xref: /linux/fs/smb/client/smbdirect.c (revision afcefc58fdfd687e3a9a9bef0be5846b96f710b7)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *   Copyright (C) 2017, Microsoft Corporation.
4  *
5  *   Author(s): Long Li <longli@microsoft.com>
6  */
7 #include <linux/module.h>
8 #include <linux/highmem.h>
9 #include <linux/folio_queue.h>
10 #include "../common/smbdirect/smbdirect_pdu.h"
11 #include "smbdirect.h"
12 #include "cifs_debug.h"
13 #include "cifsproto.h"
14 #include "smb2proto.h"
15 
16 static struct smbd_response *get_empty_queue_buffer(
17 		struct smbd_connection *info);
18 static struct smbd_response *get_receive_buffer(
19 		struct smbd_connection *info);
20 static void put_receive_buffer(
21 		struct smbd_connection *info,
22 		struct smbd_response *response);
23 static int allocate_receive_buffers(struct smbd_connection *info, int num_buf);
24 static void destroy_receive_buffers(struct smbd_connection *info);
25 
26 static void put_empty_packet(
27 		struct smbd_connection *info, struct smbd_response *response);
28 static void enqueue_reassembly(
29 		struct smbd_connection *info,
30 		struct smbd_response *response, int data_length);
31 static struct smbd_response *_get_first_reassembly(
32 		struct smbd_connection *info);
33 
34 static int smbd_post_recv(
35 		struct smbd_connection *info,
36 		struct smbd_response *response);
37 
38 static int smbd_post_send_empty(struct smbd_connection *info);
39 
40 static void destroy_mr_list(struct smbd_connection *info);
41 static int allocate_mr_list(struct smbd_connection *info);
42 
43 struct smb_extract_to_rdma {
44 	struct ib_sge		*sge;
45 	unsigned int		nr_sge;
46 	unsigned int		max_sge;
47 	struct ib_device	*device;
48 	u32			local_dma_lkey;
49 	enum dma_data_direction	direction;
50 };
51 static ssize_t smb_extract_iter_to_rdma(struct iov_iter *iter, size_t len,
52 					struct smb_extract_to_rdma *rdma);
53 
54 /* Port numbers for SMBD transport */
55 #define SMB_PORT	445
56 #define SMBD_PORT	5445
57 
58 /* Address lookup and resolve timeout in ms */
59 #define RDMA_RESOLVE_TIMEOUT	5000
60 
61 /* SMBD negotiation timeout in seconds */
62 #define SMBD_NEGOTIATE_TIMEOUT	120
63 
64 /* SMBD minimum receive size and fragmented sized defined in [MS-SMBD] */
65 #define SMBD_MIN_RECEIVE_SIZE		128
66 #define SMBD_MIN_FRAGMENTED_SIZE	131072
67 
68 /*
69  * Default maximum number of RDMA read/write outstanding on this connection
70  * This value is possibly decreased during QP creation on hardware limit
71  */
72 #define SMBD_CM_RESPONDER_RESOURCES	32
73 
74 /* Maximum number of retries on data transfer operations */
75 #define SMBD_CM_RETRY			6
76 /* No need to retry on Receiver Not Ready since SMBD manages credits */
77 #define SMBD_CM_RNR_RETRY		0
78 
79 /*
80  * User configurable initial values per SMBD transport connection
81  * as defined in [MS-SMBD] 3.1.1.1
82  * Those may change after a SMBD negotiation
83  */
84 /* The local peer's maximum number of credits to grant to the peer */
85 int smbd_receive_credit_max = 255;
86 
87 /* The remote peer's credit request of local peer */
88 int smbd_send_credit_target = 255;
89 
90 /* The maximum single message size can be sent to remote peer */
91 int smbd_max_send_size = 1364;
92 
93 /*  The maximum fragmented upper-layer payload receive size supported */
94 int smbd_max_fragmented_recv_size = 1024 * 1024;
95 
96 /*  The maximum single-message size which can be received */
97 int smbd_max_receive_size = 1364;
98 
99 /* The timeout to initiate send of a keepalive message on idle */
100 int smbd_keep_alive_interval = 120;
101 
102 /*
103  * User configurable initial values for RDMA transport
104  * The actual values used may be lower and are limited to hardware capabilities
105  */
106 /* Default maximum number of pages in a single RDMA write/read */
107 int smbd_max_frmr_depth = 2048;
108 
109 /* If payload is less than this byte, use RDMA send/recv not read/write */
110 int rdma_readwrite_threshold = 4096;
111 
112 /* Transport logging functions
113  * Logging are defined as classes. They can be OR'ed to define the actual
114  * logging level via module parameter smbd_logging_class
115  * e.g. cifs.smbd_logging_class=0xa0 will log all log_rdma_recv() and
116  * log_rdma_event()
117  */
118 #define LOG_OUTGOING			0x1
119 #define LOG_INCOMING			0x2
120 #define LOG_READ			0x4
121 #define LOG_WRITE			0x8
122 #define LOG_RDMA_SEND			0x10
123 #define LOG_RDMA_RECV			0x20
124 #define LOG_KEEP_ALIVE			0x40
125 #define LOG_RDMA_EVENT			0x80
126 #define LOG_RDMA_MR			0x100
127 static unsigned int smbd_logging_class;
128 module_param(smbd_logging_class, uint, 0644);
129 MODULE_PARM_DESC(smbd_logging_class,
130 	"Logging class for SMBD transport 0x0 to 0x100");
131 
132 #define ERR		0x0
133 #define INFO		0x1
134 static unsigned int smbd_logging_level = ERR;
135 module_param(smbd_logging_level, uint, 0644);
136 MODULE_PARM_DESC(smbd_logging_level,
137 	"Logging level for SMBD transport, 0 (default): error, 1: info");
138 
139 #define log_rdma(level, class, fmt, args...)				\
140 do {									\
141 	if (level <= smbd_logging_level || class & smbd_logging_class)	\
142 		cifs_dbg(VFS, "%s:%d " fmt, __func__, __LINE__, ##args);\
143 } while (0)
144 
145 #define log_outgoing(level, fmt, args...) \
146 		log_rdma(level, LOG_OUTGOING, fmt, ##args)
147 #define log_incoming(level, fmt, args...) \
148 		log_rdma(level, LOG_INCOMING, fmt, ##args)
149 #define log_read(level, fmt, args...)	log_rdma(level, LOG_READ, fmt, ##args)
150 #define log_write(level, fmt, args...)	log_rdma(level, LOG_WRITE, fmt, ##args)
151 #define log_rdma_send(level, fmt, args...) \
152 		log_rdma(level, LOG_RDMA_SEND, fmt, ##args)
153 #define log_rdma_recv(level, fmt, args...) \
154 		log_rdma(level, LOG_RDMA_RECV, fmt, ##args)
155 #define log_keep_alive(level, fmt, args...) \
156 		log_rdma(level, LOG_KEEP_ALIVE, fmt, ##args)
157 #define log_rdma_event(level, fmt, args...) \
158 		log_rdma(level, LOG_RDMA_EVENT, fmt, ##args)
159 #define log_rdma_mr(level, fmt, args...) \
160 		log_rdma(level, LOG_RDMA_MR, fmt, ##args)
161 
162 static void smbd_disconnect_rdma_work(struct work_struct *work)
163 {
164 	struct smbd_connection *info =
165 		container_of(work, struct smbd_connection, disconnect_work);
166 	struct smbdirect_socket *sc = &info->socket;
167 
168 	if (sc->status == SMBDIRECT_SOCKET_CONNECTED) {
169 		sc->status = SMBDIRECT_SOCKET_DISCONNECTING;
170 		rdma_disconnect(sc->rdma.cm_id);
171 	}
172 }
173 
174 static void smbd_disconnect_rdma_connection(struct smbd_connection *info)
175 {
176 	queue_work(info->workqueue, &info->disconnect_work);
177 }
178 
179 /* Upcall from RDMA CM */
180 static int smbd_conn_upcall(
181 		struct rdma_cm_id *id, struct rdma_cm_event *event)
182 {
183 	struct smbd_connection *info = id->context;
184 	struct smbdirect_socket *sc = &info->socket;
185 
186 	log_rdma_event(INFO, "event=%d status=%d\n",
187 		event->event, event->status);
188 
189 	switch (event->event) {
190 	case RDMA_CM_EVENT_ADDR_RESOLVED:
191 	case RDMA_CM_EVENT_ROUTE_RESOLVED:
192 		info->ri_rc = 0;
193 		complete(&info->ri_done);
194 		break;
195 
196 	case RDMA_CM_EVENT_ADDR_ERROR:
197 		info->ri_rc = -EHOSTUNREACH;
198 		complete(&info->ri_done);
199 		break;
200 
201 	case RDMA_CM_EVENT_ROUTE_ERROR:
202 		info->ri_rc = -ENETUNREACH;
203 		complete(&info->ri_done);
204 		break;
205 
206 	case RDMA_CM_EVENT_ESTABLISHED:
207 		log_rdma_event(INFO, "connected event=%d\n", event->event);
208 		sc->status = SMBDIRECT_SOCKET_CONNECTED;
209 		wake_up_interruptible(&info->conn_wait);
210 		break;
211 
212 	case RDMA_CM_EVENT_CONNECT_ERROR:
213 	case RDMA_CM_EVENT_UNREACHABLE:
214 	case RDMA_CM_EVENT_REJECTED:
215 		log_rdma_event(INFO, "connecting failed event=%d\n", event->event);
216 		sc->status = SMBDIRECT_SOCKET_DISCONNECTED;
217 		wake_up_interruptible(&info->conn_wait);
218 		break;
219 
220 	case RDMA_CM_EVENT_DEVICE_REMOVAL:
221 	case RDMA_CM_EVENT_DISCONNECTED:
222 		/* This happens when we fail the negotiation */
223 		if (sc->status == SMBDIRECT_SOCKET_NEGOTIATE_FAILED) {
224 			sc->status = SMBDIRECT_SOCKET_DISCONNECTED;
225 			wake_up(&info->conn_wait);
226 			break;
227 		}
228 
229 		sc->status = SMBDIRECT_SOCKET_DISCONNECTED;
230 		wake_up_interruptible(&info->disconn_wait);
231 		wake_up_interruptible(&info->wait_reassembly_queue);
232 		wake_up_interruptible_all(&info->wait_send_queue);
233 		break;
234 
235 	default:
236 		break;
237 	}
238 
239 	return 0;
240 }
241 
242 /* Upcall from RDMA QP */
243 static void
244 smbd_qp_async_error_upcall(struct ib_event *event, void *context)
245 {
246 	struct smbd_connection *info = context;
247 
248 	log_rdma_event(ERR, "%s on device %s info %p\n",
249 		ib_event_msg(event->event), event->device->name, info);
250 
251 	switch (event->event) {
252 	case IB_EVENT_CQ_ERR:
253 	case IB_EVENT_QP_FATAL:
254 		smbd_disconnect_rdma_connection(info);
255 		break;
256 
257 	default:
258 		break;
259 	}
260 }
261 
262 static inline void *smbd_request_payload(struct smbd_request *request)
263 {
264 	return (void *)request->packet;
265 }
266 
267 static inline void *smbd_response_payload(struct smbd_response *response)
268 {
269 	return (void *)response->packet;
270 }
271 
272 /* Called when a RDMA send is done */
273 static void send_done(struct ib_cq *cq, struct ib_wc *wc)
274 {
275 	int i;
276 	struct smbd_request *request =
277 		container_of(wc->wr_cqe, struct smbd_request, cqe);
278 	struct smbd_connection *info = request->info;
279 	struct smbdirect_socket *sc = &info->socket;
280 
281 	log_rdma_send(INFO, "smbd_request 0x%p completed wc->status=%d\n",
282 		request, wc->status);
283 
284 	if (wc->status != IB_WC_SUCCESS || wc->opcode != IB_WC_SEND) {
285 		log_rdma_send(ERR, "wc->status=%d wc->opcode=%d\n",
286 			wc->status, wc->opcode);
287 		smbd_disconnect_rdma_connection(request->info);
288 	}
289 
290 	for (i = 0; i < request->num_sge; i++)
291 		ib_dma_unmap_single(sc->ib.dev,
292 			request->sge[i].addr,
293 			request->sge[i].length,
294 			DMA_TO_DEVICE);
295 
296 	if (atomic_dec_and_test(&request->info->send_pending))
297 		wake_up(&request->info->wait_send_pending);
298 
299 	wake_up(&request->info->wait_post_send);
300 
301 	mempool_free(request, request->info->request_mempool);
302 }
303 
304 static void dump_smbdirect_negotiate_resp(struct smbdirect_negotiate_resp *resp)
305 {
306 	log_rdma_event(INFO, "resp message min_version %u max_version %u negotiated_version %u credits_requested %u credits_granted %u status %u max_readwrite_size %u preferred_send_size %u max_receive_size %u max_fragmented_size %u\n",
307 		       resp->min_version, resp->max_version,
308 		       resp->negotiated_version, resp->credits_requested,
309 		       resp->credits_granted, resp->status,
310 		       resp->max_readwrite_size, resp->preferred_send_size,
311 		       resp->max_receive_size, resp->max_fragmented_size);
312 }
313 
314 /*
315  * Process a negotiation response message, according to [MS-SMBD]3.1.5.7
316  * response, packet_length: the negotiation response message
317  * return value: true if negotiation is a success, false if failed
318  */
319 static bool process_negotiation_response(
320 		struct smbd_response *response, int packet_length)
321 {
322 	struct smbd_connection *info = response->info;
323 	struct smbdirect_socket *sc = &info->socket;
324 	struct smbdirect_socket_parameters *sp = &sc->parameters;
325 	struct smbdirect_negotiate_resp *packet = smbd_response_payload(response);
326 
327 	if (packet_length < sizeof(struct smbdirect_negotiate_resp)) {
328 		log_rdma_event(ERR,
329 			"error: packet_length=%d\n", packet_length);
330 		return false;
331 	}
332 
333 	if (le16_to_cpu(packet->negotiated_version) != SMBDIRECT_V1) {
334 		log_rdma_event(ERR, "error: negotiated_version=%x\n",
335 			le16_to_cpu(packet->negotiated_version));
336 		return false;
337 	}
338 	info->protocol = le16_to_cpu(packet->negotiated_version);
339 
340 	if (packet->credits_requested == 0) {
341 		log_rdma_event(ERR, "error: credits_requested==0\n");
342 		return false;
343 	}
344 	info->receive_credit_target = le16_to_cpu(packet->credits_requested);
345 
346 	if (packet->credits_granted == 0) {
347 		log_rdma_event(ERR, "error: credits_granted==0\n");
348 		return false;
349 	}
350 	atomic_set(&info->send_credits, le16_to_cpu(packet->credits_granted));
351 
352 	atomic_set(&info->receive_credits, 0);
353 
354 	if (le32_to_cpu(packet->preferred_send_size) > sp->max_recv_size) {
355 		log_rdma_event(ERR, "error: preferred_send_size=%d\n",
356 			le32_to_cpu(packet->preferred_send_size));
357 		return false;
358 	}
359 	sp->max_recv_size = le32_to_cpu(packet->preferred_send_size);
360 
361 	if (le32_to_cpu(packet->max_receive_size) < SMBD_MIN_RECEIVE_SIZE) {
362 		log_rdma_event(ERR, "error: max_receive_size=%d\n",
363 			le32_to_cpu(packet->max_receive_size));
364 		return false;
365 	}
366 	sp->max_send_size = min_t(u32, sp->max_send_size,
367 				  le32_to_cpu(packet->max_receive_size));
368 
369 	if (le32_to_cpu(packet->max_fragmented_size) <
370 			SMBD_MIN_FRAGMENTED_SIZE) {
371 		log_rdma_event(ERR, "error: max_fragmented_size=%d\n",
372 			le32_to_cpu(packet->max_fragmented_size));
373 		return false;
374 	}
375 	sp->max_fragmented_send_size =
376 		le32_to_cpu(packet->max_fragmented_size);
377 	info->rdma_readwrite_threshold =
378 		rdma_readwrite_threshold > sp->max_fragmented_send_size ?
379 		sp->max_fragmented_send_size :
380 		rdma_readwrite_threshold;
381 
382 
383 	sp->max_read_write_size = min_t(u32,
384 			le32_to_cpu(packet->max_readwrite_size),
385 			info->max_frmr_depth * PAGE_SIZE);
386 	info->max_frmr_depth = sp->max_read_write_size / PAGE_SIZE;
387 
388 	return true;
389 }
390 
391 static void smbd_post_send_credits(struct work_struct *work)
392 {
393 	int ret = 0;
394 	int use_receive_queue = 1;
395 	int rc;
396 	struct smbd_response *response;
397 	struct smbd_connection *info =
398 		container_of(work, struct smbd_connection,
399 			post_send_credits_work);
400 	struct smbdirect_socket *sc = &info->socket;
401 
402 	if (sc->status != SMBDIRECT_SOCKET_CONNECTED) {
403 		wake_up(&info->wait_receive_queues);
404 		return;
405 	}
406 
407 	if (info->receive_credit_target >
408 		atomic_read(&info->receive_credits)) {
409 		while (true) {
410 			if (use_receive_queue)
411 				response = get_receive_buffer(info);
412 			else
413 				response = get_empty_queue_buffer(info);
414 			if (!response) {
415 				/* now switch to empty packet queue */
416 				if (use_receive_queue) {
417 					use_receive_queue = 0;
418 					continue;
419 				} else
420 					break;
421 			}
422 
423 			response->type = SMBD_TRANSFER_DATA;
424 			response->first_segment = false;
425 			rc = smbd_post_recv(info, response);
426 			if (rc) {
427 				log_rdma_recv(ERR,
428 					"post_recv failed rc=%d\n", rc);
429 				put_receive_buffer(info, response);
430 				break;
431 			}
432 
433 			ret++;
434 		}
435 	}
436 
437 	spin_lock(&info->lock_new_credits_offered);
438 	info->new_credits_offered += ret;
439 	spin_unlock(&info->lock_new_credits_offered);
440 
441 	/* Promptly send an immediate packet as defined in [MS-SMBD] 3.1.1.1 */
442 	info->send_immediate = true;
443 	if (atomic_read(&info->receive_credits) <
444 		info->receive_credit_target - 1) {
445 		if (info->keep_alive_requested == KEEP_ALIVE_PENDING ||
446 		    info->send_immediate) {
447 			log_keep_alive(INFO, "send an empty message\n");
448 			smbd_post_send_empty(info);
449 		}
450 	}
451 }
452 
453 /* Called from softirq, when recv is done */
454 static void recv_done(struct ib_cq *cq, struct ib_wc *wc)
455 {
456 	struct smbdirect_data_transfer *data_transfer;
457 	struct smbd_response *response =
458 		container_of(wc->wr_cqe, struct smbd_response, cqe);
459 	struct smbd_connection *info = response->info;
460 	int data_length = 0;
461 
462 	log_rdma_recv(INFO, "response=0x%p type=%d wc status=%d wc opcode %d byte_len=%d pkey_index=%u\n",
463 		      response, response->type, wc->status, wc->opcode,
464 		      wc->byte_len, wc->pkey_index);
465 
466 	if (wc->status != IB_WC_SUCCESS || wc->opcode != IB_WC_RECV) {
467 		log_rdma_recv(INFO, "wc->status=%d opcode=%d\n",
468 			wc->status, wc->opcode);
469 		smbd_disconnect_rdma_connection(info);
470 		goto error;
471 	}
472 
473 	ib_dma_sync_single_for_cpu(
474 		wc->qp->device,
475 		response->sge.addr,
476 		response->sge.length,
477 		DMA_FROM_DEVICE);
478 
479 	switch (response->type) {
480 	/* SMBD negotiation response */
481 	case SMBD_NEGOTIATE_RESP:
482 		dump_smbdirect_negotiate_resp(smbd_response_payload(response));
483 		info->full_packet_received = true;
484 		info->negotiate_done =
485 			process_negotiation_response(response, wc->byte_len);
486 		complete(&info->negotiate_completion);
487 		break;
488 
489 	/* SMBD data transfer packet */
490 	case SMBD_TRANSFER_DATA:
491 		data_transfer = smbd_response_payload(response);
492 		data_length = le32_to_cpu(data_transfer->data_length);
493 
494 		/*
495 		 * If this is a packet with data playload place the data in
496 		 * reassembly queue and wake up the reading thread
497 		 */
498 		if (data_length) {
499 			if (info->full_packet_received)
500 				response->first_segment = true;
501 
502 			if (le32_to_cpu(data_transfer->remaining_data_length))
503 				info->full_packet_received = false;
504 			else
505 				info->full_packet_received = true;
506 
507 			enqueue_reassembly(
508 				info,
509 				response,
510 				data_length);
511 		} else
512 			put_empty_packet(info, response);
513 
514 		if (data_length)
515 			wake_up_interruptible(&info->wait_reassembly_queue);
516 
517 		atomic_dec(&info->receive_credits);
518 		info->receive_credit_target =
519 			le16_to_cpu(data_transfer->credits_requested);
520 		if (le16_to_cpu(data_transfer->credits_granted)) {
521 			atomic_add(le16_to_cpu(data_transfer->credits_granted),
522 				&info->send_credits);
523 			/*
524 			 * We have new send credits granted from remote peer
525 			 * If any sender is waiting for credits, unblock it
526 			 */
527 			wake_up_interruptible(&info->wait_send_queue);
528 		}
529 
530 		log_incoming(INFO, "data flags %d data_offset %d data_length %d remaining_data_length %d\n",
531 			     le16_to_cpu(data_transfer->flags),
532 			     le32_to_cpu(data_transfer->data_offset),
533 			     le32_to_cpu(data_transfer->data_length),
534 			     le32_to_cpu(data_transfer->remaining_data_length));
535 
536 		/* Send a KEEP_ALIVE response right away if requested */
537 		info->keep_alive_requested = KEEP_ALIVE_NONE;
538 		if (le16_to_cpu(data_transfer->flags) &
539 				SMBDIRECT_FLAG_RESPONSE_REQUESTED) {
540 			info->keep_alive_requested = KEEP_ALIVE_PENDING;
541 		}
542 
543 		return;
544 
545 	default:
546 		log_rdma_recv(ERR,
547 			"unexpected response type=%d\n", response->type);
548 	}
549 
550 error:
551 	put_receive_buffer(info, response);
552 }
553 
554 static struct rdma_cm_id *smbd_create_id(
555 		struct smbd_connection *info,
556 		struct sockaddr *dstaddr, int port)
557 {
558 	struct rdma_cm_id *id;
559 	int rc;
560 	__be16 *sport;
561 
562 	id = rdma_create_id(&init_net, smbd_conn_upcall, info,
563 		RDMA_PS_TCP, IB_QPT_RC);
564 	if (IS_ERR(id)) {
565 		rc = PTR_ERR(id);
566 		log_rdma_event(ERR, "rdma_create_id() failed %i\n", rc);
567 		return id;
568 	}
569 
570 	if (dstaddr->sa_family == AF_INET6)
571 		sport = &((struct sockaddr_in6 *)dstaddr)->sin6_port;
572 	else
573 		sport = &((struct sockaddr_in *)dstaddr)->sin_port;
574 
575 	*sport = htons(port);
576 
577 	init_completion(&info->ri_done);
578 	info->ri_rc = -ETIMEDOUT;
579 
580 	rc = rdma_resolve_addr(id, NULL, (struct sockaddr *)dstaddr,
581 		RDMA_RESOLVE_TIMEOUT);
582 	if (rc) {
583 		log_rdma_event(ERR, "rdma_resolve_addr() failed %i\n", rc);
584 		goto out;
585 	}
586 	rc = wait_for_completion_interruptible_timeout(
587 		&info->ri_done, msecs_to_jiffies(RDMA_RESOLVE_TIMEOUT));
588 	/* e.g. if interrupted returns -ERESTARTSYS */
589 	if (rc < 0) {
590 		log_rdma_event(ERR, "rdma_resolve_addr timeout rc: %i\n", rc);
591 		goto out;
592 	}
593 	rc = info->ri_rc;
594 	if (rc) {
595 		log_rdma_event(ERR, "rdma_resolve_addr() completed %i\n", rc);
596 		goto out;
597 	}
598 
599 	info->ri_rc = -ETIMEDOUT;
600 	rc = rdma_resolve_route(id, RDMA_RESOLVE_TIMEOUT);
601 	if (rc) {
602 		log_rdma_event(ERR, "rdma_resolve_route() failed %i\n", rc);
603 		goto out;
604 	}
605 	rc = wait_for_completion_interruptible_timeout(
606 		&info->ri_done, msecs_to_jiffies(RDMA_RESOLVE_TIMEOUT));
607 	/* e.g. if interrupted returns -ERESTARTSYS */
608 	if (rc < 0)  {
609 		log_rdma_event(ERR, "rdma_resolve_addr timeout rc: %i\n", rc);
610 		goto out;
611 	}
612 	rc = info->ri_rc;
613 	if (rc) {
614 		log_rdma_event(ERR, "rdma_resolve_route() completed %i\n", rc);
615 		goto out;
616 	}
617 
618 	return id;
619 
620 out:
621 	rdma_destroy_id(id);
622 	return ERR_PTR(rc);
623 }
624 
625 /*
626  * Test if FRWR (Fast Registration Work Requests) is supported on the device
627  * This implementation requires FRWR on RDMA read/write
628  * return value: true if it is supported
629  */
630 static bool frwr_is_supported(struct ib_device_attr *attrs)
631 {
632 	if (!(attrs->device_cap_flags & IB_DEVICE_MEM_MGT_EXTENSIONS))
633 		return false;
634 	if (attrs->max_fast_reg_page_list_len == 0)
635 		return false;
636 	return true;
637 }
638 
639 static int smbd_ia_open(
640 		struct smbd_connection *info,
641 		struct sockaddr *dstaddr, int port)
642 {
643 	struct smbdirect_socket *sc = &info->socket;
644 	int rc;
645 
646 	sc->rdma.cm_id = smbd_create_id(info, dstaddr, port);
647 	if (IS_ERR(sc->rdma.cm_id)) {
648 		rc = PTR_ERR(sc->rdma.cm_id);
649 		goto out1;
650 	}
651 	sc->ib.dev = sc->rdma.cm_id->device;
652 
653 	if (!frwr_is_supported(&sc->ib.dev->attrs)) {
654 		log_rdma_event(ERR, "Fast Registration Work Requests (FRWR) is not supported\n");
655 		log_rdma_event(ERR, "Device capability flags = %llx max_fast_reg_page_list_len = %u\n",
656 			       sc->ib.dev->attrs.device_cap_flags,
657 			       sc->ib.dev->attrs.max_fast_reg_page_list_len);
658 		rc = -EPROTONOSUPPORT;
659 		goto out2;
660 	}
661 	info->max_frmr_depth = min_t(int,
662 		smbd_max_frmr_depth,
663 		sc->ib.dev->attrs.max_fast_reg_page_list_len);
664 	info->mr_type = IB_MR_TYPE_MEM_REG;
665 	if (sc->ib.dev->attrs.kernel_cap_flags & IBK_SG_GAPS_REG)
666 		info->mr_type = IB_MR_TYPE_SG_GAPS;
667 
668 	sc->ib.pd = ib_alloc_pd(sc->ib.dev, 0);
669 	if (IS_ERR(sc->ib.pd)) {
670 		rc = PTR_ERR(sc->ib.pd);
671 		log_rdma_event(ERR, "ib_alloc_pd() returned %d\n", rc);
672 		goto out2;
673 	}
674 
675 	return 0;
676 
677 out2:
678 	rdma_destroy_id(sc->rdma.cm_id);
679 	sc->rdma.cm_id = NULL;
680 
681 out1:
682 	return rc;
683 }
684 
685 /*
686  * Send a negotiation request message to the peer
687  * The negotiation procedure is in [MS-SMBD] 3.1.5.2 and 3.1.5.3
688  * After negotiation, the transport is connected and ready for
689  * carrying upper layer SMB payload
690  */
691 static int smbd_post_send_negotiate_req(struct smbd_connection *info)
692 {
693 	struct smbdirect_socket *sc = &info->socket;
694 	struct smbdirect_socket_parameters *sp = &sc->parameters;
695 	struct ib_send_wr send_wr;
696 	int rc = -ENOMEM;
697 	struct smbd_request *request;
698 	struct smbdirect_negotiate_req *packet;
699 
700 	request = mempool_alloc(info->request_mempool, GFP_KERNEL);
701 	if (!request)
702 		return rc;
703 
704 	request->info = info;
705 
706 	packet = smbd_request_payload(request);
707 	packet->min_version = cpu_to_le16(SMBDIRECT_V1);
708 	packet->max_version = cpu_to_le16(SMBDIRECT_V1);
709 	packet->reserved = 0;
710 	packet->credits_requested = cpu_to_le16(sp->send_credit_target);
711 	packet->preferred_send_size = cpu_to_le32(sp->max_send_size);
712 	packet->max_receive_size = cpu_to_le32(sp->max_recv_size);
713 	packet->max_fragmented_size =
714 		cpu_to_le32(sp->max_fragmented_recv_size);
715 
716 	request->num_sge = 1;
717 	request->sge[0].addr = ib_dma_map_single(
718 				sc->ib.dev, (void *)packet,
719 				sizeof(*packet), DMA_TO_DEVICE);
720 	if (ib_dma_mapping_error(sc->ib.dev, request->sge[0].addr)) {
721 		rc = -EIO;
722 		goto dma_mapping_failed;
723 	}
724 
725 	request->sge[0].length = sizeof(*packet);
726 	request->sge[0].lkey = sc->ib.pd->local_dma_lkey;
727 
728 	ib_dma_sync_single_for_device(
729 		sc->ib.dev, request->sge[0].addr,
730 		request->sge[0].length, DMA_TO_DEVICE);
731 
732 	request->cqe.done = send_done;
733 
734 	send_wr.next = NULL;
735 	send_wr.wr_cqe = &request->cqe;
736 	send_wr.sg_list = request->sge;
737 	send_wr.num_sge = request->num_sge;
738 	send_wr.opcode = IB_WR_SEND;
739 	send_wr.send_flags = IB_SEND_SIGNALED;
740 
741 	log_rdma_send(INFO, "sge addr=0x%llx length=%u lkey=0x%x\n",
742 		request->sge[0].addr,
743 		request->sge[0].length, request->sge[0].lkey);
744 
745 	atomic_inc(&info->send_pending);
746 	rc = ib_post_send(sc->ib.qp, &send_wr, NULL);
747 	if (!rc)
748 		return 0;
749 
750 	/* if we reach here, post send failed */
751 	log_rdma_send(ERR, "ib_post_send failed rc=%d\n", rc);
752 	atomic_dec(&info->send_pending);
753 	ib_dma_unmap_single(sc->ib.dev, request->sge[0].addr,
754 		request->sge[0].length, DMA_TO_DEVICE);
755 
756 	smbd_disconnect_rdma_connection(info);
757 
758 dma_mapping_failed:
759 	mempool_free(request, info->request_mempool);
760 	return rc;
761 }
762 
763 /*
764  * Extend the credits to remote peer
765  * This implements [MS-SMBD] 3.1.5.9
766  * The idea is that we should extend credits to remote peer as quickly as
767  * it's allowed, to maintain data flow. We allocate as much receive
768  * buffer as possible, and extend the receive credits to remote peer
769  * return value: the new credtis being granted.
770  */
771 static int manage_credits_prior_sending(struct smbd_connection *info)
772 {
773 	int new_credits;
774 
775 	spin_lock(&info->lock_new_credits_offered);
776 	new_credits = info->new_credits_offered;
777 	info->new_credits_offered = 0;
778 	spin_unlock(&info->lock_new_credits_offered);
779 
780 	return new_credits;
781 }
782 
783 /*
784  * Check if we need to send a KEEP_ALIVE message
785  * The idle connection timer triggers a KEEP_ALIVE message when expires
786  * SMBDIRECT_FLAG_RESPONSE_REQUESTED is set in the message flag to have peer send
787  * back a response.
788  * return value:
789  * 1 if SMBDIRECT_FLAG_RESPONSE_REQUESTED needs to be set
790  * 0: otherwise
791  */
792 static int manage_keep_alive_before_sending(struct smbd_connection *info)
793 {
794 	if (info->keep_alive_requested == KEEP_ALIVE_PENDING) {
795 		info->keep_alive_requested = KEEP_ALIVE_SENT;
796 		return 1;
797 	}
798 	return 0;
799 }
800 
801 /* Post the send request */
802 static int smbd_post_send(struct smbd_connection *info,
803 		struct smbd_request *request)
804 {
805 	struct smbdirect_socket *sc = &info->socket;
806 	struct smbdirect_socket_parameters *sp = &sc->parameters;
807 	struct ib_send_wr send_wr;
808 	int rc, i;
809 
810 	for (i = 0; i < request->num_sge; i++) {
811 		log_rdma_send(INFO,
812 			"rdma_request sge[%d] addr=0x%llx length=%u\n",
813 			i, request->sge[i].addr, request->sge[i].length);
814 		ib_dma_sync_single_for_device(
815 			sc->ib.dev,
816 			request->sge[i].addr,
817 			request->sge[i].length,
818 			DMA_TO_DEVICE);
819 	}
820 
821 	request->cqe.done = send_done;
822 
823 	send_wr.next = NULL;
824 	send_wr.wr_cqe = &request->cqe;
825 	send_wr.sg_list = request->sge;
826 	send_wr.num_sge = request->num_sge;
827 	send_wr.opcode = IB_WR_SEND;
828 	send_wr.send_flags = IB_SEND_SIGNALED;
829 
830 	rc = ib_post_send(sc->ib.qp, &send_wr, NULL);
831 	if (rc) {
832 		log_rdma_send(ERR, "ib_post_send failed rc=%d\n", rc);
833 		smbd_disconnect_rdma_connection(info);
834 		rc = -EAGAIN;
835 	} else
836 		/* Reset timer for idle connection after packet is sent */
837 		mod_delayed_work(info->workqueue, &info->idle_timer_work,
838 			msecs_to_jiffies(sp->keepalive_interval_msec));
839 
840 	return rc;
841 }
842 
843 static int smbd_post_send_iter(struct smbd_connection *info,
844 			       struct iov_iter *iter,
845 			       int *_remaining_data_length)
846 {
847 	struct smbdirect_socket *sc = &info->socket;
848 	struct smbdirect_socket_parameters *sp = &sc->parameters;
849 	int i, rc;
850 	int header_length;
851 	int data_length;
852 	struct smbd_request *request;
853 	struct smbdirect_data_transfer *packet;
854 	int new_credits = 0;
855 
856 wait_credit:
857 	/* Wait for send credits. A SMBD packet needs one credit */
858 	rc = wait_event_interruptible(info->wait_send_queue,
859 		atomic_read(&info->send_credits) > 0 ||
860 		sc->status != SMBDIRECT_SOCKET_CONNECTED);
861 	if (rc)
862 		goto err_wait_credit;
863 
864 	if (sc->status != SMBDIRECT_SOCKET_CONNECTED) {
865 		log_outgoing(ERR, "disconnected not sending on wait_credit\n");
866 		rc = -EAGAIN;
867 		goto err_wait_credit;
868 	}
869 	if (unlikely(atomic_dec_return(&info->send_credits) < 0)) {
870 		atomic_inc(&info->send_credits);
871 		goto wait_credit;
872 	}
873 
874 wait_send_queue:
875 	wait_event(info->wait_post_send,
876 		atomic_read(&info->send_pending) < sp->send_credit_target ||
877 		sc->status != SMBDIRECT_SOCKET_CONNECTED);
878 
879 	if (sc->status != SMBDIRECT_SOCKET_CONNECTED) {
880 		log_outgoing(ERR, "disconnected not sending on wait_send_queue\n");
881 		rc = -EAGAIN;
882 		goto err_wait_send_queue;
883 	}
884 
885 	if (unlikely(atomic_inc_return(&info->send_pending) >
886 				sp->send_credit_target)) {
887 		atomic_dec(&info->send_pending);
888 		goto wait_send_queue;
889 	}
890 
891 	request = mempool_alloc(info->request_mempool, GFP_KERNEL);
892 	if (!request) {
893 		rc = -ENOMEM;
894 		goto err_alloc;
895 	}
896 
897 	request->info = info;
898 	memset(request->sge, 0, sizeof(request->sge));
899 
900 	/* Fill in the data payload to find out how much data we can add */
901 	if (iter) {
902 		struct smb_extract_to_rdma extract = {
903 			.nr_sge		= 1,
904 			.max_sge	= SMBDIRECT_MAX_SEND_SGE,
905 			.sge		= request->sge,
906 			.device		= sc->ib.dev,
907 			.local_dma_lkey	= sc->ib.pd->local_dma_lkey,
908 			.direction	= DMA_TO_DEVICE,
909 		};
910 
911 		rc = smb_extract_iter_to_rdma(iter, *_remaining_data_length,
912 					      &extract);
913 		if (rc < 0)
914 			goto err_dma;
915 		data_length = rc;
916 		request->num_sge = extract.nr_sge;
917 		*_remaining_data_length -= data_length;
918 	} else {
919 		data_length = 0;
920 		request->num_sge = 1;
921 	}
922 
923 	/* Fill in the packet header */
924 	packet = smbd_request_payload(request);
925 	packet->credits_requested = cpu_to_le16(sp->send_credit_target);
926 
927 	new_credits = manage_credits_prior_sending(info);
928 	atomic_add(new_credits, &info->receive_credits);
929 	packet->credits_granted = cpu_to_le16(new_credits);
930 
931 	info->send_immediate = false;
932 
933 	packet->flags = 0;
934 	if (manage_keep_alive_before_sending(info))
935 		packet->flags |= cpu_to_le16(SMBDIRECT_FLAG_RESPONSE_REQUESTED);
936 
937 	packet->reserved = 0;
938 	if (!data_length)
939 		packet->data_offset = 0;
940 	else
941 		packet->data_offset = cpu_to_le32(24);
942 	packet->data_length = cpu_to_le32(data_length);
943 	packet->remaining_data_length = cpu_to_le32(*_remaining_data_length);
944 	packet->padding = 0;
945 
946 	log_outgoing(INFO, "credits_requested=%d credits_granted=%d data_offset=%d data_length=%d remaining_data_length=%d\n",
947 		     le16_to_cpu(packet->credits_requested),
948 		     le16_to_cpu(packet->credits_granted),
949 		     le32_to_cpu(packet->data_offset),
950 		     le32_to_cpu(packet->data_length),
951 		     le32_to_cpu(packet->remaining_data_length));
952 
953 	/* Map the packet to DMA */
954 	header_length = sizeof(struct smbdirect_data_transfer);
955 	/* If this is a packet without payload, don't send padding */
956 	if (!data_length)
957 		header_length = offsetof(struct smbdirect_data_transfer, padding);
958 
959 	request->sge[0].addr = ib_dma_map_single(sc->ib.dev,
960 						 (void *)packet,
961 						 header_length,
962 						 DMA_TO_DEVICE);
963 	if (ib_dma_mapping_error(sc->ib.dev, request->sge[0].addr)) {
964 		rc = -EIO;
965 		request->sge[0].addr = 0;
966 		goto err_dma;
967 	}
968 
969 	request->sge[0].length = header_length;
970 	request->sge[0].lkey = sc->ib.pd->local_dma_lkey;
971 
972 	rc = smbd_post_send(info, request);
973 	if (!rc)
974 		return 0;
975 
976 err_dma:
977 	for (i = 0; i < request->num_sge; i++)
978 		if (request->sge[i].addr)
979 			ib_dma_unmap_single(sc->ib.dev,
980 					    request->sge[i].addr,
981 					    request->sge[i].length,
982 					    DMA_TO_DEVICE);
983 	mempool_free(request, info->request_mempool);
984 
985 	/* roll back receive credits and credits to be offered */
986 	spin_lock(&info->lock_new_credits_offered);
987 	info->new_credits_offered += new_credits;
988 	spin_unlock(&info->lock_new_credits_offered);
989 	atomic_sub(new_credits, &info->receive_credits);
990 
991 err_alloc:
992 	if (atomic_dec_and_test(&info->send_pending))
993 		wake_up(&info->wait_send_pending);
994 
995 err_wait_send_queue:
996 	/* roll back send credits and pending */
997 	atomic_inc(&info->send_credits);
998 
999 err_wait_credit:
1000 	return rc;
1001 }
1002 
1003 /*
1004  * Send an empty message
1005  * Empty message is used to extend credits to peer to for keep live
1006  * while there is no upper layer payload to send at the time
1007  */
1008 static int smbd_post_send_empty(struct smbd_connection *info)
1009 {
1010 	int remaining_data_length = 0;
1011 
1012 	info->count_send_empty++;
1013 	return smbd_post_send_iter(info, NULL, &remaining_data_length);
1014 }
1015 
1016 /*
1017  * Post a receive request to the transport
1018  * The remote peer can only send data when a receive request is posted
1019  * The interaction is controlled by send/receive credit system
1020  */
1021 static int smbd_post_recv(
1022 		struct smbd_connection *info, struct smbd_response *response)
1023 {
1024 	struct smbdirect_socket *sc = &info->socket;
1025 	struct smbdirect_socket_parameters *sp = &sc->parameters;
1026 	struct ib_recv_wr recv_wr;
1027 	int rc = -EIO;
1028 
1029 	response->sge.addr = ib_dma_map_single(
1030 				sc->ib.dev, response->packet,
1031 				sp->max_recv_size, DMA_FROM_DEVICE);
1032 	if (ib_dma_mapping_error(sc->ib.dev, response->sge.addr))
1033 		return rc;
1034 
1035 	response->sge.length = sp->max_recv_size;
1036 	response->sge.lkey = sc->ib.pd->local_dma_lkey;
1037 
1038 	response->cqe.done = recv_done;
1039 
1040 	recv_wr.wr_cqe = &response->cqe;
1041 	recv_wr.next = NULL;
1042 	recv_wr.sg_list = &response->sge;
1043 	recv_wr.num_sge = 1;
1044 
1045 	rc = ib_post_recv(sc->ib.qp, &recv_wr, NULL);
1046 	if (rc) {
1047 		ib_dma_unmap_single(sc->ib.dev, response->sge.addr,
1048 				    response->sge.length, DMA_FROM_DEVICE);
1049 		smbd_disconnect_rdma_connection(info);
1050 		log_rdma_recv(ERR, "ib_post_recv failed rc=%d\n", rc);
1051 	}
1052 
1053 	return rc;
1054 }
1055 
1056 /* Perform SMBD negotiate according to [MS-SMBD] 3.1.5.2 */
1057 static int smbd_negotiate(struct smbd_connection *info)
1058 {
1059 	int rc;
1060 	struct smbd_response *response = get_receive_buffer(info);
1061 
1062 	response->type = SMBD_NEGOTIATE_RESP;
1063 	rc = smbd_post_recv(info, response);
1064 	log_rdma_event(INFO, "smbd_post_recv rc=%d iov.addr=0x%llx iov.length=%u iov.lkey=0x%x\n",
1065 		       rc, response->sge.addr,
1066 		       response->sge.length, response->sge.lkey);
1067 	if (rc)
1068 		return rc;
1069 
1070 	init_completion(&info->negotiate_completion);
1071 	info->negotiate_done = false;
1072 	rc = smbd_post_send_negotiate_req(info);
1073 	if (rc)
1074 		return rc;
1075 
1076 	rc = wait_for_completion_interruptible_timeout(
1077 		&info->negotiate_completion, SMBD_NEGOTIATE_TIMEOUT * HZ);
1078 	log_rdma_event(INFO, "wait_for_completion_timeout rc=%d\n", rc);
1079 
1080 	if (info->negotiate_done)
1081 		return 0;
1082 
1083 	if (rc == 0)
1084 		rc = -ETIMEDOUT;
1085 	else if (rc == -ERESTARTSYS)
1086 		rc = -EINTR;
1087 	else
1088 		rc = -ENOTCONN;
1089 
1090 	return rc;
1091 }
1092 
1093 static void put_empty_packet(
1094 		struct smbd_connection *info, struct smbd_response *response)
1095 {
1096 	spin_lock(&info->empty_packet_queue_lock);
1097 	list_add_tail(&response->list, &info->empty_packet_queue);
1098 	info->count_empty_packet_queue++;
1099 	spin_unlock(&info->empty_packet_queue_lock);
1100 
1101 	queue_work(info->workqueue, &info->post_send_credits_work);
1102 }
1103 
1104 /*
1105  * Implement Connection.FragmentReassemblyBuffer defined in [MS-SMBD] 3.1.1.1
1106  * This is a queue for reassembling upper layer payload and present to upper
1107  * layer. All the inncoming payload go to the reassembly queue, regardless of
1108  * if reassembly is required. The uuper layer code reads from the queue for all
1109  * incoming payloads.
1110  * Put a received packet to the reassembly queue
1111  * response: the packet received
1112  * data_length: the size of payload in this packet
1113  */
1114 static void enqueue_reassembly(
1115 	struct smbd_connection *info,
1116 	struct smbd_response *response,
1117 	int data_length)
1118 {
1119 	spin_lock(&info->reassembly_queue_lock);
1120 	list_add_tail(&response->list, &info->reassembly_queue);
1121 	info->reassembly_queue_length++;
1122 	/*
1123 	 * Make sure reassembly_data_length is updated after list and
1124 	 * reassembly_queue_length are updated. On the dequeue side
1125 	 * reassembly_data_length is checked without a lock to determine
1126 	 * if reassembly_queue_length and list is up to date
1127 	 */
1128 	virt_wmb();
1129 	info->reassembly_data_length += data_length;
1130 	spin_unlock(&info->reassembly_queue_lock);
1131 	info->count_reassembly_queue++;
1132 	info->count_enqueue_reassembly_queue++;
1133 }
1134 
1135 /*
1136  * Get the first entry at the front of reassembly queue
1137  * Caller is responsible for locking
1138  * return value: the first entry if any, NULL if queue is empty
1139  */
1140 static struct smbd_response *_get_first_reassembly(struct smbd_connection *info)
1141 {
1142 	struct smbd_response *ret = NULL;
1143 
1144 	if (!list_empty(&info->reassembly_queue)) {
1145 		ret = list_first_entry(
1146 			&info->reassembly_queue,
1147 			struct smbd_response, list);
1148 	}
1149 	return ret;
1150 }
1151 
1152 static struct smbd_response *get_empty_queue_buffer(
1153 		struct smbd_connection *info)
1154 {
1155 	struct smbd_response *ret = NULL;
1156 	unsigned long flags;
1157 
1158 	spin_lock_irqsave(&info->empty_packet_queue_lock, flags);
1159 	if (!list_empty(&info->empty_packet_queue)) {
1160 		ret = list_first_entry(
1161 			&info->empty_packet_queue,
1162 			struct smbd_response, list);
1163 		list_del(&ret->list);
1164 		info->count_empty_packet_queue--;
1165 	}
1166 	spin_unlock_irqrestore(&info->empty_packet_queue_lock, flags);
1167 
1168 	return ret;
1169 }
1170 
1171 /*
1172  * Get a receive buffer
1173  * For each remote send, we need to post a receive. The receive buffers are
1174  * pre-allocated in advance.
1175  * return value: the receive buffer, NULL if none is available
1176  */
1177 static struct smbd_response *get_receive_buffer(struct smbd_connection *info)
1178 {
1179 	struct smbd_response *ret = NULL;
1180 	unsigned long flags;
1181 
1182 	spin_lock_irqsave(&info->receive_queue_lock, flags);
1183 	if (!list_empty(&info->receive_queue)) {
1184 		ret = list_first_entry(
1185 			&info->receive_queue,
1186 			struct smbd_response, list);
1187 		list_del(&ret->list);
1188 		info->count_receive_queue--;
1189 		info->count_get_receive_buffer++;
1190 	}
1191 	spin_unlock_irqrestore(&info->receive_queue_lock, flags);
1192 
1193 	return ret;
1194 }
1195 
1196 /*
1197  * Return a receive buffer
1198  * Upon returning of a receive buffer, we can post new receive and extend
1199  * more receive credits to remote peer. This is done immediately after a
1200  * receive buffer is returned.
1201  */
1202 static void put_receive_buffer(
1203 	struct smbd_connection *info, struct smbd_response *response)
1204 {
1205 	struct smbdirect_socket *sc = &info->socket;
1206 	unsigned long flags;
1207 
1208 	ib_dma_unmap_single(sc->ib.dev, response->sge.addr,
1209 		response->sge.length, DMA_FROM_DEVICE);
1210 
1211 	spin_lock_irqsave(&info->receive_queue_lock, flags);
1212 	list_add_tail(&response->list, &info->receive_queue);
1213 	info->count_receive_queue++;
1214 	info->count_put_receive_buffer++;
1215 	spin_unlock_irqrestore(&info->receive_queue_lock, flags);
1216 
1217 	queue_work(info->workqueue, &info->post_send_credits_work);
1218 }
1219 
1220 /* Preallocate all receive buffer on transport establishment */
1221 static int allocate_receive_buffers(struct smbd_connection *info, int num_buf)
1222 {
1223 	int i;
1224 	struct smbd_response *response;
1225 
1226 	INIT_LIST_HEAD(&info->reassembly_queue);
1227 	spin_lock_init(&info->reassembly_queue_lock);
1228 	info->reassembly_data_length = 0;
1229 	info->reassembly_queue_length = 0;
1230 
1231 	INIT_LIST_HEAD(&info->receive_queue);
1232 	spin_lock_init(&info->receive_queue_lock);
1233 	info->count_receive_queue = 0;
1234 
1235 	INIT_LIST_HEAD(&info->empty_packet_queue);
1236 	spin_lock_init(&info->empty_packet_queue_lock);
1237 	info->count_empty_packet_queue = 0;
1238 
1239 	init_waitqueue_head(&info->wait_receive_queues);
1240 
1241 	for (i = 0; i < num_buf; i++) {
1242 		response = mempool_alloc(info->response_mempool, GFP_KERNEL);
1243 		if (!response)
1244 			goto allocate_failed;
1245 
1246 		response->info = info;
1247 		list_add_tail(&response->list, &info->receive_queue);
1248 		info->count_receive_queue++;
1249 	}
1250 
1251 	return 0;
1252 
1253 allocate_failed:
1254 	while (!list_empty(&info->receive_queue)) {
1255 		response = list_first_entry(
1256 				&info->receive_queue,
1257 				struct smbd_response, list);
1258 		list_del(&response->list);
1259 		info->count_receive_queue--;
1260 
1261 		mempool_free(response, info->response_mempool);
1262 	}
1263 	return -ENOMEM;
1264 }
1265 
1266 static void destroy_receive_buffers(struct smbd_connection *info)
1267 {
1268 	struct smbd_response *response;
1269 
1270 	while ((response = get_receive_buffer(info)))
1271 		mempool_free(response, info->response_mempool);
1272 
1273 	while ((response = get_empty_queue_buffer(info)))
1274 		mempool_free(response, info->response_mempool);
1275 }
1276 
1277 /* Implement idle connection timer [MS-SMBD] 3.1.6.2 */
1278 static void idle_connection_timer(struct work_struct *work)
1279 {
1280 	struct smbd_connection *info = container_of(
1281 					work, struct smbd_connection,
1282 					idle_timer_work.work);
1283 	struct smbdirect_socket *sc = &info->socket;
1284 	struct smbdirect_socket_parameters *sp = &sc->parameters;
1285 
1286 	if (info->keep_alive_requested != KEEP_ALIVE_NONE) {
1287 		log_keep_alive(ERR,
1288 			"error status info->keep_alive_requested=%d\n",
1289 			info->keep_alive_requested);
1290 		smbd_disconnect_rdma_connection(info);
1291 		return;
1292 	}
1293 
1294 	log_keep_alive(INFO, "about to send an empty idle message\n");
1295 	smbd_post_send_empty(info);
1296 
1297 	/* Setup the next idle timeout work */
1298 	queue_delayed_work(info->workqueue, &info->idle_timer_work,
1299 			msecs_to_jiffies(sp->keepalive_interval_msec));
1300 }
1301 
1302 /*
1303  * Destroy the transport and related RDMA and memory resources
1304  * Need to go through all the pending counters and make sure on one is using
1305  * the transport while it is destroyed
1306  */
1307 void smbd_destroy(struct TCP_Server_Info *server)
1308 {
1309 	struct smbd_connection *info = server->smbd_conn;
1310 	struct smbdirect_socket *sc;
1311 	struct smbdirect_socket_parameters *sp;
1312 	struct smbd_response *response;
1313 	unsigned long flags;
1314 
1315 	if (!info) {
1316 		log_rdma_event(INFO, "rdma session already destroyed\n");
1317 		return;
1318 	}
1319 	sc = &info->socket;
1320 	sp = &sc->parameters;
1321 
1322 	log_rdma_event(INFO, "destroying rdma session\n");
1323 	if (sc->status != SMBDIRECT_SOCKET_DISCONNECTED) {
1324 		rdma_disconnect(sc->rdma.cm_id);
1325 		log_rdma_event(INFO, "wait for transport being disconnected\n");
1326 		wait_event_interruptible(
1327 			info->disconn_wait,
1328 			sc->status == SMBDIRECT_SOCKET_DISCONNECTED);
1329 	}
1330 
1331 	log_rdma_event(INFO, "destroying qp\n");
1332 	ib_drain_qp(sc->ib.qp);
1333 	rdma_destroy_qp(sc->rdma.cm_id);
1334 	sc->ib.qp = NULL;
1335 
1336 	log_rdma_event(INFO, "cancelling idle timer\n");
1337 	cancel_delayed_work_sync(&info->idle_timer_work);
1338 
1339 	log_rdma_event(INFO, "wait for all send posted to IB to finish\n");
1340 	wait_event(info->wait_send_pending,
1341 		atomic_read(&info->send_pending) == 0);
1342 
1343 	/* It's not possible for upper layer to get to reassembly */
1344 	log_rdma_event(INFO, "drain the reassembly queue\n");
1345 	do {
1346 		spin_lock_irqsave(&info->reassembly_queue_lock, flags);
1347 		response = _get_first_reassembly(info);
1348 		if (response) {
1349 			list_del(&response->list);
1350 			spin_unlock_irqrestore(
1351 				&info->reassembly_queue_lock, flags);
1352 			put_receive_buffer(info, response);
1353 		} else
1354 			spin_unlock_irqrestore(
1355 				&info->reassembly_queue_lock, flags);
1356 	} while (response);
1357 	info->reassembly_data_length = 0;
1358 
1359 	log_rdma_event(INFO, "free receive buffers\n");
1360 	wait_event(info->wait_receive_queues,
1361 		info->count_receive_queue + info->count_empty_packet_queue
1362 			== sp->recv_credit_max);
1363 	destroy_receive_buffers(info);
1364 
1365 	/*
1366 	 * For performance reasons, memory registration and deregistration
1367 	 * are not locked by srv_mutex. It is possible some processes are
1368 	 * blocked on transport srv_mutex while holding memory registration.
1369 	 * Release the transport srv_mutex to allow them to hit the failure
1370 	 * path when sending data, and then release memory registrations.
1371 	 */
1372 	log_rdma_event(INFO, "freeing mr list\n");
1373 	wake_up_interruptible_all(&info->wait_mr);
1374 	while (atomic_read(&info->mr_used_count)) {
1375 		cifs_server_unlock(server);
1376 		msleep(1000);
1377 		cifs_server_lock(server);
1378 	}
1379 	destroy_mr_list(info);
1380 
1381 	ib_free_cq(sc->ib.send_cq);
1382 	ib_free_cq(sc->ib.recv_cq);
1383 	ib_dealloc_pd(sc->ib.pd);
1384 	rdma_destroy_id(sc->rdma.cm_id);
1385 
1386 	/* free mempools */
1387 	mempool_destroy(info->request_mempool);
1388 	kmem_cache_destroy(info->request_cache);
1389 
1390 	mempool_destroy(info->response_mempool);
1391 	kmem_cache_destroy(info->response_cache);
1392 
1393 	sc->status = SMBDIRECT_SOCKET_DESTROYED;
1394 
1395 	destroy_workqueue(info->workqueue);
1396 	log_rdma_event(INFO,  "rdma session destroyed\n");
1397 	kfree(info);
1398 	server->smbd_conn = NULL;
1399 }
1400 
1401 /*
1402  * Reconnect this SMBD connection, called from upper layer
1403  * return value: 0 on success, or actual error code
1404  */
1405 int smbd_reconnect(struct TCP_Server_Info *server)
1406 {
1407 	log_rdma_event(INFO, "reconnecting rdma session\n");
1408 
1409 	if (!server->smbd_conn) {
1410 		log_rdma_event(INFO, "rdma session already destroyed\n");
1411 		goto create_conn;
1412 	}
1413 
1414 	/*
1415 	 * This is possible if transport is disconnected and we haven't received
1416 	 * notification from RDMA, but upper layer has detected timeout
1417 	 */
1418 	if (server->smbd_conn->socket.status == SMBDIRECT_SOCKET_CONNECTED) {
1419 		log_rdma_event(INFO, "disconnecting transport\n");
1420 		smbd_destroy(server);
1421 	}
1422 
1423 create_conn:
1424 	log_rdma_event(INFO, "creating rdma session\n");
1425 	server->smbd_conn = smbd_get_connection(
1426 		server, (struct sockaddr *) &server->dstaddr);
1427 
1428 	if (server->smbd_conn) {
1429 		cifs_dbg(VFS, "RDMA transport re-established\n");
1430 		trace_smb3_smbd_connect_done(server->hostname, server->conn_id, &server->dstaddr);
1431 		return 0;
1432 	}
1433 	trace_smb3_smbd_connect_err(server->hostname, server->conn_id, &server->dstaddr);
1434 	return -ENOENT;
1435 }
1436 
1437 static void destroy_caches_and_workqueue(struct smbd_connection *info)
1438 {
1439 	destroy_receive_buffers(info);
1440 	destroy_workqueue(info->workqueue);
1441 	mempool_destroy(info->response_mempool);
1442 	kmem_cache_destroy(info->response_cache);
1443 	mempool_destroy(info->request_mempool);
1444 	kmem_cache_destroy(info->request_cache);
1445 }
1446 
1447 #define MAX_NAME_LEN	80
1448 static int allocate_caches_and_workqueue(struct smbd_connection *info)
1449 {
1450 	struct smbdirect_socket *sc = &info->socket;
1451 	struct smbdirect_socket_parameters *sp = &sc->parameters;
1452 	char name[MAX_NAME_LEN];
1453 	int rc;
1454 
1455 	scnprintf(name, MAX_NAME_LEN, "smbd_request_%p", info);
1456 	info->request_cache =
1457 		kmem_cache_create(
1458 			name,
1459 			sizeof(struct smbd_request) +
1460 				sizeof(struct smbdirect_data_transfer),
1461 			0, SLAB_HWCACHE_ALIGN, NULL);
1462 	if (!info->request_cache)
1463 		return -ENOMEM;
1464 
1465 	info->request_mempool =
1466 		mempool_create(sp->send_credit_target, mempool_alloc_slab,
1467 			mempool_free_slab, info->request_cache);
1468 	if (!info->request_mempool)
1469 		goto out1;
1470 
1471 	scnprintf(name, MAX_NAME_LEN, "smbd_response_%p", info);
1472 	info->response_cache =
1473 		kmem_cache_create(
1474 			name,
1475 			sizeof(struct smbd_response) +
1476 				sp->max_recv_size,
1477 			0, SLAB_HWCACHE_ALIGN, NULL);
1478 	if (!info->response_cache)
1479 		goto out2;
1480 
1481 	info->response_mempool =
1482 		mempool_create(sp->recv_credit_max, mempool_alloc_slab,
1483 		       mempool_free_slab, info->response_cache);
1484 	if (!info->response_mempool)
1485 		goto out3;
1486 
1487 	scnprintf(name, MAX_NAME_LEN, "smbd_%p", info);
1488 	info->workqueue = create_workqueue(name);
1489 	if (!info->workqueue)
1490 		goto out4;
1491 
1492 	rc = allocate_receive_buffers(info, sp->recv_credit_max);
1493 	if (rc) {
1494 		log_rdma_event(ERR, "failed to allocate receive buffers\n");
1495 		goto out5;
1496 	}
1497 
1498 	return 0;
1499 
1500 out5:
1501 	destroy_workqueue(info->workqueue);
1502 out4:
1503 	mempool_destroy(info->response_mempool);
1504 out3:
1505 	kmem_cache_destroy(info->response_cache);
1506 out2:
1507 	mempool_destroy(info->request_mempool);
1508 out1:
1509 	kmem_cache_destroy(info->request_cache);
1510 	return -ENOMEM;
1511 }
1512 
1513 /* Create a SMBD connection, called by upper layer */
1514 static struct smbd_connection *_smbd_get_connection(
1515 	struct TCP_Server_Info *server, struct sockaddr *dstaddr, int port)
1516 {
1517 	int rc;
1518 	struct smbd_connection *info;
1519 	struct smbdirect_socket *sc;
1520 	struct smbdirect_socket_parameters *sp;
1521 	struct rdma_conn_param conn_param;
1522 	struct ib_qp_init_attr qp_attr;
1523 	struct sockaddr_in *addr_in = (struct sockaddr_in *) dstaddr;
1524 	struct ib_port_immutable port_immutable;
1525 	u32 ird_ord_hdr[2];
1526 
1527 	info = kzalloc(sizeof(struct smbd_connection), GFP_KERNEL);
1528 	if (!info)
1529 		return NULL;
1530 	sc = &info->socket;
1531 	sp = &sc->parameters;
1532 
1533 	sc->status = SMBDIRECT_SOCKET_CONNECTING;
1534 	rc = smbd_ia_open(info, dstaddr, port);
1535 	if (rc) {
1536 		log_rdma_event(INFO, "smbd_ia_open rc=%d\n", rc);
1537 		goto create_id_failed;
1538 	}
1539 
1540 	if (smbd_send_credit_target > sc->ib.dev->attrs.max_cqe ||
1541 	    smbd_send_credit_target > sc->ib.dev->attrs.max_qp_wr) {
1542 		log_rdma_event(ERR, "consider lowering send_credit_target = %d. Possible CQE overrun, device reporting max_cqe %d max_qp_wr %d\n",
1543 			       smbd_send_credit_target,
1544 			       sc->ib.dev->attrs.max_cqe,
1545 			       sc->ib.dev->attrs.max_qp_wr);
1546 		goto config_failed;
1547 	}
1548 
1549 	if (smbd_receive_credit_max > sc->ib.dev->attrs.max_cqe ||
1550 	    smbd_receive_credit_max > sc->ib.dev->attrs.max_qp_wr) {
1551 		log_rdma_event(ERR, "consider lowering receive_credit_max = %d. Possible CQE overrun, device reporting max_cqe %d max_qp_wr %d\n",
1552 			       smbd_receive_credit_max,
1553 			       sc->ib.dev->attrs.max_cqe,
1554 			       sc->ib.dev->attrs.max_qp_wr);
1555 		goto config_failed;
1556 	}
1557 
1558 	sp->recv_credit_max = smbd_receive_credit_max;
1559 	sp->send_credit_target = smbd_send_credit_target;
1560 	sp->max_send_size = smbd_max_send_size;
1561 	sp->max_fragmented_recv_size = smbd_max_fragmented_recv_size;
1562 	sp->max_recv_size = smbd_max_receive_size;
1563 	sp->keepalive_interval_msec = smbd_keep_alive_interval * 1000;
1564 
1565 	if (sc->ib.dev->attrs.max_send_sge < SMBDIRECT_MAX_SEND_SGE ||
1566 	    sc->ib.dev->attrs.max_recv_sge < SMBDIRECT_MAX_RECV_SGE) {
1567 		log_rdma_event(ERR,
1568 			"device %.*s max_send_sge/max_recv_sge = %d/%d too small\n",
1569 			IB_DEVICE_NAME_MAX,
1570 			sc->ib.dev->name,
1571 			sc->ib.dev->attrs.max_send_sge,
1572 			sc->ib.dev->attrs.max_recv_sge);
1573 		goto config_failed;
1574 	}
1575 
1576 	sc->ib.send_cq =
1577 		ib_alloc_cq_any(sc->ib.dev, info,
1578 				sp->send_credit_target, IB_POLL_SOFTIRQ);
1579 	if (IS_ERR(sc->ib.send_cq)) {
1580 		sc->ib.send_cq = NULL;
1581 		goto alloc_cq_failed;
1582 	}
1583 
1584 	sc->ib.recv_cq =
1585 		ib_alloc_cq_any(sc->ib.dev, info,
1586 				sp->recv_credit_max, IB_POLL_SOFTIRQ);
1587 	if (IS_ERR(sc->ib.recv_cq)) {
1588 		sc->ib.recv_cq = NULL;
1589 		goto alloc_cq_failed;
1590 	}
1591 
1592 	memset(&qp_attr, 0, sizeof(qp_attr));
1593 	qp_attr.event_handler = smbd_qp_async_error_upcall;
1594 	qp_attr.qp_context = info;
1595 	qp_attr.cap.max_send_wr = sp->send_credit_target;
1596 	qp_attr.cap.max_recv_wr = sp->recv_credit_max;
1597 	qp_attr.cap.max_send_sge = SMBDIRECT_MAX_SEND_SGE;
1598 	qp_attr.cap.max_recv_sge = SMBDIRECT_MAX_RECV_SGE;
1599 	qp_attr.cap.max_inline_data = 0;
1600 	qp_attr.sq_sig_type = IB_SIGNAL_REQ_WR;
1601 	qp_attr.qp_type = IB_QPT_RC;
1602 	qp_attr.send_cq = sc->ib.send_cq;
1603 	qp_attr.recv_cq = sc->ib.recv_cq;
1604 	qp_attr.port_num = ~0;
1605 
1606 	rc = rdma_create_qp(sc->rdma.cm_id, sc->ib.pd, &qp_attr);
1607 	if (rc) {
1608 		log_rdma_event(ERR, "rdma_create_qp failed %i\n", rc);
1609 		goto create_qp_failed;
1610 	}
1611 	sc->ib.qp = sc->rdma.cm_id->qp;
1612 
1613 	memset(&conn_param, 0, sizeof(conn_param));
1614 	conn_param.initiator_depth = 0;
1615 
1616 	conn_param.responder_resources =
1617 		min(sc->ib.dev->attrs.max_qp_rd_atom,
1618 		    SMBD_CM_RESPONDER_RESOURCES);
1619 	info->responder_resources = conn_param.responder_resources;
1620 	log_rdma_mr(INFO, "responder_resources=%d\n",
1621 		info->responder_resources);
1622 
1623 	/* Need to send IRD/ORD in private data for iWARP */
1624 	sc->ib.dev->ops.get_port_immutable(
1625 		sc->ib.dev, sc->rdma.cm_id->port_num, &port_immutable);
1626 	if (port_immutable.core_cap_flags & RDMA_CORE_PORT_IWARP) {
1627 		ird_ord_hdr[0] = info->responder_resources;
1628 		ird_ord_hdr[1] = 1;
1629 		conn_param.private_data = ird_ord_hdr;
1630 		conn_param.private_data_len = sizeof(ird_ord_hdr);
1631 	} else {
1632 		conn_param.private_data = NULL;
1633 		conn_param.private_data_len = 0;
1634 	}
1635 
1636 	conn_param.retry_count = SMBD_CM_RETRY;
1637 	conn_param.rnr_retry_count = SMBD_CM_RNR_RETRY;
1638 	conn_param.flow_control = 0;
1639 
1640 	log_rdma_event(INFO, "connecting to IP %pI4 port %d\n",
1641 		&addr_in->sin_addr, port);
1642 
1643 	init_waitqueue_head(&info->conn_wait);
1644 	init_waitqueue_head(&info->disconn_wait);
1645 	init_waitqueue_head(&info->wait_reassembly_queue);
1646 	rc = rdma_connect(sc->rdma.cm_id, &conn_param);
1647 	if (rc) {
1648 		log_rdma_event(ERR, "rdma_connect() failed with %i\n", rc);
1649 		goto rdma_connect_failed;
1650 	}
1651 
1652 	wait_event_interruptible(
1653 		info->conn_wait, sc->status != SMBDIRECT_SOCKET_CONNECTING);
1654 
1655 	if (sc->status != SMBDIRECT_SOCKET_CONNECTED) {
1656 		log_rdma_event(ERR, "rdma_connect failed port=%d\n", port);
1657 		goto rdma_connect_failed;
1658 	}
1659 
1660 	log_rdma_event(INFO, "rdma_connect connected\n");
1661 
1662 	rc = allocate_caches_and_workqueue(info);
1663 	if (rc) {
1664 		log_rdma_event(ERR, "cache allocation failed\n");
1665 		goto allocate_cache_failed;
1666 	}
1667 
1668 	init_waitqueue_head(&info->wait_send_queue);
1669 	INIT_DELAYED_WORK(&info->idle_timer_work, idle_connection_timer);
1670 	queue_delayed_work(info->workqueue, &info->idle_timer_work,
1671 		msecs_to_jiffies(sp->keepalive_interval_msec));
1672 
1673 	init_waitqueue_head(&info->wait_send_pending);
1674 	atomic_set(&info->send_pending, 0);
1675 
1676 	init_waitqueue_head(&info->wait_post_send);
1677 
1678 	INIT_WORK(&info->disconnect_work, smbd_disconnect_rdma_work);
1679 	INIT_WORK(&info->post_send_credits_work, smbd_post_send_credits);
1680 	info->new_credits_offered = 0;
1681 	spin_lock_init(&info->lock_new_credits_offered);
1682 
1683 	rc = smbd_negotiate(info);
1684 	if (rc) {
1685 		log_rdma_event(ERR, "smbd_negotiate rc=%d\n", rc);
1686 		goto negotiation_failed;
1687 	}
1688 
1689 	rc = allocate_mr_list(info);
1690 	if (rc) {
1691 		log_rdma_mr(ERR, "memory registration allocation failed\n");
1692 		goto allocate_mr_failed;
1693 	}
1694 
1695 	return info;
1696 
1697 allocate_mr_failed:
1698 	/* At this point, need to a full transport shutdown */
1699 	server->smbd_conn = info;
1700 	smbd_destroy(server);
1701 	return NULL;
1702 
1703 negotiation_failed:
1704 	cancel_delayed_work_sync(&info->idle_timer_work);
1705 	destroy_caches_and_workqueue(info);
1706 	sc->status = SMBDIRECT_SOCKET_NEGOTIATE_FAILED;
1707 	init_waitqueue_head(&info->conn_wait);
1708 	rdma_disconnect(sc->rdma.cm_id);
1709 	wait_event(info->conn_wait,
1710 		sc->status == SMBDIRECT_SOCKET_DISCONNECTED);
1711 
1712 allocate_cache_failed:
1713 rdma_connect_failed:
1714 	rdma_destroy_qp(sc->rdma.cm_id);
1715 
1716 create_qp_failed:
1717 alloc_cq_failed:
1718 	if (sc->ib.send_cq)
1719 		ib_free_cq(sc->ib.send_cq);
1720 	if (sc->ib.recv_cq)
1721 		ib_free_cq(sc->ib.recv_cq);
1722 
1723 config_failed:
1724 	ib_dealloc_pd(sc->ib.pd);
1725 	rdma_destroy_id(sc->rdma.cm_id);
1726 
1727 create_id_failed:
1728 	kfree(info);
1729 	return NULL;
1730 }
1731 
1732 struct smbd_connection *smbd_get_connection(
1733 	struct TCP_Server_Info *server, struct sockaddr *dstaddr)
1734 {
1735 	struct smbd_connection *ret;
1736 	int port = SMBD_PORT;
1737 
1738 try_again:
1739 	ret = _smbd_get_connection(server, dstaddr, port);
1740 
1741 	/* Try SMB_PORT if SMBD_PORT doesn't work */
1742 	if (!ret && port == SMBD_PORT) {
1743 		port = SMB_PORT;
1744 		goto try_again;
1745 	}
1746 	return ret;
1747 }
1748 
1749 /*
1750  * Receive data from receive reassembly queue
1751  * All the incoming data packets are placed in reassembly queue
1752  * buf: the buffer to read data into
1753  * size: the length of data to read
1754  * return value: actual data read
1755  * Note: this implementation copies the data from reassebmly queue to receive
1756  * buffers used by upper layer. This is not the optimal code path. A better way
1757  * to do it is to not have upper layer allocate its receive buffers but rather
1758  * borrow the buffer from reassembly queue, and return it after data is
1759  * consumed. But this will require more changes to upper layer code, and also
1760  * need to consider packet boundaries while they still being reassembled.
1761  */
1762 static int smbd_recv_buf(struct smbd_connection *info, char *buf,
1763 		unsigned int size)
1764 {
1765 	struct smbdirect_socket *sc = &info->socket;
1766 	struct smbd_response *response;
1767 	struct smbdirect_data_transfer *data_transfer;
1768 	int to_copy, to_read, data_read, offset;
1769 	u32 data_length, remaining_data_length, data_offset;
1770 	int rc;
1771 
1772 again:
1773 	/*
1774 	 * No need to hold the reassembly queue lock all the time as we are
1775 	 * the only one reading from the front of the queue. The transport
1776 	 * may add more entries to the back of the queue at the same time
1777 	 */
1778 	log_read(INFO, "size=%d info->reassembly_data_length=%d\n", size,
1779 		info->reassembly_data_length);
1780 	if (info->reassembly_data_length >= size) {
1781 		int queue_length;
1782 		int queue_removed = 0;
1783 
1784 		/*
1785 		 * Need to make sure reassembly_data_length is read before
1786 		 * reading reassembly_queue_length and calling
1787 		 * _get_first_reassembly. This call is lock free
1788 		 * as we never read at the end of the queue which are being
1789 		 * updated in SOFTIRQ as more data is received
1790 		 */
1791 		virt_rmb();
1792 		queue_length = info->reassembly_queue_length;
1793 		data_read = 0;
1794 		to_read = size;
1795 		offset = info->first_entry_offset;
1796 		while (data_read < size) {
1797 			response = _get_first_reassembly(info);
1798 			data_transfer = smbd_response_payload(response);
1799 			data_length = le32_to_cpu(data_transfer->data_length);
1800 			remaining_data_length =
1801 				le32_to_cpu(
1802 					data_transfer->remaining_data_length);
1803 			data_offset = le32_to_cpu(data_transfer->data_offset);
1804 
1805 			/*
1806 			 * The upper layer expects RFC1002 length at the
1807 			 * beginning of the payload. Return it to indicate
1808 			 * the total length of the packet. This minimize the
1809 			 * change to upper layer packet processing logic. This
1810 			 * will be eventually remove when an intermediate
1811 			 * transport layer is added
1812 			 */
1813 			if (response->first_segment && size == 4) {
1814 				unsigned int rfc1002_len =
1815 					data_length + remaining_data_length;
1816 				*((__be32 *)buf) = cpu_to_be32(rfc1002_len);
1817 				data_read = 4;
1818 				response->first_segment = false;
1819 				log_read(INFO, "returning rfc1002 length %d\n",
1820 					rfc1002_len);
1821 				goto read_rfc1002_done;
1822 			}
1823 
1824 			to_copy = min_t(int, data_length - offset, to_read);
1825 			memcpy(
1826 				buf + data_read,
1827 				(char *)data_transfer + data_offset + offset,
1828 				to_copy);
1829 
1830 			/* move on to the next buffer? */
1831 			if (to_copy == data_length - offset) {
1832 				queue_length--;
1833 				/*
1834 				 * No need to lock if we are not at the
1835 				 * end of the queue
1836 				 */
1837 				if (queue_length)
1838 					list_del(&response->list);
1839 				else {
1840 					spin_lock_irq(
1841 						&info->reassembly_queue_lock);
1842 					list_del(&response->list);
1843 					spin_unlock_irq(
1844 						&info->reassembly_queue_lock);
1845 				}
1846 				queue_removed++;
1847 				info->count_reassembly_queue--;
1848 				info->count_dequeue_reassembly_queue++;
1849 				put_receive_buffer(info, response);
1850 				offset = 0;
1851 				log_read(INFO, "put_receive_buffer offset=0\n");
1852 			} else
1853 				offset += to_copy;
1854 
1855 			to_read -= to_copy;
1856 			data_read += to_copy;
1857 
1858 			log_read(INFO, "_get_first_reassembly memcpy %d bytes data_transfer_length-offset=%d after that to_read=%d data_read=%d offset=%d\n",
1859 				 to_copy, data_length - offset,
1860 				 to_read, data_read, offset);
1861 		}
1862 
1863 		spin_lock_irq(&info->reassembly_queue_lock);
1864 		info->reassembly_data_length -= data_read;
1865 		info->reassembly_queue_length -= queue_removed;
1866 		spin_unlock_irq(&info->reassembly_queue_lock);
1867 
1868 		info->first_entry_offset = offset;
1869 		log_read(INFO, "returning to thread data_read=%d reassembly_data_length=%d first_entry_offset=%d\n",
1870 			 data_read, info->reassembly_data_length,
1871 			 info->first_entry_offset);
1872 read_rfc1002_done:
1873 		return data_read;
1874 	}
1875 
1876 	log_read(INFO, "wait_event on more data\n");
1877 	rc = wait_event_interruptible(
1878 		info->wait_reassembly_queue,
1879 		info->reassembly_data_length >= size ||
1880 			sc->status != SMBDIRECT_SOCKET_CONNECTED);
1881 	/* Don't return any data if interrupted */
1882 	if (rc)
1883 		return rc;
1884 
1885 	if (sc->status != SMBDIRECT_SOCKET_CONNECTED) {
1886 		log_read(ERR, "disconnected\n");
1887 		return -ECONNABORTED;
1888 	}
1889 
1890 	goto again;
1891 }
1892 
1893 /*
1894  * Receive a page from receive reassembly queue
1895  * page: the page to read data into
1896  * to_read: the length of data to read
1897  * return value: actual data read
1898  */
1899 static int smbd_recv_page(struct smbd_connection *info,
1900 		struct page *page, unsigned int page_offset,
1901 		unsigned int to_read)
1902 {
1903 	struct smbdirect_socket *sc = &info->socket;
1904 	int ret;
1905 	char *to_address;
1906 	void *page_address;
1907 
1908 	/* make sure we have the page ready for read */
1909 	ret = wait_event_interruptible(
1910 		info->wait_reassembly_queue,
1911 		info->reassembly_data_length >= to_read ||
1912 			sc->status != SMBDIRECT_SOCKET_CONNECTED);
1913 	if (ret)
1914 		return ret;
1915 
1916 	/* now we can read from reassembly queue and not sleep */
1917 	page_address = kmap_atomic(page);
1918 	to_address = (char *) page_address + page_offset;
1919 
1920 	log_read(INFO, "reading from page=%p address=%p to_read=%d\n",
1921 		page, to_address, to_read);
1922 
1923 	ret = smbd_recv_buf(info, to_address, to_read);
1924 	kunmap_atomic(page_address);
1925 
1926 	return ret;
1927 }
1928 
1929 /*
1930  * Receive data from transport
1931  * msg: a msghdr point to the buffer, can be ITER_KVEC or ITER_BVEC
1932  * return: total bytes read, or 0. SMB Direct will not do partial read.
1933  */
1934 int smbd_recv(struct smbd_connection *info, struct msghdr *msg)
1935 {
1936 	char *buf;
1937 	struct page *page;
1938 	unsigned int to_read, page_offset;
1939 	int rc;
1940 
1941 	if (iov_iter_rw(&msg->msg_iter) == WRITE) {
1942 		/* It's a bug in upper layer to get there */
1943 		cifs_dbg(VFS, "Invalid msg iter dir %u\n",
1944 			 iov_iter_rw(&msg->msg_iter));
1945 		rc = -EINVAL;
1946 		goto out;
1947 	}
1948 
1949 	switch (iov_iter_type(&msg->msg_iter)) {
1950 	case ITER_KVEC:
1951 		buf = msg->msg_iter.kvec->iov_base;
1952 		to_read = msg->msg_iter.kvec->iov_len;
1953 		rc = smbd_recv_buf(info, buf, to_read);
1954 		break;
1955 
1956 	case ITER_BVEC:
1957 		page = msg->msg_iter.bvec->bv_page;
1958 		page_offset = msg->msg_iter.bvec->bv_offset;
1959 		to_read = msg->msg_iter.bvec->bv_len;
1960 		rc = smbd_recv_page(info, page, page_offset, to_read);
1961 		break;
1962 
1963 	default:
1964 		/* It's a bug in upper layer to get there */
1965 		cifs_dbg(VFS, "Invalid msg type %d\n",
1966 			 iov_iter_type(&msg->msg_iter));
1967 		rc = -EINVAL;
1968 	}
1969 
1970 out:
1971 	/* SMBDirect will read it all or nothing */
1972 	if (rc > 0)
1973 		msg->msg_iter.count = 0;
1974 	return rc;
1975 }
1976 
1977 /*
1978  * Send data to transport
1979  * Each rqst is transported as a SMBDirect payload
1980  * rqst: the data to write
1981  * return value: 0 if successfully write, otherwise error code
1982  */
1983 int smbd_send(struct TCP_Server_Info *server,
1984 	int num_rqst, struct smb_rqst *rqst_array)
1985 {
1986 	struct smbd_connection *info = server->smbd_conn;
1987 	struct smbdirect_socket *sc = &info->socket;
1988 	struct smbdirect_socket_parameters *sp = &sc->parameters;
1989 	struct smb_rqst *rqst;
1990 	struct iov_iter iter;
1991 	unsigned int remaining_data_length, klen;
1992 	int rc, i, rqst_idx;
1993 
1994 	if (sc->status != SMBDIRECT_SOCKET_CONNECTED)
1995 		return -EAGAIN;
1996 
1997 	/*
1998 	 * Add in the page array if there is one. The caller needs to set
1999 	 * rq_tailsz to PAGE_SIZE when the buffer has multiple pages and
2000 	 * ends at page boundary
2001 	 */
2002 	remaining_data_length = 0;
2003 	for (i = 0; i < num_rqst; i++)
2004 		remaining_data_length += smb_rqst_len(server, &rqst_array[i]);
2005 
2006 	if (unlikely(remaining_data_length > sp->max_fragmented_send_size)) {
2007 		/* assertion: payload never exceeds negotiated maximum */
2008 		log_write(ERR, "payload size %d > max size %d\n",
2009 			remaining_data_length, sp->max_fragmented_send_size);
2010 		return -EINVAL;
2011 	}
2012 
2013 	log_write(INFO, "num_rqst=%d total length=%u\n",
2014 			num_rqst, remaining_data_length);
2015 
2016 	rqst_idx = 0;
2017 	do {
2018 		rqst = &rqst_array[rqst_idx];
2019 
2020 		cifs_dbg(FYI, "Sending smb (RDMA): idx=%d smb_len=%lu\n",
2021 			 rqst_idx, smb_rqst_len(server, rqst));
2022 		for (i = 0; i < rqst->rq_nvec; i++)
2023 			dump_smb(rqst->rq_iov[i].iov_base, rqst->rq_iov[i].iov_len);
2024 
2025 		log_write(INFO, "RDMA-WR[%u] nvec=%d len=%u iter=%zu rqlen=%lu\n",
2026 			  rqst_idx, rqst->rq_nvec, remaining_data_length,
2027 			  iov_iter_count(&rqst->rq_iter), smb_rqst_len(server, rqst));
2028 
2029 		/* Send the metadata pages. */
2030 		klen = 0;
2031 		for (i = 0; i < rqst->rq_nvec; i++)
2032 			klen += rqst->rq_iov[i].iov_len;
2033 		iov_iter_kvec(&iter, ITER_SOURCE, rqst->rq_iov, rqst->rq_nvec, klen);
2034 
2035 		rc = smbd_post_send_iter(info, &iter, &remaining_data_length);
2036 		if (rc < 0)
2037 			break;
2038 
2039 		if (iov_iter_count(&rqst->rq_iter) > 0) {
2040 			/* And then the data pages if there are any */
2041 			rc = smbd_post_send_iter(info, &rqst->rq_iter,
2042 						 &remaining_data_length);
2043 			if (rc < 0)
2044 				break;
2045 		}
2046 
2047 	} while (++rqst_idx < num_rqst);
2048 
2049 	/*
2050 	 * As an optimization, we don't wait for individual I/O to finish
2051 	 * before sending the next one.
2052 	 * Send them all and wait for pending send count to get to 0
2053 	 * that means all the I/Os have been out and we are good to return
2054 	 */
2055 
2056 	wait_event(info->wait_send_pending,
2057 		atomic_read(&info->send_pending) == 0);
2058 
2059 	return rc;
2060 }
2061 
2062 static void register_mr_done(struct ib_cq *cq, struct ib_wc *wc)
2063 {
2064 	struct smbd_mr *mr;
2065 	struct ib_cqe *cqe;
2066 
2067 	if (wc->status) {
2068 		log_rdma_mr(ERR, "status=%d\n", wc->status);
2069 		cqe = wc->wr_cqe;
2070 		mr = container_of(cqe, struct smbd_mr, cqe);
2071 		smbd_disconnect_rdma_connection(mr->conn);
2072 	}
2073 }
2074 
2075 /*
2076  * The work queue function that recovers MRs
2077  * We need to call ib_dereg_mr() and ib_alloc_mr() before this MR can be used
2078  * again. Both calls are slow, so finish them in a workqueue. This will not
2079  * block I/O path.
2080  * There is one workqueue that recovers MRs, there is no need to lock as the
2081  * I/O requests calling smbd_register_mr will never update the links in the
2082  * mr_list.
2083  */
2084 static void smbd_mr_recovery_work(struct work_struct *work)
2085 {
2086 	struct smbd_connection *info =
2087 		container_of(work, struct smbd_connection, mr_recovery_work);
2088 	struct smbdirect_socket *sc = &info->socket;
2089 	struct smbd_mr *smbdirect_mr;
2090 	int rc;
2091 
2092 	list_for_each_entry(smbdirect_mr, &info->mr_list, list) {
2093 		if (smbdirect_mr->state == MR_ERROR) {
2094 
2095 			/* recover this MR entry */
2096 			rc = ib_dereg_mr(smbdirect_mr->mr);
2097 			if (rc) {
2098 				log_rdma_mr(ERR,
2099 					"ib_dereg_mr failed rc=%x\n",
2100 					rc);
2101 				smbd_disconnect_rdma_connection(info);
2102 				continue;
2103 			}
2104 
2105 			smbdirect_mr->mr = ib_alloc_mr(
2106 				sc->ib.pd, info->mr_type,
2107 				info->max_frmr_depth);
2108 			if (IS_ERR(smbdirect_mr->mr)) {
2109 				log_rdma_mr(ERR, "ib_alloc_mr failed mr_type=%x max_frmr_depth=%x\n",
2110 					    info->mr_type,
2111 					    info->max_frmr_depth);
2112 				smbd_disconnect_rdma_connection(info);
2113 				continue;
2114 			}
2115 		} else
2116 			/* This MR is being used, don't recover it */
2117 			continue;
2118 
2119 		smbdirect_mr->state = MR_READY;
2120 
2121 		/* smbdirect_mr->state is updated by this function
2122 		 * and is read and updated by I/O issuing CPUs trying
2123 		 * to get a MR, the call to atomic_inc_return
2124 		 * implicates a memory barrier and guarantees this
2125 		 * value is updated before waking up any calls to
2126 		 * get_mr() from the I/O issuing CPUs
2127 		 */
2128 		if (atomic_inc_return(&info->mr_ready_count) == 1)
2129 			wake_up_interruptible(&info->wait_mr);
2130 	}
2131 }
2132 
2133 static void destroy_mr_list(struct smbd_connection *info)
2134 {
2135 	struct smbdirect_socket *sc = &info->socket;
2136 	struct smbd_mr *mr, *tmp;
2137 
2138 	cancel_work_sync(&info->mr_recovery_work);
2139 	list_for_each_entry_safe(mr, tmp, &info->mr_list, list) {
2140 		if (mr->state == MR_INVALIDATED)
2141 			ib_dma_unmap_sg(sc->ib.dev, mr->sgt.sgl,
2142 				mr->sgt.nents, mr->dir);
2143 		ib_dereg_mr(mr->mr);
2144 		kfree(mr->sgt.sgl);
2145 		kfree(mr);
2146 	}
2147 }
2148 
2149 /*
2150  * Allocate MRs used for RDMA read/write
2151  * The number of MRs will not exceed hardware capability in responder_resources
2152  * All MRs are kept in mr_list. The MR can be recovered after it's used
2153  * Recovery is done in smbd_mr_recovery_work. The content of list entry changes
2154  * as MRs are used and recovered for I/O, but the list links will not change
2155  */
2156 static int allocate_mr_list(struct smbd_connection *info)
2157 {
2158 	struct smbdirect_socket *sc = &info->socket;
2159 	int i;
2160 	struct smbd_mr *smbdirect_mr, *tmp;
2161 
2162 	INIT_LIST_HEAD(&info->mr_list);
2163 	init_waitqueue_head(&info->wait_mr);
2164 	spin_lock_init(&info->mr_list_lock);
2165 	atomic_set(&info->mr_ready_count, 0);
2166 	atomic_set(&info->mr_used_count, 0);
2167 	init_waitqueue_head(&info->wait_for_mr_cleanup);
2168 	INIT_WORK(&info->mr_recovery_work, smbd_mr_recovery_work);
2169 	/* Allocate more MRs (2x) than hardware responder_resources */
2170 	for (i = 0; i < info->responder_resources * 2; i++) {
2171 		smbdirect_mr = kzalloc(sizeof(*smbdirect_mr), GFP_KERNEL);
2172 		if (!smbdirect_mr)
2173 			goto cleanup_entries;
2174 		smbdirect_mr->mr = ib_alloc_mr(sc->ib.pd, info->mr_type,
2175 					info->max_frmr_depth);
2176 		if (IS_ERR(smbdirect_mr->mr)) {
2177 			log_rdma_mr(ERR, "ib_alloc_mr failed mr_type=%x max_frmr_depth=%x\n",
2178 				    info->mr_type, info->max_frmr_depth);
2179 			goto out;
2180 		}
2181 		smbdirect_mr->sgt.sgl = kcalloc(info->max_frmr_depth,
2182 						sizeof(struct scatterlist),
2183 						GFP_KERNEL);
2184 		if (!smbdirect_mr->sgt.sgl) {
2185 			log_rdma_mr(ERR, "failed to allocate sgl\n");
2186 			ib_dereg_mr(smbdirect_mr->mr);
2187 			goto out;
2188 		}
2189 		smbdirect_mr->state = MR_READY;
2190 		smbdirect_mr->conn = info;
2191 
2192 		list_add_tail(&smbdirect_mr->list, &info->mr_list);
2193 		atomic_inc(&info->mr_ready_count);
2194 	}
2195 	return 0;
2196 
2197 out:
2198 	kfree(smbdirect_mr);
2199 cleanup_entries:
2200 	list_for_each_entry_safe(smbdirect_mr, tmp, &info->mr_list, list) {
2201 		list_del(&smbdirect_mr->list);
2202 		ib_dereg_mr(smbdirect_mr->mr);
2203 		kfree(smbdirect_mr->sgt.sgl);
2204 		kfree(smbdirect_mr);
2205 	}
2206 	return -ENOMEM;
2207 }
2208 
2209 /*
2210  * Get a MR from mr_list. This function waits until there is at least one
2211  * MR available in the list. It may access the list while the
2212  * smbd_mr_recovery_work is recovering the MR list. This doesn't need a lock
2213  * as they never modify the same places. However, there may be several CPUs
2214  * issuing I/O trying to get MR at the same time, mr_list_lock is used to
2215  * protect this situation.
2216  */
2217 static struct smbd_mr *get_mr(struct smbd_connection *info)
2218 {
2219 	struct smbdirect_socket *sc = &info->socket;
2220 	struct smbd_mr *ret;
2221 	int rc;
2222 again:
2223 	rc = wait_event_interruptible(info->wait_mr,
2224 		atomic_read(&info->mr_ready_count) ||
2225 		sc->status != SMBDIRECT_SOCKET_CONNECTED);
2226 	if (rc) {
2227 		log_rdma_mr(ERR, "wait_event_interruptible rc=%x\n", rc);
2228 		return NULL;
2229 	}
2230 
2231 	if (sc->status != SMBDIRECT_SOCKET_CONNECTED) {
2232 		log_rdma_mr(ERR, "sc->status=%x\n", sc->status);
2233 		return NULL;
2234 	}
2235 
2236 	spin_lock(&info->mr_list_lock);
2237 	list_for_each_entry(ret, &info->mr_list, list) {
2238 		if (ret->state == MR_READY) {
2239 			ret->state = MR_REGISTERED;
2240 			spin_unlock(&info->mr_list_lock);
2241 			atomic_dec(&info->mr_ready_count);
2242 			atomic_inc(&info->mr_used_count);
2243 			return ret;
2244 		}
2245 	}
2246 
2247 	spin_unlock(&info->mr_list_lock);
2248 	/*
2249 	 * It is possible that we could fail to get MR because other processes may
2250 	 * try to acquire a MR at the same time. If this is the case, retry it.
2251 	 */
2252 	goto again;
2253 }
2254 
2255 /*
2256  * Transcribe the pages from an iterator into an MR scatterlist.
2257  */
2258 static int smbd_iter_to_mr(struct smbd_connection *info,
2259 			   struct iov_iter *iter,
2260 			   struct sg_table *sgt,
2261 			   unsigned int max_sg)
2262 {
2263 	int ret;
2264 
2265 	memset(sgt->sgl, 0, max_sg * sizeof(struct scatterlist));
2266 
2267 	ret = extract_iter_to_sg(iter, iov_iter_count(iter), sgt, max_sg, 0);
2268 	WARN_ON(ret < 0);
2269 	if (sgt->nents > 0)
2270 		sg_mark_end(&sgt->sgl[sgt->nents - 1]);
2271 	return ret;
2272 }
2273 
2274 /*
2275  * Register memory for RDMA read/write
2276  * iter: the buffer to register memory with
2277  * writing: true if this is a RDMA write (SMB read), false for RDMA read
2278  * need_invalidate: true if this MR needs to be locally invalidated after I/O
2279  * return value: the MR registered, NULL if failed.
2280  */
2281 struct smbd_mr *smbd_register_mr(struct smbd_connection *info,
2282 				 struct iov_iter *iter,
2283 				 bool writing, bool need_invalidate)
2284 {
2285 	struct smbdirect_socket *sc = &info->socket;
2286 	struct smbd_mr *smbdirect_mr;
2287 	int rc, num_pages;
2288 	enum dma_data_direction dir;
2289 	struct ib_reg_wr *reg_wr;
2290 
2291 	num_pages = iov_iter_npages(iter, info->max_frmr_depth + 1);
2292 	if (num_pages > info->max_frmr_depth) {
2293 		log_rdma_mr(ERR, "num_pages=%d max_frmr_depth=%d\n",
2294 			num_pages, info->max_frmr_depth);
2295 		WARN_ON_ONCE(1);
2296 		return NULL;
2297 	}
2298 
2299 	smbdirect_mr = get_mr(info);
2300 	if (!smbdirect_mr) {
2301 		log_rdma_mr(ERR, "get_mr returning NULL\n");
2302 		return NULL;
2303 	}
2304 
2305 	dir = writing ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
2306 	smbdirect_mr->dir = dir;
2307 	smbdirect_mr->need_invalidate = need_invalidate;
2308 	smbdirect_mr->sgt.nents = 0;
2309 	smbdirect_mr->sgt.orig_nents = 0;
2310 
2311 	log_rdma_mr(INFO, "num_pages=0x%x count=0x%zx depth=%u\n",
2312 		    num_pages, iov_iter_count(iter), info->max_frmr_depth);
2313 	smbd_iter_to_mr(info, iter, &smbdirect_mr->sgt, info->max_frmr_depth);
2314 
2315 	rc = ib_dma_map_sg(sc->ib.dev, smbdirect_mr->sgt.sgl,
2316 			   smbdirect_mr->sgt.nents, dir);
2317 	if (!rc) {
2318 		log_rdma_mr(ERR, "ib_dma_map_sg num_pages=%x dir=%x rc=%x\n",
2319 			num_pages, dir, rc);
2320 		goto dma_map_error;
2321 	}
2322 
2323 	rc = ib_map_mr_sg(smbdirect_mr->mr, smbdirect_mr->sgt.sgl,
2324 			  smbdirect_mr->sgt.nents, NULL, PAGE_SIZE);
2325 	if (rc != smbdirect_mr->sgt.nents) {
2326 		log_rdma_mr(ERR,
2327 			"ib_map_mr_sg failed rc = %d nents = %x\n",
2328 			rc, smbdirect_mr->sgt.nents);
2329 		goto map_mr_error;
2330 	}
2331 
2332 	ib_update_fast_reg_key(smbdirect_mr->mr,
2333 		ib_inc_rkey(smbdirect_mr->mr->rkey));
2334 	reg_wr = &smbdirect_mr->wr;
2335 	reg_wr->wr.opcode = IB_WR_REG_MR;
2336 	smbdirect_mr->cqe.done = register_mr_done;
2337 	reg_wr->wr.wr_cqe = &smbdirect_mr->cqe;
2338 	reg_wr->wr.num_sge = 0;
2339 	reg_wr->wr.send_flags = IB_SEND_SIGNALED;
2340 	reg_wr->mr = smbdirect_mr->mr;
2341 	reg_wr->key = smbdirect_mr->mr->rkey;
2342 	reg_wr->access = writing ?
2343 			IB_ACCESS_REMOTE_WRITE | IB_ACCESS_LOCAL_WRITE :
2344 			IB_ACCESS_REMOTE_READ;
2345 
2346 	/*
2347 	 * There is no need for waiting for complemtion on ib_post_send
2348 	 * on IB_WR_REG_MR. Hardware enforces a barrier and order of execution
2349 	 * on the next ib_post_send when we actually send I/O to remote peer
2350 	 */
2351 	rc = ib_post_send(sc->ib.qp, &reg_wr->wr, NULL);
2352 	if (!rc)
2353 		return smbdirect_mr;
2354 
2355 	log_rdma_mr(ERR, "ib_post_send failed rc=%x reg_wr->key=%x\n",
2356 		rc, reg_wr->key);
2357 
2358 	/* If all failed, attempt to recover this MR by setting it MR_ERROR*/
2359 map_mr_error:
2360 	ib_dma_unmap_sg(sc->ib.dev, smbdirect_mr->sgt.sgl,
2361 			smbdirect_mr->sgt.nents, smbdirect_mr->dir);
2362 
2363 dma_map_error:
2364 	smbdirect_mr->state = MR_ERROR;
2365 	if (atomic_dec_and_test(&info->mr_used_count))
2366 		wake_up(&info->wait_for_mr_cleanup);
2367 
2368 	smbd_disconnect_rdma_connection(info);
2369 
2370 	return NULL;
2371 }
2372 
2373 static void local_inv_done(struct ib_cq *cq, struct ib_wc *wc)
2374 {
2375 	struct smbd_mr *smbdirect_mr;
2376 	struct ib_cqe *cqe;
2377 
2378 	cqe = wc->wr_cqe;
2379 	smbdirect_mr = container_of(cqe, struct smbd_mr, cqe);
2380 	smbdirect_mr->state = MR_INVALIDATED;
2381 	if (wc->status != IB_WC_SUCCESS) {
2382 		log_rdma_mr(ERR, "invalidate failed status=%x\n", wc->status);
2383 		smbdirect_mr->state = MR_ERROR;
2384 	}
2385 	complete(&smbdirect_mr->invalidate_done);
2386 }
2387 
2388 /*
2389  * Deregister a MR after I/O is done
2390  * This function may wait if remote invalidation is not used
2391  * and we have to locally invalidate the buffer to prevent data is being
2392  * modified by remote peer after upper layer consumes it
2393  */
2394 int smbd_deregister_mr(struct smbd_mr *smbdirect_mr)
2395 {
2396 	struct ib_send_wr *wr;
2397 	struct smbd_connection *info = smbdirect_mr->conn;
2398 	struct smbdirect_socket *sc = &info->socket;
2399 	int rc = 0;
2400 
2401 	if (smbdirect_mr->need_invalidate) {
2402 		/* Need to finish local invalidation before returning */
2403 		wr = &smbdirect_mr->inv_wr;
2404 		wr->opcode = IB_WR_LOCAL_INV;
2405 		smbdirect_mr->cqe.done = local_inv_done;
2406 		wr->wr_cqe = &smbdirect_mr->cqe;
2407 		wr->num_sge = 0;
2408 		wr->ex.invalidate_rkey = smbdirect_mr->mr->rkey;
2409 		wr->send_flags = IB_SEND_SIGNALED;
2410 
2411 		init_completion(&smbdirect_mr->invalidate_done);
2412 		rc = ib_post_send(sc->ib.qp, wr, NULL);
2413 		if (rc) {
2414 			log_rdma_mr(ERR, "ib_post_send failed rc=%x\n", rc);
2415 			smbd_disconnect_rdma_connection(info);
2416 			goto done;
2417 		}
2418 		wait_for_completion(&smbdirect_mr->invalidate_done);
2419 		smbdirect_mr->need_invalidate = false;
2420 	} else
2421 		/*
2422 		 * For remote invalidation, just set it to MR_INVALIDATED
2423 		 * and defer to mr_recovery_work to recover the MR for next use
2424 		 */
2425 		smbdirect_mr->state = MR_INVALIDATED;
2426 
2427 	if (smbdirect_mr->state == MR_INVALIDATED) {
2428 		ib_dma_unmap_sg(
2429 			sc->ib.dev, smbdirect_mr->sgt.sgl,
2430 			smbdirect_mr->sgt.nents,
2431 			smbdirect_mr->dir);
2432 		smbdirect_mr->state = MR_READY;
2433 		if (atomic_inc_return(&info->mr_ready_count) == 1)
2434 			wake_up_interruptible(&info->wait_mr);
2435 	} else
2436 		/*
2437 		 * Schedule the work to do MR recovery for future I/Os MR
2438 		 * recovery is slow and don't want it to block current I/O
2439 		 */
2440 		queue_work(info->workqueue, &info->mr_recovery_work);
2441 
2442 done:
2443 	if (atomic_dec_and_test(&info->mr_used_count))
2444 		wake_up(&info->wait_for_mr_cleanup);
2445 
2446 	return rc;
2447 }
2448 
2449 static bool smb_set_sge(struct smb_extract_to_rdma *rdma,
2450 			struct page *lowest_page, size_t off, size_t len)
2451 {
2452 	struct ib_sge *sge = &rdma->sge[rdma->nr_sge];
2453 	u64 addr;
2454 
2455 	addr = ib_dma_map_page(rdma->device, lowest_page,
2456 			       off, len, rdma->direction);
2457 	if (ib_dma_mapping_error(rdma->device, addr))
2458 		return false;
2459 
2460 	sge->addr   = addr;
2461 	sge->length = len;
2462 	sge->lkey   = rdma->local_dma_lkey;
2463 	rdma->nr_sge++;
2464 	return true;
2465 }
2466 
2467 /*
2468  * Extract page fragments from a BVEC-class iterator and add them to an RDMA
2469  * element list.  The pages are not pinned.
2470  */
2471 static ssize_t smb_extract_bvec_to_rdma(struct iov_iter *iter,
2472 					struct smb_extract_to_rdma *rdma,
2473 					ssize_t maxsize)
2474 {
2475 	const struct bio_vec *bv = iter->bvec;
2476 	unsigned long start = iter->iov_offset;
2477 	unsigned int i;
2478 	ssize_t ret = 0;
2479 
2480 	for (i = 0; i < iter->nr_segs; i++) {
2481 		size_t off, len;
2482 
2483 		len = bv[i].bv_len;
2484 		if (start >= len) {
2485 			start -= len;
2486 			continue;
2487 		}
2488 
2489 		len = min_t(size_t, maxsize, len - start);
2490 		off = bv[i].bv_offset + start;
2491 
2492 		if (!smb_set_sge(rdma, bv[i].bv_page, off, len))
2493 			return -EIO;
2494 
2495 		ret += len;
2496 		maxsize -= len;
2497 		if (rdma->nr_sge >= rdma->max_sge || maxsize <= 0)
2498 			break;
2499 		start = 0;
2500 	}
2501 
2502 	if (ret > 0)
2503 		iov_iter_advance(iter, ret);
2504 	return ret;
2505 }
2506 
2507 /*
2508  * Extract fragments from a KVEC-class iterator and add them to an RDMA list.
2509  * This can deal with vmalloc'd buffers as well as kmalloc'd or static buffers.
2510  * The pages are not pinned.
2511  */
2512 static ssize_t smb_extract_kvec_to_rdma(struct iov_iter *iter,
2513 					struct smb_extract_to_rdma *rdma,
2514 					ssize_t maxsize)
2515 {
2516 	const struct kvec *kv = iter->kvec;
2517 	unsigned long start = iter->iov_offset;
2518 	unsigned int i;
2519 	ssize_t ret = 0;
2520 
2521 	for (i = 0; i < iter->nr_segs; i++) {
2522 		struct page *page;
2523 		unsigned long kaddr;
2524 		size_t off, len, seg;
2525 
2526 		len = kv[i].iov_len;
2527 		if (start >= len) {
2528 			start -= len;
2529 			continue;
2530 		}
2531 
2532 		kaddr = (unsigned long)kv[i].iov_base + start;
2533 		off = kaddr & ~PAGE_MASK;
2534 		len = min_t(size_t, maxsize, len - start);
2535 		kaddr &= PAGE_MASK;
2536 
2537 		maxsize -= len;
2538 		do {
2539 			seg = min_t(size_t, len, PAGE_SIZE - off);
2540 
2541 			if (is_vmalloc_or_module_addr((void *)kaddr))
2542 				page = vmalloc_to_page((void *)kaddr);
2543 			else
2544 				page = virt_to_page((void *)kaddr);
2545 
2546 			if (!smb_set_sge(rdma, page, off, seg))
2547 				return -EIO;
2548 
2549 			ret += seg;
2550 			len -= seg;
2551 			kaddr += PAGE_SIZE;
2552 			off = 0;
2553 		} while (len > 0 && rdma->nr_sge < rdma->max_sge);
2554 
2555 		if (rdma->nr_sge >= rdma->max_sge || maxsize <= 0)
2556 			break;
2557 		start = 0;
2558 	}
2559 
2560 	if (ret > 0)
2561 		iov_iter_advance(iter, ret);
2562 	return ret;
2563 }
2564 
2565 /*
2566  * Extract folio fragments from a FOLIOQ-class iterator and add them to an RDMA
2567  * list.  The folios are not pinned.
2568  */
2569 static ssize_t smb_extract_folioq_to_rdma(struct iov_iter *iter,
2570 					  struct smb_extract_to_rdma *rdma,
2571 					  ssize_t maxsize)
2572 {
2573 	const struct folio_queue *folioq = iter->folioq;
2574 	unsigned int slot = iter->folioq_slot;
2575 	ssize_t ret = 0;
2576 	size_t offset = iter->iov_offset;
2577 
2578 	BUG_ON(!folioq);
2579 
2580 	if (slot >= folioq_nr_slots(folioq)) {
2581 		folioq = folioq->next;
2582 		if (WARN_ON_ONCE(!folioq))
2583 			return -EIO;
2584 		slot = 0;
2585 	}
2586 
2587 	do {
2588 		struct folio *folio = folioq_folio(folioq, slot);
2589 		size_t fsize = folioq_folio_size(folioq, slot);
2590 
2591 		if (offset < fsize) {
2592 			size_t part = umin(maxsize, fsize - offset);
2593 
2594 			if (!smb_set_sge(rdma, folio_page(folio, 0), offset, part))
2595 				return -EIO;
2596 
2597 			offset += part;
2598 			ret += part;
2599 			maxsize -= part;
2600 		}
2601 
2602 		if (offset >= fsize) {
2603 			offset = 0;
2604 			slot++;
2605 			if (slot >= folioq_nr_slots(folioq)) {
2606 				if (!folioq->next) {
2607 					WARN_ON_ONCE(ret < iter->count);
2608 					break;
2609 				}
2610 				folioq = folioq->next;
2611 				slot = 0;
2612 			}
2613 		}
2614 	} while (rdma->nr_sge < rdma->max_sge && maxsize > 0);
2615 
2616 	iter->folioq = folioq;
2617 	iter->folioq_slot = slot;
2618 	iter->iov_offset = offset;
2619 	iter->count -= ret;
2620 	return ret;
2621 }
2622 
2623 /*
2624  * Extract page fragments from up to the given amount of the source iterator
2625  * and build up an RDMA list that refers to all of those bits.  The RDMA list
2626  * is appended to, up to the maximum number of elements set in the parameter
2627  * block.
2628  *
2629  * The extracted page fragments are not pinned or ref'd in any way; if an
2630  * IOVEC/UBUF-type iterator is to be used, it should be converted to a
2631  * BVEC-type iterator and the pages pinned, ref'd or otherwise held in some
2632  * way.
2633  */
2634 static ssize_t smb_extract_iter_to_rdma(struct iov_iter *iter, size_t len,
2635 					struct smb_extract_to_rdma *rdma)
2636 {
2637 	ssize_t ret;
2638 	int before = rdma->nr_sge;
2639 
2640 	switch (iov_iter_type(iter)) {
2641 	case ITER_BVEC:
2642 		ret = smb_extract_bvec_to_rdma(iter, rdma, len);
2643 		break;
2644 	case ITER_KVEC:
2645 		ret = smb_extract_kvec_to_rdma(iter, rdma, len);
2646 		break;
2647 	case ITER_FOLIOQ:
2648 		ret = smb_extract_folioq_to_rdma(iter, rdma, len);
2649 		break;
2650 	default:
2651 		WARN_ON_ONCE(1);
2652 		return -EIO;
2653 	}
2654 
2655 	if (ret < 0) {
2656 		while (rdma->nr_sge > before) {
2657 			struct ib_sge *sge = &rdma->sge[rdma->nr_sge--];
2658 
2659 			ib_dma_unmap_single(rdma->device, sge->addr, sge->length,
2660 					    rdma->direction);
2661 			sge->addr = 0;
2662 		}
2663 	}
2664 
2665 	return ret;
2666 }
2667