xref: /linux/fs/smb/client/smbdirect.c (revision 989fe6771266bdb82a815d78802c5aa7c918fdfd)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *   Copyright (C) 2017, Microsoft Corporation.
4  *
5  *   Author(s): Long Li <longli@microsoft.com>
6  */
7 #include <linux/module.h>
8 #include <linux/highmem.h>
9 #include <linux/folio_queue.h>
10 #include "../common/smbdirect/smbdirect_pdu.h"
11 #include "smbdirect.h"
12 #include "cifs_debug.h"
13 #include "cifsproto.h"
14 #include "smb2proto.h"
15 
16 static struct smbdirect_recv_io *get_receive_buffer(
17 		struct smbd_connection *info);
18 static void put_receive_buffer(
19 		struct smbd_connection *info,
20 		struct smbdirect_recv_io *response);
21 static int allocate_receive_buffers(struct smbd_connection *info, int num_buf);
22 static void destroy_receive_buffers(struct smbd_connection *info);
23 
24 static void enqueue_reassembly(
25 		struct smbd_connection *info,
26 		struct smbdirect_recv_io *response, int data_length);
27 static struct smbdirect_recv_io *_get_first_reassembly(
28 		struct smbd_connection *info);
29 
30 static int smbd_post_recv(
31 		struct smbd_connection *info,
32 		struct smbdirect_recv_io *response);
33 
34 static int smbd_post_send_empty(struct smbd_connection *info);
35 
36 static void destroy_mr_list(struct smbd_connection *info);
37 static int allocate_mr_list(struct smbd_connection *info);
38 
39 struct smb_extract_to_rdma {
40 	struct ib_sge		*sge;
41 	unsigned int		nr_sge;
42 	unsigned int		max_sge;
43 	struct ib_device	*device;
44 	u32			local_dma_lkey;
45 	enum dma_data_direction	direction;
46 };
47 static ssize_t smb_extract_iter_to_rdma(struct iov_iter *iter, size_t len,
48 					struct smb_extract_to_rdma *rdma);
49 
50 /* Port numbers for SMBD transport */
51 #define SMB_PORT	445
52 #define SMBD_PORT	5445
53 
54 /* Address lookup and resolve timeout in ms */
55 #define RDMA_RESOLVE_TIMEOUT	5000
56 
57 /* SMBD negotiation timeout in seconds */
58 #define SMBD_NEGOTIATE_TIMEOUT	120
59 
60 /* SMBD minimum receive size and fragmented sized defined in [MS-SMBD] */
61 #define SMBD_MIN_RECEIVE_SIZE		128
62 #define SMBD_MIN_FRAGMENTED_SIZE	131072
63 
64 /*
65  * Default maximum number of RDMA read/write outstanding on this connection
66  * This value is possibly decreased during QP creation on hardware limit
67  */
68 #define SMBD_CM_RESPONDER_RESOURCES	32
69 
70 /* Maximum number of retries on data transfer operations */
71 #define SMBD_CM_RETRY			6
72 /* No need to retry on Receiver Not Ready since SMBD manages credits */
73 #define SMBD_CM_RNR_RETRY		0
74 
75 /*
76  * User configurable initial values per SMBD transport connection
77  * as defined in [MS-SMBD] 3.1.1.1
78  * Those may change after a SMBD negotiation
79  */
80 /* The local peer's maximum number of credits to grant to the peer */
81 int smbd_receive_credit_max = 255;
82 
83 /* The remote peer's credit request of local peer */
84 int smbd_send_credit_target = 255;
85 
86 /* The maximum single message size can be sent to remote peer */
87 int smbd_max_send_size = 1364;
88 
89 /*  The maximum fragmented upper-layer payload receive size supported */
90 int smbd_max_fragmented_recv_size = 1024 * 1024;
91 
92 /*  The maximum single-message size which can be received */
93 int smbd_max_receive_size = 1364;
94 
95 /* The timeout to initiate send of a keepalive message on idle */
96 int smbd_keep_alive_interval = 120;
97 
98 /*
99  * User configurable initial values for RDMA transport
100  * The actual values used may be lower and are limited to hardware capabilities
101  */
102 /* Default maximum number of pages in a single RDMA write/read */
103 int smbd_max_frmr_depth = 2048;
104 
105 /* If payload is less than this byte, use RDMA send/recv not read/write */
106 int rdma_readwrite_threshold = 4096;
107 
108 /* Transport logging functions
109  * Logging are defined as classes. They can be OR'ed to define the actual
110  * logging level via module parameter smbd_logging_class
111  * e.g. cifs.smbd_logging_class=0xa0 will log all log_rdma_recv() and
112  * log_rdma_event()
113  */
114 #define LOG_OUTGOING			0x1
115 #define LOG_INCOMING			0x2
116 #define LOG_READ			0x4
117 #define LOG_WRITE			0x8
118 #define LOG_RDMA_SEND			0x10
119 #define LOG_RDMA_RECV			0x20
120 #define LOG_KEEP_ALIVE			0x40
121 #define LOG_RDMA_EVENT			0x80
122 #define LOG_RDMA_MR			0x100
123 static unsigned int smbd_logging_class;
124 module_param(smbd_logging_class, uint, 0644);
125 MODULE_PARM_DESC(smbd_logging_class,
126 	"Logging class for SMBD transport 0x0 to 0x100");
127 
128 #define ERR		0x0
129 #define INFO		0x1
130 static unsigned int smbd_logging_level = ERR;
131 module_param(smbd_logging_level, uint, 0644);
132 MODULE_PARM_DESC(smbd_logging_level,
133 	"Logging level for SMBD transport, 0 (default): error, 1: info");
134 
135 #define log_rdma(level, class, fmt, args...)				\
136 do {									\
137 	if (level <= smbd_logging_level || class & smbd_logging_class)	\
138 		cifs_dbg(VFS, "%s:%d " fmt, __func__, __LINE__, ##args);\
139 } while (0)
140 
141 #define log_outgoing(level, fmt, args...) \
142 		log_rdma(level, LOG_OUTGOING, fmt, ##args)
143 #define log_incoming(level, fmt, args...) \
144 		log_rdma(level, LOG_INCOMING, fmt, ##args)
145 #define log_read(level, fmt, args...)	log_rdma(level, LOG_READ, fmt, ##args)
146 #define log_write(level, fmt, args...)	log_rdma(level, LOG_WRITE, fmt, ##args)
147 #define log_rdma_send(level, fmt, args...) \
148 		log_rdma(level, LOG_RDMA_SEND, fmt, ##args)
149 #define log_rdma_recv(level, fmt, args...) \
150 		log_rdma(level, LOG_RDMA_RECV, fmt, ##args)
151 #define log_keep_alive(level, fmt, args...) \
152 		log_rdma(level, LOG_KEEP_ALIVE, fmt, ##args)
153 #define log_rdma_event(level, fmt, args...) \
154 		log_rdma(level, LOG_RDMA_EVENT, fmt, ##args)
155 #define log_rdma_mr(level, fmt, args...) \
156 		log_rdma(level, LOG_RDMA_MR, fmt, ##args)
157 
158 static void smbd_disconnect_rdma_work(struct work_struct *work)
159 {
160 	struct smbd_connection *info =
161 		container_of(work, struct smbd_connection, disconnect_work);
162 	struct smbdirect_socket *sc = &info->socket;
163 
164 	if (sc->status == SMBDIRECT_SOCKET_CONNECTED) {
165 		sc->status = SMBDIRECT_SOCKET_DISCONNECTING;
166 		rdma_disconnect(sc->rdma.cm_id);
167 	}
168 }
169 
170 static void smbd_disconnect_rdma_connection(struct smbd_connection *info)
171 {
172 	queue_work(info->workqueue, &info->disconnect_work);
173 }
174 
175 /* Upcall from RDMA CM */
176 static int smbd_conn_upcall(
177 		struct rdma_cm_id *id, struct rdma_cm_event *event)
178 {
179 	struct smbd_connection *info = id->context;
180 	struct smbdirect_socket *sc = &info->socket;
181 	const char *event_name = rdma_event_msg(event->event);
182 
183 	log_rdma_event(INFO, "event=%s status=%d\n",
184 		event_name, event->status);
185 
186 	switch (event->event) {
187 	case RDMA_CM_EVENT_ADDR_RESOLVED:
188 	case RDMA_CM_EVENT_ROUTE_RESOLVED:
189 		info->ri_rc = 0;
190 		complete(&info->ri_done);
191 		break;
192 
193 	case RDMA_CM_EVENT_ADDR_ERROR:
194 		log_rdma_event(ERR, "connecting failed event=%s\n", event_name);
195 		info->ri_rc = -EHOSTUNREACH;
196 		complete(&info->ri_done);
197 		break;
198 
199 	case RDMA_CM_EVENT_ROUTE_ERROR:
200 		log_rdma_event(ERR, "connecting failed event=%s\n", event_name);
201 		info->ri_rc = -ENETUNREACH;
202 		complete(&info->ri_done);
203 		break;
204 
205 	case RDMA_CM_EVENT_ESTABLISHED:
206 		log_rdma_event(INFO, "connected event=%s\n", event_name);
207 		sc->status = SMBDIRECT_SOCKET_CONNECTED;
208 		wake_up_interruptible(&info->status_wait);
209 		break;
210 
211 	case RDMA_CM_EVENT_CONNECT_ERROR:
212 	case RDMA_CM_EVENT_UNREACHABLE:
213 	case RDMA_CM_EVENT_REJECTED:
214 		log_rdma_event(ERR, "connecting failed event=%s\n", event_name);
215 		sc->status = SMBDIRECT_SOCKET_DISCONNECTED;
216 		wake_up_interruptible(&info->status_wait);
217 		break;
218 
219 	case RDMA_CM_EVENT_DEVICE_REMOVAL:
220 	case RDMA_CM_EVENT_DISCONNECTED:
221 		/* This happens when we fail the negotiation */
222 		if (sc->status == SMBDIRECT_SOCKET_NEGOTIATE_FAILED) {
223 			log_rdma_event(ERR, "event=%s during negotiation\n", event_name);
224 			sc->status = SMBDIRECT_SOCKET_DISCONNECTED;
225 			wake_up(&info->status_wait);
226 			break;
227 		}
228 
229 		sc->status = SMBDIRECT_SOCKET_DISCONNECTED;
230 		wake_up_interruptible(&info->status_wait);
231 		wake_up_interruptible(&sc->recv_io.reassembly.wait_queue);
232 		wake_up_interruptible_all(&info->wait_send_queue);
233 		break;
234 
235 	default:
236 		log_rdma_event(ERR, "unexpected event=%s status=%d\n",
237 			       event_name, event->status);
238 		break;
239 	}
240 
241 	return 0;
242 }
243 
244 /* Upcall from RDMA QP */
245 static void
246 smbd_qp_async_error_upcall(struct ib_event *event, void *context)
247 {
248 	struct smbd_connection *info = context;
249 
250 	log_rdma_event(ERR, "%s on device %s info %p\n",
251 		ib_event_msg(event->event), event->device->name, info);
252 
253 	switch (event->event) {
254 	case IB_EVENT_CQ_ERR:
255 	case IB_EVENT_QP_FATAL:
256 		smbd_disconnect_rdma_connection(info);
257 		break;
258 
259 	default:
260 		break;
261 	}
262 }
263 
264 static inline void *smbdirect_send_io_payload(struct smbdirect_send_io *request)
265 {
266 	return (void *)request->packet;
267 }
268 
269 static inline void *smbdirect_recv_io_payload(struct smbdirect_recv_io *response)
270 {
271 	return (void *)response->packet;
272 }
273 
274 /* Called when a RDMA send is done */
275 static void send_done(struct ib_cq *cq, struct ib_wc *wc)
276 {
277 	int i;
278 	struct smbdirect_send_io *request =
279 		container_of(wc->wr_cqe, struct smbdirect_send_io, cqe);
280 	struct smbdirect_socket *sc = request->socket;
281 	struct smbd_connection *info =
282 		container_of(sc, struct smbd_connection, socket);
283 
284 	log_rdma_send(INFO, "smbdirect_send_io 0x%p completed wc->status=%d\n",
285 		request, wc->status);
286 
287 	for (i = 0; i < request->num_sge; i++)
288 		ib_dma_unmap_single(sc->ib.dev,
289 			request->sge[i].addr,
290 			request->sge[i].length,
291 			DMA_TO_DEVICE);
292 
293 	if (wc->status != IB_WC_SUCCESS || wc->opcode != IB_WC_SEND) {
294 		log_rdma_send(ERR, "wc->status=%d wc->opcode=%d\n",
295 			wc->status, wc->opcode);
296 		mempool_free(request, sc->send_io.mem.pool);
297 		smbd_disconnect_rdma_connection(info);
298 		return;
299 	}
300 
301 	if (atomic_dec_and_test(&info->send_pending))
302 		wake_up(&info->wait_send_pending);
303 
304 	wake_up(&info->wait_post_send);
305 
306 	mempool_free(request, sc->send_io.mem.pool);
307 }
308 
309 static void dump_smbdirect_negotiate_resp(struct smbdirect_negotiate_resp *resp)
310 {
311 	log_rdma_event(INFO, "resp message min_version %u max_version %u negotiated_version %u credits_requested %u credits_granted %u status %u max_readwrite_size %u preferred_send_size %u max_receive_size %u max_fragmented_size %u\n",
312 		       resp->min_version, resp->max_version,
313 		       resp->negotiated_version, resp->credits_requested,
314 		       resp->credits_granted, resp->status,
315 		       resp->max_readwrite_size, resp->preferred_send_size,
316 		       resp->max_receive_size, resp->max_fragmented_size);
317 }
318 
319 /*
320  * Process a negotiation response message, according to [MS-SMBD]3.1.5.7
321  * response, packet_length: the negotiation response message
322  * return value: true if negotiation is a success, false if failed
323  */
324 static bool process_negotiation_response(
325 		struct smbdirect_recv_io *response, int packet_length)
326 {
327 	struct smbdirect_socket *sc = response->socket;
328 	struct smbd_connection *info =
329 		container_of(sc, struct smbd_connection, socket);
330 	struct smbdirect_socket_parameters *sp = &sc->parameters;
331 	struct smbdirect_negotiate_resp *packet = smbdirect_recv_io_payload(response);
332 
333 	if (packet_length < sizeof(struct smbdirect_negotiate_resp)) {
334 		log_rdma_event(ERR,
335 			"error: packet_length=%d\n", packet_length);
336 		return false;
337 	}
338 
339 	if (le16_to_cpu(packet->negotiated_version) != SMBDIRECT_V1) {
340 		log_rdma_event(ERR, "error: negotiated_version=%x\n",
341 			le16_to_cpu(packet->negotiated_version));
342 		return false;
343 	}
344 	info->protocol = le16_to_cpu(packet->negotiated_version);
345 
346 	if (packet->credits_requested == 0) {
347 		log_rdma_event(ERR, "error: credits_requested==0\n");
348 		return false;
349 	}
350 	info->receive_credit_target = le16_to_cpu(packet->credits_requested);
351 
352 	if (packet->credits_granted == 0) {
353 		log_rdma_event(ERR, "error: credits_granted==0\n");
354 		return false;
355 	}
356 	atomic_set(&info->send_credits, le16_to_cpu(packet->credits_granted));
357 
358 	atomic_set(&info->receive_credits, 0);
359 
360 	if (le32_to_cpu(packet->preferred_send_size) > sp->max_recv_size) {
361 		log_rdma_event(ERR, "error: preferred_send_size=%d\n",
362 			le32_to_cpu(packet->preferred_send_size));
363 		return false;
364 	}
365 	sp->max_recv_size = le32_to_cpu(packet->preferred_send_size);
366 
367 	if (le32_to_cpu(packet->max_receive_size) < SMBD_MIN_RECEIVE_SIZE) {
368 		log_rdma_event(ERR, "error: max_receive_size=%d\n",
369 			le32_to_cpu(packet->max_receive_size));
370 		return false;
371 	}
372 	sp->max_send_size = min_t(u32, sp->max_send_size,
373 				  le32_to_cpu(packet->max_receive_size));
374 
375 	if (le32_to_cpu(packet->max_fragmented_size) <
376 			SMBD_MIN_FRAGMENTED_SIZE) {
377 		log_rdma_event(ERR, "error: max_fragmented_size=%d\n",
378 			le32_to_cpu(packet->max_fragmented_size));
379 		return false;
380 	}
381 	sp->max_fragmented_send_size =
382 		le32_to_cpu(packet->max_fragmented_size);
383 	info->rdma_readwrite_threshold =
384 		rdma_readwrite_threshold > sp->max_fragmented_send_size ?
385 		sp->max_fragmented_send_size :
386 		rdma_readwrite_threshold;
387 
388 
389 	sp->max_read_write_size = min_t(u32,
390 			le32_to_cpu(packet->max_readwrite_size),
391 			info->max_frmr_depth * PAGE_SIZE);
392 	info->max_frmr_depth = sp->max_read_write_size / PAGE_SIZE;
393 
394 	sc->recv_io.expected = SMBDIRECT_EXPECT_DATA_TRANSFER;
395 	return true;
396 }
397 
398 static void smbd_post_send_credits(struct work_struct *work)
399 {
400 	int ret = 0;
401 	int rc;
402 	struct smbdirect_recv_io *response;
403 	struct smbd_connection *info =
404 		container_of(work, struct smbd_connection,
405 			post_send_credits_work);
406 	struct smbdirect_socket *sc = &info->socket;
407 
408 	if (sc->status != SMBDIRECT_SOCKET_CONNECTED) {
409 		wake_up(&info->wait_receive_queues);
410 		return;
411 	}
412 
413 	if (info->receive_credit_target >
414 		atomic_read(&info->receive_credits)) {
415 		while (true) {
416 			response = get_receive_buffer(info);
417 			if (!response)
418 				break;
419 
420 			response->first_segment = false;
421 			rc = smbd_post_recv(info, response);
422 			if (rc) {
423 				log_rdma_recv(ERR,
424 					"post_recv failed rc=%d\n", rc);
425 				put_receive_buffer(info, response);
426 				break;
427 			}
428 
429 			ret++;
430 		}
431 	}
432 
433 	spin_lock(&info->lock_new_credits_offered);
434 	info->new_credits_offered += ret;
435 	spin_unlock(&info->lock_new_credits_offered);
436 
437 	/* Promptly send an immediate packet as defined in [MS-SMBD] 3.1.1.1 */
438 	info->send_immediate = true;
439 	if (atomic_read(&info->receive_credits) <
440 		info->receive_credit_target - 1) {
441 		if (info->keep_alive_requested == KEEP_ALIVE_PENDING ||
442 		    info->send_immediate) {
443 			log_keep_alive(INFO, "send an empty message\n");
444 			smbd_post_send_empty(info);
445 		}
446 	}
447 }
448 
449 /* Called from softirq, when recv is done */
450 static void recv_done(struct ib_cq *cq, struct ib_wc *wc)
451 {
452 	struct smbdirect_data_transfer *data_transfer;
453 	struct smbdirect_recv_io *response =
454 		container_of(wc->wr_cqe, struct smbdirect_recv_io, cqe);
455 	struct smbdirect_socket *sc = response->socket;
456 	struct smbd_connection *info =
457 		container_of(sc, struct smbd_connection, socket);
458 	int data_length = 0;
459 
460 	log_rdma_recv(INFO, "response=0x%p type=%d wc status=%d wc opcode %d byte_len=%d pkey_index=%u\n",
461 		      response, sc->recv_io.expected, wc->status, wc->opcode,
462 		      wc->byte_len, wc->pkey_index);
463 
464 	if (wc->status != IB_WC_SUCCESS || wc->opcode != IB_WC_RECV) {
465 		log_rdma_recv(INFO, "wc->status=%d opcode=%d\n",
466 			wc->status, wc->opcode);
467 		goto error;
468 	}
469 
470 	ib_dma_sync_single_for_cpu(
471 		wc->qp->device,
472 		response->sge.addr,
473 		response->sge.length,
474 		DMA_FROM_DEVICE);
475 
476 	switch (sc->recv_io.expected) {
477 	/* SMBD negotiation response */
478 	case SMBDIRECT_EXPECT_NEGOTIATE_REP:
479 		dump_smbdirect_negotiate_resp(smbdirect_recv_io_payload(response));
480 		sc->recv_io.reassembly.full_packet_received = true;
481 		info->negotiate_done =
482 			process_negotiation_response(response, wc->byte_len);
483 		put_receive_buffer(info, response);
484 		complete(&info->negotiate_completion);
485 		return;
486 
487 	/* SMBD data transfer packet */
488 	case SMBDIRECT_EXPECT_DATA_TRANSFER:
489 		data_transfer = smbdirect_recv_io_payload(response);
490 		data_length = le32_to_cpu(data_transfer->data_length);
491 
492 		if (data_length) {
493 			if (sc->recv_io.reassembly.full_packet_received)
494 				response->first_segment = true;
495 
496 			if (le32_to_cpu(data_transfer->remaining_data_length))
497 				sc->recv_io.reassembly.full_packet_received = false;
498 			else
499 				sc->recv_io.reassembly.full_packet_received = true;
500 		}
501 
502 		atomic_dec(&info->receive_credits);
503 		info->receive_credit_target =
504 			le16_to_cpu(data_transfer->credits_requested);
505 		if (le16_to_cpu(data_transfer->credits_granted)) {
506 			atomic_add(le16_to_cpu(data_transfer->credits_granted),
507 				&info->send_credits);
508 			/*
509 			 * We have new send credits granted from remote peer
510 			 * If any sender is waiting for credits, unblock it
511 			 */
512 			wake_up_interruptible(&info->wait_send_queue);
513 		}
514 
515 		log_incoming(INFO, "data flags %d data_offset %d data_length %d remaining_data_length %d\n",
516 			     le16_to_cpu(data_transfer->flags),
517 			     le32_to_cpu(data_transfer->data_offset),
518 			     le32_to_cpu(data_transfer->data_length),
519 			     le32_to_cpu(data_transfer->remaining_data_length));
520 
521 		/* Send a KEEP_ALIVE response right away if requested */
522 		info->keep_alive_requested = KEEP_ALIVE_NONE;
523 		if (le16_to_cpu(data_transfer->flags) &
524 				SMBDIRECT_FLAG_RESPONSE_REQUESTED) {
525 			info->keep_alive_requested = KEEP_ALIVE_PENDING;
526 		}
527 
528 		/*
529 		 * If this is a packet with data playload place the data in
530 		 * reassembly queue and wake up the reading thread
531 		 */
532 		if (data_length) {
533 			enqueue_reassembly(info, response, data_length);
534 			wake_up_interruptible(&sc->recv_io.reassembly.wait_queue);
535 		} else
536 			put_receive_buffer(info, response);
537 
538 		return;
539 
540 	case SMBDIRECT_EXPECT_NEGOTIATE_REQ:
541 		/* Only server... */
542 		break;
543 	}
544 
545 	/*
546 	 * This is an internal error!
547 	 */
548 	log_rdma_recv(ERR, "unexpected response type=%d\n", sc->recv_io.expected);
549 	WARN_ON_ONCE(sc->recv_io.expected != SMBDIRECT_EXPECT_DATA_TRANSFER);
550 error:
551 	put_receive_buffer(info, response);
552 	smbd_disconnect_rdma_connection(info);
553 }
554 
555 static struct rdma_cm_id *smbd_create_id(
556 		struct smbd_connection *info,
557 		struct sockaddr *dstaddr, int port)
558 {
559 	struct rdma_cm_id *id;
560 	int rc;
561 	__be16 *sport;
562 
563 	id = rdma_create_id(&init_net, smbd_conn_upcall, info,
564 		RDMA_PS_TCP, IB_QPT_RC);
565 	if (IS_ERR(id)) {
566 		rc = PTR_ERR(id);
567 		log_rdma_event(ERR, "rdma_create_id() failed %i\n", rc);
568 		return id;
569 	}
570 
571 	if (dstaddr->sa_family == AF_INET6)
572 		sport = &((struct sockaddr_in6 *)dstaddr)->sin6_port;
573 	else
574 		sport = &((struct sockaddr_in *)dstaddr)->sin_port;
575 
576 	*sport = htons(port);
577 
578 	init_completion(&info->ri_done);
579 	info->ri_rc = -ETIMEDOUT;
580 
581 	rc = rdma_resolve_addr(id, NULL, (struct sockaddr *)dstaddr,
582 		RDMA_RESOLVE_TIMEOUT);
583 	if (rc) {
584 		log_rdma_event(ERR, "rdma_resolve_addr() failed %i\n", rc);
585 		goto out;
586 	}
587 	rc = wait_for_completion_interruptible_timeout(
588 		&info->ri_done, msecs_to_jiffies(RDMA_RESOLVE_TIMEOUT));
589 	/* e.g. if interrupted returns -ERESTARTSYS */
590 	if (rc < 0) {
591 		log_rdma_event(ERR, "rdma_resolve_addr timeout rc: %i\n", rc);
592 		goto out;
593 	}
594 	rc = info->ri_rc;
595 	if (rc) {
596 		log_rdma_event(ERR, "rdma_resolve_addr() completed %i\n", rc);
597 		goto out;
598 	}
599 
600 	info->ri_rc = -ETIMEDOUT;
601 	rc = rdma_resolve_route(id, RDMA_RESOLVE_TIMEOUT);
602 	if (rc) {
603 		log_rdma_event(ERR, "rdma_resolve_route() failed %i\n", rc);
604 		goto out;
605 	}
606 	rc = wait_for_completion_interruptible_timeout(
607 		&info->ri_done, msecs_to_jiffies(RDMA_RESOLVE_TIMEOUT));
608 	/* e.g. if interrupted returns -ERESTARTSYS */
609 	if (rc < 0)  {
610 		log_rdma_event(ERR, "rdma_resolve_addr timeout rc: %i\n", rc);
611 		goto out;
612 	}
613 	rc = info->ri_rc;
614 	if (rc) {
615 		log_rdma_event(ERR, "rdma_resolve_route() completed %i\n", rc);
616 		goto out;
617 	}
618 
619 	return id;
620 
621 out:
622 	rdma_destroy_id(id);
623 	return ERR_PTR(rc);
624 }
625 
626 /*
627  * Test if FRWR (Fast Registration Work Requests) is supported on the device
628  * This implementation requires FRWR on RDMA read/write
629  * return value: true if it is supported
630  */
631 static bool frwr_is_supported(struct ib_device_attr *attrs)
632 {
633 	if (!(attrs->device_cap_flags & IB_DEVICE_MEM_MGT_EXTENSIONS))
634 		return false;
635 	if (attrs->max_fast_reg_page_list_len == 0)
636 		return false;
637 	return true;
638 }
639 
640 static int smbd_ia_open(
641 		struct smbd_connection *info,
642 		struct sockaddr *dstaddr, int port)
643 {
644 	struct smbdirect_socket *sc = &info->socket;
645 	int rc;
646 
647 	sc->rdma.cm_id = smbd_create_id(info, dstaddr, port);
648 	if (IS_ERR(sc->rdma.cm_id)) {
649 		rc = PTR_ERR(sc->rdma.cm_id);
650 		goto out1;
651 	}
652 	sc->ib.dev = sc->rdma.cm_id->device;
653 
654 	if (!frwr_is_supported(&sc->ib.dev->attrs)) {
655 		log_rdma_event(ERR, "Fast Registration Work Requests (FRWR) is not supported\n");
656 		log_rdma_event(ERR, "Device capability flags = %llx max_fast_reg_page_list_len = %u\n",
657 			       sc->ib.dev->attrs.device_cap_flags,
658 			       sc->ib.dev->attrs.max_fast_reg_page_list_len);
659 		rc = -EPROTONOSUPPORT;
660 		goto out2;
661 	}
662 	info->max_frmr_depth = min_t(int,
663 		smbd_max_frmr_depth,
664 		sc->ib.dev->attrs.max_fast_reg_page_list_len);
665 	info->mr_type = IB_MR_TYPE_MEM_REG;
666 	if (sc->ib.dev->attrs.kernel_cap_flags & IBK_SG_GAPS_REG)
667 		info->mr_type = IB_MR_TYPE_SG_GAPS;
668 
669 	sc->ib.pd = ib_alloc_pd(sc->ib.dev, 0);
670 	if (IS_ERR(sc->ib.pd)) {
671 		rc = PTR_ERR(sc->ib.pd);
672 		log_rdma_event(ERR, "ib_alloc_pd() returned %d\n", rc);
673 		goto out2;
674 	}
675 
676 	return 0;
677 
678 out2:
679 	rdma_destroy_id(sc->rdma.cm_id);
680 	sc->rdma.cm_id = NULL;
681 
682 out1:
683 	return rc;
684 }
685 
686 /*
687  * Send a negotiation request message to the peer
688  * The negotiation procedure is in [MS-SMBD] 3.1.5.2 and 3.1.5.3
689  * After negotiation, the transport is connected and ready for
690  * carrying upper layer SMB payload
691  */
692 static int smbd_post_send_negotiate_req(struct smbd_connection *info)
693 {
694 	struct smbdirect_socket *sc = &info->socket;
695 	struct smbdirect_socket_parameters *sp = &sc->parameters;
696 	struct ib_send_wr send_wr;
697 	int rc = -ENOMEM;
698 	struct smbdirect_send_io *request;
699 	struct smbdirect_negotiate_req *packet;
700 
701 	request = mempool_alloc(sc->send_io.mem.pool, GFP_KERNEL);
702 	if (!request)
703 		return rc;
704 
705 	request->socket = sc;
706 
707 	packet = smbdirect_send_io_payload(request);
708 	packet->min_version = cpu_to_le16(SMBDIRECT_V1);
709 	packet->max_version = cpu_to_le16(SMBDIRECT_V1);
710 	packet->reserved = 0;
711 	packet->credits_requested = cpu_to_le16(sp->send_credit_target);
712 	packet->preferred_send_size = cpu_to_le32(sp->max_send_size);
713 	packet->max_receive_size = cpu_to_le32(sp->max_recv_size);
714 	packet->max_fragmented_size =
715 		cpu_to_le32(sp->max_fragmented_recv_size);
716 
717 	request->num_sge = 1;
718 	request->sge[0].addr = ib_dma_map_single(
719 				sc->ib.dev, (void *)packet,
720 				sizeof(*packet), DMA_TO_DEVICE);
721 	if (ib_dma_mapping_error(sc->ib.dev, request->sge[0].addr)) {
722 		rc = -EIO;
723 		goto dma_mapping_failed;
724 	}
725 
726 	request->sge[0].length = sizeof(*packet);
727 	request->sge[0].lkey = sc->ib.pd->local_dma_lkey;
728 
729 	ib_dma_sync_single_for_device(
730 		sc->ib.dev, request->sge[0].addr,
731 		request->sge[0].length, DMA_TO_DEVICE);
732 
733 	request->cqe.done = send_done;
734 
735 	send_wr.next = NULL;
736 	send_wr.wr_cqe = &request->cqe;
737 	send_wr.sg_list = request->sge;
738 	send_wr.num_sge = request->num_sge;
739 	send_wr.opcode = IB_WR_SEND;
740 	send_wr.send_flags = IB_SEND_SIGNALED;
741 
742 	log_rdma_send(INFO, "sge addr=0x%llx length=%u lkey=0x%x\n",
743 		request->sge[0].addr,
744 		request->sge[0].length, request->sge[0].lkey);
745 
746 	atomic_inc(&info->send_pending);
747 	rc = ib_post_send(sc->ib.qp, &send_wr, NULL);
748 	if (!rc)
749 		return 0;
750 
751 	/* if we reach here, post send failed */
752 	log_rdma_send(ERR, "ib_post_send failed rc=%d\n", rc);
753 	atomic_dec(&info->send_pending);
754 	ib_dma_unmap_single(sc->ib.dev, request->sge[0].addr,
755 		request->sge[0].length, DMA_TO_DEVICE);
756 
757 	smbd_disconnect_rdma_connection(info);
758 
759 dma_mapping_failed:
760 	mempool_free(request, sc->send_io.mem.pool);
761 	return rc;
762 }
763 
764 /*
765  * Extend the credits to remote peer
766  * This implements [MS-SMBD] 3.1.5.9
767  * The idea is that we should extend credits to remote peer as quickly as
768  * it's allowed, to maintain data flow. We allocate as much receive
769  * buffer as possible, and extend the receive credits to remote peer
770  * return value: the new credtis being granted.
771  */
772 static int manage_credits_prior_sending(struct smbd_connection *info)
773 {
774 	int new_credits;
775 
776 	spin_lock(&info->lock_new_credits_offered);
777 	new_credits = info->new_credits_offered;
778 	info->new_credits_offered = 0;
779 	spin_unlock(&info->lock_new_credits_offered);
780 
781 	return new_credits;
782 }
783 
784 /*
785  * Check if we need to send a KEEP_ALIVE message
786  * The idle connection timer triggers a KEEP_ALIVE message when expires
787  * SMBDIRECT_FLAG_RESPONSE_REQUESTED is set in the message flag to have peer send
788  * back a response.
789  * return value:
790  * 1 if SMBDIRECT_FLAG_RESPONSE_REQUESTED needs to be set
791  * 0: otherwise
792  */
793 static int manage_keep_alive_before_sending(struct smbd_connection *info)
794 {
795 	if (info->keep_alive_requested == KEEP_ALIVE_PENDING) {
796 		info->keep_alive_requested = KEEP_ALIVE_SENT;
797 		return 1;
798 	}
799 	return 0;
800 }
801 
802 /* Post the send request */
803 static int smbd_post_send(struct smbd_connection *info,
804 		struct smbdirect_send_io *request)
805 {
806 	struct smbdirect_socket *sc = &info->socket;
807 	struct smbdirect_socket_parameters *sp = &sc->parameters;
808 	struct ib_send_wr send_wr;
809 	int rc, i;
810 
811 	for (i = 0; i < request->num_sge; i++) {
812 		log_rdma_send(INFO,
813 			"rdma_request sge[%d] addr=0x%llx length=%u\n",
814 			i, request->sge[i].addr, request->sge[i].length);
815 		ib_dma_sync_single_for_device(
816 			sc->ib.dev,
817 			request->sge[i].addr,
818 			request->sge[i].length,
819 			DMA_TO_DEVICE);
820 	}
821 
822 	request->cqe.done = send_done;
823 
824 	send_wr.next = NULL;
825 	send_wr.wr_cqe = &request->cqe;
826 	send_wr.sg_list = request->sge;
827 	send_wr.num_sge = request->num_sge;
828 	send_wr.opcode = IB_WR_SEND;
829 	send_wr.send_flags = IB_SEND_SIGNALED;
830 
831 	rc = ib_post_send(sc->ib.qp, &send_wr, NULL);
832 	if (rc) {
833 		log_rdma_send(ERR, "ib_post_send failed rc=%d\n", rc);
834 		smbd_disconnect_rdma_connection(info);
835 		rc = -EAGAIN;
836 	} else
837 		/* Reset timer for idle connection after packet is sent */
838 		mod_delayed_work(info->workqueue, &info->idle_timer_work,
839 			msecs_to_jiffies(sp->keepalive_interval_msec));
840 
841 	return rc;
842 }
843 
844 static int smbd_post_send_iter(struct smbd_connection *info,
845 			       struct iov_iter *iter,
846 			       int *_remaining_data_length)
847 {
848 	struct smbdirect_socket *sc = &info->socket;
849 	struct smbdirect_socket_parameters *sp = &sc->parameters;
850 	int i, rc;
851 	int header_length;
852 	int data_length;
853 	struct smbdirect_send_io *request;
854 	struct smbdirect_data_transfer *packet;
855 	int new_credits = 0;
856 
857 wait_credit:
858 	/* Wait for send credits. A SMBD packet needs one credit */
859 	rc = wait_event_interruptible(info->wait_send_queue,
860 		atomic_read(&info->send_credits) > 0 ||
861 		sc->status != SMBDIRECT_SOCKET_CONNECTED);
862 	if (rc)
863 		goto err_wait_credit;
864 
865 	if (sc->status != SMBDIRECT_SOCKET_CONNECTED) {
866 		log_outgoing(ERR, "disconnected not sending on wait_credit\n");
867 		rc = -EAGAIN;
868 		goto err_wait_credit;
869 	}
870 	if (unlikely(atomic_dec_return(&info->send_credits) < 0)) {
871 		atomic_inc(&info->send_credits);
872 		goto wait_credit;
873 	}
874 
875 wait_send_queue:
876 	wait_event(info->wait_post_send,
877 		atomic_read(&info->send_pending) < sp->send_credit_target ||
878 		sc->status != SMBDIRECT_SOCKET_CONNECTED);
879 
880 	if (sc->status != SMBDIRECT_SOCKET_CONNECTED) {
881 		log_outgoing(ERR, "disconnected not sending on wait_send_queue\n");
882 		rc = -EAGAIN;
883 		goto err_wait_send_queue;
884 	}
885 
886 	if (unlikely(atomic_inc_return(&info->send_pending) >
887 				sp->send_credit_target)) {
888 		atomic_dec(&info->send_pending);
889 		goto wait_send_queue;
890 	}
891 
892 	request = mempool_alloc(sc->send_io.mem.pool, GFP_KERNEL);
893 	if (!request) {
894 		rc = -ENOMEM;
895 		goto err_alloc;
896 	}
897 
898 	request->socket = sc;
899 	memset(request->sge, 0, sizeof(request->sge));
900 
901 	/* Fill in the data payload to find out how much data we can add */
902 	if (iter) {
903 		struct smb_extract_to_rdma extract = {
904 			.nr_sge		= 1,
905 			.max_sge	= SMBDIRECT_SEND_IO_MAX_SGE,
906 			.sge		= request->sge,
907 			.device		= sc->ib.dev,
908 			.local_dma_lkey	= sc->ib.pd->local_dma_lkey,
909 			.direction	= DMA_TO_DEVICE,
910 		};
911 		size_t payload_len = umin(*_remaining_data_length,
912 					  sp->max_send_size - sizeof(*packet));
913 
914 		rc = smb_extract_iter_to_rdma(iter, payload_len,
915 					      &extract);
916 		if (rc < 0)
917 			goto err_dma;
918 		data_length = rc;
919 		request->num_sge = extract.nr_sge;
920 		*_remaining_data_length -= data_length;
921 	} else {
922 		data_length = 0;
923 		request->num_sge = 1;
924 	}
925 
926 	/* Fill in the packet header */
927 	packet = smbdirect_send_io_payload(request);
928 	packet->credits_requested = cpu_to_le16(sp->send_credit_target);
929 
930 	new_credits = manage_credits_prior_sending(info);
931 	atomic_add(new_credits, &info->receive_credits);
932 	packet->credits_granted = cpu_to_le16(new_credits);
933 
934 	info->send_immediate = false;
935 
936 	packet->flags = 0;
937 	if (manage_keep_alive_before_sending(info))
938 		packet->flags |= cpu_to_le16(SMBDIRECT_FLAG_RESPONSE_REQUESTED);
939 
940 	packet->reserved = 0;
941 	if (!data_length)
942 		packet->data_offset = 0;
943 	else
944 		packet->data_offset = cpu_to_le32(24);
945 	packet->data_length = cpu_to_le32(data_length);
946 	packet->remaining_data_length = cpu_to_le32(*_remaining_data_length);
947 	packet->padding = 0;
948 
949 	log_outgoing(INFO, "credits_requested=%d credits_granted=%d data_offset=%d data_length=%d remaining_data_length=%d\n",
950 		     le16_to_cpu(packet->credits_requested),
951 		     le16_to_cpu(packet->credits_granted),
952 		     le32_to_cpu(packet->data_offset),
953 		     le32_to_cpu(packet->data_length),
954 		     le32_to_cpu(packet->remaining_data_length));
955 
956 	/* Map the packet to DMA */
957 	header_length = sizeof(struct smbdirect_data_transfer);
958 	/* If this is a packet without payload, don't send padding */
959 	if (!data_length)
960 		header_length = offsetof(struct smbdirect_data_transfer, padding);
961 
962 	request->sge[0].addr = ib_dma_map_single(sc->ib.dev,
963 						 (void *)packet,
964 						 header_length,
965 						 DMA_TO_DEVICE);
966 	if (ib_dma_mapping_error(sc->ib.dev, request->sge[0].addr)) {
967 		rc = -EIO;
968 		request->sge[0].addr = 0;
969 		goto err_dma;
970 	}
971 
972 	request->sge[0].length = header_length;
973 	request->sge[0].lkey = sc->ib.pd->local_dma_lkey;
974 
975 	rc = smbd_post_send(info, request);
976 	if (!rc)
977 		return 0;
978 
979 err_dma:
980 	for (i = 0; i < request->num_sge; i++)
981 		if (request->sge[i].addr)
982 			ib_dma_unmap_single(sc->ib.dev,
983 					    request->sge[i].addr,
984 					    request->sge[i].length,
985 					    DMA_TO_DEVICE);
986 	mempool_free(request, sc->send_io.mem.pool);
987 
988 	/* roll back receive credits and credits to be offered */
989 	spin_lock(&info->lock_new_credits_offered);
990 	info->new_credits_offered += new_credits;
991 	spin_unlock(&info->lock_new_credits_offered);
992 	atomic_sub(new_credits, &info->receive_credits);
993 
994 err_alloc:
995 	if (atomic_dec_and_test(&info->send_pending))
996 		wake_up(&info->wait_send_pending);
997 
998 err_wait_send_queue:
999 	/* roll back send credits and pending */
1000 	atomic_inc(&info->send_credits);
1001 
1002 err_wait_credit:
1003 	return rc;
1004 }
1005 
1006 /*
1007  * Send an empty message
1008  * Empty message is used to extend credits to peer to for keep live
1009  * while there is no upper layer payload to send at the time
1010  */
1011 static int smbd_post_send_empty(struct smbd_connection *info)
1012 {
1013 	int remaining_data_length = 0;
1014 
1015 	info->count_send_empty++;
1016 	return smbd_post_send_iter(info, NULL, &remaining_data_length);
1017 }
1018 
1019 static int smbd_post_send_full_iter(struct smbd_connection *info,
1020 				    struct iov_iter *iter,
1021 				    int *_remaining_data_length)
1022 {
1023 	int rc = 0;
1024 
1025 	/*
1026 	 * smbd_post_send_iter() respects the
1027 	 * negotiated max_send_size, so we need to
1028 	 * loop until the full iter is posted
1029 	 */
1030 
1031 	while (iov_iter_count(iter) > 0) {
1032 		rc = smbd_post_send_iter(info, iter, _remaining_data_length);
1033 		if (rc < 0)
1034 			break;
1035 	}
1036 
1037 	return rc;
1038 }
1039 
1040 /*
1041  * Post a receive request to the transport
1042  * The remote peer can only send data when a receive request is posted
1043  * The interaction is controlled by send/receive credit system
1044  */
1045 static int smbd_post_recv(
1046 		struct smbd_connection *info, struct smbdirect_recv_io *response)
1047 {
1048 	struct smbdirect_socket *sc = &info->socket;
1049 	struct smbdirect_socket_parameters *sp = &sc->parameters;
1050 	struct ib_recv_wr recv_wr;
1051 	int rc = -EIO;
1052 
1053 	response->sge.addr = ib_dma_map_single(
1054 				sc->ib.dev, response->packet,
1055 				sp->max_recv_size, DMA_FROM_DEVICE);
1056 	if (ib_dma_mapping_error(sc->ib.dev, response->sge.addr))
1057 		return rc;
1058 
1059 	response->sge.length = sp->max_recv_size;
1060 	response->sge.lkey = sc->ib.pd->local_dma_lkey;
1061 
1062 	response->cqe.done = recv_done;
1063 
1064 	recv_wr.wr_cqe = &response->cqe;
1065 	recv_wr.next = NULL;
1066 	recv_wr.sg_list = &response->sge;
1067 	recv_wr.num_sge = 1;
1068 
1069 	rc = ib_post_recv(sc->ib.qp, &recv_wr, NULL);
1070 	if (rc) {
1071 		ib_dma_unmap_single(sc->ib.dev, response->sge.addr,
1072 				    response->sge.length, DMA_FROM_DEVICE);
1073 		response->sge.length = 0;
1074 		smbd_disconnect_rdma_connection(info);
1075 		log_rdma_recv(ERR, "ib_post_recv failed rc=%d\n", rc);
1076 	}
1077 
1078 	return rc;
1079 }
1080 
1081 /* Perform SMBD negotiate according to [MS-SMBD] 3.1.5.2 */
1082 static int smbd_negotiate(struct smbd_connection *info)
1083 {
1084 	struct smbdirect_socket *sc = &info->socket;
1085 	int rc;
1086 	struct smbdirect_recv_io *response = get_receive_buffer(info);
1087 
1088 	sc->recv_io.expected = SMBDIRECT_EXPECT_NEGOTIATE_REP;
1089 	rc = smbd_post_recv(info, response);
1090 	log_rdma_event(INFO, "smbd_post_recv rc=%d iov.addr=0x%llx iov.length=%u iov.lkey=0x%x\n",
1091 		       rc, response->sge.addr,
1092 		       response->sge.length, response->sge.lkey);
1093 	if (rc)
1094 		return rc;
1095 
1096 	init_completion(&info->negotiate_completion);
1097 	info->negotiate_done = false;
1098 	rc = smbd_post_send_negotiate_req(info);
1099 	if (rc)
1100 		return rc;
1101 
1102 	rc = wait_for_completion_interruptible_timeout(
1103 		&info->negotiate_completion, SMBD_NEGOTIATE_TIMEOUT * HZ);
1104 	log_rdma_event(INFO, "wait_for_completion_timeout rc=%d\n", rc);
1105 
1106 	if (info->negotiate_done)
1107 		return 0;
1108 
1109 	if (rc == 0)
1110 		rc = -ETIMEDOUT;
1111 	else if (rc == -ERESTARTSYS)
1112 		rc = -EINTR;
1113 	else
1114 		rc = -ENOTCONN;
1115 
1116 	return rc;
1117 }
1118 
1119 /*
1120  * Implement Connection.FragmentReassemblyBuffer defined in [MS-SMBD] 3.1.1.1
1121  * This is a queue for reassembling upper layer payload and present to upper
1122  * layer. All the inncoming payload go to the reassembly queue, regardless of
1123  * if reassembly is required. The uuper layer code reads from the queue for all
1124  * incoming payloads.
1125  * Put a received packet to the reassembly queue
1126  * response: the packet received
1127  * data_length: the size of payload in this packet
1128  */
1129 static void enqueue_reassembly(
1130 	struct smbd_connection *info,
1131 	struct smbdirect_recv_io *response,
1132 	int data_length)
1133 {
1134 	struct smbdirect_socket *sc = &info->socket;
1135 
1136 	spin_lock(&sc->recv_io.reassembly.lock);
1137 	list_add_tail(&response->list, &sc->recv_io.reassembly.list);
1138 	sc->recv_io.reassembly.queue_length++;
1139 	/*
1140 	 * Make sure reassembly_data_length is updated after list and
1141 	 * reassembly_queue_length are updated. On the dequeue side
1142 	 * reassembly_data_length is checked without a lock to determine
1143 	 * if reassembly_queue_length and list is up to date
1144 	 */
1145 	virt_wmb();
1146 	sc->recv_io.reassembly.data_length += data_length;
1147 	spin_unlock(&sc->recv_io.reassembly.lock);
1148 	info->count_reassembly_queue++;
1149 	info->count_enqueue_reassembly_queue++;
1150 }
1151 
1152 /*
1153  * Get the first entry at the front of reassembly queue
1154  * Caller is responsible for locking
1155  * return value: the first entry if any, NULL if queue is empty
1156  */
1157 static struct smbdirect_recv_io *_get_first_reassembly(struct smbd_connection *info)
1158 {
1159 	struct smbdirect_socket *sc = &info->socket;
1160 	struct smbdirect_recv_io *ret = NULL;
1161 
1162 	if (!list_empty(&sc->recv_io.reassembly.list)) {
1163 		ret = list_first_entry(
1164 			&sc->recv_io.reassembly.list,
1165 			struct smbdirect_recv_io, list);
1166 	}
1167 	return ret;
1168 }
1169 
1170 /*
1171  * Get a receive buffer
1172  * For each remote send, we need to post a receive. The receive buffers are
1173  * pre-allocated in advance.
1174  * return value: the receive buffer, NULL if none is available
1175  */
1176 static struct smbdirect_recv_io *get_receive_buffer(struct smbd_connection *info)
1177 {
1178 	struct smbdirect_socket *sc = &info->socket;
1179 	struct smbdirect_recv_io *ret = NULL;
1180 	unsigned long flags;
1181 
1182 	spin_lock_irqsave(&sc->recv_io.free.lock, flags);
1183 	if (!list_empty(&sc->recv_io.free.list)) {
1184 		ret = list_first_entry(
1185 			&sc->recv_io.free.list,
1186 			struct smbdirect_recv_io, list);
1187 		list_del(&ret->list);
1188 		info->count_receive_queue--;
1189 		info->count_get_receive_buffer++;
1190 	}
1191 	spin_unlock_irqrestore(&sc->recv_io.free.lock, flags);
1192 
1193 	return ret;
1194 }
1195 
1196 /*
1197  * Return a receive buffer
1198  * Upon returning of a receive buffer, we can post new receive and extend
1199  * more receive credits to remote peer. This is done immediately after a
1200  * receive buffer is returned.
1201  */
1202 static void put_receive_buffer(
1203 	struct smbd_connection *info, struct smbdirect_recv_io *response)
1204 {
1205 	struct smbdirect_socket *sc = &info->socket;
1206 	unsigned long flags;
1207 
1208 	if (likely(response->sge.length != 0)) {
1209 		ib_dma_unmap_single(sc->ib.dev,
1210 				    response->sge.addr,
1211 				    response->sge.length,
1212 				    DMA_FROM_DEVICE);
1213 		response->sge.length = 0;
1214 	}
1215 
1216 	spin_lock_irqsave(&sc->recv_io.free.lock, flags);
1217 	list_add_tail(&response->list, &sc->recv_io.free.list);
1218 	info->count_receive_queue++;
1219 	info->count_put_receive_buffer++;
1220 	spin_unlock_irqrestore(&sc->recv_io.free.lock, flags);
1221 
1222 	queue_work(info->workqueue, &info->post_send_credits_work);
1223 }
1224 
1225 /* Preallocate all receive buffer on transport establishment */
1226 static int allocate_receive_buffers(struct smbd_connection *info, int num_buf)
1227 {
1228 	struct smbdirect_socket *sc = &info->socket;
1229 	struct smbdirect_recv_io *response;
1230 	int i;
1231 
1232 	INIT_LIST_HEAD(&sc->recv_io.reassembly.list);
1233 	spin_lock_init(&sc->recv_io.reassembly.lock);
1234 	sc->recv_io.reassembly.data_length = 0;
1235 	sc->recv_io.reassembly.queue_length = 0;
1236 
1237 	INIT_LIST_HEAD(&sc->recv_io.free.list);
1238 	spin_lock_init(&sc->recv_io.free.lock);
1239 	info->count_receive_queue = 0;
1240 
1241 	init_waitqueue_head(&info->wait_receive_queues);
1242 
1243 	for (i = 0; i < num_buf; i++) {
1244 		response = mempool_alloc(sc->recv_io.mem.pool, GFP_KERNEL);
1245 		if (!response)
1246 			goto allocate_failed;
1247 
1248 		response->socket = sc;
1249 		response->sge.length = 0;
1250 		list_add_tail(&response->list, &sc->recv_io.free.list);
1251 		info->count_receive_queue++;
1252 	}
1253 
1254 	return 0;
1255 
1256 allocate_failed:
1257 	while (!list_empty(&sc->recv_io.free.list)) {
1258 		response = list_first_entry(
1259 				&sc->recv_io.free.list,
1260 				struct smbdirect_recv_io, list);
1261 		list_del(&response->list);
1262 		info->count_receive_queue--;
1263 
1264 		mempool_free(response, sc->recv_io.mem.pool);
1265 	}
1266 	return -ENOMEM;
1267 }
1268 
1269 static void destroy_receive_buffers(struct smbd_connection *info)
1270 {
1271 	struct smbdirect_socket *sc = &info->socket;
1272 	struct smbdirect_recv_io *response;
1273 
1274 	while ((response = get_receive_buffer(info)))
1275 		mempool_free(response, sc->recv_io.mem.pool);
1276 }
1277 
1278 /* Implement idle connection timer [MS-SMBD] 3.1.6.2 */
1279 static void idle_connection_timer(struct work_struct *work)
1280 {
1281 	struct smbd_connection *info = container_of(
1282 					work, struct smbd_connection,
1283 					idle_timer_work.work);
1284 	struct smbdirect_socket *sc = &info->socket;
1285 	struct smbdirect_socket_parameters *sp = &sc->parameters;
1286 
1287 	if (info->keep_alive_requested != KEEP_ALIVE_NONE) {
1288 		log_keep_alive(ERR,
1289 			"error status info->keep_alive_requested=%d\n",
1290 			info->keep_alive_requested);
1291 		smbd_disconnect_rdma_connection(info);
1292 		return;
1293 	}
1294 
1295 	log_keep_alive(INFO, "about to send an empty idle message\n");
1296 	smbd_post_send_empty(info);
1297 
1298 	/* Setup the next idle timeout work */
1299 	queue_delayed_work(info->workqueue, &info->idle_timer_work,
1300 			msecs_to_jiffies(sp->keepalive_interval_msec));
1301 }
1302 
1303 /*
1304  * Destroy the transport and related RDMA and memory resources
1305  * Need to go through all the pending counters and make sure on one is using
1306  * the transport while it is destroyed
1307  */
1308 void smbd_destroy(struct TCP_Server_Info *server)
1309 {
1310 	struct smbd_connection *info = server->smbd_conn;
1311 	struct smbdirect_socket *sc;
1312 	struct smbdirect_socket_parameters *sp;
1313 	struct smbdirect_recv_io *response;
1314 	unsigned long flags;
1315 
1316 	if (!info) {
1317 		log_rdma_event(INFO, "rdma session already destroyed\n");
1318 		return;
1319 	}
1320 	sc = &info->socket;
1321 	sp = &sc->parameters;
1322 
1323 	log_rdma_event(INFO, "destroying rdma session\n");
1324 	if (sc->status != SMBDIRECT_SOCKET_DISCONNECTED) {
1325 		rdma_disconnect(sc->rdma.cm_id);
1326 		log_rdma_event(INFO, "wait for transport being disconnected\n");
1327 		wait_event_interruptible(
1328 			info->status_wait,
1329 			sc->status == SMBDIRECT_SOCKET_DISCONNECTED);
1330 	}
1331 
1332 	log_rdma_event(INFO, "destroying qp\n");
1333 	ib_drain_qp(sc->ib.qp);
1334 	rdma_destroy_qp(sc->rdma.cm_id);
1335 	sc->ib.qp = NULL;
1336 
1337 	log_rdma_event(INFO, "cancelling idle timer\n");
1338 	cancel_delayed_work_sync(&info->idle_timer_work);
1339 
1340 	log_rdma_event(INFO, "wait for all send posted to IB to finish\n");
1341 	wait_event(info->wait_send_pending,
1342 		atomic_read(&info->send_pending) == 0);
1343 
1344 	/* It's not possible for upper layer to get to reassembly */
1345 	log_rdma_event(INFO, "drain the reassembly queue\n");
1346 	do {
1347 		spin_lock_irqsave(&sc->recv_io.reassembly.lock, flags);
1348 		response = _get_first_reassembly(info);
1349 		if (response) {
1350 			list_del(&response->list);
1351 			spin_unlock_irqrestore(
1352 				&sc->recv_io.reassembly.lock, flags);
1353 			put_receive_buffer(info, response);
1354 		} else
1355 			spin_unlock_irqrestore(
1356 				&sc->recv_io.reassembly.lock, flags);
1357 	} while (response);
1358 	sc->recv_io.reassembly.data_length = 0;
1359 
1360 	log_rdma_event(INFO, "free receive buffers\n");
1361 	wait_event(info->wait_receive_queues,
1362 		info->count_receive_queue == sp->recv_credit_max);
1363 	destroy_receive_buffers(info);
1364 
1365 	/*
1366 	 * For performance reasons, memory registration and deregistration
1367 	 * are not locked by srv_mutex. It is possible some processes are
1368 	 * blocked on transport srv_mutex while holding memory registration.
1369 	 * Release the transport srv_mutex to allow them to hit the failure
1370 	 * path when sending data, and then release memory registrations.
1371 	 */
1372 	log_rdma_event(INFO, "freeing mr list\n");
1373 	wake_up_interruptible_all(&info->wait_mr);
1374 	while (atomic_read(&info->mr_used_count)) {
1375 		cifs_server_unlock(server);
1376 		msleep(1000);
1377 		cifs_server_lock(server);
1378 	}
1379 	destroy_mr_list(info);
1380 
1381 	ib_free_cq(sc->ib.send_cq);
1382 	ib_free_cq(sc->ib.recv_cq);
1383 	ib_dealloc_pd(sc->ib.pd);
1384 	rdma_destroy_id(sc->rdma.cm_id);
1385 
1386 	/* free mempools */
1387 	mempool_destroy(sc->send_io.mem.pool);
1388 	kmem_cache_destroy(sc->send_io.mem.cache);
1389 
1390 	mempool_destroy(sc->recv_io.mem.pool);
1391 	kmem_cache_destroy(sc->recv_io.mem.cache);
1392 
1393 	sc->status = SMBDIRECT_SOCKET_DESTROYED;
1394 
1395 	destroy_workqueue(info->workqueue);
1396 	log_rdma_event(INFO,  "rdma session destroyed\n");
1397 	kfree(info);
1398 	server->smbd_conn = NULL;
1399 }
1400 
1401 /*
1402  * Reconnect this SMBD connection, called from upper layer
1403  * return value: 0 on success, or actual error code
1404  */
1405 int smbd_reconnect(struct TCP_Server_Info *server)
1406 {
1407 	log_rdma_event(INFO, "reconnecting rdma session\n");
1408 
1409 	if (!server->smbd_conn) {
1410 		log_rdma_event(INFO, "rdma session already destroyed\n");
1411 		goto create_conn;
1412 	}
1413 
1414 	/*
1415 	 * This is possible if transport is disconnected and we haven't received
1416 	 * notification from RDMA, but upper layer has detected timeout
1417 	 */
1418 	if (server->smbd_conn->socket.status == SMBDIRECT_SOCKET_CONNECTED) {
1419 		log_rdma_event(INFO, "disconnecting transport\n");
1420 		smbd_destroy(server);
1421 	}
1422 
1423 create_conn:
1424 	log_rdma_event(INFO, "creating rdma session\n");
1425 	server->smbd_conn = smbd_get_connection(
1426 		server, (struct sockaddr *) &server->dstaddr);
1427 
1428 	if (server->smbd_conn) {
1429 		cifs_dbg(VFS, "RDMA transport re-established\n");
1430 		trace_smb3_smbd_connect_done(server->hostname, server->conn_id, &server->dstaddr);
1431 		return 0;
1432 	}
1433 	trace_smb3_smbd_connect_err(server->hostname, server->conn_id, &server->dstaddr);
1434 	return -ENOENT;
1435 }
1436 
1437 static void destroy_caches_and_workqueue(struct smbd_connection *info)
1438 {
1439 	struct smbdirect_socket *sc = &info->socket;
1440 
1441 	destroy_receive_buffers(info);
1442 	destroy_workqueue(info->workqueue);
1443 	mempool_destroy(sc->recv_io.mem.pool);
1444 	kmem_cache_destroy(sc->recv_io.mem.cache);
1445 	mempool_destroy(sc->send_io.mem.pool);
1446 	kmem_cache_destroy(sc->send_io.mem.cache);
1447 }
1448 
1449 #define MAX_NAME_LEN	80
1450 static int allocate_caches_and_workqueue(struct smbd_connection *info)
1451 {
1452 	struct smbdirect_socket *sc = &info->socket;
1453 	struct smbdirect_socket_parameters *sp = &sc->parameters;
1454 	char name[MAX_NAME_LEN];
1455 	int rc;
1456 
1457 	if (WARN_ON_ONCE(sp->max_recv_size < sizeof(struct smbdirect_data_transfer)))
1458 		return -ENOMEM;
1459 
1460 	scnprintf(name, MAX_NAME_LEN, "smbdirect_send_io_%p", info);
1461 	sc->send_io.mem.cache =
1462 		kmem_cache_create(
1463 			name,
1464 			sizeof(struct smbdirect_send_io) +
1465 				sizeof(struct smbdirect_data_transfer),
1466 			0, SLAB_HWCACHE_ALIGN, NULL);
1467 	if (!sc->send_io.mem.cache)
1468 		return -ENOMEM;
1469 
1470 	sc->send_io.mem.pool =
1471 		mempool_create(sp->send_credit_target, mempool_alloc_slab,
1472 			mempool_free_slab, sc->send_io.mem.cache);
1473 	if (!sc->send_io.mem.pool)
1474 		goto out1;
1475 
1476 	scnprintf(name, MAX_NAME_LEN, "smbdirect_recv_io_%p", info);
1477 
1478 	struct kmem_cache_args response_args = {
1479 		.align		= __alignof__(struct smbdirect_recv_io),
1480 		.useroffset	= (offsetof(struct smbdirect_recv_io, packet) +
1481 				   sizeof(struct smbdirect_data_transfer)),
1482 		.usersize	= sp->max_recv_size - sizeof(struct smbdirect_data_transfer),
1483 	};
1484 	sc->recv_io.mem.cache =
1485 		kmem_cache_create(name,
1486 				  sizeof(struct smbdirect_recv_io) + sp->max_recv_size,
1487 				  &response_args, SLAB_HWCACHE_ALIGN);
1488 	if (!sc->recv_io.mem.cache)
1489 		goto out2;
1490 
1491 	sc->recv_io.mem.pool =
1492 		mempool_create(sp->recv_credit_max, mempool_alloc_slab,
1493 		       mempool_free_slab, sc->recv_io.mem.cache);
1494 	if (!sc->recv_io.mem.pool)
1495 		goto out3;
1496 
1497 	scnprintf(name, MAX_NAME_LEN, "smbd_%p", info);
1498 	info->workqueue = create_workqueue(name);
1499 	if (!info->workqueue)
1500 		goto out4;
1501 
1502 	rc = allocate_receive_buffers(info, sp->recv_credit_max);
1503 	if (rc) {
1504 		log_rdma_event(ERR, "failed to allocate receive buffers\n");
1505 		goto out5;
1506 	}
1507 
1508 	return 0;
1509 
1510 out5:
1511 	destroy_workqueue(info->workqueue);
1512 out4:
1513 	mempool_destroy(sc->recv_io.mem.pool);
1514 out3:
1515 	kmem_cache_destroy(sc->recv_io.mem.cache);
1516 out2:
1517 	mempool_destroy(sc->send_io.mem.pool);
1518 out1:
1519 	kmem_cache_destroy(sc->send_io.mem.cache);
1520 	return -ENOMEM;
1521 }
1522 
1523 /* Create a SMBD connection, called by upper layer */
1524 static struct smbd_connection *_smbd_get_connection(
1525 	struct TCP_Server_Info *server, struct sockaddr *dstaddr, int port)
1526 {
1527 	int rc;
1528 	struct smbd_connection *info;
1529 	struct smbdirect_socket *sc;
1530 	struct smbdirect_socket_parameters *sp;
1531 	struct rdma_conn_param conn_param;
1532 	struct ib_qp_init_attr qp_attr;
1533 	struct sockaddr_in *addr_in = (struct sockaddr_in *) dstaddr;
1534 	struct ib_port_immutable port_immutable;
1535 	u32 ird_ord_hdr[2];
1536 
1537 	info = kzalloc(sizeof(struct smbd_connection), GFP_KERNEL);
1538 	if (!info)
1539 		return NULL;
1540 	sc = &info->socket;
1541 	sp = &sc->parameters;
1542 
1543 	sc->status = SMBDIRECT_SOCKET_CONNECTING;
1544 	rc = smbd_ia_open(info, dstaddr, port);
1545 	if (rc) {
1546 		log_rdma_event(INFO, "smbd_ia_open rc=%d\n", rc);
1547 		goto create_id_failed;
1548 	}
1549 
1550 	if (smbd_send_credit_target > sc->ib.dev->attrs.max_cqe ||
1551 	    smbd_send_credit_target > sc->ib.dev->attrs.max_qp_wr) {
1552 		log_rdma_event(ERR, "consider lowering send_credit_target = %d. Possible CQE overrun, device reporting max_cqe %d max_qp_wr %d\n",
1553 			       smbd_send_credit_target,
1554 			       sc->ib.dev->attrs.max_cqe,
1555 			       sc->ib.dev->attrs.max_qp_wr);
1556 		goto config_failed;
1557 	}
1558 
1559 	if (smbd_receive_credit_max > sc->ib.dev->attrs.max_cqe ||
1560 	    smbd_receive_credit_max > sc->ib.dev->attrs.max_qp_wr) {
1561 		log_rdma_event(ERR, "consider lowering receive_credit_max = %d. Possible CQE overrun, device reporting max_cqe %d max_qp_wr %d\n",
1562 			       smbd_receive_credit_max,
1563 			       sc->ib.dev->attrs.max_cqe,
1564 			       sc->ib.dev->attrs.max_qp_wr);
1565 		goto config_failed;
1566 	}
1567 
1568 	sp->recv_credit_max = smbd_receive_credit_max;
1569 	sp->send_credit_target = smbd_send_credit_target;
1570 	sp->max_send_size = smbd_max_send_size;
1571 	sp->max_fragmented_recv_size = smbd_max_fragmented_recv_size;
1572 	sp->max_recv_size = smbd_max_receive_size;
1573 	sp->keepalive_interval_msec = smbd_keep_alive_interval * 1000;
1574 
1575 	if (sc->ib.dev->attrs.max_send_sge < SMBDIRECT_SEND_IO_MAX_SGE ||
1576 	    sc->ib.dev->attrs.max_recv_sge < SMBDIRECT_RECV_IO_MAX_SGE) {
1577 		log_rdma_event(ERR,
1578 			"device %.*s max_send_sge/max_recv_sge = %d/%d too small\n",
1579 			IB_DEVICE_NAME_MAX,
1580 			sc->ib.dev->name,
1581 			sc->ib.dev->attrs.max_send_sge,
1582 			sc->ib.dev->attrs.max_recv_sge);
1583 		goto config_failed;
1584 	}
1585 
1586 	sc->ib.send_cq =
1587 		ib_alloc_cq_any(sc->ib.dev, info,
1588 				sp->send_credit_target, IB_POLL_SOFTIRQ);
1589 	if (IS_ERR(sc->ib.send_cq)) {
1590 		sc->ib.send_cq = NULL;
1591 		goto alloc_cq_failed;
1592 	}
1593 
1594 	sc->ib.recv_cq =
1595 		ib_alloc_cq_any(sc->ib.dev, info,
1596 				sp->recv_credit_max, IB_POLL_SOFTIRQ);
1597 	if (IS_ERR(sc->ib.recv_cq)) {
1598 		sc->ib.recv_cq = NULL;
1599 		goto alloc_cq_failed;
1600 	}
1601 
1602 	memset(&qp_attr, 0, sizeof(qp_attr));
1603 	qp_attr.event_handler = smbd_qp_async_error_upcall;
1604 	qp_attr.qp_context = info;
1605 	qp_attr.cap.max_send_wr = sp->send_credit_target;
1606 	qp_attr.cap.max_recv_wr = sp->recv_credit_max;
1607 	qp_attr.cap.max_send_sge = SMBDIRECT_SEND_IO_MAX_SGE;
1608 	qp_attr.cap.max_recv_sge = SMBDIRECT_RECV_IO_MAX_SGE;
1609 	qp_attr.cap.max_inline_data = 0;
1610 	qp_attr.sq_sig_type = IB_SIGNAL_REQ_WR;
1611 	qp_attr.qp_type = IB_QPT_RC;
1612 	qp_attr.send_cq = sc->ib.send_cq;
1613 	qp_attr.recv_cq = sc->ib.recv_cq;
1614 	qp_attr.port_num = ~0;
1615 
1616 	rc = rdma_create_qp(sc->rdma.cm_id, sc->ib.pd, &qp_attr);
1617 	if (rc) {
1618 		log_rdma_event(ERR, "rdma_create_qp failed %i\n", rc);
1619 		goto create_qp_failed;
1620 	}
1621 	sc->ib.qp = sc->rdma.cm_id->qp;
1622 
1623 	memset(&conn_param, 0, sizeof(conn_param));
1624 	conn_param.initiator_depth = 0;
1625 
1626 	conn_param.responder_resources =
1627 		min(sc->ib.dev->attrs.max_qp_rd_atom,
1628 		    SMBD_CM_RESPONDER_RESOURCES);
1629 	info->responder_resources = conn_param.responder_resources;
1630 	log_rdma_mr(INFO, "responder_resources=%d\n",
1631 		info->responder_resources);
1632 
1633 	/* Need to send IRD/ORD in private data for iWARP */
1634 	sc->ib.dev->ops.get_port_immutable(
1635 		sc->ib.dev, sc->rdma.cm_id->port_num, &port_immutable);
1636 	if (port_immutable.core_cap_flags & RDMA_CORE_PORT_IWARP) {
1637 		ird_ord_hdr[0] = info->responder_resources;
1638 		ird_ord_hdr[1] = 1;
1639 		conn_param.private_data = ird_ord_hdr;
1640 		conn_param.private_data_len = sizeof(ird_ord_hdr);
1641 	} else {
1642 		conn_param.private_data = NULL;
1643 		conn_param.private_data_len = 0;
1644 	}
1645 
1646 	conn_param.retry_count = SMBD_CM_RETRY;
1647 	conn_param.rnr_retry_count = SMBD_CM_RNR_RETRY;
1648 	conn_param.flow_control = 0;
1649 
1650 	log_rdma_event(INFO, "connecting to IP %pI4 port %d\n",
1651 		&addr_in->sin_addr, port);
1652 
1653 	init_waitqueue_head(&info->status_wait);
1654 	init_waitqueue_head(&sc->recv_io.reassembly.wait_queue);
1655 	rc = rdma_connect(sc->rdma.cm_id, &conn_param);
1656 	if (rc) {
1657 		log_rdma_event(ERR, "rdma_connect() failed with %i\n", rc);
1658 		goto rdma_connect_failed;
1659 	}
1660 
1661 	wait_event_interruptible_timeout(
1662 		info->status_wait,
1663 		sc->status != SMBDIRECT_SOCKET_CONNECTING,
1664 		msecs_to_jiffies(RDMA_RESOLVE_TIMEOUT));
1665 
1666 	if (sc->status != SMBDIRECT_SOCKET_CONNECTED) {
1667 		log_rdma_event(ERR, "rdma_connect failed port=%d\n", port);
1668 		goto rdma_connect_failed;
1669 	}
1670 
1671 	log_rdma_event(INFO, "rdma_connect connected\n");
1672 
1673 	rc = allocate_caches_and_workqueue(info);
1674 	if (rc) {
1675 		log_rdma_event(ERR, "cache allocation failed\n");
1676 		goto allocate_cache_failed;
1677 	}
1678 
1679 	init_waitqueue_head(&info->wait_send_queue);
1680 	INIT_DELAYED_WORK(&info->idle_timer_work, idle_connection_timer);
1681 	queue_delayed_work(info->workqueue, &info->idle_timer_work,
1682 		msecs_to_jiffies(sp->keepalive_interval_msec));
1683 
1684 	init_waitqueue_head(&info->wait_send_pending);
1685 	atomic_set(&info->send_pending, 0);
1686 
1687 	init_waitqueue_head(&info->wait_post_send);
1688 
1689 	INIT_WORK(&info->disconnect_work, smbd_disconnect_rdma_work);
1690 	INIT_WORK(&info->post_send_credits_work, smbd_post_send_credits);
1691 	info->new_credits_offered = 0;
1692 	spin_lock_init(&info->lock_new_credits_offered);
1693 
1694 	rc = smbd_negotiate(info);
1695 	if (rc) {
1696 		log_rdma_event(ERR, "smbd_negotiate rc=%d\n", rc);
1697 		goto negotiation_failed;
1698 	}
1699 
1700 	rc = allocate_mr_list(info);
1701 	if (rc) {
1702 		log_rdma_mr(ERR, "memory registration allocation failed\n");
1703 		goto allocate_mr_failed;
1704 	}
1705 
1706 	return info;
1707 
1708 allocate_mr_failed:
1709 	/* At this point, need to a full transport shutdown */
1710 	server->smbd_conn = info;
1711 	smbd_destroy(server);
1712 	return NULL;
1713 
1714 negotiation_failed:
1715 	cancel_delayed_work_sync(&info->idle_timer_work);
1716 	destroy_caches_and_workqueue(info);
1717 	sc->status = SMBDIRECT_SOCKET_NEGOTIATE_FAILED;
1718 	rdma_disconnect(sc->rdma.cm_id);
1719 	wait_event(info->status_wait,
1720 		sc->status == SMBDIRECT_SOCKET_DISCONNECTED);
1721 
1722 allocate_cache_failed:
1723 rdma_connect_failed:
1724 	rdma_destroy_qp(sc->rdma.cm_id);
1725 
1726 create_qp_failed:
1727 alloc_cq_failed:
1728 	if (sc->ib.send_cq)
1729 		ib_free_cq(sc->ib.send_cq);
1730 	if (sc->ib.recv_cq)
1731 		ib_free_cq(sc->ib.recv_cq);
1732 
1733 config_failed:
1734 	ib_dealloc_pd(sc->ib.pd);
1735 	rdma_destroy_id(sc->rdma.cm_id);
1736 
1737 create_id_failed:
1738 	kfree(info);
1739 	return NULL;
1740 }
1741 
1742 struct smbd_connection *smbd_get_connection(
1743 	struct TCP_Server_Info *server, struct sockaddr *dstaddr)
1744 {
1745 	struct smbd_connection *ret;
1746 	int port = SMBD_PORT;
1747 
1748 try_again:
1749 	ret = _smbd_get_connection(server, dstaddr, port);
1750 
1751 	/* Try SMB_PORT if SMBD_PORT doesn't work */
1752 	if (!ret && port == SMBD_PORT) {
1753 		port = SMB_PORT;
1754 		goto try_again;
1755 	}
1756 	return ret;
1757 }
1758 
1759 /*
1760  * Receive data from the transport's receive reassembly queue
1761  * All the incoming data packets are placed in reassembly queue
1762  * iter: the buffer to read data into
1763  * size: the length of data to read
1764  * return value: actual data read
1765  *
1766  * Note: this implementation copies the data from reassembly queue to receive
1767  * buffers used by upper layer. This is not the optimal code path. A better way
1768  * to do it is to not have upper layer allocate its receive buffers but rather
1769  * borrow the buffer from reassembly queue, and return it after data is
1770  * consumed. But this will require more changes to upper layer code, and also
1771  * need to consider packet boundaries while they still being reassembled.
1772  */
1773 int smbd_recv(struct smbd_connection *info, struct msghdr *msg)
1774 {
1775 	struct smbdirect_socket *sc = &info->socket;
1776 	struct smbdirect_recv_io *response;
1777 	struct smbdirect_data_transfer *data_transfer;
1778 	size_t size = iov_iter_count(&msg->msg_iter);
1779 	int to_copy, to_read, data_read, offset;
1780 	u32 data_length, remaining_data_length, data_offset;
1781 	int rc;
1782 
1783 	if (WARN_ON_ONCE(iov_iter_rw(&msg->msg_iter) == WRITE))
1784 		return -EINVAL; /* It's a bug in upper layer to get there */
1785 
1786 again:
1787 	/*
1788 	 * No need to hold the reassembly queue lock all the time as we are
1789 	 * the only one reading from the front of the queue. The transport
1790 	 * may add more entries to the back of the queue at the same time
1791 	 */
1792 	log_read(INFO, "size=%zd sc->recv_io.reassembly.data_length=%d\n", size,
1793 		sc->recv_io.reassembly.data_length);
1794 	if (sc->recv_io.reassembly.data_length >= size) {
1795 		int queue_length;
1796 		int queue_removed = 0;
1797 
1798 		/*
1799 		 * Need to make sure reassembly_data_length is read before
1800 		 * reading reassembly_queue_length and calling
1801 		 * _get_first_reassembly. This call is lock free
1802 		 * as we never read at the end of the queue which are being
1803 		 * updated in SOFTIRQ as more data is received
1804 		 */
1805 		virt_rmb();
1806 		queue_length = sc->recv_io.reassembly.queue_length;
1807 		data_read = 0;
1808 		to_read = size;
1809 		offset = sc->recv_io.reassembly.first_entry_offset;
1810 		while (data_read < size) {
1811 			response = _get_first_reassembly(info);
1812 			data_transfer = smbdirect_recv_io_payload(response);
1813 			data_length = le32_to_cpu(data_transfer->data_length);
1814 			remaining_data_length =
1815 				le32_to_cpu(
1816 					data_transfer->remaining_data_length);
1817 			data_offset = le32_to_cpu(data_transfer->data_offset);
1818 
1819 			/*
1820 			 * The upper layer expects RFC1002 length at the
1821 			 * beginning of the payload. Return it to indicate
1822 			 * the total length of the packet. This minimize the
1823 			 * change to upper layer packet processing logic. This
1824 			 * will be eventually remove when an intermediate
1825 			 * transport layer is added
1826 			 */
1827 			if (response->first_segment && size == 4) {
1828 				unsigned int rfc1002_len =
1829 					data_length + remaining_data_length;
1830 				__be32 rfc1002_hdr = cpu_to_be32(rfc1002_len);
1831 				if (copy_to_iter(&rfc1002_hdr, sizeof(rfc1002_hdr),
1832 						 &msg->msg_iter) != sizeof(rfc1002_hdr))
1833 					return -EFAULT;
1834 				data_read = 4;
1835 				response->first_segment = false;
1836 				log_read(INFO, "returning rfc1002 length %d\n",
1837 					rfc1002_len);
1838 				goto read_rfc1002_done;
1839 			}
1840 
1841 			to_copy = min_t(int, data_length - offset, to_read);
1842 			if (copy_to_iter((char *)data_transfer + data_offset + offset,
1843 					 to_copy, &msg->msg_iter) != to_copy)
1844 				return -EFAULT;
1845 
1846 			/* move on to the next buffer? */
1847 			if (to_copy == data_length - offset) {
1848 				queue_length--;
1849 				/*
1850 				 * No need to lock if we are not at the
1851 				 * end of the queue
1852 				 */
1853 				if (queue_length)
1854 					list_del(&response->list);
1855 				else {
1856 					spin_lock_irq(
1857 						&sc->recv_io.reassembly.lock);
1858 					list_del(&response->list);
1859 					spin_unlock_irq(
1860 						&sc->recv_io.reassembly.lock);
1861 				}
1862 				queue_removed++;
1863 				info->count_reassembly_queue--;
1864 				info->count_dequeue_reassembly_queue++;
1865 				put_receive_buffer(info, response);
1866 				offset = 0;
1867 				log_read(INFO, "put_receive_buffer offset=0\n");
1868 			} else
1869 				offset += to_copy;
1870 
1871 			to_read -= to_copy;
1872 			data_read += to_copy;
1873 
1874 			log_read(INFO, "_get_first_reassembly memcpy %d bytes data_transfer_length-offset=%d after that to_read=%d data_read=%d offset=%d\n",
1875 				 to_copy, data_length - offset,
1876 				 to_read, data_read, offset);
1877 		}
1878 
1879 		spin_lock_irq(&sc->recv_io.reassembly.lock);
1880 		sc->recv_io.reassembly.data_length -= data_read;
1881 		sc->recv_io.reassembly.queue_length -= queue_removed;
1882 		spin_unlock_irq(&sc->recv_io.reassembly.lock);
1883 
1884 		sc->recv_io.reassembly.first_entry_offset = offset;
1885 		log_read(INFO, "returning to thread data_read=%d reassembly_data_length=%d first_entry_offset=%d\n",
1886 			 data_read, sc->recv_io.reassembly.data_length,
1887 			 sc->recv_io.reassembly.first_entry_offset);
1888 read_rfc1002_done:
1889 		return data_read;
1890 	}
1891 
1892 	log_read(INFO, "wait_event on more data\n");
1893 	rc = wait_event_interruptible(
1894 		sc->recv_io.reassembly.wait_queue,
1895 		sc->recv_io.reassembly.data_length >= size ||
1896 			sc->status != SMBDIRECT_SOCKET_CONNECTED);
1897 	/* Don't return any data if interrupted */
1898 	if (rc)
1899 		return rc;
1900 
1901 	if (sc->status != SMBDIRECT_SOCKET_CONNECTED) {
1902 		log_read(ERR, "disconnected\n");
1903 		return -ECONNABORTED;
1904 	}
1905 
1906 	goto again;
1907 }
1908 
1909 /*
1910  * Send data to transport
1911  * Each rqst is transported as a SMBDirect payload
1912  * rqst: the data to write
1913  * return value: 0 if successfully write, otherwise error code
1914  */
1915 int smbd_send(struct TCP_Server_Info *server,
1916 	int num_rqst, struct smb_rqst *rqst_array)
1917 {
1918 	struct smbd_connection *info = server->smbd_conn;
1919 	struct smbdirect_socket *sc = &info->socket;
1920 	struct smbdirect_socket_parameters *sp = &sc->parameters;
1921 	struct smb_rqst *rqst;
1922 	struct iov_iter iter;
1923 	unsigned int remaining_data_length, klen;
1924 	int rc, i, rqst_idx;
1925 
1926 	if (sc->status != SMBDIRECT_SOCKET_CONNECTED)
1927 		return -EAGAIN;
1928 
1929 	/*
1930 	 * Add in the page array if there is one. The caller needs to set
1931 	 * rq_tailsz to PAGE_SIZE when the buffer has multiple pages and
1932 	 * ends at page boundary
1933 	 */
1934 	remaining_data_length = 0;
1935 	for (i = 0; i < num_rqst; i++)
1936 		remaining_data_length += smb_rqst_len(server, &rqst_array[i]);
1937 
1938 	if (unlikely(remaining_data_length > sp->max_fragmented_send_size)) {
1939 		/* assertion: payload never exceeds negotiated maximum */
1940 		log_write(ERR, "payload size %d > max size %d\n",
1941 			remaining_data_length, sp->max_fragmented_send_size);
1942 		return -EINVAL;
1943 	}
1944 
1945 	log_write(INFO, "num_rqst=%d total length=%u\n",
1946 			num_rqst, remaining_data_length);
1947 
1948 	rqst_idx = 0;
1949 	do {
1950 		rqst = &rqst_array[rqst_idx];
1951 
1952 		cifs_dbg(FYI, "Sending smb (RDMA): idx=%d smb_len=%lu\n",
1953 			 rqst_idx, smb_rqst_len(server, rqst));
1954 		for (i = 0; i < rqst->rq_nvec; i++)
1955 			dump_smb(rqst->rq_iov[i].iov_base, rqst->rq_iov[i].iov_len);
1956 
1957 		log_write(INFO, "RDMA-WR[%u] nvec=%d len=%u iter=%zu rqlen=%lu\n",
1958 			  rqst_idx, rqst->rq_nvec, remaining_data_length,
1959 			  iov_iter_count(&rqst->rq_iter), smb_rqst_len(server, rqst));
1960 
1961 		/* Send the metadata pages. */
1962 		klen = 0;
1963 		for (i = 0; i < rqst->rq_nvec; i++)
1964 			klen += rqst->rq_iov[i].iov_len;
1965 		iov_iter_kvec(&iter, ITER_SOURCE, rqst->rq_iov, rqst->rq_nvec, klen);
1966 
1967 		rc = smbd_post_send_full_iter(info, &iter, &remaining_data_length);
1968 		if (rc < 0)
1969 			break;
1970 
1971 		if (iov_iter_count(&rqst->rq_iter) > 0) {
1972 			/* And then the data pages if there are any */
1973 			rc = smbd_post_send_full_iter(info, &rqst->rq_iter,
1974 						      &remaining_data_length);
1975 			if (rc < 0)
1976 				break;
1977 		}
1978 
1979 	} while (++rqst_idx < num_rqst);
1980 
1981 	/*
1982 	 * As an optimization, we don't wait for individual I/O to finish
1983 	 * before sending the next one.
1984 	 * Send them all and wait for pending send count to get to 0
1985 	 * that means all the I/Os have been out and we are good to return
1986 	 */
1987 
1988 	wait_event(info->wait_send_pending,
1989 		atomic_read(&info->send_pending) == 0);
1990 
1991 	return rc;
1992 }
1993 
1994 static void register_mr_done(struct ib_cq *cq, struct ib_wc *wc)
1995 {
1996 	struct smbd_mr *mr;
1997 	struct ib_cqe *cqe;
1998 
1999 	if (wc->status) {
2000 		log_rdma_mr(ERR, "status=%d\n", wc->status);
2001 		cqe = wc->wr_cqe;
2002 		mr = container_of(cqe, struct smbd_mr, cqe);
2003 		smbd_disconnect_rdma_connection(mr->conn);
2004 	}
2005 }
2006 
2007 /*
2008  * The work queue function that recovers MRs
2009  * We need to call ib_dereg_mr() and ib_alloc_mr() before this MR can be used
2010  * again. Both calls are slow, so finish them in a workqueue. This will not
2011  * block I/O path.
2012  * There is one workqueue that recovers MRs, there is no need to lock as the
2013  * I/O requests calling smbd_register_mr will never update the links in the
2014  * mr_list.
2015  */
2016 static void smbd_mr_recovery_work(struct work_struct *work)
2017 {
2018 	struct smbd_connection *info =
2019 		container_of(work, struct smbd_connection, mr_recovery_work);
2020 	struct smbdirect_socket *sc = &info->socket;
2021 	struct smbd_mr *smbdirect_mr;
2022 	int rc;
2023 
2024 	list_for_each_entry(smbdirect_mr, &info->mr_list, list) {
2025 		if (smbdirect_mr->state == MR_ERROR) {
2026 
2027 			/* recover this MR entry */
2028 			rc = ib_dereg_mr(smbdirect_mr->mr);
2029 			if (rc) {
2030 				log_rdma_mr(ERR,
2031 					"ib_dereg_mr failed rc=%x\n",
2032 					rc);
2033 				smbd_disconnect_rdma_connection(info);
2034 				continue;
2035 			}
2036 
2037 			smbdirect_mr->mr = ib_alloc_mr(
2038 				sc->ib.pd, info->mr_type,
2039 				info->max_frmr_depth);
2040 			if (IS_ERR(smbdirect_mr->mr)) {
2041 				log_rdma_mr(ERR, "ib_alloc_mr failed mr_type=%x max_frmr_depth=%x\n",
2042 					    info->mr_type,
2043 					    info->max_frmr_depth);
2044 				smbd_disconnect_rdma_connection(info);
2045 				continue;
2046 			}
2047 		} else
2048 			/* This MR is being used, don't recover it */
2049 			continue;
2050 
2051 		smbdirect_mr->state = MR_READY;
2052 
2053 		/* smbdirect_mr->state is updated by this function
2054 		 * and is read and updated by I/O issuing CPUs trying
2055 		 * to get a MR, the call to atomic_inc_return
2056 		 * implicates a memory barrier and guarantees this
2057 		 * value is updated before waking up any calls to
2058 		 * get_mr() from the I/O issuing CPUs
2059 		 */
2060 		if (atomic_inc_return(&info->mr_ready_count) == 1)
2061 			wake_up_interruptible(&info->wait_mr);
2062 	}
2063 }
2064 
2065 static void destroy_mr_list(struct smbd_connection *info)
2066 {
2067 	struct smbdirect_socket *sc = &info->socket;
2068 	struct smbd_mr *mr, *tmp;
2069 
2070 	cancel_work_sync(&info->mr_recovery_work);
2071 	list_for_each_entry_safe(mr, tmp, &info->mr_list, list) {
2072 		if (mr->state == MR_INVALIDATED)
2073 			ib_dma_unmap_sg(sc->ib.dev, mr->sgt.sgl,
2074 				mr->sgt.nents, mr->dir);
2075 		ib_dereg_mr(mr->mr);
2076 		kfree(mr->sgt.sgl);
2077 		kfree(mr);
2078 	}
2079 }
2080 
2081 /*
2082  * Allocate MRs used for RDMA read/write
2083  * The number of MRs will not exceed hardware capability in responder_resources
2084  * All MRs are kept in mr_list. The MR can be recovered after it's used
2085  * Recovery is done in smbd_mr_recovery_work. The content of list entry changes
2086  * as MRs are used and recovered for I/O, but the list links will not change
2087  */
2088 static int allocate_mr_list(struct smbd_connection *info)
2089 {
2090 	struct smbdirect_socket *sc = &info->socket;
2091 	int i;
2092 	struct smbd_mr *smbdirect_mr, *tmp;
2093 
2094 	INIT_LIST_HEAD(&info->mr_list);
2095 	init_waitqueue_head(&info->wait_mr);
2096 	spin_lock_init(&info->mr_list_lock);
2097 	atomic_set(&info->mr_ready_count, 0);
2098 	atomic_set(&info->mr_used_count, 0);
2099 	init_waitqueue_head(&info->wait_for_mr_cleanup);
2100 	INIT_WORK(&info->mr_recovery_work, smbd_mr_recovery_work);
2101 	/* Allocate more MRs (2x) than hardware responder_resources */
2102 	for (i = 0; i < info->responder_resources * 2; i++) {
2103 		smbdirect_mr = kzalloc(sizeof(*smbdirect_mr), GFP_KERNEL);
2104 		if (!smbdirect_mr)
2105 			goto cleanup_entries;
2106 		smbdirect_mr->mr = ib_alloc_mr(sc->ib.pd, info->mr_type,
2107 					info->max_frmr_depth);
2108 		if (IS_ERR(smbdirect_mr->mr)) {
2109 			log_rdma_mr(ERR, "ib_alloc_mr failed mr_type=%x max_frmr_depth=%x\n",
2110 				    info->mr_type, info->max_frmr_depth);
2111 			goto out;
2112 		}
2113 		smbdirect_mr->sgt.sgl = kcalloc(info->max_frmr_depth,
2114 						sizeof(struct scatterlist),
2115 						GFP_KERNEL);
2116 		if (!smbdirect_mr->sgt.sgl) {
2117 			log_rdma_mr(ERR, "failed to allocate sgl\n");
2118 			ib_dereg_mr(smbdirect_mr->mr);
2119 			goto out;
2120 		}
2121 		smbdirect_mr->state = MR_READY;
2122 		smbdirect_mr->conn = info;
2123 
2124 		list_add_tail(&smbdirect_mr->list, &info->mr_list);
2125 		atomic_inc(&info->mr_ready_count);
2126 	}
2127 	return 0;
2128 
2129 out:
2130 	kfree(smbdirect_mr);
2131 cleanup_entries:
2132 	list_for_each_entry_safe(smbdirect_mr, tmp, &info->mr_list, list) {
2133 		list_del(&smbdirect_mr->list);
2134 		ib_dereg_mr(smbdirect_mr->mr);
2135 		kfree(smbdirect_mr->sgt.sgl);
2136 		kfree(smbdirect_mr);
2137 	}
2138 	return -ENOMEM;
2139 }
2140 
2141 /*
2142  * Get a MR from mr_list. This function waits until there is at least one
2143  * MR available in the list. It may access the list while the
2144  * smbd_mr_recovery_work is recovering the MR list. This doesn't need a lock
2145  * as they never modify the same places. However, there may be several CPUs
2146  * issuing I/O trying to get MR at the same time, mr_list_lock is used to
2147  * protect this situation.
2148  */
2149 static struct smbd_mr *get_mr(struct smbd_connection *info)
2150 {
2151 	struct smbdirect_socket *sc = &info->socket;
2152 	struct smbd_mr *ret;
2153 	int rc;
2154 again:
2155 	rc = wait_event_interruptible(info->wait_mr,
2156 		atomic_read(&info->mr_ready_count) ||
2157 		sc->status != SMBDIRECT_SOCKET_CONNECTED);
2158 	if (rc) {
2159 		log_rdma_mr(ERR, "wait_event_interruptible rc=%x\n", rc);
2160 		return NULL;
2161 	}
2162 
2163 	if (sc->status != SMBDIRECT_SOCKET_CONNECTED) {
2164 		log_rdma_mr(ERR, "sc->status=%x\n", sc->status);
2165 		return NULL;
2166 	}
2167 
2168 	spin_lock(&info->mr_list_lock);
2169 	list_for_each_entry(ret, &info->mr_list, list) {
2170 		if (ret->state == MR_READY) {
2171 			ret->state = MR_REGISTERED;
2172 			spin_unlock(&info->mr_list_lock);
2173 			atomic_dec(&info->mr_ready_count);
2174 			atomic_inc(&info->mr_used_count);
2175 			return ret;
2176 		}
2177 	}
2178 
2179 	spin_unlock(&info->mr_list_lock);
2180 	/*
2181 	 * It is possible that we could fail to get MR because other processes may
2182 	 * try to acquire a MR at the same time. If this is the case, retry it.
2183 	 */
2184 	goto again;
2185 }
2186 
2187 /*
2188  * Transcribe the pages from an iterator into an MR scatterlist.
2189  */
2190 static int smbd_iter_to_mr(struct smbd_connection *info,
2191 			   struct iov_iter *iter,
2192 			   struct sg_table *sgt,
2193 			   unsigned int max_sg)
2194 {
2195 	int ret;
2196 
2197 	memset(sgt->sgl, 0, max_sg * sizeof(struct scatterlist));
2198 
2199 	ret = extract_iter_to_sg(iter, iov_iter_count(iter), sgt, max_sg, 0);
2200 	WARN_ON(ret < 0);
2201 	if (sgt->nents > 0)
2202 		sg_mark_end(&sgt->sgl[sgt->nents - 1]);
2203 	return ret;
2204 }
2205 
2206 /*
2207  * Register memory for RDMA read/write
2208  * iter: the buffer to register memory with
2209  * writing: true if this is a RDMA write (SMB read), false for RDMA read
2210  * need_invalidate: true if this MR needs to be locally invalidated after I/O
2211  * return value: the MR registered, NULL if failed.
2212  */
2213 struct smbd_mr *smbd_register_mr(struct smbd_connection *info,
2214 				 struct iov_iter *iter,
2215 				 bool writing, bool need_invalidate)
2216 {
2217 	struct smbdirect_socket *sc = &info->socket;
2218 	struct smbd_mr *smbdirect_mr;
2219 	int rc, num_pages;
2220 	enum dma_data_direction dir;
2221 	struct ib_reg_wr *reg_wr;
2222 
2223 	num_pages = iov_iter_npages(iter, info->max_frmr_depth + 1);
2224 	if (num_pages > info->max_frmr_depth) {
2225 		log_rdma_mr(ERR, "num_pages=%d max_frmr_depth=%d\n",
2226 			num_pages, info->max_frmr_depth);
2227 		WARN_ON_ONCE(1);
2228 		return NULL;
2229 	}
2230 
2231 	smbdirect_mr = get_mr(info);
2232 	if (!smbdirect_mr) {
2233 		log_rdma_mr(ERR, "get_mr returning NULL\n");
2234 		return NULL;
2235 	}
2236 
2237 	dir = writing ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
2238 	smbdirect_mr->dir = dir;
2239 	smbdirect_mr->need_invalidate = need_invalidate;
2240 	smbdirect_mr->sgt.nents = 0;
2241 	smbdirect_mr->sgt.orig_nents = 0;
2242 
2243 	log_rdma_mr(INFO, "num_pages=0x%x count=0x%zx depth=%u\n",
2244 		    num_pages, iov_iter_count(iter), info->max_frmr_depth);
2245 	smbd_iter_to_mr(info, iter, &smbdirect_mr->sgt, info->max_frmr_depth);
2246 
2247 	rc = ib_dma_map_sg(sc->ib.dev, smbdirect_mr->sgt.sgl,
2248 			   smbdirect_mr->sgt.nents, dir);
2249 	if (!rc) {
2250 		log_rdma_mr(ERR, "ib_dma_map_sg num_pages=%x dir=%x rc=%x\n",
2251 			num_pages, dir, rc);
2252 		goto dma_map_error;
2253 	}
2254 
2255 	rc = ib_map_mr_sg(smbdirect_mr->mr, smbdirect_mr->sgt.sgl,
2256 			  smbdirect_mr->sgt.nents, NULL, PAGE_SIZE);
2257 	if (rc != smbdirect_mr->sgt.nents) {
2258 		log_rdma_mr(ERR,
2259 			"ib_map_mr_sg failed rc = %d nents = %x\n",
2260 			rc, smbdirect_mr->sgt.nents);
2261 		goto map_mr_error;
2262 	}
2263 
2264 	ib_update_fast_reg_key(smbdirect_mr->mr,
2265 		ib_inc_rkey(smbdirect_mr->mr->rkey));
2266 	reg_wr = &smbdirect_mr->wr;
2267 	reg_wr->wr.opcode = IB_WR_REG_MR;
2268 	smbdirect_mr->cqe.done = register_mr_done;
2269 	reg_wr->wr.wr_cqe = &smbdirect_mr->cqe;
2270 	reg_wr->wr.num_sge = 0;
2271 	reg_wr->wr.send_flags = IB_SEND_SIGNALED;
2272 	reg_wr->mr = smbdirect_mr->mr;
2273 	reg_wr->key = smbdirect_mr->mr->rkey;
2274 	reg_wr->access = writing ?
2275 			IB_ACCESS_REMOTE_WRITE | IB_ACCESS_LOCAL_WRITE :
2276 			IB_ACCESS_REMOTE_READ;
2277 
2278 	/*
2279 	 * There is no need for waiting for complemtion on ib_post_send
2280 	 * on IB_WR_REG_MR. Hardware enforces a barrier and order of execution
2281 	 * on the next ib_post_send when we actually send I/O to remote peer
2282 	 */
2283 	rc = ib_post_send(sc->ib.qp, &reg_wr->wr, NULL);
2284 	if (!rc)
2285 		return smbdirect_mr;
2286 
2287 	log_rdma_mr(ERR, "ib_post_send failed rc=%x reg_wr->key=%x\n",
2288 		rc, reg_wr->key);
2289 
2290 	/* If all failed, attempt to recover this MR by setting it MR_ERROR*/
2291 map_mr_error:
2292 	ib_dma_unmap_sg(sc->ib.dev, smbdirect_mr->sgt.sgl,
2293 			smbdirect_mr->sgt.nents, smbdirect_mr->dir);
2294 
2295 dma_map_error:
2296 	smbdirect_mr->state = MR_ERROR;
2297 	if (atomic_dec_and_test(&info->mr_used_count))
2298 		wake_up(&info->wait_for_mr_cleanup);
2299 
2300 	smbd_disconnect_rdma_connection(info);
2301 
2302 	return NULL;
2303 }
2304 
2305 static void local_inv_done(struct ib_cq *cq, struct ib_wc *wc)
2306 {
2307 	struct smbd_mr *smbdirect_mr;
2308 	struct ib_cqe *cqe;
2309 
2310 	cqe = wc->wr_cqe;
2311 	smbdirect_mr = container_of(cqe, struct smbd_mr, cqe);
2312 	smbdirect_mr->state = MR_INVALIDATED;
2313 	if (wc->status != IB_WC_SUCCESS) {
2314 		log_rdma_mr(ERR, "invalidate failed status=%x\n", wc->status);
2315 		smbdirect_mr->state = MR_ERROR;
2316 	}
2317 	complete(&smbdirect_mr->invalidate_done);
2318 }
2319 
2320 /*
2321  * Deregister a MR after I/O is done
2322  * This function may wait if remote invalidation is not used
2323  * and we have to locally invalidate the buffer to prevent data is being
2324  * modified by remote peer after upper layer consumes it
2325  */
2326 int smbd_deregister_mr(struct smbd_mr *smbdirect_mr)
2327 {
2328 	struct ib_send_wr *wr;
2329 	struct smbd_connection *info = smbdirect_mr->conn;
2330 	struct smbdirect_socket *sc = &info->socket;
2331 	int rc = 0;
2332 
2333 	if (smbdirect_mr->need_invalidate) {
2334 		/* Need to finish local invalidation before returning */
2335 		wr = &smbdirect_mr->inv_wr;
2336 		wr->opcode = IB_WR_LOCAL_INV;
2337 		smbdirect_mr->cqe.done = local_inv_done;
2338 		wr->wr_cqe = &smbdirect_mr->cqe;
2339 		wr->num_sge = 0;
2340 		wr->ex.invalidate_rkey = smbdirect_mr->mr->rkey;
2341 		wr->send_flags = IB_SEND_SIGNALED;
2342 
2343 		init_completion(&smbdirect_mr->invalidate_done);
2344 		rc = ib_post_send(sc->ib.qp, wr, NULL);
2345 		if (rc) {
2346 			log_rdma_mr(ERR, "ib_post_send failed rc=%x\n", rc);
2347 			smbd_disconnect_rdma_connection(info);
2348 			goto done;
2349 		}
2350 		wait_for_completion(&smbdirect_mr->invalidate_done);
2351 		smbdirect_mr->need_invalidate = false;
2352 	} else
2353 		/*
2354 		 * For remote invalidation, just set it to MR_INVALIDATED
2355 		 * and defer to mr_recovery_work to recover the MR for next use
2356 		 */
2357 		smbdirect_mr->state = MR_INVALIDATED;
2358 
2359 	if (smbdirect_mr->state == MR_INVALIDATED) {
2360 		ib_dma_unmap_sg(
2361 			sc->ib.dev, smbdirect_mr->sgt.sgl,
2362 			smbdirect_mr->sgt.nents,
2363 			smbdirect_mr->dir);
2364 		smbdirect_mr->state = MR_READY;
2365 		if (atomic_inc_return(&info->mr_ready_count) == 1)
2366 			wake_up_interruptible(&info->wait_mr);
2367 	} else
2368 		/*
2369 		 * Schedule the work to do MR recovery for future I/Os MR
2370 		 * recovery is slow and don't want it to block current I/O
2371 		 */
2372 		queue_work(info->workqueue, &info->mr_recovery_work);
2373 
2374 done:
2375 	if (atomic_dec_and_test(&info->mr_used_count))
2376 		wake_up(&info->wait_for_mr_cleanup);
2377 
2378 	return rc;
2379 }
2380 
2381 static bool smb_set_sge(struct smb_extract_to_rdma *rdma,
2382 			struct page *lowest_page, size_t off, size_t len)
2383 {
2384 	struct ib_sge *sge = &rdma->sge[rdma->nr_sge];
2385 	u64 addr;
2386 
2387 	addr = ib_dma_map_page(rdma->device, lowest_page,
2388 			       off, len, rdma->direction);
2389 	if (ib_dma_mapping_error(rdma->device, addr))
2390 		return false;
2391 
2392 	sge->addr   = addr;
2393 	sge->length = len;
2394 	sge->lkey   = rdma->local_dma_lkey;
2395 	rdma->nr_sge++;
2396 	return true;
2397 }
2398 
2399 /*
2400  * Extract page fragments from a BVEC-class iterator and add them to an RDMA
2401  * element list.  The pages are not pinned.
2402  */
2403 static ssize_t smb_extract_bvec_to_rdma(struct iov_iter *iter,
2404 					struct smb_extract_to_rdma *rdma,
2405 					ssize_t maxsize)
2406 {
2407 	const struct bio_vec *bv = iter->bvec;
2408 	unsigned long start = iter->iov_offset;
2409 	unsigned int i;
2410 	ssize_t ret = 0;
2411 
2412 	for (i = 0; i < iter->nr_segs; i++) {
2413 		size_t off, len;
2414 
2415 		len = bv[i].bv_len;
2416 		if (start >= len) {
2417 			start -= len;
2418 			continue;
2419 		}
2420 
2421 		len = min_t(size_t, maxsize, len - start);
2422 		off = bv[i].bv_offset + start;
2423 
2424 		if (!smb_set_sge(rdma, bv[i].bv_page, off, len))
2425 			return -EIO;
2426 
2427 		ret += len;
2428 		maxsize -= len;
2429 		if (rdma->nr_sge >= rdma->max_sge || maxsize <= 0)
2430 			break;
2431 		start = 0;
2432 	}
2433 
2434 	if (ret > 0)
2435 		iov_iter_advance(iter, ret);
2436 	return ret;
2437 }
2438 
2439 /*
2440  * Extract fragments from a KVEC-class iterator and add them to an RDMA list.
2441  * This can deal with vmalloc'd buffers as well as kmalloc'd or static buffers.
2442  * The pages are not pinned.
2443  */
2444 static ssize_t smb_extract_kvec_to_rdma(struct iov_iter *iter,
2445 					struct smb_extract_to_rdma *rdma,
2446 					ssize_t maxsize)
2447 {
2448 	const struct kvec *kv = iter->kvec;
2449 	unsigned long start = iter->iov_offset;
2450 	unsigned int i;
2451 	ssize_t ret = 0;
2452 
2453 	for (i = 0; i < iter->nr_segs; i++) {
2454 		struct page *page;
2455 		unsigned long kaddr;
2456 		size_t off, len, seg;
2457 
2458 		len = kv[i].iov_len;
2459 		if (start >= len) {
2460 			start -= len;
2461 			continue;
2462 		}
2463 
2464 		kaddr = (unsigned long)kv[i].iov_base + start;
2465 		off = kaddr & ~PAGE_MASK;
2466 		len = min_t(size_t, maxsize, len - start);
2467 		kaddr &= PAGE_MASK;
2468 
2469 		maxsize -= len;
2470 		do {
2471 			seg = min_t(size_t, len, PAGE_SIZE - off);
2472 
2473 			if (is_vmalloc_or_module_addr((void *)kaddr))
2474 				page = vmalloc_to_page((void *)kaddr);
2475 			else
2476 				page = virt_to_page((void *)kaddr);
2477 
2478 			if (!smb_set_sge(rdma, page, off, seg))
2479 				return -EIO;
2480 
2481 			ret += seg;
2482 			len -= seg;
2483 			kaddr += PAGE_SIZE;
2484 			off = 0;
2485 		} while (len > 0 && rdma->nr_sge < rdma->max_sge);
2486 
2487 		if (rdma->nr_sge >= rdma->max_sge || maxsize <= 0)
2488 			break;
2489 		start = 0;
2490 	}
2491 
2492 	if (ret > 0)
2493 		iov_iter_advance(iter, ret);
2494 	return ret;
2495 }
2496 
2497 /*
2498  * Extract folio fragments from a FOLIOQ-class iterator and add them to an RDMA
2499  * list.  The folios are not pinned.
2500  */
2501 static ssize_t smb_extract_folioq_to_rdma(struct iov_iter *iter,
2502 					  struct smb_extract_to_rdma *rdma,
2503 					  ssize_t maxsize)
2504 {
2505 	const struct folio_queue *folioq = iter->folioq;
2506 	unsigned int slot = iter->folioq_slot;
2507 	ssize_t ret = 0;
2508 	size_t offset = iter->iov_offset;
2509 
2510 	BUG_ON(!folioq);
2511 
2512 	if (slot >= folioq_nr_slots(folioq)) {
2513 		folioq = folioq->next;
2514 		if (WARN_ON_ONCE(!folioq))
2515 			return -EIO;
2516 		slot = 0;
2517 	}
2518 
2519 	do {
2520 		struct folio *folio = folioq_folio(folioq, slot);
2521 		size_t fsize = folioq_folio_size(folioq, slot);
2522 
2523 		if (offset < fsize) {
2524 			size_t part = umin(maxsize, fsize - offset);
2525 
2526 			if (!smb_set_sge(rdma, folio_page(folio, 0), offset, part))
2527 				return -EIO;
2528 
2529 			offset += part;
2530 			ret += part;
2531 			maxsize -= part;
2532 		}
2533 
2534 		if (offset >= fsize) {
2535 			offset = 0;
2536 			slot++;
2537 			if (slot >= folioq_nr_slots(folioq)) {
2538 				if (!folioq->next) {
2539 					WARN_ON_ONCE(ret < iter->count);
2540 					break;
2541 				}
2542 				folioq = folioq->next;
2543 				slot = 0;
2544 			}
2545 		}
2546 	} while (rdma->nr_sge < rdma->max_sge && maxsize > 0);
2547 
2548 	iter->folioq = folioq;
2549 	iter->folioq_slot = slot;
2550 	iter->iov_offset = offset;
2551 	iter->count -= ret;
2552 	return ret;
2553 }
2554 
2555 /*
2556  * Extract page fragments from up to the given amount of the source iterator
2557  * and build up an RDMA list that refers to all of those bits.  The RDMA list
2558  * is appended to, up to the maximum number of elements set in the parameter
2559  * block.
2560  *
2561  * The extracted page fragments are not pinned or ref'd in any way; if an
2562  * IOVEC/UBUF-type iterator is to be used, it should be converted to a
2563  * BVEC-type iterator and the pages pinned, ref'd or otherwise held in some
2564  * way.
2565  */
2566 static ssize_t smb_extract_iter_to_rdma(struct iov_iter *iter, size_t len,
2567 					struct smb_extract_to_rdma *rdma)
2568 {
2569 	ssize_t ret;
2570 	int before = rdma->nr_sge;
2571 
2572 	switch (iov_iter_type(iter)) {
2573 	case ITER_BVEC:
2574 		ret = smb_extract_bvec_to_rdma(iter, rdma, len);
2575 		break;
2576 	case ITER_KVEC:
2577 		ret = smb_extract_kvec_to_rdma(iter, rdma, len);
2578 		break;
2579 	case ITER_FOLIOQ:
2580 		ret = smb_extract_folioq_to_rdma(iter, rdma, len);
2581 		break;
2582 	default:
2583 		WARN_ON_ONCE(1);
2584 		return -EIO;
2585 	}
2586 
2587 	if (ret < 0) {
2588 		while (rdma->nr_sge > before) {
2589 			struct ib_sge *sge = &rdma->sge[rdma->nr_sge--];
2590 
2591 			ib_dma_unmap_single(rdma->device, sge->addr, sge->length,
2592 					    rdma->direction);
2593 			sge->addr = 0;
2594 		}
2595 	}
2596 
2597 	return ret;
2598 }
2599