_pages = spd->nr_pages; 201 unsigned int tail = pipe->tail; 202 unsigned int head = pipe->head; 203 ssize_t ret = 0; 204 int page_nr = 0; 205 206 if (!spd_pages) 207 return 0; 208 209 if (unlikely(!pipe->readers)) { 210 send_sig(SIGPIPE, current, 0); 211 ret = -EPIPE; 212 goto out; 213 } 214 215 while (!pipe_full(head, tail, pipe->max_usage)) { 216 struct pipe_buffer *buf = pipe_buf(pipe, head); 217 218 buf->page = spd->pages[page_nr]; 219 buf->offset = spd->partial[page_nr].offset; 220 buf->len = spd->partial[page_nr].len; 221 buf->private = spd->partial[page_nr].private; 222 buf->ops = spd->ops; 223 buf->flags = 0; 224 225 head++; 226 pipe->head = head; 227 page_nr++; 228 ret += buf->len; 229 230 if (!--spd->nr_pages) 231 break; 232 } 233 234 if (!ret) 235 ret = -EAGAIN; 236 237 out: 238 while (page_nr < spd_pages) 239 spd->spd_release(spd, page_nr++); 240 241 return ret; 242 } 243 EXPORT_SYMBOL_GPL(splice_to_pipe); 244 245 ssize_t add_to_pipe(struct pipe_inode_info *pipe, struct pipe_buffer *buf) 246 { 247 unsigned int head = pipe->head; 248 unsigned int tail = pipe->tail; 249 int ret; 250 251 if (unlikely(!pipe->readers)) { 252 send_sig(SIGPIPE, current, 0); 253 ret = -EPIPE; 254 } else if (pipe_full(head, tail, pipe->max_usage)) { 255 ret = -EAGAIN; 256 } else { 257 *pipe_buf(pipe, head) = *buf; 258 pipe->head = head + 1; 259 return buf->len; 260 } 261 pipe_buf_release(pipe, buf); 262 return ret; 263 } 264 EXPORT_SYMBOL(add_to_pipe); 265 266 /* 267 * Check if we need to grow the arrays holding pages and partial page 268 * descriptions. 269 */ 270 int splice_grow_spd(const struct pipe_inode_info *pipe, struct splice_pipe_desc *spd) 271 { 272 unsigned int max_usage = READ_ONCE(pipe->max_usage); 273 274 spd->nr_pages_max = max_usage; 275 if (max_usage <= PIPE_DEF_BUFFERS) 276 return 0; 277 278 spd->pages = kmalloc_array(max_usage, sizeof(struct page *), GFP_KERNEL); 279 spd->partial = kmalloc_array(max_usage, sizeof(struct partial_page), 280 GFP_KERNEL); 281 282 if (spd->pages && spd->partial) 283 return 0; 284 285 kfree(spd->pages); 286 kfree(spd->partial); 287 return -ENOMEM; 288 } 289 290 void splice_shrink_spd(struct splice_pipe_desc *spd) 291 { 292 if (spd->nr_pages_max <= PIPE_DEF_BUFFERS) 293 return; 294 295 kfree(spd->pages); 296 kfree(spd->partial); 297 } 298 299 /** 300 * copy_splice_read - Copy data from a file and splice the copy into a pipe 301 * @in: The file to read from 302 * @ppos: Pointer to the file position to read from 303 * @pipe: The pipe to splice into 304 * @len: The amount to splice 305 * @flags: The SPLICE_F_* flags 306 * 307 * This function allocates a bunch of pages sufficient to hold the requested 308 * amount of data (but limited by the remaining pipe capacity), passes it to 309 * the file's ->read_iter() to read into and then splices the used pages into 310 * the pipe. 311 * 312 * Return: On success, the number of bytes read will be returned and *@ppos 313 * will be updated if appropriate; 0 will be returned if there is no more data 314 * to be read; -EAGAIN will be returned if the pipe had no space, and some 315 * other negative error code will be returned on error. A short read may occur 316 * if the pipe has insufficient space, we reach the end of the data or we hit a 317 * hole. 318 */ 319 ssize_t copy_splice_read(struct file *in, loff_t *ppos, 320 struct pipe_inode_info *pipe, 321 size_t len, unsigned int flags) 322 { 323 struct iov_iter to; 324 struct bio_vec *bv; 325 struct kiocb kiocb; 326 struct page **pages; 327 ssize_t ret; 328 size_t used, npages, chunk, remain, keep = 0; 329 int i; 330 331 /* Work out how much data we can actually add into the pipe */ 332 used = pipe_buf_usage(pipe); 333 npages = max_t(ssize_t, pipe->max_usage - used, 0); 334 len = min_t(size_t, len, npages * PAGE_SIZE); 335 npages = DIV_ROUND_UP(len, PAGE_SIZE); 336 337 bv = kzalloc(array_size(npages, sizeof(bv[0])) + 338 array_size(npages, sizeof(struct page *)), GFP_KERNEL); 339 if (!bv) 340 return -ENOMEM; 341 342 pages = (struct page **)(bv + npages); 343 npages = alloc_pages_bulk(GFP_USER, npages, pages); 344 if (!npages) { 345 kfree(bv); 346 return -ENOMEM; 347 } 348 349 remain = len = min_t(size_t, len, npages * PAGE_SIZE); 350 351 for (i = 0; i < npages; i++) { 352 chunk = min_t(size_t, PAGE_SIZE, remain); 353 bv[i].bv_page = pages[i]; 354 bv[i].bv_offset = 0; 355 bv[i].bv_len = chunk; 356 remain -= chunk; 357 } 358 359 /* Do the I/O */ 360 iov_iter_bvec(&to, ITER_DEST, bv, npages, len); 361 init_sync_kiocb(&kiocb, in); 362 kiocb.ki_pos = *ppos; 363 ret = in->f_op->read_iter(&kiocb, &to); 364 365 if (ret > 0) { 366 keep = DIV_ROUND_UP(ret, PAGE_SIZE); 367 *ppos = kiocb.ki_pos; 368 } 369 370 /* 371 * Callers of ->splice_read() expect -EAGAIN on "can't put anything in 372 * there", rather than -EFAULT. 373 */ 374 if (ret == -EFAULT) 375 ret = -EAGAIN; 376 377 /* Free any pages that didn't get touched at all. */ 378 if (keep < npages) 379 release_pages(pages + keep, npages - keep); 380 381 /* Push the remaining pages into the pipe. */ 382 remain = ret; 383 for (i = 0; i < keep; i++) { 384 struct pipe_buffer *buf = pipe_head_buf(pipe); 385 386 chunk = min_t(size_t, remain, PAGE_SIZE); 387 *buf = (struct pipe_buffer) { 388 .ops = &default_pipe_buf_ops, 389 .page = bv[i].bv_page, 390 .offset = 0, 391 .len = chunk, 392 }; 393 pipe->head++; 394 remain -= chunk; 395 } 396 397 kfree(bv); 398 return ret; 399 } 400 EXPORT_SYMBOL(copy_splice_read); 401 402 const struct pipe_buf_operations default_pipe_buf_ops = { 403 .release = generic_pipe_buf_release, 404 .try_steal = generic_pipe_buf_try_steal, 405 .get = generic_pipe_buf_get, 406 }; 407 408 /* Pipe buffer operations for a socket and similar. */ 409 const struct pipe_buf_operations nosteal_pipe_buf_ops = { 410 .release = generic_pipe_buf_release, 411 .get = generic_pipe_buf_get, 412 }; 413 EXPORT_SYMBOL(nosteal_pipe_buf_ops); 414 415 static void wakeup_pipe_writers(struct pipe_inode_info *pipe) 416 { 417 smp_mb(); 418 if (waitqueue_active(&pipe->wr_wait)) 419 wake_up_interruptible(&pipe->wr_wait); 420 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT); 421 } 422 423 /** 424 * splice_from_pipe_feed - feed available data from a pipe to a file 425 * @pipe: pipe to splice from 426 * @sd: information to @actor 427 * @actor: handler that splices the data 428 * 429 * Description: 430 * This function loops over the pipe and calls @actor to do the 431 * actual moving of a single struct pipe_buffer to the desired 432 * destination. It returns when there's no more buffers left in 433 * the pipe or if the requested number of bytes (@sd->total_len) 434 * have been copied. It returns a positive number (one) if the 435 * pipe needs to be filled with more data, zero if the required 436 * number of bytes have been copied and -errno on error. 437 * 438 * This, together with splice_from_pipe_{begin,end,next}, may be 439 * used to implement the functionality of __splice_from_pipe() when 440 * locking is required around copying the pipe buffers to the 441 * destination. 442 */ 443 static int splice_from_pipe_feed(struct pipe_inode_info *pipe, struct splice_desc *sd, 444 splice_actor *actor) 445 { 446 unsigned int head = pipe->head; 447 unsigned int tail = pipe->tail; 448 int ret; 449 450 while (!pipe_empty(head, tail)) { 451 struct pipe_buffer *buf = pipe_buf(pipe, tail); 452 453 sd->len = buf->len; 454 if (sd->len > sd->total_len) 455 sd->len = sd->total_len; 456 457 ret = pipe_buf_confirm(pipe, buf); 458 if (unlikely(ret)) { 459 if (ret == -ENODATA) 460 ret = 0; 461 return ret; 462 } 463 464 ret = actor(pipe, buf, sd); 465 if (ret <= 0) 466 return ret; 467 468 buf->offset += ret; 469 buf->len -= ret; 470 471 sd->num_spliced += ret; 472 sd->len -= ret; 473 sd->pos += ret; 474 sd->total_len -= ret; 475 476 if (!buf->len) { 477 pipe_buf_release(pipe, buf); 478 tail++; 479 pipe->tail = tail; 480 if (pipe->files) 481 sd->need_wakeup = true; 482 } 483 484 if (!sd->total_len) 485 return 0; 486 } 487 488 return 1; 489 } 490 491 /* We know we have a pipe buffer, but maybe it's empty? */ 492 static inline bool eat_empty_buffer(struct pipe_inode_info *pipe) 493 { 494 unsigned int tail = pipe->tail; 495 struct pipe_buffer *buf = pipe_buf(pipe, tail); 496 497 if (unlikely(!buf->len)) { 498 pipe_buf_release(pipe, buf); 499 pipe->tail = tail+1; 500 return true; 501 } 502 503 return false; 504 } 505 506 /** 507 * splice_from_pipe_next - wait for some data to splice from 508 * @pipe: pipe to splice from 509 * @sd: information about the splice operation 510 * 511 * Description: 512 * This function will wait for some data and return a positive 513 * value (one) if pipe buffers are available. It will return zero 514 * or -errno if no more data needs to be spliced. 515 */ 516 static int splice_from_pipe_next(struct pipe_inode_info *pipe, struct splice_desc *sd) 517 { 518 /* 519 * Check for signal early to make process killable when there are 520 * always buffers available 521 */ 522 if (signal_pending(current)) 523 return -ERESTARTSYS; 524 525 repeat: 526 while (pipe_is_empty(pipe)) { 527 if (!pipe->writers) 528 return 0; 529 530 if (sd->num_spliced) 531 return 0; 532 533 if (sd->flags & SPLICE_F_NONBLOCK) 534 return -EAGAIN; 535 536 if (signal_pending(current)) 537 return -ERESTARTSYS; 538 539 if (sd->need_wakeup) { 540 wakeup_pipe_writers(pipe); 541 sd->need_wakeup = false; 542 } 543 544 pipe_wait_readable(pipe); 545 } 546 547 if (eat_empty_buffer(pipe)) 548 goto repeat; 549 550 return 1; 551 } 552 553 /** 554 * splice_from_pipe_begin - start splicing from pipe 555 * @sd: information about the splice operation 556 * 557 * Description: 558 * This function should be called before a loop containing 559 * splice_from_pipe_next() and splice_from_pipe_feed() to 560 * initialize the necessary fields of @sd. 561 */ 562 static void splice_from_pipe_begin(struct splice_desc *sd) 563 { 564 sd->num_spliced = 0; 565 sd->need_wakeup = false; 566 } 567 568 /** 569 * splice_from_pipe_end - finish splicing from pipe 570 * @pipe: pipe to splice from 571 * @sd: information about the splice operation 572 * 573 * Description: 574 * This function will wake up pipe writers if necessary. It should 575 * be called after a loop containing splice_from_pipe_next() and 576 * splice_from_pipe_feed(). 577 */ 578 static void splice_from_pipe_end(struct pipe_inode_info *pipe, struct splice_desc *sd) 579 { 580 if (sd->need_wakeup) 581 wakeup_pipe_writers(pipe); 582 } 583 584 /** 585 * __splice_from_pipe - splice data from a pipe to given actor 586 * @pipe: pipe to splice from 587 * @sd: information to @actor 588 * @actor: handler that splices the data 589 * 590 * Description: 591 * This function does little more than loop over the pipe and call 592 * @actor to do the actual moving of a single struct pipe_buffer to 593 * the desired destination. See pipe_to_file, pipe_to_sendmsg, or 594 * pipe_to_user. 595 * 596 */ 597 ssize_t __splice_from_pipe(struct pipe_inode_info *pipe, struct splice_desc *sd, 598 splice_actor *actor) 599 { 600 int ret; 601 602 splice_from_pipe_begin(sd); 603 do { 604 cond_resched(); 605 ret = splice_from_pipe_next(pipe, sd); 606 if (ret > 0) 607 ret = splice_from_pipe_feed(pipe, sd, actor); 608 } while (ret > 0); 609 splice_from_pipe_end(pipe, sd); 610 611 return sd->num_spliced ? sd->num_spliced : ret; 612 } 613 EXPORT_SYMBOL(__splice_from_pipe); 614 615 /** 616 * splice_from_pipe - splice data from a pipe to a file 617 * @pipe: pipe to splice from 618 * @out: file to splice to 619 * @ppos: position in @out 620 * @len: how many bytes to splice 621 * @flags: splice modifier flags 622 * @actor: handler that splices the data 623 * 624 * Description: 625 * See __splice_from_pipe. This function locks the pipe inode, 626 * otherwise it's identical to __splice_from_pipe(). 627 * 628 */ 629 ssize_t splice_from_pipe(struct pipe_inode_info *pipe, struct file *out, 630 loff_t *ppos, size_t len, unsigned int flags, 631 splice_actor *actor) 632 { 633 ssize_t ret; 634 struct splice_desc sd = { 635 .total_len = len, 636 .flags = flags, 637 .pos = *ppos, 638 .u.file = out, 639 }; 640 641 pipe_lock(pipe); 642 ret = __splice_from_pipe(pipe, &sd, actor); 643 pipe_unlock(pipe); 644 645 return ret; 646 } 647 648 /** 649 * iter_file_splice_write - splice data from a pipe to a file 650 * @pipe: pipe info 651 * @out: file to write to 652 * @ppos: position in @out 653 * @len: number of bytes to splice 654 * @flags: splice modifier flags 655 * 656 * Description: 657 * Will either move or copy pages (determined by @flags options) from 658 * the given pipe inode to the given file. 659 * This one is ->write_iter-based. 660 * 661 */ 662 ssize_t 663 iter_file_splice_write(struct pipe_inode_info *pipe, struct file *out, 664 loff_t *ppos, size_t len, unsigned int flags) 665 { 666 struct splice_desc sd = { 667 .total_len = len, 668 .flags = flags, 669 .pos = *ppos, 670 .u.file = out, 671 }; 672 int nbufs = pipe->max_usage; 673 struct bio_vec *array; 674 ssize_t ret; 675 676 if (!out->f_op->write_iter) 677 return -EINVAL; 678 679 array = kcalloc(nbufs, sizeof(struct bio_vec), GFP_KERNEL); 680 if (unlikely(!array)) 681 return -ENOMEM; 682 683 pipe_lock(pipe); 684 685 splice_from_pipe_begin(&sd); 686 while (sd.total_len) { 687 struct kiocb kiocb; 688 struct iov_iter from; 689 unsigned int head, tail; 690 size_t left; 691 int n; 692 693 ret = splice_from_pipe_next(pipe, &sd); 694 if (ret <= 0) 695 break; 696 697 if (unlikely(nbufs < pipe->max_usage)) { 698 kfree(array); 699 nbufs = pipe->max_usage; 700 array = kcalloc(nbufs, sizeof(struct bio_vec), 701 GFP_KERNEL); 702 if (!array) { 703 ret = -ENOMEM; 704 break; 705 } 706 } 707 708 head = pipe->head; 709 tail = pipe->tail; 710 711 /* build the vector */ 712 left = sd.total_len; 713 for (n = 0; !pipe_empty(head, tail) && left && n < nbufs; tail++) { 714 struct pipe_buffer *buf = pipe_buf(pipe, tail); 715 size_t this_len = buf->len; 716 717 /* zero-length bvecs are not supported, skip them */ 718 if (!this_len) 719 continue; 720 this_len = min(this_len, left); 721 722 ret = pipe_buf_confirm(pipe, buf); 723 if (unlikely(ret)) { 724 if (ret == -ENODATA) 725 ret = 0; 726 goto done; 727 } 728 729 bvec_set_page(&array[n], buf->page, this_len, 730 buf->offset); 731 left -= this_len; 732 n++; 733 } 734 735 iov_iter_bvec(&from, ITER_SOURCE, array, n, sd.total_len - left); 736 init_sync_kiocb(&kiocb, out); 737 kiocb.ki_pos = sd.pos; 738 ret = out->f_op->write_iter(&kiocb, &from); 739 sd.pos = kiocb.ki_pos; 740 if (ret <= 0) 741 break; 742 WARN_ONCE(ret > sd.total_len - left, 743 "Splice Exceeded! ret=%zd tot=%zu left=%zu\n", 744 ret, sd.total_len, left); 745 746 sd.num_spliced += ret; 747 sd.total_len -= ret; 748 *ppos = sd.pos; 749 750 /* dismiss the fully eaten buffers, adjust the partial one */ 751 tail = pipe->tail; 752 while (ret) { 753 struct pipe_buffer *buf = pipe_buf(pipe, tail); 754 if (ret >= buf->len) { 755 ret -= buf->len; 756 buf->len = 0; 757 pipe_buf_release(pipe, buf); 758 tail++; 759 pipe->tail = tail; 760 if (pipe->files) 761 sd.need_wakeup = true; 762 } else { 763 buf->offset += ret; 764 buf->len -= ret; 765 ret = 0; 766 } 767 } 768 } 769 done: 770 kfree(array); 771 splice_from_pipe_end(pipe, &sd); 772 773 pipe_unlock(pipe); 774 775 if (sd.num_spliced) 776 ret = sd.num_spliced; 777 778 return ret; 779 } 780 781 EXPORT_SYMBOL(iter_file_splice_write); 782 783 #ifdef CONFIG_NET 784 /** 785 * splice_to_socket - splice data from a pipe to a socket 786 * @pipe: pipe to splice from 787 * @out: socket to write to 788 * @ppos: position in @out 789 * @len: number of bytes to splice 790 * @flags: splice modifier flags 791 * 792 * Description: 793 * Will send @len bytes from the pipe to a network socket. No data copying 794 * is involved. 795 * 796 */ 797 ssize_t splice_to_socket(struct pipe_inode_info *pipe, struct file *out, 798 loff_t *ppos, size_t len, unsigned int flags) 799 { 800 struct socket *sock = sock_from_file(out); 801 struct bio_vec bvec[16]; 802 struct msghdr msg = {}; 803 ssize_t ret = 0; 804 size_t spliced = 0; 805 bool need_wakeup = false; 806 807 pipe_lock(pipe); 808 809 while (len > 0) { 810 unsigned int head, tail, bc = 0; 811 size_t remain = len; 812 813 /* 814 * Check for signal early to make process killable when there 815 * are always buffers available 816 */ 817 ret = -ERESTARTSYS; 818 if (signal_pending(current)) 819 break; 820 821 while (pipe_is_empty(pipe)) { 822 ret = 0; 823 if (!pipe->writers) 824 goto out; 825 826 if (spliced) 827 goto out; 828 829 ret = -EAGAIN; 830 if (flags & SPLICE_F_NONBLOCK) 831 goto out; 832 833 ret = -ERESTARTSYS; 834 if (signal_pending(current)) 835 goto out; 836 837 if (need_wakeup) { 838 wakeup_pipe_writers(pipe); 839 need_wakeup = false; 840 } 841 842 pipe_wait_readable(pipe); 843 } 844 845 head = pipe->head; 846 tail = pipe->tail; 847 848 while (!pipe_empty(head, tail)) { 849 struct pipe_buffer *buf = pipe_buf(pipe, tail); 850 size_t seg; 851 852 if (!buf->len) { 853 tail++; 854 continue; 855 } 856 857 seg = min_t(size_t, remain, buf->len); 858 859 ret = pipe_buf_confirm(pipe, buf); 860 if (unlikely(ret)) { 861 if (ret == -ENODATA) 862 ret = 0; 863 break; 864 } 865 866 bvec_set_page(&bvec[bc++], buf->page, seg, buf->offset); 867 remain -= seg; 868 if (remain == 0 || bc >= ARRAY_SIZE(bvec)) 869 break; 870 tail++; 871 } 872 873 if (!bc) 874 break; 875 876 msg.msg_flags = MSG_SPLICE_PAGES; 877 if (flags & SPLICE_F_MORE) 878 msg.msg_flags |= MSG_MORE; 879 if (remain && pipe_occupancy(pipe->head, tail) > 0) 880 msg.msg_flags |= MSG_MORE; 881 if (out->f_flags & O_NONBLOCK) 882 msg.msg_flags |= MSG_DONTWAIT; 883 884 iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, bvec, bc, 885 len - remain); 886 ret = sock_sendmsg(sock, &msg); 887 if (ret <= 0) 888 break; 889 890 spliced += ret; 891 len -= ret; 892 tail = pipe->tail; 893 while (ret > 0) { 894 struct pipe_buffer *buf = pipe_buf(pipe, tail); 895 size_t seg = min_t(size_t, ret, buf->len); 896 897 buf->offset += seg; 898 buf->len -= seg; 899 ret -= seg; 900 901 if (!buf->len) { 902 pipe_buf_release(pipe, buf); 903 tail++; 904 } 905 } 906 907 if (tail != pipe->tail) { 908 pipe->tail = tail; 909 if (pipe->files) 910 need_wakeup = true; 911 } 912 } 913 914 out: 915 pipe_unlock(pipe); 916 if (need_wakeup) 917 wakeup_pipe_writers(pipe); 918 return spliced ?: ret; 919 } 920 #endif 921 922 static int warn_unsupported(struct file *file, const char *op) 923 { 924 pr_debug_ratelimited( 925 "splice %s not supported for file %pD4 (pid: %d comm: %.20s)\n", 926 op, file, current->pid, current->comm); 927 return -EINVAL; 928 } 929 930 /* 931 * Attempt to initiate a splice from pipe to file. 932 */ 933 static ssize_t do_splice_from(struct pipe_inode_info *pipe, struct file *out, 934 loff_t *ppos, size_t len, unsigned int flags) 935 { 936 if (unlikely(!out->f_op->splice_write)) 937 return warn_unsupported(out, "write"); 938 return out->f_op->splice_write(pipe, out, ppos, len, flags); 939 } 940 941 /* 942 * Indicate to the caller that there was a premature EOF when reading from the 943 * source and the caller didn't indicate they would be sending more data after 944 * this. 945 */ 946 static void do_splice_eof(struct splice_desc *sd) 947 { 948 if (sd->splice_eof) 949 sd->splice_eof(sd); 950 } 951 952 /* 953 * Callers already called rw_verify_area() on the entire range. 954 * No need to call it for sub ranges. 955 */ 956 static ssize_t do_splice_read(struct file *in, loff_t *ppos, 957 struct pipe_inode_info *pipe, size_t len, 958 unsigned int flags) 959 { 960 unsigned int p_space; 961 962 if (unlikely(!(in->f_mode & FMODE_READ))) 963 return -EBADF; 964 if (!len) 965 return 0; 966 967 /* Don't try to read more the pipe has space for. */ 968 p_space = pipe->max_usage - pipe_buf_usage(pipe); 969 len = min_t(size_t, len, p_space << PAGE_SHIFT); 970 971 if (unlikely(len > MAX_RW_COUNT)) 972 len = MAX_RW_COUNT; 973 974 if (unlikely(!in->f_op->splice_read)) 975 return warn_unsupported(in, "read"); 976 /* 977 * O_DIRECT and DAX don't deal with the pagecache, so we allocate a 978 * buffer, copy into it and splice that into the pipe. 979 */ 980 if ((in->f_flags & O_DIRECT) || IS_DAX(in->f_mapping->host)) 981 return copy_splice_read(in, ppos, pipe, len, flags); 982 return in->f_op->splice_read(in, ppos, pipe, len, flags); 983 } 984 985 /** 986 * vfs_splice_read - Read data from a file and splice it into a pipe 987 * @in: File to splice from 988 * @ppos: Input file offset 989 * @pipe: Pipe to splice to 990 * @len: Number of bytes to splice 991 * @flags: Splice modifier flags (SPLICE_F_*) 992 * 993 * Splice the requested amount of data from the input file to the pipe. This 994 * is synchronous as the caller must hold the pipe lock across the entire 995 * operation. 996 * 997 * If successful, it returns the amount of data spliced, 0 if it hit the EOF or 998 * a hole and a negative error code otherwise. 999 */ 1000 ssize_t vfs_splice_read(struct file *in, loff_t *ppos, 1001 struct pipe_inode_info *pipe, size_t len, 1002 unsigned int flags) 1003 { 1004 ssize_t ret; 1005 1006 ret = rw_verify_area(READ, in, ppos, len); 1007 if (unlikely(ret < 0)) 1008 return ret; 1009 1010 return do_splice_read(in, ppos, pipe, len, flags); 1011 } 1012 EXPORT_SYMBOL_GPL(vfs_splice_read); 1013 1014 /** 1015 * splice_direct_to_actor - splices data directly between two non-pipes 1016 * @in: file to splice from 1017 * @sd: actor information on where to splice to 1018 * @actor: handles the data splicing 1019 * 1020 * Description: 1021 * This is a special case helper to splice directly between two 1022 * points, without requiring an explicit pipe. Internally an allocated 1023 * pipe is cached in the process, and reused during the lifetime of 1024 * that process. 1025 * 1026 */ 1027 ssize_t splice_direct_to_actor(struct file *in, struct splice_desc *sd, 1028 splice_direct_actor *actor) 1029 { 1030 struct pipe_inode_info *pipe; 1031 ssize_t ret, bytes; 1032 size_t len; 1033 int i, flags, more; 1034 1035 /* 1036 * We require the input to be seekable, as we don't want to randomly 1037 * drop data for eg socket -> socket splicing. Use the piped splicing 1038 * for that! 1039 */ 1040 if (unlikely(!(in->f_mode & FMODE_LSEEK))) 1041 return -EINVAL; 1042 1043 /* 1044 * neither in nor out is a pipe, setup an internal pipe attached to 1045 * 'out' and transfer the wanted data from 'in' to 'out' through that 1046 */ 1047 pipe = current->splice_pipe; 1048 if (unlikely(!pipe)) { 1049 pipe = alloc_pipe_info(); 1050 if (!pipe) 1051 return -ENOMEM; 1052 1053 /* 1054 * We don't have an immediate reader, but we'll read the stuff 1055 * out of the pipe right after the splice_to_pipe(). So set 1056 * PIPE_READERS appropriately. 1057 */ 1058 pipe->readers = 1; 1059 1060 current->splice_pipe = pipe; 1061 } 1062 1063 /* 1064 * Do the splice. 1065 */ 1066 bytes = 0; 1067 len = sd->total_len; 1068 1069 /* Don't block on output, we have to drain the direct pipe. */ 1070 flags = sd->flags; 1071 sd->flags &= ~SPLICE_F_NONBLOCK; 1072 1073 /* 1074 * We signal MORE until we've read sufficient data to fulfill the 1075 * request and we keep signalling it if the caller set it. 1076 */ 1077 more = sd->flags & SPLICE_F_MORE; 1078 sd->flags |= SPLICE_F_MORE; 1079 1080 WARN_ON_ONCE(!pipe_is_empty(pipe)); 1081 1082 while (len) { 1083 size_t read_len; 1084 loff_t pos = sd->pos, prev_pos = pos; 1085 1086 ret = do_splice_read(in, &pos, pipe, len, flags); 1087 if (unlikely(ret <= 0)) 1088 goto read_failure; 1089 1090 read_len = ret; 1091 sd->total_len = read_len; 1092 1093 /* 1094 * If we now have sufficient data to fulfill the request then 1095 * we clear SPLICE_F_MORE if it was not set initially. 1096 */ 1097 if (read_len >= len && !more) 1098 sd->flags &= ~SPLICE_F_MORE; 1099 1100 /* 1101 * NOTE: nonblocking mode only applies to the input. We 1102 * must not do the output in nonblocking mode as then we 1103 * could get stuck data in the internal pipe: 1104 */ 1105 ret = actor(pipe, sd); 1106 if (unlikely(ret <= 0)) { 1107 sd->pos = prev_pos; 1108 goto out_release; 1109 } 1110 1111 bytes += ret; 1112 len -= ret; 1113 sd->pos = pos; 1114 1115 if (ret < read_len) { 1116 sd->pos = prev_pos + ret; 1117 goto out_release; 1118 } 1119 } 1120 1121 done: 1122 pipe->tail = pipe->head = 0; 1123 file_accessed(in); 1124 return bytes; 1125 1126 read_failure: 1127 /* 1128 * If the user did *not* set SPLICE_F_MORE *and* we didn't hit that 1129 * "use all of len" case that cleared SPLICE_F_MORE, *and* we did a 1130 * "->splice_in()" that returned EOF (ie zero) *and* we have sent at 1131 * least 1 byte *then* we will also do the ->splice_eof() call. 1132 */ 1133 if (ret == 0 && !more && len > 0 && bytes) 1134 do_splice_eof(sd); 1135 out_release: 1136 /* 1137 * If we did an incomplete transfer we must release 1138 * the pipe buffers in question: 1139 */ 1140 for (i = 0; i < pipe->ring_size; i++) { 1141 struct pipe_buffer *buf = &pipe->bufs[i]; 1142 1143 if (buf->ops) 1144 pipe_buf_release(pipe, buf); 1145 } 1146 1147 if (!bytes) 1148 bytes = ret; 1149 1150 goto done; 1151 } 1152 EXPORT_SYMBOL(splice_direct_to_actor); 1153 1154 static int direct_splice_actor(struct pipe_inode_info *pipe, 1155 struct splice_desc *sd) 1156 { 1157 struct file *file = sd->u.file; 1158 long ret; 1159 1160 file_start_write(file); 1161 ret = do_splice_from(pipe, file, sd->opos, sd->total_len, sd->flags); 1162 file_end_write(file); 1163 return ret; 1164 } 1165 1166 static int splice_file_range_actor(struct pipe_inode_info *pipe, 1167 struct splice_desc *sd) 1168 { 1169 struct file *file = sd->u.file; 1170 1171 return do_splice_from(pipe, file, sd->opos, sd->total_len, sd->flags); 1172 } 1173 1174 static void direct_file_splice_eof(struct splice_desc *sd) 1175 { 1176 struct file *file = sd->u.file; 1177 1178 if (file->f_op->splice_eof) 1179 file->f_op->splice_eof(file); 1180 } 1181 1182 static ssize_t do_splice_direct_actor(struct file *in, loff_t *ppos, 1183 struct file *out, loff_t *opos, 1184 size_t len, unsigned int flags, 1185 splice_direct_actor *actor) 1186 { 1187 struct splice_desc sd = { 1188 .len = len, 1189 .total_len = len, 1190 .flags = flags, 1191 .pos = *ppos, 1192 .u.file = out, 1193 .splice_eof = direct_file_splice_eof, 1194 .opos = opos, 1195 }; 1196 ssize_t ret; 1197 1198 if (unlikely(!(out->f_mode & FMODE_WRITE))) 1199 return -EBADF; 1200 1201 if (unlikely(out->f_flags & O_APPEND)) 1202 return -EINVAL; 1203 1204 ret = splice_direct_to_actor(in, &sd, actor); 1205 if (ret > 0) 1206 *ppos = sd.pos; 1207 1208 return ret; 1209 } 1210 /** 1211 * do_splice_direct - splices data directly between two files 1212 * @in: file to splice from 1213 * @ppos: input file offset 1214 * @out: file to splice to 1215 * @opos: output file offset 1216 * @len: number of bytes to splice 1217 * @flags: splice modifier flags 1218 * 1219 * Description: 1220 * For use by do_sendfile(). splice can easily emulate sendfile, but 1221 * doing it in the application would incur an extra system call 1222 * (splice in + splice out, as compared to just sendfile()). So this helper 1223 * can splice directly through a process-private pipe. 1224 * 1225 * Callers already called rw_verify_area() on the entire range. 1226 */ 1227 ssize_t do_splice_direct(struct file *in, loff_t *ppos, struct file *out, 1228 loff_t *opos, size_t len, unsigned int flags) 1229 { 1230 return do_splice_direct_actor(in, ppos, out, opos, len, flags, 1231 direct_splice_actor); 1232 } 1233 EXPORT_SYMBOL(do_splice_direct); 1234 1235 /** 1236 * splice_file_range - splices data between two files for copy_file_range() 1237 * @in: file to splice from 1238 * @ppos: input file offset 1239 * @out: file to splice to 1240 * @opos: output file offset 1241 * @len: number of bytes to splice 1242 * 1243 * Description: 1244 * For use by ->copy_file_range() methods. 1245 * Like do_splice_direct(), but vfs_copy_file_range() already holds 1246 * start_file_write() on @out file. 1247 * 1248 * Callers already called rw_verify_area() on the entire range. 1249 */ 1250 ssize_t splice_file_range(struct file *in, loff_t *ppos, struct file *out, 1251 loff_t *opos, size_t len) 1252 { 1253 lockdep_assert(file_write_started(out)); 1254 1255 return do_splice_direct_actor(in, ppos, out, opos, 1256 min_t(size_t, len, MAX_RW_COUNT), 1257 0, splice_file_range_actor); 1258 } 1259 EXPORT_SYMBOL(splice_file_range); 1260 1261 static int wait_for_space(struct pipe_inode_info *pipe, unsigned flags) 1262 { 1263 for (;;) { 1264 if (unlikely(!pipe->readers)) { 1265 send_sig(SIGPIPE, current, 0); 1266 return -EPIPE; 1267 } 1268 if (!pipe_is_full(pipe)) 1269 return 0; 1270 if (flags & SPLICE_F_NONBLOCK) 1271 return -EAGAIN; 1272 if (signal_pending(current)) 1273 return -ERESTARTSYS; 1274 pipe_wait_writable(pipe); 1275 } 1276 } 1277 1278 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe, 1279 struct pipe_inode_info *opipe, 1280 size_t len, unsigned int flags); 1281 1282 ssize_t splice_file_to_pipe(struct file *in, 1283 struct pipe_inode_info *opipe, 1284 loff_t *offset, 1285 size_t len, unsigned int flags) 1286 { 1287 ssize_t ret; 1288 1289 pipe_lock(opipe); 1290 ret = wait_for_space(opipe, flags); 1291 if (!ret) 1292 ret = do_splice_read(in, offset, opipe, len, flags); 1293 pipe_unlock(opipe); 1294 if (ret > 0) 1295 wakeup_pipe_readers(opipe); 1296 return ret; 1297 } 1298 1299 /* 1300 * Determine where to splice to/from. 1301 */ 1302 ssize_t do_splice(struct file *in, loff_t *off_in, struct file *out, 1303 loff_t *off_out, size_t len, unsigned int flags) 1304 { 1305 struct pipe_inode_info *ipipe; 1306 struct pipe_inode_info *opipe; 1307 loff_t offset; 1308 ssize_t ret; 1309 1310 if (unlikely(!(in->f_mode & FMODE_READ) || 1311 !(out->f_mode & FMODE_WRITE))) 1312 return -EBADF; 1313 1314 ipipe = get_pipe_info(in, true); 1315 opipe = get_pipe_info(out, true); 1316 1317 if (ipipe && opipe) { 1318 if (off_in || off_out) 1319 return -ESPIPE; 1320 1321 /* Splicing to self would be fun, but... */ 1322 if (ipipe == opipe) 1323 return -EINVAL; 1324 1325 if ((in->f_flags | out->f_flags) & O_NONBLOCK) 1326 flags |= SPLICE_F_NONBLOCK; 1327 1328 ret = splice_pipe_to_pipe(ipipe, opipe, len, flags); 1329 } else if (ipipe) { 1330 if (off_in) 1331 return -ESPIPE; 1332 if (off_out) { 1333 if (!(out->f_mode & FMODE_PWRITE)) 1334 return -EINVAL; 1335 offset = *off_out; 1336 } else { 1337 offset = out->f_pos; 1338 } 1339 1340 if (unlikely(out->f_flags & O_APPEND)) 1341 return -EINVAL; 1342 1343 ret = rw_verify_area(WRITE, out, &offset, len); 1344 if (unlikely(ret < 0)) 1345 return ret; 1346 1347 if (in->f_flags & O_NONBLOCK) 1348 flags |= SPLICE_F_NONBLOCK; 1349 1350 file_start_write(out); 1351 ret = do_splice_from(ipipe, out, &offset, len, flags); 1352 file_end_write(out); 1353 1354 if (!off_out) 1355 out->f_pos = offset; 1356 else 1357 *off_out = offset; 1358 } else if (opipe) { 1359 if (off_out) 1360 return -ESPIPE; 1361 if (off_in) { 1362 if (!(in->f_mode & FMODE_PREAD)) 1363 return -EINVAL; 1364 offset = *off_in; 1365 } else { 1366 offset = in->f_pos; 1367 } 1368 1369 ret = rw_verify_area(READ, in, &offset, len); 1370 if (unlikely(ret < 0)) 1371 return ret; 1372 1373 if (out->f_flags & O_NONBLOCK) 1374 flags |= SPLICE_F_NONBLOCK; 1375 1376 ret = splice_file_to_pipe(in, opipe, &offset, len, flags); 1377 1378 if (!off_in) 1379 in->f_pos = offset; 1380 else 1381 *off_in = offset; 1382 } else { 1383 ret = -EINVAL; 1384 } 1385 1386 if (ret > 0) { 1387 /* 1388 * Generate modify out before access in: 1389 * do_splice_from() may've already sent modify out, 1390 * and this ensures the events get merged. 1391 */ 1392 fsnotify_modify(out); 1393 fsnotify_access(in); 1394 } 1395 1396 return ret; 1397 } 1398 1399 static ssize_t __do_splice(struct file *in, loff_t __user *off_in, 1400 struct file *out, loff_t __user *off_out, 1401 size_t len, unsigned int flags) 1402 { 1403 struct pipe_inode_info *ipipe; 1404 struct pipe_inode_info *opipe; 1405 loff_t offset, *__off_in = NULL, *__off_out = NULL; 1406 ssize_t ret; 1407 1408 ipipe = get_pipe_info(in, true); 1409 opipe = get_pipe_info(out, true); 1410 1411 if (ipipe) { 1412 if (off_in) 1413 return -ESPIPE; 1414 pipe_clear_nowait(in); 1415 } 1416 if (opipe) { 1417 if (off_out) 1418 return -ESPIPE; 1419 pipe_clear_nowait(out); 1420 } 1421 1422 if (off_out) { 1423 if (copy_from_user(&offset, off_out, sizeof(loff_t))) 1424 return -EFAULT; 1425 __off_out = &offset; 1426 } 1427 if (off_in) { 1428 if (copy_from_user(&offset, off_in, sizeof(loff_t))) 1429 return -EFAULT; 1430 __off_in = &offset; 1431 } 1432 1433 ret = do_splice(in, __off_in, out, __off_out, len, flags); 1434 if (ret < 0) 1435 return ret; 1436 1437 if (__off_out && copy_to_user(off_out, __off_out, sizeof(loff_t))) 1438 return -EFAULT; 1439 if (__off_in && copy_to_user(off_in, __off_in, sizeof(loff_t))) 1440 return -EFAULT; 1441 1442 return ret; 1443 } 1444 1445 static ssize_t iter_to_pipe(struct iov_iter *from, 1446 struct pipe_inode_info *pipe, 1447 unsigned int flags) 1448 { 1449 struct pipe_buffer buf = { 1450 .ops = &user_page_pipe_buf_ops, 1451 .flags = flags 1452 }; 1453 size_t total = 0; 1454 ssize_t ret = 0; 1455 1456 while (iov_iter_count(from)) { 1457 struct page *pages[16]; 1458 ssize_t left; 1459 size_t start; 1460 int i, n; 1461 1462 left = iov_iter_get_pages2(from, pages, ~0UL, 16, &start); 1463 if (left <= 0) { 1464 ret = left; 1465 break; 1466 } 1467 1468 n = DIV_ROUND_UP(left + start, PAGE_SIZE); 1469 for (i = 0; i < n; i++) { 1470 int size = min_t(int, left, PAGE_SIZE - start); 1471 1472 buf.page = pages[i]; 1473 buf.offset = start; 1474 buf.len = size; 1475 ret = add_to_pipe(pipe, &buf); 1476 if (unlikely(ret < 0)) { 1477 iov_iter_revert(from, left); 1478 // this one got dropped by add_to_pipe() 1479 while (++i < n) 1480 put_page(pages[i]); 1481 goto out; 1482 } 1483 total += ret; 1484 left -= size; 1485 start = 0; 1486 } 1487 } 1488 out: 1489 return total ? total : ret; 1490 } 1491 1492 static int pipe_to_user(struct pipe_inode_info *pipe, struct pipe_buffer *buf, 1493 struct splice_desc *sd) 1494 { 1495 int n = copy_page_to_iter(buf->page, buf->offset, sd->len, sd->u.data); 1496 return n == sd->len ? n : -EFAULT; 1497 } 1498 1499 /* 1500 * For lack of a better implementation, implement vmsplice() to userspace 1501 * as a simple copy of the pipes pages to the user iov. 1502 */ 1503 static ssize_t vmsplice_to_user(struct file *file, struct iov_iter *iter, 1504 unsigned int flags) 1505 { 1506 struct pipe_inode_info *pipe = get_pipe_info(file, true); 1507 struct splice_desc sd = { 1508 .total_len = iov_iter_count(iter), 1509 .flags = flags, 1510 .u.data = iter 1511 }; 1512 ssize_t ret = 0; 1513 1514 if (!pipe) 1515 return -EBADF; 1516 1517 pipe_clear_nowait(file); 1518 1519 if (sd.total_len) { 1520 pipe_lock(pipe); 1521 ret = __splice_from_pipe(pipe, &sd, pipe_to_user); 1522 pipe_unlock(pipe); 1523 } 1524 1525 if (ret > 0) 1526 fsnotify_access(file); 1527 1528 return ret; 1529 } 1530 1531 /* 1532 * vmsplice splices a user address range into a pipe. It can be thought of 1533 * as splice-from-memory, where the regular splice is splice-from-file (or 1534 * to file). In both cases the output is a pipe, naturally. 1535 */ 1536 static ssize_t vmsplice_to_pipe(struct file *file, struct iov_iter *iter, 1537 unsigned int flags) 1538 { 1539 struct pipe_inode_info *pipe; 1540 ssize_t ret = 0; 1541 unsigned buf_flag = 0; 1542 1543 if (flags & SPLICE_F_GIFT) 1544 buf_flag = PIPE_BUF_FLAG_GIFT; 1545 1546 pipe = get_pipe_info(file, true); 1547 if (!pipe) 1548 return -EBADF; 1549 1550 pipe_clear_nowait(file); 1551 1552 pipe_lock(pipe); 1553 ret = wait_for_space(pipe, flags); 1554 if (!ret) 1555 ret = iter_to_pipe(iter, pipe, buf_flag); 1556 pipe_unlock(pipe); 1557 if (ret > 0) { 1558 wakeup_pipe_readers(pipe); 1559 fsnotify_modify(file); 1560 } 1561 return ret; 1562 } 1563 1564 /* 1565 * Note that vmsplice only really supports true splicing _from_ user memory 1566 * to a pipe, not the other way around. Splicing from user memory is a simple 1567 * operation that can be supported without any funky alignment restrictions 1568 * or nasty vm tricks. We simply map in the user memory and fill them into 1569 * a pipe. The reverse isn't quite as easy, though. There are two possible 1570 * solutions for that: 1571 * 1572 * - memcpy() the data internally, at which point we might as well just 1573 * do a regular read() on the buffer anyway. 1574 * - Lots of nasty vm tricks, that are neither fast nor flexible (it 1575 * has restriction limitations on both ends of the pipe). 1576 * 1577 * Currently we punt and implement it as a normal copy, see pipe_to_user(). 1578 * 1579 */ 1580 SYSCALL_DEFINE4(vmsplice, int, fd, const struct iovec __user *, uiov, 1581 unsigned long, nr_segs, unsigned int, flags) 1582 { 1583 struct iovec iovstack[UIO_FASTIOV]; 1584 struct iovec *iov = iovstack; 1585 struct iov_iter iter; 1586 ssize_t error; 1587 int type; 1588 1589 if (unlikely(flags & ~SPLICE_F_ALL)) 1590 return -EINVAL; 1591 1592 CLASS(fd, f)(fd); 1593 if (fd_empty(f)) 1594 return -EBADF; 1595 if (fd_file(f)->f_mode & FMODE_WRITE) 1596 type = ITER_SOURCE; 1597 else if (fd_file(f)->f_mode & FMODE_READ) 1598 type = ITER_DEST; 1599 else 1600 return -EBADF; 1601 1602 error = import_iovec(type, uiov, nr_segs, 1603 ARRAY_SIZE(iovstack), &iov, &iter); 1604 if (error < 0) 1605 return error; 1606 1607 if (!iov_iter_count(&iter)) 1608 error = 0; 1609 else if (type == ITER_SOURCE) 1610 error = vmsplice_to_pipe(fd_file(f), &iter, flags); 1611 else 1612 error = vmsplice_to_user(fd_file(f), &iter, flags); 1613 1614 kfree(iov); 1615 return error; 1616 } 1617 1618 SYSCALL_DEFINE6(splice, int, fd_in, loff_t __user *, off_in, 1619 int, fd_out, loff_t __user *, off_out, 1620 size_t, len, unsigned int, flags) 1621 { 1622 if (unlikely(!len)) 1623 return 0; 1624 1625 if (unlikely(flags & ~SPLICE_F_ALL)) 1626 return -EINVAL; 1627 1628 CLASS(fd, in)(fd_in); 1629 if (fd_empty(in)) 1630 return -EBADF; 1631 1632 CLASS(fd, out)(fd_out); 1633 if (fd_empty(out)) 1634 return -EBADF; 1635 1636 return __do_splice(fd_file(in), off_in, fd_file(out), off_out, 1637 len, flags); 1638 } 1639 1640 /* 1641 * Make sure there's data to read. Wait for input if we can, otherwise 1642 * return an appropriate error. 1643 */ 1644 static int ipipe_prep(struct pipe_inode_info *pipe, unsigned int flags) 1645 { 1646 int ret; 1647 1648 /* 1649 * Check the pipe occupancy without the inode lock first. This function 1650 * is speculative anyways, so missing one is ok. 1651 */ 1652 if (!pipe_is_empty(pipe)) 1653 return 0; 1654 1655 ret = 0; 1656 pipe_lock(pipe); 1657 1658 while (pipe_is_empty(pipe)) { 1659 if (signal_pending(current)) { 1660 ret = -ERESTARTSYS; 1661 break; 1662 } 1663 if (!pipe->writers) 1664 break; 1665 if (flags & SPLICE_F_NONBLOCK) { 1666 ret = -EAGAIN; 1667 break; 1668 } 1669 pipe_wait_readable(pipe); 1670 } 1671 1672 pipe_unlock(pipe); 1673 return ret; 1674 } 1675 1676 /* 1677 * Make sure there's writeable room. Wait for room if we can, otherwise 1678 * return an appropriate error. 1679 */ 1680 static int opipe_prep(struct pipe_inode_info *pipe, unsigned int flags) 1681 { 1682 int ret; 1683 1684 /* 1685 * Check pipe occupancy without the inode lock first. This function 1686 * is speculative anyways, so missing one is ok. 1687 */ 1688 if (!pipe_is_full(pipe)) 1689 return 0; 1690 1691 ret = 0; 1692 pipe_lock(pipe); 1693 1694 while (pipe_is_full(pipe)) { 1695 if (!pipe->readers) { 1696 send_sig(SIGPIPE, current, 0); 1697 ret = -EPIPE; 1698 break; 1699 } 1700 if (flags & SPLICE_F_NONBLOCK) { 1701 ret = -EAGAIN; 1702 break; 1703 } 1704 if (signal_pending(current)) { 1705 ret = -ERESTARTSYS; 1706 break; 1707 } 1708 pipe_wait_writable(pipe); 1709 } 1710 1711 pipe_unlock(pipe); 1712 return ret; 1713 } 1714 1715 /* 1716 * Splice contents of ipipe to opipe. 1717 */ 1718 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe, 1719 struct pipe_inode_info *opipe, 1720 size_t len, unsigned int flags) 1721 { 1722 struct pipe_buffer *ibuf, *obuf; 1723 unsigned int i_head, o_head; 1724 unsigned int i_tail, o_tail; 1725 int ret = 0; 1726 bool input_wakeup = false; 1727 1728 1729 retry: 1730 ret = ipipe_prep(ipipe, flags); 1731 if (ret) 1732 return ret; 1733 1734 ret = opipe_prep(opipe, flags); 1735 if (ret) 1736 return ret; 1737 1738 /* 1739 * Potential ABBA deadlock, work around it by ordering lock 1740 * grabbing by pipe info address. Otherwise two different processes 1741 * could deadlock (one doing tee from A -> B, the other from B -> A). 1742 */ 1743 pipe_double_lock(ipipe, opipe); 1744 1745 i_tail = ipipe->tail; 1746 o_head = opipe->head; 1747 1748 do { 1749 size_t o_len; 1750 1751 if (!opipe->readers) { 1752 send_sig(SIGPIPE, current, 0); 1753 if (!ret) 1754 ret = -EPIPE; 1755 break; 1756 } 1757 1758 i_head = ipipe->head; 1759 o_tail = opipe->tail; 1760 1761 if (pipe_empty(i_head, i_tail) && !ipipe->writers) 1762 break; 1763 1764 /* 1765 * Cannot make any progress, because either the input 1766 * pipe is empty or the output pipe is full. 1767 */ 1768 if (pipe_empty(i_head, i_tail) || 1769 pipe_full(o_head, o_tail, opipe->max_usage)) { 1770 /* Already processed some buffers, break */ 1771 if (ret) 1772 break; 1773 1774 if (flags & SPLICE_F_NONBLOCK) { 1775 ret = -EAGAIN; 1776 break; 1777 } 1778 1779 /* 1780 * We raced with another reader/writer and haven't 1781 * managed to process any buffers. A zero return 1782 * value means EOF, so retry instead. 1783 */ 1784 pipe_unlock(ipipe); 1785 pipe_unlock(opipe); 1786 goto retry; 1787 } 1788 1789 ibuf = pipe_buf(ipipe, i_tail); 1790 obuf = pipe_buf(opipe, o_head); 1791 1792 if (len >= ibuf->len) { 1793 /* 1794 * Simply move the whole buffer from ipipe to opipe 1795 */ 1796 *obuf = *ibuf; 1797 ibuf->ops = NULL; 1798 i_tail++; 1799 ipipe->tail = i_tail; 1800 input_wakeup = true; 1801 o_len = obuf->len; 1802 o_head++; 1803 opipe->head = o_head; 1804 } else { 1805 /* 1806 * Get a reference to this pipe buffer, 1807 * so we can copy the contents over. 1808 */ 1809 if (!pipe_buf_get(ipipe, ibuf)) { 1810 if (ret == 0) 1811 ret = -EFAULT; 1812 break; 1813 } 1814 *obuf = *ibuf; 1815 1816 /* 1817 * Don't inherit the gift and merge flags, we need to 1818 * prevent multiple steals of this page. 1819 */ 1820 obuf->flags &= ~PIPE_BUF_FLAG_GIFT; 1821 obuf->flags &= ~PIPE_BUF_FLAG_CAN_MERGE; 1822 1823 obuf->len = len; 1824 ibuf->offset += len; 1825 ibuf->len -= len; 1826 o_len = len; 1827 o_head++; 1828 opipe->head = o_head; 1829 } 1830 ret += o_len; 1831 len -= o_len; 1832 } while (len); 1833 1834 pipe_unlock(ipipe); 1835 pipe_unlock(opipe); 1836 1837 /* 1838 * If we put data in the output pipe, wakeup any potential readers. 1839 */ 1840 if (ret > 0) 1841 wakeup_pipe_readers(opipe); 1842 1843 if (input_wakeup) 1844 wakeup_pipe_writers(ipipe); 1845 1846 return ret; 1847 } 1848 1849 /* 1850 * Link contents of ipipe to opipe. 1851 */ 1852 static ssize_t link_pipe(struct pipe_inode_info *ipipe, 1853 struct pipe_inode_info *opipe, 1854 size_t len, unsigned int flags) 1855 { 1856 struct pipe_buffer *ibuf, *obuf; 1857 unsigned int i_head, o_head; 1858 unsigned int i_tail, o_tail; 1859 ssize_t ret = 0; 1860 1861 /* 1862 * Potential ABBA deadlock, work around it by ordering lock 1863 * grabbing by pipe info address. Otherwise two different processes 1864 * could deadlock (one doing tee from A -> B, the other from B -> A). 1865 */ 1866 pipe_double_lock(ipipe, opipe); 1867 1868 i_tail = ipipe->tail; 1869 o_head = opipe->head; 1870 1871 do { 1872 if (!opipe->readers) { 1873 send_sig(SIGPIPE, current, 0); 1874 if (!ret) 1875 ret = -EPIPE; 1876 break; 1877 } 1878 1879 i_head = ipipe->head; 1880 o_tail = opipe->tail; 1881 1882 /* 1883 * If we have iterated all input buffers or run out of 1884 * output room, break. 1885 */ 1886 if (pipe_empty(i_head, i_tail) || 1887 pipe_full(o_head, o_tail, opipe->max_usage)) 1888 break; 1889 1890 ibuf = pipe_buf(ipipe, i_tail); 1891 obuf = pipe_buf(opipe, o_head); 1892 1893 /* 1894 * Get a reference to this pipe buffer, 1895 * so we can copy the contents over. 1896 */ 1897 if (!pipe_buf_get(ipipe, ibuf)) { 1898 if (ret == 0) 1899 ret = -EFAULT; 1900 break; 1901 } 1902 1903 *obuf = *ibuf; 1904 1905 /* 1906 * Don't inherit the gift and merge flag, we need to prevent 1907 * multiple steals of this page. 1908 */ 1909 obuf->flags &= ~PIPE_BUF_FLAG_GIFT; 1910 obuf->flags &= ~PIPE_BUF_FLAG_CAN_MERGE; 1911 1912 if (obuf->len > len) 1913 obuf->len = len; 1914 ret += obuf->len; 1915 len -= obuf->len; 1916 1917 o_head++; 1918 opipe->head = o_head; 1919 i_tail++; 1920 } while (len); 1921 1922 pipe_unlock(ipipe); 1923 pipe_unlock(opipe); 1924 1925 /* 1926 * If we put data in the output pipe, wakeup any potential readers. 1927 */ 1928 if (ret > 0) 1929 wakeup_pipe_readers(opipe); 1930 1931 return ret; 1932 } 1933 1934 /* 1935 * This is a tee(1) implementation that works on pipes. It doesn't copy 1936 * any data, it simply references the 'in' pages on the 'out' pipe. 1937 * The 'flags' used are the SPLICE_F_* variants, currently the only 1938 * applicable one is SPLICE_F_NONBLOCK. 1939 */ 1940 ssize_t do_tee(struct file *in, struct file *out, size_t len, 1941 unsigned int flags) 1942 { 1943 struct pipe_inode_info *ipipe = get_pipe_info(in, true); 1944 struct pipe_inode_info *opipe = get_pipe_info(out, true); 1945 ssize_t ret = -EINVAL; 1946 1947 if (unlikely(!(in->f_mode & FMODE_READ) || 1948 !(out->f_mode & FMODE_WRITE))) 1949 return -EBADF; 1950 1951 /* 1952 * Duplicate the contents of ipipe to opipe without actually 1953 * copying the data. 1954 */ 1955 if (ipipe && opipe && ipipe != opipe) { 1956 if ((in->f_flags | out->f_flags) & O_NONBLOCK) 1957 flags |= SPLICE_F_NONBLOCK; 1958 1959 /* 1960 * Keep going, unless we encounter an error. The ipipe/opipe 1961 * ordering doesn't really matter. 1962 */ 1963 ret = ipipe_prep(ipipe, flags); 1964 if (!ret) { 1965 ret = opipe_prep(opipe, flags); 1966 if (!ret) 1967 ret = link_pipe(ipipe, opipe, len, flags); 1968 } 1969 } 1970 1971 if (ret > 0) { 1972 fsnotify_access(in); 1973 fsnotify_modify(out); 1974 } 1975 1976 return ret; 1977 } 1978 1979 SYSCALL_DEFINE4(tee, int, fdin, int, fdout, size_t, len, unsigned int, flags) 1980 { 1981 if (unlikely(flags & ~SPLICE_F_ALL)) 1982 return -EINVAL; 1983 1984 if (unlikely(!len)) 1985 return 0; 1986 1987 CLASS(fd, in)(fdin); 1988 if (fd_empty(in)) 1989 return -EBADF; 1990 1991 CLASS(fd, out)(fdout); 1992 if (fd_empty(out)) 1993 return -EBADF; 1994 1995 return do_tee(fd_file(in), fd_file(out), len, flags); 1996 } 1997