xref: /linux/fs/smb/client/smbdirect.c (revision c94cd9508b1335b949fd13ebd269313c65492df0)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *   Copyright (C) 2017, Microsoft Corporation.
4  *
5  *   Author(s): Long Li <longli@microsoft.com>
6  */
7 #include <linux/module.h>
8 #include <linux/highmem.h>
9 #include <linux/folio_queue.h>
10 #include "smbdirect.h"
11 #include "cifs_debug.h"
12 #include "cifsproto.h"
13 #include "smb2proto.h"
14 
15 static struct smbd_response *get_empty_queue_buffer(
16 		struct smbd_connection *info);
17 static struct smbd_response *get_receive_buffer(
18 		struct smbd_connection *info);
19 static void put_receive_buffer(
20 		struct smbd_connection *info,
21 		struct smbd_response *response);
22 static int allocate_receive_buffers(struct smbd_connection *info, int num_buf);
23 static void destroy_receive_buffers(struct smbd_connection *info);
24 
25 static void put_empty_packet(
26 		struct smbd_connection *info, struct smbd_response *response);
27 static void enqueue_reassembly(
28 		struct smbd_connection *info,
29 		struct smbd_response *response, int data_length);
30 static struct smbd_response *_get_first_reassembly(
31 		struct smbd_connection *info);
32 
33 static int smbd_post_recv(
34 		struct smbd_connection *info,
35 		struct smbd_response *response);
36 
37 static int smbd_post_send_empty(struct smbd_connection *info);
38 
39 static void destroy_mr_list(struct smbd_connection *info);
40 static int allocate_mr_list(struct smbd_connection *info);
41 
42 struct smb_extract_to_rdma {
43 	struct ib_sge		*sge;
44 	unsigned int		nr_sge;
45 	unsigned int		max_sge;
46 	struct ib_device	*device;
47 	u32			local_dma_lkey;
48 	enum dma_data_direction	direction;
49 };
50 static ssize_t smb_extract_iter_to_rdma(struct iov_iter *iter, size_t len,
51 					struct smb_extract_to_rdma *rdma);
52 
53 /* SMBD version number */
54 #define SMBD_V1	0x0100
55 
56 /* Port numbers for SMBD transport */
57 #define SMB_PORT	445
58 #define SMBD_PORT	5445
59 
60 /* Address lookup and resolve timeout in ms */
61 #define RDMA_RESOLVE_TIMEOUT	5000
62 
63 /* SMBD negotiation timeout in seconds */
64 #define SMBD_NEGOTIATE_TIMEOUT	120
65 
66 /* SMBD minimum receive size and fragmented sized defined in [MS-SMBD] */
67 #define SMBD_MIN_RECEIVE_SIZE		128
68 #define SMBD_MIN_FRAGMENTED_SIZE	131072
69 
70 /*
71  * Default maximum number of RDMA read/write outstanding on this connection
72  * This value is possibly decreased during QP creation on hardware limit
73  */
74 #define SMBD_CM_RESPONDER_RESOURCES	32
75 
76 /* Maximum number of retries on data transfer operations */
77 #define SMBD_CM_RETRY			6
78 /* No need to retry on Receiver Not Ready since SMBD manages credits */
79 #define SMBD_CM_RNR_RETRY		0
80 
81 /*
82  * User configurable initial values per SMBD transport connection
83  * as defined in [MS-SMBD] 3.1.1.1
84  * Those may change after a SMBD negotiation
85  */
86 /* The local peer's maximum number of credits to grant to the peer */
87 int smbd_receive_credit_max = 255;
88 
89 /* The remote peer's credit request of local peer */
90 int smbd_send_credit_target = 255;
91 
92 /* The maximum single message size can be sent to remote peer */
93 int smbd_max_send_size = 1364;
94 
95 /*  The maximum fragmented upper-layer payload receive size supported */
96 int smbd_max_fragmented_recv_size = 1024 * 1024;
97 
98 /*  The maximum single-message size which can be received */
99 int smbd_max_receive_size = 1364;
100 
101 /* The timeout to initiate send of a keepalive message on idle */
102 int smbd_keep_alive_interval = 120;
103 
104 /*
105  * User configurable initial values for RDMA transport
106  * The actual values used may be lower and are limited to hardware capabilities
107  */
108 /* Default maximum number of pages in a single RDMA write/read */
109 int smbd_max_frmr_depth = 2048;
110 
111 /* If payload is less than this byte, use RDMA send/recv not read/write */
112 int rdma_readwrite_threshold = 4096;
113 
114 /* Transport logging functions
115  * Logging are defined as classes. They can be OR'ed to define the actual
116  * logging level via module parameter smbd_logging_class
117  * e.g. cifs.smbd_logging_class=0xa0 will log all log_rdma_recv() and
118  * log_rdma_event()
119  */
120 #define LOG_OUTGOING			0x1
121 #define LOG_INCOMING			0x2
122 #define LOG_READ			0x4
123 #define LOG_WRITE			0x8
124 #define LOG_RDMA_SEND			0x10
125 #define LOG_RDMA_RECV			0x20
126 #define LOG_KEEP_ALIVE			0x40
127 #define LOG_RDMA_EVENT			0x80
128 #define LOG_RDMA_MR			0x100
129 static unsigned int smbd_logging_class;
130 module_param(smbd_logging_class, uint, 0644);
131 MODULE_PARM_DESC(smbd_logging_class,
132 	"Logging class for SMBD transport 0x0 to 0x100");
133 
134 #define ERR		0x0
135 #define INFO		0x1
136 static unsigned int smbd_logging_level = ERR;
137 module_param(smbd_logging_level, uint, 0644);
138 MODULE_PARM_DESC(smbd_logging_level,
139 	"Logging level for SMBD transport, 0 (default): error, 1: info");
140 
141 #define log_rdma(level, class, fmt, args...)				\
142 do {									\
143 	if (level <= smbd_logging_level || class & smbd_logging_class)	\
144 		cifs_dbg(VFS, "%s:%d " fmt, __func__, __LINE__, ##args);\
145 } while (0)
146 
147 #define log_outgoing(level, fmt, args...) \
148 		log_rdma(level, LOG_OUTGOING, fmt, ##args)
149 #define log_incoming(level, fmt, args...) \
150 		log_rdma(level, LOG_INCOMING, fmt, ##args)
151 #define log_read(level, fmt, args...)	log_rdma(level, LOG_READ, fmt, ##args)
152 #define log_write(level, fmt, args...)	log_rdma(level, LOG_WRITE, fmt, ##args)
153 #define log_rdma_send(level, fmt, args...) \
154 		log_rdma(level, LOG_RDMA_SEND, fmt, ##args)
155 #define log_rdma_recv(level, fmt, args...) \
156 		log_rdma(level, LOG_RDMA_RECV, fmt, ##args)
157 #define log_keep_alive(level, fmt, args...) \
158 		log_rdma(level, LOG_KEEP_ALIVE, fmt, ##args)
159 #define log_rdma_event(level, fmt, args...) \
160 		log_rdma(level, LOG_RDMA_EVENT, fmt, ##args)
161 #define log_rdma_mr(level, fmt, args...) \
162 		log_rdma(level, LOG_RDMA_MR, fmt, ##args)
163 
164 static void smbd_disconnect_rdma_work(struct work_struct *work)
165 {
166 	struct smbd_connection *info =
167 		container_of(work, struct smbd_connection, disconnect_work);
168 
169 	if (info->transport_status == SMBD_CONNECTED) {
170 		info->transport_status = SMBD_DISCONNECTING;
171 		rdma_disconnect(info->id);
172 	}
173 }
174 
175 static void smbd_disconnect_rdma_connection(struct smbd_connection *info)
176 {
177 	queue_work(info->workqueue, &info->disconnect_work);
178 }
179 
180 /* Upcall from RDMA CM */
181 static int smbd_conn_upcall(
182 		struct rdma_cm_id *id, struct rdma_cm_event *event)
183 {
184 	struct smbd_connection *info = id->context;
185 
186 	log_rdma_event(INFO, "event=%d status=%d\n",
187 		event->event, event->status);
188 
189 	switch (event->event) {
190 	case RDMA_CM_EVENT_ADDR_RESOLVED:
191 	case RDMA_CM_EVENT_ROUTE_RESOLVED:
192 		info->ri_rc = 0;
193 		complete(&info->ri_done);
194 		break;
195 
196 	case RDMA_CM_EVENT_ADDR_ERROR:
197 		info->ri_rc = -EHOSTUNREACH;
198 		complete(&info->ri_done);
199 		break;
200 
201 	case RDMA_CM_EVENT_ROUTE_ERROR:
202 		info->ri_rc = -ENETUNREACH;
203 		complete(&info->ri_done);
204 		break;
205 
206 	case RDMA_CM_EVENT_ESTABLISHED:
207 		log_rdma_event(INFO, "connected event=%d\n", event->event);
208 		info->transport_status = SMBD_CONNECTED;
209 		wake_up_interruptible(&info->conn_wait);
210 		break;
211 
212 	case RDMA_CM_EVENT_CONNECT_ERROR:
213 	case RDMA_CM_EVENT_UNREACHABLE:
214 	case RDMA_CM_EVENT_REJECTED:
215 		log_rdma_event(INFO, "connecting failed event=%d\n", event->event);
216 		info->transport_status = SMBD_DISCONNECTED;
217 		wake_up_interruptible(&info->conn_wait);
218 		break;
219 
220 	case RDMA_CM_EVENT_DEVICE_REMOVAL:
221 	case RDMA_CM_EVENT_DISCONNECTED:
222 		/* This happenes when we fail the negotiation */
223 		if (info->transport_status == SMBD_NEGOTIATE_FAILED) {
224 			info->transport_status = SMBD_DISCONNECTED;
225 			wake_up(&info->conn_wait);
226 			break;
227 		}
228 
229 		info->transport_status = SMBD_DISCONNECTED;
230 		wake_up_interruptible(&info->disconn_wait);
231 		wake_up_interruptible(&info->wait_reassembly_queue);
232 		wake_up_interruptible_all(&info->wait_send_queue);
233 		break;
234 
235 	default:
236 		break;
237 	}
238 
239 	return 0;
240 }
241 
242 /* Upcall from RDMA QP */
243 static void
244 smbd_qp_async_error_upcall(struct ib_event *event, void *context)
245 {
246 	struct smbd_connection *info = context;
247 
248 	log_rdma_event(ERR, "%s on device %s info %p\n",
249 		ib_event_msg(event->event), event->device->name, info);
250 
251 	switch (event->event) {
252 	case IB_EVENT_CQ_ERR:
253 	case IB_EVENT_QP_FATAL:
254 		smbd_disconnect_rdma_connection(info);
255 		break;
256 
257 	default:
258 		break;
259 	}
260 }
261 
262 static inline void *smbd_request_payload(struct smbd_request *request)
263 {
264 	return (void *)request->packet;
265 }
266 
267 static inline void *smbd_response_payload(struct smbd_response *response)
268 {
269 	return (void *)response->packet;
270 }
271 
272 /* Called when a RDMA send is done */
273 static void send_done(struct ib_cq *cq, struct ib_wc *wc)
274 {
275 	int i;
276 	struct smbd_request *request =
277 		container_of(wc->wr_cqe, struct smbd_request, cqe);
278 
279 	log_rdma_send(INFO, "smbd_request 0x%p completed wc->status=%d\n",
280 		request, wc->status);
281 
282 	if (wc->status != IB_WC_SUCCESS || wc->opcode != IB_WC_SEND) {
283 		log_rdma_send(ERR, "wc->status=%d wc->opcode=%d\n",
284 			wc->status, wc->opcode);
285 		smbd_disconnect_rdma_connection(request->info);
286 	}
287 
288 	for (i = 0; i < request->num_sge; i++)
289 		ib_dma_unmap_single(request->info->id->device,
290 			request->sge[i].addr,
291 			request->sge[i].length,
292 			DMA_TO_DEVICE);
293 
294 	if (atomic_dec_and_test(&request->info->send_pending))
295 		wake_up(&request->info->wait_send_pending);
296 
297 	wake_up(&request->info->wait_post_send);
298 
299 	mempool_free(request, request->info->request_mempool);
300 }
301 
302 static void dump_smbd_negotiate_resp(struct smbd_negotiate_resp *resp)
303 {
304 	log_rdma_event(INFO, "resp message min_version %u max_version %u negotiated_version %u credits_requested %u credits_granted %u status %u max_readwrite_size %u preferred_send_size %u max_receive_size %u max_fragmented_size %u\n",
305 		       resp->min_version, resp->max_version,
306 		       resp->negotiated_version, resp->credits_requested,
307 		       resp->credits_granted, resp->status,
308 		       resp->max_readwrite_size, resp->preferred_send_size,
309 		       resp->max_receive_size, resp->max_fragmented_size);
310 }
311 
312 /*
313  * Process a negotiation response message, according to [MS-SMBD]3.1.5.7
314  * response, packet_length: the negotiation response message
315  * return value: true if negotiation is a success, false if failed
316  */
317 static bool process_negotiation_response(
318 		struct smbd_response *response, int packet_length)
319 {
320 	struct smbd_connection *info = response->info;
321 	struct smbd_negotiate_resp *packet = smbd_response_payload(response);
322 
323 	if (packet_length < sizeof(struct smbd_negotiate_resp)) {
324 		log_rdma_event(ERR,
325 			"error: packet_length=%d\n", packet_length);
326 		return false;
327 	}
328 
329 	if (le16_to_cpu(packet->negotiated_version) != SMBD_V1) {
330 		log_rdma_event(ERR, "error: negotiated_version=%x\n",
331 			le16_to_cpu(packet->negotiated_version));
332 		return false;
333 	}
334 	info->protocol = le16_to_cpu(packet->negotiated_version);
335 
336 	if (packet->credits_requested == 0) {
337 		log_rdma_event(ERR, "error: credits_requested==0\n");
338 		return false;
339 	}
340 	info->receive_credit_target = le16_to_cpu(packet->credits_requested);
341 
342 	if (packet->credits_granted == 0) {
343 		log_rdma_event(ERR, "error: credits_granted==0\n");
344 		return false;
345 	}
346 	atomic_set(&info->send_credits, le16_to_cpu(packet->credits_granted));
347 
348 	atomic_set(&info->receive_credits, 0);
349 
350 	if (le32_to_cpu(packet->preferred_send_size) > info->max_receive_size) {
351 		log_rdma_event(ERR, "error: preferred_send_size=%d\n",
352 			le32_to_cpu(packet->preferred_send_size));
353 		return false;
354 	}
355 	info->max_receive_size = le32_to_cpu(packet->preferred_send_size);
356 
357 	if (le32_to_cpu(packet->max_receive_size) < SMBD_MIN_RECEIVE_SIZE) {
358 		log_rdma_event(ERR, "error: max_receive_size=%d\n",
359 			le32_to_cpu(packet->max_receive_size));
360 		return false;
361 	}
362 	info->max_send_size = min_t(int, info->max_send_size,
363 					le32_to_cpu(packet->max_receive_size));
364 
365 	if (le32_to_cpu(packet->max_fragmented_size) <
366 			SMBD_MIN_FRAGMENTED_SIZE) {
367 		log_rdma_event(ERR, "error: max_fragmented_size=%d\n",
368 			le32_to_cpu(packet->max_fragmented_size));
369 		return false;
370 	}
371 	info->max_fragmented_send_size =
372 		le32_to_cpu(packet->max_fragmented_size);
373 	info->rdma_readwrite_threshold =
374 		rdma_readwrite_threshold > info->max_fragmented_send_size ?
375 		info->max_fragmented_send_size :
376 		rdma_readwrite_threshold;
377 
378 
379 	info->max_readwrite_size = min_t(u32,
380 			le32_to_cpu(packet->max_readwrite_size),
381 			info->max_frmr_depth * PAGE_SIZE);
382 	info->max_frmr_depth = info->max_readwrite_size / PAGE_SIZE;
383 
384 	return true;
385 }
386 
387 static void smbd_post_send_credits(struct work_struct *work)
388 {
389 	int ret = 0;
390 	int use_receive_queue = 1;
391 	int rc;
392 	struct smbd_response *response;
393 	struct smbd_connection *info =
394 		container_of(work, struct smbd_connection,
395 			post_send_credits_work);
396 
397 	if (info->transport_status != SMBD_CONNECTED) {
398 		wake_up(&info->wait_receive_queues);
399 		return;
400 	}
401 
402 	if (info->receive_credit_target >
403 		atomic_read(&info->receive_credits)) {
404 		while (true) {
405 			if (use_receive_queue)
406 				response = get_receive_buffer(info);
407 			else
408 				response = get_empty_queue_buffer(info);
409 			if (!response) {
410 				/* now switch to empty packet queue */
411 				if (use_receive_queue) {
412 					use_receive_queue = 0;
413 					continue;
414 				} else
415 					break;
416 			}
417 
418 			response->type = SMBD_TRANSFER_DATA;
419 			response->first_segment = false;
420 			rc = smbd_post_recv(info, response);
421 			if (rc) {
422 				log_rdma_recv(ERR,
423 					"post_recv failed rc=%d\n", rc);
424 				put_receive_buffer(info, response);
425 				break;
426 			}
427 
428 			ret++;
429 		}
430 	}
431 
432 	spin_lock(&info->lock_new_credits_offered);
433 	info->new_credits_offered += ret;
434 	spin_unlock(&info->lock_new_credits_offered);
435 
436 	/* Promptly send an immediate packet as defined in [MS-SMBD] 3.1.1.1 */
437 	info->send_immediate = true;
438 	if (atomic_read(&info->receive_credits) <
439 		info->receive_credit_target - 1) {
440 		if (info->keep_alive_requested == KEEP_ALIVE_PENDING ||
441 		    info->send_immediate) {
442 			log_keep_alive(INFO, "send an empty message\n");
443 			smbd_post_send_empty(info);
444 		}
445 	}
446 }
447 
448 /* Called from softirq, when recv is done */
449 static void recv_done(struct ib_cq *cq, struct ib_wc *wc)
450 {
451 	struct smbd_data_transfer *data_transfer;
452 	struct smbd_response *response =
453 		container_of(wc->wr_cqe, struct smbd_response, cqe);
454 	struct smbd_connection *info = response->info;
455 	int data_length = 0;
456 
457 	log_rdma_recv(INFO, "response=0x%p type=%d wc status=%d wc opcode %d byte_len=%d pkey_index=%u\n",
458 		      response, response->type, wc->status, wc->opcode,
459 		      wc->byte_len, wc->pkey_index);
460 
461 	if (wc->status != IB_WC_SUCCESS || wc->opcode != IB_WC_RECV) {
462 		log_rdma_recv(INFO, "wc->status=%d opcode=%d\n",
463 			wc->status, wc->opcode);
464 		smbd_disconnect_rdma_connection(info);
465 		goto error;
466 	}
467 
468 	ib_dma_sync_single_for_cpu(
469 		wc->qp->device,
470 		response->sge.addr,
471 		response->sge.length,
472 		DMA_FROM_DEVICE);
473 
474 	switch (response->type) {
475 	/* SMBD negotiation response */
476 	case SMBD_NEGOTIATE_RESP:
477 		dump_smbd_negotiate_resp(smbd_response_payload(response));
478 		info->full_packet_received = true;
479 		info->negotiate_done =
480 			process_negotiation_response(response, wc->byte_len);
481 		complete(&info->negotiate_completion);
482 		break;
483 
484 	/* SMBD data transfer packet */
485 	case SMBD_TRANSFER_DATA:
486 		data_transfer = smbd_response_payload(response);
487 		data_length = le32_to_cpu(data_transfer->data_length);
488 
489 		/*
490 		 * If this is a packet with data playload place the data in
491 		 * reassembly queue and wake up the reading thread
492 		 */
493 		if (data_length) {
494 			if (info->full_packet_received)
495 				response->first_segment = true;
496 
497 			if (le32_to_cpu(data_transfer->remaining_data_length))
498 				info->full_packet_received = false;
499 			else
500 				info->full_packet_received = true;
501 
502 			enqueue_reassembly(
503 				info,
504 				response,
505 				data_length);
506 		} else
507 			put_empty_packet(info, response);
508 
509 		if (data_length)
510 			wake_up_interruptible(&info->wait_reassembly_queue);
511 
512 		atomic_dec(&info->receive_credits);
513 		info->receive_credit_target =
514 			le16_to_cpu(data_transfer->credits_requested);
515 		if (le16_to_cpu(data_transfer->credits_granted)) {
516 			atomic_add(le16_to_cpu(data_transfer->credits_granted),
517 				&info->send_credits);
518 			/*
519 			 * We have new send credits granted from remote peer
520 			 * If any sender is waiting for credits, unblock it
521 			 */
522 			wake_up_interruptible(&info->wait_send_queue);
523 		}
524 
525 		log_incoming(INFO, "data flags %d data_offset %d data_length %d remaining_data_length %d\n",
526 			     le16_to_cpu(data_transfer->flags),
527 			     le32_to_cpu(data_transfer->data_offset),
528 			     le32_to_cpu(data_transfer->data_length),
529 			     le32_to_cpu(data_transfer->remaining_data_length));
530 
531 		/* Send a KEEP_ALIVE response right away if requested */
532 		info->keep_alive_requested = KEEP_ALIVE_NONE;
533 		if (le16_to_cpu(data_transfer->flags) &
534 				SMB_DIRECT_RESPONSE_REQUESTED) {
535 			info->keep_alive_requested = KEEP_ALIVE_PENDING;
536 		}
537 
538 		return;
539 
540 	default:
541 		log_rdma_recv(ERR,
542 			"unexpected response type=%d\n", response->type);
543 	}
544 
545 error:
546 	put_receive_buffer(info, response);
547 }
548 
549 static struct rdma_cm_id *smbd_create_id(
550 		struct smbd_connection *info,
551 		struct sockaddr *dstaddr, int port)
552 {
553 	struct rdma_cm_id *id;
554 	int rc;
555 	__be16 *sport;
556 
557 	id = rdma_create_id(&init_net, smbd_conn_upcall, info,
558 		RDMA_PS_TCP, IB_QPT_RC);
559 	if (IS_ERR(id)) {
560 		rc = PTR_ERR(id);
561 		log_rdma_event(ERR, "rdma_create_id() failed %i\n", rc);
562 		return id;
563 	}
564 
565 	if (dstaddr->sa_family == AF_INET6)
566 		sport = &((struct sockaddr_in6 *)dstaddr)->sin6_port;
567 	else
568 		sport = &((struct sockaddr_in *)dstaddr)->sin_port;
569 
570 	*sport = htons(port);
571 
572 	init_completion(&info->ri_done);
573 	info->ri_rc = -ETIMEDOUT;
574 
575 	rc = rdma_resolve_addr(id, NULL, (struct sockaddr *)dstaddr,
576 		RDMA_RESOLVE_TIMEOUT);
577 	if (rc) {
578 		log_rdma_event(ERR, "rdma_resolve_addr() failed %i\n", rc);
579 		goto out;
580 	}
581 	rc = wait_for_completion_interruptible_timeout(
582 		&info->ri_done, msecs_to_jiffies(RDMA_RESOLVE_TIMEOUT));
583 	/* e.g. if interrupted returns -ERESTARTSYS */
584 	if (rc < 0) {
585 		log_rdma_event(ERR, "rdma_resolve_addr timeout rc: %i\n", rc);
586 		goto out;
587 	}
588 	rc = info->ri_rc;
589 	if (rc) {
590 		log_rdma_event(ERR, "rdma_resolve_addr() completed %i\n", rc);
591 		goto out;
592 	}
593 
594 	info->ri_rc = -ETIMEDOUT;
595 	rc = rdma_resolve_route(id, RDMA_RESOLVE_TIMEOUT);
596 	if (rc) {
597 		log_rdma_event(ERR, "rdma_resolve_route() failed %i\n", rc);
598 		goto out;
599 	}
600 	rc = wait_for_completion_interruptible_timeout(
601 		&info->ri_done, msecs_to_jiffies(RDMA_RESOLVE_TIMEOUT));
602 	/* e.g. if interrupted returns -ERESTARTSYS */
603 	if (rc < 0)  {
604 		log_rdma_event(ERR, "rdma_resolve_addr timeout rc: %i\n", rc);
605 		goto out;
606 	}
607 	rc = info->ri_rc;
608 	if (rc) {
609 		log_rdma_event(ERR, "rdma_resolve_route() completed %i\n", rc);
610 		goto out;
611 	}
612 
613 	return id;
614 
615 out:
616 	rdma_destroy_id(id);
617 	return ERR_PTR(rc);
618 }
619 
620 /*
621  * Test if FRWR (Fast Registration Work Requests) is supported on the device
622  * This implementation requires FRWR on RDMA read/write
623  * return value: true if it is supported
624  */
625 static bool frwr_is_supported(struct ib_device_attr *attrs)
626 {
627 	if (!(attrs->device_cap_flags & IB_DEVICE_MEM_MGT_EXTENSIONS))
628 		return false;
629 	if (attrs->max_fast_reg_page_list_len == 0)
630 		return false;
631 	return true;
632 }
633 
634 static int smbd_ia_open(
635 		struct smbd_connection *info,
636 		struct sockaddr *dstaddr, int port)
637 {
638 	int rc;
639 
640 	info->id = smbd_create_id(info, dstaddr, port);
641 	if (IS_ERR(info->id)) {
642 		rc = PTR_ERR(info->id);
643 		goto out1;
644 	}
645 
646 	if (!frwr_is_supported(&info->id->device->attrs)) {
647 		log_rdma_event(ERR, "Fast Registration Work Requests (FRWR) is not supported\n");
648 		log_rdma_event(ERR, "Device capability flags = %llx max_fast_reg_page_list_len = %u\n",
649 			       info->id->device->attrs.device_cap_flags,
650 			       info->id->device->attrs.max_fast_reg_page_list_len);
651 		rc = -EPROTONOSUPPORT;
652 		goto out2;
653 	}
654 	info->max_frmr_depth = min_t(int,
655 		smbd_max_frmr_depth,
656 		info->id->device->attrs.max_fast_reg_page_list_len);
657 	info->mr_type = IB_MR_TYPE_MEM_REG;
658 	if (info->id->device->attrs.kernel_cap_flags & IBK_SG_GAPS_REG)
659 		info->mr_type = IB_MR_TYPE_SG_GAPS;
660 
661 	info->pd = ib_alloc_pd(info->id->device, 0);
662 	if (IS_ERR(info->pd)) {
663 		rc = PTR_ERR(info->pd);
664 		log_rdma_event(ERR, "ib_alloc_pd() returned %d\n", rc);
665 		goto out2;
666 	}
667 
668 	return 0;
669 
670 out2:
671 	rdma_destroy_id(info->id);
672 	info->id = NULL;
673 
674 out1:
675 	return rc;
676 }
677 
678 /*
679  * Send a negotiation request message to the peer
680  * The negotiation procedure is in [MS-SMBD] 3.1.5.2 and 3.1.5.3
681  * After negotiation, the transport is connected and ready for
682  * carrying upper layer SMB payload
683  */
684 static int smbd_post_send_negotiate_req(struct smbd_connection *info)
685 {
686 	struct ib_send_wr send_wr;
687 	int rc = -ENOMEM;
688 	struct smbd_request *request;
689 	struct smbd_negotiate_req *packet;
690 
691 	request = mempool_alloc(info->request_mempool, GFP_KERNEL);
692 	if (!request)
693 		return rc;
694 
695 	request->info = info;
696 
697 	packet = smbd_request_payload(request);
698 	packet->min_version = cpu_to_le16(SMBD_V1);
699 	packet->max_version = cpu_to_le16(SMBD_V1);
700 	packet->reserved = 0;
701 	packet->credits_requested = cpu_to_le16(info->send_credit_target);
702 	packet->preferred_send_size = cpu_to_le32(info->max_send_size);
703 	packet->max_receive_size = cpu_to_le32(info->max_receive_size);
704 	packet->max_fragmented_size =
705 		cpu_to_le32(info->max_fragmented_recv_size);
706 
707 	request->num_sge = 1;
708 	request->sge[0].addr = ib_dma_map_single(
709 				info->id->device, (void *)packet,
710 				sizeof(*packet), DMA_TO_DEVICE);
711 	if (ib_dma_mapping_error(info->id->device, request->sge[0].addr)) {
712 		rc = -EIO;
713 		goto dma_mapping_failed;
714 	}
715 
716 	request->sge[0].length = sizeof(*packet);
717 	request->sge[0].lkey = info->pd->local_dma_lkey;
718 
719 	ib_dma_sync_single_for_device(
720 		info->id->device, request->sge[0].addr,
721 		request->sge[0].length, DMA_TO_DEVICE);
722 
723 	request->cqe.done = send_done;
724 
725 	send_wr.next = NULL;
726 	send_wr.wr_cqe = &request->cqe;
727 	send_wr.sg_list = request->sge;
728 	send_wr.num_sge = request->num_sge;
729 	send_wr.opcode = IB_WR_SEND;
730 	send_wr.send_flags = IB_SEND_SIGNALED;
731 
732 	log_rdma_send(INFO, "sge addr=0x%llx length=%u lkey=0x%x\n",
733 		request->sge[0].addr,
734 		request->sge[0].length, request->sge[0].lkey);
735 
736 	atomic_inc(&info->send_pending);
737 	rc = ib_post_send(info->id->qp, &send_wr, NULL);
738 	if (!rc)
739 		return 0;
740 
741 	/* if we reach here, post send failed */
742 	log_rdma_send(ERR, "ib_post_send failed rc=%d\n", rc);
743 	atomic_dec(&info->send_pending);
744 	ib_dma_unmap_single(info->id->device, request->sge[0].addr,
745 		request->sge[0].length, DMA_TO_DEVICE);
746 
747 	smbd_disconnect_rdma_connection(info);
748 
749 dma_mapping_failed:
750 	mempool_free(request, info->request_mempool);
751 	return rc;
752 }
753 
754 /*
755  * Extend the credits to remote peer
756  * This implements [MS-SMBD] 3.1.5.9
757  * The idea is that we should extend credits to remote peer as quickly as
758  * it's allowed, to maintain data flow. We allocate as much receive
759  * buffer as possible, and extend the receive credits to remote peer
760  * return value: the new credtis being granted.
761  */
762 static int manage_credits_prior_sending(struct smbd_connection *info)
763 {
764 	int new_credits;
765 
766 	spin_lock(&info->lock_new_credits_offered);
767 	new_credits = info->new_credits_offered;
768 	info->new_credits_offered = 0;
769 	spin_unlock(&info->lock_new_credits_offered);
770 
771 	return new_credits;
772 }
773 
774 /*
775  * Check if we need to send a KEEP_ALIVE message
776  * The idle connection timer triggers a KEEP_ALIVE message when expires
777  * SMB_DIRECT_RESPONSE_REQUESTED is set in the message flag to have peer send
778  * back a response.
779  * return value:
780  * 1 if SMB_DIRECT_RESPONSE_REQUESTED needs to be set
781  * 0: otherwise
782  */
783 static int manage_keep_alive_before_sending(struct smbd_connection *info)
784 {
785 	if (info->keep_alive_requested == KEEP_ALIVE_PENDING) {
786 		info->keep_alive_requested = KEEP_ALIVE_SENT;
787 		return 1;
788 	}
789 	return 0;
790 }
791 
792 /* Post the send request */
793 static int smbd_post_send(struct smbd_connection *info,
794 		struct smbd_request *request)
795 {
796 	struct ib_send_wr send_wr;
797 	int rc, i;
798 
799 	for (i = 0; i < request->num_sge; i++) {
800 		log_rdma_send(INFO,
801 			"rdma_request sge[%d] addr=0x%llx length=%u\n",
802 			i, request->sge[i].addr, request->sge[i].length);
803 		ib_dma_sync_single_for_device(
804 			info->id->device,
805 			request->sge[i].addr,
806 			request->sge[i].length,
807 			DMA_TO_DEVICE);
808 	}
809 
810 	request->cqe.done = send_done;
811 
812 	send_wr.next = NULL;
813 	send_wr.wr_cqe = &request->cqe;
814 	send_wr.sg_list = request->sge;
815 	send_wr.num_sge = request->num_sge;
816 	send_wr.opcode = IB_WR_SEND;
817 	send_wr.send_flags = IB_SEND_SIGNALED;
818 
819 	rc = ib_post_send(info->id->qp, &send_wr, NULL);
820 	if (rc) {
821 		log_rdma_send(ERR, "ib_post_send failed rc=%d\n", rc);
822 		smbd_disconnect_rdma_connection(info);
823 		rc = -EAGAIN;
824 	} else
825 		/* Reset timer for idle connection after packet is sent */
826 		mod_delayed_work(info->workqueue, &info->idle_timer_work,
827 			info->keep_alive_interval*HZ);
828 
829 	return rc;
830 }
831 
832 static int smbd_post_send_iter(struct smbd_connection *info,
833 			       struct iov_iter *iter,
834 			       int *_remaining_data_length)
835 {
836 	int i, rc;
837 	int header_length;
838 	int data_length;
839 	struct smbd_request *request;
840 	struct smbd_data_transfer *packet;
841 	int new_credits = 0;
842 
843 wait_credit:
844 	/* Wait for send credits. A SMBD packet needs one credit */
845 	rc = wait_event_interruptible(info->wait_send_queue,
846 		atomic_read(&info->send_credits) > 0 ||
847 		info->transport_status != SMBD_CONNECTED);
848 	if (rc)
849 		goto err_wait_credit;
850 
851 	if (info->transport_status != SMBD_CONNECTED) {
852 		log_outgoing(ERR, "disconnected not sending on wait_credit\n");
853 		rc = -EAGAIN;
854 		goto err_wait_credit;
855 	}
856 	if (unlikely(atomic_dec_return(&info->send_credits) < 0)) {
857 		atomic_inc(&info->send_credits);
858 		goto wait_credit;
859 	}
860 
861 wait_send_queue:
862 	wait_event(info->wait_post_send,
863 		atomic_read(&info->send_pending) < info->send_credit_target ||
864 		info->transport_status != SMBD_CONNECTED);
865 
866 	if (info->transport_status != SMBD_CONNECTED) {
867 		log_outgoing(ERR, "disconnected not sending on wait_send_queue\n");
868 		rc = -EAGAIN;
869 		goto err_wait_send_queue;
870 	}
871 
872 	if (unlikely(atomic_inc_return(&info->send_pending) >
873 				info->send_credit_target)) {
874 		atomic_dec(&info->send_pending);
875 		goto wait_send_queue;
876 	}
877 
878 	request = mempool_alloc(info->request_mempool, GFP_KERNEL);
879 	if (!request) {
880 		rc = -ENOMEM;
881 		goto err_alloc;
882 	}
883 
884 	request->info = info;
885 	memset(request->sge, 0, sizeof(request->sge));
886 
887 	/* Fill in the data payload to find out how much data we can add */
888 	if (iter) {
889 		struct smb_extract_to_rdma extract = {
890 			.nr_sge		= 1,
891 			.max_sge	= SMBDIRECT_MAX_SEND_SGE,
892 			.sge		= request->sge,
893 			.device		= info->id->device,
894 			.local_dma_lkey	= info->pd->local_dma_lkey,
895 			.direction	= DMA_TO_DEVICE,
896 		};
897 
898 		rc = smb_extract_iter_to_rdma(iter, *_remaining_data_length,
899 					      &extract);
900 		if (rc < 0)
901 			goto err_dma;
902 		data_length = rc;
903 		request->num_sge = extract.nr_sge;
904 		*_remaining_data_length -= data_length;
905 	} else {
906 		data_length = 0;
907 		request->num_sge = 1;
908 	}
909 
910 	/* Fill in the packet header */
911 	packet = smbd_request_payload(request);
912 	packet->credits_requested = cpu_to_le16(info->send_credit_target);
913 
914 	new_credits = manage_credits_prior_sending(info);
915 	atomic_add(new_credits, &info->receive_credits);
916 	packet->credits_granted = cpu_to_le16(new_credits);
917 
918 	info->send_immediate = false;
919 
920 	packet->flags = 0;
921 	if (manage_keep_alive_before_sending(info))
922 		packet->flags |= cpu_to_le16(SMB_DIRECT_RESPONSE_REQUESTED);
923 
924 	packet->reserved = 0;
925 	if (!data_length)
926 		packet->data_offset = 0;
927 	else
928 		packet->data_offset = cpu_to_le32(24);
929 	packet->data_length = cpu_to_le32(data_length);
930 	packet->remaining_data_length = cpu_to_le32(*_remaining_data_length);
931 	packet->padding = 0;
932 
933 	log_outgoing(INFO, "credits_requested=%d credits_granted=%d data_offset=%d data_length=%d remaining_data_length=%d\n",
934 		     le16_to_cpu(packet->credits_requested),
935 		     le16_to_cpu(packet->credits_granted),
936 		     le32_to_cpu(packet->data_offset),
937 		     le32_to_cpu(packet->data_length),
938 		     le32_to_cpu(packet->remaining_data_length));
939 
940 	/* Map the packet to DMA */
941 	header_length = sizeof(struct smbd_data_transfer);
942 	/* If this is a packet without payload, don't send padding */
943 	if (!data_length)
944 		header_length = offsetof(struct smbd_data_transfer, padding);
945 
946 	request->sge[0].addr = ib_dma_map_single(info->id->device,
947 						 (void *)packet,
948 						 header_length,
949 						 DMA_TO_DEVICE);
950 	if (ib_dma_mapping_error(info->id->device, request->sge[0].addr)) {
951 		rc = -EIO;
952 		request->sge[0].addr = 0;
953 		goto err_dma;
954 	}
955 
956 	request->sge[0].length = header_length;
957 	request->sge[0].lkey = info->pd->local_dma_lkey;
958 
959 	rc = smbd_post_send(info, request);
960 	if (!rc)
961 		return 0;
962 
963 err_dma:
964 	for (i = 0; i < request->num_sge; i++)
965 		if (request->sge[i].addr)
966 			ib_dma_unmap_single(info->id->device,
967 					    request->sge[i].addr,
968 					    request->sge[i].length,
969 					    DMA_TO_DEVICE);
970 	mempool_free(request, info->request_mempool);
971 
972 	/* roll back receive credits and credits to be offered */
973 	spin_lock(&info->lock_new_credits_offered);
974 	info->new_credits_offered += new_credits;
975 	spin_unlock(&info->lock_new_credits_offered);
976 	atomic_sub(new_credits, &info->receive_credits);
977 
978 err_alloc:
979 	if (atomic_dec_and_test(&info->send_pending))
980 		wake_up(&info->wait_send_pending);
981 
982 err_wait_send_queue:
983 	/* roll back send credits and pending */
984 	atomic_inc(&info->send_credits);
985 
986 err_wait_credit:
987 	return rc;
988 }
989 
990 /*
991  * Send an empty message
992  * Empty message is used to extend credits to peer to for keep live
993  * while there is no upper layer payload to send at the time
994  */
995 static int smbd_post_send_empty(struct smbd_connection *info)
996 {
997 	int remaining_data_length = 0;
998 
999 	info->count_send_empty++;
1000 	return smbd_post_send_iter(info, NULL, &remaining_data_length);
1001 }
1002 
1003 /*
1004  * Post a receive request to the transport
1005  * The remote peer can only send data when a receive request is posted
1006  * The interaction is controlled by send/receive credit system
1007  */
1008 static int smbd_post_recv(
1009 		struct smbd_connection *info, struct smbd_response *response)
1010 {
1011 	struct ib_recv_wr recv_wr;
1012 	int rc = -EIO;
1013 
1014 	response->sge.addr = ib_dma_map_single(
1015 				info->id->device, response->packet,
1016 				info->max_receive_size, DMA_FROM_DEVICE);
1017 	if (ib_dma_mapping_error(info->id->device, response->sge.addr))
1018 		return rc;
1019 
1020 	response->sge.length = info->max_receive_size;
1021 	response->sge.lkey = info->pd->local_dma_lkey;
1022 
1023 	response->cqe.done = recv_done;
1024 
1025 	recv_wr.wr_cqe = &response->cqe;
1026 	recv_wr.next = NULL;
1027 	recv_wr.sg_list = &response->sge;
1028 	recv_wr.num_sge = 1;
1029 
1030 	rc = ib_post_recv(info->id->qp, &recv_wr, NULL);
1031 	if (rc) {
1032 		ib_dma_unmap_single(info->id->device, response->sge.addr,
1033 				    response->sge.length, DMA_FROM_DEVICE);
1034 		smbd_disconnect_rdma_connection(info);
1035 		log_rdma_recv(ERR, "ib_post_recv failed rc=%d\n", rc);
1036 	}
1037 
1038 	return rc;
1039 }
1040 
1041 /* Perform SMBD negotiate according to [MS-SMBD] 3.1.5.2 */
1042 static int smbd_negotiate(struct smbd_connection *info)
1043 {
1044 	int rc;
1045 	struct smbd_response *response = get_receive_buffer(info);
1046 
1047 	response->type = SMBD_NEGOTIATE_RESP;
1048 	rc = smbd_post_recv(info, response);
1049 	log_rdma_event(INFO, "smbd_post_recv rc=%d iov.addr=0x%llx iov.length=%u iov.lkey=0x%x\n",
1050 		       rc, response->sge.addr,
1051 		       response->sge.length, response->sge.lkey);
1052 	if (rc)
1053 		return rc;
1054 
1055 	init_completion(&info->negotiate_completion);
1056 	info->negotiate_done = false;
1057 	rc = smbd_post_send_negotiate_req(info);
1058 	if (rc)
1059 		return rc;
1060 
1061 	rc = wait_for_completion_interruptible_timeout(
1062 		&info->negotiate_completion, SMBD_NEGOTIATE_TIMEOUT * HZ);
1063 	log_rdma_event(INFO, "wait_for_completion_timeout rc=%d\n", rc);
1064 
1065 	if (info->negotiate_done)
1066 		return 0;
1067 
1068 	if (rc == 0)
1069 		rc = -ETIMEDOUT;
1070 	else if (rc == -ERESTARTSYS)
1071 		rc = -EINTR;
1072 	else
1073 		rc = -ENOTCONN;
1074 
1075 	return rc;
1076 }
1077 
1078 static void put_empty_packet(
1079 		struct smbd_connection *info, struct smbd_response *response)
1080 {
1081 	spin_lock(&info->empty_packet_queue_lock);
1082 	list_add_tail(&response->list, &info->empty_packet_queue);
1083 	info->count_empty_packet_queue++;
1084 	spin_unlock(&info->empty_packet_queue_lock);
1085 
1086 	queue_work(info->workqueue, &info->post_send_credits_work);
1087 }
1088 
1089 /*
1090  * Implement Connection.FragmentReassemblyBuffer defined in [MS-SMBD] 3.1.1.1
1091  * This is a queue for reassembling upper layer payload and present to upper
1092  * layer. All the inncoming payload go to the reassembly queue, regardless of
1093  * if reassembly is required. The uuper layer code reads from the queue for all
1094  * incoming payloads.
1095  * Put a received packet to the reassembly queue
1096  * response: the packet received
1097  * data_length: the size of payload in this packet
1098  */
1099 static void enqueue_reassembly(
1100 	struct smbd_connection *info,
1101 	struct smbd_response *response,
1102 	int data_length)
1103 {
1104 	spin_lock(&info->reassembly_queue_lock);
1105 	list_add_tail(&response->list, &info->reassembly_queue);
1106 	info->reassembly_queue_length++;
1107 	/*
1108 	 * Make sure reassembly_data_length is updated after list and
1109 	 * reassembly_queue_length are updated. On the dequeue side
1110 	 * reassembly_data_length is checked without a lock to determine
1111 	 * if reassembly_queue_length and list is up to date
1112 	 */
1113 	virt_wmb();
1114 	info->reassembly_data_length += data_length;
1115 	spin_unlock(&info->reassembly_queue_lock);
1116 	info->count_reassembly_queue++;
1117 	info->count_enqueue_reassembly_queue++;
1118 }
1119 
1120 /*
1121  * Get the first entry at the front of reassembly queue
1122  * Caller is responsible for locking
1123  * return value: the first entry if any, NULL if queue is empty
1124  */
1125 static struct smbd_response *_get_first_reassembly(struct smbd_connection *info)
1126 {
1127 	struct smbd_response *ret = NULL;
1128 
1129 	if (!list_empty(&info->reassembly_queue)) {
1130 		ret = list_first_entry(
1131 			&info->reassembly_queue,
1132 			struct smbd_response, list);
1133 	}
1134 	return ret;
1135 }
1136 
1137 static struct smbd_response *get_empty_queue_buffer(
1138 		struct smbd_connection *info)
1139 {
1140 	struct smbd_response *ret = NULL;
1141 	unsigned long flags;
1142 
1143 	spin_lock_irqsave(&info->empty_packet_queue_lock, flags);
1144 	if (!list_empty(&info->empty_packet_queue)) {
1145 		ret = list_first_entry(
1146 			&info->empty_packet_queue,
1147 			struct smbd_response, list);
1148 		list_del(&ret->list);
1149 		info->count_empty_packet_queue--;
1150 	}
1151 	spin_unlock_irqrestore(&info->empty_packet_queue_lock, flags);
1152 
1153 	return ret;
1154 }
1155 
1156 /*
1157  * Get a receive buffer
1158  * For each remote send, we need to post a receive. The receive buffers are
1159  * pre-allocated in advance.
1160  * return value: the receive buffer, NULL if none is available
1161  */
1162 static struct smbd_response *get_receive_buffer(struct smbd_connection *info)
1163 {
1164 	struct smbd_response *ret = NULL;
1165 	unsigned long flags;
1166 
1167 	spin_lock_irqsave(&info->receive_queue_lock, flags);
1168 	if (!list_empty(&info->receive_queue)) {
1169 		ret = list_first_entry(
1170 			&info->receive_queue,
1171 			struct smbd_response, list);
1172 		list_del(&ret->list);
1173 		info->count_receive_queue--;
1174 		info->count_get_receive_buffer++;
1175 	}
1176 	spin_unlock_irqrestore(&info->receive_queue_lock, flags);
1177 
1178 	return ret;
1179 }
1180 
1181 /*
1182  * Return a receive buffer
1183  * Upon returning of a receive buffer, we can post new receive and extend
1184  * more receive credits to remote peer. This is done immediately after a
1185  * receive buffer is returned.
1186  */
1187 static void put_receive_buffer(
1188 	struct smbd_connection *info, struct smbd_response *response)
1189 {
1190 	unsigned long flags;
1191 
1192 	ib_dma_unmap_single(info->id->device, response->sge.addr,
1193 		response->sge.length, DMA_FROM_DEVICE);
1194 
1195 	spin_lock_irqsave(&info->receive_queue_lock, flags);
1196 	list_add_tail(&response->list, &info->receive_queue);
1197 	info->count_receive_queue++;
1198 	info->count_put_receive_buffer++;
1199 	spin_unlock_irqrestore(&info->receive_queue_lock, flags);
1200 
1201 	queue_work(info->workqueue, &info->post_send_credits_work);
1202 }
1203 
1204 /* Preallocate all receive buffer on transport establishment */
1205 static int allocate_receive_buffers(struct smbd_connection *info, int num_buf)
1206 {
1207 	int i;
1208 	struct smbd_response *response;
1209 
1210 	INIT_LIST_HEAD(&info->reassembly_queue);
1211 	spin_lock_init(&info->reassembly_queue_lock);
1212 	info->reassembly_data_length = 0;
1213 	info->reassembly_queue_length = 0;
1214 
1215 	INIT_LIST_HEAD(&info->receive_queue);
1216 	spin_lock_init(&info->receive_queue_lock);
1217 	info->count_receive_queue = 0;
1218 
1219 	INIT_LIST_HEAD(&info->empty_packet_queue);
1220 	spin_lock_init(&info->empty_packet_queue_lock);
1221 	info->count_empty_packet_queue = 0;
1222 
1223 	init_waitqueue_head(&info->wait_receive_queues);
1224 
1225 	for (i = 0; i < num_buf; i++) {
1226 		response = mempool_alloc(info->response_mempool, GFP_KERNEL);
1227 		if (!response)
1228 			goto allocate_failed;
1229 
1230 		response->info = info;
1231 		list_add_tail(&response->list, &info->receive_queue);
1232 		info->count_receive_queue++;
1233 	}
1234 
1235 	return 0;
1236 
1237 allocate_failed:
1238 	while (!list_empty(&info->receive_queue)) {
1239 		response = list_first_entry(
1240 				&info->receive_queue,
1241 				struct smbd_response, list);
1242 		list_del(&response->list);
1243 		info->count_receive_queue--;
1244 
1245 		mempool_free(response, info->response_mempool);
1246 	}
1247 	return -ENOMEM;
1248 }
1249 
1250 static void destroy_receive_buffers(struct smbd_connection *info)
1251 {
1252 	struct smbd_response *response;
1253 
1254 	while ((response = get_receive_buffer(info)))
1255 		mempool_free(response, info->response_mempool);
1256 
1257 	while ((response = get_empty_queue_buffer(info)))
1258 		mempool_free(response, info->response_mempool);
1259 }
1260 
1261 /* Implement idle connection timer [MS-SMBD] 3.1.6.2 */
1262 static void idle_connection_timer(struct work_struct *work)
1263 {
1264 	struct smbd_connection *info = container_of(
1265 					work, struct smbd_connection,
1266 					idle_timer_work.work);
1267 
1268 	if (info->keep_alive_requested != KEEP_ALIVE_NONE) {
1269 		log_keep_alive(ERR,
1270 			"error status info->keep_alive_requested=%d\n",
1271 			info->keep_alive_requested);
1272 		smbd_disconnect_rdma_connection(info);
1273 		return;
1274 	}
1275 
1276 	log_keep_alive(INFO, "about to send an empty idle message\n");
1277 	smbd_post_send_empty(info);
1278 
1279 	/* Setup the next idle timeout work */
1280 	queue_delayed_work(info->workqueue, &info->idle_timer_work,
1281 			info->keep_alive_interval*HZ);
1282 }
1283 
1284 /*
1285  * Destroy the transport and related RDMA and memory resources
1286  * Need to go through all the pending counters and make sure on one is using
1287  * the transport while it is destroyed
1288  */
1289 void smbd_destroy(struct TCP_Server_Info *server)
1290 {
1291 	struct smbd_connection *info = server->smbd_conn;
1292 	struct smbd_response *response;
1293 	unsigned long flags;
1294 
1295 	if (!info) {
1296 		log_rdma_event(INFO, "rdma session already destroyed\n");
1297 		return;
1298 	}
1299 
1300 	log_rdma_event(INFO, "destroying rdma session\n");
1301 	if (info->transport_status != SMBD_DISCONNECTED) {
1302 		rdma_disconnect(server->smbd_conn->id);
1303 		log_rdma_event(INFO, "wait for transport being disconnected\n");
1304 		wait_event_interruptible(
1305 			info->disconn_wait,
1306 			info->transport_status == SMBD_DISCONNECTED);
1307 	}
1308 
1309 	log_rdma_event(INFO, "destroying qp\n");
1310 	ib_drain_qp(info->id->qp);
1311 	rdma_destroy_qp(info->id);
1312 
1313 	log_rdma_event(INFO, "cancelling idle timer\n");
1314 	cancel_delayed_work_sync(&info->idle_timer_work);
1315 
1316 	log_rdma_event(INFO, "wait for all send posted to IB to finish\n");
1317 	wait_event(info->wait_send_pending,
1318 		atomic_read(&info->send_pending) == 0);
1319 
1320 	/* It's not possible for upper layer to get to reassembly */
1321 	log_rdma_event(INFO, "drain the reassembly queue\n");
1322 	do {
1323 		spin_lock_irqsave(&info->reassembly_queue_lock, flags);
1324 		response = _get_first_reassembly(info);
1325 		if (response) {
1326 			list_del(&response->list);
1327 			spin_unlock_irqrestore(
1328 				&info->reassembly_queue_lock, flags);
1329 			put_receive_buffer(info, response);
1330 		} else
1331 			spin_unlock_irqrestore(
1332 				&info->reassembly_queue_lock, flags);
1333 	} while (response);
1334 	info->reassembly_data_length = 0;
1335 
1336 	log_rdma_event(INFO, "free receive buffers\n");
1337 	wait_event(info->wait_receive_queues,
1338 		info->count_receive_queue + info->count_empty_packet_queue
1339 			== info->receive_credit_max);
1340 	destroy_receive_buffers(info);
1341 
1342 	/*
1343 	 * For performance reasons, memory registration and deregistration
1344 	 * are not locked by srv_mutex. It is possible some processes are
1345 	 * blocked on transport srv_mutex while holding memory registration.
1346 	 * Release the transport srv_mutex to allow them to hit the failure
1347 	 * path when sending data, and then release memory registartions.
1348 	 */
1349 	log_rdma_event(INFO, "freeing mr list\n");
1350 	wake_up_interruptible_all(&info->wait_mr);
1351 	while (atomic_read(&info->mr_used_count)) {
1352 		cifs_server_unlock(server);
1353 		msleep(1000);
1354 		cifs_server_lock(server);
1355 	}
1356 	destroy_mr_list(info);
1357 
1358 	ib_free_cq(info->send_cq);
1359 	ib_free_cq(info->recv_cq);
1360 	ib_dealloc_pd(info->pd);
1361 	rdma_destroy_id(info->id);
1362 
1363 	/* free mempools */
1364 	mempool_destroy(info->request_mempool);
1365 	kmem_cache_destroy(info->request_cache);
1366 
1367 	mempool_destroy(info->response_mempool);
1368 	kmem_cache_destroy(info->response_cache);
1369 
1370 	info->transport_status = SMBD_DESTROYED;
1371 
1372 	destroy_workqueue(info->workqueue);
1373 	log_rdma_event(INFO,  "rdma session destroyed\n");
1374 	kfree(info);
1375 	server->smbd_conn = NULL;
1376 }
1377 
1378 /*
1379  * Reconnect this SMBD connection, called from upper layer
1380  * return value: 0 on success, or actual error code
1381  */
1382 int smbd_reconnect(struct TCP_Server_Info *server)
1383 {
1384 	log_rdma_event(INFO, "reconnecting rdma session\n");
1385 
1386 	if (!server->smbd_conn) {
1387 		log_rdma_event(INFO, "rdma session already destroyed\n");
1388 		goto create_conn;
1389 	}
1390 
1391 	/*
1392 	 * This is possible if transport is disconnected and we haven't received
1393 	 * notification from RDMA, but upper layer has detected timeout
1394 	 */
1395 	if (server->smbd_conn->transport_status == SMBD_CONNECTED) {
1396 		log_rdma_event(INFO, "disconnecting transport\n");
1397 		smbd_destroy(server);
1398 	}
1399 
1400 create_conn:
1401 	log_rdma_event(INFO, "creating rdma session\n");
1402 	server->smbd_conn = smbd_get_connection(
1403 		server, (struct sockaddr *) &server->dstaddr);
1404 
1405 	if (server->smbd_conn) {
1406 		cifs_dbg(VFS, "RDMA transport re-established\n");
1407 		trace_smb3_smbd_connect_done(server->hostname, server->conn_id, &server->dstaddr);
1408 		return 0;
1409 	}
1410 	trace_smb3_smbd_connect_err(server->hostname, server->conn_id, &server->dstaddr);
1411 	return -ENOENT;
1412 }
1413 
1414 static void destroy_caches_and_workqueue(struct smbd_connection *info)
1415 {
1416 	destroy_receive_buffers(info);
1417 	destroy_workqueue(info->workqueue);
1418 	mempool_destroy(info->response_mempool);
1419 	kmem_cache_destroy(info->response_cache);
1420 	mempool_destroy(info->request_mempool);
1421 	kmem_cache_destroy(info->request_cache);
1422 }
1423 
1424 #define MAX_NAME_LEN	80
1425 static int allocate_caches_and_workqueue(struct smbd_connection *info)
1426 {
1427 	char name[MAX_NAME_LEN];
1428 	int rc;
1429 
1430 	scnprintf(name, MAX_NAME_LEN, "smbd_request_%p", info);
1431 	info->request_cache =
1432 		kmem_cache_create(
1433 			name,
1434 			sizeof(struct smbd_request) +
1435 				sizeof(struct smbd_data_transfer),
1436 			0, SLAB_HWCACHE_ALIGN, NULL);
1437 	if (!info->request_cache)
1438 		return -ENOMEM;
1439 
1440 	info->request_mempool =
1441 		mempool_create(info->send_credit_target, mempool_alloc_slab,
1442 			mempool_free_slab, info->request_cache);
1443 	if (!info->request_mempool)
1444 		goto out1;
1445 
1446 	scnprintf(name, MAX_NAME_LEN, "smbd_response_%p", info);
1447 	info->response_cache =
1448 		kmem_cache_create(
1449 			name,
1450 			sizeof(struct smbd_response) +
1451 				info->max_receive_size,
1452 			0, SLAB_HWCACHE_ALIGN, NULL);
1453 	if (!info->response_cache)
1454 		goto out2;
1455 
1456 	info->response_mempool =
1457 		mempool_create(info->receive_credit_max, mempool_alloc_slab,
1458 		       mempool_free_slab, info->response_cache);
1459 	if (!info->response_mempool)
1460 		goto out3;
1461 
1462 	scnprintf(name, MAX_NAME_LEN, "smbd_%p", info);
1463 	info->workqueue = create_workqueue(name);
1464 	if (!info->workqueue)
1465 		goto out4;
1466 
1467 	rc = allocate_receive_buffers(info, info->receive_credit_max);
1468 	if (rc) {
1469 		log_rdma_event(ERR, "failed to allocate receive buffers\n");
1470 		goto out5;
1471 	}
1472 
1473 	return 0;
1474 
1475 out5:
1476 	destroy_workqueue(info->workqueue);
1477 out4:
1478 	mempool_destroy(info->response_mempool);
1479 out3:
1480 	kmem_cache_destroy(info->response_cache);
1481 out2:
1482 	mempool_destroy(info->request_mempool);
1483 out1:
1484 	kmem_cache_destroy(info->request_cache);
1485 	return -ENOMEM;
1486 }
1487 
1488 /* Create a SMBD connection, called by upper layer */
1489 static struct smbd_connection *_smbd_get_connection(
1490 	struct TCP_Server_Info *server, struct sockaddr *dstaddr, int port)
1491 {
1492 	int rc;
1493 	struct smbd_connection *info;
1494 	struct rdma_conn_param conn_param;
1495 	struct ib_qp_init_attr qp_attr;
1496 	struct sockaddr_in *addr_in = (struct sockaddr_in *) dstaddr;
1497 	struct ib_port_immutable port_immutable;
1498 	u32 ird_ord_hdr[2];
1499 
1500 	info = kzalloc(sizeof(struct smbd_connection), GFP_KERNEL);
1501 	if (!info)
1502 		return NULL;
1503 
1504 	info->transport_status = SMBD_CONNECTING;
1505 	rc = smbd_ia_open(info, dstaddr, port);
1506 	if (rc) {
1507 		log_rdma_event(INFO, "smbd_ia_open rc=%d\n", rc);
1508 		goto create_id_failed;
1509 	}
1510 
1511 	if (smbd_send_credit_target > info->id->device->attrs.max_cqe ||
1512 	    smbd_send_credit_target > info->id->device->attrs.max_qp_wr) {
1513 		log_rdma_event(ERR, "consider lowering send_credit_target = %d. Possible CQE overrun, device reporting max_cqe %d max_qp_wr %d\n",
1514 			       smbd_send_credit_target,
1515 			       info->id->device->attrs.max_cqe,
1516 			       info->id->device->attrs.max_qp_wr);
1517 		goto config_failed;
1518 	}
1519 
1520 	if (smbd_receive_credit_max > info->id->device->attrs.max_cqe ||
1521 	    smbd_receive_credit_max > info->id->device->attrs.max_qp_wr) {
1522 		log_rdma_event(ERR, "consider lowering receive_credit_max = %d. Possible CQE overrun, device reporting max_cqe %d max_qp_wr %d\n",
1523 			       smbd_receive_credit_max,
1524 			       info->id->device->attrs.max_cqe,
1525 			       info->id->device->attrs.max_qp_wr);
1526 		goto config_failed;
1527 	}
1528 
1529 	info->receive_credit_max = smbd_receive_credit_max;
1530 	info->send_credit_target = smbd_send_credit_target;
1531 	info->max_send_size = smbd_max_send_size;
1532 	info->max_fragmented_recv_size = smbd_max_fragmented_recv_size;
1533 	info->max_receive_size = smbd_max_receive_size;
1534 	info->keep_alive_interval = smbd_keep_alive_interval;
1535 
1536 	if (info->id->device->attrs.max_send_sge < SMBDIRECT_MAX_SEND_SGE ||
1537 	    info->id->device->attrs.max_recv_sge < SMBDIRECT_MAX_RECV_SGE) {
1538 		log_rdma_event(ERR,
1539 			"device %.*s max_send_sge/max_recv_sge = %d/%d too small\n",
1540 			IB_DEVICE_NAME_MAX,
1541 			info->id->device->name,
1542 			info->id->device->attrs.max_send_sge,
1543 			info->id->device->attrs.max_recv_sge);
1544 		goto config_failed;
1545 	}
1546 
1547 	info->send_cq = NULL;
1548 	info->recv_cq = NULL;
1549 	info->send_cq =
1550 		ib_alloc_cq_any(info->id->device, info,
1551 				info->send_credit_target, IB_POLL_SOFTIRQ);
1552 	if (IS_ERR(info->send_cq)) {
1553 		info->send_cq = NULL;
1554 		goto alloc_cq_failed;
1555 	}
1556 
1557 	info->recv_cq =
1558 		ib_alloc_cq_any(info->id->device, info,
1559 				info->receive_credit_max, IB_POLL_SOFTIRQ);
1560 	if (IS_ERR(info->recv_cq)) {
1561 		info->recv_cq = NULL;
1562 		goto alloc_cq_failed;
1563 	}
1564 
1565 	memset(&qp_attr, 0, sizeof(qp_attr));
1566 	qp_attr.event_handler = smbd_qp_async_error_upcall;
1567 	qp_attr.qp_context = info;
1568 	qp_attr.cap.max_send_wr = info->send_credit_target;
1569 	qp_attr.cap.max_recv_wr = info->receive_credit_max;
1570 	qp_attr.cap.max_send_sge = SMBDIRECT_MAX_SEND_SGE;
1571 	qp_attr.cap.max_recv_sge = SMBDIRECT_MAX_RECV_SGE;
1572 	qp_attr.cap.max_inline_data = 0;
1573 	qp_attr.sq_sig_type = IB_SIGNAL_REQ_WR;
1574 	qp_attr.qp_type = IB_QPT_RC;
1575 	qp_attr.send_cq = info->send_cq;
1576 	qp_attr.recv_cq = info->recv_cq;
1577 	qp_attr.port_num = ~0;
1578 
1579 	rc = rdma_create_qp(info->id, info->pd, &qp_attr);
1580 	if (rc) {
1581 		log_rdma_event(ERR, "rdma_create_qp failed %i\n", rc);
1582 		goto create_qp_failed;
1583 	}
1584 
1585 	memset(&conn_param, 0, sizeof(conn_param));
1586 	conn_param.initiator_depth = 0;
1587 
1588 	conn_param.responder_resources =
1589 		min(info->id->device->attrs.max_qp_rd_atom,
1590 		    SMBD_CM_RESPONDER_RESOURCES);
1591 	info->responder_resources = conn_param.responder_resources;
1592 	log_rdma_mr(INFO, "responder_resources=%d\n",
1593 		info->responder_resources);
1594 
1595 	/* Need to send IRD/ORD in private data for iWARP */
1596 	info->id->device->ops.get_port_immutable(
1597 		info->id->device, info->id->port_num, &port_immutable);
1598 	if (port_immutable.core_cap_flags & RDMA_CORE_PORT_IWARP) {
1599 		ird_ord_hdr[0] = info->responder_resources;
1600 		ird_ord_hdr[1] = 1;
1601 		conn_param.private_data = ird_ord_hdr;
1602 		conn_param.private_data_len = sizeof(ird_ord_hdr);
1603 	} else {
1604 		conn_param.private_data = NULL;
1605 		conn_param.private_data_len = 0;
1606 	}
1607 
1608 	conn_param.retry_count = SMBD_CM_RETRY;
1609 	conn_param.rnr_retry_count = SMBD_CM_RNR_RETRY;
1610 	conn_param.flow_control = 0;
1611 
1612 	log_rdma_event(INFO, "connecting to IP %pI4 port %d\n",
1613 		&addr_in->sin_addr, port);
1614 
1615 	init_waitqueue_head(&info->conn_wait);
1616 	init_waitqueue_head(&info->disconn_wait);
1617 	init_waitqueue_head(&info->wait_reassembly_queue);
1618 	rc = rdma_connect(info->id, &conn_param);
1619 	if (rc) {
1620 		log_rdma_event(ERR, "rdma_connect() failed with %i\n", rc);
1621 		goto rdma_connect_failed;
1622 	}
1623 
1624 	wait_event_interruptible(
1625 		info->conn_wait, info->transport_status != SMBD_CONNECTING);
1626 
1627 	if (info->transport_status != SMBD_CONNECTED) {
1628 		log_rdma_event(ERR, "rdma_connect failed port=%d\n", port);
1629 		goto rdma_connect_failed;
1630 	}
1631 
1632 	log_rdma_event(INFO, "rdma_connect connected\n");
1633 
1634 	rc = allocate_caches_and_workqueue(info);
1635 	if (rc) {
1636 		log_rdma_event(ERR, "cache allocation failed\n");
1637 		goto allocate_cache_failed;
1638 	}
1639 
1640 	init_waitqueue_head(&info->wait_send_queue);
1641 	INIT_DELAYED_WORK(&info->idle_timer_work, idle_connection_timer);
1642 	queue_delayed_work(info->workqueue, &info->idle_timer_work,
1643 		info->keep_alive_interval*HZ);
1644 
1645 	init_waitqueue_head(&info->wait_send_pending);
1646 	atomic_set(&info->send_pending, 0);
1647 
1648 	init_waitqueue_head(&info->wait_post_send);
1649 
1650 	INIT_WORK(&info->disconnect_work, smbd_disconnect_rdma_work);
1651 	INIT_WORK(&info->post_send_credits_work, smbd_post_send_credits);
1652 	info->new_credits_offered = 0;
1653 	spin_lock_init(&info->lock_new_credits_offered);
1654 
1655 	rc = smbd_negotiate(info);
1656 	if (rc) {
1657 		log_rdma_event(ERR, "smbd_negotiate rc=%d\n", rc);
1658 		goto negotiation_failed;
1659 	}
1660 
1661 	rc = allocate_mr_list(info);
1662 	if (rc) {
1663 		log_rdma_mr(ERR, "memory registration allocation failed\n");
1664 		goto allocate_mr_failed;
1665 	}
1666 
1667 	return info;
1668 
1669 allocate_mr_failed:
1670 	/* At this point, need to a full transport shutdown */
1671 	server->smbd_conn = info;
1672 	smbd_destroy(server);
1673 	return NULL;
1674 
1675 negotiation_failed:
1676 	cancel_delayed_work_sync(&info->idle_timer_work);
1677 	destroy_caches_and_workqueue(info);
1678 	info->transport_status = SMBD_NEGOTIATE_FAILED;
1679 	init_waitqueue_head(&info->conn_wait);
1680 	rdma_disconnect(info->id);
1681 	wait_event(info->conn_wait,
1682 		info->transport_status == SMBD_DISCONNECTED);
1683 
1684 allocate_cache_failed:
1685 rdma_connect_failed:
1686 	rdma_destroy_qp(info->id);
1687 
1688 create_qp_failed:
1689 alloc_cq_failed:
1690 	if (info->send_cq)
1691 		ib_free_cq(info->send_cq);
1692 	if (info->recv_cq)
1693 		ib_free_cq(info->recv_cq);
1694 
1695 config_failed:
1696 	ib_dealloc_pd(info->pd);
1697 	rdma_destroy_id(info->id);
1698 
1699 create_id_failed:
1700 	kfree(info);
1701 	return NULL;
1702 }
1703 
1704 struct smbd_connection *smbd_get_connection(
1705 	struct TCP_Server_Info *server, struct sockaddr *dstaddr)
1706 {
1707 	struct smbd_connection *ret;
1708 	int port = SMBD_PORT;
1709 
1710 try_again:
1711 	ret = _smbd_get_connection(server, dstaddr, port);
1712 
1713 	/* Try SMB_PORT if SMBD_PORT doesn't work */
1714 	if (!ret && port == SMBD_PORT) {
1715 		port = SMB_PORT;
1716 		goto try_again;
1717 	}
1718 	return ret;
1719 }
1720 
1721 /*
1722  * Receive data from receive reassembly queue
1723  * All the incoming data packets are placed in reassembly queue
1724  * buf: the buffer to read data into
1725  * size: the length of data to read
1726  * return value: actual data read
1727  * Note: this implementation copies the data from reassebmly queue to receive
1728  * buffers used by upper layer. This is not the optimal code path. A better way
1729  * to do it is to not have upper layer allocate its receive buffers but rather
1730  * borrow the buffer from reassembly queue, and return it after data is
1731  * consumed. But this will require more changes to upper layer code, and also
1732  * need to consider packet boundaries while they still being reassembled.
1733  */
1734 static int smbd_recv_buf(struct smbd_connection *info, char *buf,
1735 		unsigned int size)
1736 {
1737 	struct smbd_response *response;
1738 	struct smbd_data_transfer *data_transfer;
1739 	int to_copy, to_read, data_read, offset;
1740 	u32 data_length, remaining_data_length, data_offset;
1741 	int rc;
1742 
1743 again:
1744 	/*
1745 	 * No need to hold the reassembly queue lock all the time as we are
1746 	 * the only one reading from the front of the queue. The transport
1747 	 * may add more entries to the back of the queue at the same time
1748 	 */
1749 	log_read(INFO, "size=%d info->reassembly_data_length=%d\n", size,
1750 		info->reassembly_data_length);
1751 	if (info->reassembly_data_length >= size) {
1752 		int queue_length;
1753 		int queue_removed = 0;
1754 
1755 		/*
1756 		 * Need to make sure reassembly_data_length is read before
1757 		 * reading reassembly_queue_length and calling
1758 		 * _get_first_reassembly. This call is lock free
1759 		 * as we never read at the end of the queue which are being
1760 		 * updated in SOFTIRQ as more data is received
1761 		 */
1762 		virt_rmb();
1763 		queue_length = info->reassembly_queue_length;
1764 		data_read = 0;
1765 		to_read = size;
1766 		offset = info->first_entry_offset;
1767 		while (data_read < size) {
1768 			response = _get_first_reassembly(info);
1769 			data_transfer = smbd_response_payload(response);
1770 			data_length = le32_to_cpu(data_transfer->data_length);
1771 			remaining_data_length =
1772 				le32_to_cpu(
1773 					data_transfer->remaining_data_length);
1774 			data_offset = le32_to_cpu(data_transfer->data_offset);
1775 
1776 			/*
1777 			 * The upper layer expects RFC1002 length at the
1778 			 * beginning of the payload. Return it to indicate
1779 			 * the total length of the packet. This minimize the
1780 			 * change to upper layer packet processing logic. This
1781 			 * will be eventually remove when an intermediate
1782 			 * transport layer is added
1783 			 */
1784 			if (response->first_segment && size == 4) {
1785 				unsigned int rfc1002_len =
1786 					data_length + remaining_data_length;
1787 				*((__be32 *)buf) = cpu_to_be32(rfc1002_len);
1788 				data_read = 4;
1789 				response->first_segment = false;
1790 				log_read(INFO, "returning rfc1002 length %d\n",
1791 					rfc1002_len);
1792 				goto read_rfc1002_done;
1793 			}
1794 
1795 			to_copy = min_t(int, data_length - offset, to_read);
1796 			memcpy(
1797 				buf + data_read,
1798 				(char *)data_transfer + data_offset + offset,
1799 				to_copy);
1800 
1801 			/* move on to the next buffer? */
1802 			if (to_copy == data_length - offset) {
1803 				queue_length--;
1804 				/*
1805 				 * No need to lock if we are not at the
1806 				 * end of the queue
1807 				 */
1808 				if (queue_length)
1809 					list_del(&response->list);
1810 				else {
1811 					spin_lock_irq(
1812 						&info->reassembly_queue_lock);
1813 					list_del(&response->list);
1814 					spin_unlock_irq(
1815 						&info->reassembly_queue_lock);
1816 				}
1817 				queue_removed++;
1818 				info->count_reassembly_queue--;
1819 				info->count_dequeue_reassembly_queue++;
1820 				put_receive_buffer(info, response);
1821 				offset = 0;
1822 				log_read(INFO, "put_receive_buffer offset=0\n");
1823 			} else
1824 				offset += to_copy;
1825 
1826 			to_read -= to_copy;
1827 			data_read += to_copy;
1828 
1829 			log_read(INFO, "_get_first_reassembly memcpy %d bytes data_transfer_length-offset=%d after that to_read=%d data_read=%d offset=%d\n",
1830 				 to_copy, data_length - offset,
1831 				 to_read, data_read, offset);
1832 		}
1833 
1834 		spin_lock_irq(&info->reassembly_queue_lock);
1835 		info->reassembly_data_length -= data_read;
1836 		info->reassembly_queue_length -= queue_removed;
1837 		spin_unlock_irq(&info->reassembly_queue_lock);
1838 
1839 		info->first_entry_offset = offset;
1840 		log_read(INFO, "returning to thread data_read=%d reassembly_data_length=%d first_entry_offset=%d\n",
1841 			 data_read, info->reassembly_data_length,
1842 			 info->first_entry_offset);
1843 read_rfc1002_done:
1844 		return data_read;
1845 	}
1846 
1847 	log_read(INFO, "wait_event on more data\n");
1848 	rc = wait_event_interruptible(
1849 		info->wait_reassembly_queue,
1850 		info->reassembly_data_length >= size ||
1851 			info->transport_status != SMBD_CONNECTED);
1852 	/* Don't return any data if interrupted */
1853 	if (rc)
1854 		return rc;
1855 
1856 	if (info->transport_status != SMBD_CONNECTED) {
1857 		log_read(ERR, "disconnected\n");
1858 		return -ECONNABORTED;
1859 	}
1860 
1861 	goto again;
1862 }
1863 
1864 /*
1865  * Receive a page from receive reassembly queue
1866  * page: the page to read data into
1867  * to_read: the length of data to read
1868  * return value: actual data read
1869  */
1870 static int smbd_recv_page(struct smbd_connection *info,
1871 		struct page *page, unsigned int page_offset,
1872 		unsigned int to_read)
1873 {
1874 	int ret;
1875 	char *to_address;
1876 	void *page_address;
1877 
1878 	/* make sure we have the page ready for read */
1879 	ret = wait_event_interruptible(
1880 		info->wait_reassembly_queue,
1881 		info->reassembly_data_length >= to_read ||
1882 			info->transport_status != SMBD_CONNECTED);
1883 	if (ret)
1884 		return ret;
1885 
1886 	/* now we can read from reassembly queue and not sleep */
1887 	page_address = kmap_atomic(page);
1888 	to_address = (char *) page_address + page_offset;
1889 
1890 	log_read(INFO, "reading from page=%p address=%p to_read=%d\n",
1891 		page, to_address, to_read);
1892 
1893 	ret = smbd_recv_buf(info, to_address, to_read);
1894 	kunmap_atomic(page_address);
1895 
1896 	return ret;
1897 }
1898 
1899 /*
1900  * Receive data from transport
1901  * msg: a msghdr point to the buffer, can be ITER_KVEC or ITER_BVEC
1902  * return: total bytes read, or 0. SMB Direct will not do partial read.
1903  */
1904 int smbd_recv(struct smbd_connection *info, struct msghdr *msg)
1905 {
1906 	char *buf;
1907 	struct page *page;
1908 	unsigned int to_read, page_offset;
1909 	int rc;
1910 
1911 	if (iov_iter_rw(&msg->msg_iter) == WRITE) {
1912 		/* It's a bug in upper layer to get there */
1913 		cifs_dbg(VFS, "Invalid msg iter dir %u\n",
1914 			 iov_iter_rw(&msg->msg_iter));
1915 		rc = -EINVAL;
1916 		goto out;
1917 	}
1918 
1919 	switch (iov_iter_type(&msg->msg_iter)) {
1920 	case ITER_KVEC:
1921 		buf = msg->msg_iter.kvec->iov_base;
1922 		to_read = msg->msg_iter.kvec->iov_len;
1923 		rc = smbd_recv_buf(info, buf, to_read);
1924 		break;
1925 
1926 	case ITER_BVEC:
1927 		page = msg->msg_iter.bvec->bv_page;
1928 		page_offset = msg->msg_iter.bvec->bv_offset;
1929 		to_read = msg->msg_iter.bvec->bv_len;
1930 		rc = smbd_recv_page(info, page, page_offset, to_read);
1931 		break;
1932 
1933 	default:
1934 		/* It's a bug in upper layer to get there */
1935 		cifs_dbg(VFS, "Invalid msg type %d\n",
1936 			 iov_iter_type(&msg->msg_iter));
1937 		rc = -EINVAL;
1938 	}
1939 
1940 out:
1941 	/* SMBDirect will read it all or nothing */
1942 	if (rc > 0)
1943 		msg->msg_iter.count = 0;
1944 	return rc;
1945 }
1946 
1947 /*
1948  * Send data to transport
1949  * Each rqst is transported as a SMBDirect payload
1950  * rqst: the data to write
1951  * return value: 0 if successfully write, otherwise error code
1952  */
1953 int smbd_send(struct TCP_Server_Info *server,
1954 	int num_rqst, struct smb_rqst *rqst_array)
1955 {
1956 	struct smbd_connection *info = server->smbd_conn;
1957 	struct smb_rqst *rqst;
1958 	struct iov_iter iter;
1959 	unsigned int remaining_data_length, klen;
1960 	int rc, i, rqst_idx;
1961 
1962 	if (info->transport_status != SMBD_CONNECTED)
1963 		return -EAGAIN;
1964 
1965 	/*
1966 	 * Add in the page array if there is one. The caller needs to set
1967 	 * rq_tailsz to PAGE_SIZE when the buffer has multiple pages and
1968 	 * ends at page boundary
1969 	 */
1970 	remaining_data_length = 0;
1971 	for (i = 0; i < num_rqst; i++)
1972 		remaining_data_length += smb_rqst_len(server, &rqst_array[i]);
1973 
1974 	if (unlikely(remaining_data_length > info->max_fragmented_send_size)) {
1975 		/* assertion: payload never exceeds negotiated maximum */
1976 		log_write(ERR, "payload size %d > max size %d\n",
1977 			remaining_data_length, info->max_fragmented_send_size);
1978 		return -EINVAL;
1979 	}
1980 
1981 	log_write(INFO, "num_rqst=%d total length=%u\n",
1982 			num_rqst, remaining_data_length);
1983 
1984 	rqst_idx = 0;
1985 	do {
1986 		rqst = &rqst_array[rqst_idx];
1987 
1988 		cifs_dbg(FYI, "Sending smb (RDMA): idx=%d smb_len=%lu\n",
1989 			 rqst_idx, smb_rqst_len(server, rqst));
1990 		for (i = 0; i < rqst->rq_nvec; i++)
1991 			dump_smb(rqst->rq_iov[i].iov_base, rqst->rq_iov[i].iov_len);
1992 
1993 		log_write(INFO, "RDMA-WR[%u] nvec=%d len=%u iter=%zu rqlen=%lu\n",
1994 			  rqst_idx, rqst->rq_nvec, remaining_data_length,
1995 			  iov_iter_count(&rqst->rq_iter), smb_rqst_len(server, rqst));
1996 
1997 		/* Send the metadata pages. */
1998 		klen = 0;
1999 		for (i = 0; i < rqst->rq_nvec; i++)
2000 			klen += rqst->rq_iov[i].iov_len;
2001 		iov_iter_kvec(&iter, ITER_SOURCE, rqst->rq_iov, rqst->rq_nvec, klen);
2002 
2003 		rc = smbd_post_send_iter(info, &iter, &remaining_data_length);
2004 		if (rc < 0)
2005 			break;
2006 
2007 		if (iov_iter_count(&rqst->rq_iter) > 0) {
2008 			/* And then the data pages if there are any */
2009 			rc = smbd_post_send_iter(info, &rqst->rq_iter,
2010 						 &remaining_data_length);
2011 			if (rc < 0)
2012 				break;
2013 		}
2014 
2015 	} while (++rqst_idx < num_rqst);
2016 
2017 	/*
2018 	 * As an optimization, we don't wait for individual I/O to finish
2019 	 * before sending the next one.
2020 	 * Send them all and wait for pending send count to get to 0
2021 	 * that means all the I/Os have been out and we are good to return
2022 	 */
2023 
2024 	wait_event(info->wait_send_pending,
2025 		atomic_read(&info->send_pending) == 0);
2026 
2027 	return rc;
2028 }
2029 
2030 static void register_mr_done(struct ib_cq *cq, struct ib_wc *wc)
2031 {
2032 	struct smbd_mr *mr;
2033 	struct ib_cqe *cqe;
2034 
2035 	if (wc->status) {
2036 		log_rdma_mr(ERR, "status=%d\n", wc->status);
2037 		cqe = wc->wr_cqe;
2038 		mr = container_of(cqe, struct smbd_mr, cqe);
2039 		smbd_disconnect_rdma_connection(mr->conn);
2040 	}
2041 }
2042 
2043 /*
2044  * The work queue function that recovers MRs
2045  * We need to call ib_dereg_mr() and ib_alloc_mr() before this MR can be used
2046  * again. Both calls are slow, so finish them in a workqueue. This will not
2047  * block I/O path.
2048  * There is one workqueue that recovers MRs, there is no need to lock as the
2049  * I/O requests calling smbd_register_mr will never update the links in the
2050  * mr_list.
2051  */
2052 static void smbd_mr_recovery_work(struct work_struct *work)
2053 {
2054 	struct smbd_connection *info =
2055 		container_of(work, struct smbd_connection, mr_recovery_work);
2056 	struct smbd_mr *smbdirect_mr;
2057 	int rc;
2058 
2059 	list_for_each_entry(smbdirect_mr, &info->mr_list, list) {
2060 		if (smbdirect_mr->state == MR_ERROR) {
2061 
2062 			/* recover this MR entry */
2063 			rc = ib_dereg_mr(smbdirect_mr->mr);
2064 			if (rc) {
2065 				log_rdma_mr(ERR,
2066 					"ib_dereg_mr failed rc=%x\n",
2067 					rc);
2068 				smbd_disconnect_rdma_connection(info);
2069 				continue;
2070 			}
2071 
2072 			smbdirect_mr->mr = ib_alloc_mr(
2073 				info->pd, info->mr_type,
2074 				info->max_frmr_depth);
2075 			if (IS_ERR(smbdirect_mr->mr)) {
2076 				log_rdma_mr(ERR, "ib_alloc_mr failed mr_type=%x max_frmr_depth=%x\n",
2077 					    info->mr_type,
2078 					    info->max_frmr_depth);
2079 				smbd_disconnect_rdma_connection(info);
2080 				continue;
2081 			}
2082 		} else
2083 			/* This MR is being used, don't recover it */
2084 			continue;
2085 
2086 		smbdirect_mr->state = MR_READY;
2087 
2088 		/* smbdirect_mr->state is updated by this function
2089 		 * and is read and updated by I/O issuing CPUs trying
2090 		 * to get a MR, the call to atomic_inc_return
2091 		 * implicates a memory barrier and guarantees this
2092 		 * value is updated before waking up any calls to
2093 		 * get_mr() from the I/O issuing CPUs
2094 		 */
2095 		if (atomic_inc_return(&info->mr_ready_count) == 1)
2096 			wake_up_interruptible(&info->wait_mr);
2097 	}
2098 }
2099 
2100 static void destroy_mr_list(struct smbd_connection *info)
2101 {
2102 	struct smbd_mr *mr, *tmp;
2103 
2104 	cancel_work_sync(&info->mr_recovery_work);
2105 	list_for_each_entry_safe(mr, tmp, &info->mr_list, list) {
2106 		if (mr->state == MR_INVALIDATED)
2107 			ib_dma_unmap_sg(info->id->device, mr->sgt.sgl,
2108 				mr->sgt.nents, mr->dir);
2109 		ib_dereg_mr(mr->mr);
2110 		kfree(mr->sgt.sgl);
2111 		kfree(mr);
2112 	}
2113 }
2114 
2115 /*
2116  * Allocate MRs used for RDMA read/write
2117  * The number of MRs will not exceed hardware capability in responder_resources
2118  * All MRs are kept in mr_list. The MR can be recovered after it's used
2119  * Recovery is done in smbd_mr_recovery_work. The content of list entry changes
2120  * as MRs are used and recovered for I/O, but the list links will not change
2121  */
2122 static int allocate_mr_list(struct smbd_connection *info)
2123 {
2124 	int i;
2125 	struct smbd_mr *smbdirect_mr, *tmp;
2126 
2127 	INIT_LIST_HEAD(&info->mr_list);
2128 	init_waitqueue_head(&info->wait_mr);
2129 	spin_lock_init(&info->mr_list_lock);
2130 	atomic_set(&info->mr_ready_count, 0);
2131 	atomic_set(&info->mr_used_count, 0);
2132 	init_waitqueue_head(&info->wait_for_mr_cleanup);
2133 	INIT_WORK(&info->mr_recovery_work, smbd_mr_recovery_work);
2134 	/* Allocate more MRs (2x) than hardware responder_resources */
2135 	for (i = 0; i < info->responder_resources * 2; i++) {
2136 		smbdirect_mr = kzalloc(sizeof(*smbdirect_mr), GFP_KERNEL);
2137 		if (!smbdirect_mr)
2138 			goto cleanup_entries;
2139 		smbdirect_mr->mr = ib_alloc_mr(info->pd, info->mr_type,
2140 					info->max_frmr_depth);
2141 		if (IS_ERR(smbdirect_mr->mr)) {
2142 			log_rdma_mr(ERR, "ib_alloc_mr failed mr_type=%x max_frmr_depth=%x\n",
2143 				    info->mr_type, info->max_frmr_depth);
2144 			goto out;
2145 		}
2146 		smbdirect_mr->sgt.sgl = kcalloc(info->max_frmr_depth,
2147 						sizeof(struct scatterlist),
2148 						GFP_KERNEL);
2149 		if (!smbdirect_mr->sgt.sgl) {
2150 			log_rdma_mr(ERR, "failed to allocate sgl\n");
2151 			ib_dereg_mr(smbdirect_mr->mr);
2152 			goto out;
2153 		}
2154 		smbdirect_mr->state = MR_READY;
2155 		smbdirect_mr->conn = info;
2156 
2157 		list_add_tail(&smbdirect_mr->list, &info->mr_list);
2158 		atomic_inc(&info->mr_ready_count);
2159 	}
2160 	return 0;
2161 
2162 out:
2163 	kfree(smbdirect_mr);
2164 cleanup_entries:
2165 	list_for_each_entry_safe(smbdirect_mr, tmp, &info->mr_list, list) {
2166 		list_del(&smbdirect_mr->list);
2167 		ib_dereg_mr(smbdirect_mr->mr);
2168 		kfree(smbdirect_mr->sgt.sgl);
2169 		kfree(smbdirect_mr);
2170 	}
2171 	return -ENOMEM;
2172 }
2173 
2174 /*
2175  * Get a MR from mr_list. This function waits until there is at least one
2176  * MR available in the list. It may access the list while the
2177  * smbd_mr_recovery_work is recovering the MR list. This doesn't need a lock
2178  * as they never modify the same places. However, there may be several CPUs
2179  * issuing I/O trying to get MR at the same time, mr_list_lock is used to
2180  * protect this situation.
2181  */
2182 static struct smbd_mr *get_mr(struct smbd_connection *info)
2183 {
2184 	struct smbd_mr *ret;
2185 	int rc;
2186 again:
2187 	rc = wait_event_interruptible(info->wait_mr,
2188 		atomic_read(&info->mr_ready_count) ||
2189 		info->transport_status != SMBD_CONNECTED);
2190 	if (rc) {
2191 		log_rdma_mr(ERR, "wait_event_interruptible rc=%x\n", rc);
2192 		return NULL;
2193 	}
2194 
2195 	if (info->transport_status != SMBD_CONNECTED) {
2196 		log_rdma_mr(ERR, "info->transport_status=%x\n",
2197 			info->transport_status);
2198 		return NULL;
2199 	}
2200 
2201 	spin_lock(&info->mr_list_lock);
2202 	list_for_each_entry(ret, &info->mr_list, list) {
2203 		if (ret->state == MR_READY) {
2204 			ret->state = MR_REGISTERED;
2205 			spin_unlock(&info->mr_list_lock);
2206 			atomic_dec(&info->mr_ready_count);
2207 			atomic_inc(&info->mr_used_count);
2208 			return ret;
2209 		}
2210 	}
2211 
2212 	spin_unlock(&info->mr_list_lock);
2213 	/*
2214 	 * It is possible that we could fail to get MR because other processes may
2215 	 * try to acquire a MR at the same time. If this is the case, retry it.
2216 	 */
2217 	goto again;
2218 }
2219 
2220 /*
2221  * Transcribe the pages from an iterator into an MR scatterlist.
2222  */
2223 static int smbd_iter_to_mr(struct smbd_connection *info,
2224 			   struct iov_iter *iter,
2225 			   struct sg_table *sgt,
2226 			   unsigned int max_sg)
2227 {
2228 	int ret;
2229 
2230 	memset(sgt->sgl, 0, max_sg * sizeof(struct scatterlist));
2231 
2232 	ret = extract_iter_to_sg(iter, iov_iter_count(iter), sgt, max_sg, 0);
2233 	WARN_ON(ret < 0);
2234 	if (sgt->nents > 0)
2235 		sg_mark_end(&sgt->sgl[sgt->nents - 1]);
2236 	return ret;
2237 }
2238 
2239 /*
2240  * Register memory for RDMA read/write
2241  * iter: the buffer to register memory with
2242  * writing: true if this is a RDMA write (SMB read), false for RDMA read
2243  * need_invalidate: true if this MR needs to be locally invalidated after I/O
2244  * return value: the MR registered, NULL if failed.
2245  */
2246 struct smbd_mr *smbd_register_mr(struct smbd_connection *info,
2247 				 struct iov_iter *iter,
2248 				 bool writing, bool need_invalidate)
2249 {
2250 	struct smbd_mr *smbdirect_mr;
2251 	int rc, num_pages;
2252 	enum dma_data_direction dir;
2253 	struct ib_reg_wr *reg_wr;
2254 
2255 	num_pages = iov_iter_npages(iter, info->max_frmr_depth + 1);
2256 	if (num_pages > info->max_frmr_depth) {
2257 		log_rdma_mr(ERR, "num_pages=%d max_frmr_depth=%d\n",
2258 			num_pages, info->max_frmr_depth);
2259 		WARN_ON_ONCE(1);
2260 		return NULL;
2261 	}
2262 
2263 	smbdirect_mr = get_mr(info);
2264 	if (!smbdirect_mr) {
2265 		log_rdma_mr(ERR, "get_mr returning NULL\n");
2266 		return NULL;
2267 	}
2268 
2269 	dir = writing ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
2270 	smbdirect_mr->dir = dir;
2271 	smbdirect_mr->need_invalidate = need_invalidate;
2272 	smbdirect_mr->sgt.nents = 0;
2273 	smbdirect_mr->sgt.orig_nents = 0;
2274 
2275 	log_rdma_mr(INFO, "num_pages=0x%x count=0x%zx depth=%u\n",
2276 		    num_pages, iov_iter_count(iter), info->max_frmr_depth);
2277 	smbd_iter_to_mr(info, iter, &smbdirect_mr->sgt, info->max_frmr_depth);
2278 
2279 	rc = ib_dma_map_sg(info->id->device, smbdirect_mr->sgt.sgl,
2280 			   smbdirect_mr->sgt.nents, dir);
2281 	if (!rc) {
2282 		log_rdma_mr(ERR, "ib_dma_map_sg num_pages=%x dir=%x rc=%x\n",
2283 			num_pages, dir, rc);
2284 		goto dma_map_error;
2285 	}
2286 
2287 	rc = ib_map_mr_sg(smbdirect_mr->mr, smbdirect_mr->sgt.sgl,
2288 			  smbdirect_mr->sgt.nents, NULL, PAGE_SIZE);
2289 	if (rc != smbdirect_mr->sgt.nents) {
2290 		log_rdma_mr(ERR,
2291 			"ib_map_mr_sg failed rc = %d nents = %x\n",
2292 			rc, smbdirect_mr->sgt.nents);
2293 		goto map_mr_error;
2294 	}
2295 
2296 	ib_update_fast_reg_key(smbdirect_mr->mr,
2297 		ib_inc_rkey(smbdirect_mr->mr->rkey));
2298 	reg_wr = &smbdirect_mr->wr;
2299 	reg_wr->wr.opcode = IB_WR_REG_MR;
2300 	smbdirect_mr->cqe.done = register_mr_done;
2301 	reg_wr->wr.wr_cqe = &smbdirect_mr->cqe;
2302 	reg_wr->wr.num_sge = 0;
2303 	reg_wr->wr.send_flags = IB_SEND_SIGNALED;
2304 	reg_wr->mr = smbdirect_mr->mr;
2305 	reg_wr->key = smbdirect_mr->mr->rkey;
2306 	reg_wr->access = writing ?
2307 			IB_ACCESS_REMOTE_WRITE | IB_ACCESS_LOCAL_WRITE :
2308 			IB_ACCESS_REMOTE_READ;
2309 
2310 	/*
2311 	 * There is no need for waiting for complemtion on ib_post_send
2312 	 * on IB_WR_REG_MR. Hardware enforces a barrier and order of execution
2313 	 * on the next ib_post_send when we actually send I/O to remote peer
2314 	 */
2315 	rc = ib_post_send(info->id->qp, &reg_wr->wr, NULL);
2316 	if (!rc)
2317 		return smbdirect_mr;
2318 
2319 	log_rdma_mr(ERR, "ib_post_send failed rc=%x reg_wr->key=%x\n",
2320 		rc, reg_wr->key);
2321 
2322 	/* If all failed, attempt to recover this MR by setting it MR_ERROR*/
2323 map_mr_error:
2324 	ib_dma_unmap_sg(info->id->device, smbdirect_mr->sgt.sgl,
2325 			smbdirect_mr->sgt.nents, smbdirect_mr->dir);
2326 
2327 dma_map_error:
2328 	smbdirect_mr->state = MR_ERROR;
2329 	if (atomic_dec_and_test(&info->mr_used_count))
2330 		wake_up(&info->wait_for_mr_cleanup);
2331 
2332 	smbd_disconnect_rdma_connection(info);
2333 
2334 	return NULL;
2335 }
2336 
2337 static void local_inv_done(struct ib_cq *cq, struct ib_wc *wc)
2338 {
2339 	struct smbd_mr *smbdirect_mr;
2340 	struct ib_cqe *cqe;
2341 
2342 	cqe = wc->wr_cqe;
2343 	smbdirect_mr = container_of(cqe, struct smbd_mr, cqe);
2344 	smbdirect_mr->state = MR_INVALIDATED;
2345 	if (wc->status != IB_WC_SUCCESS) {
2346 		log_rdma_mr(ERR, "invalidate failed status=%x\n", wc->status);
2347 		smbdirect_mr->state = MR_ERROR;
2348 	}
2349 	complete(&smbdirect_mr->invalidate_done);
2350 }
2351 
2352 /*
2353  * Deregister a MR after I/O is done
2354  * This function may wait if remote invalidation is not used
2355  * and we have to locally invalidate the buffer to prevent data is being
2356  * modified by remote peer after upper layer consumes it
2357  */
2358 int smbd_deregister_mr(struct smbd_mr *smbdirect_mr)
2359 {
2360 	struct ib_send_wr *wr;
2361 	struct smbd_connection *info = smbdirect_mr->conn;
2362 	int rc = 0;
2363 
2364 	if (smbdirect_mr->need_invalidate) {
2365 		/* Need to finish local invalidation before returning */
2366 		wr = &smbdirect_mr->inv_wr;
2367 		wr->opcode = IB_WR_LOCAL_INV;
2368 		smbdirect_mr->cqe.done = local_inv_done;
2369 		wr->wr_cqe = &smbdirect_mr->cqe;
2370 		wr->num_sge = 0;
2371 		wr->ex.invalidate_rkey = smbdirect_mr->mr->rkey;
2372 		wr->send_flags = IB_SEND_SIGNALED;
2373 
2374 		init_completion(&smbdirect_mr->invalidate_done);
2375 		rc = ib_post_send(info->id->qp, wr, NULL);
2376 		if (rc) {
2377 			log_rdma_mr(ERR, "ib_post_send failed rc=%x\n", rc);
2378 			smbd_disconnect_rdma_connection(info);
2379 			goto done;
2380 		}
2381 		wait_for_completion(&smbdirect_mr->invalidate_done);
2382 		smbdirect_mr->need_invalidate = false;
2383 	} else
2384 		/*
2385 		 * For remote invalidation, just set it to MR_INVALIDATED
2386 		 * and defer to mr_recovery_work to recover the MR for next use
2387 		 */
2388 		smbdirect_mr->state = MR_INVALIDATED;
2389 
2390 	if (smbdirect_mr->state == MR_INVALIDATED) {
2391 		ib_dma_unmap_sg(
2392 			info->id->device, smbdirect_mr->sgt.sgl,
2393 			smbdirect_mr->sgt.nents,
2394 			smbdirect_mr->dir);
2395 		smbdirect_mr->state = MR_READY;
2396 		if (atomic_inc_return(&info->mr_ready_count) == 1)
2397 			wake_up_interruptible(&info->wait_mr);
2398 	} else
2399 		/*
2400 		 * Schedule the work to do MR recovery for future I/Os MR
2401 		 * recovery is slow and don't want it to block current I/O
2402 		 */
2403 		queue_work(info->workqueue, &info->mr_recovery_work);
2404 
2405 done:
2406 	if (atomic_dec_and_test(&info->mr_used_count))
2407 		wake_up(&info->wait_for_mr_cleanup);
2408 
2409 	return rc;
2410 }
2411 
2412 static bool smb_set_sge(struct smb_extract_to_rdma *rdma,
2413 			struct page *lowest_page, size_t off, size_t len)
2414 {
2415 	struct ib_sge *sge = &rdma->sge[rdma->nr_sge];
2416 	u64 addr;
2417 
2418 	addr = ib_dma_map_page(rdma->device, lowest_page,
2419 			       off, len, rdma->direction);
2420 	if (ib_dma_mapping_error(rdma->device, addr))
2421 		return false;
2422 
2423 	sge->addr   = addr;
2424 	sge->length = len;
2425 	sge->lkey   = rdma->local_dma_lkey;
2426 	rdma->nr_sge++;
2427 	return true;
2428 }
2429 
2430 /*
2431  * Extract page fragments from a BVEC-class iterator and add them to an RDMA
2432  * element list.  The pages are not pinned.
2433  */
2434 static ssize_t smb_extract_bvec_to_rdma(struct iov_iter *iter,
2435 					struct smb_extract_to_rdma *rdma,
2436 					ssize_t maxsize)
2437 {
2438 	const struct bio_vec *bv = iter->bvec;
2439 	unsigned long start = iter->iov_offset;
2440 	unsigned int i;
2441 	ssize_t ret = 0;
2442 
2443 	for (i = 0; i < iter->nr_segs; i++) {
2444 		size_t off, len;
2445 
2446 		len = bv[i].bv_len;
2447 		if (start >= len) {
2448 			start -= len;
2449 			continue;
2450 		}
2451 
2452 		len = min_t(size_t, maxsize, len - start);
2453 		off = bv[i].bv_offset + start;
2454 
2455 		if (!smb_set_sge(rdma, bv[i].bv_page, off, len))
2456 			return -EIO;
2457 
2458 		ret += len;
2459 		maxsize -= len;
2460 		if (rdma->nr_sge >= rdma->max_sge || maxsize <= 0)
2461 			break;
2462 		start = 0;
2463 	}
2464 
2465 	if (ret > 0)
2466 		iov_iter_advance(iter, ret);
2467 	return ret;
2468 }
2469 
2470 /*
2471  * Extract fragments from a KVEC-class iterator and add them to an RDMA list.
2472  * This can deal with vmalloc'd buffers as well as kmalloc'd or static buffers.
2473  * The pages are not pinned.
2474  */
2475 static ssize_t smb_extract_kvec_to_rdma(struct iov_iter *iter,
2476 					struct smb_extract_to_rdma *rdma,
2477 					ssize_t maxsize)
2478 {
2479 	const struct kvec *kv = iter->kvec;
2480 	unsigned long start = iter->iov_offset;
2481 	unsigned int i;
2482 	ssize_t ret = 0;
2483 
2484 	for (i = 0; i < iter->nr_segs; i++) {
2485 		struct page *page;
2486 		unsigned long kaddr;
2487 		size_t off, len, seg;
2488 
2489 		len = kv[i].iov_len;
2490 		if (start >= len) {
2491 			start -= len;
2492 			continue;
2493 		}
2494 
2495 		kaddr = (unsigned long)kv[i].iov_base + start;
2496 		off = kaddr & ~PAGE_MASK;
2497 		len = min_t(size_t, maxsize, len - start);
2498 		kaddr &= PAGE_MASK;
2499 
2500 		maxsize -= len;
2501 		do {
2502 			seg = min_t(size_t, len, PAGE_SIZE - off);
2503 
2504 			if (is_vmalloc_or_module_addr((void *)kaddr))
2505 				page = vmalloc_to_page((void *)kaddr);
2506 			else
2507 				page = virt_to_page((void *)kaddr);
2508 
2509 			if (!smb_set_sge(rdma, page, off, seg))
2510 				return -EIO;
2511 
2512 			ret += seg;
2513 			len -= seg;
2514 			kaddr += PAGE_SIZE;
2515 			off = 0;
2516 		} while (len > 0 && rdma->nr_sge < rdma->max_sge);
2517 
2518 		if (rdma->nr_sge >= rdma->max_sge || maxsize <= 0)
2519 			break;
2520 		start = 0;
2521 	}
2522 
2523 	if (ret > 0)
2524 		iov_iter_advance(iter, ret);
2525 	return ret;
2526 }
2527 
2528 /*
2529  * Extract folio fragments from a FOLIOQ-class iterator and add them to an RDMA
2530  * list.  The folios are not pinned.
2531  */
2532 static ssize_t smb_extract_folioq_to_rdma(struct iov_iter *iter,
2533 					  struct smb_extract_to_rdma *rdma,
2534 					  ssize_t maxsize)
2535 {
2536 	const struct folio_queue *folioq = iter->folioq;
2537 	unsigned int slot = iter->folioq_slot;
2538 	ssize_t ret = 0;
2539 	size_t offset = iter->iov_offset;
2540 
2541 	BUG_ON(!folioq);
2542 
2543 	if (slot >= folioq_nr_slots(folioq)) {
2544 		folioq = folioq->next;
2545 		if (WARN_ON_ONCE(!folioq))
2546 			return -EIO;
2547 		slot = 0;
2548 	}
2549 
2550 	do {
2551 		struct folio *folio = folioq_folio(folioq, slot);
2552 		size_t fsize = folioq_folio_size(folioq, slot);
2553 
2554 		if (offset < fsize) {
2555 			size_t part = umin(maxsize - ret, fsize - offset);
2556 
2557 			if (!smb_set_sge(rdma, folio_page(folio, 0), offset, part))
2558 				return -EIO;
2559 
2560 			offset += part;
2561 			ret += part;
2562 		}
2563 
2564 		if (offset >= fsize) {
2565 			offset = 0;
2566 			slot++;
2567 			if (slot >= folioq_nr_slots(folioq)) {
2568 				if (!folioq->next) {
2569 					WARN_ON_ONCE(ret < iter->count);
2570 					break;
2571 				}
2572 				folioq = folioq->next;
2573 				slot = 0;
2574 			}
2575 		}
2576 	} while (rdma->nr_sge < rdma->max_sge || maxsize > 0);
2577 
2578 	iter->folioq = folioq;
2579 	iter->folioq_slot = slot;
2580 	iter->iov_offset = offset;
2581 	iter->count -= ret;
2582 	return ret;
2583 }
2584 
2585 /*
2586  * Extract page fragments from up to the given amount of the source iterator
2587  * and build up an RDMA list that refers to all of those bits.  The RDMA list
2588  * is appended to, up to the maximum number of elements set in the parameter
2589  * block.
2590  *
2591  * The extracted page fragments are not pinned or ref'd in any way; if an
2592  * IOVEC/UBUF-type iterator is to be used, it should be converted to a
2593  * BVEC-type iterator and the pages pinned, ref'd or otherwise held in some
2594  * way.
2595  */
2596 static ssize_t smb_extract_iter_to_rdma(struct iov_iter *iter, size_t len,
2597 					struct smb_extract_to_rdma *rdma)
2598 {
2599 	ssize_t ret;
2600 	int before = rdma->nr_sge;
2601 
2602 	switch (iov_iter_type(iter)) {
2603 	case ITER_BVEC:
2604 		ret = smb_extract_bvec_to_rdma(iter, rdma, len);
2605 		break;
2606 	case ITER_KVEC:
2607 		ret = smb_extract_kvec_to_rdma(iter, rdma, len);
2608 		break;
2609 	case ITER_FOLIOQ:
2610 		ret = smb_extract_folioq_to_rdma(iter, rdma, len);
2611 		break;
2612 	default:
2613 		WARN_ON_ONCE(1);
2614 		return -EIO;
2615 	}
2616 
2617 	if (ret < 0) {
2618 		while (rdma->nr_sge > before) {
2619 			struct ib_sge *sge = &rdma->sge[rdma->nr_sge--];
2620 
2621 			ib_dma_unmap_single(rdma->device, sge->addr, sge->length,
2622 					    rdma->direction);
2623 			sge->addr = 0;
2624 		}
2625 	}
2626 
2627 	return ret;
2628 }
2629