1 /* 2 * "splice": joining two ropes together by interweaving their strands. 3 * 4 * This is the "extended pipe" functionality, where a pipe is used as 5 * an arbitrary in-memory buffer. Think of a pipe as a small kernel 6 * buffer that you can use to transfer data from one end to the other. 7 * 8 * The traditional unix read/write is extended with a "splice()" operation 9 * that transfers data buffers to or from a pipe buffer. 10 * 11 * Named by Larry McVoy, original implementation from Linus, extended by 12 * Jens to support splicing to files, network, direct splicing, etc and 13 * fixing lots of bugs. 14 * 15 * Copyright (C) 2005-2006 Jens Axboe <axboe@kernel.dk> 16 * Copyright (C) 2005-2006 Linus Torvalds <torvalds@osdl.org> 17 * Copyright (C) 2006 Ingo Molnar <mingo@elte.hu> 18 * 19 */ 20 #include <linux/fs.h> 21 #include <linux/file.h> 22 #include <linux/pagemap.h> 23 #include <linux/splice.h> 24 #include <linux/memcontrol.h> 25 #include <linux/mm_inline.h> 26 #include <linux/swap.h> 27 #include <linux/writeback.h> 28 #include <linux/buffer_head.h> 29 #include <linux/module.h> 30 #include <linux/syscalls.h> 31 #include <linux/uio.h> 32 #include <linux/security.h> 33 34 /* 35 * Attempt to steal a page from a pipe buffer. This should perhaps go into 36 * a vm helper function, it's already simplified quite a bit by the 37 * addition of remove_mapping(). If success is returned, the caller may 38 * attempt to reuse this page for another destination. 39 */ 40 static int page_cache_pipe_buf_steal(struct pipe_inode_info *pipe, 41 struct pipe_buffer *buf) 42 { 43 struct page *page = buf->page; 44 struct address_space *mapping; 45 46 lock_page(page); 47 48 mapping = page_mapping(page); 49 if (mapping) { 50 WARN_ON(!PageUptodate(page)); 51 52 /* 53 * At least for ext2 with nobh option, we need to wait on 54 * writeback completing on this page, since we'll remove it 55 * from the pagecache. Otherwise truncate wont wait on the 56 * page, allowing the disk blocks to be reused by someone else 57 * before we actually wrote our data to them. fs corruption 58 * ensues. 59 */ 60 wait_on_page_writeback(page); 61 62 if (page_has_private(page) && 63 !try_to_release_page(page, GFP_KERNEL)) 64 goto out_unlock; 65 66 /* 67 * If we succeeded in removing the mapping, set LRU flag 68 * and return good. 69 */ 70 if (remove_mapping(mapping, page)) { 71 buf->flags |= PIPE_BUF_FLAG_LRU; 72 return 0; 73 } 74 } 75 76 /* 77 * Raced with truncate or failed to remove page from current 78 * address space, unlock and return failure. 79 */ 80 out_unlock: 81 unlock_page(page); 82 return 1; 83 } 84 85 static void page_cache_pipe_buf_release(struct pipe_inode_info *pipe, 86 struct pipe_buffer *buf) 87 { 88 page_cache_release(buf->page); 89 buf->flags &= ~PIPE_BUF_FLAG_LRU; 90 } 91 92 /* 93 * Check whether the contents of buf is OK to access. Since the content 94 * is a page cache page, IO may be in flight. 95 */ 96 static int page_cache_pipe_buf_confirm(struct pipe_inode_info *pipe, 97 struct pipe_buffer *buf) 98 { 99 struct page *page = buf->page; 100 int err; 101 102 if (!PageUptodate(page)) { 103 lock_page(page); 104 105 /* 106 * Page got truncated/unhashed. This will cause a 0-byte 107 * splice, if this is the first page. 108 */ 109 if (!page->mapping) { 110 err = -ENODATA; 111 goto error; 112 } 113 114 /* 115 * Uh oh, read-error from disk. 116 */ 117 if (!PageUptodate(page)) { 118 err = -EIO; 119 goto error; 120 } 121 122 /* 123 * Page is ok afterall, we are done. 124 */ 125 unlock_page(page); 126 } 127 128 return 0; 129 error: 130 unlock_page(page); 131 return err; 132 } 133 134 static const struct pipe_buf_operations page_cache_pipe_buf_ops = { 135 .can_merge = 0, 136 .map = generic_pipe_buf_map, 137 .unmap = generic_pipe_buf_unmap, 138 .confirm = page_cache_pipe_buf_confirm, 139 .release = page_cache_pipe_buf_release, 140 .steal = page_cache_pipe_buf_steal, 141 .get = generic_pipe_buf_get, 142 }; 143 144 static int user_page_pipe_buf_steal(struct pipe_inode_info *pipe, 145 struct pipe_buffer *buf) 146 { 147 if (!(buf->flags & PIPE_BUF_FLAG_GIFT)) 148 return 1; 149 150 buf->flags |= PIPE_BUF_FLAG_LRU; 151 return generic_pipe_buf_steal(pipe, buf); 152 } 153 154 static const struct pipe_buf_operations user_page_pipe_buf_ops = { 155 .can_merge = 0, 156 .map = generic_pipe_buf_map, 157 .unmap = generic_pipe_buf_unmap, 158 .confirm = generic_pipe_buf_confirm, 159 .release = page_cache_pipe_buf_release, 160 .steal = user_page_pipe_buf_steal, 161 .get = generic_pipe_buf_get, 162 }; 163 164 /** 165 * splice_to_pipe - fill passed data into a pipe 166 * @pipe: pipe to fill 167 * @spd: data to fill 168 * 169 * Description: 170 * @spd contains a map of pages and len/offset tuples, along with 171 * the struct pipe_buf_operations associated with these pages. This 172 * function will link that data to the pipe. 173 * 174 */ 175 ssize_t splice_to_pipe(struct pipe_inode_info *pipe, 176 struct splice_pipe_desc *spd) 177 { 178 unsigned int spd_pages = spd->nr_pages; 179 int ret, do_wakeup, page_nr; 180 181 ret = 0; 182 do_wakeup = 0; 183 page_nr = 0; 184 185 pipe_lock(pipe); 186 187 for (;;) { 188 if (!pipe->readers) { 189 send_sig(SIGPIPE, current, 0); 190 if (!ret) 191 ret = -EPIPE; 192 break; 193 } 194 195 if (pipe->nrbufs < PIPE_BUFFERS) { 196 int newbuf = (pipe->curbuf + pipe->nrbufs) & (PIPE_BUFFERS - 1); 197 struct pipe_buffer *buf = pipe->bufs + newbuf; 198 199 buf->page = spd->pages[page_nr]; 200 buf->offset = spd->partial[page_nr].offset; 201 buf->len = spd->partial[page_nr].len; 202 buf->private = spd->partial[page_nr].private; 203 buf->ops = spd->ops; 204 if (spd->flags & SPLICE_F_GIFT) 205 buf->flags |= PIPE_BUF_FLAG_GIFT; 206 207 pipe->nrbufs++; 208 page_nr++; 209 ret += buf->len; 210 211 if (pipe->inode) 212 do_wakeup = 1; 213 214 if (!--spd->nr_pages) 215 break; 216 if (pipe->nrbufs < PIPE_BUFFERS) 217 continue; 218 219 break; 220 } 221 222 if (spd->flags & SPLICE_F_NONBLOCK) { 223 if (!ret) 224 ret = -EAGAIN; 225 break; 226 } 227 228 if (signal_pending(current)) { 229 if (!ret) 230 ret = -ERESTARTSYS; 231 break; 232 } 233 234 if (do_wakeup) { 235 smp_mb(); 236 if (waitqueue_active(&pipe->wait)) 237 wake_up_interruptible_sync(&pipe->wait); 238 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN); 239 do_wakeup = 0; 240 } 241 242 pipe->waiting_writers++; 243 pipe_wait(pipe); 244 pipe->waiting_writers--; 245 } 246 247 pipe_unlock(pipe); 248 249 if (do_wakeup) { 250 smp_mb(); 251 if (waitqueue_active(&pipe->wait)) 252 wake_up_interruptible(&pipe->wait); 253 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN); 254 } 255 256 while (page_nr < spd_pages) 257 spd->spd_release(spd, page_nr++); 258 259 return ret; 260 } 261 262 static void spd_release_page(struct splice_pipe_desc *spd, unsigned int i) 263 { 264 page_cache_release(spd->pages[i]); 265 } 266 267 static int 268 __generic_file_splice_read(struct file *in, loff_t *ppos, 269 struct pipe_inode_info *pipe, size_t len, 270 unsigned int flags) 271 { 272 struct address_space *mapping = in->f_mapping; 273 unsigned int loff, nr_pages, req_pages; 274 struct page *pages[PIPE_BUFFERS]; 275 struct partial_page partial[PIPE_BUFFERS]; 276 struct page *page; 277 pgoff_t index, end_index; 278 loff_t isize; 279 int error, page_nr; 280 struct splice_pipe_desc spd = { 281 .pages = pages, 282 .partial = partial, 283 .flags = flags, 284 .ops = &page_cache_pipe_buf_ops, 285 .spd_release = spd_release_page, 286 }; 287 288 index = *ppos >> PAGE_CACHE_SHIFT; 289 loff = *ppos & ~PAGE_CACHE_MASK; 290 req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; 291 nr_pages = min(req_pages, (unsigned)PIPE_BUFFERS); 292 293 /* 294 * Lookup the (hopefully) full range of pages we need. 295 */ 296 spd.nr_pages = find_get_pages_contig(mapping, index, nr_pages, pages); 297 index += spd.nr_pages; 298 299 /* 300 * If find_get_pages_contig() returned fewer pages than we needed, 301 * readahead/allocate the rest and fill in the holes. 302 */ 303 if (spd.nr_pages < nr_pages) 304 page_cache_sync_readahead(mapping, &in->f_ra, in, 305 index, req_pages - spd.nr_pages); 306 307 error = 0; 308 while (spd.nr_pages < nr_pages) { 309 /* 310 * Page could be there, find_get_pages_contig() breaks on 311 * the first hole. 312 */ 313 page = find_get_page(mapping, index); 314 if (!page) { 315 /* 316 * page didn't exist, allocate one. 317 */ 318 page = page_cache_alloc_cold(mapping); 319 if (!page) 320 break; 321 322 error = add_to_page_cache_lru(page, mapping, index, 323 mapping_gfp_mask(mapping)); 324 if (unlikely(error)) { 325 page_cache_release(page); 326 if (error == -EEXIST) 327 continue; 328 break; 329 } 330 /* 331 * add_to_page_cache() locks the page, unlock it 332 * to avoid convoluting the logic below even more. 333 */ 334 unlock_page(page); 335 } 336 337 pages[spd.nr_pages++] = page; 338 index++; 339 } 340 341 /* 342 * Now loop over the map and see if we need to start IO on any 343 * pages, fill in the partial map, etc. 344 */ 345 index = *ppos >> PAGE_CACHE_SHIFT; 346 nr_pages = spd.nr_pages; 347 spd.nr_pages = 0; 348 for (page_nr = 0; page_nr < nr_pages; page_nr++) { 349 unsigned int this_len; 350 351 if (!len) 352 break; 353 354 /* 355 * this_len is the max we'll use from this page 356 */ 357 this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff); 358 page = pages[page_nr]; 359 360 if (PageReadahead(page)) 361 page_cache_async_readahead(mapping, &in->f_ra, in, 362 page, index, req_pages - page_nr); 363 364 /* 365 * If the page isn't uptodate, we may need to start io on it 366 */ 367 if (!PageUptodate(page)) { 368 /* 369 * If in nonblock mode then dont block on waiting 370 * for an in-flight io page 371 */ 372 if (flags & SPLICE_F_NONBLOCK) { 373 if (!trylock_page(page)) { 374 error = -EAGAIN; 375 break; 376 } 377 } else 378 lock_page(page); 379 380 /* 381 * Page was truncated, or invalidated by the 382 * filesystem. Redo the find/create, but this time the 383 * page is kept locked, so there's no chance of another 384 * race with truncate/invalidate. 385 */ 386 if (!page->mapping) { 387 unlock_page(page); 388 page = find_or_create_page(mapping, index, 389 mapping_gfp_mask(mapping)); 390 391 if (!page) { 392 error = -ENOMEM; 393 break; 394 } 395 page_cache_release(pages[page_nr]); 396 pages[page_nr] = page; 397 } 398 /* 399 * page was already under io and is now done, great 400 */ 401 if (PageUptodate(page)) { 402 unlock_page(page); 403 goto fill_it; 404 } 405 406 /* 407 * need to read in the page 408 */ 409 error = mapping->a_ops->readpage(in, page); 410 if (unlikely(error)) { 411 /* 412 * We really should re-lookup the page here, 413 * but it complicates things a lot. Instead 414 * lets just do what we already stored, and 415 * we'll get it the next time we are called. 416 */ 417 if (error == AOP_TRUNCATED_PAGE) 418 error = 0; 419 420 break; 421 } 422 } 423 fill_it: 424 /* 425 * i_size must be checked after PageUptodate. 426 */ 427 isize = i_size_read(mapping->host); 428 end_index = (isize - 1) >> PAGE_CACHE_SHIFT; 429 if (unlikely(!isize || index > end_index)) 430 break; 431 432 /* 433 * if this is the last page, see if we need to shrink 434 * the length and stop 435 */ 436 if (end_index == index) { 437 unsigned int plen; 438 439 /* 440 * max good bytes in this page 441 */ 442 plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1; 443 if (plen <= loff) 444 break; 445 446 /* 447 * force quit after adding this page 448 */ 449 this_len = min(this_len, plen - loff); 450 len = this_len; 451 } 452 453 partial[page_nr].offset = loff; 454 partial[page_nr].len = this_len; 455 len -= this_len; 456 loff = 0; 457 spd.nr_pages++; 458 index++; 459 } 460 461 /* 462 * Release any pages at the end, if we quit early. 'page_nr' is how far 463 * we got, 'nr_pages' is how many pages are in the map. 464 */ 465 while (page_nr < nr_pages) 466 page_cache_release(pages[page_nr++]); 467 in->f_ra.prev_pos = (loff_t)index << PAGE_CACHE_SHIFT; 468 469 if (spd.nr_pages) 470 return splice_to_pipe(pipe, &spd); 471 472 return error; 473 } 474 475 /** 476 * generic_file_splice_read - splice data from file to a pipe 477 * @in: file to splice from 478 * @ppos: position in @in 479 * @pipe: pipe to splice to 480 * @len: number of bytes to splice 481 * @flags: splice modifier flags 482 * 483 * Description: 484 * Will read pages from given file and fill them into a pipe. Can be 485 * used as long as the address_space operations for the source implements 486 * a readpage() hook. 487 * 488 */ 489 ssize_t generic_file_splice_read(struct file *in, loff_t *ppos, 490 struct pipe_inode_info *pipe, size_t len, 491 unsigned int flags) 492 { 493 loff_t isize, left; 494 int ret; 495 496 isize = i_size_read(in->f_mapping->host); 497 if (unlikely(*ppos >= isize)) 498 return 0; 499 500 left = isize - *ppos; 501 if (unlikely(left < len)) 502 len = left; 503 504 ret = __generic_file_splice_read(in, ppos, pipe, len, flags); 505 if (ret > 0) 506 *ppos += ret; 507 508 return ret; 509 } 510 EXPORT_SYMBOL(generic_file_splice_read); 511 512 static const struct pipe_buf_operations default_pipe_buf_ops = { 513 .can_merge = 0, 514 .map = generic_pipe_buf_map, 515 .unmap = generic_pipe_buf_unmap, 516 .confirm = generic_pipe_buf_confirm, 517 .release = generic_pipe_buf_release, 518 .steal = generic_pipe_buf_steal, 519 .get = generic_pipe_buf_get, 520 }; 521 522 static ssize_t kernel_readv(struct file *file, const struct iovec *vec, 523 unsigned long vlen, loff_t offset) 524 { 525 mm_segment_t old_fs; 526 loff_t pos = offset; 527 ssize_t res; 528 529 old_fs = get_fs(); 530 set_fs(get_ds()); 531 /* The cast to a user pointer is valid due to the set_fs() */ 532 res = vfs_readv(file, (const struct iovec __user *)vec, vlen, &pos); 533 set_fs(old_fs); 534 535 return res; 536 } 537 538 static ssize_t kernel_write(struct file *file, const char *buf, size_t count, 539 loff_t pos) 540 { 541 mm_segment_t old_fs; 542 ssize_t res; 543 544 old_fs = get_fs(); 545 set_fs(get_ds()); 546 /* The cast to a user pointer is valid due to the set_fs() */ 547 res = vfs_write(file, (const char __user *)buf, count, &pos); 548 set_fs(old_fs); 549 550 return res; 551 } 552 553 ssize_t default_file_splice_read(struct file *in, loff_t *ppos, 554 struct pipe_inode_info *pipe, size_t len, 555 unsigned int flags) 556 { 557 unsigned int nr_pages; 558 unsigned int nr_freed; 559 size_t offset; 560 struct page *pages[PIPE_BUFFERS]; 561 struct partial_page partial[PIPE_BUFFERS]; 562 struct iovec vec[PIPE_BUFFERS]; 563 pgoff_t index; 564 ssize_t res; 565 size_t this_len; 566 int error; 567 int i; 568 struct splice_pipe_desc spd = { 569 .pages = pages, 570 .partial = partial, 571 .flags = flags, 572 .ops = &default_pipe_buf_ops, 573 .spd_release = spd_release_page, 574 }; 575 576 index = *ppos >> PAGE_CACHE_SHIFT; 577 offset = *ppos & ~PAGE_CACHE_MASK; 578 nr_pages = (len + offset + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; 579 580 for (i = 0; i < nr_pages && i < PIPE_BUFFERS && len; i++) { 581 struct page *page; 582 583 page = alloc_page(GFP_USER); 584 error = -ENOMEM; 585 if (!page) 586 goto err; 587 588 this_len = min_t(size_t, len, PAGE_CACHE_SIZE - offset); 589 vec[i].iov_base = (void __user *) page_address(page); 590 vec[i].iov_len = this_len; 591 pages[i] = page; 592 spd.nr_pages++; 593 len -= this_len; 594 offset = 0; 595 } 596 597 res = kernel_readv(in, vec, spd.nr_pages, *ppos); 598 if (res < 0) { 599 error = res; 600 goto err; 601 } 602 603 error = 0; 604 if (!res) 605 goto err; 606 607 nr_freed = 0; 608 for (i = 0; i < spd.nr_pages; i++) { 609 this_len = min_t(size_t, vec[i].iov_len, res); 610 partial[i].offset = 0; 611 partial[i].len = this_len; 612 if (!this_len) { 613 __free_page(pages[i]); 614 pages[i] = NULL; 615 nr_freed++; 616 } 617 res -= this_len; 618 } 619 spd.nr_pages -= nr_freed; 620 621 res = splice_to_pipe(pipe, &spd); 622 if (res > 0) 623 *ppos += res; 624 625 return res; 626 627 err: 628 for (i = 0; i < spd.nr_pages; i++) 629 __free_page(pages[i]); 630 631 return error; 632 } 633 EXPORT_SYMBOL(default_file_splice_read); 634 635 /* 636 * Send 'sd->len' bytes to socket from 'sd->file' at position 'sd->pos' 637 * using sendpage(). Return the number of bytes sent. 638 */ 639 static int pipe_to_sendpage(struct pipe_inode_info *pipe, 640 struct pipe_buffer *buf, struct splice_desc *sd) 641 { 642 struct file *file = sd->u.file; 643 loff_t pos = sd->pos; 644 int ret, more; 645 646 ret = buf->ops->confirm(pipe, buf); 647 if (!ret) { 648 more = (sd->flags & SPLICE_F_MORE) || sd->len < sd->total_len; 649 650 ret = file->f_op->sendpage(file, buf->page, buf->offset, 651 sd->len, &pos, more); 652 } 653 654 return ret; 655 } 656 657 /* 658 * This is a little more tricky than the file -> pipe splicing. There are 659 * basically three cases: 660 * 661 * - Destination page already exists in the address space and there 662 * are users of it. For that case we have no other option that 663 * copying the data. Tough luck. 664 * - Destination page already exists in the address space, but there 665 * are no users of it. Make sure it's uptodate, then drop it. Fall 666 * through to last case. 667 * - Destination page does not exist, we can add the pipe page to 668 * the page cache and avoid the copy. 669 * 670 * If asked to move pages to the output file (SPLICE_F_MOVE is set in 671 * sd->flags), we attempt to migrate pages from the pipe to the output 672 * file address space page cache. This is possible if no one else has 673 * the pipe page referenced outside of the pipe and page cache. If 674 * SPLICE_F_MOVE isn't set, or we cannot move the page, we simply create 675 * a new page in the output file page cache and fill/dirty that. 676 */ 677 int pipe_to_file(struct pipe_inode_info *pipe, struct pipe_buffer *buf, 678 struct splice_desc *sd) 679 { 680 struct file *file = sd->u.file; 681 struct address_space *mapping = file->f_mapping; 682 unsigned int offset, this_len; 683 struct page *page; 684 void *fsdata; 685 int ret; 686 687 /* 688 * make sure the data in this buffer is uptodate 689 */ 690 ret = buf->ops->confirm(pipe, buf); 691 if (unlikely(ret)) 692 return ret; 693 694 offset = sd->pos & ~PAGE_CACHE_MASK; 695 696 this_len = sd->len; 697 if (this_len + offset > PAGE_CACHE_SIZE) 698 this_len = PAGE_CACHE_SIZE - offset; 699 700 ret = pagecache_write_begin(file, mapping, sd->pos, this_len, 701 AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata); 702 if (unlikely(ret)) 703 goto out; 704 705 if (buf->page != page) { 706 /* 707 * Careful, ->map() uses KM_USER0! 708 */ 709 char *src = buf->ops->map(pipe, buf, 1); 710 char *dst = kmap_atomic(page, KM_USER1); 711 712 memcpy(dst + offset, src + buf->offset, this_len); 713 flush_dcache_page(page); 714 kunmap_atomic(dst, KM_USER1); 715 buf->ops->unmap(pipe, buf, src); 716 } 717 ret = pagecache_write_end(file, mapping, sd->pos, this_len, this_len, 718 page, fsdata); 719 out: 720 return ret; 721 } 722 EXPORT_SYMBOL(pipe_to_file); 723 724 static void wakeup_pipe_writers(struct pipe_inode_info *pipe) 725 { 726 smp_mb(); 727 if (waitqueue_active(&pipe->wait)) 728 wake_up_interruptible(&pipe->wait); 729 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT); 730 } 731 732 /** 733 * splice_from_pipe_feed - feed available data from a pipe to a file 734 * @pipe: pipe to splice from 735 * @sd: information to @actor 736 * @actor: handler that splices the data 737 * 738 * Description: 739 * This function loops over the pipe and calls @actor to do the 740 * actual moving of a single struct pipe_buffer to the desired 741 * destination. It returns when there's no more buffers left in 742 * the pipe or if the requested number of bytes (@sd->total_len) 743 * have been copied. It returns a positive number (one) if the 744 * pipe needs to be filled with more data, zero if the required 745 * number of bytes have been copied and -errno on error. 746 * 747 * This, together with splice_from_pipe_{begin,end,next}, may be 748 * used to implement the functionality of __splice_from_pipe() when 749 * locking is required around copying the pipe buffers to the 750 * destination. 751 */ 752 int splice_from_pipe_feed(struct pipe_inode_info *pipe, struct splice_desc *sd, 753 splice_actor *actor) 754 { 755 int ret; 756 757 while (pipe->nrbufs) { 758 struct pipe_buffer *buf = pipe->bufs + pipe->curbuf; 759 const struct pipe_buf_operations *ops = buf->ops; 760 761 sd->len = buf->len; 762 if (sd->len > sd->total_len) 763 sd->len = sd->total_len; 764 765 ret = actor(pipe, buf, sd); 766 if (ret <= 0) { 767 if (ret == -ENODATA) 768 ret = 0; 769 return ret; 770 } 771 buf->offset += ret; 772 buf->len -= ret; 773 774 sd->num_spliced += ret; 775 sd->len -= ret; 776 sd->pos += ret; 777 sd->total_len -= ret; 778 779 if (!buf->len) { 780 buf->ops = NULL; 781 ops->release(pipe, buf); 782 pipe->curbuf = (pipe->curbuf + 1) & (PIPE_BUFFERS - 1); 783 pipe->nrbufs--; 784 if (pipe->inode) 785 sd->need_wakeup = true; 786 } 787 788 if (!sd->total_len) 789 return 0; 790 } 791 792 return 1; 793 } 794 EXPORT_SYMBOL(splice_from_pipe_feed); 795 796 /** 797 * splice_from_pipe_next - wait for some data to splice from 798 * @pipe: pipe to splice from 799 * @sd: information about the splice operation 800 * 801 * Description: 802 * This function will wait for some data and return a positive 803 * value (one) if pipe buffers are available. It will return zero 804 * or -errno if no more data needs to be spliced. 805 */ 806 int splice_from_pipe_next(struct pipe_inode_info *pipe, struct splice_desc *sd) 807 { 808 while (!pipe->nrbufs) { 809 if (!pipe->writers) 810 return 0; 811 812 if (!pipe->waiting_writers && sd->num_spliced) 813 return 0; 814 815 if (sd->flags & SPLICE_F_NONBLOCK) 816 return -EAGAIN; 817 818 if (signal_pending(current)) 819 return -ERESTARTSYS; 820 821 if (sd->need_wakeup) { 822 wakeup_pipe_writers(pipe); 823 sd->need_wakeup = false; 824 } 825 826 pipe_wait(pipe); 827 } 828 829 return 1; 830 } 831 EXPORT_SYMBOL(splice_from_pipe_next); 832 833 /** 834 * splice_from_pipe_begin - start splicing from pipe 835 * @sd: information about the splice operation 836 * 837 * Description: 838 * This function should be called before a loop containing 839 * splice_from_pipe_next() and splice_from_pipe_feed() to 840 * initialize the necessary fields of @sd. 841 */ 842 void splice_from_pipe_begin(struct splice_desc *sd) 843 { 844 sd->num_spliced = 0; 845 sd->need_wakeup = false; 846 } 847 EXPORT_SYMBOL(splice_from_pipe_begin); 848 849 /** 850 * splice_from_pipe_end - finish splicing from pipe 851 * @pipe: pipe to splice from 852 * @sd: information about the splice operation 853 * 854 * Description: 855 * This function will wake up pipe writers if necessary. It should 856 * be called after a loop containing splice_from_pipe_next() and 857 * splice_from_pipe_feed(). 858 */ 859 void splice_from_pipe_end(struct pipe_inode_info *pipe, struct splice_desc *sd) 860 { 861 if (sd->need_wakeup) 862 wakeup_pipe_writers(pipe); 863 } 864 EXPORT_SYMBOL(splice_from_pipe_end); 865 866 /** 867 * __splice_from_pipe - splice data from a pipe to given actor 868 * @pipe: pipe to splice from 869 * @sd: information to @actor 870 * @actor: handler that splices the data 871 * 872 * Description: 873 * This function does little more than loop over the pipe and call 874 * @actor to do the actual moving of a single struct pipe_buffer to 875 * the desired destination. See pipe_to_file, pipe_to_sendpage, or 876 * pipe_to_user. 877 * 878 */ 879 ssize_t __splice_from_pipe(struct pipe_inode_info *pipe, struct splice_desc *sd, 880 splice_actor *actor) 881 { 882 int ret; 883 884 splice_from_pipe_begin(sd); 885 do { 886 ret = splice_from_pipe_next(pipe, sd); 887 if (ret > 0) 888 ret = splice_from_pipe_feed(pipe, sd, actor); 889 } while (ret > 0); 890 splice_from_pipe_end(pipe, sd); 891 892 return sd->num_spliced ? sd->num_spliced : ret; 893 } 894 EXPORT_SYMBOL(__splice_from_pipe); 895 896 /** 897 * splice_from_pipe - splice data from a pipe to a file 898 * @pipe: pipe to splice from 899 * @out: file to splice to 900 * @ppos: position in @out 901 * @len: how many bytes to splice 902 * @flags: splice modifier flags 903 * @actor: handler that splices the data 904 * 905 * Description: 906 * See __splice_from_pipe. This function locks the pipe inode, 907 * otherwise it's identical to __splice_from_pipe(). 908 * 909 */ 910 ssize_t splice_from_pipe(struct pipe_inode_info *pipe, struct file *out, 911 loff_t *ppos, size_t len, unsigned int flags, 912 splice_actor *actor) 913 { 914 ssize_t ret; 915 struct splice_desc sd = { 916 .total_len = len, 917 .flags = flags, 918 .pos = *ppos, 919 .u.file = out, 920 }; 921 922 pipe_lock(pipe); 923 ret = __splice_from_pipe(pipe, &sd, actor); 924 pipe_unlock(pipe); 925 926 return ret; 927 } 928 929 /** 930 * generic_file_splice_write - splice data from a pipe to a file 931 * @pipe: pipe info 932 * @out: file to write to 933 * @ppos: position in @out 934 * @len: number of bytes to splice 935 * @flags: splice modifier flags 936 * 937 * Description: 938 * Will either move or copy pages (determined by @flags options) from 939 * the given pipe inode to the given file. 940 * 941 */ 942 ssize_t 943 generic_file_splice_write(struct pipe_inode_info *pipe, struct file *out, 944 loff_t *ppos, size_t len, unsigned int flags) 945 { 946 struct address_space *mapping = out->f_mapping; 947 struct inode *inode = mapping->host; 948 struct splice_desc sd = { 949 .total_len = len, 950 .flags = flags, 951 .pos = *ppos, 952 .u.file = out, 953 }; 954 ssize_t ret; 955 956 pipe_lock(pipe); 957 958 splice_from_pipe_begin(&sd); 959 do { 960 ret = splice_from_pipe_next(pipe, &sd); 961 if (ret <= 0) 962 break; 963 964 mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD); 965 ret = file_remove_suid(out); 966 if (!ret) 967 ret = splice_from_pipe_feed(pipe, &sd, pipe_to_file); 968 mutex_unlock(&inode->i_mutex); 969 } while (ret > 0); 970 splice_from_pipe_end(pipe, &sd); 971 972 pipe_unlock(pipe); 973 974 if (sd.num_spliced) 975 ret = sd.num_spliced; 976 977 if (ret > 0) { 978 unsigned long nr_pages; 979 980 *ppos += ret; 981 nr_pages = (ret + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; 982 983 /* 984 * If file or inode is SYNC and we actually wrote some data, 985 * sync it. 986 */ 987 if (unlikely((out->f_flags & O_SYNC) || IS_SYNC(inode))) { 988 int err; 989 990 mutex_lock(&inode->i_mutex); 991 err = generic_osync_inode(inode, mapping, 992 OSYNC_METADATA|OSYNC_DATA); 993 mutex_unlock(&inode->i_mutex); 994 995 if (err) 996 ret = err; 997 } 998 balance_dirty_pages_ratelimited_nr(mapping, nr_pages); 999 } 1000 1001 return ret; 1002 } 1003 1004 EXPORT_SYMBOL(generic_file_splice_write); 1005 1006 static int write_pipe_buf(struct pipe_inode_info *pipe, struct pipe_buffer *buf, 1007 struct splice_desc *sd) 1008 { 1009 int ret; 1010 void *data; 1011 1012 ret = buf->ops->confirm(pipe, buf); 1013 if (ret) 1014 return ret; 1015 1016 data = buf->ops->map(pipe, buf, 0); 1017 ret = kernel_write(sd->u.file, data + buf->offset, sd->len, sd->pos); 1018 buf->ops->unmap(pipe, buf, data); 1019 1020 return ret; 1021 } 1022 1023 static ssize_t default_file_splice_write(struct pipe_inode_info *pipe, 1024 struct file *out, loff_t *ppos, 1025 size_t len, unsigned int flags) 1026 { 1027 ssize_t ret; 1028 1029 ret = splice_from_pipe(pipe, out, ppos, len, flags, write_pipe_buf); 1030 if (ret > 0) 1031 *ppos += ret; 1032 1033 return ret; 1034 } 1035 1036 /** 1037 * generic_splice_sendpage - splice data from a pipe to a socket 1038 * @pipe: pipe to splice from 1039 * @out: socket to write to 1040 * @ppos: position in @out 1041 * @len: number of bytes to splice 1042 * @flags: splice modifier flags 1043 * 1044 * Description: 1045 * Will send @len bytes from the pipe to a network socket. No data copying 1046 * is involved. 1047 * 1048 */ 1049 ssize_t generic_splice_sendpage(struct pipe_inode_info *pipe, struct file *out, 1050 loff_t *ppos, size_t len, unsigned int flags) 1051 { 1052 return splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_sendpage); 1053 } 1054 1055 EXPORT_SYMBOL(generic_splice_sendpage); 1056 1057 /* 1058 * Attempt to initiate a splice from pipe to file. 1059 */ 1060 static long do_splice_from(struct pipe_inode_info *pipe, struct file *out, 1061 loff_t *ppos, size_t len, unsigned int flags) 1062 { 1063 ssize_t (*splice_write)(struct pipe_inode_info *, struct file *, 1064 loff_t *, size_t, unsigned int); 1065 int ret; 1066 1067 if (unlikely(!(out->f_mode & FMODE_WRITE))) 1068 return -EBADF; 1069 1070 if (unlikely(out->f_flags & O_APPEND)) 1071 return -EINVAL; 1072 1073 ret = rw_verify_area(WRITE, out, ppos, len); 1074 if (unlikely(ret < 0)) 1075 return ret; 1076 1077 splice_write = out->f_op->splice_write; 1078 if (!splice_write) 1079 splice_write = default_file_splice_write; 1080 1081 return splice_write(pipe, out, ppos, len, flags); 1082 } 1083 1084 /* 1085 * Attempt to initiate a splice from a file to a pipe. 1086 */ 1087 static long do_splice_to(struct file *in, loff_t *ppos, 1088 struct pipe_inode_info *pipe, size_t len, 1089 unsigned int flags) 1090 { 1091 ssize_t (*splice_read)(struct file *, loff_t *, 1092 struct pipe_inode_info *, size_t, unsigned int); 1093 int ret; 1094 1095 if (unlikely(!(in->f_mode & FMODE_READ))) 1096 return -EBADF; 1097 1098 ret = rw_verify_area(READ, in, ppos, len); 1099 if (unlikely(ret < 0)) 1100 return ret; 1101 1102 splice_read = in->f_op->splice_read; 1103 if (!splice_read) 1104 splice_read = default_file_splice_read; 1105 1106 return splice_read(in, ppos, pipe, len, flags); 1107 } 1108 1109 /** 1110 * splice_direct_to_actor - splices data directly between two non-pipes 1111 * @in: file to splice from 1112 * @sd: actor information on where to splice to 1113 * @actor: handles the data splicing 1114 * 1115 * Description: 1116 * This is a special case helper to splice directly between two 1117 * points, without requiring an explicit pipe. Internally an allocated 1118 * pipe is cached in the process, and reused during the lifetime of 1119 * that process. 1120 * 1121 */ 1122 ssize_t splice_direct_to_actor(struct file *in, struct splice_desc *sd, 1123 splice_direct_actor *actor) 1124 { 1125 struct pipe_inode_info *pipe; 1126 long ret, bytes; 1127 umode_t i_mode; 1128 size_t len; 1129 int i, flags; 1130 1131 /* 1132 * We require the input being a regular file, as we don't want to 1133 * randomly drop data for eg socket -> socket splicing. Use the 1134 * piped splicing for that! 1135 */ 1136 i_mode = in->f_path.dentry->d_inode->i_mode; 1137 if (unlikely(!S_ISREG(i_mode) && !S_ISBLK(i_mode))) 1138 return -EINVAL; 1139 1140 /* 1141 * neither in nor out is a pipe, setup an internal pipe attached to 1142 * 'out' and transfer the wanted data from 'in' to 'out' through that 1143 */ 1144 pipe = current->splice_pipe; 1145 if (unlikely(!pipe)) { 1146 pipe = alloc_pipe_info(NULL); 1147 if (!pipe) 1148 return -ENOMEM; 1149 1150 /* 1151 * We don't have an immediate reader, but we'll read the stuff 1152 * out of the pipe right after the splice_to_pipe(). So set 1153 * PIPE_READERS appropriately. 1154 */ 1155 pipe->readers = 1; 1156 1157 current->splice_pipe = pipe; 1158 } 1159 1160 /* 1161 * Do the splice. 1162 */ 1163 ret = 0; 1164 bytes = 0; 1165 len = sd->total_len; 1166 flags = sd->flags; 1167 1168 /* 1169 * Don't block on output, we have to drain the direct pipe. 1170 */ 1171 sd->flags &= ~SPLICE_F_NONBLOCK; 1172 1173 while (len) { 1174 size_t read_len; 1175 loff_t pos = sd->pos, prev_pos = pos; 1176 1177 ret = do_splice_to(in, &pos, pipe, len, flags); 1178 if (unlikely(ret <= 0)) 1179 goto out_release; 1180 1181 read_len = ret; 1182 sd->total_len = read_len; 1183 1184 /* 1185 * NOTE: nonblocking mode only applies to the input. We 1186 * must not do the output in nonblocking mode as then we 1187 * could get stuck data in the internal pipe: 1188 */ 1189 ret = actor(pipe, sd); 1190 if (unlikely(ret <= 0)) { 1191 sd->pos = prev_pos; 1192 goto out_release; 1193 } 1194 1195 bytes += ret; 1196 len -= ret; 1197 sd->pos = pos; 1198 1199 if (ret < read_len) { 1200 sd->pos = prev_pos + ret; 1201 goto out_release; 1202 } 1203 } 1204 1205 done: 1206 pipe->nrbufs = pipe->curbuf = 0; 1207 file_accessed(in); 1208 return bytes; 1209 1210 out_release: 1211 /* 1212 * If we did an incomplete transfer we must release 1213 * the pipe buffers in question: 1214 */ 1215 for (i = 0; i < PIPE_BUFFERS; i++) { 1216 struct pipe_buffer *buf = pipe->bufs + i; 1217 1218 if (buf->ops) { 1219 buf->ops->release(pipe, buf); 1220 buf->ops = NULL; 1221 } 1222 } 1223 1224 if (!bytes) 1225 bytes = ret; 1226 1227 goto done; 1228 } 1229 EXPORT_SYMBOL(splice_direct_to_actor); 1230 1231 static int direct_splice_actor(struct pipe_inode_info *pipe, 1232 struct splice_desc *sd) 1233 { 1234 struct file *file = sd->u.file; 1235 1236 return do_splice_from(pipe, file, &sd->pos, sd->total_len, sd->flags); 1237 } 1238 1239 /** 1240 * do_splice_direct - splices data directly between two files 1241 * @in: file to splice from 1242 * @ppos: input file offset 1243 * @out: file to splice to 1244 * @len: number of bytes to splice 1245 * @flags: splice modifier flags 1246 * 1247 * Description: 1248 * For use by do_sendfile(). splice can easily emulate sendfile, but 1249 * doing it in the application would incur an extra system call 1250 * (splice in + splice out, as compared to just sendfile()). So this helper 1251 * can splice directly through a process-private pipe. 1252 * 1253 */ 1254 long do_splice_direct(struct file *in, loff_t *ppos, struct file *out, 1255 size_t len, unsigned int flags) 1256 { 1257 struct splice_desc sd = { 1258 .len = len, 1259 .total_len = len, 1260 .flags = flags, 1261 .pos = *ppos, 1262 .u.file = out, 1263 }; 1264 long ret; 1265 1266 ret = splice_direct_to_actor(in, &sd, direct_splice_actor); 1267 if (ret > 0) 1268 *ppos = sd.pos; 1269 1270 return ret; 1271 } 1272 1273 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe, 1274 struct pipe_inode_info *opipe, 1275 size_t len, unsigned int flags); 1276 /* 1277 * After the inode slimming patch, i_pipe/i_bdev/i_cdev share the same 1278 * location, so checking ->i_pipe is not enough to verify that this is a 1279 * pipe. 1280 */ 1281 static inline struct pipe_inode_info *pipe_info(struct inode *inode) 1282 { 1283 if (S_ISFIFO(inode->i_mode)) 1284 return inode->i_pipe; 1285 1286 return NULL; 1287 } 1288 1289 /* 1290 * Determine where to splice to/from. 1291 */ 1292 static long do_splice(struct file *in, loff_t __user *off_in, 1293 struct file *out, loff_t __user *off_out, 1294 size_t len, unsigned int flags) 1295 { 1296 struct pipe_inode_info *ipipe; 1297 struct pipe_inode_info *opipe; 1298 loff_t offset, *off; 1299 long ret; 1300 1301 ipipe = pipe_info(in->f_path.dentry->d_inode); 1302 opipe = pipe_info(out->f_path.dentry->d_inode); 1303 1304 if (ipipe && opipe) { 1305 if (off_in || off_out) 1306 return -ESPIPE; 1307 1308 if (!(in->f_mode & FMODE_READ)) 1309 return -EBADF; 1310 1311 if (!(out->f_mode & FMODE_WRITE)) 1312 return -EBADF; 1313 1314 /* Splicing to self would be fun, but... */ 1315 if (ipipe == opipe) 1316 return -EINVAL; 1317 1318 return splice_pipe_to_pipe(ipipe, opipe, len, flags); 1319 } 1320 1321 if (ipipe) { 1322 if (off_in) 1323 return -ESPIPE; 1324 if (off_out) { 1325 if (out->f_op->llseek == no_llseek) 1326 return -EINVAL; 1327 if (copy_from_user(&offset, off_out, sizeof(loff_t))) 1328 return -EFAULT; 1329 off = &offset; 1330 } else 1331 off = &out->f_pos; 1332 1333 ret = do_splice_from(ipipe, out, off, len, flags); 1334 1335 if (off_out && copy_to_user(off_out, off, sizeof(loff_t))) 1336 ret = -EFAULT; 1337 1338 return ret; 1339 } 1340 1341 if (opipe) { 1342 if (off_out) 1343 return -ESPIPE; 1344 if (off_in) { 1345 if (in->f_op->llseek == no_llseek) 1346 return -EINVAL; 1347 if (copy_from_user(&offset, off_in, sizeof(loff_t))) 1348 return -EFAULT; 1349 off = &offset; 1350 } else 1351 off = &in->f_pos; 1352 1353 ret = do_splice_to(in, off, opipe, len, flags); 1354 1355 if (off_in && copy_to_user(off_in, off, sizeof(loff_t))) 1356 ret = -EFAULT; 1357 1358 return ret; 1359 } 1360 1361 return -EINVAL; 1362 } 1363 1364 /* 1365 * Map an iov into an array of pages and offset/length tupples. With the 1366 * partial_page structure, we can map several non-contiguous ranges into 1367 * our ones pages[] map instead of splitting that operation into pieces. 1368 * Could easily be exported as a generic helper for other users, in which 1369 * case one would probably want to add a 'max_nr_pages' parameter as well. 1370 */ 1371 static int get_iovec_page_array(const struct iovec __user *iov, 1372 unsigned int nr_vecs, struct page **pages, 1373 struct partial_page *partial, int aligned) 1374 { 1375 int buffers = 0, error = 0; 1376 1377 while (nr_vecs) { 1378 unsigned long off, npages; 1379 struct iovec entry; 1380 void __user *base; 1381 size_t len; 1382 int i; 1383 1384 error = -EFAULT; 1385 if (copy_from_user(&entry, iov, sizeof(entry))) 1386 break; 1387 1388 base = entry.iov_base; 1389 len = entry.iov_len; 1390 1391 /* 1392 * Sanity check this iovec. 0 read succeeds. 1393 */ 1394 error = 0; 1395 if (unlikely(!len)) 1396 break; 1397 error = -EFAULT; 1398 if (!access_ok(VERIFY_READ, base, len)) 1399 break; 1400 1401 /* 1402 * Get this base offset and number of pages, then map 1403 * in the user pages. 1404 */ 1405 off = (unsigned long) base & ~PAGE_MASK; 1406 1407 /* 1408 * If asked for alignment, the offset must be zero and the 1409 * length a multiple of the PAGE_SIZE. 1410 */ 1411 error = -EINVAL; 1412 if (aligned && (off || len & ~PAGE_MASK)) 1413 break; 1414 1415 npages = (off + len + PAGE_SIZE - 1) >> PAGE_SHIFT; 1416 if (npages > PIPE_BUFFERS - buffers) 1417 npages = PIPE_BUFFERS - buffers; 1418 1419 error = get_user_pages_fast((unsigned long)base, npages, 1420 0, &pages[buffers]); 1421 1422 if (unlikely(error <= 0)) 1423 break; 1424 1425 /* 1426 * Fill this contiguous range into the partial page map. 1427 */ 1428 for (i = 0; i < error; i++) { 1429 const int plen = min_t(size_t, len, PAGE_SIZE - off); 1430 1431 partial[buffers].offset = off; 1432 partial[buffers].len = plen; 1433 1434 off = 0; 1435 len -= plen; 1436 buffers++; 1437 } 1438 1439 /* 1440 * We didn't complete this iov, stop here since it probably 1441 * means we have to move some of this into a pipe to 1442 * be able to continue. 1443 */ 1444 if (len) 1445 break; 1446 1447 /* 1448 * Don't continue if we mapped fewer pages than we asked for, 1449 * or if we mapped the max number of pages that we have 1450 * room for. 1451 */ 1452 if (error < npages || buffers == PIPE_BUFFERS) 1453 break; 1454 1455 nr_vecs--; 1456 iov++; 1457 } 1458 1459 if (buffers) 1460 return buffers; 1461 1462 return error; 1463 } 1464 1465 static int pipe_to_user(struct pipe_inode_info *pipe, struct pipe_buffer *buf, 1466 struct splice_desc *sd) 1467 { 1468 char *src; 1469 int ret; 1470 1471 ret = buf->ops->confirm(pipe, buf); 1472 if (unlikely(ret)) 1473 return ret; 1474 1475 /* 1476 * See if we can use the atomic maps, by prefaulting in the 1477 * pages and doing an atomic copy 1478 */ 1479 if (!fault_in_pages_writeable(sd->u.userptr, sd->len)) { 1480 src = buf->ops->map(pipe, buf, 1); 1481 ret = __copy_to_user_inatomic(sd->u.userptr, src + buf->offset, 1482 sd->len); 1483 buf->ops->unmap(pipe, buf, src); 1484 if (!ret) { 1485 ret = sd->len; 1486 goto out; 1487 } 1488 } 1489 1490 /* 1491 * No dice, use slow non-atomic map and copy 1492 */ 1493 src = buf->ops->map(pipe, buf, 0); 1494 1495 ret = sd->len; 1496 if (copy_to_user(sd->u.userptr, src + buf->offset, sd->len)) 1497 ret = -EFAULT; 1498 1499 buf->ops->unmap(pipe, buf, src); 1500 out: 1501 if (ret > 0) 1502 sd->u.userptr += ret; 1503 return ret; 1504 } 1505 1506 /* 1507 * For lack of a better implementation, implement vmsplice() to userspace 1508 * as a simple copy of the pipes pages to the user iov. 1509 */ 1510 static long vmsplice_to_user(struct file *file, const struct iovec __user *iov, 1511 unsigned long nr_segs, unsigned int flags) 1512 { 1513 struct pipe_inode_info *pipe; 1514 struct splice_desc sd; 1515 ssize_t size; 1516 int error; 1517 long ret; 1518 1519 pipe = pipe_info(file->f_path.dentry->d_inode); 1520 if (!pipe) 1521 return -EBADF; 1522 1523 pipe_lock(pipe); 1524 1525 error = ret = 0; 1526 while (nr_segs) { 1527 void __user *base; 1528 size_t len; 1529 1530 /* 1531 * Get user address base and length for this iovec. 1532 */ 1533 error = get_user(base, &iov->iov_base); 1534 if (unlikely(error)) 1535 break; 1536 error = get_user(len, &iov->iov_len); 1537 if (unlikely(error)) 1538 break; 1539 1540 /* 1541 * Sanity check this iovec. 0 read succeeds. 1542 */ 1543 if (unlikely(!len)) 1544 break; 1545 if (unlikely(!base)) { 1546 error = -EFAULT; 1547 break; 1548 } 1549 1550 if (unlikely(!access_ok(VERIFY_WRITE, base, len))) { 1551 error = -EFAULT; 1552 break; 1553 } 1554 1555 sd.len = 0; 1556 sd.total_len = len; 1557 sd.flags = flags; 1558 sd.u.userptr = base; 1559 sd.pos = 0; 1560 1561 size = __splice_from_pipe(pipe, &sd, pipe_to_user); 1562 if (size < 0) { 1563 if (!ret) 1564 ret = size; 1565 1566 break; 1567 } 1568 1569 ret += size; 1570 1571 if (size < len) 1572 break; 1573 1574 nr_segs--; 1575 iov++; 1576 } 1577 1578 pipe_unlock(pipe); 1579 1580 if (!ret) 1581 ret = error; 1582 1583 return ret; 1584 } 1585 1586 /* 1587 * vmsplice splices a user address range into a pipe. It can be thought of 1588 * as splice-from-memory, where the regular splice is splice-from-file (or 1589 * to file). In both cases the output is a pipe, naturally. 1590 */ 1591 static long vmsplice_to_pipe(struct file *file, const struct iovec __user *iov, 1592 unsigned long nr_segs, unsigned int flags) 1593 { 1594 struct pipe_inode_info *pipe; 1595 struct page *pages[PIPE_BUFFERS]; 1596 struct partial_page partial[PIPE_BUFFERS]; 1597 struct splice_pipe_desc spd = { 1598 .pages = pages, 1599 .partial = partial, 1600 .flags = flags, 1601 .ops = &user_page_pipe_buf_ops, 1602 .spd_release = spd_release_page, 1603 }; 1604 1605 pipe = pipe_info(file->f_path.dentry->d_inode); 1606 if (!pipe) 1607 return -EBADF; 1608 1609 spd.nr_pages = get_iovec_page_array(iov, nr_segs, pages, partial, 1610 flags & SPLICE_F_GIFT); 1611 if (spd.nr_pages <= 0) 1612 return spd.nr_pages; 1613 1614 return splice_to_pipe(pipe, &spd); 1615 } 1616 1617 /* 1618 * Note that vmsplice only really supports true splicing _from_ user memory 1619 * to a pipe, not the other way around. Splicing from user memory is a simple 1620 * operation that can be supported without any funky alignment restrictions 1621 * or nasty vm tricks. We simply map in the user memory and fill them into 1622 * a pipe. The reverse isn't quite as easy, though. There are two possible 1623 * solutions for that: 1624 * 1625 * - memcpy() the data internally, at which point we might as well just 1626 * do a regular read() on the buffer anyway. 1627 * - Lots of nasty vm tricks, that are neither fast nor flexible (it 1628 * has restriction limitations on both ends of the pipe). 1629 * 1630 * Currently we punt and implement it as a normal copy, see pipe_to_user(). 1631 * 1632 */ 1633 SYSCALL_DEFINE4(vmsplice, int, fd, const struct iovec __user *, iov, 1634 unsigned long, nr_segs, unsigned int, flags) 1635 { 1636 struct file *file; 1637 long error; 1638 int fput; 1639 1640 if (unlikely(nr_segs > UIO_MAXIOV)) 1641 return -EINVAL; 1642 else if (unlikely(!nr_segs)) 1643 return 0; 1644 1645 error = -EBADF; 1646 file = fget_light(fd, &fput); 1647 if (file) { 1648 if (file->f_mode & FMODE_WRITE) 1649 error = vmsplice_to_pipe(file, iov, nr_segs, flags); 1650 else if (file->f_mode & FMODE_READ) 1651 error = vmsplice_to_user(file, iov, nr_segs, flags); 1652 1653 fput_light(file, fput); 1654 } 1655 1656 return error; 1657 } 1658 1659 SYSCALL_DEFINE6(splice, int, fd_in, loff_t __user *, off_in, 1660 int, fd_out, loff_t __user *, off_out, 1661 size_t, len, unsigned int, flags) 1662 { 1663 long error; 1664 struct file *in, *out; 1665 int fput_in, fput_out; 1666 1667 if (unlikely(!len)) 1668 return 0; 1669 1670 error = -EBADF; 1671 in = fget_light(fd_in, &fput_in); 1672 if (in) { 1673 if (in->f_mode & FMODE_READ) { 1674 out = fget_light(fd_out, &fput_out); 1675 if (out) { 1676 if (out->f_mode & FMODE_WRITE) 1677 error = do_splice(in, off_in, 1678 out, off_out, 1679 len, flags); 1680 fput_light(out, fput_out); 1681 } 1682 } 1683 1684 fput_light(in, fput_in); 1685 } 1686 1687 return error; 1688 } 1689 1690 /* 1691 * Make sure there's data to read. Wait for input if we can, otherwise 1692 * return an appropriate error. 1693 */ 1694 static int ipipe_prep(struct pipe_inode_info *pipe, unsigned int flags) 1695 { 1696 int ret; 1697 1698 /* 1699 * Check ->nrbufs without the inode lock first. This function 1700 * is speculative anyways, so missing one is ok. 1701 */ 1702 if (pipe->nrbufs) 1703 return 0; 1704 1705 ret = 0; 1706 pipe_lock(pipe); 1707 1708 while (!pipe->nrbufs) { 1709 if (signal_pending(current)) { 1710 ret = -ERESTARTSYS; 1711 break; 1712 } 1713 if (!pipe->writers) 1714 break; 1715 if (!pipe->waiting_writers) { 1716 if (flags & SPLICE_F_NONBLOCK) { 1717 ret = -EAGAIN; 1718 break; 1719 } 1720 } 1721 pipe_wait(pipe); 1722 } 1723 1724 pipe_unlock(pipe); 1725 return ret; 1726 } 1727 1728 /* 1729 * Make sure there's writeable room. Wait for room if we can, otherwise 1730 * return an appropriate error. 1731 */ 1732 static int opipe_prep(struct pipe_inode_info *pipe, unsigned int flags) 1733 { 1734 int ret; 1735 1736 /* 1737 * Check ->nrbufs without the inode lock first. This function 1738 * is speculative anyways, so missing one is ok. 1739 */ 1740 if (pipe->nrbufs < PIPE_BUFFERS) 1741 return 0; 1742 1743 ret = 0; 1744 pipe_lock(pipe); 1745 1746 while (pipe->nrbufs >= PIPE_BUFFERS) { 1747 if (!pipe->readers) { 1748 send_sig(SIGPIPE, current, 0); 1749 ret = -EPIPE; 1750 break; 1751 } 1752 if (flags & SPLICE_F_NONBLOCK) { 1753 ret = -EAGAIN; 1754 break; 1755 } 1756 if (signal_pending(current)) { 1757 ret = -ERESTARTSYS; 1758 break; 1759 } 1760 pipe->waiting_writers++; 1761 pipe_wait(pipe); 1762 pipe->waiting_writers--; 1763 } 1764 1765 pipe_unlock(pipe); 1766 return ret; 1767 } 1768 1769 /* 1770 * Splice contents of ipipe to opipe. 1771 */ 1772 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe, 1773 struct pipe_inode_info *opipe, 1774 size_t len, unsigned int flags) 1775 { 1776 struct pipe_buffer *ibuf, *obuf; 1777 int ret = 0, nbuf; 1778 bool input_wakeup = false; 1779 1780 1781 retry: 1782 ret = ipipe_prep(ipipe, flags); 1783 if (ret) 1784 return ret; 1785 1786 ret = opipe_prep(opipe, flags); 1787 if (ret) 1788 return ret; 1789 1790 /* 1791 * Potential ABBA deadlock, work around it by ordering lock 1792 * grabbing by pipe info address. Otherwise two different processes 1793 * could deadlock (one doing tee from A -> B, the other from B -> A). 1794 */ 1795 pipe_double_lock(ipipe, opipe); 1796 1797 do { 1798 if (!opipe->readers) { 1799 send_sig(SIGPIPE, current, 0); 1800 if (!ret) 1801 ret = -EPIPE; 1802 break; 1803 } 1804 1805 if (!ipipe->nrbufs && !ipipe->writers) 1806 break; 1807 1808 /* 1809 * Cannot make any progress, because either the input 1810 * pipe is empty or the output pipe is full. 1811 */ 1812 if (!ipipe->nrbufs || opipe->nrbufs >= PIPE_BUFFERS) { 1813 /* Already processed some buffers, break */ 1814 if (ret) 1815 break; 1816 1817 if (flags & SPLICE_F_NONBLOCK) { 1818 ret = -EAGAIN; 1819 break; 1820 } 1821 1822 /* 1823 * We raced with another reader/writer and haven't 1824 * managed to process any buffers. A zero return 1825 * value means EOF, so retry instead. 1826 */ 1827 pipe_unlock(ipipe); 1828 pipe_unlock(opipe); 1829 goto retry; 1830 } 1831 1832 ibuf = ipipe->bufs + ipipe->curbuf; 1833 nbuf = (opipe->curbuf + opipe->nrbufs) % PIPE_BUFFERS; 1834 obuf = opipe->bufs + nbuf; 1835 1836 if (len >= ibuf->len) { 1837 /* 1838 * Simply move the whole buffer from ipipe to opipe 1839 */ 1840 *obuf = *ibuf; 1841 ibuf->ops = NULL; 1842 opipe->nrbufs++; 1843 ipipe->curbuf = (ipipe->curbuf + 1) % PIPE_BUFFERS; 1844 ipipe->nrbufs--; 1845 input_wakeup = true; 1846 } else { 1847 /* 1848 * Get a reference to this pipe buffer, 1849 * so we can copy the contents over. 1850 */ 1851 ibuf->ops->get(ipipe, ibuf); 1852 *obuf = *ibuf; 1853 1854 /* 1855 * Don't inherit the gift flag, we need to 1856 * prevent multiple steals of this page. 1857 */ 1858 obuf->flags &= ~PIPE_BUF_FLAG_GIFT; 1859 1860 obuf->len = len; 1861 opipe->nrbufs++; 1862 ibuf->offset += obuf->len; 1863 ibuf->len -= obuf->len; 1864 } 1865 ret += obuf->len; 1866 len -= obuf->len; 1867 } while (len); 1868 1869 pipe_unlock(ipipe); 1870 pipe_unlock(opipe); 1871 1872 /* 1873 * If we put data in the output pipe, wakeup any potential readers. 1874 */ 1875 if (ret > 0) { 1876 smp_mb(); 1877 if (waitqueue_active(&opipe->wait)) 1878 wake_up_interruptible(&opipe->wait); 1879 kill_fasync(&opipe->fasync_readers, SIGIO, POLL_IN); 1880 } 1881 if (input_wakeup) 1882 wakeup_pipe_writers(ipipe); 1883 1884 return ret; 1885 } 1886 1887 /* 1888 * Link contents of ipipe to opipe. 1889 */ 1890 static int link_pipe(struct pipe_inode_info *ipipe, 1891 struct pipe_inode_info *opipe, 1892 size_t len, unsigned int flags) 1893 { 1894 struct pipe_buffer *ibuf, *obuf; 1895 int ret = 0, i = 0, nbuf; 1896 1897 /* 1898 * Potential ABBA deadlock, work around it by ordering lock 1899 * grabbing by pipe info address. Otherwise two different processes 1900 * could deadlock (one doing tee from A -> B, the other from B -> A). 1901 */ 1902 pipe_double_lock(ipipe, opipe); 1903 1904 do { 1905 if (!opipe->readers) { 1906 send_sig(SIGPIPE, current, 0); 1907 if (!ret) 1908 ret = -EPIPE; 1909 break; 1910 } 1911 1912 /* 1913 * If we have iterated all input buffers or ran out of 1914 * output room, break. 1915 */ 1916 if (i >= ipipe->nrbufs || opipe->nrbufs >= PIPE_BUFFERS) 1917 break; 1918 1919 ibuf = ipipe->bufs + ((ipipe->curbuf + i) & (PIPE_BUFFERS - 1)); 1920 nbuf = (opipe->curbuf + opipe->nrbufs) & (PIPE_BUFFERS - 1); 1921 1922 /* 1923 * Get a reference to this pipe buffer, 1924 * so we can copy the contents over. 1925 */ 1926 ibuf->ops->get(ipipe, ibuf); 1927 1928 obuf = opipe->bufs + nbuf; 1929 *obuf = *ibuf; 1930 1931 /* 1932 * Don't inherit the gift flag, we need to 1933 * prevent multiple steals of this page. 1934 */ 1935 obuf->flags &= ~PIPE_BUF_FLAG_GIFT; 1936 1937 if (obuf->len > len) 1938 obuf->len = len; 1939 1940 opipe->nrbufs++; 1941 ret += obuf->len; 1942 len -= obuf->len; 1943 i++; 1944 } while (len); 1945 1946 /* 1947 * return EAGAIN if we have the potential of some data in the 1948 * future, otherwise just return 0 1949 */ 1950 if (!ret && ipipe->waiting_writers && (flags & SPLICE_F_NONBLOCK)) 1951 ret = -EAGAIN; 1952 1953 pipe_unlock(ipipe); 1954 pipe_unlock(opipe); 1955 1956 /* 1957 * If we put data in the output pipe, wakeup any potential readers. 1958 */ 1959 if (ret > 0) { 1960 smp_mb(); 1961 if (waitqueue_active(&opipe->wait)) 1962 wake_up_interruptible(&opipe->wait); 1963 kill_fasync(&opipe->fasync_readers, SIGIO, POLL_IN); 1964 } 1965 1966 return ret; 1967 } 1968 1969 /* 1970 * This is a tee(1) implementation that works on pipes. It doesn't copy 1971 * any data, it simply references the 'in' pages on the 'out' pipe. 1972 * The 'flags' used are the SPLICE_F_* variants, currently the only 1973 * applicable one is SPLICE_F_NONBLOCK. 1974 */ 1975 static long do_tee(struct file *in, struct file *out, size_t len, 1976 unsigned int flags) 1977 { 1978 struct pipe_inode_info *ipipe = pipe_info(in->f_path.dentry->d_inode); 1979 struct pipe_inode_info *opipe = pipe_info(out->f_path.dentry->d_inode); 1980 int ret = -EINVAL; 1981 1982 /* 1983 * Duplicate the contents of ipipe to opipe without actually 1984 * copying the data. 1985 */ 1986 if (ipipe && opipe && ipipe != opipe) { 1987 /* 1988 * Keep going, unless we encounter an error. The ipipe/opipe 1989 * ordering doesn't really matter. 1990 */ 1991 ret = ipipe_prep(ipipe, flags); 1992 if (!ret) { 1993 ret = opipe_prep(opipe, flags); 1994 if (!ret) 1995 ret = link_pipe(ipipe, opipe, len, flags); 1996 } 1997 } 1998 1999 return ret; 2000 } 2001 2002 SYSCALL_DEFINE4(tee, int, fdin, int, fdout, size_t, len, unsigned int, flags) 2003 { 2004 struct file *in; 2005 int error, fput_in; 2006 2007 if (unlikely(!len)) 2008 return 0; 2009 2010 error = -EBADF; 2011 in = fget_light(fdin, &fput_in); 2012 if (in) { 2013 if (in->f_mode & FMODE_READ) { 2014 int fput_out; 2015 struct file *out = fget_light(fdout, &fput_out); 2016 2017 if (out) { 2018 if (out->f_mode & FMODE_WRITE) 2019 error = do_tee(in, out, len, flags); 2020 fput_light(out, fput_out); 2021 } 2022 } 2023 fput_light(in, fput_in); 2024 } 2025 2026 return error; 2027 } 2028