1 /* 2 * "splice": joining two ropes together by interweaving their strands. 3 * 4 * This is the "extended pipe" functionality, where a pipe is used as 5 * an arbitrary in-memory buffer. Think of a pipe as a small kernel 6 * buffer that you can use to transfer data from one end to the other. 7 * 8 * The traditional unix read/write is extended with a "splice()" operation 9 * that transfers data buffers to or from a pipe buffer. 10 * 11 * Named by Larry McVoy, original implementation from Linus, extended by 12 * Jens to support splicing to files, network, direct splicing, etc and 13 * fixing lots of bugs. 14 * 15 * Copyright (C) 2005-2006 Jens Axboe <axboe@kernel.dk> 16 * Copyright (C) 2005-2006 Linus Torvalds <torvalds@osdl.org> 17 * Copyright (C) 2006 Ingo Molnar <mingo@elte.hu> 18 * 19 */ 20 #include <linux/fs.h> 21 #include <linux/file.h> 22 #include <linux/pagemap.h> 23 #include <linux/splice.h> 24 #include <linux/memcontrol.h> 25 #include <linux/mm_inline.h> 26 #include <linux/swap.h> 27 #include <linux/writeback.h> 28 #include <linux/export.h> 29 #include <linux/syscalls.h> 30 #include <linux/uio.h> 31 #include <linux/security.h> 32 #include <linux/gfp.h> 33 #include <linux/socket.h> 34 #include <linux/compat.h> 35 #include "internal.h" 36 37 /* 38 * Attempt to steal a page from a pipe buffer. This should perhaps go into 39 * a vm helper function, it's already simplified quite a bit by the 40 * addition of remove_mapping(). If success is returned, the caller may 41 * attempt to reuse this page for another destination. 42 */ 43 static int page_cache_pipe_buf_steal(struct pipe_inode_info *pipe, 44 struct pipe_buffer *buf) 45 { 46 struct page *page = buf->page; 47 struct address_space *mapping; 48 49 lock_page(page); 50 51 mapping = page_mapping(page); 52 if (mapping) { 53 WARN_ON(!PageUptodate(page)); 54 55 /* 56 * At least for ext2 with nobh option, we need to wait on 57 * writeback completing on this page, since we'll remove it 58 * from the pagecache. Otherwise truncate wont wait on the 59 * page, allowing the disk blocks to be reused by someone else 60 * before we actually wrote our data to them. fs corruption 61 * ensues. 62 */ 63 wait_on_page_writeback(page); 64 65 if (page_has_private(page) && 66 !try_to_release_page(page, GFP_KERNEL)) 67 goto out_unlock; 68 69 /* 70 * If we succeeded in removing the mapping, set LRU flag 71 * and return good. 72 */ 73 if (remove_mapping(mapping, page)) { 74 buf->flags |= PIPE_BUF_FLAG_LRU; 75 return 0; 76 } 77 } 78 79 /* 80 * Raced with truncate or failed to remove page from current 81 * address space, unlock and return failure. 82 */ 83 out_unlock: 84 unlock_page(page); 85 return 1; 86 } 87 88 static void page_cache_pipe_buf_release(struct pipe_inode_info *pipe, 89 struct pipe_buffer *buf) 90 { 91 page_cache_release(buf->page); 92 buf->flags &= ~PIPE_BUF_FLAG_LRU; 93 } 94 95 /* 96 * Check whether the contents of buf is OK to access. Since the content 97 * is a page cache page, IO may be in flight. 98 */ 99 static int page_cache_pipe_buf_confirm(struct pipe_inode_info *pipe, 100 struct pipe_buffer *buf) 101 { 102 struct page *page = buf->page; 103 int err; 104 105 if (!PageUptodate(page)) { 106 lock_page(page); 107 108 /* 109 * Page got truncated/unhashed. This will cause a 0-byte 110 * splice, if this is the first page. 111 */ 112 if (!page->mapping) { 113 err = -ENODATA; 114 goto error; 115 } 116 117 /* 118 * Uh oh, read-error from disk. 119 */ 120 if (!PageUptodate(page)) { 121 err = -EIO; 122 goto error; 123 } 124 125 /* 126 * Page is ok afterall, we are done. 127 */ 128 unlock_page(page); 129 } 130 131 return 0; 132 error: 133 unlock_page(page); 134 return err; 135 } 136 137 const struct pipe_buf_operations page_cache_pipe_buf_ops = { 138 .can_merge = 0, 139 .confirm = page_cache_pipe_buf_confirm, 140 .release = page_cache_pipe_buf_release, 141 .steal = page_cache_pipe_buf_steal, 142 .get = generic_pipe_buf_get, 143 }; 144 145 static int user_page_pipe_buf_steal(struct pipe_inode_info *pipe, 146 struct pipe_buffer *buf) 147 { 148 if (!(buf->flags & PIPE_BUF_FLAG_GIFT)) 149 return 1; 150 151 buf->flags |= PIPE_BUF_FLAG_LRU; 152 return generic_pipe_buf_steal(pipe, buf); 153 } 154 155 static const struct pipe_buf_operations user_page_pipe_buf_ops = { 156 .can_merge = 0, 157 .confirm = generic_pipe_buf_confirm, 158 .release = page_cache_pipe_buf_release, 159 .steal = user_page_pipe_buf_steal, 160 .get = generic_pipe_buf_get, 161 }; 162 163 static void wakeup_pipe_readers(struct pipe_inode_info *pipe) 164 { 165 smp_mb(); 166 if (waitqueue_active(&pipe->wait)) 167 wake_up_interruptible(&pipe->wait); 168 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN); 169 } 170 171 /** 172 * splice_to_pipe - fill passed data into a pipe 173 * @pipe: pipe to fill 174 * @spd: data to fill 175 * 176 * Description: 177 * @spd contains a map of pages and len/offset tuples, along with 178 * the struct pipe_buf_operations associated with these pages. This 179 * function will link that data to the pipe. 180 * 181 */ 182 ssize_t splice_to_pipe(struct pipe_inode_info *pipe, 183 struct splice_pipe_desc *spd) 184 { 185 unsigned int spd_pages = spd->nr_pages; 186 int ret, do_wakeup, page_nr; 187 188 ret = 0; 189 do_wakeup = 0; 190 page_nr = 0; 191 192 pipe_lock(pipe); 193 194 for (;;) { 195 if (!pipe->readers) { 196 send_sig(SIGPIPE, current, 0); 197 if (!ret) 198 ret = -EPIPE; 199 break; 200 } 201 202 if (pipe->nrbufs < pipe->buffers) { 203 int newbuf = (pipe->curbuf + pipe->nrbufs) & (pipe->buffers - 1); 204 struct pipe_buffer *buf = pipe->bufs + newbuf; 205 206 buf->page = spd->pages[page_nr]; 207 buf->offset = spd->partial[page_nr].offset; 208 buf->len = spd->partial[page_nr].len; 209 buf->private = spd->partial[page_nr].private; 210 buf->ops = spd->ops; 211 if (spd->flags & SPLICE_F_GIFT) 212 buf->flags |= PIPE_BUF_FLAG_GIFT; 213 214 pipe->nrbufs++; 215 page_nr++; 216 ret += buf->len; 217 218 if (pipe->files) 219 do_wakeup = 1; 220 221 if (!--spd->nr_pages) 222 break; 223 if (pipe->nrbufs < pipe->buffers) 224 continue; 225 226 break; 227 } 228 229 if (spd->flags & SPLICE_F_NONBLOCK) { 230 if (!ret) 231 ret = -EAGAIN; 232 break; 233 } 234 235 if (signal_pending(current)) { 236 if (!ret) 237 ret = -ERESTARTSYS; 238 break; 239 } 240 241 if (do_wakeup) { 242 smp_mb(); 243 if (waitqueue_active(&pipe->wait)) 244 wake_up_interruptible_sync(&pipe->wait); 245 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN); 246 do_wakeup = 0; 247 } 248 249 pipe->waiting_writers++; 250 pipe_wait(pipe); 251 pipe->waiting_writers--; 252 } 253 254 pipe_unlock(pipe); 255 256 if (do_wakeup) 257 wakeup_pipe_readers(pipe); 258 259 while (page_nr < spd_pages) 260 spd->spd_release(spd, page_nr++); 261 262 return ret; 263 } 264 265 void spd_release_page(struct splice_pipe_desc *spd, unsigned int i) 266 { 267 page_cache_release(spd->pages[i]); 268 } 269 270 /* 271 * Check if we need to grow the arrays holding pages and partial page 272 * descriptions. 273 */ 274 int splice_grow_spd(const struct pipe_inode_info *pipe, struct splice_pipe_desc *spd) 275 { 276 unsigned int buffers = ACCESS_ONCE(pipe->buffers); 277 278 spd->nr_pages_max = buffers; 279 if (buffers <= PIPE_DEF_BUFFERS) 280 return 0; 281 282 spd->pages = kmalloc(buffers * sizeof(struct page *), GFP_KERNEL); 283 spd->partial = kmalloc(buffers * sizeof(struct partial_page), GFP_KERNEL); 284 285 if (spd->pages && spd->partial) 286 return 0; 287 288 kfree(spd->pages); 289 kfree(spd->partial); 290 return -ENOMEM; 291 } 292 293 void splice_shrink_spd(struct splice_pipe_desc *spd) 294 { 295 if (spd->nr_pages_max <= PIPE_DEF_BUFFERS) 296 return; 297 298 kfree(spd->pages); 299 kfree(spd->partial); 300 } 301 302 static int 303 __generic_file_splice_read(struct file *in, loff_t *ppos, 304 struct pipe_inode_info *pipe, size_t len, 305 unsigned int flags) 306 { 307 struct address_space *mapping = in->f_mapping; 308 unsigned int loff, nr_pages, req_pages; 309 struct page *pages[PIPE_DEF_BUFFERS]; 310 struct partial_page partial[PIPE_DEF_BUFFERS]; 311 struct page *page; 312 pgoff_t index, end_index; 313 loff_t isize; 314 int error, page_nr; 315 struct splice_pipe_desc spd = { 316 .pages = pages, 317 .partial = partial, 318 .nr_pages_max = PIPE_DEF_BUFFERS, 319 .flags = flags, 320 .ops = &page_cache_pipe_buf_ops, 321 .spd_release = spd_release_page, 322 }; 323 324 if (splice_grow_spd(pipe, &spd)) 325 return -ENOMEM; 326 327 index = *ppos >> PAGE_CACHE_SHIFT; 328 loff = *ppos & ~PAGE_CACHE_MASK; 329 req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; 330 nr_pages = min(req_pages, spd.nr_pages_max); 331 332 /* 333 * Lookup the (hopefully) full range of pages we need. 334 */ 335 spd.nr_pages = find_get_pages_contig(mapping, index, nr_pages, spd.pages); 336 index += spd.nr_pages; 337 338 /* 339 * If find_get_pages_contig() returned fewer pages than we needed, 340 * readahead/allocate the rest and fill in the holes. 341 */ 342 if (spd.nr_pages < nr_pages) 343 page_cache_sync_readahead(mapping, &in->f_ra, in, 344 index, req_pages - spd.nr_pages); 345 346 error = 0; 347 while (spd.nr_pages < nr_pages) { 348 /* 349 * Page could be there, find_get_pages_contig() breaks on 350 * the first hole. 351 */ 352 page = find_get_page(mapping, index); 353 if (!page) { 354 /* 355 * page didn't exist, allocate one. 356 */ 357 page = page_cache_alloc_cold(mapping); 358 if (!page) 359 break; 360 361 error = add_to_page_cache_lru(page, mapping, index, 362 GFP_KERNEL); 363 if (unlikely(error)) { 364 page_cache_release(page); 365 if (error == -EEXIST) 366 continue; 367 break; 368 } 369 /* 370 * add_to_page_cache() locks the page, unlock it 371 * to avoid convoluting the logic below even more. 372 */ 373 unlock_page(page); 374 } 375 376 spd.pages[spd.nr_pages++] = page; 377 index++; 378 } 379 380 /* 381 * Now loop over the map and see if we need to start IO on any 382 * pages, fill in the partial map, etc. 383 */ 384 index = *ppos >> PAGE_CACHE_SHIFT; 385 nr_pages = spd.nr_pages; 386 spd.nr_pages = 0; 387 for (page_nr = 0; page_nr < nr_pages; page_nr++) { 388 unsigned int this_len; 389 390 if (!len) 391 break; 392 393 /* 394 * this_len is the max we'll use from this page 395 */ 396 this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff); 397 page = spd.pages[page_nr]; 398 399 if (PageReadahead(page)) 400 page_cache_async_readahead(mapping, &in->f_ra, in, 401 page, index, req_pages - page_nr); 402 403 /* 404 * If the page isn't uptodate, we may need to start io on it 405 */ 406 if (!PageUptodate(page)) { 407 lock_page(page); 408 409 /* 410 * Page was truncated, or invalidated by the 411 * filesystem. Redo the find/create, but this time the 412 * page is kept locked, so there's no chance of another 413 * race with truncate/invalidate. 414 */ 415 if (!page->mapping) { 416 unlock_page(page); 417 page = find_or_create_page(mapping, index, 418 mapping_gfp_mask(mapping)); 419 420 if (!page) { 421 error = -ENOMEM; 422 break; 423 } 424 page_cache_release(spd.pages[page_nr]); 425 spd.pages[page_nr] = page; 426 } 427 /* 428 * page was already under io and is now done, great 429 */ 430 if (PageUptodate(page)) { 431 unlock_page(page); 432 goto fill_it; 433 } 434 435 /* 436 * need to read in the page 437 */ 438 error = mapping->a_ops->readpage(in, page); 439 if (unlikely(error)) { 440 /* 441 * We really should re-lookup the page here, 442 * but it complicates things a lot. Instead 443 * lets just do what we already stored, and 444 * we'll get it the next time we are called. 445 */ 446 if (error == AOP_TRUNCATED_PAGE) 447 error = 0; 448 449 break; 450 } 451 } 452 fill_it: 453 /* 454 * i_size must be checked after PageUptodate. 455 */ 456 isize = i_size_read(mapping->host); 457 end_index = (isize - 1) >> PAGE_CACHE_SHIFT; 458 if (unlikely(!isize || index > end_index)) 459 break; 460 461 /* 462 * if this is the last page, see if we need to shrink 463 * the length and stop 464 */ 465 if (end_index == index) { 466 unsigned int plen; 467 468 /* 469 * max good bytes in this page 470 */ 471 plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1; 472 if (plen <= loff) 473 break; 474 475 /* 476 * force quit after adding this page 477 */ 478 this_len = min(this_len, plen - loff); 479 len = this_len; 480 } 481 482 spd.partial[page_nr].offset = loff; 483 spd.partial[page_nr].len = this_len; 484 len -= this_len; 485 loff = 0; 486 spd.nr_pages++; 487 index++; 488 } 489 490 /* 491 * Release any pages at the end, if we quit early. 'page_nr' is how far 492 * we got, 'nr_pages' is how many pages are in the map. 493 */ 494 while (page_nr < nr_pages) 495 page_cache_release(spd.pages[page_nr++]); 496 in->f_ra.prev_pos = (loff_t)index << PAGE_CACHE_SHIFT; 497 498 if (spd.nr_pages) 499 error = splice_to_pipe(pipe, &spd); 500 501 splice_shrink_spd(&spd); 502 return error; 503 } 504 505 /** 506 * generic_file_splice_read - splice data from file to a pipe 507 * @in: file to splice from 508 * @ppos: position in @in 509 * @pipe: pipe to splice to 510 * @len: number of bytes to splice 511 * @flags: splice modifier flags 512 * 513 * Description: 514 * Will read pages from given file and fill them into a pipe. Can be 515 * used as long as the address_space operations for the source implements 516 * a readpage() hook. 517 * 518 */ 519 ssize_t generic_file_splice_read(struct file *in, loff_t *ppos, 520 struct pipe_inode_info *pipe, size_t len, 521 unsigned int flags) 522 { 523 loff_t isize, left; 524 int ret; 525 526 if (IS_DAX(in->f_mapping->host)) 527 return default_file_splice_read(in, ppos, pipe, len, flags); 528 529 isize = i_size_read(in->f_mapping->host); 530 if (unlikely(*ppos >= isize)) 531 return 0; 532 533 left = isize - *ppos; 534 if (unlikely(left < len)) 535 len = left; 536 537 ret = __generic_file_splice_read(in, ppos, pipe, len, flags); 538 if (ret > 0) { 539 *ppos += ret; 540 file_accessed(in); 541 } 542 543 return ret; 544 } 545 EXPORT_SYMBOL(generic_file_splice_read); 546 547 static const struct pipe_buf_operations default_pipe_buf_ops = { 548 .can_merge = 0, 549 .confirm = generic_pipe_buf_confirm, 550 .release = generic_pipe_buf_release, 551 .steal = generic_pipe_buf_steal, 552 .get = generic_pipe_buf_get, 553 }; 554 555 static int generic_pipe_buf_nosteal(struct pipe_inode_info *pipe, 556 struct pipe_buffer *buf) 557 { 558 return 1; 559 } 560 561 /* Pipe buffer operations for a socket and similar. */ 562 const struct pipe_buf_operations nosteal_pipe_buf_ops = { 563 .can_merge = 0, 564 .confirm = generic_pipe_buf_confirm, 565 .release = generic_pipe_buf_release, 566 .steal = generic_pipe_buf_nosteal, 567 .get = generic_pipe_buf_get, 568 }; 569 EXPORT_SYMBOL(nosteal_pipe_buf_ops); 570 571 static ssize_t kernel_readv(struct file *file, const struct iovec *vec, 572 unsigned long vlen, loff_t offset) 573 { 574 mm_segment_t old_fs; 575 loff_t pos = offset; 576 ssize_t res; 577 578 old_fs = get_fs(); 579 set_fs(get_ds()); 580 /* The cast to a user pointer is valid due to the set_fs() */ 581 res = vfs_readv(file, (const struct iovec __user *)vec, vlen, &pos); 582 set_fs(old_fs); 583 584 return res; 585 } 586 587 ssize_t kernel_write(struct file *file, const char *buf, size_t count, 588 loff_t pos) 589 { 590 mm_segment_t old_fs; 591 ssize_t res; 592 593 old_fs = get_fs(); 594 set_fs(get_ds()); 595 /* The cast to a user pointer is valid due to the set_fs() */ 596 res = vfs_write(file, (__force const char __user *)buf, count, &pos); 597 set_fs(old_fs); 598 599 return res; 600 } 601 EXPORT_SYMBOL(kernel_write); 602 603 ssize_t default_file_splice_read(struct file *in, loff_t *ppos, 604 struct pipe_inode_info *pipe, size_t len, 605 unsigned int flags) 606 { 607 unsigned int nr_pages; 608 unsigned int nr_freed; 609 size_t offset; 610 struct page *pages[PIPE_DEF_BUFFERS]; 611 struct partial_page partial[PIPE_DEF_BUFFERS]; 612 struct iovec *vec, __vec[PIPE_DEF_BUFFERS]; 613 ssize_t res; 614 size_t this_len; 615 int error; 616 int i; 617 struct splice_pipe_desc spd = { 618 .pages = pages, 619 .partial = partial, 620 .nr_pages_max = PIPE_DEF_BUFFERS, 621 .flags = flags, 622 .ops = &default_pipe_buf_ops, 623 .spd_release = spd_release_page, 624 }; 625 626 if (splice_grow_spd(pipe, &spd)) 627 return -ENOMEM; 628 629 res = -ENOMEM; 630 vec = __vec; 631 if (spd.nr_pages_max > PIPE_DEF_BUFFERS) { 632 vec = kmalloc(spd.nr_pages_max * sizeof(struct iovec), GFP_KERNEL); 633 if (!vec) 634 goto shrink_ret; 635 } 636 637 offset = *ppos & ~PAGE_CACHE_MASK; 638 nr_pages = (len + offset + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; 639 640 for (i = 0; i < nr_pages && i < spd.nr_pages_max && len; i++) { 641 struct page *page; 642 643 page = alloc_page(GFP_USER); 644 error = -ENOMEM; 645 if (!page) 646 goto err; 647 648 this_len = min_t(size_t, len, PAGE_CACHE_SIZE - offset); 649 vec[i].iov_base = (void __user *) page_address(page); 650 vec[i].iov_len = this_len; 651 spd.pages[i] = page; 652 spd.nr_pages++; 653 len -= this_len; 654 offset = 0; 655 } 656 657 res = kernel_readv(in, vec, spd.nr_pages, *ppos); 658 if (res < 0) { 659 error = res; 660 goto err; 661 } 662 663 error = 0; 664 if (!res) 665 goto err; 666 667 nr_freed = 0; 668 for (i = 0; i < spd.nr_pages; i++) { 669 this_len = min_t(size_t, vec[i].iov_len, res); 670 spd.partial[i].offset = 0; 671 spd.partial[i].len = this_len; 672 if (!this_len) { 673 __free_page(spd.pages[i]); 674 spd.pages[i] = NULL; 675 nr_freed++; 676 } 677 res -= this_len; 678 } 679 spd.nr_pages -= nr_freed; 680 681 res = splice_to_pipe(pipe, &spd); 682 if (res > 0) 683 *ppos += res; 684 685 shrink_ret: 686 if (vec != __vec) 687 kfree(vec); 688 splice_shrink_spd(&spd); 689 return res; 690 691 err: 692 for (i = 0; i < spd.nr_pages; i++) 693 __free_page(spd.pages[i]); 694 695 res = error; 696 goto shrink_ret; 697 } 698 EXPORT_SYMBOL(default_file_splice_read); 699 700 /* 701 * Send 'sd->len' bytes to socket from 'sd->file' at position 'sd->pos' 702 * using sendpage(). Return the number of bytes sent. 703 */ 704 static int pipe_to_sendpage(struct pipe_inode_info *pipe, 705 struct pipe_buffer *buf, struct splice_desc *sd) 706 { 707 struct file *file = sd->u.file; 708 loff_t pos = sd->pos; 709 int more; 710 711 if (!likely(file->f_op->sendpage)) 712 return -EINVAL; 713 714 more = (sd->flags & SPLICE_F_MORE) ? MSG_MORE : 0; 715 716 if (sd->len < sd->total_len && pipe->nrbufs > 1) 717 more |= MSG_SENDPAGE_NOTLAST; 718 719 return file->f_op->sendpage(file, buf->page, buf->offset, 720 sd->len, &pos, more); 721 } 722 723 static void wakeup_pipe_writers(struct pipe_inode_info *pipe) 724 { 725 smp_mb(); 726 if (waitqueue_active(&pipe->wait)) 727 wake_up_interruptible(&pipe->wait); 728 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT); 729 } 730 731 /** 732 * splice_from_pipe_feed - feed available data from a pipe to a file 733 * @pipe: pipe to splice from 734 * @sd: information to @actor 735 * @actor: handler that splices the data 736 * 737 * Description: 738 * This function loops over the pipe and calls @actor to do the 739 * actual moving of a single struct pipe_buffer to the desired 740 * destination. It returns when there's no more buffers left in 741 * the pipe or if the requested number of bytes (@sd->total_len) 742 * have been copied. It returns a positive number (one) if the 743 * pipe needs to be filled with more data, zero if the required 744 * number of bytes have been copied and -errno on error. 745 * 746 * This, together with splice_from_pipe_{begin,end,next}, may be 747 * used to implement the functionality of __splice_from_pipe() when 748 * locking is required around copying the pipe buffers to the 749 * destination. 750 */ 751 static int splice_from_pipe_feed(struct pipe_inode_info *pipe, struct splice_desc *sd, 752 splice_actor *actor) 753 { 754 int ret; 755 756 while (pipe->nrbufs) { 757 struct pipe_buffer *buf = pipe->bufs + pipe->curbuf; 758 const struct pipe_buf_operations *ops = buf->ops; 759 760 sd->len = buf->len; 761 if (sd->len > sd->total_len) 762 sd->len = sd->total_len; 763 764 ret = buf->ops->confirm(pipe, buf); 765 if (unlikely(ret)) { 766 if (ret == -ENODATA) 767 ret = 0; 768 return ret; 769 } 770 771 ret = actor(pipe, buf, sd); 772 if (ret <= 0) 773 return ret; 774 775 buf->offset += ret; 776 buf->len -= ret; 777 778 sd->num_spliced += ret; 779 sd->len -= ret; 780 sd->pos += ret; 781 sd->total_len -= ret; 782 783 if (!buf->len) { 784 buf->ops = NULL; 785 ops->release(pipe, buf); 786 pipe->curbuf = (pipe->curbuf + 1) & (pipe->buffers - 1); 787 pipe->nrbufs--; 788 if (pipe->files) 789 sd->need_wakeup = true; 790 } 791 792 if (!sd->total_len) 793 return 0; 794 } 795 796 return 1; 797 } 798 799 /** 800 * splice_from_pipe_next - wait for some data to splice from 801 * @pipe: pipe to splice from 802 * @sd: information about the splice operation 803 * 804 * Description: 805 * This function will wait for some data and return a positive 806 * value (one) if pipe buffers are available. It will return zero 807 * or -errno if no more data needs to be spliced. 808 */ 809 static int splice_from_pipe_next(struct pipe_inode_info *pipe, struct splice_desc *sd) 810 { 811 while (!pipe->nrbufs) { 812 if (!pipe->writers) 813 return 0; 814 815 if (!pipe->waiting_writers && sd->num_spliced) 816 return 0; 817 818 if (sd->flags & SPLICE_F_NONBLOCK) 819 return -EAGAIN; 820 821 if (signal_pending(current)) 822 return -ERESTARTSYS; 823 824 if (sd->need_wakeup) { 825 wakeup_pipe_writers(pipe); 826 sd->need_wakeup = false; 827 } 828 829 pipe_wait(pipe); 830 } 831 832 return 1; 833 } 834 835 /** 836 * splice_from_pipe_begin - start splicing from pipe 837 * @sd: information about the splice operation 838 * 839 * Description: 840 * This function should be called before a loop containing 841 * splice_from_pipe_next() and splice_from_pipe_feed() to 842 * initialize the necessary fields of @sd. 843 */ 844 static void splice_from_pipe_begin(struct splice_desc *sd) 845 { 846 sd->num_spliced = 0; 847 sd->need_wakeup = false; 848 } 849 850 /** 851 * splice_from_pipe_end - finish splicing from pipe 852 * @pipe: pipe to splice from 853 * @sd: information about the splice operation 854 * 855 * Description: 856 * This function will wake up pipe writers if necessary. It should 857 * be called after a loop containing splice_from_pipe_next() and 858 * splice_from_pipe_feed(). 859 */ 860 static void splice_from_pipe_end(struct pipe_inode_info *pipe, struct splice_desc *sd) 861 { 862 if (sd->need_wakeup) 863 wakeup_pipe_writers(pipe); 864 } 865 866 /** 867 * __splice_from_pipe - splice data from a pipe to given actor 868 * @pipe: pipe to splice from 869 * @sd: information to @actor 870 * @actor: handler that splices the data 871 * 872 * Description: 873 * This function does little more than loop over the pipe and call 874 * @actor to do the actual moving of a single struct pipe_buffer to 875 * the desired destination. See pipe_to_file, pipe_to_sendpage, or 876 * pipe_to_user. 877 * 878 */ 879 ssize_t __splice_from_pipe(struct pipe_inode_info *pipe, struct splice_desc *sd, 880 splice_actor *actor) 881 { 882 int ret; 883 884 splice_from_pipe_begin(sd); 885 do { 886 ret = splice_from_pipe_next(pipe, sd); 887 if (ret > 0) 888 ret = splice_from_pipe_feed(pipe, sd, actor); 889 } while (ret > 0); 890 splice_from_pipe_end(pipe, sd); 891 892 return sd->num_spliced ? sd->num_spliced : ret; 893 } 894 EXPORT_SYMBOL(__splice_from_pipe); 895 896 /** 897 * splice_from_pipe - splice data from a pipe to a file 898 * @pipe: pipe to splice from 899 * @out: file to splice to 900 * @ppos: position in @out 901 * @len: how many bytes to splice 902 * @flags: splice modifier flags 903 * @actor: handler that splices the data 904 * 905 * Description: 906 * See __splice_from_pipe. This function locks the pipe inode, 907 * otherwise it's identical to __splice_from_pipe(). 908 * 909 */ 910 ssize_t splice_from_pipe(struct pipe_inode_info *pipe, struct file *out, 911 loff_t *ppos, size_t len, unsigned int flags, 912 splice_actor *actor) 913 { 914 ssize_t ret; 915 struct splice_desc sd = { 916 .total_len = len, 917 .flags = flags, 918 .pos = *ppos, 919 .u.file = out, 920 }; 921 922 pipe_lock(pipe); 923 ret = __splice_from_pipe(pipe, &sd, actor); 924 pipe_unlock(pipe); 925 926 return ret; 927 } 928 929 /** 930 * iter_file_splice_write - splice data from a pipe to a file 931 * @pipe: pipe info 932 * @out: file to write to 933 * @ppos: position in @out 934 * @len: number of bytes to splice 935 * @flags: splice modifier flags 936 * 937 * Description: 938 * Will either move or copy pages (determined by @flags options) from 939 * the given pipe inode to the given file. 940 * This one is ->write_iter-based. 941 * 942 */ 943 ssize_t 944 iter_file_splice_write(struct pipe_inode_info *pipe, struct file *out, 945 loff_t *ppos, size_t len, unsigned int flags) 946 { 947 struct splice_desc sd = { 948 .total_len = len, 949 .flags = flags, 950 .pos = *ppos, 951 .u.file = out, 952 }; 953 int nbufs = pipe->buffers; 954 struct bio_vec *array = kcalloc(nbufs, sizeof(struct bio_vec), 955 GFP_KERNEL); 956 ssize_t ret; 957 958 if (unlikely(!array)) 959 return -ENOMEM; 960 961 pipe_lock(pipe); 962 963 splice_from_pipe_begin(&sd); 964 while (sd.total_len) { 965 struct iov_iter from; 966 size_t left; 967 int n, idx; 968 969 ret = splice_from_pipe_next(pipe, &sd); 970 if (ret <= 0) 971 break; 972 973 if (unlikely(nbufs < pipe->buffers)) { 974 kfree(array); 975 nbufs = pipe->buffers; 976 array = kcalloc(nbufs, sizeof(struct bio_vec), 977 GFP_KERNEL); 978 if (!array) { 979 ret = -ENOMEM; 980 break; 981 } 982 } 983 984 /* build the vector */ 985 left = sd.total_len; 986 for (n = 0, idx = pipe->curbuf; left && n < pipe->nrbufs; n++, idx++) { 987 struct pipe_buffer *buf = pipe->bufs + idx; 988 size_t this_len = buf->len; 989 990 if (this_len > left) 991 this_len = left; 992 993 if (idx == pipe->buffers - 1) 994 idx = -1; 995 996 ret = buf->ops->confirm(pipe, buf); 997 if (unlikely(ret)) { 998 if (ret == -ENODATA) 999 ret = 0; 1000 goto done; 1001 } 1002 1003 array[n].bv_page = buf->page; 1004 array[n].bv_len = this_len; 1005 array[n].bv_offset = buf->offset; 1006 left -= this_len; 1007 } 1008 1009 iov_iter_bvec(&from, ITER_BVEC | WRITE, array, n, 1010 sd.total_len - left); 1011 ret = vfs_iter_write(out, &from, &sd.pos); 1012 if (ret <= 0) 1013 break; 1014 1015 sd.num_spliced += ret; 1016 sd.total_len -= ret; 1017 *ppos = sd.pos; 1018 1019 /* dismiss the fully eaten buffers, adjust the partial one */ 1020 while (ret) { 1021 struct pipe_buffer *buf = pipe->bufs + pipe->curbuf; 1022 if (ret >= buf->len) { 1023 const struct pipe_buf_operations *ops = buf->ops; 1024 ret -= buf->len; 1025 buf->len = 0; 1026 buf->ops = NULL; 1027 ops->release(pipe, buf); 1028 pipe->curbuf = (pipe->curbuf + 1) & (pipe->buffers - 1); 1029 pipe->nrbufs--; 1030 if (pipe->files) 1031 sd.need_wakeup = true; 1032 } else { 1033 buf->offset += ret; 1034 buf->len -= ret; 1035 ret = 0; 1036 } 1037 } 1038 } 1039 done: 1040 kfree(array); 1041 splice_from_pipe_end(pipe, &sd); 1042 1043 pipe_unlock(pipe); 1044 1045 if (sd.num_spliced) 1046 ret = sd.num_spliced; 1047 1048 return ret; 1049 } 1050 1051 EXPORT_SYMBOL(iter_file_splice_write); 1052 1053 static int write_pipe_buf(struct pipe_inode_info *pipe, struct pipe_buffer *buf, 1054 struct splice_desc *sd) 1055 { 1056 int ret; 1057 void *data; 1058 loff_t tmp = sd->pos; 1059 1060 data = kmap(buf->page); 1061 ret = __kernel_write(sd->u.file, data + buf->offset, sd->len, &tmp); 1062 kunmap(buf->page); 1063 1064 return ret; 1065 } 1066 1067 static ssize_t default_file_splice_write(struct pipe_inode_info *pipe, 1068 struct file *out, loff_t *ppos, 1069 size_t len, unsigned int flags) 1070 { 1071 ssize_t ret; 1072 1073 ret = splice_from_pipe(pipe, out, ppos, len, flags, write_pipe_buf); 1074 if (ret > 0) 1075 *ppos += ret; 1076 1077 return ret; 1078 } 1079 1080 /** 1081 * generic_splice_sendpage - splice data from a pipe to a socket 1082 * @pipe: pipe to splice from 1083 * @out: socket to write to 1084 * @ppos: position in @out 1085 * @len: number of bytes to splice 1086 * @flags: splice modifier flags 1087 * 1088 * Description: 1089 * Will send @len bytes from the pipe to a network socket. No data copying 1090 * is involved. 1091 * 1092 */ 1093 ssize_t generic_splice_sendpage(struct pipe_inode_info *pipe, struct file *out, 1094 loff_t *ppos, size_t len, unsigned int flags) 1095 { 1096 return splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_sendpage); 1097 } 1098 1099 EXPORT_SYMBOL(generic_splice_sendpage); 1100 1101 /* 1102 * Attempt to initiate a splice from pipe to file. 1103 */ 1104 static long do_splice_from(struct pipe_inode_info *pipe, struct file *out, 1105 loff_t *ppos, size_t len, unsigned int flags) 1106 { 1107 ssize_t (*splice_write)(struct pipe_inode_info *, struct file *, 1108 loff_t *, size_t, unsigned int); 1109 1110 if (out->f_op->splice_write) 1111 splice_write = out->f_op->splice_write; 1112 else 1113 splice_write = default_file_splice_write; 1114 1115 return splice_write(pipe, out, ppos, len, flags); 1116 } 1117 1118 /* 1119 * Attempt to initiate a splice from a file to a pipe. 1120 */ 1121 static long do_splice_to(struct file *in, loff_t *ppos, 1122 struct pipe_inode_info *pipe, size_t len, 1123 unsigned int flags) 1124 { 1125 ssize_t (*splice_read)(struct file *, loff_t *, 1126 struct pipe_inode_info *, size_t, unsigned int); 1127 int ret; 1128 1129 if (unlikely(!(in->f_mode & FMODE_READ))) 1130 return -EBADF; 1131 1132 ret = rw_verify_area(READ, in, ppos, len); 1133 if (unlikely(ret < 0)) 1134 return ret; 1135 1136 if (in->f_op->splice_read) 1137 splice_read = in->f_op->splice_read; 1138 else 1139 splice_read = default_file_splice_read; 1140 1141 return splice_read(in, ppos, pipe, len, flags); 1142 } 1143 1144 /** 1145 * splice_direct_to_actor - splices data directly between two non-pipes 1146 * @in: file to splice from 1147 * @sd: actor information on where to splice to 1148 * @actor: handles the data splicing 1149 * 1150 * Description: 1151 * This is a special case helper to splice directly between two 1152 * points, without requiring an explicit pipe. Internally an allocated 1153 * pipe is cached in the process, and reused during the lifetime of 1154 * that process. 1155 * 1156 */ 1157 ssize_t splice_direct_to_actor(struct file *in, struct splice_desc *sd, 1158 splice_direct_actor *actor) 1159 { 1160 struct pipe_inode_info *pipe; 1161 long ret, bytes; 1162 umode_t i_mode; 1163 size_t len; 1164 int i, flags; 1165 1166 /* 1167 * We require the input being a regular file, as we don't want to 1168 * randomly drop data for eg socket -> socket splicing. Use the 1169 * piped splicing for that! 1170 */ 1171 i_mode = file_inode(in)->i_mode; 1172 if (unlikely(!S_ISREG(i_mode) && !S_ISBLK(i_mode))) 1173 return -EINVAL; 1174 1175 /* 1176 * neither in nor out is a pipe, setup an internal pipe attached to 1177 * 'out' and transfer the wanted data from 'in' to 'out' through that 1178 */ 1179 pipe = current->splice_pipe; 1180 if (unlikely(!pipe)) { 1181 pipe = alloc_pipe_info(); 1182 if (!pipe) 1183 return -ENOMEM; 1184 1185 /* 1186 * We don't have an immediate reader, but we'll read the stuff 1187 * out of the pipe right after the splice_to_pipe(). So set 1188 * PIPE_READERS appropriately. 1189 */ 1190 pipe->readers = 1; 1191 1192 current->splice_pipe = pipe; 1193 } 1194 1195 /* 1196 * Do the splice. 1197 */ 1198 ret = 0; 1199 bytes = 0; 1200 len = sd->total_len; 1201 flags = sd->flags; 1202 1203 /* 1204 * Don't block on output, we have to drain the direct pipe. 1205 */ 1206 sd->flags &= ~SPLICE_F_NONBLOCK; 1207 1208 while (len) { 1209 size_t read_len; 1210 loff_t pos = sd->pos, prev_pos = pos; 1211 1212 ret = do_splice_to(in, &pos, pipe, len, flags); 1213 if (unlikely(ret <= 0)) 1214 goto out_release; 1215 1216 read_len = ret; 1217 sd->total_len = read_len; 1218 1219 /* 1220 * NOTE: nonblocking mode only applies to the input. We 1221 * must not do the output in nonblocking mode as then we 1222 * could get stuck data in the internal pipe: 1223 */ 1224 ret = actor(pipe, sd); 1225 if (unlikely(ret <= 0)) { 1226 sd->pos = prev_pos; 1227 goto out_release; 1228 } 1229 1230 bytes += ret; 1231 len -= ret; 1232 sd->pos = pos; 1233 1234 if (ret < read_len) { 1235 sd->pos = prev_pos + ret; 1236 goto out_release; 1237 } 1238 } 1239 1240 done: 1241 pipe->nrbufs = pipe->curbuf = 0; 1242 file_accessed(in); 1243 return bytes; 1244 1245 out_release: 1246 /* 1247 * If we did an incomplete transfer we must release 1248 * the pipe buffers in question: 1249 */ 1250 for (i = 0; i < pipe->buffers; i++) { 1251 struct pipe_buffer *buf = pipe->bufs + i; 1252 1253 if (buf->ops) { 1254 buf->ops->release(pipe, buf); 1255 buf->ops = NULL; 1256 } 1257 } 1258 1259 if (!bytes) 1260 bytes = ret; 1261 1262 goto done; 1263 } 1264 EXPORT_SYMBOL(splice_direct_to_actor); 1265 1266 static int direct_splice_actor(struct pipe_inode_info *pipe, 1267 struct splice_desc *sd) 1268 { 1269 struct file *file = sd->u.file; 1270 1271 return do_splice_from(pipe, file, sd->opos, sd->total_len, 1272 sd->flags); 1273 } 1274 1275 /** 1276 * do_splice_direct - splices data directly between two files 1277 * @in: file to splice from 1278 * @ppos: input file offset 1279 * @out: file to splice to 1280 * @opos: output file offset 1281 * @len: number of bytes to splice 1282 * @flags: splice modifier flags 1283 * 1284 * Description: 1285 * For use by do_sendfile(). splice can easily emulate sendfile, but 1286 * doing it in the application would incur an extra system call 1287 * (splice in + splice out, as compared to just sendfile()). So this helper 1288 * can splice directly through a process-private pipe. 1289 * 1290 */ 1291 long do_splice_direct(struct file *in, loff_t *ppos, struct file *out, 1292 loff_t *opos, size_t len, unsigned int flags) 1293 { 1294 struct splice_desc sd = { 1295 .len = len, 1296 .total_len = len, 1297 .flags = flags, 1298 .pos = *ppos, 1299 .u.file = out, 1300 .opos = opos, 1301 }; 1302 long ret; 1303 1304 if (unlikely(!(out->f_mode & FMODE_WRITE))) 1305 return -EBADF; 1306 1307 if (unlikely(out->f_flags & O_APPEND)) 1308 return -EINVAL; 1309 1310 ret = rw_verify_area(WRITE, out, opos, len); 1311 if (unlikely(ret < 0)) 1312 return ret; 1313 1314 ret = splice_direct_to_actor(in, &sd, direct_splice_actor); 1315 if (ret > 0) 1316 *ppos = sd.pos; 1317 1318 return ret; 1319 } 1320 EXPORT_SYMBOL(do_splice_direct); 1321 1322 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe, 1323 struct pipe_inode_info *opipe, 1324 size_t len, unsigned int flags); 1325 1326 /* 1327 * Determine where to splice to/from. 1328 */ 1329 static long do_splice(struct file *in, loff_t __user *off_in, 1330 struct file *out, loff_t __user *off_out, 1331 size_t len, unsigned int flags) 1332 { 1333 struct pipe_inode_info *ipipe; 1334 struct pipe_inode_info *opipe; 1335 loff_t offset; 1336 long ret; 1337 1338 ipipe = get_pipe_info(in); 1339 opipe = get_pipe_info(out); 1340 1341 if (ipipe && opipe) { 1342 if (off_in || off_out) 1343 return -ESPIPE; 1344 1345 if (!(in->f_mode & FMODE_READ)) 1346 return -EBADF; 1347 1348 if (!(out->f_mode & FMODE_WRITE)) 1349 return -EBADF; 1350 1351 /* Splicing to self would be fun, but... */ 1352 if (ipipe == opipe) 1353 return -EINVAL; 1354 1355 return splice_pipe_to_pipe(ipipe, opipe, len, flags); 1356 } 1357 1358 if (ipipe) { 1359 if (off_in) 1360 return -ESPIPE; 1361 if (off_out) { 1362 if (!(out->f_mode & FMODE_PWRITE)) 1363 return -EINVAL; 1364 if (copy_from_user(&offset, off_out, sizeof(loff_t))) 1365 return -EFAULT; 1366 } else { 1367 offset = out->f_pos; 1368 } 1369 1370 if (unlikely(!(out->f_mode & FMODE_WRITE))) 1371 return -EBADF; 1372 1373 if (unlikely(out->f_flags & O_APPEND)) 1374 return -EINVAL; 1375 1376 ret = rw_verify_area(WRITE, out, &offset, len); 1377 if (unlikely(ret < 0)) 1378 return ret; 1379 1380 file_start_write(out); 1381 ret = do_splice_from(ipipe, out, &offset, len, flags); 1382 file_end_write(out); 1383 1384 if (!off_out) 1385 out->f_pos = offset; 1386 else if (copy_to_user(off_out, &offset, sizeof(loff_t))) 1387 ret = -EFAULT; 1388 1389 return ret; 1390 } 1391 1392 if (opipe) { 1393 if (off_out) 1394 return -ESPIPE; 1395 if (off_in) { 1396 if (!(in->f_mode & FMODE_PREAD)) 1397 return -EINVAL; 1398 if (copy_from_user(&offset, off_in, sizeof(loff_t))) 1399 return -EFAULT; 1400 } else { 1401 offset = in->f_pos; 1402 } 1403 1404 ret = do_splice_to(in, &offset, opipe, len, flags); 1405 1406 if (!off_in) 1407 in->f_pos = offset; 1408 else if (copy_to_user(off_in, &offset, sizeof(loff_t))) 1409 ret = -EFAULT; 1410 1411 return ret; 1412 } 1413 1414 return -EINVAL; 1415 } 1416 1417 /* 1418 * Map an iov into an array of pages and offset/length tupples. With the 1419 * partial_page structure, we can map several non-contiguous ranges into 1420 * our ones pages[] map instead of splitting that operation into pieces. 1421 * Could easily be exported as a generic helper for other users, in which 1422 * case one would probably want to add a 'max_nr_pages' parameter as well. 1423 */ 1424 static int get_iovec_page_array(const struct iovec __user *iov, 1425 unsigned int nr_vecs, struct page **pages, 1426 struct partial_page *partial, bool aligned, 1427 unsigned int pipe_buffers) 1428 { 1429 int buffers = 0, error = 0; 1430 1431 while (nr_vecs) { 1432 unsigned long off, npages; 1433 struct iovec entry; 1434 void __user *base; 1435 size_t len; 1436 int i; 1437 1438 error = -EFAULT; 1439 if (copy_from_user(&entry, iov, sizeof(entry))) 1440 break; 1441 1442 base = entry.iov_base; 1443 len = entry.iov_len; 1444 1445 /* 1446 * Sanity check this iovec. 0 read succeeds. 1447 */ 1448 error = 0; 1449 if (unlikely(!len)) 1450 break; 1451 error = -EFAULT; 1452 if (!access_ok(VERIFY_READ, base, len)) 1453 break; 1454 1455 /* 1456 * Get this base offset and number of pages, then map 1457 * in the user pages. 1458 */ 1459 off = (unsigned long) base & ~PAGE_MASK; 1460 1461 /* 1462 * If asked for alignment, the offset must be zero and the 1463 * length a multiple of the PAGE_SIZE. 1464 */ 1465 error = -EINVAL; 1466 if (aligned && (off || len & ~PAGE_MASK)) 1467 break; 1468 1469 npages = (off + len + PAGE_SIZE - 1) >> PAGE_SHIFT; 1470 if (npages > pipe_buffers - buffers) 1471 npages = pipe_buffers - buffers; 1472 1473 error = get_user_pages_fast((unsigned long)base, npages, 1474 0, &pages[buffers]); 1475 1476 if (unlikely(error <= 0)) 1477 break; 1478 1479 /* 1480 * Fill this contiguous range into the partial page map. 1481 */ 1482 for (i = 0; i < error; i++) { 1483 const int plen = min_t(size_t, len, PAGE_SIZE - off); 1484 1485 partial[buffers].offset = off; 1486 partial[buffers].len = plen; 1487 1488 off = 0; 1489 len -= plen; 1490 buffers++; 1491 } 1492 1493 /* 1494 * We didn't complete this iov, stop here since it probably 1495 * means we have to move some of this into a pipe to 1496 * be able to continue. 1497 */ 1498 if (len) 1499 break; 1500 1501 /* 1502 * Don't continue if we mapped fewer pages than we asked for, 1503 * or if we mapped the max number of pages that we have 1504 * room for. 1505 */ 1506 if (error < npages || buffers == pipe_buffers) 1507 break; 1508 1509 nr_vecs--; 1510 iov++; 1511 } 1512 1513 if (buffers) 1514 return buffers; 1515 1516 return error; 1517 } 1518 1519 static int pipe_to_user(struct pipe_inode_info *pipe, struct pipe_buffer *buf, 1520 struct splice_desc *sd) 1521 { 1522 int n = copy_page_to_iter(buf->page, buf->offset, sd->len, sd->u.data); 1523 return n == sd->len ? n : -EFAULT; 1524 } 1525 1526 /* 1527 * For lack of a better implementation, implement vmsplice() to userspace 1528 * as a simple copy of the pipes pages to the user iov. 1529 */ 1530 static long vmsplice_to_user(struct file *file, const struct iovec __user *uiov, 1531 unsigned long nr_segs, unsigned int flags) 1532 { 1533 struct pipe_inode_info *pipe; 1534 struct splice_desc sd; 1535 long ret; 1536 struct iovec iovstack[UIO_FASTIOV]; 1537 struct iovec *iov = iovstack; 1538 struct iov_iter iter; 1539 1540 pipe = get_pipe_info(file); 1541 if (!pipe) 1542 return -EBADF; 1543 1544 ret = import_iovec(READ, uiov, nr_segs, 1545 ARRAY_SIZE(iovstack), &iov, &iter); 1546 if (ret < 0) 1547 return ret; 1548 1549 sd.total_len = iov_iter_count(&iter); 1550 sd.len = 0; 1551 sd.flags = flags; 1552 sd.u.data = &iter; 1553 sd.pos = 0; 1554 1555 if (sd.total_len) { 1556 pipe_lock(pipe); 1557 ret = __splice_from_pipe(pipe, &sd, pipe_to_user); 1558 pipe_unlock(pipe); 1559 } 1560 1561 kfree(iov); 1562 return ret; 1563 } 1564 1565 /* 1566 * vmsplice splices a user address range into a pipe. It can be thought of 1567 * as splice-from-memory, where the regular splice is splice-from-file (or 1568 * to file). In both cases the output is a pipe, naturally. 1569 */ 1570 static long vmsplice_to_pipe(struct file *file, const struct iovec __user *iov, 1571 unsigned long nr_segs, unsigned int flags) 1572 { 1573 struct pipe_inode_info *pipe; 1574 struct page *pages[PIPE_DEF_BUFFERS]; 1575 struct partial_page partial[PIPE_DEF_BUFFERS]; 1576 struct splice_pipe_desc spd = { 1577 .pages = pages, 1578 .partial = partial, 1579 .nr_pages_max = PIPE_DEF_BUFFERS, 1580 .flags = flags, 1581 .ops = &user_page_pipe_buf_ops, 1582 .spd_release = spd_release_page, 1583 }; 1584 long ret; 1585 1586 pipe = get_pipe_info(file); 1587 if (!pipe) 1588 return -EBADF; 1589 1590 if (splice_grow_spd(pipe, &spd)) 1591 return -ENOMEM; 1592 1593 spd.nr_pages = get_iovec_page_array(iov, nr_segs, spd.pages, 1594 spd.partial, false, 1595 spd.nr_pages_max); 1596 if (spd.nr_pages <= 0) 1597 ret = spd.nr_pages; 1598 else 1599 ret = splice_to_pipe(pipe, &spd); 1600 1601 splice_shrink_spd(&spd); 1602 return ret; 1603 } 1604 1605 /* 1606 * Note that vmsplice only really supports true splicing _from_ user memory 1607 * to a pipe, not the other way around. Splicing from user memory is a simple 1608 * operation that can be supported without any funky alignment restrictions 1609 * or nasty vm tricks. We simply map in the user memory and fill them into 1610 * a pipe. The reverse isn't quite as easy, though. There are two possible 1611 * solutions for that: 1612 * 1613 * - memcpy() the data internally, at which point we might as well just 1614 * do a regular read() on the buffer anyway. 1615 * - Lots of nasty vm tricks, that are neither fast nor flexible (it 1616 * has restriction limitations on both ends of the pipe). 1617 * 1618 * Currently we punt and implement it as a normal copy, see pipe_to_user(). 1619 * 1620 */ 1621 SYSCALL_DEFINE4(vmsplice, int, fd, const struct iovec __user *, iov, 1622 unsigned long, nr_segs, unsigned int, flags) 1623 { 1624 struct fd f; 1625 long error; 1626 1627 if (unlikely(nr_segs > UIO_MAXIOV)) 1628 return -EINVAL; 1629 else if (unlikely(!nr_segs)) 1630 return 0; 1631 1632 error = -EBADF; 1633 f = fdget(fd); 1634 if (f.file) { 1635 if (f.file->f_mode & FMODE_WRITE) 1636 error = vmsplice_to_pipe(f.file, iov, nr_segs, flags); 1637 else if (f.file->f_mode & FMODE_READ) 1638 error = vmsplice_to_user(f.file, iov, nr_segs, flags); 1639 1640 fdput(f); 1641 } 1642 1643 return error; 1644 } 1645 1646 #ifdef CONFIG_COMPAT 1647 COMPAT_SYSCALL_DEFINE4(vmsplice, int, fd, const struct compat_iovec __user *, iov32, 1648 unsigned int, nr_segs, unsigned int, flags) 1649 { 1650 unsigned i; 1651 struct iovec __user *iov; 1652 if (nr_segs > UIO_MAXIOV) 1653 return -EINVAL; 1654 iov = compat_alloc_user_space(nr_segs * sizeof(struct iovec)); 1655 for (i = 0; i < nr_segs; i++) { 1656 struct compat_iovec v; 1657 if (get_user(v.iov_base, &iov32[i].iov_base) || 1658 get_user(v.iov_len, &iov32[i].iov_len) || 1659 put_user(compat_ptr(v.iov_base), &iov[i].iov_base) || 1660 put_user(v.iov_len, &iov[i].iov_len)) 1661 return -EFAULT; 1662 } 1663 return sys_vmsplice(fd, iov, nr_segs, flags); 1664 } 1665 #endif 1666 1667 SYSCALL_DEFINE6(splice, int, fd_in, loff_t __user *, off_in, 1668 int, fd_out, loff_t __user *, off_out, 1669 size_t, len, unsigned int, flags) 1670 { 1671 struct fd in, out; 1672 long error; 1673 1674 if (unlikely(!len)) 1675 return 0; 1676 1677 error = -EBADF; 1678 in = fdget(fd_in); 1679 if (in.file) { 1680 if (in.file->f_mode & FMODE_READ) { 1681 out = fdget(fd_out); 1682 if (out.file) { 1683 if (out.file->f_mode & FMODE_WRITE) 1684 error = do_splice(in.file, off_in, 1685 out.file, off_out, 1686 len, flags); 1687 fdput(out); 1688 } 1689 } 1690 fdput(in); 1691 } 1692 return error; 1693 } 1694 1695 /* 1696 * Make sure there's data to read. Wait for input if we can, otherwise 1697 * return an appropriate error. 1698 */ 1699 static int ipipe_prep(struct pipe_inode_info *pipe, unsigned int flags) 1700 { 1701 int ret; 1702 1703 /* 1704 * Check ->nrbufs without the inode lock first. This function 1705 * is speculative anyways, so missing one is ok. 1706 */ 1707 if (pipe->nrbufs) 1708 return 0; 1709 1710 ret = 0; 1711 pipe_lock(pipe); 1712 1713 while (!pipe->nrbufs) { 1714 if (signal_pending(current)) { 1715 ret = -ERESTARTSYS; 1716 break; 1717 } 1718 if (!pipe->writers) 1719 break; 1720 if (!pipe->waiting_writers) { 1721 if (flags & SPLICE_F_NONBLOCK) { 1722 ret = -EAGAIN; 1723 break; 1724 } 1725 } 1726 pipe_wait(pipe); 1727 } 1728 1729 pipe_unlock(pipe); 1730 return ret; 1731 } 1732 1733 /* 1734 * Make sure there's writeable room. Wait for room if we can, otherwise 1735 * return an appropriate error. 1736 */ 1737 static int opipe_prep(struct pipe_inode_info *pipe, unsigned int flags) 1738 { 1739 int ret; 1740 1741 /* 1742 * Check ->nrbufs without the inode lock first. This function 1743 * is speculative anyways, so missing one is ok. 1744 */ 1745 if (pipe->nrbufs < pipe->buffers) 1746 return 0; 1747 1748 ret = 0; 1749 pipe_lock(pipe); 1750 1751 while (pipe->nrbufs >= pipe->buffers) { 1752 if (!pipe->readers) { 1753 send_sig(SIGPIPE, current, 0); 1754 ret = -EPIPE; 1755 break; 1756 } 1757 if (flags & SPLICE_F_NONBLOCK) { 1758 ret = -EAGAIN; 1759 break; 1760 } 1761 if (signal_pending(current)) { 1762 ret = -ERESTARTSYS; 1763 break; 1764 } 1765 pipe->waiting_writers++; 1766 pipe_wait(pipe); 1767 pipe->waiting_writers--; 1768 } 1769 1770 pipe_unlock(pipe); 1771 return ret; 1772 } 1773 1774 /* 1775 * Splice contents of ipipe to opipe. 1776 */ 1777 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe, 1778 struct pipe_inode_info *opipe, 1779 size_t len, unsigned int flags) 1780 { 1781 struct pipe_buffer *ibuf, *obuf; 1782 int ret = 0, nbuf; 1783 bool input_wakeup = false; 1784 1785 1786 retry: 1787 ret = ipipe_prep(ipipe, flags); 1788 if (ret) 1789 return ret; 1790 1791 ret = opipe_prep(opipe, flags); 1792 if (ret) 1793 return ret; 1794 1795 /* 1796 * Potential ABBA deadlock, work around it by ordering lock 1797 * grabbing by pipe info address. Otherwise two different processes 1798 * could deadlock (one doing tee from A -> B, the other from B -> A). 1799 */ 1800 pipe_double_lock(ipipe, opipe); 1801 1802 do { 1803 if (!opipe->readers) { 1804 send_sig(SIGPIPE, current, 0); 1805 if (!ret) 1806 ret = -EPIPE; 1807 break; 1808 } 1809 1810 if (!ipipe->nrbufs && !ipipe->writers) 1811 break; 1812 1813 /* 1814 * Cannot make any progress, because either the input 1815 * pipe is empty or the output pipe is full. 1816 */ 1817 if (!ipipe->nrbufs || opipe->nrbufs >= opipe->buffers) { 1818 /* Already processed some buffers, break */ 1819 if (ret) 1820 break; 1821 1822 if (flags & SPLICE_F_NONBLOCK) { 1823 ret = -EAGAIN; 1824 break; 1825 } 1826 1827 /* 1828 * We raced with another reader/writer and haven't 1829 * managed to process any buffers. A zero return 1830 * value means EOF, so retry instead. 1831 */ 1832 pipe_unlock(ipipe); 1833 pipe_unlock(opipe); 1834 goto retry; 1835 } 1836 1837 ibuf = ipipe->bufs + ipipe->curbuf; 1838 nbuf = (opipe->curbuf + opipe->nrbufs) & (opipe->buffers - 1); 1839 obuf = opipe->bufs + nbuf; 1840 1841 if (len >= ibuf->len) { 1842 /* 1843 * Simply move the whole buffer from ipipe to opipe 1844 */ 1845 *obuf = *ibuf; 1846 ibuf->ops = NULL; 1847 opipe->nrbufs++; 1848 ipipe->curbuf = (ipipe->curbuf + 1) & (ipipe->buffers - 1); 1849 ipipe->nrbufs--; 1850 input_wakeup = true; 1851 } else { 1852 /* 1853 * Get a reference to this pipe buffer, 1854 * so we can copy the contents over. 1855 */ 1856 ibuf->ops->get(ipipe, ibuf); 1857 *obuf = *ibuf; 1858 1859 /* 1860 * Don't inherit the gift flag, we need to 1861 * prevent multiple steals of this page. 1862 */ 1863 obuf->flags &= ~PIPE_BUF_FLAG_GIFT; 1864 1865 obuf->len = len; 1866 opipe->nrbufs++; 1867 ibuf->offset += obuf->len; 1868 ibuf->len -= obuf->len; 1869 } 1870 ret += obuf->len; 1871 len -= obuf->len; 1872 } while (len); 1873 1874 pipe_unlock(ipipe); 1875 pipe_unlock(opipe); 1876 1877 /* 1878 * If we put data in the output pipe, wakeup any potential readers. 1879 */ 1880 if (ret > 0) 1881 wakeup_pipe_readers(opipe); 1882 1883 if (input_wakeup) 1884 wakeup_pipe_writers(ipipe); 1885 1886 return ret; 1887 } 1888 1889 /* 1890 * Link contents of ipipe to opipe. 1891 */ 1892 static int link_pipe(struct pipe_inode_info *ipipe, 1893 struct pipe_inode_info *opipe, 1894 size_t len, unsigned int flags) 1895 { 1896 struct pipe_buffer *ibuf, *obuf; 1897 int ret = 0, i = 0, nbuf; 1898 1899 /* 1900 * Potential ABBA deadlock, work around it by ordering lock 1901 * grabbing by pipe info address. Otherwise two different processes 1902 * could deadlock (one doing tee from A -> B, the other from B -> A). 1903 */ 1904 pipe_double_lock(ipipe, opipe); 1905 1906 do { 1907 if (!opipe->readers) { 1908 send_sig(SIGPIPE, current, 0); 1909 if (!ret) 1910 ret = -EPIPE; 1911 break; 1912 } 1913 1914 /* 1915 * If we have iterated all input buffers or ran out of 1916 * output room, break. 1917 */ 1918 if (i >= ipipe->nrbufs || opipe->nrbufs >= opipe->buffers) 1919 break; 1920 1921 ibuf = ipipe->bufs + ((ipipe->curbuf + i) & (ipipe->buffers-1)); 1922 nbuf = (opipe->curbuf + opipe->nrbufs) & (opipe->buffers - 1); 1923 1924 /* 1925 * Get a reference to this pipe buffer, 1926 * so we can copy the contents over. 1927 */ 1928 ibuf->ops->get(ipipe, ibuf); 1929 1930 obuf = opipe->bufs + nbuf; 1931 *obuf = *ibuf; 1932 1933 /* 1934 * Don't inherit the gift flag, we need to 1935 * prevent multiple steals of this page. 1936 */ 1937 obuf->flags &= ~PIPE_BUF_FLAG_GIFT; 1938 1939 if (obuf->len > len) 1940 obuf->len = len; 1941 1942 opipe->nrbufs++; 1943 ret += obuf->len; 1944 len -= obuf->len; 1945 i++; 1946 } while (len); 1947 1948 /* 1949 * return EAGAIN if we have the potential of some data in the 1950 * future, otherwise just return 0 1951 */ 1952 if (!ret && ipipe->waiting_writers && (flags & SPLICE_F_NONBLOCK)) 1953 ret = -EAGAIN; 1954 1955 pipe_unlock(ipipe); 1956 pipe_unlock(opipe); 1957 1958 /* 1959 * If we put data in the output pipe, wakeup any potential readers. 1960 */ 1961 if (ret > 0) 1962 wakeup_pipe_readers(opipe); 1963 1964 return ret; 1965 } 1966 1967 /* 1968 * This is a tee(1) implementation that works on pipes. It doesn't copy 1969 * any data, it simply references the 'in' pages on the 'out' pipe. 1970 * The 'flags' used are the SPLICE_F_* variants, currently the only 1971 * applicable one is SPLICE_F_NONBLOCK. 1972 */ 1973 static long do_tee(struct file *in, struct file *out, size_t len, 1974 unsigned int flags) 1975 { 1976 struct pipe_inode_info *ipipe = get_pipe_info(in); 1977 struct pipe_inode_info *opipe = get_pipe_info(out); 1978 int ret = -EINVAL; 1979 1980 /* 1981 * Duplicate the contents of ipipe to opipe without actually 1982 * copying the data. 1983 */ 1984 if (ipipe && opipe && ipipe != opipe) { 1985 /* 1986 * Keep going, unless we encounter an error. The ipipe/opipe 1987 * ordering doesn't really matter. 1988 */ 1989 ret = ipipe_prep(ipipe, flags); 1990 if (!ret) { 1991 ret = opipe_prep(opipe, flags); 1992 if (!ret) 1993 ret = link_pipe(ipipe, opipe, len, flags); 1994 } 1995 } 1996 1997 return ret; 1998 } 1999 2000 SYSCALL_DEFINE4(tee, int, fdin, int, fdout, size_t, len, unsigned int, flags) 2001 { 2002 struct fd in; 2003 int error; 2004 2005 if (unlikely(!len)) 2006 return 0; 2007 2008 error = -EBADF; 2009 in = fdget(fdin); 2010 if (in.file) { 2011 if (in.file->f_mode & FMODE_READ) { 2012 struct fd out = fdget(fdout); 2013 if (out.file) { 2014 if (out.file->f_mode & FMODE_WRITE) 2015 error = do_tee(in.file, out.file, 2016 len, flags); 2017 fdput(out); 2018 } 2019 } 2020 fdput(in); 2021 } 2022 2023 return error; 2024 } 2025