xref: /linux/fs/smb/client/smbdirect.c (revision 8a5f956a9fb7d74fff681145082acfad5afa6bb8)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *   Copyright (C) 2017, Microsoft Corporation.
4  *
5  *   Author(s): Long Li <longli@microsoft.com>
6  */
7 #include <linux/module.h>
8 #include <linux/highmem.h>
9 #include <linux/folio_queue.h>
10 #include "../common/smbdirect/smbdirect_pdu.h"
11 #include "smbdirect.h"
12 #include "cifs_debug.h"
13 #include "cifsproto.h"
14 #include "smb2proto.h"
15 
16 static struct smbdirect_recv_io *get_receive_buffer(
17 		struct smbd_connection *info);
18 static void put_receive_buffer(
19 		struct smbd_connection *info,
20 		struct smbdirect_recv_io *response);
21 static int allocate_receive_buffers(struct smbd_connection *info, int num_buf);
22 static void destroy_receive_buffers(struct smbd_connection *info);
23 
24 static void enqueue_reassembly(
25 		struct smbd_connection *info,
26 		struct smbdirect_recv_io *response, int data_length);
27 static struct smbdirect_recv_io *_get_first_reassembly(
28 		struct smbd_connection *info);
29 
30 static int smbd_post_recv(
31 		struct smbd_connection *info,
32 		struct smbdirect_recv_io *response);
33 
34 static int smbd_post_send_empty(struct smbd_connection *info);
35 
36 static void destroy_mr_list(struct smbd_connection *info);
37 static int allocate_mr_list(struct smbd_connection *info);
38 
39 struct smb_extract_to_rdma {
40 	struct ib_sge		*sge;
41 	unsigned int		nr_sge;
42 	unsigned int		max_sge;
43 	struct ib_device	*device;
44 	u32			local_dma_lkey;
45 	enum dma_data_direction	direction;
46 };
47 static ssize_t smb_extract_iter_to_rdma(struct iov_iter *iter, size_t len,
48 					struct smb_extract_to_rdma *rdma);
49 
50 /* Port numbers for SMBD transport */
51 #define SMB_PORT	445
52 #define SMBD_PORT	5445
53 
54 /* Address lookup and resolve timeout in ms */
55 #define RDMA_RESOLVE_TIMEOUT	5000
56 
57 /* SMBD negotiation timeout in seconds */
58 #define SMBD_NEGOTIATE_TIMEOUT	120
59 
60 /* SMBD minimum receive size and fragmented sized defined in [MS-SMBD] */
61 #define SMBD_MIN_RECEIVE_SIZE		128
62 #define SMBD_MIN_FRAGMENTED_SIZE	131072
63 
64 /*
65  * Default maximum number of RDMA read/write outstanding on this connection
66  * This value is possibly decreased during QP creation on hardware limit
67  */
68 #define SMBD_CM_RESPONDER_RESOURCES	32
69 
70 /* Maximum number of retries on data transfer operations */
71 #define SMBD_CM_RETRY			6
72 /* No need to retry on Receiver Not Ready since SMBD manages credits */
73 #define SMBD_CM_RNR_RETRY		0
74 
75 /*
76  * User configurable initial values per SMBD transport connection
77  * as defined in [MS-SMBD] 3.1.1.1
78  * Those may change after a SMBD negotiation
79  */
80 /* The local peer's maximum number of credits to grant to the peer */
81 int smbd_receive_credit_max = 255;
82 
83 /* The remote peer's credit request of local peer */
84 int smbd_send_credit_target = 255;
85 
86 /* The maximum single message size can be sent to remote peer */
87 int smbd_max_send_size = 1364;
88 
89 /*  The maximum fragmented upper-layer payload receive size supported */
90 int smbd_max_fragmented_recv_size = 1024 * 1024;
91 
92 /*  The maximum single-message size which can be received */
93 int smbd_max_receive_size = 1364;
94 
95 /* The timeout to initiate send of a keepalive message on idle */
96 int smbd_keep_alive_interval = 120;
97 
98 /*
99  * User configurable initial values for RDMA transport
100  * The actual values used may be lower and are limited to hardware capabilities
101  */
102 /* Default maximum number of pages in a single RDMA write/read */
103 int smbd_max_frmr_depth = 2048;
104 
105 /* If payload is less than this byte, use RDMA send/recv not read/write */
106 int rdma_readwrite_threshold = 4096;
107 
108 /* Transport logging functions
109  * Logging are defined as classes. They can be OR'ed to define the actual
110  * logging level via module parameter smbd_logging_class
111  * e.g. cifs.smbd_logging_class=0xa0 will log all log_rdma_recv() and
112  * log_rdma_event()
113  */
114 #define LOG_OUTGOING			0x1
115 #define LOG_INCOMING			0x2
116 #define LOG_READ			0x4
117 #define LOG_WRITE			0x8
118 #define LOG_RDMA_SEND			0x10
119 #define LOG_RDMA_RECV			0x20
120 #define LOG_KEEP_ALIVE			0x40
121 #define LOG_RDMA_EVENT			0x80
122 #define LOG_RDMA_MR			0x100
123 static unsigned int smbd_logging_class;
124 module_param(smbd_logging_class, uint, 0644);
125 MODULE_PARM_DESC(smbd_logging_class,
126 	"Logging class for SMBD transport 0x0 to 0x100");
127 
128 #define ERR		0x0
129 #define INFO		0x1
130 static unsigned int smbd_logging_level = ERR;
131 module_param(smbd_logging_level, uint, 0644);
132 MODULE_PARM_DESC(smbd_logging_level,
133 	"Logging level for SMBD transport, 0 (default): error, 1: info");
134 
135 #define log_rdma(level, class, fmt, args...)				\
136 do {									\
137 	if (level <= smbd_logging_level || class & smbd_logging_class)	\
138 		cifs_dbg(VFS, "%s:%d " fmt, __func__, __LINE__, ##args);\
139 } while (0)
140 
141 #define log_outgoing(level, fmt, args...) \
142 		log_rdma(level, LOG_OUTGOING, fmt, ##args)
143 #define log_incoming(level, fmt, args...) \
144 		log_rdma(level, LOG_INCOMING, fmt, ##args)
145 #define log_read(level, fmt, args...)	log_rdma(level, LOG_READ, fmt, ##args)
146 #define log_write(level, fmt, args...)	log_rdma(level, LOG_WRITE, fmt, ##args)
147 #define log_rdma_send(level, fmt, args...) \
148 		log_rdma(level, LOG_RDMA_SEND, fmt, ##args)
149 #define log_rdma_recv(level, fmt, args...) \
150 		log_rdma(level, LOG_RDMA_RECV, fmt, ##args)
151 #define log_keep_alive(level, fmt, args...) \
152 		log_rdma(level, LOG_KEEP_ALIVE, fmt, ##args)
153 #define log_rdma_event(level, fmt, args...) \
154 		log_rdma(level, LOG_RDMA_EVENT, fmt, ##args)
155 #define log_rdma_mr(level, fmt, args...) \
156 		log_rdma(level, LOG_RDMA_MR, fmt, ##args)
157 
158 static void smbd_disconnect_rdma_work(struct work_struct *work)
159 {
160 	struct smbd_connection *info =
161 		container_of(work, struct smbd_connection, disconnect_work);
162 	struct smbdirect_socket *sc = &info->socket;
163 
164 	if (sc->status == SMBDIRECT_SOCKET_CONNECTED) {
165 		sc->status = SMBDIRECT_SOCKET_DISCONNECTING;
166 		rdma_disconnect(sc->rdma.cm_id);
167 	}
168 }
169 
170 static void smbd_disconnect_rdma_connection(struct smbd_connection *info)
171 {
172 	queue_work(info->workqueue, &info->disconnect_work);
173 }
174 
175 /* Upcall from RDMA CM */
176 static int smbd_conn_upcall(
177 		struct rdma_cm_id *id, struct rdma_cm_event *event)
178 {
179 	struct smbd_connection *info = id->context;
180 	struct smbdirect_socket *sc = &info->socket;
181 	const char *event_name = rdma_event_msg(event->event);
182 
183 	log_rdma_event(INFO, "event=%s status=%d\n",
184 		event_name, event->status);
185 
186 	switch (event->event) {
187 	case RDMA_CM_EVENT_ADDR_RESOLVED:
188 	case RDMA_CM_EVENT_ROUTE_RESOLVED:
189 		info->ri_rc = 0;
190 		complete(&info->ri_done);
191 		break;
192 
193 	case RDMA_CM_EVENT_ADDR_ERROR:
194 		log_rdma_event(ERR, "connecting failed event=%s\n", event_name);
195 		info->ri_rc = -EHOSTUNREACH;
196 		complete(&info->ri_done);
197 		break;
198 
199 	case RDMA_CM_EVENT_ROUTE_ERROR:
200 		log_rdma_event(ERR, "connecting failed event=%s\n", event_name);
201 		info->ri_rc = -ENETUNREACH;
202 		complete(&info->ri_done);
203 		break;
204 
205 	case RDMA_CM_EVENT_ESTABLISHED:
206 		log_rdma_event(INFO, "connected event=%s\n", event_name);
207 		sc->status = SMBDIRECT_SOCKET_CONNECTED;
208 		wake_up_interruptible(&info->status_wait);
209 		break;
210 
211 	case RDMA_CM_EVENT_CONNECT_ERROR:
212 	case RDMA_CM_EVENT_UNREACHABLE:
213 	case RDMA_CM_EVENT_REJECTED:
214 		log_rdma_event(ERR, "connecting failed event=%s\n", event_name);
215 		sc->status = SMBDIRECT_SOCKET_DISCONNECTED;
216 		wake_up_interruptible(&info->status_wait);
217 		break;
218 
219 	case RDMA_CM_EVENT_DEVICE_REMOVAL:
220 	case RDMA_CM_EVENT_DISCONNECTED:
221 		/* This happens when we fail the negotiation */
222 		if (sc->status == SMBDIRECT_SOCKET_NEGOTIATE_FAILED) {
223 			log_rdma_event(ERR, "event=%s during negotiation\n", event_name);
224 			sc->status = SMBDIRECT_SOCKET_DISCONNECTED;
225 			wake_up(&info->status_wait);
226 			break;
227 		}
228 
229 		sc->status = SMBDIRECT_SOCKET_DISCONNECTED;
230 		wake_up_interruptible(&info->status_wait);
231 		wake_up_interruptible(&sc->recv_io.reassembly.wait_queue);
232 		wake_up_interruptible_all(&info->wait_send_queue);
233 		break;
234 
235 	default:
236 		log_rdma_event(ERR, "unexpected event=%s status=%d\n",
237 			       event_name, event->status);
238 		break;
239 	}
240 
241 	return 0;
242 }
243 
244 /* Upcall from RDMA QP */
245 static void
246 smbd_qp_async_error_upcall(struct ib_event *event, void *context)
247 {
248 	struct smbd_connection *info = context;
249 
250 	log_rdma_event(ERR, "%s on device %s info %p\n",
251 		ib_event_msg(event->event), event->device->name, info);
252 
253 	switch (event->event) {
254 	case IB_EVENT_CQ_ERR:
255 	case IB_EVENT_QP_FATAL:
256 		smbd_disconnect_rdma_connection(info);
257 		break;
258 
259 	default:
260 		break;
261 	}
262 }
263 
264 static inline void *smbdirect_send_io_payload(struct smbdirect_send_io *request)
265 {
266 	return (void *)request->packet;
267 }
268 
269 static inline void *smbdirect_recv_io_payload(struct smbdirect_recv_io *response)
270 {
271 	return (void *)response->packet;
272 }
273 
274 /* Called when a RDMA send is done */
275 static void send_done(struct ib_cq *cq, struct ib_wc *wc)
276 {
277 	int i;
278 	struct smbdirect_send_io *request =
279 		container_of(wc->wr_cqe, struct smbdirect_send_io, cqe);
280 	struct smbdirect_socket *sc = request->socket;
281 	struct smbd_connection *info =
282 		container_of(sc, struct smbd_connection, socket);
283 
284 	log_rdma_send(INFO, "smbdirect_send_io 0x%p completed wc->status=%d\n",
285 		request, wc->status);
286 
287 	for (i = 0; i < request->num_sge; i++)
288 		ib_dma_unmap_single(sc->ib.dev,
289 			request->sge[i].addr,
290 			request->sge[i].length,
291 			DMA_TO_DEVICE);
292 
293 	if (wc->status != IB_WC_SUCCESS || wc->opcode != IB_WC_SEND) {
294 		log_rdma_send(ERR, "wc->status=%d wc->opcode=%d\n",
295 			wc->status, wc->opcode);
296 		mempool_free(request, sc->send_io.mem.pool);
297 		smbd_disconnect_rdma_connection(info);
298 		return;
299 	}
300 
301 	if (atomic_dec_and_test(&info->send_pending))
302 		wake_up(&info->wait_send_pending);
303 
304 	wake_up(&info->wait_post_send);
305 
306 	mempool_free(request, sc->send_io.mem.pool);
307 }
308 
309 static void dump_smbdirect_negotiate_resp(struct smbdirect_negotiate_resp *resp)
310 {
311 	log_rdma_event(INFO, "resp message min_version %u max_version %u negotiated_version %u credits_requested %u credits_granted %u status %u max_readwrite_size %u preferred_send_size %u max_receive_size %u max_fragmented_size %u\n",
312 		       resp->min_version, resp->max_version,
313 		       resp->negotiated_version, resp->credits_requested,
314 		       resp->credits_granted, resp->status,
315 		       resp->max_readwrite_size, resp->preferred_send_size,
316 		       resp->max_receive_size, resp->max_fragmented_size);
317 }
318 
319 /*
320  * Process a negotiation response message, according to [MS-SMBD]3.1.5.7
321  * response, packet_length: the negotiation response message
322  * return value: true if negotiation is a success, false if failed
323  */
324 static bool process_negotiation_response(
325 		struct smbdirect_recv_io *response, int packet_length)
326 {
327 	struct smbdirect_socket *sc = response->socket;
328 	struct smbd_connection *info =
329 		container_of(sc, struct smbd_connection, socket);
330 	struct smbdirect_socket_parameters *sp = &sc->parameters;
331 	struct smbdirect_negotiate_resp *packet = smbdirect_recv_io_payload(response);
332 
333 	if (packet_length < sizeof(struct smbdirect_negotiate_resp)) {
334 		log_rdma_event(ERR,
335 			"error: packet_length=%d\n", packet_length);
336 		return false;
337 	}
338 
339 	if (le16_to_cpu(packet->negotiated_version) != SMBDIRECT_V1) {
340 		log_rdma_event(ERR, "error: negotiated_version=%x\n",
341 			le16_to_cpu(packet->negotiated_version));
342 		return false;
343 	}
344 	info->protocol = le16_to_cpu(packet->negotiated_version);
345 
346 	if (packet->credits_requested == 0) {
347 		log_rdma_event(ERR, "error: credits_requested==0\n");
348 		return false;
349 	}
350 	info->receive_credit_target = le16_to_cpu(packet->credits_requested);
351 
352 	if (packet->credits_granted == 0) {
353 		log_rdma_event(ERR, "error: credits_granted==0\n");
354 		return false;
355 	}
356 	atomic_set(&info->send_credits, le16_to_cpu(packet->credits_granted));
357 
358 	atomic_set(&info->receive_credits, 0);
359 
360 	if (le32_to_cpu(packet->preferred_send_size) > sp->max_recv_size) {
361 		log_rdma_event(ERR, "error: preferred_send_size=%d\n",
362 			le32_to_cpu(packet->preferred_send_size));
363 		return false;
364 	}
365 	sp->max_recv_size = le32_to_cpu(packet->preferred_send_size);
366 
367 	if (le32_to_cpu(packet->max_receive_size) < SMBD_MIN_RECEIVE_SIZE) {
368 		log_rdma_event(ERR, "error: max_receive_size=%d\n",
369 			le32_to_cpu(packet->max_receive_size));
370 		return false;
371 	}
372 	sp->max_send_size = min_t(u32, sp->max_send_size,
373 				  le32_to_cpu(packet->max_receive_size));
374 
375 	if (le32_to_cpu(packet->max_fragmented_size) <
376 			SMBD_MIN_FRAGMENTED_SIZE) {
377 		log_rdma_event(ERR, "error: max_fragmented_size=%d\n",
378 			le32_to_cpu(packet->max_fragmented_size));
379 		return false;
380 	}
381 	sp->max_fragmented_send_size =
382 		le32_to_cpu(packet->max_fragmented_size);
383 	info->rdma_readwrite_threshold =
384 		rdma_readwrite_threshold > sp->max_fragmented_send_size ?
385 		sp->max_fragmented_send_size :
386 		rdma_readwrite_threshold;
387 
388 
389 	sp->max_read_write_size = min_t(u32,
390 			le32_to_cpu(packet->max_readwrite_size),
391 			info->max_frmr_depth * PAGE_SIZE);
392 	info->max_frmr_depth = sp->max_read_write_size / PAGE_SIZE;
393 
394 	sc->recv_io.expected = SMBDIRECT_EXPECT_DATA_TRANSFER;
395 	return true;
396 }
397 
398 static void smbd_post_send_credits(struct work_struct *work)
399 {
400 	int ret = 0;
401 	int rc;
402 	struct smbdirect_recv_io *response;
403 	struct smbd_connection *info =
404 		container_of(work, struct smbd_connection,
405 			post_send_credits_work);
406 	struct smbdirect_socket *sc = &info->socket;
407 
408 	if (sc->status != SMBDIRECT_SOCKET_CONNECTED) {
409 		wake_up(&info->wait_receive_queues);
410 		return;
411 	}
412 
413 	if (info->receive_credit_target >
414 		atomic_read(&info->receive_credits)) {
415 		while (true) {
416 			response = get_receive_buffer(info);
417 			if (!response)
418 				break;
419 
420 			response->first_segment = false;
421 			rc = smbd_post_recv(info, response);
422 			if (rc) {
423 				log_rdma_recv(ERR,
424 					"post_recv failed rc=%d\n", rc);
425 				put_receive_buffer(info, response);
426 				break;
427 			}
428 
429 			ret++;
430 		}
431 	}
432 
433 	spin_lock(&info->lock_new_credits_offered);
434 	info->new_credits_offered += ret;
435 	spin_unlock(&info->lock_new_credits_offered);
436 
437 	/* Promptly send an immediate packet as defined in [MS-SMBD] 3.1.1.1 */
438 	info->send_immediate = true;
439 	if (atomic_read(&info->receive_credits) <
440 		info->receive_credit_target - 1) {
441 		if (info->keep_alive_requested == KEEP_ALIVE_PENDING ||
442 		    info->send_immediate) {
443 			log_keep_alive(INFO, "send an empty message\n");
444 			smbd_post_send_empty(info);
445 		}
446 	}
447 }
448 
449 /* Called from softirq, when recv is done */
450 static void recv_done(struct ib_cq *cq, struct ib_wc *wc)
451 {
452 	struct smbdirect_data_transfer *data_transfer;
453 	struct smbdirect_recv_io *response =
454 		container_of(wc->wr_cqe, struct smbdirect_recv_io, cqe);
455 	struct smbdirect_socket *sc = response->socket;
456 	struct smbdirect_socket_parameters *sp = &sc->parameters;
457 	struct smbd_connection *info =
458 		container_of(sc, struct smbd_connection, socket);
459 	u32 data_offset = 0;
460 	u32 data_length = 0;
461 	u32 remaining_data_length = 0;
462 
463 	log_rdma_recv(INFO, "response=0x%p type=%d wc status=%d wc opcode %d byte_len=%d pkey_index=%u\n",
464 		      response, sc->recv_io.expected, wc->status, wc->opcode,
465 		      wc->byte_len, wc->pkey_index);
466 
467 	if (wc->status != IB_WC_SUCCESS || wc->opcode != IB_WC_RECV) {
468 		log_rdma_recv(INFO, "wc->status=%d opcode=%d\n",
469 			wc->status, wc->opcode);
470 		goto error;
471 	}
472 
473 	ib_dma_sync_single_for_cpu(
474 		wc->qp->device,
475 		response->sge.addr,
476 		response->sge.length,
477 		DMA_FROM_DEVICE);
478 
479 	switch (sc->recv_io.expected) {
480 	/* SMBD negotiation response */
481 	case SMBDIRECT_EXPECT_NEGOTIATE_REP:
482 		dump_smbdirect_negotiate_resp(smbdirect_recv_io_payload(response));
483 		sc->recv_io.reassembly.full_packet_received = true;
484 		info->negotiate_done =
485 			process_negotiation_response(response, wc->byte_len);
486 		put_receive_buffer(info, response);
487 		complete(&info->negotiate_completion);
488 		return;
489 
490 	/* SMBD data transfer packet */
491 	case SMBDIRECT_EXPECT_DATA_TRANSFER:
492 		data_transfer = smbdirect_recv_io_payload(response);
493 
494 		if (wc->byte_len <
495 		    offsetof(struct smbdirect_data_transfer, padding))
496 			goto error;
497 
498 		remaining_data_length = le32_to_cpu(data_transfer->remaining_data_length);
499 		data_offset = le32_to_cpu(data_transfer->data_offset);
500 		data_length = le32_to_cpu(data_transfer->data_length);
501 		if (wc->byte_len < data_offset ||
502 		    (u64)wc->byte_len < (u64)data_offset + data_length)
503 			goto error;
504 
505 		if (remaining_data_length > sp->max_fragmented_recv_size ||
506 		    data_length > sp->max_fragmented_recv_size ||
507 		    (u64)remaining_data_length + (u64)data_length > (u64)sp->max_fragmented_recv_size)
508 			goto error;
509 
510 		if (data_length) {
511 			if (sc->recv_io.reassembly.full_packet_received)
512 				response->first_segment = true;
513 
514 			if (le32_to_cpu(data_transfer->remaining_data_length))
515 				sc->recv_io.reassembly.full_packet_received = false;
516 			else
517 				sc->recv_io.reassembly.full_packet_received = true;
518 		}
519 
520 		atomic_dec(&info->receive_credits);
521 		info->receive_credit_target =
522 			le16_to_cpu(data_transfer->credits_requested);
523 		if (le16_to_cpu(data_transfer->credits_granted)) {
524 			atomic_add(le16_to_cpu(data_transfer->credits_granted),
525 				&info->send_credits);
526 			/*
527 			 * We have new send credits granted from remote peer
528 			 * If any sender is waiting for credits, unblock it
529 			 */
530 			wake_up_interruptible(&info->wait_send_queue);
531 		}
532 
533 		log_incoming(INFO, "data flags %d data_offset %d data_length %d remaining_data_length %d\n",
534 			     le16_to_cpu(data_transfer->flags),
535 			     le32_to_cpu(data_transfer->data_offset),
536 			     le32_to_cpu(data_transfer->data_length),
537 			     le32_to_cpu(data_transfer->remaining_data_length));
538 
539 		/* Send a KEEP_ALIVE response right away if requested */
540 		info->keep_alive_requested = KEEP_ALIVE_NONE;
541 		if (le16_to_cpu(data_transfer->flags) &
542 				SMBDIRECT_FLAG_RESPONSE_REQUESTED) {
543 			info->keep_alive_requested = KEEP_ALIVE_PENDING;
544 		}
545 
546 		/*
547 		 * If this is a packet with data playload place the data in
548 		 * reassembly queue and wake up the reading thread
549 		 */
550 		if (data_length) {
551 			enqueue_reassembly(info, response, data_length);
552 			wake_up_interruptible(&sc->recv_io.reassembly.wait_queue);
553 		} else
554 			put_receive_buffer(info, response);
555 
556 		return;
557 
558 	case SMBDIRECT_EXPECT_NEGOTIATE_REQ:
559 		/* Only server... */
560 		break;
561 	}
562 
563 	/*
564 	 * This is an internal error!
565 	 */
566 	log_rdma_recv(ERR, "unexpected response type=%d\n", sc->recv_io.expected);
567 	WARN_ON_ONCE(sc->recv_io.expected != SMBDIRECT_EXPECT_DATA_TRANSFER);
568 error:
569 	put_receive_buffer(info, response);
570 	smbd_disconnect_rdma_connection(info);
571 }
572 
573 static struct rdma_cm_id *smbd_create_id(
574 		struct smbd_connection *info,
575 		struct sockaddr *dstaddr, int port)
576 {
577 	struct rdma_cm_id *id;
578 	int rc;
579 	__be16 *sport;
580 
581 	id = rdma_create_id(&init_net, smbd_conn_upcall, info,
582 		RDMA_PS_TCP, IB_QPT_RC);
583 	if (IS_ERR(id)) {
584 		rc = PTR_ERR(id);
585 		log_rdma_event(ERR, "rdma_create_id() failed %i\n", rc);
586 		return id;
587 	}
588 
589 	if (dstaddr->sa_family == AF_INET6)
590 		sport = &((struct sockaddr_in6 *)dstaddr)->sin6_port;
591 	else
592 		sport = &((struct sockaddr_in *)dstaddr)->sin_port;
593 
594 	*sport = htons(port);
595 
596 	init_completion(&info->ri_done);
597 	info->ri_rc = -ETIMEDOUT;
598 
599 	rc = rdma_resolve_addr(id, NULL, (struct sockaddr *)dstaddr,
600 		RDMA_RESOLVE_TIMEOUT);
601 	if (rc) {
602 		log_rdma_event(ERR, "rdma_resolve_addr() failed %i\n", rc);
603 		goto out;
604 	}
605 	rc = wait_for_completion_interruptible_timeout(
606 		&info->ri_done, msecs_to_jiffies(RDMA_RESOLVE_TIMEOUT));
607 	/* e.g. if interrupted returns -ERESTARTSYS */
608 	if (rc < 0) {
609 		log_rdma_event(ERR, "rdma_resolve_addr timeout rc: %i\n", rc);
610 		goto out;
611 	}
612 	rc = info->ri_rc;
613 	if (rc) {
614 		log_rdma_event(ERR, "rdma_resolve_addr() completed %i\n", rc);
615 		goto out;
616 	}
617 
618 	info->ri_rc = -ETIMEDOUT;
619 	rc = rdma_resolve_route(id, RDMA_RESOLVE_TIMEOUT);
620 	if (rc) {
621 		log_rdma_event(ERR, "rdma_resolve_route() failed %i\n", rc);
622 		goto out;
623 	}
624 	rc = wait_for_completion_interruptible_timeout(
625 		&info->ri_done, msecs_to_jiffies(RDMA_RESOLVE_TIMEOUT));
626 	/* e.g. if interrupted returns -ERESTARTSYS */
627 	if (rc < 0)  {
628 		log_rdma_event(ERR, "rdma_resolve_addr timeout rc: %i\n", rc);
629 		goto out;
630 	}
631 	rc = info->ri_rc;
632 	if (rc) {
633 		log_rdma_event(ERR, "rdma_resolve_route() completed %i\n", rc);
634 		goto out;
635 	}
636 
637 	return id;
638 
639 out:
640 	rdma_destroy_id(id);
641 	return ERR_PTR(rc);
642 }
643 
644 /*
645  * Test if FRWR (Fast Registration Work Requests) is supported on the device
646  * This implementation requires FRWR on RDMA read/write
647  * return value: true if it is supported
648  */
649 static bool frwr_is_supported(struct ib_device_attr *attrs)
650 {
651 	if (!(attrs->device_cap_flags & IB_DEVICE_MEM_MGT_EXTENSIONS))
652 		return false;
653 	if (attrs->max_fast_reg_page_list_len == 0)
654 		return false;
655 	return true;
656 }
657 
658 static int smbd_ia_open(
659 		struct smbd_connection *info,
660 		struct sockaddr *dstaddr, int port)
661 {
662 	struct smbdirect_socket *sc = &info->socket;
663 	int rc;
664 
665 	sc->rdma.cm_id = smbd_create_id(info, dstaddr, port);
666 	if (IS_ERR(sc->rdma.cm_id)) {
667 		rc = PTR_ERR(sc->rdma.cm_id);
668 		goto out1;
669 	}
670 	sc->ib.dev = sc->rdma.cm_id->device;
671 
672 	if (!frwr_is_supported(&sc->ib.dev->attrs)) {
673 		log_rdma_event(ERR, "Fast Registration Work Requests (FRWR) is not supported\n");
674 		log_rdma_event(ERR, "Device capability flags = %llx max_fast_reg_page_list_len = %u\n",
675 			       sc->ib.dev->attrs.device_cap_flags,
676 			       sc->ib.dev->attrs.max_fast_reg_page_list_len);
677 		rc = -EPROTONOSUPPORT;
678 		goto out2;
679 	}
680 	info->max_frmr_depth = min_t(int,
681 		smbd_max_frmr_depth,
682 		sc->ib.dev->attrs.max_fast_reg_page_list_len);
683 	info->mr_type = IB_MR_TYPE_MEM_REG;
684 	if (sc->ib.dev->attrs.kernel_cap_flags & IBK_SG_GAPS_REG)
685 		info->mr_type = IB_MR_TYPE_SG_GAPS;
686 
687 	sc->ib.pd = ib_alloc_pd(sc->ib.dev, 0);
688 	if (IS_ERR(sc->ib.pd)) {
689 		rc = PTR_ERR(sc->ib.pd);
690 		log_rdma_event(ERR, "ib_alloc_pd() returned %d\n", rc);
691 		goto out2;
692 	}
693 
694 	return 0;
695 
696 out2:
697 	rdma_destroy_id(sc->rdma.cm_id);
698 	sc->rdma.cm_id = NULL;
699 
700 out1:
701 	return rc;
702 }
703 
704 /*
705  * Send a negotiation request message to the peer
706  * The negotiation procedure is in [MS-SMBD] 3.1.5.2 and 3.1.5.3
707  * After negotiation, the transport is connected and ready for
708  * carrying upper layer SMB payload
709  */
710 static int smbd_post_send_negotiate_req(struct smbd_connection *info)
711 {
712 	struct smbdirect_socket *sc = &info->socket;
713 	struct smbdirect_socket_parameters *sp = &sc->parameters;
714 	struct ib_send_wr send_wr;
715 	int rc = -ENOMEM;
716 	struct smbdirect_send_io *request;
717 	struct smbdirect_negotiate_req *packet;
718 
719 	request = mempool_alloc(sc->send_io.mem.pool, GFP_KERNEL);
720 	if (!request)
721 		return rc;
722 
723 	request->socket = sc;
724 
725 	packet = smbdirect_send_io_payload(request);
726 	packet->min_version = cpu_to_le16(SMBDIRECT_V1);
727 	packet->max_version = cpu_to_le16(SMBDIRECT_V1);
728 	packet->reserved = 0;
729 	packet->credits_requested = cpu_to_le16(sp->send_credit_target);
730 	packet->preferred_send_size = cpu_to_le32(sp->max_send_size);
731 	packet->max_receive_size = cpu_to_le32(sp->max_recv_size);
732 	packet->max_fragmented_size =
733 		cpu_to_le32(sp->max_fragmented_recv_size);
734 
735 	request->num_sge = 1;
736 	request->sge[0].addr = ib_dma_map_single(
737 				sc->ib.dev, (void *)packet,
738 				sizeof(*packet), DMA_TO_DEVICE);
739 	if (ib_dma_mapping_error(sc->ib.dev, request->sge[0].addr)) {
740 		rc = -EIO;
741 		goto dma_mapping_failed;
742 	}
743 
744 	request->sge[0].length = sizeof(*packet);
745 	request->sge[0].lkey = sc->ib.pd->local_dma_lkey;
746 
747 	ib_dma_sync_single_for_device(
748 		sc->ib.dev, request->sge[0].addr,
749 		request->sge[0].length, DMA_TO_DEVICE);
750 
751 	request->cqe.done = send_done;
752 
753 	send_wr.next = NULL;
754 	send_wr.wr_cqe = &request->cqe;
755 	send_wr.sg_list = request->sge;
756 	send_wr.num_sge = request->num_sge;
757 	send_wr.opcode = IB_WR_SEND;
758 	send_wr.send_flags = IB_SEND_SIGNALED;
759 
760 	log_rdma_send(INFO, "sge addr=0x%llx length=%u lkey=0x%x\n",
761 		request->sge[0].addr,
762 		request->sge[0].length, request->sge[0].lkey);
763 
764 	atomic_inc(&info->send_pending);
765 	rc = ib_post_send(sc->ib.qp, &send_wr, NULL);
766 	if (!rc)
767 		return 0;
768 
769 	/* if we reach here, post send failed */
770 	log_rdma_send(ERR, "ib_post_send failed rc=%d\n", rc);
771 	atomic_dec(&info->send_pending);
772 	ib_dma_unmap_single(sc->ib.dev, request->sge[0].addr,
773 		request->sge[0].length, DMA_TO_DEVICE);
774 
775 	smbd_disconnect_rdma_connection(info);
776 
777 dma_mapping_failed:
778 	mempool_free(request, sc->send_io.mem.pool);
779 	return rc;
780 }
781 
782 /*
783  * Extend the credits to remote peer
784  * This implements [MS-SMBD] 3.1.5.9
785  * The idea is that we should extend credits to remote peer as quickly as
786  * it's allowed, to maintain data flow. We allocate as much receive
787  * buffer as possible, and extend the receive credits to remote peer
788  * return value: the new credtis being granted.
789  */
790 static int manage_credits_prior_sending(struct smbd_connection *info)
791 {
792 	int new_credits;
793 
794 	spin_lock(&info->lock_new_credits_offered);
795 	new_credits = info->new_credits_offered;
796 	info->new_credits_offered = 0;
797 	spin_unlock(&info->lock_new_credits_offered);
798 
799 	return new_credits;
800 }
801 
802 /*
803  * Check if we need to send a KEEP_ALIVE message
804  * The idle connection timer triggers a KEEP_ALIVE message when expires
805  * SMBDIRECT_FLAG_RESPONSE_REQUESTED is set in the message flag to have peer send
806  * back a response.
807  * return value:
808  * 1 if SMBDIRECT_FLAG_RESPONSE_REQUESTED needs to be set
809  * 0: otherwise
810  */
811 static int manage_keep_alive_before_sending(struct smbd_connection *info)
812 {
813 	if (info->keep_alive_requested == KEEP_ALIVE_PENDING) {
814 		info->keep_alive_requested = KEEP_ALIVE_SENT;
815 		return 1;
816 	}
817 	return 0;
818 }
819 
820 /* Post the send request */
821 static int smbd_post_send(struct smbd_connection *info,
822 		struct smbdirect_send_io *request)
823 {
824 	struct smbdirect_socket *sc = &info->socket;
825 	struct smbdirect_socket_parameters *sp = &sc->parameters;
826 	struct ib_send_wr send_wr;
827 	int rc, i;
828 
829 	for (i = 0; i < request->num_sge; i++) {
830 		log_rdma_send(INFO,
831 			"rdma_request sge[%d] addr=0x%llx length=%u\n",
832 			i, request->sge[i].addr, request->sge[i].length);
833 		ib_dma_sync_single_for_device(
834 			sc->ib.dev,
835 			request->sge[i].addr,
836 			request->sge[i].length,
837 			DMA_TO_DEVICE);
838 	}
839 
840 	request->cqe.done = send_done;
841 
842 	send_wr.next = NULL;
843 	send_wr.wr_cqe = &request->cqe;
844 	send_wr.sg_list = request->sge;
845 	send_wr.num_sge = request->num_sge;
846 	send_wr.opcode = IB_WR_SEND;
847 	send_wr.send_flags = IB_SEND_SIGNALED;
848 
849 	rc = ib_post_send(sc->ib.qp, &send_wr, NULL);
850 	if (rc) {
851 		log_rdma_send(ERR, "ib_post_send failed rc=%d\n", rc);
852 		smbd_disconnect_rdma_connection(info);
853 		rc = -EAGAIN;
854 	} else
855 		/* Reset timer for idle connection after packet is sent */
856 		mod_delayed_work(info->workqueue, &info->idle_timer_work,
857 			msecs_to_jiffies(sp->keepalive_interval_msec));
858 
859 	return rc;
860 }
861 
862 static int smbd_post_send_iter(struct smbd_connection *info,
863 			       struct iov_iter *iter,
864 			       int *_remaining_data_length)
865 {
866 	struct smbdirect_socket *sc = &info->socket;
867 	struct smbdirect_socket_parameters *sp = &sc->parameters;
868 	int i, rc;
869 	int header_length;
870 	int data_length;
871 	struct smbdirect_send_io *request;
872 	struct smbdirect_data_transfer *packet;
873 	int new_credits = 0;
874 
875 wait_credit:
876 	/* Wait for send credits. A SMBD packet needs one credit */
877 	rc = wait_event_interruptible(info->wait_send_queue,
878 		atomic_read(&info->send_credits) > 0 ||
879 		sc->status != SMBDIRECT_SOCKET_CONNECTED);
880 	if (rc)
881 		goto err_wait_credit;
882 
883 	if (sc->status != SMBDIRECT_SOCKET_CONNECTED) {
884 		log_outgoing(ERR, "disconnected not sending on wait_credit\n");
885 		rc = -EAGAIN;
886 		goto err_wait_credit;
887 	}
888 	if (unlikely(atomic_dec_return(&info->send_credits) < 0)) {
889 		atomic_inc(&info->send_credits);
890 		goto wait_credit;
891 	}
892 
893 wait_send_queue:
894 	wait_event(info->wait_post_send,
895 		atomic_read(&info->send_pending) < sp->send_credit_target ||
896 		sc->status != SMBDIRECT_SOCKET_CONNECTED);
897 
898 	if (sc->status != SMBDIRECT_SOCKET_CONNECTED) {
899 		log_outgoing(ERR, "disconnected not sending on wait_send_queue\n");
900 		rc = -EAGAIN;
901 		goto err_wait_send_queue;
902 	}
903 
904 	if (unlikely(atomic_inc_return(&info->send_pending) >
905 				sp->send_credit_target)) {
906 		atomic_dec(&info->send_pending);
907 		goto wait_send_queue;
908 	}
909 
910 	request = mempool_alloc(sc->send_io.mem.pool, GFP_KERNEL);
911 	if (!request) {
912 		rc = -ENOMEM;
913 		goto err_alloc;
914 	}
915 
916 	request->socket = sc;
917 	memset(request->sge, 0, sizeof(request->sge));
918 
919 	/* Fill in the data payload to find out how much data we can add */
920 	if (iter) {
921 		struct smb_extract_to_rdma extract = {
922 			.nr_sge		= 1,
923 			.max_sge	= SMBDIRECT_SEND_IO_MAX_SGE,
924 			.sge		= request->sge,
925 			.device		= sc->ib.dev,
926 			.local_dma_lkey	= sc->ib.pd->local_dma_lkey,
927 			.direction	= DMA_TO_DEVICE,
928 		};
929 		size_t payload_len = umin(*_remaining_data_length,
930 					  sp->max_send_size - sizeof(*packet));
931 
932 		rc = smb_extract_iter_to_rdma(iter, payload_len,
933 					      &extract);
934 		if (rc < 0)
935 			goto err_dma;
936 		data_length = rc;
937 		request->num_sge = extract.nr_sge;
938 		*_remaining_data_length -= data_length;
939 	} else {
940 		data_length = 0;
941 		request->num_sge = 1;
942 	}
943 
944 	/* Fill in the packet header */
945 	packet = smbdirect_send_io_payload(request);
946 	packet->credits_requested = cpu_to_le16(sp->send_credit_target);
947 
948 	new_credits = manage_credits_prior_sending(info);
949 	atomic_add(new_credits, &info->receive_credits);
950 	packet->credits_granted = cpu_to_le16(new_credits);
951 
952 	info->send_immediate = false;
953 
954 	packet->flags = 0;
955 	if (manage_keep_alive_before_sending(info))
956 		packet->flags |= cpu_to_le16(SMBDIRECT_FLAG_RESPONSE_REQUESTED);
957 
958 	packet->reserved = 0;
959 	if (!data_length)
960 		packet->data_offset = 0;
961 	else
962 		packet->data_offset = cpu_to_le32(24);
963 	packet->data_length = cpu_to_le32(data_length);
964 	packet->remaining_data_length = cpu_to_le32(*_remaining_data_length);
965 	packet->padding = 0;
966 
967 	log_outgoing(INFO, "credits_requested=%d credits_granted=%d data_offset=%d data_length=%d remaining_data_length=%d\n",
968 		     le16_to_cpu(packet->credits_requested),
969 		     le16_to_cpu(packet->credits_granted),
970 		     le32_to_cpu(packet->data_offset),
971 		     le32_to_cpu(packet->data_length),
972 		     le32_to_cpu(packet->remaining_data_length));
973 
974 	/* Map the packet to DMA */
975 	header_length = sizeof(struct smbdirect_data_transfer);
976 	/* If this is a packet without payload, don't send padding */
977 	if (!data_length)
978 		header_length = offsetof(struct smbdirect_data_transfer, padding);
979 
980 	request->sge[0].addr = ib_dma_map_single(sc->ib.dev,
981 						 (void *)packet,
982 						 header_length,
983 						 DMA_TO_DEVICE);
984 	if (ib_dma_mapping_error(sc->ib.dev, request->sge[0].addr)) {
985 		rc = -EIO;
986 		request->sge[0].addr = 0;
987 		goto err_dma;
988 	}
989 
990 	request->sge[0].length = header_length;
991 	request->sge[0].lkey = sc->ib.pd->local_dma_lkey;
992 
993 	rc = smbd_post_send(info, request);
994 	if (!rc)
995 		return 0;
996 
997 err_dma:
998 	for (i = 0; i < request->num_sge; i++)
999 		if (request->sge[i].addr)
1000 			ib_dma_unmap_single(sc->ib.dev,
1001 					    request->sge[i].addr,
1002 					    request->sge[i].length,
1003 					    DMA_TO_DEVICE);
1004 	mempool_free(request, sc->send_io.mem.pool);
1005 
1006 	/* roll back receive credits and credits to be offered */
1007 	spin_lock(&info->lock_new_credits_offered);
1008 	info->new_credits_offered += new_credits;
1009 	spin_unlock(&info->lock_new_credits_offered);
1010 	atomic_sub(new_credits, &info->receive_credits);
1011 
1012 err_alloc:
1013 	if (atomic_dec_and_test(&info->send_pending))
1014 		wake_up(&info->wait_send_pending);
1015 
1016 err_wait_send_queue:
1017 	/* roll back send credits and pending */
1018 	atomic_inc(&info->send_credits);
1019 
1020 err_wait_credit:
1021 	return rc;
1022 }
1023 
1024 /*
1025  * Send an empty message
1026  * Empty message is used to extend credits to peer to for keep live
1027  * while there is no upper layer payload to send at the time
1028  */
1029 static int smbd_post_send_empty(struct smbd_connection *info)
1030 {
1031 	int remaining_data_length = 0;
1032 
1033 	info->count_send_empty++;
1034 	return smbd_post_send_iter(info, NULL, &remaining_data_length);
1035 }
1036 
1037 static int smbd_post_send_full_iter(struct smbd_connection *info,
1038 				    struct iov_iter *iter,
1039 				    int *_remaining_data_length)
1040 {
1041 	int rc = 0;
1042 
1043 	/*
1044 	 * smbd_post_send_iter() respects the
1045 	 * negotiated max_send_size, so we need to
1046 	 * loop until the full iter is posted
1047 	 */
1048 
1049 	while (iov_iter_count(iter) > 0) {
1050 		rc = smbd_post_send_iter(info, iter, _remaining_data_length);
1051 		if (rc < 0)
1052 			break;
1053 	}
1054 
1055 	return rc;
1056 }
1057 
1058 /*
1059  * Post a receive request to the transport
1060  * The remote peer can only send data when a receive request is posted
1061  * The interaction is controlled by send/receive credit system
1062  */
1063 static int smbd_post_recv(
1064 		struct smbd_connection *info, struct smbdirect_recv_io *response)
1065 {
1066 	struct smbdirect_socket *sc = &info->socket;
1067 	struct smbdirect_socket_parameters *sp = &sc->parameters;
1068 	struct ib_recv_wr recv_wr;
1069 	int rc = -EIO;
1070 
1071 	response->sge.addr = ib_dma_map_single(
1072 				sc->ib.dev, response->packet,
1073 				sp->max_recv_size, DMA_FROM_DEVICE);
1074 	if (ib_dma_mapping_error(sc->ib.dev, response->sge.addr))
1075 		return rc;
1076 
1077 	response->sge.length = sp->max_recv_size;
1078 	response->sge.lkey = sc->ib.pd->local_dma_lkey;
1079 
1080 	response->cqe.done = recv_done;
1081 
1082 	recv_wr.wr_cqe = &response->cqe;
1083 	recv_wr.next = NULL;
1084 	recv_wr.sg_list = &response->sge;
1085 	recv_wr.num_sge = 1;
1086 
1087 	rc = ib_post_recv(sc->ib.qp, &recv_wr, NULL);
1088 	if (rc) {
1089 		ib_dma_unmap_single(sc->ib.dev, response->sge.addr,
1090 				    response->sge.length, DMA_FROM_DEVICE);
1091 		response->sge.length = 0;
1092 		smbd_disconnect_rdma_connection(info);
1093 		log_rdma_recv(ERR, "ib_post_recv failed rc=%d\n", rc);
1094 	}
1095 
1096 	return rc;
1097 }
1098 
1099 /* Perform SMBD negotiate according to [MS-SMBD] 3.1.5.2 */
1100 static int smbd_negotiate(struct smbd_connection *info)
1101 {
1102 	struct smbdirect_socket *sc = &info->socket;
1103 	int rc;
1104 	struct smbdirect_recv_io *response = get_receive_buffer(info);
1105 
1106 	sc->recv_io.expected = SMBDIRECT_EXPECT_NEGOTIATE_REP;
1107 	rc = smbd_post_recv(info, response);
1108 	log_rdma_event(INFO, "smbd_post_recv rc=%d iov.addr=0x%llx iov.length=%u iov.lkey=0x%x\n",
1109 		       rc, response->sge.addr,
1110 		       response->sge.length, response->sge.lkey);
1111 	if (rc) {
1112 		put_receive_buffer(info, response);
1113 		return rc;
1114 	}
1115 
1116 	init_completion(&info->negotiate_completion);
1117 	info->negotiate_done = false;
1118 	rc = smbd_post_send_negotiate_req(info);
1119 	if (rc)
1120 		return rc;
1121 
1122 	rc = wait_for_completion_interruptible_timeout(
1123 		&info->negotiate_completion, SMBD_NEGOTIATE_TIMEOUT * HZ);
1124 	log_rdma_event(INFO, "wait_for_completion_timeout rc=%d\n", rc);
1125 
1126 	if (info->negotiate_done)
1127 		return 0;
1128 
1129 	if (rc == 0)
1130 		rc = -ETIMEDOUT;
1131 	else if (rc == -ERESTARTSYS)
1132 		rc = -EINTR;
1133 	else
1134 		rc = -ENOTCONN;
1135 
1136 	return rc;
1137 }
1138 
1139 /*
1140  * Implement Connection.FragmentReassemblyBuffer defined in [MS-SMBD] 3.1.1.1
1141  * This is a queue for reassembling upper layer payload and present to upper
1142  * layer. All the inncoming payload go to the reassembly queue, regardless of
1143  * if reassembly is required. The uuper layer code reads from the queue for all
1144  * incoming payloads.
1145  * Put a received packet to the reassembly queue
1146  * response: the packet received
1147  * data_length: the size of payload in this packet
1148  */
1149 static void enqueue_reassembly(
1150 	struct smbd_connection *info,
1151 	struct smbdirect_recv_io *response,
1152 	int data_length)
1153 {
1154 	struct smbdirect_socket *sc = &info->socket;
1155 
1156 	spin_lock(&sc->recv_io.reassembly.lock);
1157 	list_add_tail(&response->list, &sc->recv_io.reassembly.list);
1158 	sc->recv_io.reassembly.queue_length++;
1159 	/*
1160 	 * Make sure reassembly_data_length is updated after list and
1161 	 * reassembly_queue_length are updated. On the dequeue side
1162 	 * reassembly_data_length is checked without a lock to determine
1163 	 * if reassembly_queue_length and list is up to date
1164 	 */
1165 	virt_wmb();
1166 	sc->recv_io.reassembly.data_length += data_length;
1167 	spin_unlock(&sc->recv_io.reassembly.lock);
1168 	info->count_reassembly_queue++;
1169 	info->count_enqueue_reassembly_queue++;
1170 }
1171 
1172 /*
1173  * Get the first entry at the front of reassembly queue
1174  * Caller is responsible for locking
1175  * return value: the first entry if any, NULL if queue is empty
1176  */
1177 static struct smbdirect_recv_io *_get_first_reassembly(struct smbd_connection *info)
1178 {
1179 	struct smbdirect_socket *sc = &info->socket;
1180 	struct smbdirect_recv_io *ret = NULL;
1181 
1182 	if (!list_empty(&sc->recv_io.reassembly.list)) {
1183 		ret = list_first_entry(
1184 			&sc->recv_io.reassembly.list,
1185 			struct smbdirect_recv_io, list);
1186 	}
1187 	return ret;
1188 }
1189 
1190 /*
1191  * Get a receive buffer
1192  * For each remote send, we need to post a receive. The receive buffers are
1193  * pre-allocated in advance.
1194  * return value: the receive buffer, NULL if none is available
1195  */
1196 static struct smbdirect_recv_io *get_receive_buffer(struct smbd_connection *info)
1197 {
1198 	struct smbdirect_socket *sc = &info->socket;
1199 	struct smbdirect_recv_io *ret = NULL;
1200 	unsigned long flags;
1201 
1202 	spin_lock_irqsave(&sc->recv_io.free.lock, flags);
1203 	if (!list_empty(&sc->recv_io.free.list)) {
1204 		ret = list_first_entry(
1205 			&sc->recv_io.free.list,
1206 			struct smbdirect_recv_io, list);
1207 		list_del(&ret->list);
1208 		info->count_receive_queue--;
1209 		info->count_get_receive_buffer++;
1210 	}
1211 	spin_unlock_irqrestore(&sc->recv_io.free.lock, flags);
1212 
1213 	return ret;
1214 }
1215 
1216 /*
1217  * Return a receive buffer
1218  * Upon returning of a receive buffer, we can post new receive and extend
1219  * more receive credits to remote peer. This is done immediately after a
1220  * receive buffer is returned.
1221  */
1222 static void put_receive_buffer(
1223 	struct smbd_connection *info, struct smbdirect_recv_io *response)
1224 {
1225 	struct smbdirect_socket *sc = &info->socket;
1226 	unsigned long flags;
1227 
1228 	if (likely(response->sge.length != 0)) {
1229 		ib_dma_unmap_single(sc->ib.dev,
1230 				    response->sge.addr,
1231 				    response->sge.length,
1232 				    DMA_FROM_DEVICE);
1233 		response->sge.length = 0;
1234 	}
1235 
1236 	spin_lock_irqsave(&sc->recv_io.free.lock, flags);
1237 	list_add_tail(&response->list, &sc->recv_io.free.list);
1238 	info->count_receive_queue++;
1239 	info->count_put_receive_buffer++;
1240 	spin_unlock_irqrestore(&sc->recv_io.free.lock, flags);
1241 
1242 	queue_work(info->workqueue, &info->post_send_credits_work);
1243 }
1244 
1245 /* Preallocate all receive buffer on transport establishment */
1246 static int allocate_receive_buffers(struct smbd_connection *info, int num_buf)
1247 {
1248 	struct smbdirect_socket *sc = &info->socket;
1249 	struct smbdirect_recv_io *response;
1250 	int i;
1251 
1252 	INIT_LIST_HEAD(&sc->recv_io.reassembly.list);
1253 	spin_lock_init(&sc->recv_io.reassembly.lock);
1254 	sc->recv_io.reassembly.data_length = 0;
1255 	sc->recv_io.reassembly.queue_length = 0;
1256 
1257 	INIT_LIST_HEAD(&sc->recv_io.free.list);
1258 	spin_lock_init(&sc->recv_io.free.lock);
1259 	info->count_receive_queue = 0;
1260 
1261 	init_waitqueue_head(&info->wait_receive_queues);
1262 
1263 	for (i = 0; i < num_buf; i++) {
1264 		response = mempool_alloc(sc->recv_io.mem.pool, GFP_KERNEL);
1265 		if (!response)
1266 			goto allocate_failed;
1267 
1268 		response->socket = sc;
1269 		response->sge.length = 0;
1270 		list_add_tail(&response->list, &sc->recv_io.free.list);
1271 		info->count_receive_queue++;
1272 	}
1273 
1274 	return 0;
1275 
1276 allocate_failed:
1277 	while (!list_empty(&sc->recv_io.free.list)) {
1278 		response = list_first_entry(
1279 				&sc->recv_io.free.list,
1280 				struct smbdirect_recv_io, list);
1281 		list_del(&response->list);
1282 		info->count_receive_queue--;
1283 
1284 		mempool_free(response, sc->recv_io.mem.pool);
1285 	}
1286 	return -ENOMEM;
1287 }
1288 
1289 static void destroy_receive_buffers(struct smbd_connection *info)
1290 {
1291 	struct smbdirect_socket *sc = &info->socket;
1292 	struct smbdirect_recv_io *response;
1293 
1294 	while ((response = get_receive_buffer(info)))
1295 		mempool_free(response, sc->recv_io.mem.pool);
1296 }
1297 
1298 /* Implement idle connection timer [MS-SMBD] 3.1.6.2 */
1299 static void idle_connection_timer(struct work_struct *work)
1300 {
1301 	struct smbd_connection *info = container_of(
1302 					work, struct smbd_connection,
1303 					idle_timer_work.work);
1304 	struct smbdirect_socket *sc = &info->socket;
1305 	struct smbdirect_socket_parameters *sp = &sc->parameters;
1306 
1307 	if (info->keep_alive_requested != KEEP_ALIVE_NONE) {
1308 		log_keep_alive(ERR,
1309 			"error status info->keep_alive_requested=%d\n",
1310 			info->keep_alive_requested);
1311 		smbd_disconnect_rdma_connection(info);
1312 		return;
1313 	}
1314 
1315 	log_keep_alive(INFO, "about to send an empty idle message\n");
1316 	smbd_post_send_empty(info);
1317 
1318 	/* Setup the next idle timeout work */
1319 	queue_delayed_work(info->workqueue, &info->idle_timer_work,
1320 			msecs_to_jiffies(sp->keepalive_interval_msec));
1321 }
1322 
1323 /*
1324  * Destroy the transport and related RDMA and memory resources
1325  * Need to go through all the pending counters and make sure on one is using
1326  * the transport while it is destroyed
1327  */
1328 void smbd_destroy(struct TCP_Server_Info *server)
1329 {
1330 	struct smbd_connection *info = server->smbd_conn;
1331 	struct smbdirect_socket *sc;
1332 	struct smbdirect_socket_parameters *sp;
1333 	struct smbdirect_recv_io *response;
1334 	unsigned long flags;
1335 
1336 	if (!info) {
1337 		log_rdma_event(INFO, "rdma session already destroyed\n");
1338 		return;
1339 	}
1340 	sc = &info->socket;
1341 	sp = &sc->parameters;
1342 
1343 	log_rdma_event(INFO, "destroying rdma session\n");
1344 	if (sc->status != SMBDIRECT_SOCKET_DISCONNECTED) {
1345 		rdma_disconnect(sc->rdma.cm_id);
1346 		log_rdma_event(INFO, "wait for transport being disconnected\n");
1347 		wait_event_interruptible(
1348 			info->status_wait,
1349 			sc->status == SMBDIRECT_SOCKET_DISCONNECTED);
1350 	}
1351 
1352 	log_rdma_event(INFO, "cancelling post_send_credits_work\n");
1353 	disable_work_sync(&info->post_send_credits_work);
1354 
1355 	log_rdma_event(INFO, "destroying qp\n");
1356 	ib_drain_qp(sc->ib.qp);
1357 	rdma_destroy_qp(sc->rdma.cm_id);
1358 	sc->ib.qp = NULL;
1359 
1360 	log_rdma_event(INFO, "cancelling idle timer\n");
1361 	disable_delayed_work_sync(&info->idle_timer_work);
1362 
1363 	/* It's not possible for upper layer to get to reassembly */
1364 	log_rdma_event(INFO, "drain the reassembly queue\n");
1365 	do {
1366 		spin_lock_irqsave(&sc->recv_io.reassembly.lock, flags);
1367 		response = _get_first_reassembly(info);
1368 		if (response) {
1369 			list_del(&response->list);
1370 			spin_unlock_irqrestore(
1371 				&sc->recv_io.reassembly.lock, flags);
1372 			put_receive_buffer(info, response);
1373 		} else
1374 			spin_unlock_irqrestore(
1375 				&sc->recv_io.reassembly.lock, flags);
1376 	} while (response);
1377 	sc->recv_io.reassembly.data_length = 0;
1378 
1379 	log_rdma_event(INFO, "free receive buffers\n");
1380 	wait_event(info->wait_receive_queues,
1381 		info->count_receive_queue == sp->recv_credit_max);
1382 	destroy_receive_buffers(info);
1383 
1384 	/*
1385 	 * For performance reasons, memory registration and deregistration
1386 	 * are not locked by srv_mutex. It is possible some processes are
1387 	 * blocked on transport srv_mutex while holding memory registration.
1388 	 * Release the transport srv_mutex to allow them to hit the failure
1389 	 * path when sending data, and then release memory registrations.
1390 	 */
1391 	log_rdma_event(INFO, "freeing mr list\n");
1392 	wake_up_interruptible_all(&info->wait_mr);
1393 	while (atomic_read(&info->mr_used_count)) {
1394 		cifs_server_unlock(server);
1395 		msleep(1000);
1396 		cifs_server_lock(server);
1397 	}
1398 	destroy_mr_list(info);
1399 
1400 	ib_free_cq(sc->ib.send_cq);
1401 	ib_free_cq(sc->ib.recv_cq);
1402 	ib_dealloc_pd(sc->ib.pd);
1403 	rdma_destroy_id(sc->rdma.cm_id);
1404 
1405 	/* free mempools */
1406 	mempool_destroy(sc->send_io.mem.pool);
1407 	kmem_cache_destroy(sc->send_io.mem.cache);
1408 
1409 	mempool_destroy(sc->recv_io.mem.pool);
1410 	kmem_cache_destroy(sc->recv_io.mem.cache);
1411 
1412 	sc->status = SMBDIRECT_SOCKET_DESTROYED;
1413 
1414 	destroy_workqueue(info->workqueue);
1415 	log_rdma_event(INFO,  "rdma session destroyed\n");
1416 	kfree(info);
1417 	server->smbd_conn = NULL;
1418 }
1419 
1420 /*
1421  * Reconnect this SMBD connection, called from upper layer
1422  * return value: 0 on success, or actual error code
1423  */
1424 int smbd_reconnect(struct TCP_Server_Info *server)
1425 {
1426 	log_rdma_event(INFO, "reconnecting rdma session\n");
1427 
1428 	if (!server->smbd_conn) {
1429 		log_rdma_event(INFO, "rdma session already destroyed\n");
1430 		goto create_conn;
1431 	}
1432 
1433 	/*
1434 	 * This is possible if transport is disconnected and we haven't received
1435 	 * notification from RDMA, but upper layer has detected timeout
1436 	 */
1437 	if (server->smbd_conn->socket.status == SMBDIRECT_SOCKET_CONNECTED) {
1438 		log_rdma_event(INFO, "disconnecting transport\n");
1439 		smbd_destroy(server);
1440 	}
1441 
1442 create_conn:
1443 	log_rdma_event(INFO, "creating rdma session\n");
1444 	server->smbd_conn = smbd_get_connection(
1445 		server, (struct sockaddr *) &server->dstaddr);
1446 
1447 	if (server->smbd_conn) {
1448 		cifs_dbg(VFS, "RDMA transport re-established\n");
1449 		trace_smb3_smbd_connect_done(server->hostname, server->conn_id, &server->dstaddr);
1450 		return 0;
1451 	}
1452 	trace_smb3_smbd_connect_err(server->hostname, server->conn_id, &server->dstaddr);
1453 	return -ENOENT;
1454 }
1455 
1456 static void destroy_caches_and_workqueue(struct smbd_connection *info)
1457 {
1458 	struct smbdirect_socket *sc = &info->socket;
1459 
1460 	destroy_receive_buffers(info);
1461 	destroy_workqueue(info->workqueue);
1462 	mempool_destroy(sc->recv_io.mem.pool);
1463 	kmem_cache_destroy(sc->recv_io.mem.cache);
1464 	mempool_destroy(sc->send_io.mem.pool);
1465 	kmem_cache_destroy(sc->send_io.mem.cache);
1466 }
1467 
1468 #define MAX_NAME_LEN	80
1469 static int allocate_caches_and_workqueue(struct smbd_connection *info)
1470 {
1471 	struct smbdirect_socket *sc = &info->socket;
1472 	struct smbdirect_socket_parameters *sp = &sc->parameters;
1473 	char name[MAX_NAME_LEN];
1474 	int rc;
1475 
1476 	if (WARN_ON_ONCE(sp->max_recv_size < sizeof(struct smbdirect_data_transfer)))
1477 		return -ENOMEM;
1478 
1479 	scnprintf(name, MAX_NAME_LEN, "smbdirect_send_io_%p", info);
1480 	sc->send_io.mem.cache =
1481 		kmem_cache_create(
1482 			name,
1483 			sizeof(struct smbdirect_send_io) +
1484 				sizeof(struct smbdirect_data_transfer),
1485 			0, SLAB_HWCACHE_ALIGN, NULL);
1486 	if (!sc->send_io.mem.cache)
1487 		return -ENOMEM;
1488 
1489 	sc->send_io.mem.pool =
1490 		mempool_create(sp->send_credit_target, mempool_alloc_slab,
1491 			mempool_free_slab, sc->send_io.mem.cache);
1492 	if (!sc->send_io.mem.pool)
1493 		goto out1;
1494 
1495 	scnprintf(name, MAX_NAME_LEN, "smbdirect_recv_io_%p", info);
1496 
1497 	struct kmem_cache_args response_args = {
1498 		.align		= __alignof__(struct smbdirect_recv_io),
1499 		.useroffset	= (offsetof(struct smbdirect_recv_io, packet) +
1500 				   sizeof(struct smbdirect_data_transfer)),
1501 		.usersize	= sp->max_recv_size - sizeof(struct smbdirect_data_transfer),
1502 	};
1503 	sc->recv_io.mem.cache =
1504 		kmem_cache_create(name,
1505 				  sizeof(struct smbdirect_recv_io) + sp->max_recv_size,
1506 				  &response_args, SLAB_HWCACHE_ALIGN);
1507 	if (!sc->recv_io.mem.cache)
1508 		goto out2;
1509 
1510 	sc->recv_io.mem.pool =
1511 		mempool_create(sp->recv_credit_max, mempool_alloc_slab,
1512 		       mempool_free_slab, sc->recv_io.mem.cache);
1513 	if (!sc->recv_io.mem.pool)
1514 		goto out3;
1515 
1516 	scnprintf(name, MAX_NAME_LEN, "smbd_%p", info);
1517 	info->workqueue = create_workqueue(name);
1518 	if (!info->workqueue)
1519 		goto out4;
1520 
1521 	rc = allocate_receive_buffers(info, sp->recv_credit_max);
1522 	if (rc) {
1523 		log_rdma_event(ERR, "failed to allocate receive buffers\n");
1524 		goto out5;
1525 	}
1526 
1527 	return 0;
1528 
1529 out5:
1530 	destroy_workqueue(info->workqueue);
1531 out4:
1532 	mempool_destroy(sc->recv_io.mem.pool);
1533 out3:
1534 	kmem_cache_destroy(sc->recv_io.mem.cache);
1535 out2:
1536 	mempool_destroy(sc->send_io.mem.pool);
1537 out1:
1538 	kmem_cache_destroy(sc->send_io.mem.cache);
1539 	return -ENOMEM;
1540 }
1541 
1542 /* Create a SMBD connection, called by upper layer */
1543 static struct smbd_connection *_smbd_get_connection(
1544 	struct TCP_Server_Info *server, struct sockaddr *dstaddr, int port)
1545 {
1546 	int rc;
1547 	struct smbd_connection *info;
1548 	struct smbdirect_socket *sc;
1549 	struct smbdirect_socket_parameters *sp;
1550 	struct rdma_conn_param conn_param;
1551 	struct ib_qp_init_attr qp_attr;
1552 	struct sockaddr_in *addr_in = (struct sockaddr_in *) dstaddr;
1553 	struct ib_port_immutable port_immutable;
1554 	u32 ird_ord_hdr[2];
1555 
1556 	info = kzalloc(sizeof(struct smbd_connection), GFP_KERNEL);
1557 	if (!info)
1558 		return NULL;
1559 	sc = &info->socket;
1560 	sp = &sc->parameters;
1561 
1562 	sc->status = SMBDIRECT_SOCKET_CONNECTING;
1563 	rc = smbd_ia_open(info, dstaddr, port);
1564 	if (rc) {
1565 		log_rdma_event(INFO, "smbd_ia_open rc=%d\n", rc);
1566 		goto create_id_failed;
1567 	}
1568 
1569 	if (smbd_send_credit_target > sc->ib.dev->attrs.max_cqe ||
1570 	    smbd_send_credit_target > sc->ib.dev->attrs.max_qp_wr) {
1571 		log_rdma_event(ERR, "consider lowering send_credit_target = %d. Possible CQE overrun, device reporting max_cqe %d max_qp_wr %d\n",
1572 			       smbd_send_credit_target,
1573 			       sc->ib.dev->attrs.max_cqe,
1574 			       sc->ib.dev->attrs.max_qp_wr);
1575 		goto config_failed;
1576 	}
1577 
1578 	if (smbd_receive_credit_max > sc->ib.dev->attrs.max_cqe ||
1579 	    smbd_receive_credit_max > sc->ib.dev->attrs.max_qp_wr) {
1580 		log_rdma_event(ERR, "consider lowering receive_credit_max = %d. Possible CQE overrun, device reporting max_cqe %d max_qp_wr %d\n",
1581 			       smbd_receive_credit_max,
1582 			       sc->ib.dev->attrs.max_cqe,
1583 			       sc->ib.dev->attrs.max_qp_wr);
1584 		goto config_failed;
1585 	}
1586 
1587 	sp->recv_credit_max = smbd_receive_credit_max;
1588 	sp->send_credit_target = smbd_send_credit_target;
1589 	sp->max_send_size = smbd_max_send_size;
1590 	sp->max_fragmented_recv_size = smbd_max_fragmented_recv_size;
1591 	sp->max_recv_size = smbd_max_receive_size;
1592 	sp->keepalive_interval_msec = smbd_keep_alive_interval * 1000;
1593 
1594 	if (sc->ib.dev->attrs.max_send_sge < SMBDIRECT_SEND_IO_MAX_SGE ||
1595 	    sc->ib.dev->attrs.max_recv_sge < SMBDIRECT_RECV_IO_MAX_SGE) {
1596 		log_rdma_event(ERR,
1597 			"device %.*s max_send_sge/max_recv_sge = %d/%d too small\n",
1598 			IB_DEVICE_NAME_MAX,
1599 			sc->ib.dev->name,
1600 			sc->ib.dev->attrs.max_send_sge,
1601 			sc->ib.dev->attrs.max_recv_sge);
1602 		goto config_failed;
1603 	}
1604 
1605 	sc->ib.send_cq =
1606 		ib_alloc_cq_any(sc->ib.dev, info,
1607 				sp->send_credit_target, IB_POLL_SOFTIRQ);
1608 	if (IS_ERR(sc->ib.send_cq)) {
1609 		sc->ib.send_cq = NULL;
1610 		goto alloc_cq_failed;
1611 	}
1612 
1613 	sc->ib.recv_cq =
1614 		ib_alloc_cq_any(sc->ib.dev, info,
1615 				sp->recv_credit_max, IB_POLL_SOFTIRQ);
1616 	if (IS_ERR(sc->ib.recv_cq)) {
1617 		sc->ib.recv_cq = NULL;
1618 		goto alloc_cq_failed;
1619 	}
1620 
1621 	memset(&qp_attr, 0, sizeof(qp_attr));
1622 	qp_attr.event_handler = smbd_qp_async_error_upcall;
1623 	qp_attr.qp_context = info;
1624 	qp_attr.cap.max_send_wr = sp->send_credit_target;
1625 	qp_attr.cap.max_recv_wr = sp->recv_credit_max;
1626 	qp_attr.cap.max_send_sge = SMBDIRECT_SEND_IO_MAX_SGE;
1627 	qp_attr.cap.max_recv_sge = SMBDIRECT_RECV_IO_MAX_SGE;
1628 	qp_attr.cap.max_inline_data = 0;
1629 	qp_attr.sq_sig_type = IB_SIGNAL_REQ_WR;
1630 	qp_attr.qp_type = IB_QPT_RC;
1631 	qp_attr.send_cq = sc->ib.send_cq;
1632 	qp_attr.recv_cq = sc->ib.recv_cq;
1633 	qp_attr.port_num = ~0;
1634 
1635 	rc = rdma_create_qp(sc->rdma.cm_id, sc->ib.pd, &qp_attr);
1636 	if (rc) {
1637 		log_rdma_event(ERR, "rdma_create_qp failed %i\n", rc);
1638 		goto create_qp_failed;
1639 	}
1640 	sc->ib.qp = sc->rdma.cm_id->qp;
1641 
1642 	memset(&conn_param, 0, sizeof(conn_param));
1643 	conn_param.initiator_depth = 0;
1644 
1645 	conn_param.responder_resources =
1646 		min(sc->ib.dev->attrs.max_qp_rd_atom,
1647 		    SMBD_CM_RESPONDER_RESOURCES);
1648 	info->responder_resources = conn_param.responder_resources;
1649 	log_rdma_mr(INFO, "responder_resources=%d\n",
1650 		info->responder_resources);
1651 
1652 	/* Need to send IRD/ORD in private data for iWARP */
1653 	sc->ib.dev->ops.get_port_immutable(
1654 		sc->ib.dev, sc->rdma.cm_id->port_num, &port_immutable);
1655 	if (port_immutable.core_cap_flags & RDMA_CORE_PORT_IWARP) {
1656 		ird_ord_hdr[0] = info->responder_resources;
1657 		ird_ord_hdr[1] = 1;
1658 		conn_param.private_data = ird_ord_hdr;
1659 		conn_param.private_data_len = sizeof(ird_ord_hdr);
1660 	} else {
1661 		conn_param.private_data = NULL;
1662 		conn_param.private_data_len = 0;
1663 	}
1664 
1665 	conn_param.retry_count = SMBD_CM_RETRY;
1666 	conn_param.rnr_retry_count = SMBD_CM_RNR_RETRY;
1667 	conn_param.flow_control = 0;
1668 
1669 	log_rdma_event(INFO, "connecting to IP %pI4 port %d\n",
1670 		&addr_in->sin_addr, port);
1671 
1672 	init_waitqueue_head(&info->status_wait);
1673 	init_waitqueue_head(&sc->recv_io.reassembly.wait_queue);
1674 	rc = rdma_connect(sc->rdma.cm_id, &conn_param);
1675 	if (rc) {
1676 		log_rdma_event(ERR, "rdma_connect() failed with %i\n", rc);
1677 		goto rdma_connect_failed;
1678 	}
1679 
1680 	wait_event_interruptible_timeout(
1681 		info->status_wait,
1682 		sc->status != SMBDIRECT_SOCKET_CONNECTING,
1683 		msecs_to_jiffies(RDMA_RESOLVE_TIMEOUT));
1684 
1685 	if (sc->status != SMBDIRECT_SOCKET_CONNECTED) {
1686 		log_rdma_event(ERR, "rdma_connect failed port=%d\n", port);
1687 		goto rdma_connect_failed;
1688 	}
1689 
1690 	log_rdma_event(INFO, "rdma_connect connected\n");
1691 
1692 	rc = allocate_caches_and_workqueue(info);
1693 	if (rc) {
1694 		log_rdma_event(ERR, "cache allocation failed\n");
1695 		goto allocate_cache_failed;
1696 	}
1697 
1698 	init_waitqueue_head(&info->wait_send_queue);
1699 	INIT_DELAYED_WORK(&info->idle_timer_work, idle_connection_timer);
1700 	queue_delayed_work(info->workqueue, &info->idle_timer_work,
1701 		msecs_to_jiffies(sp->keepalive_interval_msec));
1702 
1703 	init_waitqueue_head(&info->wait_send_pending);
1704 	atomic_set(&info->send_pending, 0);
1705 
1706 	init_waitqueue_head(&info->wait_post_send);
1707 
1708 	INIT_WORK(&info->disconnect_work, smbd_disconnect_rdma_work);
1709 	INIT_WORK(&info->post_send_credits_work, smbd_post_send_credits);
1710 	info->new_credits_offered = 0;
1711 	spin_lock_init(&info->lock_new_credits_offered);
1712 
1713 	rc = smbd_negotiate(info);
1714 	if (rc) {
1715 		log_rdma_event(ERR, "smbd_negotiate rc=%d\n", rc);
1716 		goto negotiation_failed;
1717 	}
1718 
1719 	rc = allocate_mr_list(info);
1720 	if (rc) {
1721 		log_rdma_mr(ERR, "memory registration allocation failed\n");
1722 		goto allocate_mr_failed;
1723 	}
1724 
1725 	return info;
1726 
1727 allocate_mr_failed:
1728 	/* At this point, need to a full transport shutdown */
1729 	server->smbd_conn = info;
1730 	smbd_destroy(server);
1731 	return NULL;
1732 
1733 negotiation_failed:
1734 	disable_delayed_work_sync(&info->idle_timer_work);
1735 	destroy_caches_and_workqueue(info);
1736 	sc->status = SMBDIRECT_SOCKET_NEGOTIATE_FAILED;
1737 	rdma_disconnect(sc->rdma.cm_id);
1738 	wait_event(info->status_wait,
1739 		sc->status == SMBDIRECT_SOCKET_DISCONNECTED);
1740 
1741 allocate_cache_failed:
1742 rdma_connect_failed:
1743 	rdma_destroy_qp(sc->rdma.cm_id);
1744 
1745 create_qp_failed:
1746 alloc_cq_failed:
1747 	if (sc->ib.send_cq)
1748 		ib_free_cq(sc->ib.send_cq);
1749 	if (sc->ib.recv_cq)
1750 		ib_free_cq(sc->ib.recv_cq);
1751 
1752 config_failed:
1753 	ib_dealloc_pd(sc->ib.pd);
1754 	rdma_destroy_id(sc->rdma.cm_id);
1755 
1756 create_id_failed:
1757 	kfree(info);
1758 	return NULL;
1759 }
1760 
1761 struct smbd_connection *smbd_get_connection(
1762 	struct TCP_Server_Info *server, struct sockaddr *dstaddr)
1763 {
1764 	struct smbd_connection *ret;
1765 	int port = SMBD_PORT;
1766 
1767 try_again:
1768 	ret = _smbd_get_connection(server, dstaddr, port);
1769 
1770 	/* Try SMB_PORT if SMBD_PORT doesn't work */
1771 	if (!ret && port == SMBD_PORT) {
1772 		port = SMB_PORT;
1773 		goto try_again;
1774 	}
1775 	return ret;
1776 }
1777 
1778 /*
1779  * Receive data from the transport's receive reassembly queue
1780  * All the incoming data packets are placed in reassembly queue
1781  * iter: the buffer to read data into
1782  * size: the length of data to read
1783  * return value: actual data read
1784  *
1785  * Note: this implementation copies the data from reassembly queue to receive
1786  * buffers used by upper layer. This is not the optimal code path. A better way
1787  * to do it is to not have upper layer allocate its receive buffers but rather
1788  * borrow the buffer from reassembly queue, and return it after data is
1789  * consumed. But this will require more changes to upper layer code, and also
1790  * need to consider packet boundaries while they still being reassembled.
1791  */
1792 int smbd_recv(struct smbd_connection *info, struct msghdr *msg)
1793 {
1794 	struct smbdirect_socket *sc = &info->socket;
1795 	struct smbdirect_recv_io *response;
1796 	struct smbdirect_data_transfer *data_transfer;
1797 	size_t size = iov_iter_count(&msg->msg_iter);
1798 	int to_copy, to_read, data_read, offset;
1799 	u32 data_length, remaining_data_length, data_offset;
1800 	int rc;
1801 
1802 	if (WARN_ON_ONCE(iov_iter_rw(&msg->msg_iter) == WRITE))
1803 		return -EINVAL; /* It's a bug in upper layer to get there */
1804 
1805 again:
1806 	/*
1807 	 * No need to hold the reassembly queue lock all the time as we are
1808 	 * the only one reading from the front of the queue. The transport
1809 	 * may add more entries to the back of the queue at the same time
1810 	 */
1811 	log_read(INFO, "size=%zd sc->recv_io.reassembly.data_length=%d\n", size,
1812 		sc->recv_io.reassembly.data_length);
1813 	if (sc->recv_io.reassembly.data_length >= size) {
1814 		int queue_length;
1815 		int queue_removed = 0;
1816 
1817 		/*
1818 		 * Need to make sure reassembly_data_length is read before
1819 		 * reading reassembly_queue_length and calling
1820 		 * _get_first_reassembly. This call is lock free
1821 		 * as we never read at the end of the queue which are being
1822 		 * updated in SOFTIRQ as more data is received
1823 		 */
1824 		virt_rmb();
1825 		queue_length = sc->recv_io.reassembly.queue_length;
1826 		data_read = 0;
1827 		to_read = size;
1828 		offset = sc->recv_io.reassembly.first_entry_offset;
1829 		while (data_read < size) {
1830 			response = _get_first_reassembly(info);
1831 			data_transfer = smbdirect_recv_io_payload(response);
1832 			data_length = le32_to_cpu(data_transfer->data_length);
1833 			remaining_data_length =
1834 				le32_to_cpu(
1835 					data_transfer->remaining_data_length);
1836 			data_offset = le32_to_cpu(data_transfer->data_offset);
1837 
1838 			/*
1839 			 * The upper layer expects RFC1002 length at the
1840 			 * beginning of the payload. Return it to indicate
1841 			 * the total length of the packet. This minimize the
1842 			 * change to upper layer packet processing logic. This
1843 			 * will be eventually remove when an intermediate
1844 			 * transport layer is added
1845 			 */
1846 			if (response->first_segment && size == 4) {
1847 				unsigned int rfc1002_len =
1848 					data_length + remaining_data_length;
1849 				__be32 rfc1002_hdr = cpu_to_be32(rfc1002_len);
1850 				if (copy_to_iter(&rfc1002_hdr, sizeof(rfc1002_hdr),
1851 						 &msg->msg_iter) != sizeof(rfc1002_hdr))
1852 					return -EFAULT;
1853 				data_read = 4;
1854 				response->first_segment = false;
1855 				log_read(INFO, "returning rfc1002 length %d\n",
1856 					rfc1002_len);
1857 				goto read_rfc1002_done;
1858 			}
1859 
1860 			to_copy = min_t(int, data_length - offset, to_read);
1861 			if (copy_to_iter((char *)data_transfer + data_offset + offset,
1862 					 to_copy, &msg->msg_iter) != to_copy)
1863 				return -EFAULT;
1864 
1865 			/* move on to the next buffer? */
1866 			if (to_copy == data_length - offset) {
1867 				queue_length--;
1868 				/*
1869 				 * No need to lock if we are not at the
1870 				 * end of the queue
1871 				 */
1872 				if (queue_length)
1873 					list_del(&response->list);
1874 				else {
1875 					spin_lock_irq(
1876 						&sc->recv_io.reassembly.lock);
1877 					list_del(&response->list);
1878 					spin_unlock_irq(
1879 						&sc->recv_io.reassembly.lock);
1880 				}
1881 				queue_removed++;
1882 				info->count_reassembly_queue--;
1883 				info->count_dequeue_reassembly_queue++;
1884 				put_receive_buffer(info, response);
1885 				offset = 0;
1886 				log_read(INFO, "put_receive_buffer offset=0\n");
1887 			} else
1888 				offset += to_copy;
1889 
1890 			to_read -= to_copy;
1891 			data_read += to_copy;
1892 
1893 			log_read(INFO, "_get_first_reassembly memcpy %d bytes data_transfer_length-offset=%d after that to_read=%d data_read=%d offset=%d\n",
1894 				 to_copy, data_length - offset,
1895 				 to_read, data_read, offset);
1896 		}
1897 
1898 		spin_lock_irq(&sc->recv_io.reassembly.lock);
1899 		sc->recv_io.reassembly.data_length -= data_read;
1900 		sc->recv_io.reassembly.queue_length -= queue_removed;
1901 		spin_unlock_irq(&sc->recv_io.reassembly.lock);
1902 
1903 		sc->recv_io.reassembly.first_entry_offset = offset;
1904 		log_read(INFO, "returning to thread data_read=%d reassembly_data_length=%d first_entry_offset=%d\n",
1905 			 data_read, sc->recv_io.reassembly.data_length,
1906 			 sc->recv_io.reassembly.first_entry_offset);
1907 read_rfc1002_done:
1908 		return data_read;
1909 	}
1910 
1911 	log_read(INFO, "wait_event on more data\n");
1912 	rc = wait_event_interruptible(
1913 		sc->recv_io.reassembly.wait_queue,
1914 		sc->recv_io.reassembly.data_length >= size ||
1915 			sc->status != SMBDIRECT_SOCKET_CONNECTED);
1916 	/* Don't return any data if interrupted */
1917 	if (rc)
1918 		return rc;
1919 
1920 	if (sc->status != SMBDIRECT_SOCKET_CONNECTED) {
1921 		log_read(ERR, "disconnected\n");
1922 		return -ECONNABORTED;
1923 	}
1924 
1925 	goto again;
1926 }
1927 
1928 /*
1929  * Send data to transport
1930  * Each rqst is transported as a SMBDirect payload
1931  * rqst: the data to write
1932  * return value: 0 if successfully write, otherwise error code
1933  */
1934 int smbd_send(struct TCP_Server_Info *server,
1935 	int num_rqst, struct smb_rqst *rqst_array)
1936 {
1937 	struct smbd_connection *info = server->smbd_conn;
1938 	struct smbdirect_socket *sc = &info->socket;
1939 	struct smbdirect_socket_parameters *sp = &sc->parameters;
1940 	struct smb_rqst *rqst;
1941 	struct iov_iter iter;
1942 	unsigned int remaining_data_length, klen;
1943 	int rc, i, rqst_idx;
1944 
1945 	if (sc->status != SMBDIRECT_SOCKET_CONNECTED)
1946 		return -EAGAIN;
1947 
1948 	/*
1949 	 * Add in the page array if there is one. The caller needs to set
1950 	 * rq_tailsz to PAGE_SIZE when the buffer has multiple pages and
1951 	 * ends at page boundary
1952 	 */
1953 	remaining_data_length = 0;
1954 	for (i = 0; i < num_rqst; i++)
1955 		remaining_data_length += smb_rqst_len(server, &rqst_array[i]);
1956 
1957 	if (unlikely(remaining_data_length > sp->max_fragmented_send_size)) {
1958 		/* assertion: payload never exceeds negotiated maximum */
1959 		log_write(ERR, "payload size %d > max size %d\n",
1960 			remaining_data_length, sp->max_fragmented_send_size);
1961 		return -EINVAL;
1962 	}
1963 
1964 	log_write(INFO, "num_rqst=%d total length=%u\n",
1965 			num_rqst, remaining_data_length);
1966 
1967 	rqst_idx = 0;
1968 	do {
1969 		rqst = &rqst_array[rqst_idx];
1970 
1971 		cifs_dbg(FYI, "Sending smb (RDMA): idx=%d smb_len=%lu\n",
1972 			 rqst_idx, smb_rqst_len(server, rqst));
1973 		for (i = 0; i < rqst->rq_nvec; i++)
1974 			dump_smb(rqst->rq_iov[i].iov_base, rqst->rq_iov[i].iov_len);
1975 
1976 		log_write(INFO, "RDMA-WR[%u] nvec=%d len=%u iter=%zu rqlen=%lu\n",
1977 			  rqst_idx, rqst->rq_nvec, remaining_data_length,
1978 			  iov_iter_count(&rqst->rq_iter), smb_rqst_len(server, rqst));
1979 
1980 		/* Send the metadata pages. */
1981 		klen = 0;
1982 		for (i = 0; i < rqst->rq_nvec; i++)
1983 			klen += rqst->rq_iov[i].iov_len;
1984 		iov_iter_kvec(&iter, ITER_SOURCE, rqst->rq_iov, rqst->rq_nvec, klen);
1985 
1986 		rc = smbd_post_send_full_iter(info, &iter, &remaining_data_length);
1987 		if (rc < 0)
1988 			break;
1989 
1990 		if (iov_iter_count(&rqst->rq_iter) > 0) {
1991 			/* And then the data pages if there are any */
1992 			rc = smbd_post_send_full_iter(info, &rqst->rq_iter,
1993 						      &remaining_data_length);
1994 			if (rc < 0)
1995 				break;
1996 		}
1997 
1998 	} while (++rqst_idx < num_rqst);
1999 
2000 	/*
2001 	 * As an optimization, we don't wait for individual I/O to finish
2002 	 * before sending the next one.
2003 	 * Send them all and wait for pending send count to get to 0
2004 	 * that means all the I/Os have been out and we are good to return
2005 	 */
2006 
2007 	wait_event(info->wait_send_pending,
2008 		atomic_read(&info->send_pending) == 0 ||
2009 		sc->status != SMBDIRECT_SOCKET_CONNECTED);
2010 
2011 	if (sc->status != SMBDIRECT_SOCKET_CONNECTED && rc == 0)
2012 		rc = -EAGAIN;
2013 
2014 	return rc;
2015 }
2016 
2017 static void register_mr_done(struct ib_cq *cq, struct ib_wc *wc)
2018 {
2019 	struct smbd_mr *mr;
2020 	struct ib_cqe *cqe;
2021 
2022 	if (wc->status) {
2023 		log_rdma_mr(ERR, "status=%d\n", wc->status);
2024 		cqe = wc->wr_cqe;
2025 		mr = container_of(cqe, struct smbd_mr, cqe);
2026 		smbd_disconnect_rdma_connection(mr->conn);
2027 	}
2028 }
2029 
2030 /*
2031  * The work queue function that recovers MRs
2032  * We need to call ib_dereg_mr() and ib_alloc_mr() before this MR can be used
2033  * again. Both calls are slow, so finish them in a workqueue. This will not
2034  * block I/O path.
2035  * There is one workqueue that recovers MRs, there is no need to lock as the
2036  * I/O requests calling smbd_register_mr will never update the links in the
2037  * mr_list.
2038  */
2039 static void smbd_mr_recovery_work(struct work_struct *work)
2040 {
2041 	struct smbd_connection *info =
2042 		container_of(work, struct smbd_connection, mr_recovery_work);
2043 	struct smbdirect_socket *sc = &info->socket;
2044 	struct smbd_mr *smbdirect_mr;
2045 	int rc;
2046 
2047 	list_for_each_entry(smbdirect_mr, &info->mr_list, list) {
2048 		if (smbdirect_mr->state == MR_ERROR) {
2049 
2050 			/* recover this MR entry */
2051 			rc = ib_dereg_mr(smbdirect_mr->mr);
2052 			if (rc) {
2053 				log_rdma_mr(ERR,
2054 					"ib_dereg_mr failed rc=%x\n",
2055 					rc);
2056 				smbd_disconnect_rdma_connection(info);
2057 				continue;
2058 			}
2059 
2060 			smbdirect_mr->mr = ib_alloc_mr(
2061 				sc->ib.pd, info->mr_type,
2062 				info->max_frmr_depth);
2063 			if (IS_ERR(smbdirect_mr->mr)) {
2064 				log_rdma_mr(ERR, "ib_alloc_mr failed mr_type=%x max_frmr_depth=%x\n",
2065 					    info->mr_type,
2066 					    info->max_frmr_depth);
2067 				smbd_disconnect_rdma_connection(info);
2068 				continue;
2069 			}
2070 		} else
2071 			/* This MR is being used, don't recover it */
2072 			continue;
2073 
2074 		smbdirect_mr->state = MR_READY;
2075 
2076 		/* smbdirect_mr->state is updated by this function
2077 		 * and is read and updated by I/O issuing CPUs trying
2078 		 * to get a MR, the call to atomic_inc_return
2079 		 * implicates a memory barrier and guarantees this
2080 		 * value is updated before waking up any calls to
2081 		 * get_mr() from the I/O issuing CPUs
2082 		 */
2083 		if (atomic_inc_return(&info->mr_ready_count) == 1)
2084 			wake_up_interruptible(&info->wait_mr);
2085 	}
2086 }
2087 
2088 static void destroy_mr_list(struct smbd_connection *info)
2089 {
2090 	struct smbdirect_socket *sc = &info->socket;
2091 	struct smbd_mr *mr, *tmp;
2092 
2093 	disable_work_sync(&info->mr_recovery_work);
2094 	list_for_each_entry_safe(mr, tmp, &info->mr_list, list) {
2095 		if (mr->state == MR_INVALIDATED)
2096 			ib_dma_unmap_sg(sc->ib.dev, mr->sgt.sgl,
2097 				mr->sgt.nents, mr->dir);
2098 		ib_dereg_mr(mr->mr);
2099 		kfree(mr->sgt.sgl);
2100 		kfree(mr);
2101 	}
2102 }
2103 
2104 /*
2105  * Allocate MRs used for RDMA read/write
2106  * The number of MRs will not exceed hardware capability in responder_resources
2107  * All MRs are kept in mr_list. The MR can be recovered after it's used
2108  * Recovery is done in smbd_mr_recovery_work. The content of list entry changes
2109  * as MRs are used and recovered for I/O, but the list links will not change
2110  */
2111 static int allocate_mr_list(struct smbd_connection *info)
2112 {
2113 	struct smbdirect_socket *sc = &info->socket;
2114 	int i;
2115 	struct smbd_mr *smbdirect_mr, *tmp;
2116 
2117 	INIT_LIST_HEAD(&info->mr_list);
2118 	init_waitqueue_head(&info->wait_mr);
2119 	spin_lock_init(&info->mr_list_lock);
2120 	atomic_set(&info->mr_ready_count, 0);
2121 	atomic_set(&info->mr_used_count, 0);
2122 	init_waitqueue_head(&info->wait_for_mr_cleanup);
2123 	INIT_WORK(&info->mr_recovery_work, smbd_mr_recovery_work);
2124 	/* Allocate more MRs (2x) than hardware responder_resources */
2125 	for (i = 0; i < info->responder_resources * 2; i++) {
2126 		smbdirect_mr = kzalloc(sizeof(*smbdirect_mr), GFP_KERNEL);
2127 		if (!smbdirect_mr)
2128 			goto cleanup_entries;
2129 		smbdirect_mr->mr = ib_alloc_mr(sc->ib.pd, info->mr_type,
2130 					info->max_frmr_depth);
2131 		if (IS_ERR(smbdirect_mr->mr)) {
2132 			log_rdma_mr(ERR, "ib_alloc_mr failed mr_type=%x max_frmr_depth=%x\n",
2133 				    info->mr_type, info->max_frmr_depth);
2134 			goto out;
2135 		}
2136 		smbdirect_mr->sgt.sgl = kcalloc(info->max_frmr_depth,
2137 						sizeof(struct scatterlist),
2138 						GFP_KERNEL);
2139 		if (!smbdirect_mr->sgt.sgl) {
2140 			log_rdma_mr(ERR, "failed to allocate sgl\n");
2141 			ib_dereg_mr(smbdirect_mr->mr);
2142 			goto out;
2143 		}
2144 		smbdirect_mr->state = MR_READY;
2145 		smbdirect_mr->conn = info;
2146 
2147 		list_add_tail(&smbdirect_mr->list, &info->mr_list);
2148 		atomic_inc(&info->mr_ready_count);
2149 	}
2150 	return 0;
2151 
2152 out:
2153 	kfree(smbdirect_mr);
2154 cleanup_entries:
2155 	list_for_each_entry_safe(smbdirect_mr, tmp, &info->mr_list, list) {
2156 		list_del(&smbdirect_mr->list);
2157 		ib_dereg_mr(smbdirect_mr->mr);
2158 		kfree(smbdirect_mr->sgt.sgl);
2159 		kfree(smbdirect_mr);
2160 	}
2161 	return -ENOMEM;
2162 }
2163 
2164 /*
2165  * Get a MR from mr_list. This function waits until there is at least one
2166  * MR available in the list. It may access the list while the
2167  * smbd_mr_recovery_work is recovering the MR list. This doesn't need a lock
2168  * as they never modify the same places. However, there may be several CPUs
2169  * issuing I/O trying to get MR at the same time, mr_list_lock is used to
2170  * protect this situation.
2171  */
2172 static struct smbd_mr *get_mr(struct smbd_connection *info)
2173 {
2174 	struct smbdirect_socket *sc = &info->socket;
2175 	struct smbd_mr *ret;
2176 	int rc;
2177 again:
2178 	rc = wait_event_interruptible(info->wait_mr,
2179 		atomic_read(&info->mr_ready_count) ||
2180 		sc->status != SMBDIRECT_SOCKET_CONNECTED);
2181 	if (rc) {
2182 		log_rdma_mr(ERR, "wait_event_interruptible rc=%x\n", rc);
2183 		return NULL;
2184 	}
2185 
2186 	if (sc->status != SMBDIRECT_SOCKET_CONNECTED) {
2187 		log_rdma_mr(ERR, "sc->status=%x\n", sc->status);
2188 		return NULL;
2189 	}
2190 
2191 	spin_lock(&info->mr_list_lock);
2192 	list_for_each_entry(ret, &info->mr_list, list) {
2193 		if (ret->state == MR_READY) {
2194 			ret->state = MR_REGISTERED;
2195 			spin_unlock(&info->mr_list_lock);
2196 			atomic_dec(&info->mr_ready_count);
2197 			atomic_inc(&info->mr_used_count);
2198 			return ret;
2199 		}
2200 	}
2201 
2202 	spin_unlock(&info->mr_list_lock);
2203 	/*
2204 	 * It is possible that we could fail to get MR because other processes may
2205 	 * try to acquire a MR at the same time. If this is the case, retry it.
2206 	 */
2207 	goto again;
2208 }
2209 
2210 /*
2211  * Transcribe the pages from an iterator into an MR scatterlist.
2212  */
2213 static int smbd_iter_to_mr(struct smbd_connection *info,
2214 			   struct iov_iter *iter,
2215 			   struct sg_table *sgt,
2216 			   unsigned int max_sg)
2217 {
2218 	int ret;
2219 
2220 	memset(sgt->sgl, 0, max_sg * sizeof(struct scatterlist));
2221 
2222 	ret = extract_iter_to_sg(iter, iov_iter_count(iter), sgt, max_sg, 0);
2223 	WARN_ON(ret < 0);
2224 	if (sgt->nents > 0)
2225 		sg_mark_end(&sgt->sgl[sgt->nents - 1]);
2226 	return ret;
2227 }
2228 
2229 /*
2230  * Register memory for RDMA read/write
2231  * iter: the buffer to register memory with
2232  * writing: true if this is a RDMA write (SMB read), false for RDMA read
2233  * need_invalidate: true if this MR needs to be locally invalidated after I/O
2234  * return value: the MR registered, NULL if failed.
2235  */
2236 struct smbd_mr *smbd_register_mr(struct smbd_connection *info,
2237 				 struct iov_iter *iter,
2238 				 bool writing, bool need_invalidate)
2239 {
2240 	struct smbdirect_socket *sc = &info->socket;
2241 	struct smbd_mr *smbdirect_mr;
2242 	int rc, num_pages;
2243 	enum dma_data_direction dir;
2244 	struct ib_reg_wr *reg_wr;
2245 
2246 	num_pages = iov_iter_npages(iter, info->max_frmr_depth + 1);
2247 	if (num_pages > info->max_frmr_depth) {
2248 		log_rdma_mr(ERR, "num_pages=%d max_frmr_depth=%d\n",
2249 			num_pages, info->max_frmr_depth);
2250 		WARN_ON_ONCE(1);
2251 		return NULL;
2252 	}
2253 
2254 	smbdirect_mr = get_mr(info);
2255 	if (!smbdirect_mr) {
2256 		log_rdma_mr(ERR, "get_mr returning NULL\n");
2257 		return NULL;
2258 	}
2259 
2260 	dir = writing ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
2261 	smbdirect_mr->dir = dir;
2262 	smbdirect_mr->need_invalidate = need_invalidate;
2263 	smbdirect_mr->sgt.nents = 0;
2264 	smbdirect_mr->sgt.orig_nents = 0;
2265 
2266 	log_rdma_mr(INFO, "num_pages=0x%x count=0x%zx depth=%u\n",
2267 		    num_pages, iov_iter_count(iter), info->max_frmr_depth);
2268 	smbd_iter_to_mr(info, iter, &smbdirect_mr->sgt, info->max_frmr_depth);
2269 
2270 	rc = ib_dma_map_sg(sc->ib.dev, smbdirect_mr->sgt.sgl,
2271 			   smbdirect_mr->sgt.nents, dir);
2272 	if (!rc) {
2273 		log_rdma_mr(ERR, "ib_dma_map_sg num_pages=%x dir=%x rc=%x\n",
2274 			num_pages, dir, rc);
2275 		goto dma_map_error;
2276 	}
2277 
2278 	rc = ib_map_mr_sg(smbdirect_mr->mr, smbdirect_mr->sgt.sgl,
2279 			  smbdirect_mr->sgt.nents, NULL, PAGE_SIZE);
2280 	if (rc != smbdirect_mr->sgt.nents) {
2281 		log_rdma_mr(ERR,
2282 			"ib_map_mr_sg failed rc = %d nents = %x\n",
2283 			rc, smbdirect_mr->sgt.nents);
2284 		goto map_mr_error;
2285 	}
2286 
2287 	ib_update_fast_reg_key(smbdirect_mr->mr,
2288 		ib_inc_rkey(smbdirect_mr->mr->rkey));
2289 	reg_wr = &smbdirect_mr->wr;
2290 	reg_wr->wr.opcode = IB_WR_REG_MR;
2291 	smbdirect_mr->cqe.done = register_mr_done;
2292 	reg_wr->wr.wr_cqe = &smbdirect_mr->cqe;
2293 	reg_wr->wr.num_sge = 0;
2294 	reg_wr->wr.send_flags = IB_SEND_SIGNALED;
2295 	reg_wr->mr = smbdirect_mr->mr;
2296 	reg_wr->key = smbdirect_mr->mr->rkey;
2297 	reg_wr->access = writing ?
2298 			IB_ACCESS_REMOTE_WRITE | IB_ACCESS_LOCAL_WRITE :
2299 			IB_ACCESS_REMOTE_READ;
2300 
2301 	/*
2302 	 * There is no need for waiting for complemtion on ib_post_send
2303 	 * on IB_WR_REG_MR. Hardware enforces a barrier and order of execution
2304 	 * on the next ib_post_send when we actually send I/O to remote peer
2305 	 */
2306 	rc = ib_post_send(sc->ib.qp, &reg_wr->wr, NULL);
2307 	if (!rc)
2308 		return smbdirect_mr;
2309 
2310 	log_rdma_mr(ERR, "ib_post_send failed rc=%x reg_wr->key=%x\n",
2311 		rc, reg_wr->key);
2312 
2313 	/* If all failed, attempt to recover this MR by setting it MR_ERROR*/
2314 map_mr_error:
2315 	ib_dma_unmap_sg(sc->ib.dev, smbdirect_mr->sgt.sgl,
2316 			smbdirect_mr->sgt.nents, smbdirect_mr->dir);
2317 
2318 dma_map_error:
2319 	smbdirect_mr->state = MR_ERROR;
2320 	if (atomic_dec_and_test(&info->mr_used_count))
2321 		wake_up(&info->wait_for_mr_cleanup);
2322 
2323 	smbd_disconnect_rdma_connection(info);
2324 
2325 	return NULL;
2326 }
2327 
2328 static void local_inv_done(struct ib_cq *cq, struct ib_wc *wc)
2329 {
2330 	struct smbd_mr *smbdirect_mr;
2331 	struct ib_cqe *cqe;
2332 
2333 	cqe = wc->wr_cqe;
2334 	smbdirect_mr = container_of(cqe, struct smbd_mr, cqe);
2335 	smbdirect_mr->state = MR_INVALIDATED;
2336 	if (wc->status != IB_WC_SUCCESS) {
2337 		log_rdma_mr(ERR, "invalidate failed status=%x\n", wc->status);
2338 		smbdirect_mr->state = MR_ERROR;
2339 	}
2340 	complete(&smbdirect_mr->invalidate_done);
2341 }
2342 
2343 /*
2344  * Deregister a MR after I/O is done
2345  * This function may wait if remote invalidation is not used
2346  * and we have to locally invalidate the buffer to prevent data is being
2347  * modified by remote peer after upper layer consumes it
2348  */
2349 int smbd_deregister_mr(struct smbd_mr *smbdirect_mr)
2350 {
2351 	struct ib_send_wr *wr;
2352 	struct smbd_connection *info = smbdirect_mr->conn;
2353 	struct smbdirect_socket *sc = &info->socket;
2354 	int rc = 0;
2355 
2356 	if (smbdirect_mr->need_invalidate) {
2357 		/* Need to finish local invalidation before returning */
2358 		wr = &smbdirect_mr->inv_wr;
2359 		wr->opcode = IB_WR_LOCAL_INV;
2360 		smbdirect_mr->cqe.done = local_inv_done;
2361 		wr->wr_cqe = &smbdirect_mr->cqe;
2362 		wr->num_sge = 0;
2363 		wr->ex.invalidate_rkey = smbdirect_mr->mr->rkey;
2364 		wr->send_flags = IB_SEND_SIGNALED;
2365 
2366 		init_completion(&smbdirect_mr->invalidate_done);
2367 		rc = ib_post_send(sc->ib.qp, wr, NULL);
2368 		if (rc) {
2369 			log_rdma_mr(ERR, "ib_post_send failed rc=%x\n", rc);
2370 			smbd_disconnect_rdma_connection(info);
2371 			goto done;
2372 		}
2373 		wait_for_completion(&smbdirect_mr->invalidate_done);
2374 		smbdirect_mr->need_invalidate = false;
2375 	} else
2376 		/*
2377 		 * For remote invalidation, just set it to MR_INVALIDATED
2378 		 * and defer to mr_recovery_work to recover the MR for next use
2379 		 */
2380 		smbdirect_mr->state = MR_INVALIDATED;
2381 
2382 	if (smbdirect_mr->state == MR_INVALIDATED) {
2383 		ib_dma_unmap_sg(
2384 			sc->ib.dev, smbdirect_mr->sgt.sgl,
2385 			smbdirect_mr->sgt.nents,
2386 			smbdirect_mr->dir);
2387 		smbdirect_mr->state = MR_READY;
2388 		if (atomic_inc_return(&info->mr_ready_count) == 1)
2389 			wake_up_interruptible(&info->wait_mr);
2390 	} else
2391 		/*
2392 		 * Schedule the work to do MR recovery for future I/Os MR
2393 		 * recovery is slow and don't want it to block current I/O
2394 		 */
2395 		queue_work(info->workqueue, &info->mr_recovery_work);
2396 
2397 done:
2398 	if (atomic_dec_and_test(&info->mr_used_count))
2399 		wake_up(&info->wait_for_mr_cleanup);
2400 
2401 	return rc;
2402 }
2403 
2404 static bool smb_set_sge(struct smb_extract_to_rdma *rdma,
2405 			struct page *lowest_page, size_t off, size_t len)
2406 {
2407 	struct ib_sge *sge = &rdma->sge[rdma->nr_sge];
2408 	u64 addr;
2409 
2410 	addr = ib_dma_map_page(rdma->device, lowest_page,
2411 			       off, len, rdma->direction);
2412 	if (ib_dma_mapping_error(rdma->device, addr))
2413 		return false;
2414 
2415 	sge->addr   = addr;
2416 	sge->length = len;
2417 	sge->lkey   = rdma->local_dma_lkey;
2418 	rdma->nr_sge++;
2419 	return true;
2420 }
2421 
2422 /*
2423  * Extract page fragments from a BVEC-class iterator and add them to an RDMA
2424  * element list.  The pages are not pinned.
2425  */
2426 static ssize_t smb_extract_bvec_to_rdma(struct iov_iter *iter,
2427 					struct smb_extract_to_rdma *rdma,
2428 					ssize_t maxsize)
2429 {
2430 	const struct bio_vec *bv = iter->bvec;
2431 	unsigned long start = iter->iov_offset;
2432 	unsigned int i;
2433 	ssize_t ret = 0;
2434 
2435 	for (i = 0; i < iter->nr_segs; i++) {
2436 		size_t off, len;
2437 
2438 		len = bv[i].bv_len;
2439 		if (start >= len) {
2440 			start -= len;
2441 			continue;
2442 		}
2443 
2444 		len = min_t(size_t, maxsize, len - start);
2445 		off = bv[i].bv_offset + start;
2446 
2447 		if (!smb_set_sge(rdma, bv[i].bv_page, off, len))
2448 			return -EIO;
2449 
2450 		ret += len;
2451 		maxsize -= len;
2452 		if (rdma->nr_sge >= rdma->max_sge || maxsize <= 0)
2453 			break;
2454 		start = 0;
2455 	}
2456 
2457 	if (ret > 0)
2458 		iov_iter_advance(iter, ret);
2459 	return ret;
2460 }
2461 
2462 /*
2463  * Extract fragments from a KVEC-class iterator and add them to an RDMA list.
2464  * This can deal with vmalloc'd buffers as well as kmalloc'd or static buffers.
2465  * The pages are not pinned.
2466  */
2467 static ssize_t smb_extract_kvec_to_rdma(struct iov_iter *iter,
2468 					struct smb_extract_to_rdma *rdma,
2469 					ssize_t maxsize)
2470 {
2471 	const struct kvec *kv = iter->kvec;
2472 	unsigned long start = iter->iov_offset;
2473 	unsigned int i;
2474 	ssize_t ret = 0;
2475 
2476 	for (i = 0; i < iter->nr_segs; i++) {
2477 		struct page *page;
2478 		unsigned long kaddr;
2479 		size_t off, len, seg;
2480 
2481 		len = kv[i].iov_len;
2482 		if (start >= len) {
2483 			start -= len;
2484 			continue;
2485 		}
2486 
2487 		kaddr = (unsigned long)kv[i].iov_base + start;
2488 		off = kaddr & ~PAGE_MASK;
2489 		len = min_t(size_t, maxsize, len - start);
2490 		kaddr &= PAGE_MASK;
2491 
2492 		maxsize -= len;
2493 		do {
2494 			seg = min_t(size_t, len, PAGE_SIZE - off);
2495 
2496 			if (is_vmalloc_or_module_addr((void *)kaddr))
2497 				page = vmalloc_to_page((void *)kaddr);
2498 			else
2499 				page = virt_to_page((void *)kaddr);
2500 
2501 			if (!smb_set_sge(rdma, page, off, seg))
2502 				return -EIO;
2503 
2504 			ret += seg;
2505 			len -= seg;
2506 			kaddr += PAGE_SIZE;
2507 			off = 0;
2508 		} while (len > 0 && rdma->nr_sge < rdma->max_sge);
2509 
2510 		if (rdma->nr_sge >= rdma->max_sge || maxsize <= 0)
2511 			break;
2512 		start = 0;
2513 	}
2514 
2515 	if (ret > 0)
2516 		iov_iter_advance(iter, ret);
2517 	return ret;
2518 }
2519 
2520 /*
2521  * Extract folio fragments from a FOLIOQ-class iterator and add them to an RDMA
2522  * list.  The folios are not pinned.
2523  */
2524 static ssize_t smb_extract_folioq_to_rdma(struct iov_iter *iter,
2525 					  struct smb_extract_to_rdma *rdma,
2526 					  ssize_t maxsize)
2527 {
2528 	const struct folio_queue *folioq = iter->folioq;
2529 	unsigned int slot = iter->folioq_slot;
2530 	ssize_t ret = 0;
2531 	size_t offset = iter->iov_offset;
2532 
2533 	BUG_ON(!folioq);
2534 
2535 	if (slot >= folioq_nr_slots(folioq)) {
2536 		folioq = folioq->next;
2537 		if (WARN_ON_ONCE(!folioq))
2538 			return -EIO;
2539 		slot = 0;
2540 	}
2541 
2542 	do {
2543 		struct folio *folio = folioq_folio(folioq, slot);
2544 		size_t fsize = folioq_folio_size(folioq, slot);
2545 
2546 		if (offset < fsize) {
2547 			size_t part = umin(maxsize, fsize - offset);
2548 
2549 			if (!smb_set_sge(rdma, folio_page(folio, 0), offset, part))
2550 				return -EIO;
2551 
2552 			offset += part;
2553 			ret += part;
2554 			maxsize -= part;
2555 		}
2556 
2557 		if (offset >= fsize) {
2558 			offset = 0;
2559 			slot++;
2560 			if (slot >= folioq_nr_slots(folioq)) {
2561 				if (!folioq->next) {
2562 					WARN_ON_ONCE(ret < iter->count);
2563 					break;
2564 				}
2565 				folioq = folioq->next;
2566 				slot = 0;
2567 			}
2568 		}
2569 	} while (rdma->nr_sge < rdma->max_sge && maxsize > 0);
2570 
2571 	iter->folioq = folioq;
2572 	iter->folioq_slot = slot;
2573 	iter->iov_offset = offset;
2574 	iter->count -= ret;
2575 	return ret;
2576 }
2577 
2578 /*
2579  * Extract page fragments from up to the given amount of the source iterator
2580  * and build up an RDMA list that refers to all of those bits.  The RDMA list
2581  * is appended to, up to the maximum number of elements set in the parameter
2582  * block.
2583  *
2584  * The extracted page fragments are not pinned or ref'd in any way; if an
2585  * IOVEC/UBUF-type iterator is to be used, it should be converted to a
2586  * BVEC-type iterator and the pages pinned, ref'd or otherwise held in some
2587  * way.
2588  */
2589 static ssize_t smb_extract_iter_to_rdma(struct iov_iter *iter, size_t len,
2590 					struct smb_extract_to_rdma *rdma)
2591 {
2592 	ssize_t ret;
2593 	int before = rdma->nr_sge;
2594 
2595 	switch (iov_iter_type(iter)) {
2596 	case ITER_BVEC:
2597 		ret = smb_extract_bvec_to_rdma(iter, rdma, len);
2598 		break;
2599 	case ITER_KVEC:
2600 		ret = smb_extract_kvec_to_rdma(iter, rdma, len);
2601 		break;
2602 	case ITER_FOLIOQ:
2603 		ret = smb_extract_folioq_to_rdma(iter, rdma, len);
2604 		break;
2605 	default:
2606 		WARN_ON_ONCE(1);
2607 		return -EIO;
2608 	}
2609 
2610 	if (ret < 0) {
2611 		while (rdma->nr_sge > before) {
2612 			struct ib_sge *sge = &rdma->sge[rdma->nr_sge--];
2613 
2614 			ib_dma_unmap_single(rdma->device, sge->addr, sge->length,
2615 					    rdma->direction);
2616 			sge->addr = 0;
2617 		}
2618 	}
2619 
2620 	return ret;
2621 }
2622