1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Copyright (C) 2017, Microsoft Corporation. 4 * 5 * Author(s): Long Li <longli@microsoft.com> 6 */ 7 #include <linux/module.h> 8 #include <linux/highmem.h> 9 #include <linux/folio_queue.h> 10 #include "../common/smbdirect/smbdirect_pdu.h" 11 #include "smbdirect.h" 12 #include "cifs_debug.h" 13 #include "cifsproto.h" 14 #include "smb2proto.h" 15 16 static struct smbd_response *get_empty_queue_buffer( 17 struct smbd_connection *info); 18 static struct smbd_response *get_receive_buffer( 19 struct smbd_connection *info); 20 static void put_receive_buffer( 21 struct smbd_connection *info, 22 struct smbd_response *response); 23 static int allocate_receive_buffers(struct smbd_connection *info, int num_buf); 24 static void destroy_receive_buffers(struct smbd_connection *info); 25 26 static void put_empty_packet( 27 struct smbd_connection *info, struct smbd_response *response); 28 static void enqueue_reassembly( 29 struct smbd_connection *info, 30 struct smbd_response *response, int data_length); 31 static struct smbd_response *_get_first_reassembly( 32 struct smbd_connection *info); 33 34 static int smbd_post_recv( 35 struct smbd_connection *info, 36 struct smbd_response *response); 37 38 static int smbd_post_send_empty(struct smbd_connection *info); 39 40 static void destroy_mr_list(struct smbd_connection *info); 41 static int allocate_mr_list(struct smbd_connection *info); 42 43 struct smb_extract_to_rdma { 44 struct ib_sge *sge; 45 unsigned int nr_sge; 46 unsigned int max_sge; 47 struct ib_device *device; 48 u32 local_dma_lkey; 49 enum dma_data_direction direction; 50 }; 51 static ssize_t smb_extract_iter_to_rdma(struct iov_iter *iter, size_t len, 52 struct smb_extract_to_rdma *rdma); 53 54 /* Port numbers for SMBD transport */ 55 #define SMB_PORT 445 56 #define SMBD_PORT 5445 57 58 /* Address lookup and resolve timeout in ms */ 59 #define RDMA_RESOLVE_TIMEOUT 5000 60 61 /* SMBD negotiation timeout in seconds */ 62 #define SMBD_NEGOTIATE_TIMEOUT 120 63 64 /* SMBD minimum receive size and fragmented sized defined in [MS-SMBD] */ 65 #define SMBD_MIN_RECEIVE_SIZE 128 66 #define SMBD_MIN_FRAGMENTED_SIZE 131072 67 68 /* 69 * Default maximum number of RDMA read/write outstanding on this connection 70 * This value is possibly decreased during QP creation on hardware limit 71 */ 72 #define SMBD_CM_RESPONDER_RESOURCES 32 73 74 /* Maximum number of retries on data transfer operations */ 75 #define SMBD_CM_RETRY 6 76 /* No need to retry on Receiver Not Ready since SMBD manages credits */ 77 #define SMBD_CM_RNR_RETRY 0 78 79 /* 80 * User configurable initial values per SMBD transport connection 81 * as defined in [MS-SMBD] 3.1.1.1 82 * Those may change after a SMBD negotiation 83 */ 84 /* The local peer's maximum number of credits to grant to the peer */ 85 int smbd_receive_credit_max = 255; 86 87 /* The remote peer's credit request of local peer */ 88 int smbd_send_credit_target = 255; 89 90 /* The maximum single message size can be sent to remote peer */ 91 int smbd_max_send_size = 1364; 92 93 /* The maximum fragmented upper-layer payload receive size supported */ 94 int smbd_max_fragmented_recv_size = 1024 * 1024; 95 96 /* The maximum single-message size which can be received */ 97 int smbd_max_receive_size = 1364; 98 99 /* The timeout to initiate send of a keepalive message on idle */ 100 int smbd_keep_alive_interval = 120; 101 102 /* 103 * User configurable initial values for RDMA transport 104 * The actual values used may be lower and are limited to hardware capabilities 105 */ 106 /* Default maximum number of pages in a single RDMA write/read */ 107 int smbd_max_frmr_depth = 2048; 108 109 /* If payload is less than this byte, use RDMA send/recv not read/write */ 110 int rdma_readwrite_threshold = 4096; 111 112 /* Transport logging functions 113 * Logging are defined as classes. They can be OR'ed to define the actual 114 * logging level via module parameter smbd_logging_class 115 * e.g. cifs.smbd_logging_class=0xa0 will log all log_rdma_recv() and 116 * log_rdma_event() 117 */ 118 #define LOG_OUTGOING 0x1 119 #define LOG_INCOMING 0x2 120 #define LOG_READ 0x4 121 #define LOG_WRITE 0x8 122 #define LOG_RDMA_SEND 0x10 123 #define LOG_RDMA_RECV 0x20 124 #define LOG_KEEP_ALIVE 0x40 125 #define LOG_RDMA_EVENT 0x80 126 #define LOG_RDMA_MR 0x100 127 static unsigned int smbd_logging_class; 128 module_param(smbd_logging_class, uint, 0644); 129 MODULE_PARM_DESC(smbd_logging_class, 130 "Logging class for SMBD transport 0x0 to 0x100"); 131 132 #define ERR 0x0 133 #define INFO 0x1 134 static unsigned int smbd_logging_level = ERR; 135 module_param(smbd_logging_level, uint, 0644); 136 MODULE_PARM_DESC(smbd_logging_level, 137 "Logging level for SMBD transport, 0 (default): error, 1: info"); 138 139 #define log_rdma(level, class, fmt, args...) \ 140 do { \ 141 if (level <= smbd_logging_level || class & smbd_logging_class) \ 142 cifs_dbg(VFS, "%s:%d " fmt, __func__, __LINE__, ##args);\ 143 } while (0) 144 145 #define log_outgoing(level, fmt, args...) \ 146 log_rdma(level, LOG_OUTGOING, fmt, ##args) 147 #define log_incoming(level, fmt, args...) \ 148 log_rdma(level, LOG_INCOMING, fmt, ##args) 149 #define log_read(level, fmt, args...) log_rdma(level, LOG_READ, fmt, ##args) 150 #define log_write(level, fmt, args...) log_rdma(level, LOG_WRITE, fmt, ##args) 151 #define log_rdma_send(level, fmt, args...) \ 152 log_rdma(level, LOG_RDMA_SEND, fmt, ##args) 153 #define log_rdma_recv(level, fmt, args...) \ 154 log_rdma(level, LOG_RDMA_RECV, fmt, ##args) 155 #define log_keep_alive(level, fmt, args...) \ 156 log_rdma(level, LOG_KEEP_ALIVE, fmt, ##args) 157 #define log_rdma_event(level, fmt, args...) \ 158 log_rdma(level, LOG_RDMA_EVENT, fmt, ##args) 159 #define log_rdma_mr(level, fmt, args...) \ 160 log_rdma(level, LOG_RDMA_MR, fmt, ##args) 161 162 static void smbd_disconnect_rdma_work(struct work_struct *work) 163 { 164 struct smbd_connection *info = 165 container_of(work, struct smbd_connection, disconnect_work); 166 struct smbdirect_socket *sc = &info->socket; 167 168 if (sc->status == SMBDIRECT_SOCKET_CONNECTED) { 169 sc->status = SMBDIRECT_SOCKET_DISCONNECTING; 170 rdma_disconnect(sc->rdma.cm_id); 171 } 172 } 173 174 static void smbd_disconnect_rdma_connection(struct smbd_connection *info) 175 { 176 queue_work(info->workqueue, &info->disconnect_work); 177 } 178 179 /* Upcall from RDMA CM */ 180 static int smbd_conn_upcall( 181 struct rdma_cm_id *id, struct rdma_cm_event *event) 182 { 183 struct smbd_connection *info = id->context; 184 struct smbdirect_socket *sc = &info->socket; 185 186 log_rdma_event(INFO, "event=%d status=%d\n", 187 event->event, event->status); 188 189 switch (event->event) { 190 case RDMA_CM_EVENT_ADDR_RESOLVED: 191 case RDMA_CM_EVENT_ROUTE_RESOLVED: 192 info->ri_rc = 0; 193 complete(&info->ri_done); 194 break; 195 196 case RDMA_CM_EVENT_ADDR_ERROR: 197 info->ri_rc = -EHOSTUNREACH; 198 complete(&info->ri_done); 199 break; 200 201 case RDMA_CM_EVENT_ROUTE_ERROR: 202 info->ri_rc = -ENETUNREACH; 203 complete(&info->ri_done); 204 break; 205 206 case RDMA_CM_EVENT_ESTABLISHED: 207 log_rdma_event(INFO, "connected event=%d\n", event->event); 208 sc->status = SMBDIRECT_SOCKET_CONNECTED; 209 wake_up_interruptible(&info->conn_wait); 210 break; 211 212 case RDMA_CM_EVENT_CONNECT_ERROR: 213 case RDMA_CM_EVENT_UNREACHABLE: 214 case RDMA_CM_EVENT_REJECTED: 215 log_rdma_event(INFO, "connecting failed event=%d\n", event->event); 216 sc->status = SMBDIRECT_SOCKET_DISCONNECTED; 217 wake_up_interruptible(&info->conn_wait); 218 break; 219 220 case RDMA_CM_EVENT_DEVICE_REMOVAL: 221 case RDMA_CM_EVENT_DISCONNECTED: 222 /* This happens when we fail the negotiation */ 223 if (sc->status == SMBDIRECT_SOCKET_NEGOTIATE_FAILED) { 224 sc->status = SMBDIRECT_SOCKET_DISCONNECTED; 225 wake_up(&info->conn_wait); 226 break; 227 } 228 229 sc->status = SMBDIRECT_SOCKET_DISCONNECTED; 230 wake_up_interruptible(&info->disconn_wait); 231 wake_up_interruptible(&info->wait_reassembly_queue); 232 wake_up_interruptible_all(&info->wait_send_queue); 233 break; 234 235 default: 236 break; 237 } 238 239 return 0; 240 } 241 242 /* Upcall from RDMA QP */ 243 static void 244 smbd_qp_async_error_upcall(struct ib_event *event, void *context) 245 { 246 struct smbd_connection *info = context; 247 248 log_rdma_event(ERR, "%s on device %s info %p\n", 249 ib_event_msg(event->event), event->device->name, info); 250 251 switch (event->event) { 252 case IB_EVENT_CQ_ERR: 253 case IB_EVENT_QP_FATAL: 254 smbd_disconnect_rdma_connection(info); 255 break; 256 257 default: 258 break; 259 } 260 } 261 262 static inline void *smbd_request_payload(struct smbd_request *request) 263 { 264 return (void *)request->packet; 265 } 266 267 static inline void *smbd_response_payload(struct smbd_response *response) 268 { 269 return (void *)response->packet; 270 } 271 272 /* Called when a RDMA send is done */ 273 static void send_done(struct ib_cq *cq, struct ib_wc *wc) 274 { 275 int i; 276 struct smbd_request *request = 277 container_of(wc->wr_cqe, struct smbd_request, cqe); 278 struct smbd_connection *info = request->info; 279 struct smbdirect_socket *sc = &info->socket; 280 281 log_rdma_send(INFO, "smbd_request 0x%p completed wc->status=%d\n", 282 request, wc->status); 283 284 if (wc->status != IB_WC_SUCCESS || wc->opcode != IB_WC_SEND) { 285 log_rdma_send(ERR, "wc->status=%d wc->opcode=%d\n", 286 wc->status, wc->opcode); 287 smbd_disconnect_rdma_connection(request->info); 288 } 289 290 for (i = 0; i < request->num_sge; i++) 291 ib_dma_unmap_single(sc->ib.dev, 292 request->sge[i].addr, 293 request->sge[i].length, 294 DMA_TO_DEVICE); 295 296 if (atomic_dec_and_test(&request->info->send_pending)) 297 wake_up(&request->info->wait_send_pending); 298 299 wake_up(&request->info->wait_post_send); 300 301 mempool_free(request, request->info->request_mempool); 302 } 303 304 static void dump_smbdirect_negotiate_resp(struct smbdirect_negotiate_resp *resp) 305 { 306 log_rdma_event(INFO, "resp message min_version %u max_version %u negotiated_version %u credits_requested %u credits_granted %u status %u max_readwrite_size %u preferred_send_size %u max_receive_size %u max_fragmented_size %u\n", 307 resp->min_version, resp->max_version, 308 resp->negotiated_version, resp->credits_requested, 309 resp->credits_granted, resp->status, 310 resp->max_readwrite_size, resp->preferred_send_size, 311 resp->max_receive_size, resp->max_fragmented_size); 312 } 313 314 /* 315 * Process a negotiation response message, according to [MS-SMBD]3.1.5.7 316 * response, packet_length: the negotiation response message 317 * return value: true if negotiation is a success, false if failed 318 */ 319 static bool process_negotiation_response( 320 struct smbd_response *response, int packet_length) 321 { 322 struct smbd_connection *info = response->info; 323 struct smbdirect_socket *sc = &info->socket; 324 struct smbdirect_socket_parameters *sp = &sc->parameters; 325 struct smbdirect_negotiate_resp *packet = smbd_response_payload(response); 326 327 if (packet_length < sizeof(struct smbdirect_negotiate_resp)) { 328 log_rdma_event(ERR, 329 "error: packet_length=%d\n", packet_length); 330 return false; 331 } 332 333 if (le16_to_cpu(packet->negotiated_version) != SMBDIRECT_V1) { 334 log_rdma_event(ERR, "error: negotiated_version=%x\n", 335 le16_to_cpu(packet->negotiated_version)); 336 return false; 337 } 338 info->protocol = le16_to_cpu(packet->negotiated_version); 339 340 if (packet->credits_requested == 0) { 341 log_rdma_event(ERR, "error: credits_requested==0\n"); 342 return false; 343 } 344 info->receive_credit_target = le16_to_cpu(packet->credits_requested); 345 346 if (packet->credits_granted == 0) { 347 log_rdma_event(ERR, "error: credits_granted==0\n"); 348 return false; 349 } 350 atomic_set(&info->send_credits, le16_to_cpu(packet->credits_granted)); 351 352 atomic_set(&info->receive_credits, 0); 353 354 if (le32_to_cpu(packet->preferred_send_size) > sp->max_recv_size) { 355 log_rdma_event(ERR, "error: preferred_send_size=%d\n", 356 le32_to_cpu(packet->preferred_send_size)); 357 return false; 358 } 359 sp->max_recv_size = le32_to_cpu(packet->preferred_send_size); 360 361 if (le32_to_cpu(packet->max_receive_size) < SMBD_MIN_RECEIVE_SIZE) { 362 log_rdma_event(ERR, "error: max_receive_size=%d\n", 363 le32_to_cpu(packet->max_receive_size)); 364 return false; 365 } 366 sp->max_send_size = min_t(u32, sp->max_send_size, 367 le32_to_cpu(packet->max_receive_size)); 368 369 if (le32_to_cpu(packet->max_fragmented_size) < 370 SMBD_MIN_FRAGMENTED_SIZE) { 371 log_rdma_event(ERR, "error: max_fragmented_size=%d\n", 372 le32_to_cpu(packet->max_fragmented_size)); 373 return false; 374 } 375 sp->max_fragmented_send_size = 376 le32_to_cpu(packet->max_fragmented_size); 377 info->rdma_readwrite_threshold = 378 rdma_readwrite_threshold > sp->max_fragmented_send_size ? 379 sp->max_fragmented_send_size : 380 rdma_readwrite_threshold; 381 382 383 sp->max_read_write_size = min_t(u32, 384 le32_to_cpu(packet->max_readwrite_size), 385 info->max_frmr_depth * PAGE_SIZE); 386 info->max_frmr_depth = sp->max_read_write_size / PAGE_SIZE; 387 388 return true; 389 } 390 391 static void smbd_post_send_credits(struct work_struct *work) 392 { 393 int ret = 0; 394 int use_receive_queue = 1; 395 int rc; 396 struct smbd_response *response; 397 struct smbd_connection *info = 398 container_of(work, struct smbd_connection, 399 post_send_credits_work); 400 struct smbdirect_socket *sc = &info->socket; 401 402 if (sc->status != SMBDIRECT_SOCKET_CONNECTED) { 403 wake_up(&info->wait_receive_queues); 404 return; 405 } 406 407 if (info->receive_credit_target > 408 atomic_read(&info->receive_credits)) { 409 while (true) { 410 if (use_receive_queue) 411 response = get_receive_buffer(info); 412 else 413 response = get_empty_queue_buffer(info); 414 if (!response) { 415 /* now switch to empty packet queue */ 416 if (use_receive_queue) { 417 use_receive_queue = 0; 418 continue; 419 } else 420 break; 421 } 422 423 response->type = SMBD_TRANSFER_DATA; 424 response->first_segment = false; 425 rc = smbd_post_recv(info, response); 426 if (rc) { 427 log_rdma_recv(ERR, 428 "post_recv failed rc=%d\n", rc); 429 put_receive_buffer(info, response); 430 break; 431 } 432 433 ret++; 434 } 435 } 436 437 spin_lock(&info->lock_new_credits_offered); 438 info->new_credits_offered += ret; 439 spin_unlock(&info->lock_new_credits_offered); 440 441 /* Promptly send an immediate packet as defined in [MS-SMBD] 3.1.1.1 */ 442 info->send_immediate = true; 443 if (atomic_read(&info->receive_credits) < 444 info->receive_credit_target - 1) { 445 if (info->keep_alive_requested == KEEP_ALIVE_PENDING || 446 info->send_immediate) { 447 log_keep_alive(INFO, "send an empty message\n"); 448 smbd_post_send_empty(info); 449 } 450 } 451 } 452 453 /* Called from softirq, when recv is done */ 454 static void recv_done(struct ib_cq *cq, struct ib_wc *wc) 455 { 456 struct smbdirect_data_transfer *data_transfer; 457 struct smbd_response *response = 458 container_of(wc->wr_cqe, struct smbd_response, cqe); 459 struct smbd_connection *info = response->info; 460 int data_length = 0; 461 462 log_rdma_recv(INFO, "response=0x%p type=%d wc status=%d wc opcode %d byte_len=%d pkey_index=%u\n", 463 response, response->type, wc->status, wc->opcode, 464 wc->byte_len, wc->pkey_index); 465 466 if (wc->status != IB_WC_SUCCESS || wc->opcode != IB_WC_RECV) { 467 log_rdma_recv(INFO, "wc->status=%d opcode=%d\n", 468 wc->status, wc->opcode); 469 smbd_disconnect_rdma_connection(info); 470 goto error; 471 } 472 473 ib_dma_sync_single_for_cpu( 474 wc->qp->device, 475 response->sge.addr, 476 response->sge.length, 477 DMA_FROM_DEVICE); 478 479 switch (response->type) { 480 /* SMBD negotiation response */ 481 case SMBD_NEGOTIATE_RESP: 482 dump_smbdirect_negotiate_resp(smbd_response_payload(response)); 483 info->full_packet_received = true; 484 info->negotiate_done = 485 process_negotiation_response(response, wc->byte_len); 486 complete(&info->negotiate_completion); 487 break; 488 489 /* SMBD data transfer packet */ 490 case SMBD_TRANSFER_DATA: 491 data_transfer = smbd_response_payload(response); 492 data_length = le32_to_cpu(data_transfer->data_length); 493 494 /* 495 * If this is a packet with data playload place the data in 496 * reassembly queue and wake up the reading thread 497 */ 498 if (data_length) { 499 if (info->full_packet_received) 500 response->first_segment = true; 501 502 if (le32_to_cpu(data_transfer->remaining_data_length)) 503 info->full_packet_received = false; 504 else 505 info->full_packet_received = true; 506 507 enqueue_reassembly( 508 info, 509 response, 510 data_length); 511 } else 512 put_empty_packet(info, response); 513 514 if (data_length) 515 wake_up_interruptible(&info->wait_reassembly_queue); 516 517 atomic_dec(&info->receive_credits); 518 info->receive_credit_target = 519 le16_to_cpu(data_transfer->credits_requested); 520 if (le16_to_cpu(data_transfer->credits_granted)) { 521 atomic_add(le16_to_cpu(data_transfer->credits_granted), 522 &info->send_credits); 523 /* 524 * We have new send credits granted from remote peer 525 * If any sender is waiting for credits, unblock it 526 */ 527 wake_up_interruptible(&info->wait_send_queue); 528 } 529 530 log_incoming(INFO, "data flags %d data_offset %d data_length %d remaining_data_length %d\n", 531 le16_to_cpu(data_transfer->flags), 532 le32_to_cpu(data_transfer->data_offset), 533 le32_to_cpu(data_transfer->data_length), 534 le32_to_cpu(data_transfer->remaining_data_length)); 535 536 /* Send a KEEP_ALIVE response right away if requested */ 537 info->keep_alive_requested = KEEP_ALIVE_NONE; 538 if (le16_to_cpu(data_transfer->flags) & 539 SMBDIRECT_FLAG_RESPONSE_REQUESTED) { 540 info->keep_alive_requested = KEEP_ALIVE_PENDING; 541 } 542 543 return; 544 545 default: 546 log_rdma_recv(ERR, 547 "unexpected response type=%d\n", response->type); 548 } 549 550 error: 551 put_receive_buffer(info, response); 552 } 553 554 static struct rdma_cm_id *smbd_create_id( 555 struct smbd_connection *info, 556 struct sockaddr *dstaddr, int port) 557 { 558 struct rdma_cm_id *id; 559 int rc; 560 __be16 *sport; 561 562 id = rdma_create_id(&init_net, smbd_conn_upcall, info, 563 RDMA_PS_TCP, IB_QPT_RC); 564 if (IS_ERR(id)) { 565 rc = PTR_ERR(id); 566 log_rdma_event(ERR, "rdma_create_id() failed %i\n", rc); 567 return id; 568 } 569 570 if (dstaddr->sa_family == AF_INET6) 571 sport = &((struct sockaddr_in6 *)dstaddr)->sin6_port; 572 else 573 sport = &((struct sockaddr_in *)dstaddr)->sin_port; 574 575 *sport = htons(port); 576 577 init_completion(&info->ri_done); 578 info->ri_rc = -ETIMEDOUT; 579 580 rc = rdma_resolve_addr(id, NULL, (struct sockaddr *)dstaddr, 581 RDMA_RESOLVE_TIMEOUT); 582 if (rc) { 583 log_rdma_event(ERR, "rdma_resolve_addr() failed %i\n", rc); 584 goto out; 585 } 586 rc = wait_for_completion_interruptible_timeout( 587 &info->ri_done, msecs_to_jiffies(RDMA_RESOLVE_TIMEOUT)); 588 /* e.g. if interrupted returns -ERESTARTSYS */ 589 if (rc < 0) { 590 log_rdma_event(ERR, "rdma_resolve_addr timeout rc: %i\n", rc); 591 goto out; 592 } 593 rc = info->ri_rc; 594 if (rc) { 595 log_rdma_event(ERR, "rdma_resolve_addr() completed %i\n", rc); 596 goto out; 597 } 598 599 info->ri_rc = -ETIMEDOUT; 600 rc = rdma_resolve_route(id, RDMA_RESOLVE_TIMEOUT); 601 if (rc) { 602 log_rdma_event(ERR, "rdma_resolve_route() failed %i\n", rc); 603 goto out; 604 } 605 rc = wait_for_completion_interruptible_timeout( 606 &info->ri_done, msecs_to_jiffies(RDMA_RESOLVE_TIMEOUT)); 607 /* e.g. if interrupted returns -ERESTARTSYS */ 608 if (rc < 0) { 609 log_rdma_event(ERR, "rdma_resolve_addr timeout rc: %i\n", rc); 610 goto out; 611 } 612 rc = info->ri_rc; 613 if (rc) { 614 log_rdma_event(ERR, "rdma_resolve_route() completed %i\n", rc); 615 goto out; 616 } 617 618 return id; 619 620 out: 621 rdma_destroy_id(id); 622 return ERR_PTR(rc); 623 } 624 625 /* 626 * Test if FRWR (Fast Registration Work Requests) is supported on the device 627 * This implementation requires FRWR on RDMA read/write 628 * return value: true if it is supported 629 */ 630 static bool frwr_is_supported(struct ib_device_attr *attrs) 631 { 632 if (!(attrs->device_cap_flags & IB_DEVICE_MEM_MGT_EXTENSIONS)) 633 return false; 634 if (attrs->max_fast_reg_page_list_len == 0) 635 return false; 636 return true; 637 } 638 639 static int smbd_ia_open( 640 struct smbd_connection *info, 641 struct sockaddr *dstaddr, int port) 642 { 643 struct smbdirect_socket *sc = &info->socket; 644 int rc; 645 646 sc->rdma.cm_id = smbd_create_id(info, dstaddr, port); 647 if (IS_ERR(sc->rdma.cm_id)) { 648 rc = PTR_ERR(sc->rdma.cm_id); 649 goto out1; 650 } 651 sc->ib.dev = sc->rdma.cm_id->device; 652 653 if (!frwr_is_supported(&sc->ib.dev->attrs)) { 654 log_rdma_event(ERR, "Fast Registration Work Requests (FRWR) is not supported\n"); 655 log_rdma_event(ERR, "Device capability flags = %llx max_fast_reg_page_list_len = %u\n", 656 sc->ib.dev->attrs.device_cap_flags, 657 sc->ib.dev->attrs.max_fast_reg_page_list_len); 658 rc = -EPROTONOSUPPORT; 659 goto out2; 660 } 661 info->max_frmr_depth = min_t(int, 662 smbd_max_frmr_depth, 663 sc->ib.dev->attrs.max_fast_reg_page_list_len); 664 info->mr_type = IB_MR_TYPE_MEM_REG; 665 if (sc->ib.dev->attrs.kernel_cap_flags & IBK_SG_GAPS_REG) 666 info->mr_type = IB_MR_TYPE_SG_GAPS; 667 668 sc->ib.pd = ib_alloc_pd(sc->ib.dev, 0); 669 if (IS_ERR(sc->ib.pd)) { 670 rc = PTR_ERR(sc->ib.pd); 671 log_rdma_event(ERR, "ib_alloc_pd() returned %d\n", rc); 672 goto out2; 673 } 674 675 return 0; 676 677 out2: 678 rdma_destroy_id(sc->rdma.cm_id); 679 sc->rdma.cm_id = NULL; 680 681 out1: 682 return rc; 683 } 684 685 /* 686 * Send a negotiation request message to the peer 687 * The negotiation procedure is in [MS-SMBD] 3.1.5.2 and 3.1.5.3 688 * After negotiation, the transport is connected and ready for 689 * carrying upper layer SMB payload 690 */ 691 static int smbd_post_send_negotiate_req(struct smbd_connection *info) 692 { 693 struct smbdirect_socket *sc = &info->socket; 694 struct smbdirect_socket_parameters *sp = &sc->parameters; 695 struct ib_send_wr send_wr; 696 int rc = -ENOMEM; 697 struct smbd_request *request; 698 struct smbdirect_negotiate_req *packet; 699 700 request = mempool_alloc(info->request_mempool, GFP_KERNEL); 701 if (!request) 702 return rc; 703 704 request->info = info; 705 706 packet = smbd_request_payload(request); 707 packet->min_version = cpu_to_le16(SMBDIRECT_V1); 708 packet->max_version = cpu_to_le16(SMBDIRECT_V1); 709 packet->reserved = 0; 710 packet->credits_requested = cpu_to_le16(sp->send_credit_target); 711 packet->preferred_send_size = cpu_to_le32(sp->max_send_size); 712 packet->max_receive_size = cpu_to_le32(sp->max_recv_size); 713 packet->max_fragmented_size = 714 cpu_to_le32(sp->max_fragmented_recv_size); 715 716 request->num_sge = 1; 717 request->sge[0].addr = ib_dma_map_single( 718 sc->ib.dev, (void *)packet, 719 sizeof(*packet), DMA_TO_DEVICE); 720 if (ib_dma_mapping_error(sc->ib.dev, request->sge[0].addr)) { 721 rc = -EIO; 722 goto dma_mapping_failed; 723 } 724 725 request->sge[0].length = sizeof(*packet); 726 request->sge[0].lkey = sc->ib.pd->local_dma_lkey; 727 728 ib_dma_sync_single_for_device( 729 sc->ib.dev, request->sge[0].addr, 730 request->sge[0].length, DMA_TO_DEVICE); 731 732 request->cqe.done = send_done; 733 734 send_wr.next = NULL; 735 send_wr.wr_cqe = &request->cqe; 736 send_wr.sg_list = request->sge; 737 send_wr.num_sge = request->num_sge; 738 send_wr.opcode = IB_WR_SEND; 739 send_wr.send_flags = IB_SEND_SIGNALED; 740 741 log_rdma_send(INFO, "sge addr=0x%llx length=%u lkey=0x%x\n", 742 request->sge[0].addr, 743 request->sge[0].length, request->sge[0].lkey); 744 745 atomic_inc(&info->send_pending); 746 rc = ib_post_send(sc->ib.qp, &send_wr, NULL); 747 if (!rc) 748 return 0; 749 750 /* if we reach here, post send failed */ 751 log_rdma_send(ERR, "ib_post_send failed rc=%d\n", rc); 752 atomic_dec(&info->send_pending); 753 ib_dma_unmap_single(sc->ib.dev, request->sge[0].addr, 754 request->sge[0].length, DMA_TO_DEVICE); 755 756 smbd_disconnect_rdma_connection(info); 757 758 dma_mapping_failed: 759 mempool_free(request, info->request_mempool); 760 return rc; 761 } 762 763 /* 764 * Extend the credits to remote peer 765 * This implements [MS-SMBD] 3.1.5.9 766 * The idea is that we should extend credits to remote peer as quickly as 767 * it's allowed, to maintain data flow. We allocate as much receive 768 * buffer as possible, and extend the receive credits to remote peer 769 * return value: the new credtis being granted. 770 */ 771 static int manage_credits_prior_sending(struct smbd_connection *info) 772 { 773 int new_credits; 774 775 spin_lock(&info->lock_new_credits_offered); 776 new_credits = info->new_credits_offered; 777 info->new_credits_offered = 0; 778 spin_unlock(&info->lock_new_credits_offered); 779 780 return new_credits; 781 } 782 783 /* 784 * Check if we need to send a KEEP_ALIVE message 785 * The idle connection timer triggers a KEEP_ALIVE message when expires 786 * SMBDIRECT_FLAG_RESPONSE_REQUESTED is set in the message flag to have peer send 787 * back a response. 788 * return value: 789 * 1 if SMBDIRECT_FLAG_RESPONSE_REQUESTED needs to be set 790 * 0: otherwise 791 */ 792 static int manage_keep_alive_before_sending(struct smbd_connection *info) 793 { 794 if (info->keep_alive_requested == KEEP_ALIVE_PENDING) { 795 info->keep_alive_requested = KEEP_ALIVE_SENT; 796 return 1; 797 } 798 return 0; 799 } 800 801 /* Post the send request */ 802 static int smbd_post_send(struct smbd_connection *info, 803 struct smbd_request *request) 804 { 805 struct smbdirect_socket *sc = &info->socket; 806 struct smbdirect_socket_parameters *sp = &sc->parameters; 807 struct ib_send_wr send_wr; 808 int rc, i; 809 810 for (i = 0; i < request->num_sge; i++) { 811 log_rdma_send(INFO, 812 "rdma_request sge[%d] addr=0x%llx length=%u\n", 813 i, request->sge[i].addr, request->sge[i].length); 814 ib_dma_sync_single_for_device( 815 sc->ib.dev, 816 request->sge[i].addr, 817 request->sge[i].length, 818 DMA_TO_DEVICE); 819 } 820 821 request->cqe.done = send_done; 822 823 send_wr.next = NULL; 824 send_wr.wr_cqe = &request->cqe; 825 send_wr.sg_list = request->sge; 826 send_wr.num_sge = request->num_sge; 827 send_wr.opcode = IB_WR_SEND; 828 send_wr.send_flags = IB_SEND_SIGNALED; 829 830 rc = ib_post_send(sc->ib.qp, &send_wr, NULL); 831 if (rc) { 832 log_rdma_send(ERR, "ib_post_send failed rc=%d\n", rc); 833 smbd_disconnect_rdma_connection(info); 834 rc = -EAGAIN; 835 } else 836 /* Reset timer for idle connection after packet is sent */ 837 mod_delayed_work(info->workqueue, &info->idle_timer_work, 838 msecs_to_jiffies(sp->keepalive_interval_msec)); 839 840 return rc; 841 } 842 843 static int smbd_post_send_iter(struct smbd_connection *info, 844 struct iov_iter *iter, 845 int *_remaining_data_length) 846 { 847 struct smbdirect_socket *sc = &info->socket; 848 struct smbdirect_socket_parameters *sp = &sc->parameters; 849 int i, rc; 850 int header_length; 851 int data_length; 852 struct smbd_request *request; 853 struct smbdirect_data_transfer *packet; 854 int new_credits = 0; 855 856 wait_credit: 857 /* Wait for send credits. A SMBD packet needs one credit */ 858 rc = wait_event_interruptible(info->wait_send_queue, 859 atomic_read(&info->send_credits) > 0 || 860 sc->status != SMBDIRECT_SOCKET_CONNECTED); 861 if (rc) 862 goto err_wait_credit; 863 864 if (sc->status != SMBDIRECT_SOCKET_CONNECTED) { 865 log_outgoing(ERR, "disconnected not sending on wait_credit\n"); 866 rc = -EAGAIN; 867 goto err_wait_credit; 868 } 869 if (unlikely(atomic_dec_return(&info->send_credits) < 0)) { 870 atomic_inc(&info->send_credits); 871 goto wait_credit; 872 } 873 874 wait_send_queue: 875 wait_event(info->wait_post_send, 876 atomic_read(&info->send_pending) < sp->send_credit_target || 877 sc->status != SMBDIRECT_SOCKET_CONNECTED); 878 879 if (sc->status != SMBDIRECT_SOCKET_CONNECTED) { 880 log_outgoing(ERR, "disconnected not sending on wait_send_queue\n"); 881 rc = -EAGAIN; 882 goto err_wait_send_queue; 883 } 884 885 if (unlikely(atomic_inc_return(&info->send_pending) > 886 sp->send_credit_target)) { 887 atomic_dec(&info->send_pending); 888 goto wait_send_queue; 889 } 890 891 request = mempool_alloc(info->request_mempool, GFP_KERNEL); 892 if (!request) { 893 rc = -ENOMEM; 894 goto err_alloc; 895 } 896 897 request->info = info; 898 memset(request->sge, 0, sizeof(request->sge)); 899 900 /* Fill in the data payload to find out how much data we can add */ 901 if (iter) { 902 struct smb_extract_to_rdma extract = { 903 .nr_sge = 1, 904 .max_sge = SMBDIRECT_MAX_SEND_SGE, 905 .sge = request->sge, 906 .device = sc->ib.dev, 907 .local_dma_lkey = sc->ib.pd->local_dma_lkey, 908 .direction = DMA_TO_DEVICE, 909 }; 910 size_t payload_len = umin(*_remaining_data_length, 911 sp->max_send_size - sizeof(*packet)); 912 913 rc = smb_extract_iter_to_rdma(iter, payload_len, 914 &extract); 915 if (rc < 0) 916 goto err_dma; 917 data_length = rc; 918 request->num_sge = extract.nr_sge; 919 *_remaining_data_length -= data_length; 920 } else { 921 data_length = 0; 922 request->num_sge = 1; 923 } 924 925 /* Fill in the packet header */ 926 packet = smbd_request_payload(request); 927 packet->credits_requested = cpu_to_le16(sp->send_credit_target); 928 929 new_credits = manage_credits_prior_sending(info); 930 atomic_add(new_credits, &info->receive_credits); 931 packet->credits_granted = cpu_to_le16(new_credits); 932 933 info->send_immediate = false; 934 935 packet->flags = 0; 936 if (manage_keep_alive_before_sending(info)) 937 packet->flags |= cpu_to_le16(SMBDIRECT_FLAG_RESPONSE_REQUESTED); 938 939 packet->reserved = 0; 940 if (!data_length) 941 packet->data_offset = 0; 942 else 943 packet->data_offset = cpu_to_le32(24); 944 packet->data_length = cpu_to_le32(data_length); 945 packet->remaining_data_length = cpu_to_le32(*_remaining_data_length); 946 packet->padding = 0; 947 948 log_outgoing(INFO, "credits_requested=%d credits_granted=%d data_offset=%d data_length=%d remaining_data_length=%d\n", 949 le16_to_cpu(packet->credits_requested), 950 le16_to_cpu(packet->credits_granted), 951 le32_to_cpu(packet->data_offset), 952 le32_to_cpu(packet->data_length), 953 le32_to_cpu(packet->remaining_data_length)); 954 955 /* Map the packet to DMA */ 956 header_length = sizeof(struct smbdirect_data_transfer); 957 /* If this is a packet without payload, don't send padding */ 958 if (!data_length) 959 header_length = offsetof(struct smbdirect_data_transfer, padding); 960 961 request->sge[0].addr = ib_dma_map_single(sc->ib.dev, 962 (void *)packet, 963 header_length, 964 DMA_TO_DEVICE); 965 if (ib_dma_mapping_error(sc->ib.dev, request->sge[0].addr)) { 966 rc = -EIO; 967 request->sge[0].addr = 0; 968 goto err_dma; 969 } 970 971 request->sge[0].length = header_length; 972 request->sge[0].lkey = sc->ib.pd->local_dma_lkey; 973 974 rc = smbd_post_send(info, request); 975 if (!rc) 976 return 0; 977 978 err_dma: 979 for (i = 0; i < request->num_sge; i++) 980 if (request->sge[i].addr) 981 ib_dma_unmap_single(sc->ib.dev, 982 request->sge[i].addr, 983 request->sge[i].length, 984 DMA_TO_DEVICE); 985 mempool_free(request, info->request_mempool); 986 987 /* roll back receive credits and credits to be offered */ 988 spin_lock(&info->lock_new_credits_offered); 989 info->new_credits_offered += new_credits; 990 spin_unlock(&info->lock_new_credits_offered); 991 atomic_sub(new_credits, &info->receive_credits); 992 993 err_alloc: 994 if (atomic_dec_and_test(&info->send_pending)) 995 wake_up(&info->wait_send_pending); 996 997 err_wait_send_queue: 998 /* roll back send credits and pending */ 999 atomic_inc(&info->send_credits); 1000 1001 err_wait_credit: 1002 return rc; 1003 } 1004 1005 /* 1006 * Send an empty message 1007 * Empty message is used to extend credits to peer to for keep live 1008 * while there is no upper layer payload to send at the time 1009 */ 1010 static int smbd_post_send_empty(struct smbd_connection *info) 1011 { 1012 int remaining_data_length = 0; 1013 1014 info->count_send_empty++; 1015 return smbd_post_send_iter(info, NULL, &remaining_data_length); 1016 } 1017 1018 static int smbd_post_send_full_iter(struct smbd_connection *info, 1019 struct iov_iter *iter, 1020 int *_remaining_data_length) 1021 { 1022 int rc = 0; 1023 1024 /* 1025 * smbd_post_send_iter() respects the 1026 * negotiated max_send_size, so we need to 1027 * loop until the full iter is posted 1028 */ 1029 1030 while (iov_iter_count(iter) > 0) { 1031 rc = smbd_post_send_iter(info, iter, _remaining_data_length); 1032 if (rc < 0) 1033 break; 1034 } 1035 1036 return rc; 1037 } 1038 1039 /* 1040 * Post a receive request to the transport 1041 * The remote peer can only send data when a receive request is posted 1042 * The interaction is controlled by send/receive credit system 1043 */ 1044 static int smbd_post_recv( 1045 struct smbd_connection *info, struct smbd_response *response) 1046 { 1047 struct smbdirect_socket *sc = &info->socket; 1048 struct smbdirect_socket_parameters *sp = &sc->parameters; 1049 struct ib_recv_wr recv_wr; 1050 int rc = -EIO; 1051 1052 response->sge.addr = ib_dma_map_single( 1053 sc->ib.dev, response->packet, 1054 sp->max_recv_size, DMA_FROM_DEVICE); 1055 if (ib_dma_mapping_error(sc->ib.dev, response->sge.addr)) 1056 return rc; 1057 1058 response->sge.length = sp->max_recv_size; 1059 response->sge.lkey = sc->ib.pd->local_dma_lkey; 1060 1061 response->cqe.done = recv_done; 1062 1063 recv_wr.wr_cqe = &response->cqe; 1064 recv_wr.next = NULL; 1065 recv_wr.sg_list = &response->sge; 1066 recv_wr.num_sge = 1; 1067 1068 rc = ib_post_recv(sc->ib.qp, &recv_wr, NULL); 1069 if (rc) { 1070 ib_dma_unmap_single(sc->ib.dev, response->sge.addr, 1071 response->sge.length, DMA_FROM_DEVICE); 1072 smbd_disconnect_rdma_connection(info); 1073 log_rdma_recv(ERR, "ib_post_recv failed rc=%d\n", rc); 1074 } 1075 1076 return rc; 1077 } 1078 1079 /* Perform SMBD negotiate according to [MS-SMBD] 3.1.5.2 */ 1080 static int smbd_negotiate(struct smbd_connection *info) 1081 { 1082 int rc; 1083 struct smbd_response *response = get_receive_buffer(info); 1084 1085 response->type = SMBD_NEGOTIATE_RESP; 1086 rc = smbd_post_recv(info, response); 1087 log_rdma_event(INFO, "smbd_post_recv rc=%d iov.addr=0x%llx iov.length=%u iov.lkey=0x%x\n", 1088 rc, response->sge.addr, 1089 response->sge.length, response->sge.lkey); 1090 if (rc) 1091 return rc; 1092 1093 init_completion(&info->negotiate_completion); 1094 info->negotiate_done = false; 1095 rc = smbd_post_send_negotiate_req(info); 1096 if (rc) 1097 return rc; 1098 1099 rc = wait_for_completion_interruptible_timeout( 1100 &info->negotiate_completion, SMBD_NEGOTIATE_TIMEOUT * HZ); 1101 log_rdma_event(INFO, "wait_for_completion_timeout rc=%d\n", rc); 1102 1103 if (info->negotiate_done) 1104 return 0; 1105 1106 if (rc == 0) 1107 rc = -ETIMEDOUT; 1108 else if (rc == -ERESTARTSYS) 1109 rc = -EINTR; 1110 else 1111 rc = -ENOTCONN; 1112 1113 return rc; 1114 } 1115 1116 static void put_empty_packet( 1117 struct smbd_connection *info, struct smbd_response *response) 1118 { 1119 spin_lock(&info->empty_packet_queue_lock); 1120 list_add_tail(&response->list, &info->empty_packet_queue); 1121 info->count_empty_packet_queue++; 1122 spin_unlock(&info->empty_packet_queue_lock); 1123 1124 queue_work(info->workqueue, &info->post_send_credits_work); 1125 } 1126 1127 /* 1128 * Implement Connection.FragmentReassemblyBuffer defined in [MS-SMBD] 3.1.1.1 1129 * This is a queue for reassembling upper layer payload and present to upper 1130 * layer. All the inncoming payload go to the reassembly queue, regardless of 1131 * if reassembly is required. The uuper layer code reads from the queue for all 1132 * incoming payloads. 1133 * Put a received packet to the reassembly queue 1134 * response: the packet received 1135 * data_length: the size of payload in this packet 1136 */ 1137 static void enqueue_reassembly( 1138 struct smbd_connection *info, 1139 struct smbd_response *response, 1140 int data_length) 1141 { 1142 spin_lock(&info->reassembly_queue_lock); 1143 list_add_tail(&response->list, &info->reassembly_queue); 1144 info->reassembly_queue_length++; 1145 /* 1146 * Make sure reassembly_data_length is updated after list and 1147 * reassembly_queue_length are updated. On the dequeue side 1148 * reassembly_data_length is checked without a lock to determine 1149 * if reassembly_queue_length and list is up to date 1150 */ 1151 virt_wmb(); 1152 info->reassembly_data_length += data_length; 1153 spin_unlock(&info->reassembly_queue_lock); 1154 info->count_reassembly_queue++; 1155 info->count_enqueue_reassembly_queue++; 1156 } 1157 1158 /* 1159 * Get the first entry at the front of reassembly queue 1160 * Caller is responsible for locking 1161 * return value: the first entry if any, NULL if queue is empty 1162 */ 1163 static struct smbd_response *_get_first_reassembly(struct smbd_connection *info) 1164 { 1165 struct smbd_response *ret = NULL; 1166 1167 if (!list_empty(&info->reassembly_queue)) { 1168 ret = list_first_entry( 1169 &info->reassembly_queue, 1170 struct smbd_response, list); 1171 } 1172 return ret; 1173 } 1174 1175 static struct smbd_response *get_empty_queue_buffer( 1176 struct smbd_connection *info) 1177 { 1178 struct smbd_response *ret = NULL; 1179 unsigned long flags; 1180 1181 spin_lock_irqsave(&info->empty_packet_queue_lock, flags); 1182 if (!list_empty(&info->empty_packet_queue)) { 1183 ret = list_first_entry( 1184 &info->empty_packet_queue, 1185 struct smbd_response, list); 1186 list_del(&ret->list); 1187 info->count_empty_packet_queue--; 1188 } 1189 spin_unlock_irqrestore(&info->empty_packet_queue_lock, flags); 1190 1191 return ret; 1192 } 1193 1194 /* 1195 * Get a receive buffer 1196 * For each remote send, we need to post a receive. The receive buffers are 1197 * pre-allocated in advance. 1198 * return value: the receive buffer, NULL if none is available 1199 */ 1200 static struct smbd_response *get_receive_buffer(struct smbd_connection *info) 1201 { 1202 struct smbd_response *ret = NULL; 1203 unsigned long flags; 1204 1205 spin_lock_irqsave(&info->receive_queue_lock, flags); 1206 if (!list_empty(&info->receive_queue)) { 1207 ret = list_first_entry( 1208 &info->receive_queue, 1209 struct smbd_response, list); 1210 list_del(&ret->list); 1211 info->count_receive_queue--; 1212 info->count_get_receive_buffer++; 1213 } 1214 spin_unlock_irqrestore(&info->receive_queue_lock, flags); 1215 1216 return ret; 1217 } 1218 1219 /* 1220 * Return a receive buffer 1221 * Upon returning of a receive buffer, we can post new receive and extend 1222 * more receive credits to remote peer. This is done immediately after a 1223 * receive buffer is returned. 1224 */ 1225 static void put_receive_buffer( 1226 struct smbd_connection *info, struct smbd_response *response) 1227 { 1228 struct smbdirect_socket *sc = &info->socket; 1229 unsigned long flags; 1230 1231 ib_dma_unmap_single(sc->ib.dev, response->sge.addr, 1232 response->sge.length, DMA_FROM_DEVICE); 1233 1234 spin_lock_irqsave(&info->receive_queue_lock, flags); 1235 list_add_tail(&response->list, &info->receive_queue); 1236 info->count_receive_queue++; 1237 info->count_put_receive_buffer++; 1238 spin_unlock_irqrestore(&info->receive_queue_lock, flags); 1239 1240 queue_work(info->workqueue, &info->post_send_credits_work); 1241 } 1242 1243 /* Preallocate all receive buffer on transport establishment */ 1244 static int allocate_receive_buffers(struct smbd_connection *info, int num_buf) 1245 { 1246 int i; 1247 struct smbd_response *response; 1248 1249 INIT_LIST_HEAD(&info->reassembly_queue); 1250 spin_lock_init(&info->reassembly_queue_lock); 1251 info->reassembly_data_length = 0; 1252 info->reassembly_queue_length = 0; 1253 1254 INIT_LIST_HEAD(&info->receive_queue); 1255 spin_lock_init(&info->receive_queue_lock); 1256 info->count_receive_queue = 0; 1257 1258 INIT_LIST_HEAD(&info->empty_packet_queue); 1259 spin_lock_init(&info->empty_packet_queue_lock); 1260 info->count_empty_packet_queue = 0; 1261 1262 init_waitqueue_head(&info->wait_receive_queues); 1263 1264 for (i = 0; i < num_buf; i++) { 1265 response = mempool_alloc(info->response_mempool, GFP_KERNEL); 1266 if (!response) 1267 goto allocate_failed; 1268 1269 response->info = info; 1270 list_add_tail(&response->list, &info->receive_queue); 1271 info->count_receive_queue++; 1272 } 1273 1274 return 0; 1275 1276 allocate_failed: 1277 while (!list_empty(&info->receive_queue)) { 1278 response = list_first_entry( 1279 &info->receive_queue, 1280 struct smbd_response, list); 1281 list_del(&response->list); 1282 info->count_receive_queue--; 1283 1284 mempool_free(response, info->response_mempool); 1285 } 1286 return -ENOMEM; 1287 } 1288 1289 static void destroy_receive_buffers(struct smbd_connection *info) 1290 { 1291 struct smbd_response *response; 1292 1293 while ((response = get_receive_buffer(info))) 1294 mempool_free(response, info->response_mempool); 1295 1296 while ((response = get_empty_queue_buffer(info))) 1297 mempool_free(response, info->response_mempool); 1298 } 1299 1300 /* Implement idle connection timer [MS-SMBD] 3.1.6.2 */ 1301 static void idle_connection_timer(struct work_struct *work) 1302 { 1303 struct smbd_connection *info = container_of( 1304 work, struct smbd_connection, 1305 idle_timer_work.work); 1306 struct smbdirect_socket *sc = &info->socket; 1307 struct smbdirect_socket_parameters *sp = &sc->parameters; 1308 1309 if (info->keep_alive_requested != KEEP_ALIVE_NONE) { 1310 log_keep_alive(ERR, 1311 "error status info->keep_alive_requested=%d\n", 1312 info->keep_alive_requested); 1313 smbd_disconnect_rdma_connection(info); 1314 return; 1315 } 1316 1317 log_keep_alive(INFO, "about to send an empty idle message\n"); 1318 smbd_post_send_empty(info); 1319 1320 /* Setup the next idle timeout work */ 1321 queue_delayed_work(info->workqueue, &info->idle_timer_work, 1322 msecs_to_jiffies(sp->keepalive_interval_msec)); 1323 } 1324 1325 /* 1326 * Destroy the transport and related RDMA and memory resources 1327 * Need to go through all the pending counters and make sure on one is using 1328 * the transport while it is destroyed 1329 */ 1330 void smbd_destroy(struct TCP_Server_Info *server) 1331 { 1332 struct smbd_connection *info = server->smbd_conn; 1333 struct smbdirect_socket *sc; 1334 struct smbdirect_socket_parameters *sp; 1335 struct smbd_response *response; 1336 unsigned long flags; 1337 1338 if (!info) { 1339 log_rdma_event(INFO, "rdma session already destroyed\n"); 1340 return; 1341 } 1342 sc = &info->socket; 1343 sp = &sc->parameters; 1344 1345 log_rdma_event(INFO, "destroying rdma session\n"); 1346 if (sc->status != SMBDIRECT_SOCKET_DISCONNECTED) { 1347 rdma_disconnect(sc->rdma.cm_id); 1348 log_rdma_event(INFO, "wait for transport being disconnected\n"); 1349 wait_event_interruptible( 1350 info->disconn_wait, 1351 sc->status == SMBDIRECT_SOCKET_DISCONNECTED); 1352 } 1353 1354 log_rdma_event(INFO, "destroying qp\n"); 1355 ib_drain_qp(sc->ib.qp); 1356 rdma_destroy_qp(sc->rdma.cm_id); 1357 sc->ib.qp = NULL; 1358 1359 log_rdma_event(INFO, "cancelling idle timer\n"); 1360 cancel_delayed_work_sync(&info->idle_timer_work); 1361 1362 log_rdma_event(INFO, "wait for all send posted to IB to finish\n"); 1363 wait_event(info->wait_send_pending, 1364 atomic_read(&info->send_pending) == 0); 1365 1366 /* It's not possible for upper layer to get to reassembly */ 1367 log_rdma_event(INFO, "drain the reassembly queue\n"); 1368 do { 1369 spin_lock_irqsave(&info->reassembly_queue_lock, flags); 1370 response = _get_first_reassembly(info); 1371 if (response) { 1372 list_del(&response->list); 1373 spin_unlock_irqrestore( 1374 &info->reassembly_queue_lock, flags); 1375 put_receive_buffer(info, response); 1376 } else 1377 spin_unlock_irqrestore( 1378 &info->reassembly_queue_lock, flags); 1379 } while (response); 1380 info->reassembly_data_length = 0; 1381 1382 log_rdma_event(INFO, "free receive buffers\n"); 1383 wait_event(info->wait_receive_queues, 1384 info->count_receive_queue + info->count_empty_packet_queue 1385 == sp->recv_credit_max); 1386 destroy_receive_buffers(info); 1387 1388 /* 1389 * For performance reasons, memory registration and deregistration 1390 * are not locked by srv_mutex. It is possible some processes are 1391 * blocked on transport srv_mutex while holding memory registration. 1392 * Release the transport srv_mutex to allow them to hit the failure 1393 * path when sending data, and then release memory registrations. 1394 */ 1395 log_rdma_event(INFO, "freeing mr list\n"); 1396 wake_up_interruptible_all(&info->wait_mr); 1397 while (atomic_read(&info->mr_used_count)) { 1398 cifs_server_unlock(server); 1399 msleep(1000); 1400 cifs_server_lock(server); 1401 } 1402 destroy_mr_list(info); 1403 1404 ib_free_cq(sc->ib.send_cq); 1405 ib_free_cq(sc->ib.recv_cq); 1406 ib_dealloc_pd(sc->ib.pd); 1407 rdma_destroy_id(sc->rdma.cm_id); 1408 1409 /* free mempools */ 1410 mempool_destroy(info->request_mempool); 1411 kmem_cache_destroy(info->request_cache); 1412 1413 mempool_destroy(info->response_mempool); 1414 kmem_cache_destroy(info->response_cache); 1415 1416 sc->status = SMBDIRECT_SOCKET_DESTROYED; 1417 1418 destroy_workqueue(info->workqueue); 1419 log_rdma_event(INFO, "rdma session destroyed\n"); 1420 kfree(info); 1421 server->smbd_conn = NULL; 1422 } 1423 1424 /* 1425 * Reconnect this SMBD connection, called from upper layer 1426 * return value: 0 on success, or actual error code 1427 */ 1428 int smbd_reconnect(struct TCP_Server_Info *server) 1429 { 1430 log_rdma_event(INFO, "reconnecting rdma session\n"); 1431 1432 if (!server->smbd_conn) { 1433 log_rdma_event(INFO, "rdma session already destroyed\n"); 1434 goto create_conn; 1435 } 1436 1437 /* 1438 * This is possible if transport is disconnected and we haven't received 1439 * notification from RDMA, but upper layer has detected timeout 1440 */ 1441 if (server->smbd_conn->socket.status == SMBDIRECT_SOCKET_CONNECTED) { 1442 log_rdma_event(INFO, "disconnecting transport\n"); 1443 smbd_destroy(server); 1444 } 1445 1446 create_conn: 1447 log_rdma_event(INFO, "creating rdma session\n"); 1448 server->smbd_conn = smbd_get_connection( 1449 server, (struct sockaddr *) &server->dstaddr); 1450 1451 if (server->smbd_conn) { 1452 cifs_dbg(VFS, "RDMA transport re-established\n"); 1453 trace_smb3_smbd_connect_done(server->hostname, server->conn_id, &server->dstaddr); 1454 return 0; 1455 } 1456 trace_smb3_smbd_connect_err(server->hostname, server->conn_id, &server->dstaddr); 1457 return -ENOENT; 1458 } 1459 1460 static void destroy_caches_and_workqueue(struct smbd_connection *info) 1461 { 1462 destroy_receive_buffers(info); 1463 destroy_workqueue(info->workqueue); 1464 mempool_destroy(info->response_mempool); 1465 kmem_cache_destroy(info->response_cache); 1466 mempool_destroy(info->request_mempool); 1467 kmem_cache_destroy(info->request_cache); 1468 } 1469 1470 #define MAX_NAME_LEN 80 1471 static int allocate_caches_and_workqueue(struct smbd_connection *info) 1472 { 1473 struct smbdirect_socket *sc = &info->socket; 1474 struct smbdirect_socket_parameters *sp = &sc->parameters; 1475 char name[MAX_NAME_LEN]; 1476 int rc; 1477 1478 if (WARN_ON_ONCE(sp->max_recv_size < sizeof(struct smbdirect_data_transfer))) 1479 return -ENOMEM; 1480 1481 scnprintf(name, MAX_NAME_LEN, "smbd_request_%p", info); 1482 info->request_cache = 1483 kmem_cache_create( 1484 name, 1485 sizeof(struct smbd_request) + 1486 sizeof(struct smbdirect_data_transfer), 1487 0, SLAB_HWCACHE_ALIGN, NULL); 1488 if (!info->request_cache) 1489 return -ENOMEM; 1490 1491 info->request_mempool = 1492 mempool_create(sp->send_credit_target, mempool_alloc_slab, 1493 mempool_free_slab, info->request_cache); 1494 if (!info->request_mempool) 1495 goto out1; 1496 1497 scnprintf(name, MAX_NAME_LEN, "smbd_response_%p", info); 1498 1499 struct kmem_cache_args response_args = { 1500 .align = __alignof__(struct smbd_response), 1501 .useroffset = (offsetof(struct smbd_response, packet) + 1502 sizeof(struct smbdirect_data_transfer)), 1503 .usersize = sp->max_recv_size - sizeof(struct smbdirect_data_transfer), 1504 }; 1505 info->response_cache = 1506 kmem_cache_create(name, 1507 sizeof(struct smbd_response) + sp->max_recv_size, 1508 &response_args, SLAB_HWCACHE_ALIGN); 1509 if (!info->response_cache) 1510 goto out2; 1511 1512 info->response_mempool = 1513 mempool_create(sp->recv_credit_max, mempool_alloc_slab, 1514 mempool_free_slab, info->response_cache); 1515 if (!info->response_mempool) 1516 goto out3; 1517 1518 scnprintf(name, MAX_NAME_LEN, "smbd_%p", info); 1519 info->workqueue = create_workqueue(name); 1520 if (!info->workqueue) 1521 goto out4; 1522 1523 rc = allocate_receive_buffers(info, sp->recv_credit_max); 1524 if (rc) { 1525 log_rdma_event(ERR, "failed to allocate receive buffers\n"); 1526 goto out5; 1527 } 1528 1529 return 0; 1530 1531 out5: 1532 destroy_workqueue(info->workqueue); 1533 out4: 1534 mempool_destroy(info->response_mempool); 1535 out3: 1536 kmem_cache_destroy(info->response_cache); 1537 out2: 1538 mempool_destroy(info->request_mempool); 1539 out1: 1540 kmem_cache_destroy(info->request_cache); 1541 return -ENOMEM; 1542 } 1543 1544 /* Create a SMBD connection, called by upper layer */ 1545 static struct smbd_connection *_smbd_get_connection( 1546 struct TCP_Server_Info *server, struct sockaddr *dstaddr, int port) 1547 { 1548 int rc; 1549 struct smbd_connection *info; 1550 struct smbdirect_socket *sc; 1551 struct smbdirect_socket_parameters *sp; 1552 struct rdma_conn_param conn_param; 1553 struct ib_qp_init_attr qp_attr; 1554 struct sockaddr_in *addr_in = (struct sockaddr_in *) dstaddr; 1555 struct ib_port_immutable port_immutable; 1556 u32 ird_ord_hdr[2]; 1557 1558 info = kzalloc(sizeof(struct smbd_connection), GFP_KERNEL); 1559 if (!info) 1560 return NULL; 1561 sc = &info->socket; 1562 sp = &sc->parameters; 1563 1564 sc->status = SMBDIRECT_SOCKET_CONNECTING; 1565 rc = smbd_ia_open(info, dstaddr, port); 1566 if (rc) { 1567 log_rdma_event(INFO, "smbd_ia_open rc=%d\n", rc); 1568 goto create_id_failed; 1569 } 1570 1571 if (smbd_send_credit_target > sc->ib.dev->attrs.max_cqe || 1572 smbd_send_credit_target > sc->ib.dev->attrs.max_qp_wr) { 1573 log_rdma_event(ERR, "consider lowering send_credit_target = %d. Possible CQE overrun, device reporting max_cqe %d max_qp_wr %d\n", 1574 smbd_send_credit_target, 1575 sc->ib.dev->attrs.max_cqe, 1576 sc->ib.dev->attrs.max_qp_wr); 1577 goto config_failed; 1578 } 1579 1580 if (smbd_receive_credit_max > sc->ib.dev->attrs.max_cqe || 1581 smbd_receive_credit_max > sc->ib.dev->attrs.max_qp_wr) { 1582 log_rdma_event(ERR, "consider lowering receive_credit_max = %d. Possible CQE overrun, device reporting max_cqe %d max_qp_wr %d\n", 1583 smbd_receive_credit_max, 1584 sc->ib.dev->attrs.max_cqe, 1585 sc->ib.dev->attrs.max_qp_wr); 1586 goto config_failed; 1587 } 1588 1589 sp->recv_credit_max = smbd_receive_credit_max; 1590 sp->send_credit_target = smbd_send_credit_target; 1591 sp->max_send_size = smbd_max_send_size; 1592 sp->max_fragmented_recv_size = smbd_max_fragmented_recv_size; 1593 sp->max_recv_size = smbd_max_receive_size; 1594 sp->keepalive_interval_msec = smbd_keep_alive_interval * 1000; 1595 1596 if (sc->ib.dev->attrs.max_send_sge < SMBDIRECT_MAX_SEND_SGE || 1597 sc->ib.dev->attrs.max_recv_sge < SMBDIRECT_MAX_RECV_SGE) { 1598 log_rdma_event(ERR, 1599 "device %.*s max_send_sge/max_recv_sge = %d/%d too small\n", 1600 IB_DEVICE_NAME_MAX, 1601 sc->ib.dev->name, 1602 sc->ib.dev->attrs.max_send_sge, 1603 sc->ib.dev->attrs.max_recv_sge); 1604 goto config_failed; 1605 } 1606 1607 sc->ib.send_cq = 1608 ib_alloc_cq_any(sc->ib.dev, info, 1609 sp->send_credit_target, IB_POLL_SOFTIRQ); 1610 if (IS_ERR(sc->ib.send_cq)) { 1611 sc->ib.send_cq = NULL; 1612 goto alloc_cq_failed; 1613 } 1614 1615 sc->ib.recv_cq = 1616 ib_alloc_cq_any(sc->ib.dev, info, 1617 sp->recv_credit_max, IB_POLL_SOFTIRQ); 1618 if (IS_ERR(sc->ib.recv_cq)) { 1619 sc->ib.recv_cq = NULL; 1620 goto alloc_cq_failed; 1621 } 1622 1623 memset(&qp_attr, 0, sizeof(qp_attr)); 1624 qp_attr.event_handler = smbd_qp_async_error_upcall; 1625 qp_attr.qp_context = info; 1626 qp_attr.cap.max_send_wr = sp->send_credit_target; 1627 qp_attr.cap.max_recv_wr = sp->recv_credit_max; 1628 qp_attr.cap.max_send_sge = SMBDIRECT_MAX_SEND_SGE; 1629 qp_attr.cap.max_recv_sge = SMBDIRECT_MAX_RECV_SGE; 1630 qp_attr.cap.max_inline_data = 0; 1631 qp_attr.sq_sig_type = IB_SIGNAL_REQ_WR; 1632 qp_attr.qp_type = IB_QPT_RC; 1633 qp_attr.send_cq = sc->ib.send_cq; 1634 qp_attr.recv_cq = sc->ib.recv_cq; 1635 qp_attr.port_num = ~0; 1636 1637 rc = rdma_create_qp(sc->rdma.cm_id, sc->ib.pd, &qp_attr); 1638 if (rc) { 1639 log_rdma_event(ERR, "rdma_create_qp failed %i\n", rc); 1640 goto create_qp_failed; 1641 } 1642 sc->ib.qp = sc->rdma.cm_id->qp; 1643 1644 memset(&conn_param, 0, sizeof(conn_param)); 1645 conn_param.initiator_depth = 0; 1646 1647 conn_param.responder_resources = 1648 min(sc->ib.dev->attrs.max_qp_rd_atom, 1649 SMBD_CM_RESPONDER_RESOURCES); 1650 info->responder_resources = conn_param.responder_resources; 1651 log_rdma_mr(INFO, "responder_resources=%d\n", 1652 info->responder_resources); 1653 1654 /* Need to send IRD/ORD in private data for iWARP */ 1655 sc->ib.dev->ops.get_port_immutable( 1656 sc->ib.dev, sc->rdma.cm_id->port_num, &port_immutable); 1657 if (port_immutable.core_cap_flags & RDMA_CORE_PORT_IWARP) { 1658 ird_ord_hdr[0] = info->responder_resources; 1659 ird_ord_hdr[1] = 1; 1660 conn_param.private_data = ird_ord_hdr; 1661 conn_param.private_data_len = sizeof(ird_ord_hdr); 1662 } else { 1663 conn_param.private_data = NULL; 1664 conn_param.private_data_len = 0; 1665 } 1666 1667 conn_param.retry_count = SMBD_CM_RETRY; 1668 conn_param.rnr_retry_count = SMBD_CM_RNR_RETRY; 1669 conn_param.flow_control = 0; 1670 1671 log_rdma_event(INFO, "connecting to IP %pI4 port %d\n", 1672 &addr_in->sin_addr, port); 1673 1674 init_waitqueue_head(&info->conn_wait); 1675 init_waitqueue_head(&info->disconn_wait); 1676 init_waitqueue_head(&info->wait_reassembly_queue); 1677 rc = rdma_connect(sc->rdma.cm_id, &conn_param); 1678 if (rc) { 1679 log_rdma_event(ERR, "rdma_connect() failed with %i\n", rc); 1680 goto rdma_connect_failed; 1681 } 1682 1683 wait_event_interruptible( 1684 info->conn_wait, sc->status != SMBDIRECT_SOCKET_CONNECTING); 1685 1686 if (sc->status != SMBDIRECT_SOCKET_CONNECTED) { 1687 log_rdma_event(ERR, "rdma_connect failed port=%d\n", port); 1688 goto rdma_connect_failed; 1689 } 1690 1691 log_rdma_event(INFO, "rdma_connect connected\n"); 1692 1693 rc = allocate_caches_and_workqueue(info); 1694 if (rc) { 1695 log_rdma_event(ERR, "cache allocation failed\n"); 1696 goto allocate_cache_failed; 1697 } 1698 1699 init_waitqueue_head(&info->wait_send_queue); 1700 INIT_DELAYED_WORK(&info->idle_timer_work, idle_connection_timer); 1701 queue_delayed_work(info->workqueue, &info->idle_timer_work, 1702 msecs_to_jiffies(sp->keepalive_interval_msec)); 1703 1704 init_waitqueue_head(&info->wait_send_pending); 1705 atomic_set(&info->send_pending, 0); 1706 1707 init_waitqueue_head(&info->wait_post_send); 1708 1709 INIT_WORK(&info->disconnect_work, smbd_disconnect_rdma_work); 1710 INIT_WORK(&info->post_send_credits_work, smbd_post_send_credits); 1711 info->new_credits_offered = 0; 1712 spin_lock_init(&info->lock_new_credits_offered); 1713 1714 rc = smbd_negotiate(info); 1715 if (rc) { 1716 log_rdma_event(ERR, "smbd_negotiate rc=%d\n", rc); 1717 goto negotiation_failed; 1718 } 1719 1720 rc = allocate_mr_list(info); 1721 if (rc) { 1722 log_rdma_mr(ERR, "memory registration allocation failed\n"); 1723 goto allocate_mr_failed; 1724 } 1725 1726 return info; 1727 1728 allocate_mr_failed: 1729 /* At this point, need to a full transport shutdown */ 1730 server->smbd_conn = info; 1731 smbd_destroy(server); 1732 return NULL; 1733 1734 negotiation_failed: 1735 cancel_delayed_work_sync(&info->idle_timer_work); 1736 destroy_caches_and_workqueue(info); 1737 sc->status = SMBDIRECT_SOCKET_NEGOTIATE_FAILED; 1738 init_waitqueue_head(&info->conn_wait); 1739 rdma_disconnect(sc->rdma.cm_id); 1740 wait_event(info->conn_wait, 1741 sc->status == SMBDIRECT_SOCKET_DISCONNECTED); 1742 1743 allocate_cache_failed: 1744 rdma_connect_failed: 1745 rdma_destroy_qp(sc->rdma.cm_id); 1746 1747 create_qp_failed: 1748 alloc_cq_failed: 1749 if (sc->ib.send_cq) 1750 ib_free_cq(sc->ib.send_cq); 1751 if (sc->ib.recv_cq) 1752 ib_free_cq(sc->ib.recv_cq); 1753 1754 config_failed: 1755 ib_dealloc_pd(sc->ib.pd); 1756 rdma_destroy_id(sc->rdma.cm_id); 1757 1758 create_id_failed: 1759 kfree(info); 1760 return NULL; 1761 } 1762 1763 struct smbd_connection *smbd_get_connection( 1764 struct TCP_Server_Info *server, struct sockaddr *dstaddr) 1765 { 1766 struct smbd_connection *ret; 1767 int port = SMBD_PORT; 1768 1769 try_again: 1770 ret = _smbd_get_connection(server, dstaddr, port); 1771 1772 /* Try SMB_PORT if SMBD_PORT doesn't work */ 1773 if (!ret && port == SMBD_PORT) { 1774 port = SMB_PORT; 1775 goto try_again; 1776 } 1777 return ret; 1778 } 1779 1780 /* 1781 * Receive data from the transport's receive reassembly queue 1782 * All the incoming data packets are placed in reassembly queue 1783 * iter: the buffer to read data into 1784 * size: the length of data to read 1785 * return value: actual data read 1786 * 1787 * Note: this implementation copies the data from reassembly queue to receive 1788 * buffers used by upper layer. This is not the optimal code path. A better way 1789 * to do it is to not have upper layer allocate its receive buffers but rather 1790 * borrow the buffer from reassembly queue, and return it after data is 1791 * consumed. But this will require more changes to upper layer code, and also 1792 * need to consider packet boundaries while they still being reassembled. 1793 */ 1794 int smbd_recv(struct smbd_connection *info, struct msghdr *msg) 1795 { 1796 struct smbdirect_socket *sc = &info->socket; 1797 struct smbd_response *response; 1798 struct smbdirect_data_transfer *data_transfer; 1799 size_t size = iov_iter_count(&msg->msg_iter); 1800 int to_copy, to_read, data_read, offset; 1801 u32 data_length, remaining_data_length, data_offset; 1802 int rc; 1803 1804 if (WARN_ON_ONCE(iov_iter_rw(&msg->msg_iter) == WRITE)) 1805 return -EINVAL; /* It's a bug in upper layer to get there */ 1806 1807 again: 1808 /* 1809 * No need to hold the reassembly queue lock all the time as we are 1810 * the only one reading from the front of the queue. The transport 1811 * may add more entries to the back of the queue at the same time 1812 */ 1813 log_read(INFO, "size=%zd info->reassembly_data_length=%d\n", size, 1814 info->reassembly_data_length); 1815 if (info->reassembly_data_length >= size) { 1816 int queue_length; 1817 int queue_removed = 0; 1818 1819 /* 1820 * Need to make sure reassembly_data_length is read before 1821 * reading reassembly_queue_length and calling 1822 * _get_first_reassembly. This call is lock free 1823 * as we never read at the end of the queue which are being 1824 * updated in SOFTIRQ as more data is received 1825 */ 1826 virt_rmb(); 1827 queue_length = info->reassembly_queue_length; 1828 data_read = 0; 1829 to_read = size; 1830 offset = info->first_entry_offset; 1831 while (data_read < size) { 1832 response = _get_first_reassembly(info); 1833 data_transfer = smbd_response_payload(response); 1834 data_length = le32_to_cpu(data_transfer->data_length); 1835 remaining_data_length = 1836 le32_to_cpu( 1837 data_transfer->remaining_data_length); 1838 data_offset = le32_to_cpu(data_transfer->data_offset); 1839 1840 /* 1841 * The upper layer expects RFC1002 length at the 1842 * beginning of the payload. Return it to indicate 1843 * the total length of the packet. This minimize the 1844 * change to upper layer packet processing logic. This 1845 * will be eventually remove when an intermediate 1846 * transport layer is added 1847 */ 1848 if (response->first_segment && size == 4) { 1849 unsigned int rfc1002_len = 1850 data_length + remaining_data_length; 1851 __be32 rfc1002_hdr = cpu_to_be32(rfc1002_len); 1852 if (copy_to_iter(&rfc1002_hdr, sizeof(rfc1002_hdr), 1853 &msg->msg_iter) != sizeof(rfc1002_hdr)) 1854 return -EFAULT; 1855 data_read = 4; 1856 response->first_segment = false; 1857 log_read(INFO, "returning rfc1002 length %d\n", 1858 rfc1002_len); 1859 goto read_rfc1002_done; 1860 } 1861 1862 to_copy = min_t(int, data_length - offset, to_read); 1863 if (copy_to_iter((char *)data_transfer + data_offset + offset, 1864 to_copy, &msg->msg_iter) != to_copy) 1865 return -EFAULT; 1866 1867 /* move on to the next buffer? */ 1868 if (to_copy == data_length - offset) { 1869 queue_length--; 1870 /* 1871 * No need to lock if we are not at the 1872 * end of the queue 1873 */ 1874 if (queue_length) 1875 list_del(&response->list); 1876 else { 1877 spin_lock_irq( 1878 &info->reassembly_queue_lock); 1879 list_del(&response->list); 1880 spin_unlock_irq( 1881 &info->reassembly_queue_lock); 1882 } 1883 queue_removed++; 1884 info->count_reassembly_queue--; 1885 info->count_dequeue_reassembly_queue++; 1886 put_receive_buffer(info, response); 1887 offset = 0; 1888 log_read(INFO, "put_receive_buffer offset=0\n"); 1889 } else 1890 offset += to_copy; 1891 1892 to_read -= to_copy; 1893 data_read += to_copy; 1894 1895 log_read(INFO, "_get_first_reassembly memcpy %d bytes data_transfer_length-offset=%d after that to_read=%d data_read=%d offset=%d\n", 1896 to_copy, data_length - offset, 1897 to_read, data_read, offset); 1898 } 1899 1900 spin_lock_irq(&info->reassembly_queue_lock); 1901 info->reassembly_data_length -= data_read; 1902 info->reassembly_queue_length -= queue_removed; 1903 spin_unlock_irq(&info->reassembly_queue_lock); 1904 1905 info->first_entry_offset = offset; 1906 log_read(INFO, "returning to thread data_read=%d reassembly_data_length=%d first_entry_offset=%d\n", 1907 data_read, info->reassembly_data_length, 1908 info->first_entry_offset); 1909 read_rfc1002_done: 1910 return data_read; 1911 } 1912 1913 log_read(INFO, "wait_event on more data\n"); 1914 rc = wait_event_interruptible( 1915 info->wait_reassembly_queue, 1916 info->reassembly_data_length >= size || 1917 sc->status != SMBDIRECT_SOCKET_CONNECTED); 1918 /* Don't return any data if interrupted */ 1919 if (rc) 1920 return rc; 1921 1922 if (sc->status != SMBDIRECT_SOCKET_CONNECTED) { 1923 log_read(ERR, "disconnected\n"); 1924 return -ECONNABORTED; 1925 } 1926 1927 goto again; 1928 } 1929 1930 /* 1931 * Send data to transport 1932 * Each rqst is transported as a SMBDirect payload 1933 * rqst: the data to write 1934 * return value: 0 if successfully write, otherwise error code 1935 */ 1936 int smbd_send(struct TCP_Server_Info *server, 1937 int num_rqst, struct smb_rqst *rqst_array) 1938 { 1939 struct smbd_connection *info = server->smbd_conn; 1940 struct smbdirect_socket *sc = &info->socket; 1941 struct smbdirect_socket_parameters *sp = &sc->parameters; 1942 struct smb_rqst *rqst; 1943 struct iov_iter iter; 1944 unsigned int remaining_data_length, klen; 1945 int rc, i, rqst_idx; 1946 1947 if (sc->status != SMBDIRECT_SOCKET_CONNECTED) 1948 return -EAGAIN; 1949 1950 /* 1951 * Add in the page array if there is one. The caller needs to set 1952 * rq_tailsz to PAGE_SIZE when the buffer has multiple pages and 1953 * ends at page boundary 1954 */ 1955 remaining_data_length = 0; 1956 for (i = 0; i < num_rqst; i++) 1957 remaining_data_length += smb_rqst_len(server, &rqst_array[i]); 1958 1959 if (unlikely(remaining_data_length > sp->max_fragmented_send_size)) { 1960 /* assertion: payload never exceeds negotiated maximum */ 1961 log_write(ERR, "payload size %d > max size %d\n", 1962 remaining_data_length, sp->max_fragmented_send_size); 1963 return -EINVAL; 1964 } 1965 1966 log_write(INFO, "num_rqst=%d total length=%u\n", 1967 num_rqst, remaining_data_length); 1968 1969 rqst_idx = 0; 1970 do { 1971 rqst = &rqst_array[rqst_idx]; 1972 1973 cifs_dbg(FYI, "Sending smb (RDMA): idx=%d smb_len=%lu\n", 1974 rqst_idx, smb_rqst_len(server, rqst)); 1975 for (i = 0; i < rqst->rq_nvec; i++) 1976 dump_smb(rqst->rq_iov[i].iov_base, rqst->rq_iov[i].iov_len); 1977 1978 log_write(INFO, "RDMA-WR[%u] nvec=%d len=%u iter=%zu rqlen=%lu\n", 1979 rqst_idx, rqst->rq_nvec, remaining_data_length, 1980 iov_iter_count(&rqst->rq_iter), smb_rqst_len(server, rqst)); 1981 1982 /* Send the metadata pages. */ 1983 klen = 0; 1984 for (i = 0; i < rqst->rq_nvec; i++) 1985 klen += rqst->rq_iov[i].iov_len; 1986 iov_iter_kvec(&iter, ITER_SOURCE, rqst->rq_iov, rqst->rq_nvec, klen); 1987 1988 rc = smbd_post_send_full_iter(info, &iter, &remaining_data_length); 1989 if (rc < 0) 1990 break; 1991 1992 if (iov_iter_count(&rqst->rq_iter) > 0) { 1993 /* And then the data pages if there are any */ 1994 rc = smbd_post_send_full_iter(info, &rqst->rq_iter, 1995 &remaining_data_length); 1996 if (rc < 0) 1997 break; 1998 } 1999 2000 } while (++rqst_idx < num_rqst); 2001 2002 /* 2003 * As an optimization, we don't wait for individual I/O to finish 2004 * before sending the next one. 2005 * Send them all and wait for pending send count to get to 0 2006 * that means all the I/Os have been out and we are good to return 2007 */ 2008 2009 wait_event(info->wait_send_pending, 2010 atomic_read(&info->send_pending) == 0); 2011 2012 return rc; 2013 } 2014 2015 static void register_mr_done(struct ib_cq *cq, struct ib_wc *wc) 2016 { 2017 struct smbd_mr *mr; 2018 struct ib_cqe *cqe; 2019 2020 if (wc->status) { 2021 log_rdma_mr(ERR, "status=%d\n", wc->status); 2022 cqe = wc->wr_cqe; 2023 mr = container_of(cqe, struct smbd_mr, cqe); 2024 smbd_disconnect_rdma_connection(mr->conn); 2025 } 2026 } 2027 2028 /* 2029 * The work queue function that recovers MRs 2030 * We need to call ib_dereg_mr() and ib_alloc_mr() before this MR can be used 2031 * again. Both calls are slow, so finish them in a workqueue. This will not 2032 * block I/O path. 2033 * There is one workqueue that recovers MRs, there is no need to lock as the 2034 * I/O requests calling smbd_register_mr will never update the links in the 2035 * mr_list. 2036 */ 2037 static void smbd_mr_recovery_work(struct work_struct *work) 2038 { 2039 struct smbd_connection *info = 2040 container_of(work, struct smbd_connection, mr_recovery_work); 2041 struct smbdirect_socket *sc = &info->socket; 2042 struct smbd_mr *smbdirect_mr; 2043 int rc; 2044 2045 list_for_each_entry(smbdirect_mr, &info->mr_list, list) { 2046 if (smbdirect_mr->state == MR_ERROR) { 2047 2048 /* recover this MR entry */ 2049 rc = ib_dereg_mr(smbdirect_mr->mr); 2050 if (rc) { 2051 log_rdma_mr(ERR, 2052 "ib_dereg_mr failed rc=%x\n", 2053 rc); 2054 smbd_disconnect_rdma_connection(info); 2055 continue; 2056 } 2057 2058 smbdirect_mr->mr = ib_alloc_mr( 2059 sc->ib.pd, info->mr_type, 2060 info->max_frmr_depth); 2061 if (IS_ERR(smbdirect_mr->mr)) { 2062 log_rdma_mr(ERR, "ib_alloc_mr failed mr_type=%x max_frmr_depth=%x\n", 2063 info->mr_type, 2064 info->max_frmr_depth); 2065 smbd_disconnect_rdma_connection(info); 2066 continue; 2067 } 2068 } else 2069 /* This MR is being used, don't recover it */ 2070 continue; 2071 2072 smbdirect_mr->state = MR_READY; 2073 2074 /* smbdirect_mr->state is updated by this function 2075 * and is read and updated by I/O issuing CPUs trying 2076 * to get a MR, the call to atomic_inc_return 2077 * implicates a memory barrier and guarantees this 2078 * value is updated before waking up any calls to 2079 * get_mr() from the I/O issuing CPUs 2080 */ 2081 if (atomic_inc_return(&info->mr_ready_count) == 1) 2082 wake_up_interruptible(&info->wait_mr); 2083 } 2084 } 2085 2086 static void destroy_mr_list(struct smbd_connection *info) 2087 { 2088 struct smbdirect_socket *sc = &info->socket; 2089 struct smbd_mr *mr, *tmp; 2090 2091 cancel_work_sync(&info->mr_recovery_work); 2092 list_for_each_entry_safe(mr, tmp, &info->mr_list, list) { 2093 if (mr->state == MR_INVALIDATED) 2094 ib_dma_unmap_sg(sc->ib.dev, mr->sgt.sgl, 2095 mr->sgt.nents, mr->dir); 2096 ib_dereg_mr(mr->mr); 2097 kfree(mr->sgt.sgl); 2098 kfree(mr); 2099 } 2100 } 2101 2102 /* 2103 * Allocate MRs used for RDMA read/write 2104 * The number of MRs will not exceed hardware capability in responder_resources 2105 * All MRs are kept in mr_list. The MR can be recovered after it's used 2106 * Recovery is done in smbd_mr_recovery_work. The content of list entry changes 2107 * as MRs are used and recovered for I/O, but the list links will not change 2108 */ 2109 static int allocate_mr_list(struct smbd_connection *info) 2110 { 2111 struct smbdirect_socket *sc = &info->socket; 2112 int i; 2113 struct smbd_mr *smbdirect_mr, *tmp; 2114 2115 INIT_LIST_HEAD(&info->mr_list); 2116 init_waitqueue_head(&info->wait_mr); 2117 spin_lock_init(&info->mr_list_lock); 2118 atomic_set(&info->mr_ready_count, 0); 2119 atomic_set(&info->mr_used_count, 0); 2120 init_waitqueue_head(&info->wait_for_mr_cleanup); 2121 INIT_WORK(&info->mr_recovery_work, smbd_mr_recovery_work); 2122 /* Allocate more MRs (2x) than hardware responder_resources */ 2123 for (i = 0; i < info->responder_resources * 2; i++) { 2124 smbdirect_mr = kzalloc(sizeof(*smbdirect_mr), GFP_KERNEL); 2125 if (!smbdirect_mr) 2126 goto cleanup_entries; 2127 smbdirect_mr->mr = ib_alloc_mr(sc->ib.pd, info->mr_type, 2128 info->max_frmr_depth); 2129 if (IS_ERR(smbdirect_mr->mr)) { 2130 log_rdma_mr(ERR, "ib_alloc_mr failed mr_type=%x max_frmr_depth=%x\n", 2131 info->mr_type, info->max_frmr_depth); 2132 goto out; 2133 } 2134 smbdirect_mr->sgt.sgl = kcalloc(info->max_frmr_depth, 2135 sizeof(struct scatterlist), 2136 GFP_KERNEL); 2137 if (!smbdirect_mr->sgt.sgl) { 2138 log_rdma_mr(ERR, "failed to allocate sgl\n"); 2139 ib_dereg_mr(smbdirect_mr->mr); 2140 goto out; 2141 } 2142 smbdirect_mr->state = MR_READY; 2143 smbdirect_mr->conn = info; 2144 2145 list_add_tail(&smbdirect_mr->list, &info->mr_list); 2146 atomic_inc(&info->mr_ready_count); 2147 } 2148 return 0; 2149 2150 out: 2151 kfree(smbdirect_mr); 2152 cleanup_entries: 2153 list_for_each_entry_safe(smbdirect_mr, tmp, &info->mr_list, list) { 2154 list_del(&smbdirect_mr->list); 2155 ib_dereg_mr(smbdirect_mr->mr); 2156 kfree(smbdirect_mr->sgt.sgl); 2157 kfree(smbdirect_mr); 2158 } 2159 return -ENOMEM; 2160 } 2161 2162 /* 2163 * Get a MR from mr_list. This function waits until there is at least one 2164 * MR available in the list. It may access the list while the 2165 * smbd_mr_recovery_work is recovering the MR list. This doesn't need a lock 2166 * as they never modify the same places. However, there may be several CPUs 2167 * issuing I/O trying to get MR at the same time, mr_list_lock is used to 2168 * protect this situation. 2169 */ 2170 static struct smbd_mr *get_mr(struct smbd_connection *info) 2171 { 2172 struct smbdirect_socket *sc = &info->socket; 2173 struct smbd_mr *ret; 2174 int rc; 2175 again: 2176 rc = wait_event_interruptible(info->wait_mr, 2177 atomic_read(&info->mr_ready_count) || 2178 sc->status != SMBDIRECT_SOCKET_CONNECTED); 2179 if (rc) { 2180 log_rdma_mr(ERR, "wait_event_interruptible rc=%x\n", rc); 2181 return NULL; 2182 } 2183 2184 if (sc->status != SMBDIRECT_SOCKET_CONNECTED) { 2185 log_rdma_mr(ERR, "sc->status=%x\n", sc->status); 2186 return NULL; 2187 } 2188 2189 spin_lock(&info->mr_list_lock); 2190 list_for_each_entry(ret, &info->mr_list, list) { 2191 if (ret->state == MR_READY) { 2192 ret->state = MR_REGISTERED; 2193 spin_unlock(&info->mr_list_lock); 2194 atomic_dec(&info->mr_ready_count); 2195 atomic_inc(&info->mr_used_count); 2196 return ret; 2197 } 2198 } 2199 2200 spin_unlock(&info->mr_list_lock); 2201 /* 2202 * It is possible that we could fail to get MR because other processes may 2203 * try to acquire a MR at the same time. If this is the case, retry it. 2204 */ 2205 goto again; 2206 } 2207 2208 /* 2209 * Transcribe the pages from an iterator into an MR scatterlist. 2210 */ 2211 static int smbd_iter_to_mr(struct smbd_connection *info, 2212 struct iov_iter *iter, 2213 struct sg_table *sgt, 2214 unsigned int max_sg) 2215 { 2216 int ret; 2217 2218 memset(sgt->sgl, 0, max_sg * sizeof(struct scatterlist)); 2219 2220 ret = extract_iter_to_sg(iter, iov_iter_count(iter), sgt, max_sg, 0); 2221 WARN_ON(ret < 0); 2222 if (sgt->nents > 0) 2223 sg_mark_end(&sgt->sgl[sgt->nents - 1]); 2224 return ret; 2225 } 2226 2227 /* 2228 * Register memory for RDMA read/write 2229 * iter: the buffer to register memory with 2230 * writing: true if this is a RDMA write (SMB read), false for RDMA read 2231 * need_invalidate: true if this MR needs to be locally invalidated after I/O 2232 * return value: the MR registered, NULL if failed. 2233 */ 2234 struct smbd_mr *smbd_register_mr(struct smbd_connection *info, 2235 struct iov_iter *iter, 2236 bool writing, bool need_invalidate) 2237 { 2238 struct smbdirect_socket *sc = &info->socket; 2239 struct smbd_mr *smbdirect_mr; 2240 int rc, num_pages; 2241 enum dma_data_direction dir; 2242 struct ib_reg_wr *reg_wr; 2243 2244 num_pages = iov_iter_npages(iter, info->max_frmr_depth + 1); 2245 if (num_pages > info->max_frmr_depth) { 2246 log_rdma_mr(ERR, "num_pages=%d max_frmr_depth=%d\n", 2247 num_pages, info->max_frmr_depth); 2248 WARN_ON_ONCE(1); 2249 return NULL; 2250 } 2251 2252 smbdirect_mr = get_mr(info); 2253 if (!smbdirect_mr) { 2254 log_rdma_mr(ERR, "get_mr returning NULL\n"); 2255 return NULL; 2256 } 2257 2258 dir = writing ? DMA_FROM_DEVICE : DMA_TO_DEVICE; 2259 smbdirect_mr->dir = dir; 2260 smbdirect_mr->need_invalidate = need_invalidate; 2261 smbdirect_mr->sgt.nents = 0; 2262 smbdirect_mr->sgt.orig_nents = 0; 2263 2264 log_rdma_mr(INFO, "num_pages=0x%x count=0x%zx depth=%u\n", 2265 num_pages, iov_iter_count(iter), info->max_frmr_depth); 2266 smbd_iter_to_mr(info, iter, &smbdirect_mr->sgt, info->max_frmr_depth); 2267 2268 rc = ib_dma_map_sg(sc->ib.dev, smbdirect_mr->sgt.sgl, 2269 smbdirect_mr->sgt.nents, dir); 2270 if (!rc) { 2271 log_rdma_mr(ERR, "ib_dma_map_sg num_pages=%x dir=%x rc=%x\n", 2272 num_pages, dir, rc); 2273 goto dma_map_error; 2274 } 2275 2276 rc = ib_map_mr_sg(smbdirect_mr->mr, smbdirect_mr->sgt.sgl, 2277 smbdirect_mr->sgt.nents, NULL, PAGE_SIZE); 2278 if (rc != smbdirect_mr->sgt.nents) { 2279 log_rdma_mr(ERR, 2280 "ib_map_mr_sg failed rc = %d nents = %x\n", 2281 rc, smbdirect_mr->sgt.nents); 2282 goto map_mr_error; 2283 } 2284 2285 ib_update_fast_reg_key(smbdirect_mr->mr, 2286 ib_inc_rkey(smbdirect_mr->mr->rkey)); 2287 reg_wr = &smbdirect_mr->wr; 2288 reg_wr->wr.opcode = IB_WR_REG_MR; 2289 smbdirect_mr->cqe.done = register_mr_done; 2290 reg_wr->wr.wr_cqe = &smbdirect_mr->cqe; 2291 reg_wr->wr.num_sge = 0; 2292 reg_wr->wr.send_flags = IB_SEND_SIGNALED; 2293 reg_wr->mr = smbdirect_mr->mr; 2294 reg_wr->key = smbdirect_mr->mr->rkey; 2295 reg_wr->access = writing ? 2296 IB_ACCESS_REMOTE_WRITE | IB_ACCESS_LOCAL_WRITE : 2297 IB_ACCESS_REMOTE_READ; 2298 2299 /* 2300 * There is no need for waiting for complemtion on ib_post_send 2301 * on IB_WR_REG_MR. Hardware enforces a barrier and order of execution 2302 * on the next ib_post_send when we actually send I/O to remote peer 2303 */ 2304 rc = ib_post_send(sc->ib.qp, ®_wr->wr, NULL); 2305 if (!rc) 2306 return smbdirect_mr; 2307 2308 log_rdma_mr(ERR, "ib_post_send failed rc=%x reg_wr->key=%x\n", 2309 rc, reg_wr->key); 2310 2311 /* If all failed, attempt to recover this MR by setting it MR_ERROR*/ 2312 map_mr_error: 2313 ib_dma_unmap_sg(sc->ib.dev, smbdirect_mr->sgt.sgl, 2314 smbdirect_mr->sgt.nents, smbdirect_mr->dir); 2315 2316 dma_map_error: 2317 smbdirect_mr->state = MR_ERROR; 2318 if (atomic_dec_and_test(&info->mr_used_count)) 2319 wake_up(&info->wait_for_mr_cleanup); 2320 2321 smbd_disconnect_rdma_connection(info); 2322 2323 return NULL; 2324 } 2325 2326 static void local_inv_done(struct ib_cq *cq, struct ib_wc *wc) 2327 { 2328 struct smbd_mr *smbdirect_mr; 2329 struct ib_cqe *cqe; 2330 2331 cqe = wc->wr_cqe; 2332 smbdirect_mr = container_of(cqe, struct smbd_mr, cqe); 2333 smbdirect_mr->state = MR_INVALIDATED; 2334 if (wc->status != IB_WC_SUCCESS) { 2335 log_rdma_mr(ERR, "invalidate failed status=%x\n", wc->status); 2336 smbdirect_mr->state = MR_ERROR; 2337 } 2338 complete(&smbdirect_mr->invalidate_done); 2339 } 2340 2341 /* 2342 * Deregister a MR after I/O is done 2343 * This function may wait if remote invalidation is not used 2344 * and we have to locally invalidate the buffer to prevent data is being 2345 * modified by remote peer after upper layer consumes it 2346 */ 2347 int smbd_deregister_mr(struct smbd_mr *smbdirect_mr) 2348 { 2349 struct ib_send_wr *wr; 2350 struct smbd_connection *info = smbdirect_mr->conn; 2351 struct smbdirect_socket *sc = &info->socket; 2352 int rc = 0; 2353 2354 if (smbdirect_mr->need_invalidate) { 2355 /* Need to finish local invalidation before returning */ 2356 wr = &smbdirect_mr->inv_wr; 2357 wr->opcode = IB_WR_LOCAL_INV; 2358 smbdirect_mr->cqe.done = local_inv_done; 2359 wr->wr_cqe = &smbdirect_mr->cqe; 2360 wr->num_sge = 0; 2361 wr->ex.invalidate_rkey = smbdirect_mr->mr->rkey; 2362 wr->send_flags = IB_SEND_SIGNALED; 2363 2364 init_completion(&smbdirect_mr->invalidate_done); 2365 rc = ib_post_send(sc->ib.qp, wr, NULL); 2366 if (rc) { 2367 log_rdma_mr(ERR, "ib_post_send failed rc=%x\n", rc); 2368 smbd_disconnect_rdma_connection(info); 2369 goto done; 2370 } 2371 wait_for_completion(&smbdirect_mr->invalidate_done); 2372 smbdirect_mr->need_invalidate = false; 2373 } else 2374 /* 2375 * For remote invalidation, just set it to MR_INVALIDATED 2376 * and defer to mr_recovery_work to recover the MR for next use 2377 */ 2378 smbdirect_mr->state = MR_INVALIDATED; 2379 2380 if (smbdirect_mr->state == MR_INVALIDATED) { 2381 ib_dma_unmap_sg( 2382 sc->ib.dev, smbdirect_mr->sgt.sgl, 2383 smbdirect_mr->sgt.nents, 2384 smbdirect_mr->dir); 2385 smbdirect_mr->state = MR_READY; 2386 if (atomic_inc_return(&info->mr_ready_count) == 1) 2387 wake_up_interruptible(&info->wait_mr); 2388 } else 2389 /* 2390 * Schedule the work to do MR recovery for future I/Os MR 2391 * recovery is slow and don't want it to block current I/O 2392 */ 2393 queue_work(info->workqueue, &info->mr_recovery_work); 2394 2395 done: 2396 if (atomic_dec_and_test(&info->mr_used_count)) 2397 wake_up(&info->wait_for_mr_cleanup); 2398 2399 return rc; 2400 } 2401 2402 static bool smb_set_sge(struct smb_extract_to_rdma *rdma, 2403 struct page *lowest_page, size_t off, size_t len) 2404 { 2405 struct ib_sge *sge = &rdma->sge[rdma->nr_sge]; 2406 u64 addr; 2407 2408 addr = ib_dma_map_page(rdma->device, lowest_page, 2409 off, len, rdma->direction); 2410 if (ib_dma_mapping_error(rdma->device, addr)) 2411 return false; 2412 2413 sge->addr = addr; 2414 sge->length = len; 2415 sge->lkey = rdma->local_dma_lkey; 2416 rdma->nr_sge++; 2417 return true; 2418 } 2419 2420 /* 2421 * Extract page fragments from a BVEC-class iterator and add them to an RDMA 2422 * element list. The pages are not pinned. 2423 */ 2424 static ssize_t smb_extract_bvec_to_rdma(struct iov_iter *iter, 2425 struct smb_extract_to_rdma *rdma, 2426 ssize_t maxsize) 2427 { 2428 const struct bio_vec *bv = iter->bvec; 2429 unsigned long start = iter->iov_offset; 2430 unsigned int i; 2431 ssize_t ret = 0; 2432 2433 for (i = 0; i < iter->nr_segs; i++) { 2434 size_t off, len; 2435 2436 len = bv[i].bv_len; 2437 if (start >= len) { 2438 start -= len; 2439 continue; 2440 } 2441 2442 len = min_t(size_t, maxsize, len - start); 2443 off = bv[i].bv_offset + start; 2444 2445 if (!smb_set_sge(rdma, bv[i].bv_page, off, len)) 2446 return -EIO; 2447 2448 ret += len; 2449 maxsize -= len; 2450 if (rdma->nr_sge >= rdma->max_sge || maxsize <= 0) 2451 break; 2452 start = 0; 2453 } 2454 2455 if (ret > 0) 2456 iov_iter_advance(iter, ret); 2457 return ret; 2458 } 2459 2460 /* 2461 * Extract fragments from a KVEC-class iterator and add them to an RDMA list. 2462 * This can deal with vmalloc'd buffers as well as kmalloc'd or static buffers. 2463 * The pages are not pinned. 2464 */ 2465 static ssize_t smb_extract_kvec_to_rdma(struct iov_iter *iter, 2466 struct smb_extract_to_rdma *rdma, 2467 ssize_t maxsize) 2468 { 2469 const struct kvec *kv = iter->kvec; 2470 unsigned long start = iter->iov_offset; 2471 unsigned int i; 2472 ssize_t ret = 0; 2473 2474 for (i = 0; i < iter->nr_segs; i++) { 2475 struct page *page; 2476 unsigned long kaddr; 2477 size_t off, len, seg; 2478 2479 len = kv[i].iov_len; 2480 if (start >= len) { 2481 start -= len; 2482 continue; 2483 } 2484 2485 kaddr = (unsigned long)kv[i].iov_base + start; 2486 off = kaddr & ~PAGE_MASK; 2487 len = min_t(size_t, maxsize, len - start); 2488 kaddr &= PAGE_MASK; 2489 2490 maxsize -= len; 2491 do { 2492 seg = min_t(size_t, len, PAGE_SIZE - off); 2493 2494 if (is_vmalloc_or_module_addr((void *)kaddr)) 2495 page = vmalloc_to_page((void *)kaddr); 2496 else 2497 page = virt_to_page((void *)kaddr); 2498 2499 if (!smb_set_sge(rdma, page, off, seg)) 2500 return -EIO; 2501 2502 ret += seg; 2503 len -= seg; 2504 kaddr += PAGE_SIZE; 2505 off = 0; 2506 } while (len > 0 && rdma->nr_sge < rdma->max_sge); 2507 2508 if (rdma->nr_sge >= rdma->max_sge || maxsize <= 0) 2509 break; 2510 start = 0; 2511 } 2512 2513 if (ret > 0) 2514 iov_iter_advance(iter, ret); 2515 return ret; 2516 } 2517 2518 /* 2519 * Extract folio fragments from a FOLIOQ-class iterator and add them to an RDMA 2520 * list. The folios are not pinned. 2521 */ 2522 static ssize_t smb_extract_folioq_to_rdma(struct iov_iter *iter, 2523 struct smb_extract_to_rdma *rdma, 2524 ssize_t maxsize) 2525 { 2526 const struct folio_queue *folioq = iter->folioq; 2527 unsigned int slot = iter->folioq_slot; 2528 ssize_t ret = 0; 2529 size_t offset = iter->iov_offset; 2530 2531 BUG_ON(!folioq); 2532 2533 if (slot >= folioq_nr_slots(folioq)) { 2534 folioq = folioq->next; 2535 if (WARN_ON_ONCE(!folioq)) 2536 return -EIO; 2537 slot = 0; 2538 } 2539 2540 do { 2541 struct folio *folio = folioq_folio(folioq, slot); 2542 size_t fsize = folioq_folio_size(folioq, slot); 2543 2544 if (offset < fsize) { 2545 size_t part = umin(maxsize, fsize - offset); 2546 2547 if (!smb_set_sge(rdma, folio_page(folio, 0), offset, part)) 2548 return -EIO; 2549 2550 offset += part; 2551 ret += part; 2552 maxsize -= part; 2553 } 2554 2555 if (offset >= fsize) { 2556 offset = 0; 2557 slot++; 2558 if (slot >= folioq_nr_slots(folioq)) { 2559 if (!folioq->next) { 2560 WARN_ON_ONCE(ret < iter->count); 2561 break; 2562 } 2563 folioq = folioq->next; 2564 slot = 0; 2565 } 2566 } 2567 } while (rdma->nr_sge < rdma->max_sge && maxsize > 0); 2568 2569 iter->folioq = folioq; 2570 iter->folioq_slot = slot; 2571 iter->iov_offset = offset; 2572 iter->count -= ret; 2573 return ret; 2574 } 2575 2576 /* 2577 * Extract page fragments from up to the given amount of the source iterator 2578 * and build up an RDMA list that refers to all of those bits. The RDMA list 2579 * is appended to, up to the maximum number of elements set in the parameter 2580 * block. 2581 * 2582 * The extracted page fragments are not pinned or ref'd in any way; if an 2583 * IOVEC/UBUF-type iterator is to be used, it should be converted to a 2584 * BVEC-type iterator and the pages pinned, ref'd or otherwise held in some 2585 * way. 2586 */ 2587 static ssize_t smb_extract_iter_to_rdma(struct iov_iter *iter, size_t len, 2588 struct smb_extract_to_rdma *rdma) 2589 { 2590 ssize_t ret; 2591 int before = rdma->nr_sge; 2592 2593 switch (iov_iter_type(iter)) { 2594 case ITER_BVEC: 2595 ret = smb_extract_bvec_to_rdma(iter, rdma, len); 2596 break; 2597 case ITER_KVEC: 2598 ret = smb_extract_kvec_to_rdma(iter, rdma, len); 2599 break; 2600 case ITER_FOLIOQ: 2601 ret = smb_extract_folioq_to_rdma(iter, rdma, len); 2602 break; 2603 default: 2604 WARN_ON_ONCE(1); 2605 return -EIO; 2606 } 2607 2608 if (ret < 0) { 2609 while (rdma->nr_sge > before) { 2610 struct ib_sge *sge = &rdma->sge[rdma->nr_sge--]; 2611 2612 ib_dma_unmap_single(rdma->device, sge->addr, sge->length, 2613 rdma->direction); 2614 sge->addr = 0; 2615 } 2616 } 2617 2618 return ret; 2619 } 2620