1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Copyright (C) 2017, Microsoft Corporation. 4 * 5 * Author(s): Long Li <longli@microsoft.com> 6 */ 7 #include <linux/module.h> 8 #include <linux/highmem.h> 9 #include <linux/folio_queue.h> 10 #include "../common/smbdirect/smbdirect_pdu.h" 11 #include "smbdirect.h" 12 #include "cifs_debug.h" 13 #include "cifsproto.h" 14 #include "smb2proto.h" 15 16 static struct smbdirect_recv_io *get_receive_buffer( 17 struct smbd_connection *info); 18 static void put_receive_buffer( 19 struct smbd_connection *info, 20 struct smbdirect_recv_io *response); 21 static int allocate_receive_buffers(struct smbd_connection *info, int num_buf); 22 static void destroy_receive_buffers(struct smbd_connection *info); 23 24 static void enqueue_reassembly( 25 struct smbd_connection *info, 26 struct smbdirect_recv_io *response, int data_length); 27 static struct smbdirect_recv_io *_get_first_reassembly( 28 struct smbd_connection *info); 29 30 static int smbd_post_recv( 31 struct smbd_connection *info, 32 struct smbdirect_recv_io *response); 33 34 static int smbd_post_send_empty(struct smbd_connection *info); 35 36 static void destroy_mr_list(struct smbd_connection *info); 37 static int allocate_mr_list(struct smbd_connection *info); 38 39 struct smb_extract_to_rdma { 40 struct ib_sge *sge; 41 unsigned int nr_sge; 42 unsigned int max_sge; 43 struct ib_device *device; 44 u32 local_dma_lkey; 45 enum dma_data_direction direction; 46 }; 47 static ssize_t smb_extract_iter_to_rdma(struct iov_iter *iter, size_t len, 48 struct smb_extract_to_rdma *rdma); 49 50 /* Port numbers for SMBD transport */ 51 #define SMB_PORT 445 52 #define SMBD_PORT 5445 53 54 /* Address lookup and resolve timeout in ms */ 55 #define RDMA_RESOLVE_TIMEOUT 5000 56 57 /* SMBD negotiation timeout in seconds */ 58 #define SMBD_NEGOTIATE_TIMEOUT 120 59 60 /* SMBD minimum receive size and fragmented sized defined in [MS-SMBD] */ 61 #define SMBD_MIN_RECEIVE_SIZE 128 62 #define SMBD_MIN_FRAGMENTED_SIZE 131072 63 64 /* 65 * Default maximum number of RDMA read/write outstanding on this connection 66 * This value is possibly decreased during QP creation on hardware limit 67 */ 68 #define SMBD_CM_RESPONDER_RESOURCES 32 69 70 /* Maximum number of retries on data transfer operations */ 71 #define SMBD_CM_RETRY 6 72 /* No need to retry on Receiver Not Ready since SMBD manages credits */ 73 #define SMBD_CM_RNR_RETRY 0 74 75 /* 76 * User configurable initial values per SMBD transport connection 77 * as defined in [MS-SMBD] 3.1.1.1 78 * Those may change after a SMBD negotiation 79 */ 80 /* The local peer's maximum number of credits to grant to the peer */ 81 int smbd_receive_credit_max = 255; 82 83 /* The remote peer's credit request of local peer */ 84 int smbd_send_credit_target = 255; 85 86 /* The maximum single message size can be sent to remote peer */ 87 int smbd_max_send_size = 1364; 88 89 /* The maximum fragmented upper-layer payload receive size supported */ 90 int smbd_max_fragmented_recv_size = 1024 * 1024; 91 92 /* The maximum single-message size which can be received */ 93 int smbd_max_receive_size = 1364; 94 95 /* The timeout to initiate send of a keepalive message on idle */ 96 int smbd_keep_alive_interval = 120; 97 98 /* 99 * User configurable initial values for RDMA transport 100 * The actual values used may be lower and are limited to hardware capabilities 101 */ 102 /* Default maximum number of pages in a single RDMA write/read */ 103 int smbd_max_frmr_depth = 2048; 104 105 /* If payload is less than this byte, use RDMA send/recv not read/write */ 106 int rdma_readwrite_threshold = 4096; 107 108 /* Transport logging functions 109 * Logging are defined as classes. They can be OR'ed to define the actual 110 * logging level via module parameter smbd_logging_class 111 * e.g. cifs.smbd_logging_class=0xa0 will log all log_rdma_recv() and 112 * log_rdma_event() 113 */ 114 #define LOG_OUTGOING 0x1 115 #define LOG_INCOMING 0x2 116 #define LOG_READ 0x4 117 #define LOG_WRITE 0x8 118 #define LOG_RDMA_SEND 0x10 119 #define LOG_RDMA_RECV 0x20 120 #define LOG_KEEP_ALIVE 0x40 121 #define LOG_RDMA_EVENT 0x80 122 #define LOG_RDMA_MR 0x100 123 static unsigned int smbd_logging_class; 124 module_param(smbd_logging_class, uint, 0644); 125 MODULE_PARM_DESC(smbd_logging_class, 126 "Logging class for SMBD transport 0x0 to 0x100"); 127 128 #define ERR 0x0 129 #define INFO 0x1 130 static unsigned int smbd_logging_level = ERR; 131 module_param(smbd_logging_level, uint, 0644); 132 MODULE_PARM_DESC(smbd_logging_level, 133 "Logging level for SMBD transport, 0 (default): error, 1: info"); 134 135 #define log_rdma(level, class, fmt, args...) \ 136 do { \ 137 if (level <= smbd_logging_level || class & smbd_logging_class) \ 138 cifs_dbg(VFS, "%s:%d " fmt, __func__, __LINE__, ##args);\ 139 } while (0) 140 141 #define log_outgoing(level, fmt, args...) \ 142 log_rdma(level, LOG_OUTGOING, fmt, ##args) 143 #define log_incoming(level, fmt, args...) \ 144 log_rdma(level, LOG_INCOMING, fmt, ##args) 145 #define log_read(level, fmt, args...) log_rdma(level, LOG_READ, fmt, ##args) 146 #define log_write(level, fmt, args...) log_rdma(level, LOG_WRITE, fmt, ##args) 147 #define log_rdma_send(level, fmt, args...) \ 148 log_rdma(level, LOG_RDMA_SEND, fmt, ##args) 149 #define log_rdma_recv(level, fmt, args...) \ 150 log_rdma(level, LOG_RDMA_RECV, fmt, ##args) 151 #define log_keep_alive(level, fmt, args...) \ 152 log_rdma(level, LOG_KEEP_ALIVE, fmt, ##args) 153 #define log_rdma_event(level, fmt, args...) \ 154 log_rdma(level, LOG_RDMA_EVENT, fmt, ##args) 155 #define log_rdma_mr(level, fmt, args...) \ 156 log_rdma(level, LOG_RDMA_MR, fmt, ##args) 157 158 static void smbd_disconnect_rdma_work(struct work_struct *work) 159 { 160 struct smbd_connection *info = 161 container_of(work, struct smbd_connection, disconnect_work); 162 struct smbdirect_socket *sc = &info->socket; 163 164 if (sc->status == SMBDIRECT_SOCKET_CONNECTED) { 165 sc->status = SMBDIRECT_SOCKET_DISCONNECTING; 166 rdma_disconnect(sc->rdma.cm_id); 167 } 168 } 169 170 static void smbd_disconnect_rdma_connection(struct smbd_connection *info) 171 { 172 queue_work(info->workqueue, &info->disconnect_work); 173 } 174 175 /* Upcall from RDMA CM */ 176 static int smbd_conn_upcall( 177 struct rdma_cm_id *id, struct rdma_cm_event *event) 178 { 179 struct smbd_connection *info = id->context; 180 struct smbdirect_socket *sc = &info->socket; 181 const char *event_name = rdma_event_msg(event->event); 182 183 log_rdma_event(INFO, "event=%s status=%d\n", 184 event_name, event->status); 185 186 switch (event->event) { 187 case RDMA_CM_EVENT_ADDR_RESOLVED: 188 case RDMA_CM_EVENT_ROUTE_RESOLVED: 189 info->ri_rc = 0; 190 complete(&info->ri_done); 191 break; 192 193 case RDMA_CM_EVENT_ADDR_ERROR: 194 log_rdma_event(ERR, "connecting failed event=%s\n", event_name); 195 info->ri_rc = -EHOSTUNREACH; 196 complete(&info->ri_done); 197 break; 198 199 case RDMA_CM_EVENT_ROUTE_ERROR: 200 log_rdma_event(ERR, "connecting failed event=%s\n", event_name); 201 info->ri_rc = -ENETUNREACH; 202 complete(&info->ri_done); 203 break; 204 205 case RDMA_CM_EVENT_ESTABLISHED: 206 log_rdma_event(INFO, "connected event=%s\n", event_name); 207 sc->status = SMBDIRECT_SOCKET_CONNECTED; 208 wake_up_interruptible(&info->status_wait); 209 break; 210 211 case RDMA_CM_EVENT_CONNECT_ERROR: 212 case RDMA_CM_EVENT_UNREACHABLE: 213 case RDMA_CM_EVENT_REJECTED: 214 log_rdma_event(ERR, "connecting failed event=%s\n", event_name); 215 sc->status = SMBDIRECT_SOCKET_DISCONNECTED; 216 wake_up_interruptible(&info->status_wait); 217 break; 218 219 case RDMA_CM_EVENT_DEVICE_REMOVAL: 220 case RDMA_CM_EVENT_DISCONNECTED: 221 /* This happens when we fail the negotiation */ 222 if (sc->status == SMBDIRECT_SOCKET_NEGOTIATE_FAILED) { 223 log_rdma_event(ERR, "event=%s during negotiation\n", event_name); 224 sc->status = SMBDIRECT_SOCKET_DISCONNECTED; 225 wake_up(&info->status_wait); 226 break; 227 } 228 229 sc->status = SMBDIRECT_SOCKET_DISCONNECTED; 230 wake_up_interruptible(&info->status_wait); 231 wake_up_interruptible(&sc->recv_io.reassembly.wait_queue); 232 wake_up_interruptible_all(&info->wait_send_queue); 233 break; 234 235 default: 236 log_rdma_event(ERR, "unexpected event=%s status=%d\n", 237 event_name, event->status); 238 break; 239 } 240 241 return 0; 242 } 243 244 /* Upcall from RDMA QP */ 245 static void 246 smbd_qp_async_error_upcall(struct ib_event *event, void *context) 247 { 248 struct smbd_connection *info = context; 249 250 log_rdma_event(ERR, "%s on device %s info %p\n", 251 ib_event_msg(event->event), event->device->name, info); 252 253 switch (event->event) { 254 case IB_EVENT_CQ_ERR: 255 case IB_EVENT_QP_FATAL: 256 smbd_disconnect_rdma_connection(info); 257 break; 258 259 default: 260 break; 261 } 262 } 263 264 static inline void *smbdirect_send_io_payload(struct smbdirect_send_io *request) 265 { 266 return (void *)request->packet; 267 } 268 269 static inline void *smbdirect_recv_io_payload(struct smbdirect_recv_io *response) 270 { 271 return (void *)response->packet; 272 } 273 274 /* Called when a RDMA send is done */ 275 static void send_done(struct ib_cq *cq, struct ib_wc *wc) 276 { 277 int i; 278 struct smbdirect_send_io *request = 279 container_of(wc->wr_cqe, struct smbdirect_send_io, cqe); 280 struct smbdirect_socket *sc = request->socket; 281 struct smbd_connection *info = 282 container_of(sc, struct smbd_connection, socket); 283 284 log_rdma_send(INFO, "smbdirect_send_io 0x%p completed wc->status=%d\n", 285 request, wc->status); 286 287 for (i = 0; i < request->num_sge; i++) 288 ib_dma_unmap_single(sc->ib.dev, 289 request->sge[i].addr, 290 request->sge[i].length, 291 DMA_TO_DEVICE); 292 293 if (wc->status != IB_WC_SUCCESS || wc->opcode != IB_WC_SEND) { 294 log_rdma_send(ERR, "wc->status=%d wc->opcode=%d\n", 295 wc->status, wc->opcode); 296 mempool_free(request, sc->send_io.mem.pool); 297 smbd_disconnect_rdma_connection(info); 298 return; 299 } 300 301 if (atomic_dec_and_test(&info->send_pending)) 302 wake_up(&info->wait_send_pending); 303 304 wake_up(&info->wait_post_send); 305 306 mempool_free(request, sc->send_io.mem.pool); 307 } 308 309 static void dump_smbdirect_negotiate_resp(struct smbdirect_negotiate_resp *resp) 310 { 311 log_rdma_event(INFO, "resp message min_version %u max_version %u negotiated_version %u credits_requested %u credits_granted %u status %u max_readwrite_size %u preferred_send_size %u max_receive_size %u max_fragmented_size %u\n", 312 resp->min_version, resp->max_version, 313 resp->negotiated_version, resp->credits_requested, 314 resp->credits_granted, resp->status, 315 resp->max_readwrite_size, resp->preferred_send_size, 316 resp->max_receive_size, resp->max_fragmented_size); 317 } 318 319 /* 320 * Process a negotiation response message, according to [MS-SMBD]3.1.5.7 321 * response, packet_length: the negotiation response message 322 * return value: true if negotiation is a success, false if failed 323 */ 324 static bool process_negotiation_response( 325 struct smbdirect_recv_io *response, int packet_length) 326 { 327 struct smbdirect_socket *sc = response->socket; 328 struct smbd_connection *info = 329 container_of(sc, struct smbd_connection, socket); 330 struct smbdirect_socket_parameters *sp = &sc->parameters; 331 struct smbdirect_negotiate_resp *packet = smbdirect_recv_io_payload(response); 332 333 if (packet_length < sizeof(struct smbdirect_negotiate_resp)) { 334 log_rdma_event(ERR, 335 "error: packet_length=%d\n", packet_length); 336 return false; 337 } 338 339 if (le16_to_cpu(packet->negotiated_version) != SMBDIRECT_V1) { 340 log_rdma_event(ERR, "error: negotiated_version=%x\n", 341 le16_to_cpu(packet->negotiated_version)); 342 return false; 343 } 344 info->protocol = le16_to_cpu(packet->negotiated_version); 345 346 if (packet->credits_requested == 0) { 347 log_rdma_event(ERR, "error: credits_requested==0\n"); 348 return false; 349 } 350 info->receive_credit_target = le16_to_cpu(packet->credits_requested); 351 352 if (packet->credits_granted == 0) { 353 log_rdma_event(ERR, "error: credits_granted==0\n"); 354 return false; 355 } 356 atomic_set(&info->send_credits, le16_to_cpu(packet->credits_granted)); 357 358 atomic_set(&info->receive_credits, 0); 359 360 if (le32_to_cpu(packet->preferred_send_size) > sp->max_recv_size) { 361 log_rdma_event(ERR, "error: preferred_send_size=%d\n", 362 le32_to_cpu(packet->preferred_send_size)); 363 return false; 364 } 365 sp->max_recv_size = le32_to_cpu(packet->preferred_send_size); 366 367 if (le32_to_cpu(packet->max_receive_size) < SMBD_MIN_RECEIVE_SIZE) { 368 log_rdma_event(ERR, "error: max_receive_size=%d\n", 369 le32_to_cpu(packet->max_receive_size)); 370 return false; 371 } 372 sp->max_send_size = min_t(u32, sp->max_send_size, 373 le32_to_cpu(packet->max_receive_size)); 374 375 if (le32_to_cpu(packet->max_fragmented_size) < 376 SMBD_MIN_FRAGMENTED_SIZE) { 377 log_rdma_event(ERR, "error: max_fragmented_size=%d\n", 378 le32_to_cpu(packet->max_fragmented_size)); 379 return false; 380 } 381 sp->max_fragmented_send_size = 382 le32_to_cpu(packet->max_fragmented_size); 383 info->rdma_readwrite_threshold = 384 rdma_readwrite_threshold > sp->max_fragmented_send_size ? 385 sp->max_fragmented_send_size : 386 rdma_readwrite_threshold; 387 388 389 sp->max_read_write_size = min_t(u32, 390 le32_to_cpu(packet->max_readwrite_size), 391 info->max_frmr_depth * PAGE_SIZE); 392 info->max_frmr_depth = sp->max_read_write_size / PAGE_SIZE; 393 394 sc->recv_io.expected = SMBDIRECT_EXPECT_DATA_TRANSFER; 395 return true; 396 } 397 398 static void smbd_post_send_credits(struct work_struct *work) 399 { 400 int ret = 0; 401 int rc; 402 struct smbdirect_recv_io *response; 403 struct smbd_connection *info = 404 container_of(work, struct smbd_connection, 405 post_send_credits_work); 406 struct smbdirect_socket *sc = &info->socket; 407 408 if (sc->status != SMBDIRECT_SOCKET_CONNECTED) { 409 wake_up(&info->wait_receive_queues); 410 return; 411 } 412 413 if (info->receive_credit_target > 414 atomic_read(&info->receive_credits)) { 415 while (true) { 416 response = get_receive_buffer(info); 417 if (!response) 418 break; 419 420 response->first_segment = false; 421 rc = smbd_post_recv(info, response); 422 if (rc) { 423 log_rdma_recv(ERR, 424 "post_recv failed rc=%d\n", rc); 425 put_receive_buffer(info, response); 426 break; 427 } 428 429 ret++; 430 } 431 } 432 433 spin_lock(&info->lock_new_credits_offered); 434 info->new_credits_offered += ret; 435 spin_unlock(&info->lock_new_credits_offered); 436 437 /* Promptly send an immediate packet as defined in [MS-SMBD] 3.1.1.1 */ 438 info->send_immediate = true; 439 if (atomic_read(&info->receive_credits) < 440 info->receive_credit_target - 1) { 441 if (info->keep_alive_requested == KEEP_ALIVE_PENDING || 442 info->send_immediate) { 443 log_keep_alive(INFO, "send an empty message\n"); 444 smbd_post_send_empty(info); 445 } 446 } 447 } 448 449 /* Called from softirq, when recv is done */ 450 static void recv_done(struct ib_cq *cq, struct ib_wc *wc) 451 { 452 struct smbdirect_data_transfer *data_transfer; 453 struct smbdirect_recv_io *response = 454 container_of(wc->wr_cqe, struct smbdirect_recv_io, cqe); 455 struct smbdirect_socket *sc = response->socket; 456 struct smbd_connection *info = 457 container_of(sc, struct smbd_connection, socket); 458 int data_length = 0; 459 460 log_rdma_recv(INFO, "response=0x%p type=%d wc status=%d wc opcode %d byte_len=%d pkey_index=%u\n", 461 response, sc->recv_io.expected, wc->status, wc->opcode, 462 wc->byte_len, wc->pkey_index); 463 464 if (wc->status != IB_WC_SUCCESS || wc->opcode != IB_WC_RECV) { 465 log_rdma_recv(INFO, "wc->status=%d opcode=%d\n", 466 wc->status, wc->opcode); 467 goto error; 468 } 469 470 ib_dma_sync_single_for_cpu( 471 wc->qp->device, 472 response->sge.addr, 473 response->sge.length, 474 DMA_FROM_DEVICE); 475 476 switch (sc->recv_io.expected) { 477 /* SMBD negotiation response */ 478 case SMBDIRECT_EXPECT_NEGOTIATE_REP: 479 dump_smbdirect_negotiate_resp(smbdirect_recv_io_payload(response)); 480 sc->recv_io.reassembly.full_packet_received = true; 481 info->negotiate_done = 482 process_negotiation_response(response, wc->byte_len); 483 put_receive_buffer(info, response); 484 complete(&info->negotiate_completion); 485 return; 486 487 /* SMBD data transfer packet */ 488 case SMBDIRECT_EXPECT_DATA_TRANSFER: 489 data_transfer = smbdirect_recv_io_payload(response); 490 data_length = le32_to_cpu(data_transfer->data_length); 491 492 if (data_length) { 493 if (sc->recv_io.reassembly.full_packet_received) 494 response->first_segment = true; 495 496 if (le32_to_cpu(data_transfer->remaining_data_length)) 497 sc->recv_io.reassembly.full_packet_received = false; 498 else 499 sc->recv_io.reassembly.full_packet_received = true; 500 } 501 502 atomic_dec(&info->receive_credits); 503 info->receive_credit_target = 504 le16_to_cpu(data_transfer->credits_requested); 505 if (le16_to_cpu(data_transfer->credits_granted)) { 506 atomic_add(le16_to_cpu(data_transfer->credits_granted), 507 &info->send_credits); 508 /* 509 * We have new send credits granted from remote peer 510 * If any sender is waiting for credits, unblock it 511 */ 512 wake_up_interruptible(&info->wait_send_queue); 513 } 514 515 log_incoming(INFO, "data flags %d data_offset %d data_length %d remaining_data_length %d\n", 516 le16_to_cpu(data_transfer->flags), 517 le32_to_cpu(data_transfer->data_offset), 518 le32_to_cpu(data_transfer->data_length), 519 le32_to_cpu(data_transfer->remaining_data_length)); 520 521 /* Send a KEEP_ALIVE response right away if requested */ 522 info->keep_alive_requested = KEEP_ALIVE_NONE; 523 if (le16_to_cpu(data_transfer->flags) & 524 SMBDIRECT_FLAG_RESPONSE_REQUESTED) { 525 info->keep_alive_requested = KEEP_ALIVE_PENDING; 526 } 527 528 /* 529 * If this is a packet with data playload place the data in 530 * reassembly queue and wake up the reading thread 531 */ 532 if (data_length) { 533 enqueue_reassembly(info, response, data_length); 534 wake_up_interruptible(&sc->recv_io.reassembly.wait_queue); 535 } else 536 put_receive_buffer(info, response); 537 538 return; 539 540 case SMBDIRECT_EXPECT_NEGOTIATE_REQ: 541 /* Only server... */ 542 break; 543 } 544 545 /* 546 * This is an internal error! 547 */ 548 log_rdma_recv(ERR, "unexpected response type=%d\n", sc->recv_io.expected); 549 WARN_ON_ONCE(sc->recv_io.expected != SMBDIRECT_EXPECT_DATA_TRANSFER); 550 error: 551 put_receive_buffer(info, response); 552 smbd_disconnect_rdma_connection(info); 553 } 554 555 static struct rdma_cm_id *smbd_create_id( 556 struct smbd_connection *info, 557 struct sockaddr *dstaddr, int port) 558 { 559 struct rdma_cm_id *id; 560 int rc; 561 __be16 *sport; 562 563 id = rdma_create_id(&init_net, smbd_conn_upcall, info, 564 RDMA_PS_TCP, IB_QPT_RC); 565 if (IS_ERR(id)) { 566 rc = PTR_ERR(id); 567 log_rdma_event(ERR, "rdma_create_id() failed %i\n", rc); 568 return id; 569 } 570 571 if (dstaddr->sa_family == AF_INET6) 572 sport = &((struct sockaddr_in6 *)dstaddr)->sin6_port; 573 else 574 sport = &((struct sockaddr_in *)dstaddr)->sin_port; 575 576 *sport = htons(port); 577 578 init_completion(&info->ri_done); 579 info->ri_rc = -ETIMEDOUT; 580 581 rc = rdma_resolve_addr(id, NULL, (struct sockaddr *)dstaddr, 582 RDMA_RESOLVE_TIMEOUT); 583 if (rc) { 584 log_rdma_event(ERR, "rdma_resolve_addr() failed %i\n", rc); 585 goto out; 586 } 587 rc = wait_for_completion_interruptible_timeout( 588 &info->ri_done, msecs_to_jiffies(RDMA_RESOLVE_TIMEOUT)); 589 /* e.g. if interrupted returns -ERESTARTSYS */ 590 if (rc < 0) { 591 log_rdma_event(ERR, "rdma_resolve_addr timeout rc: %i\n", rc); 592 goto out; 593 } 594 rc = info->ri_rc; 595 if (rc) { 596 log_rdma_event(ERR, "rdma_resolve_addr() completed %i\n", rc); 597 goto out; 598 } 599 600 info->ri_rc = -ETIMEDOUT; 601 rc = rdma_resolve_route(id, RDMA_RESOLVE_TIMEOUT); 602 if (rc) { 603 log_rdma_event(ERR, "rdma_resolve_route() failed %i\n", rc); 604 goto out; 605 } 606 rc = wait_for_completion_interruptible_timeout( 607 &info->ri_done, msecs_to_jiffies(RDMA_RESOLVE_TIMEOUT)); 608 /* e.g. if interrupted returns -ERESTARTSYS */ 609 if (rc < 0) { 610 log_rdma_event(ERR, "rdma_resolve_addr timeout rc: %i\n", rc); 611 goto out; 612 } 613 rc = info->ri_rc; 614 if (rc) { 615 log_rdma_event(ERR, "rdma_resolve_route() completed %i\n", rc); 616 goto out; 617 } 618 619 return id; 620 621 out: 622 rdma_destroy_id(id); 623 return ERR_PTR(rc); 624 } 625 626 /* 627 * Test if FRWR (Fast Registration Work Requests) is supported on the device 628 * This implementation requires FRWR on RDMA read/write 629 * return value: true if it is supported 630 */ 631 static bool frwr_is_supported(struct ib_device_attr *attrs) 632 { 633 if (!(attrs->device_cap_flags & IB_DEVICE_MEM_MGT_EXTENSIONS)) 634 return false; 635 if (attrs->max_fast_reg_page_list_len == 0) 636 return false; 637 return true; 638 } 639 640 static int smbd_ia_open( 641 struct smbd_connection *info, 642 struct sockaddr *dstaddr, int port) 643 { 644 struct smbdirect_socket *sc = &info->socket; 645 int rc; 646 647 sc->rdma.cm_id = smbd_create_id(info, dstaddr, port); 648 if (IS_ERR(sc->rdma.cm_id)) { 649 rc = PTR_ERR(sc->rdma.cm_id); 650 goto out1; 651 } 652 sc->ib.dev = sc->rdma.cm_id->device; 653 654 if (!frwr_is_supported(&sc->ib.dev->attrs)) { 655 log_rdma_event(ERR, "Fast Registration Work Requests (FRWR) is not supported\n"); 656 log_rdma_event(ERR, "Device capability flags = %llx max_fast_reg_page_list_len = %u\n", 657 sc->ib.dev->attrs.device_cap_flags, 658 sc->ib.dev->attrs.max_fast_reg_page_list_len); 659 rc = -EPROTONOSUPPORT; 660 goto out2; 661 } 662 info->max_frmr_depth = min_t(int, 663 smbd_max_frmr_depth, 664 sc->ib.dev->attrs.max_fast_reg_page_list_len); 665 info->mr_type = IB_MR_TYPE_MEM_REG; 666 if (sc->ib.dev->attrs.kernel_cap_flags & IBK_SG_GAPS_REG) 667 info->mr_type = IB_MR_TYPE_SG_GAPS; 668 669 sc->ib.pd = ib_alloc_pd(sc->ib.dev, 0); 670 if (IS_ERR(sc->ib.pd)) { 671 rc = PTR_ERR(sc->ib.pd); 672 log_rdma_event(ERR, "ib_alloc_pd() returned %d\n", rc); 673 goto out2; 674 } 675 676 return 0; 677 678 out2: 679 rdma_destroy_id(sc->rdma.cm_id); 680 sc->rdma.cm_id = NULL; 681 682 out1: 683 return rc; 684 } 685 686 /* 687 * Send a negotiation request message to the peer 688 * The negotiation procedure is in [MS-SMBD] 3.1.5.2 and 3.1.5.3 689 * After negotiation, the transport is connected and ready for 690 * carrying upper layer SMB payload 691 */ 692 static int smbd_post_send_negotiate_req(struct smbd_connection *info) 693 { 694 struct smbdirect_socket *sc = &info->socket; 695 struct smbdirect_socket_parameters *sp = &sc->parameters; 696 struct ib_send_wr send_wr; 697 int rc = -ENOMEM; 698 struct smbdirect_send_io *request; 699 struct smbdirect_negotiate_req *packet; 700 701 request = mempool_alloc(sc->send_io.mem.pool, GFP_KERNEL); 702 if (!request) 703 return rc; 704 705 request->socket = sc; 706 707 packet = smbdirect_send_io_payload(request); 708 packet->min_version = cpu_to_le16(SMBDIRECT_V1); 709 packet->max_version = cpu_to_le16(SMBDIRECT_V1); 710 packet->reserved = 0; 711 packet->credits_requested = cpu_to_le16(sp->send_credit_target); 712 packet->preferred_send_size = cpu_to_le32(sp->max_send_size); 713 packet->max_receive_size = cpu_to_le32(sp->max_recv_size); 714 packet->max_fragmented_size = 715 cpu_to_le32(sp->max_fragmented_recv_size); 716 717 request->num_sge = 1; 718 request->sge[0].addr = ib_dma_map_single( 719 sc->ib.dev, (void *)packet, 720 sizeof(*packet), DMA_TO_DEVICE); 721 if (ib_dma_mapping_error(sc->ib.dev, request->sge[0].addr)) { 722 rc = -EIO; 723 goto dma_mapping_failed; 724 } 725 726 request->sge[0].length = sizeof(*packet); 727 request->sge[0].lkey = sc->ib.pd->local_dma_lkey; 728 729 ib_dma_sync_single_for_device( 730 sc->ib.dev, request->sge[0].addr, 731 request->sge[0].length, DMA_TO_DEVICE); 732 733 request->cqe.done = send_done; 734 735 send_wr.next = NULL; 736 send_wr.wr_cqe = &request->cqe; 737 send_wr.sg_list = request->sge; 738 send_wr.num_sge = request->num_sge; 739 send_wr.opcode = IB_WR_SEND; 740 send_wr.send_flags = IB_SEND_SIGNALED; 741 742 log_rdma_send(INFO, "sge addr=0x%llx length=%u lkey=0x%x\n", 743 request->sge[0].addr, 744 request->sge[0].length, request->sge[0].lkey); 745 746 atomic_inc(&info->send_pending); 747 rc = ib_post_send(sc->ib.qp, &send_wr, NULL); 748 if (!rc) 749 return 0; 750 751 /* if we reach here, post send failed */ 752 log_rdma_send(ERR, "ib_post_send failed rc=%d\n", rc); 753 atomic_dec(&info->send_pending); 754 ib_dma_unmap_single(sc->ib.dev, request->sge[0].addr, 755 request->sge[0].length, DMA_TO_DEVICE); 756 757 smbd_disconnect_rdma_connection(info); 758 759 dma_mapping_failed: 760 mempool_free(request, sc->send_io.mem.pool); 761 return rc; 762 } 763 764 /* 765 * Extend the credits to remote peer 766 * This implements [MS-SMBD] 3.1.5.9 767 * The idea is that we should extend credits to remote peer as quickly as 768 * it's allowed, to maintain data flow. We allocate as much receive 769 * buffer as possible, and extend the receive credits to remote peer 770 * return value: the new credtis being granted. 771 */ 772 static int manage_credits_prior_sending(struct smbd_connection *info) 773 { 774 int new_credits; 775 776 spin_lock(&info->lock_new_credits_offered); 777 new_credits = info->new_credits_offered; 778 info->new_credits_offered = 0; 779 spin_unlock(&info->lock_new_credits_offered); 780 781 return new_credits; 782 } 783 784 /* 785 * Check if we need to send a KEEP_ALIVE message 786 * The idle connection timer triggers a KEEP_ALIVE message when expires 787 * SMBDIRECT_FLAG_RESPONSE_REQUESTED is set in the message flag to have peer send 788 * back a response. 789 * return value: 790 * 1 if SMBDIRECT_FLAG_RESPONSE_REQUESTED needs to be set 791 * 0: otherwise 792 */ 793 static int manage_keep_alive_before_sending(struct smbd_connection *info) 794 { 795 if (info->keep_alive_requested == KEEP_ALIVE_PENDING) { 796 info->keep_alive_requested = KEEP_ALIVE_SENT; 797 return 1; 798 } 799 return 0; 800 } 801 802 /* Post the send request */ 803 static int smbd_post_send(struct smbd_connection *info, 804 struct smbdirect_send_io *request) 805 { 806 struct smbdirect_socket *sc = &info->socket; 807 struct smbdirect_socket_parameters *sp = &sc->parameters; 808 struct ib_send_wr send_wr; 809 int rc, i; 810 811 for (i = 0; i < request->num_sge; i++) { 812 log_rdma_send(INFO, 813 "rdma_request sge[%d] addr=0x%llx length=%u\n", 814 i, request->sge[i].addr, request->sge[i].length); 815 ib_dma_sync_single_for_device( 816 sc->ib.dev, 817 request->sge[i].addr, 818 request->sge[i].length, 819 DMA_TO_DEVICE); 820 } 821 822 request->cqe.done = send_done; 823 824 send_wr.next = NULL; 825 send_wr.wr_cqe = &request->cqe; 826 send_wr.sg_list = request->sge; 827 send_wr.num_sge = request->num_sge; 828 send_wr.opcode = IB_WR_SEND; 829 send_wr.send_flags = IB_SEND_SIGNALED; 830 831 rc = ib_post_send(sc->ib.qp, &send_wr, NULL); 832 if (rc) { 833 log_rdma_send(ERR, "ib_post_send failed rc=%d\n", rc); 834 smbd_disconnect_rdma_connection(info); 835 rc = -EAGAIN; 836 } else 837 /* Reset timer for idle connection after packet is sent */ 838 mod_delayed_work(info->workqueue, &info->idle_timer_work, 839 msecs_to_jiffies(sp->keepalive_interval_msec)); 840 841 return rc; 842 } 843 844 static int smbd_post_send_iter(struct smbd_connection *info, 845 struct iov_iter *iter, 846 int *_remaining_data_length) 847 { 848 struct smbdirect_socket *sc = &info->socket; 849 struct smbdirect_socket_parameters *sp = &sc->parameters; 850 int i, rc; 851 int header_length; 852 int data_length; 853 struct smbdirect_send_io *request; 854 struct smbdirect_data_transfer *packet; 855 int new_credits = 0; 856 857 wait_credit: 858 /* Wait for send credits. A SMBD packet needs one credit */ 859 rc = wait_event_interruptible(info->wait_send_queue, 860 atomic_read(&info->send_credits) > 0 || 861 sc->status != SMBDIRECT_SOCKET_CONNECTED); 862 if (rc) 863 goto err_wait_credit; 864 865 if (sc->status != SMBDIRECT_SOCKET_CONNECTED) { 866 log_outgoing(ERR, "disconnected not sending on wait_credit\n"); 867 rc = -EAGAIN; 868 goto err_wait_credit; 869 } 870 if (unlikely(atomic_dec_return(&info->send_credits) < 0)) { 871 atomic_inc(&info->send_credits); 872 goto wait_credit; 873 } 874 875 wait_send_queue: 876 wait_event(info->wait_post_send, 877 atomic_read(&info->send_pending) < sp->send_credit_target || 878 sc->status != SMBDIRECT_SOCKET_CONNECTED); 879 880 if (sc->status != SMBDIRECT_SOCKET_CONNECTED) { 881 log_outgoing(ERR, "disconnected not sending on wait_send_queue\n"); 882 rc = -EAGAIN; 883 goto err_wait_send_queue; 884 } 885 886 if (unlikely(atomic_inc_return(&info->send_pending) > 887 sp->send_credit_target)) { 888 atomic_dec(&info->send_pending); 889 goto wait_send_queue; 890 } 891 892 request = mempool_alloc(sc->send_io.mem.pool, GFP_KERNEL); 893 if (!request) { 894 rc = -ENOMEM; 895 goto err_alloc; 896 } 897 898 request->socket = sc; 899 memset(request->sge, 0, sizeof(request->sge)); 900 901 /* Fill in the data payload to find out how much data we can add */ 902 if (iter) { 903 struct smb_extract_to_rdma extract = { 904 .nr_sge = 1, 905 .max_sge = SMBDIRECT_SEND_IO_MAX_SGE, 906 .sge = request->sge, 907 .device = sc->ib.dev, 908 .local_dma_lkey = sc->ib.pd->local_dma_lkey, 909 .direction = DMA_TO_DEVICE, 910 }; 911 size_t payload_len = umin(*_remaining_data_length, 912 sp->max_send_size - sizeof(*packet)); 913 914 rc = smb_extract_iter_to_rdma(iter, payload_len, 915 &extract); 916 if (rc < 0) 917 goto err_dma; 918 data_length = rc; 919 request->num_sge = extract.nr_sge; 920 *_remaining_data_length -= data_length; 921 } else { 922 data_length = 0; 923 request->num_sge = 1; 924 } 925 926 /* Fill in the packet header */ 927 packet = smbdirect_send_io_payload(request); 928 packet->credits_requested = cpu_to_le16(sp->send_credit_target); 929 930 new_credits = manage_credits_prior_sending(info); 931 atomic_add(new_credits, &info->receive_credits); 932 packet->credits_granted = cpu_to_le16(new_credits); 933 934 info->send_immediate = false; 935 936 packet->flags = 0; 937 if (manage_keep_alive_before_sending(info)) 938 packet->flags |= cpu_to_le16(SMBDIRECT_FLAG_RESPONSE_REQUESTED); 939 940 packet->reserved = 0; 941 if (!data_length) 942 packet->data_offset = 0; 943 else 944 packet->data_offset = cpu_to_le32(24); 945 packet->data_length = cpu_to_le32(data_length); 946 packet->remaining_data_length = cpu_to_le32(*_remaining_data_length); 947 packet->padding = 0; 948 949 log_outgoing(INFO, "credits_requested=%d credits_granted=%d data_offset=%d data_length=%d remaining_data_length=%d\n", 950 le16_to_cpu(packet->credits_requested), 951 le16_to_cpu(packet->credits_granted), 952 le32_to_cpu(packet->data_offset), 953 le32_to_cpu(packet->data_length), 954 le32_to_cpu(packet->remaining_data_length)); 955 956 /* Map the packet to DMA */ 957 header_length = sizeof(struct smbdirect_data_transfer); 958 /* If this is a packet without payload, don't send padding */ 959 if (!data_length) 960 header_length = offsetof(struct smbdirect_data_transfer, padding); 961 962 request->sge[0].addr = ib_dma_map_single(sc->ib.dev, 963 (void *)packet, 964 header_length, 965 DMA_TO_DEVICE); 966 if (ib_dma_mapping_error(sc->ib.dev, request->sge[0].addr)) { 967 rc = -EIO; 968 request->sge[0].addr = 0; 969 goto err_dma; 970 } 971 972 request->sge[0].length = header_length; 973 request->sge[0].lkey = sc->ib.pd->local_dma_lkey; 974 975 rc = smbd_post_send(info, request); 976 if (!rc) 977 return 0; 978 979 err_dma: 980 for (i = 0; i < request->num_sge; i++) 981 if (request->sge[i].addr) 982 ib_dma_unmap_single(sc->ib.dev, 983 request->sge[i].addr, 984 request->sge[i].length, 985 DMA_TO_DEVICE); 986 mempool_free(request, sc->send_io.mem.pool); 987 988 /* roll back receive credits and credits to be offered */ 989 spin_lock(&info->lock_new_credits_offered); 990 info->new_credits_offered += new_credits; 991 spin_unlock(&info->lock_new_credits_offered); 992 atomic_sub(new_credits, &info->receive_credits); 993 994 err_alloc: 995 if (atomic_dec_and_test(&info->send_pending)) 996 wake_up(&info->wait_send_pending); 997 998 err_wait_send_queue: 999 /* roll back send credits and pending */ 1000 atomic_inc(&info->send_credits); 1001 1002 err_wait_credit: 1003 return rc; 1004 } 1005 1006 /* 1007 * Send an empty message 1008 * Empty message is used to extend credits to peer to for keep live 1009 * while there is no upper layer payload to send at the time 1010 */ 1011 static int smbd_post_send_empty(struct smbd_connection *info) 1012 { 1013 int remaining_data_length = 0; 1014 1015 info->count_send_empty++; 1016 return smbd_post_send_iter(info, NULL, &remaining_data_length); 1017 } 1018 1019 static int smbd_post_send_full_iter(struct smbd_connection *info, 1020 struct iov_iter *iter, 1021 int *_remaining_data_length) 1022 { 1023 int rc = 0; 1024 1025 /* 1026 * smbd_post_send_iter() respects the 1027 * negotiated max_send_size, so we need to 1028 * loop until the full iter is posted 1029 */ 1030 1031 while (iov_iter_count(iter) > 0) { 1032 rc = smbd_post_send_iter(info, iter, _remaining_data_length); 1033 if (rc < 0) 1034 break; 1035 } 1036 1037 return rc; 1038 } 1039 1040 /* 1041 * Post a receive request to the transport 1042 * The remote peer can only send data when a receive request is posted 1043 * The interaction is controlled by send/receive credit system 1044 */ 1045 static int smbd_post_recv( 1046 struct smbd_connection *info, struct smbdirect_recv_io *response) 1047 { 1048 struct smbdirect_socket *sc = &info->socket; 1049 struct smbdirect_socket_parameters *sp = &sc->parameters; 1050 struct ib_recv_wr recv_wr; 1051 int rc = -EIO; 1052 1053 response->sge.addr = ib_dma_map_single( 1054 sc->ib.dev, response->packet, 1055 sp->max_recv_size, DMA_FROM_DEVICE); 1056 if (ib_dma_mapping_error(sc->ib.dev, response->sge.addr)) 1057 return rc; 1058 1059 response->sge.length = sp->max_recv_size; 1060 response->sge.lkey = sc->ib.pd->local_dma_lkey; 1061 1062 response->cqe.done = recv_done; 1063 1064 recv_wr.wr_cqe = &response->cqe; 1065 recv_wr.next = NULL; 1066 recv_wr.sg_list = &response->sge; 1067 recv_wr.num_sge = 1; 1068 1069 rc = ib_post_recv(sc->ib.qp, &recv_wr, NULL); 1070 if (rc) { 1071 ib_dma_unmap_single(sc->ib.dev, response->sge.addr, 1072 response->sge.length, DMA_FROM_DEVICE); 1073 response->sge.length = 0; 1074 smbd_disconnect_rdma_connection(info); 1075 log_rdma_recv(ERR, "ib_post_recv failed rc=%d\n", rc); 1076 } 1077 1078 return rc; 1079 } 1080 1081 /* Perform SMBD negotiate according to [MS-SMBD] 3.1.5.2 */ 1082 static int smbd_negotiate(struct smbd_connection *info) 1083 { 1084 struct smbdirect_socket *sc = &info->socket; 1085 int rc; 1086 struct smbdirect_recv_io *response = get_receive_buffer(info); 1087 1088 sc->recv_io.expected = SMBDIRECT_EXPECT_NEGOTIATE_REP; 1089 rc = smbd_post_recv(info, response); 1090 log_rdma_event(INFO, "smbd_post_recv rc=%d iov.addr=0x%llx iov.length=%u iov.lkey=0x%x\n", 1091 rc, response->sge.addr, 1092 response->sge.length, response->sge.lkey); 1093 if (rc) 1094 return rc; 1095 1096 init_completion(&info->negotiate_completion); 1097 info->negotiate_done = false; 1098 rc = smbd_post_send_negotiate_req(info); 1099 if (rc) 1100 return rc; 1101 1102 rc = wait_for_completion_interruptible_timeout( 1103 &info->negotiate_completion, SMBD_NEGOTIATE_TIMEOUT * HZ); 1104 log_rdma_event(INFO, "wait_for_completion_timeout rc=%d\n", rc); 1105 1106 if (info->negotiate_done) 1107 return 0; 1108 1109 if (rc == 0) 1110 rc = -ETIMEDOUT; 1111 else if (rc == -ERESTARTSYS) 1112 rc = -EINTR; 1113 else 1114 rc = -ENOTCONN; 1115 1116 return rc; 1117 } 1118 1119 /* 1120 * Implement Connection.FragmentReassemblyBuffer defined in [MS-SMBD] 3.1.1.1 1121 * This is a queue for reassembling upper layer payload and present to upper 1122 * layer. All the inncoming payload go to the reassembly queue, regardless of 1123 * if reassembly is required. The uuper layer code reads from the queue for all 1124 * incoming payloads. 1125 * Put a received packet to the reassembly queue 1126 * response: the packet received 1127 * data_length: the size of payload in this packet 1128 */ 1129 static void enqueue_reassembly( 1130 struct smbd_connection *info, 1131 struct smbdirect_recv_io *response, 1132 int data_length) 1133 { 1134 struct smbdirect_socket *sc = &info->socket; 1135 1136 spin_lock(&sc->recv_io.reassembly.lock); 1137 list_add_tail(&response->list, &sc->recv_io.reassembly.list); 1138 sc->recv_io.reassembly.queue_length++; 1139 /* 1140 * Make sure reassembly_data_length is updated after list and 1141 * reassembly_queue_length are updated. On the dequeue side 1142 * reassembly_data_length is checked without a lock to determine 1143 * if reassembly_queue_length and list is up to date 1144 */ 1145 virt_wmb(); 1146 sc->recv_io.reassembly.data_length += data_length; 1147 spin_unlock(&sc->recv_io.reassembly.lock); 1148 info->count_reassembly_queue++; 1149 info->count_enqueue_reassembly_queue++; 1150 } 1151 1152 /* 1153 * Get the first entry at the front of reassembly queue 1154 * Caller is responsible for locking 1155 * return value: the first entry if any, NULL if queue is empty 1156 */ 1157 static struct smbdirect_recv_io *_get_first_reassembly(struct smbd_connection *info) 1158 { 1159 struct smbdirect_socket *sc = &info->socket; 1160 struct smbdirect_recv_io *ret = NULL; 1161 1162 if (!list_empty(&sc->recv_io.reassembly.list)) { 1163 ret = list_first_entry( 1164 &sc->recv_io.reassembly.list, 1165 struct smbdirect_recv_io, list); 1166 } 1167 return ret; 1168 } 1169 1170 /* 1171 * Get a receive buffer 1172 * For each remote send, we need to post a receive. The receive buffers are 1173 * pre-allocated in advance. 1174 * return value: the receive buffer, NULL if none is available 1175 */ 1176 static struct smbdirect_recv_io *get_receive_buffer(struct smbd_connection *info) 1177 { 1178 struct smbdirect_socket *sc = &info->socket; 1179 struct smbdirect_recv_io *ret = NULL; 1180 unsigned long flags; 1181 1182 spin_lock_irqsave(&sc->recv_io.free.lock, flags); 1183 if (!list_empty(&sc->recv_io.free.list)) { 1184 ret = list_first_entry( 1185 &sc->recv_io.free.list, 1186 struct smbdirect_recv_io, list); 1187 list_del(&ret->list); 1188 info->count_receive_queue--; 1189 info->count_get_receive_buffer++; 1190 } 1191 spin_unlock_irqrestore(&sc->recv_io.free.lock, flags); 1192 1193 return ret; 1194 } 1195 1196 /* 1197 * Return a receive buffer 1198 * Upon returning of a receive buffer, we can post new receive and extend 1199 * more receive credits to remote peer. This is done immediately after a 1200 * receive buffer is returned. 1201 */ 1202 static void put_receive_buffer( 1203 struct smbd_connection *info, struct smbdirect_recv_io *response) 1204 { 1205 struct smbdirect_socket *sc = &info->socket; 1206 unsigned long flags; 1207 1208 if (likely(response->sge.length != 0)) { 1209 ib_dma_unmap_single(sc->ib.dev, 1210 response->sge.addr, 1211 response->sge.length, 1212 DMA_FROM_DEVICE); 1213 response->sge.length = 0; 1214 } 1215 1216 spin_lock_irqsave(&sc->recv_io.free.lock, flags); 1217 list_add_tail(&response->list, &sc->recv_io.free.list); 1218 info->count_receive_queue++; 1219 info->count_put_receive_buffer++; 1220 spin_unlock_irqrestore(&sc->recv_io.free.lock, flags); 1221 1222 queue_work(info->workqueue, &info->post_send_credits_work); 1223 } 1224 1225 /* Preallocate all receive buffer on transport establishment */ 1226 static int allocate_receive_buffers(struct smbd_connection *info, int num_buf) 1227 { 1228 struct smbdirect_socket *sc = &info->socket; 1229 struct smbdirect_recv_io *response; 1230 int i; 1231 1232 INIT_LIST_HEAD(&sc->recv_io.reassembly.list); 1233 spin_lock_init(&sc->recv_io.reassembly.lock); 1234 sc->recv_io.reassembly.data_length = 0; 1235 sc->recv_io.reassembly.queue_length = 0; 1236 1237 INIT_LIST_HEAD(&sc->recv_io.free.list); 1238 spin_lock_init(&sc->recv_io.free.lock); 1239 info->count_receive_queue = 0; 1240 1241 init_waitqueue_head(&info->wait_receive_queues); 1242 1243 for (i = 0; i < num_buf; i++) { 1244 response = mempool_alloc(sc->recv_io.mem.pool, GFP_KERNEL); 1245 if (!response) 1246 goto allocate_failed; 1247 1248 response->socket = sc; 1249 response->sge.length = 0; 1250 list_add_tail(&response->list, &sc->recv_io.free.list); 1251 info->count_receive_queue++; 1252 } 1253 1254 return 0; 1255 1256 allocate_failed: 1257 while (!list_empty(&sc->recv_io.free.list)) { 1258 response = list_first_entry( 1259 &sc->recv_io.free.list, 1260 struct smbdirect_recv_io, list); 1261 list_del(&response->list); 1262 info->count_receive_queue--; 1263 1264 mempool_free(response, sc->recv_io.mem.pool); 1265 } 1266 return -ENOMEM; 1267 } 1268 1269 static void destroy_receive_buffers(struct smbd_connection *info) 1270 { 1271 struct smbdirect_socket *sc = &info->socket; 1272 struct smbdirect_recv_io *response; 1273 1274 while ((response = get_receive_buffer(info))) 1275 mempool_free(response, sc->recv_io.mem.pool); 1276 } 1277 1278 /* Implement idle connection timer [MS-SMBD] 3.1.6.2 */ 1279 static void idle_connection_timer(struct work_struct *work) 1280 { 1281 struct smbd_connection *info = container_of( 1282 work, struct smbd_connection, 1283 idle_timer_work.work); 1284 struct smbdirect_socket *sc = &info->socket; 1285 struct smbdirect_socket_parameters *sp = &sc->parameters; 1286 1287 if (info->keep_alive_requested != KEEP_ALIVE_NONE) { 1288 log_keep_alive(ERR, 1289 "error status info->keep_alive_requested=%d\n", 1290 info->keep_alive_requested); 1291 smbd_disconnect_rdma_connection(info); 1292 return; 1293 } 1294 1295 log_keep_alive(INFO, "about to send an empty idle message\n"); 1296 smbd_post_send_empty(info); 1297 1298 /* Setup the next idle timeout work */ 1299 queue_delayed_work(info->workqueue, &info->idle_timer_work, 1300 msecs_to_jiffies(sp->keepalive_interval_msec)); 1301 } 1302 1303 /* 1304 * Destroy the transport and related RDMA and memory resources 1305 * Need to go through all the pending counters and make sure on one is using 1306 * the transport while it is destroyed 1307 */ 1308 void smbd_destroy(struct TCP_Server_Info *server) 1309 { 1310 struct smbd_connection *info = server->smbd_conn; 1311 struct smbdirect_socket *sc; 1312 struct smbdirect_socket_parameters *sp; 1313 struct smbdirect_recv_io *response; 1314 unsigned long flags; 1315 1316 if (!info) { 1317 log_rdma_event(INFO, "rdma session already destroyed\n"); 1318 return; 1319 } 1320 sc = &info->socket; 1321 sp = &sc->parameters; 1322 1323 log_rdma_event(INFO, "destroying rdma session\n"); 1324 if (sc->status != SMBDIRECT_SOCKET_DISCONNECTED) { 1325 rdma_disconnect(sc->rdma.cm_id); 1326 log_rdma_event(INFO, "wait for transport being disconnected\n"); 1327 wait_event_interruptible( 1328 info->status_wait, 1329 sc->status == SMBDIRECT_SOCKET_DISCONNECTED); 1330 } 1331 1332 log_rdma_event(INFO, "destroying qp\n"); 1333 ib_drain_qp(sc->ib.qp); 1334 rdma_destroy_qp(sc->rdma.cm_id); 1335 sc->ib.qp = NULL; 1336 1337 log_rdma_event(INFO, "cancelling idle timer\n"); 1338 cancel_delayed_work_sync(&info->idle_timer_work); 1339 1340 /* It's not possible for upper layer to get to reassembly */ 1341 log_rdma_event(INFO, "drain the reassembly queue\n"); 1342 do { 1343 spin_lock_irqsave(&sc->recv_io.reassembly.lock, flags); 1344 response = _get_first_reassembly(info); 1345 if (response) { 1346 list_del(&response->list); 1347 spin_unlock_irqrestore( 1348 &sc->recv_io.reassembly.lock, flags); 1349 put_receive_buffer(info, response); 1350 } else 1351 spin_unlock_irqrestore( 1352 &sc->recv_io.reassembly.lock, flags); 1353 } while (response); 1354 sc->recv_io.reassembly.data_length = 0; 1355 1356 log_rdma_event(INFO, "free receive buffers\n"); 1357 wait_event(info->wait_receive_queues, 1358 info->count_receive_queue == sp->recv_credit_max); 1359 destroy_receive_buffers(info); 1360 1361 /* 1362 * For performance reasons, memory registration and deregistration 1363 * are not locked by srv_mutex. It is possible some processes are 1364 * blocked on transport srv_mutex while holding memory registration. 1365 * Release the transport srv_mutex to allow them to hit the failure 1366 * path when sending data, and then release memory registrations. 1367 */ 1368 log_rdma_event(INFO, "freeing mr list\n"); 1369 wake_up_interruptible_all(&info->wait_mr); 1370 while (atomic_read(&info->mr_used_count)) { 1371 cifs_server_unlock(server); 1372 msleep(1000); 1373 cifs_server_lock(server); 1374 } 1375 destroy_mr_list(info); 1376 1377 ib_free_cq(sc->ib.send_cq); 1378 ib_free_cq(sc->ib.recv_cq); 1379 ib_dealloc_pd(sc->ib.pd); 1380 rdma_destroy_id(sc->rdma.cm_id); 1381 1382 /* free mempools */ 1383 mempool_destroy(sc->send_io.mem.pool); 1384 kmem_cache_destroy(sc->send_io.mem.cache); 1385 1386 mempool_destroy(sc->recv_io.mem.pool); 1387 kmem_cache_destroy(sc->recv_io.mem.cache); 1388 1389 sc->status = SMBDIRECT_SOCKET_DESTROYED; 1390 1391 destroy_workqueue(info->workqueue); 1392 log_rdma_event(INFO, "rdma session destroyed\n"); 1393 kfree(info); 1394 server->smbd_conn = NULL; 1395 } 1396 1397 /* 1398 * Reconnect this SMBD connection, called from upper layer 1399 * return value: 0 on success, or actual error code 1400 */ 1401 int smbd_reconnect(struct TCP_Server_Info *server) 1402 { 1403 log_rdma_event(INFO, "reconnecting rdma session\n"); 1404 1405 if (!server->smbd_conn) { 1406 log_rdma_event(INFO, "rdma session already destroyed\n"); 1407 goto create_conn; 1408 } 1409 1410 /* 1411 * This is possible if transport is disconnected and we haven't received 1412 * notification from RDMA, but upper layer has detected timeout 1413 */ 1414 if (server->smbd_conn->socket.status == SMBDIRECT_SOCKET_CONNECTED) { 1415 log_rdma_event(INFO, "disconnecting transport\n"); 1416 smbd_destroy(server); 1417 } 1418 1419 create_conn: 1420 log_rdma_event(INFO, "creating rdma session\n"); 1421 server->smbd_conn = smbd_get_connection( 1422 server, (struct sockaddr *) &server->dstaddr); 1423 1424 if (server->smbd_conn) { 1425 cifs_dbg(VFS, "RDMA transport re-established\n"); 1426 trace_smb3_smbd_connect_done(server->hostname, server->conn_id, &server->dstaddr); 1427 return 0; 1428 } 1429 trace_smb3_smbd_connect_err(server->hostname, server->conn_id, &server->dstaddr); 1430 return -ENOENT; 1431 } 1432 1433 static void destroy_caches_and_workqueue(struct smbd_connection *info) 1434 { 1435 struct smbdirect_socket *sc = &info->socket; 1436 1437 destroy_receive_buffers(info); 1438 destroy_workqueue(info->workqueue); 1439 mempool_destroy(sc->recv_io.mem.pool); 1440 kmem_cache_destroy(sc->recv_io.mem.cache); 1441 mempool_destroy(sc->send_io.mem.pool); 1442 kmem_cache_destroy(sc->send_io.mem.cache); 1443 } 1444 1445 #define MAX_NAME_LEN 80 1446 static int allocate_caches_and_workqueue(struct smbd_connection *info) 1447 { 1448 struct smbdirect_socket *sc = &info->socket; 1449 struct smbdirect_socket_parameters *sp = &sc->parameters; 1450 char name[MAX_NAME_LEN]; 1451 int rc; 1452 1453 if (WARN_ON_ONCE(sp->max_recv_size < sizeof(struct smbdirect_data_transfer))) 1454 return -ENOMEM; 1455 1456 scnprintf(name, MAX_NAME_LEN, "smbdirect_send_io_%p", info); 1457 sc->send_io.mem.cache = 1458 kmem_cache_create( 1459 name, 1460 sizeof(struct smbdirect_send_io) + 1461 sizeof(struct smbdirect_data_transfer), 1462 0, SLAB_HWCACHE_ALIGN, NULL); 1463 if (!sc->send_io.mem.cache) 1464 return -ENOMEM; 1465 1466 sc->send_io.mem.pool = 1467 mempool_create(sp->send_credit_target, mempool_alloc_slab, 1468 mempool_free_slab, sc->send_io.mem.cache); 1469 if (!sc->send_io.mem.pool) 1470 goto out1; 1471 1472 scnprintf(name, MAX_NAME_LEN, "smbdirect_recv_io_%p", info); 1473 1474 struct kmem_cache_args response_args = { 1475 .align = __alignof__(struct smbdirect_recv_io), 1476 .useroffset = (offsetof(struct smbdirect_recv_io, packet) + 1477 sizeof(struct smbdirect_data_transfer)), 1478 .usersize = sp->max_recv_size - sizeof(struct smbdirect_data_transfer), 1479 }; 1480 sc->recv_io.mem.cache = 1481 kmem_cache_create(name, 1482 sizeof(struct smbdirect_recv_io) + sp->max_recv_size, 1483 &response_args, SLAB_HWCACHE_ALIGN); 1484 if (!sc->recv_io.mem.cache) 1485 goto out2; 1486 1487 sc->recv_io.mem.pool = 1488 mempool_create(sp->recv_credit_max, mempool_alloc_slab, 1489 mempool_free_slab, sc->recv_io.mem.cache); 1490 if (!sc->recv_io.mem.pool) 1491 goto out3; 1492 1493 scnprintf(name, MAX_NAME_LEN, "smbd_%p", info); 1494 info->workqueue = create_workqueue(name); 1495 if (!info->workqueue) 1496 goto out4; 1497 1498 rc = allocate_receive_buffers(info, sp->recv_credit_max); 1499 if (rc) { 1500 log_rdma_event(ERR, "failed to allocate receive buffers\n"); 1501 goto out5; 1502 } 1503 1504 return 0; 1505 1506 out5: 1507 destroy_workqueue(info->workqueue); 1508 out4: 1509 mempool_destroy(sc->recv_io.mem.pool); 1510 out3: 1511 kmem_cache_destroy(sc->recv_io.mem.cache); 1512 out2: 1513 mempool_destroy(sc->send_io.mem.pool); 1514 out1: 1515 kmem_cache_destroy(sc->send_io.mem.cache); 1516 return -ENOMEM; 1517 } 1518 1519 /* Create a SMBD connection, called by upper layer */ 1520 static struct smbd_connection *_smbd_get_connection( 1521 struct TCP_Server_Info *server, struct sockaddr *dstaddr, int port) 1522 { 1523 int rc; 1524 struct smbd_connection *info; 1525 struct smbdirect_socket *sc; 1526 struct smbdirect_socket_parameters *sp; 1527 struct rdma_conn_param conn_param; 1528 struct ib_qp_init_attr qp_attr; 1529 struct sockaddr_in *addr_in = (struct sockaddr_in *) dstaddr; 1530 struct ib_port_immutable port_immutable; 1531 u32 ird_ord_hdr[2]; 1532 1533 info = kzalloc(sizeof(struct smbd_connection), GFP_KERNEL); 1534 if (!info) 1535 return NULL; 1536 sc = &info->socket; 1537 sp = &sc->parameters; 1538 1539 sc->status = SMBDIRECT_SOCKET_CONNECTING; 1540 rc = smbd_ia_open(info, dstaddr, port); 1541 if (rc) { 1542 log_rdma_event(INFO, "smbd_ia_open rc=%d\n", rc); 1543 goto create_id_failed; 1544 } 1545 1546 if (smbd_send_credit_target > sc->ib.dev->attrs.max_cqe || 1547 smbd_send_credit_target > sc->ib.dev->attrs.max_qp_wr) { 1548 log_rdma_event(ERR, "consider lowering send_credit_target = %d. Possible CQE overrun, device reporting max_cqe %d max_qp_wr %d\n", 1549 smbd_send_credit_target, 1550 sc->ib.dev->attrs.max_cqe, 1551 sc->ib.dev->attrs.max_qp_wr); 1552 goto config_failed; 1553 } 1554 1555 if (smbd_receive_credit_max > sc->ib.dev->attrs.max_cqe || 1556 smbd_receive_credit_max > sc->ib.dev->attrs.max_qp_wr) { 1557 log_rdma_event(ERR, "consider lowering receive_credit_max = %d. Possible CQE overrun, device reporting max_cqe %d max_qp_wr %d\n", 1558 smbd_receive_credit_max, 1559 sc->ib.dev->attrs.max_cqe, 1560 sc->ib.dev->attrs.max_qp_wr); 1561 goto config_failed; 1562 } 1563 1564 sp->recv_credit_max = smbd_receive_credit_max; 1565 sp->send_credit_target = smbd_send_credit_target; 1566 sp->max_send_size = smbd_max_send_size; 1567 sp->max_fragmented_recv_size = smbd_max_fragmented_recv_size; 1568 sp->max_recv_size = smbd_max_receive_size; 1569 sp->keepalive_interval_msec = smbd_keep_alive_interval * 1000; 1570 1571 if (sc->ib.dev->attrs.max_send_sge < SMBDIRECT_SEND_IO_MAX_SGE || 1572 sc->ib.dev->attrs.max_recv_sge < SMBDIRECT_RECV_IO_MAX_SGE) { 1573 log_rdma_event(ERR, 1574 "device %.*s max_send_sge/max_recv_sge = %d/%d too small\n", 1575 IB_DEVICE_NAME_MAX, 1576 sc->ib.dev->name, 1577 sc->ib.dev->attrs.max_send_sge, 1578 sc->ib.dev->attrs.max_recv_sge); 1579 goto config_failed; 1580 } 1581 1582 sc->ib.send_cq = 1583 ib_alloc_cq_any(sc->ib.dev, info, 1584 sp->send_credit_target, IB_POLL_SOFTIRQ); 1585 if (IS_ERR(sc->ib.send_cq)) { 1586 sc->ib.send_cq = NULL; 1587 goto alloc_cq_failed; 1588 } 1589 1590 sc->ib.recv_cq = 1591 ib_alloc_cq_any(sc->ib.dev, info, 1592 sp->recv_credit_max, IB_POLL_SOFTIRQ); 1593 if (IS_ERR(sc->ib.recv_cq)) { 1594 sc->ib.recv_cq = NULL; 1595 goto alloc_cq_failed; 1596 } 1597 1598 memset(&qp_attr, 0, sizeof(qp_attr)); 1599 qp_attr.event_handler = smbd_qp_async_error_upcall; 1600 qp_attr.qp_context = info; 1601 qp_attr.cap.max_send_wr = sp->send_credit_target; 1602 qp_attr.cap.max_recv_wr = sp->recv_credit_max; 1603 qp_attr.cap.max_send_sge = SMBDIRECT_SEND_IO_MAX_SGE; 1604 qp_attr.cap.max_recv_sge = SMBDIRECT_RECV_IO_MAX_SGE; 1605 qp_attr.cap.max_inline_data = 0; 1606 qp_attr.sq_sig_type = IB_SIGNAL_REQ_WR; 1607 qp_attr.qp_type = IB_QPT_RC; 1608 qp_attr.send_cq = sc->ib.send_cq; 1609 qp_attr.recv_cq = sc->ib.recv_cq; 1610 qp_attr.port_num = ~0; 1611 1612 rc = rdma_create_qp(sc->rdma.cm_id, sc->ib.pd, &qp_attr); 1613 if (rc) { 1614 log_rdma_event(ERR, "rdma_create_qp failed %i\n", rc); 1615 goto create_qp_failed; 1616 } 1617 sc->ib.qp = sc->rdma.cm_id->qp; 1618 1619 memset(&conn_param, 0, sizeof(conn_param)); 1620 conn_param.initiator_depth = 0; 1621 1622 conn_param.responder_resources = 1623 min(sc->ib.dev->attrs.max_qp_rd_atom, 1624 SMBD_CM_RESPONDER_RESOURCES); 1625 info->responder_resources = conn_param.responder_resources; 1626 log_rdma_mr(INFO, "responder_resources=%d\n", 1627 info->responder_resources); 1628 1629 /* Need to send IRD/ORD in private data for iWARP */ 1630 sc->ib.dev->ops.get_port_immutable( 1631 sc->ib.dev, sc->rdma.cm_id->port_num, &port_immutable); 1632 if (port_immutable.core_cap_flags & RDMA_CORE_PORT_IWARP) { 1633 ird_ord_hdr[0] = info->responder_resources; 1634 ird_ord_hdr[1] = 1; 1635 conn_param.private_data = ird_ord_hdr; 1636 conn_param.private_data_len = sizeof(ird_ord_hdr); 1637 } else { 1638 conn_param.private_data = NULL; 1639 conn_param.private_data_len = 0; 1640 } 1641 1642 conn_param.retry_count = SMBD_CM_RETRY; 1643 conn_param.rnr_retry_count = SMBD_CM_RNR_RETRY; 1644 conn_param.flow_control = 0; 1645 1646 log_rdma_event(INFO, "connecting to IP %pI4 port %d\n", 1647 &addr_in->sin_addr, port); 1648 1649 init_waitqueue_head(&info->status_wait); 1650 init_waitqueue_head(&sc->recv_io.reassembly.wait_queue); 1651 rc = rdma_connect(sc->rdma.cm_id, &conn_param); 1652 if (rc) { 1653 log_rdma_event(ERR, "rdma_connect() failed with %i\n", rc); 1654 goto rdma_connect_failed; 1655 } 1656 1657 wait_event_interruptible_timeout( 1658 info->status_wait, 1659 sc->status != SMBDIRECT_SOCKET_CONNECTING, 1660 msecs_to_jiffies(RDMA_RESOLVE_TIMEOUT)); 1661 1662 if (sc->status != SMBDIRECT_SOCKET_CONNECTED) { 1663 log_rdma_event(ERR, "rdma_connect failed port=%d\n", port); 1664 goto rdma_connect_failed; 1665 } 1666 1667 log_rdma_event(INFO, "rdma_connect connected\n"); 1668 1669 rc = allocate_caches_and_workqueue(info); 1670 if (rc) { 1671 log_rdma_event(ERR, "cache allocation failed\n"); 1672 goto allocate_cache_failed; 1673 } 1674 1675 init_waitqueue_head(&info->wait_send_queue); 1676 INIT_DELAYED_WORK(&info->idle_timer_work, idle_connection_timer); 1677 queue_delayed_work(info->workqueue, &info->idle_timer_work, 1678 msecs_to_jiffies(sp->keepalive_interval_msec)); 1679 1680 init_waitqueue_head(&info->wait_send_pending); 1681 atomic_set(&info->send_pending, 0); 1682 1683 init_waitqueue_head(&info->wait_post_send); 1684 1685 INIT_WORK(&info->disconnect_work, smbd_disconnect_rdma_work); 1686 INIT_WORK(&info->post_send_credits_work, smbd_post_send_credits); 1687 info->new_credits_offered = 0; 1688 spin_lock_init(&info->lock_new_credits_offered); 1689 1690 rc = smbd_negotiate(info); 1691 if (rc) { 1692 log_rdma_event(ERR, "smbd_negotiate rc=%d\n", rc); 1693 goto negotiation_failed; 1694 } 1695 1696 rc = allocate_mr_list(info); 1697 if (rc) { 1698 log_rdma_mr(ERR, "memory registration allocation failed\n"); 1699 goto allocate_mr_failed; 1700 } 1701 1702 return info; 1703 1704 allocate_mr_failed: 1705 /* At this point, need to a full transport shutdown */ 1706 server->smbd_conn = info; 1707 smbd_destroy(server); 1708 return NULL; 1709 1710 negotiation_failed: 1711 cancel_delayed_work_sync(&info->idle_timer_work); 1712 destroy_caches_and_workqueue(info); 1713 sc->status = SMBDIRECT_SOCKET_NEGOTIATE_FAILED; 1714 rdma_disconnect(sc->rdma.cm_id); 1715 wait_event(info->status_wait, 1716 sc->status == SMBDIRECT_SOCKET_DISCONNECTED); 1717 1718 allocate_cache_failed: 1719 rdma_connect_failed: 1720 rdma_destroy_qp(sc->rdma.cm_id); 1721 1722 create_qp_failed: 1723 alloc_cq_failed: 1724 if (sc->ib.send_cq) 1725 ib_free_cq(sc->ib.send_cq); 1726 if (sc->ib.recv_cq) 1727 ib_free_cq(sc->ib.recv_cq); 1728 1729 config_failed: 1730 ib_dealloc_pd(sc->ib.pd); 1731 rdma_destroy_id(sc->rdma.cm_id); 1732 1733 create_id_failed: 1734 kfree(info); 1735 return NULL; 1736 } 1737 1738 struct smbd_connection *smbd_get_connection( 1739 struct TCP_Server_Info *server, struct sockaddr *dstaddr) 1740 { 1741 struct smbd_connection *ret; 1742 int port = SMBD_PORT; 1743 1744 try_again: 1745 ret = _smbd_get_connection(server, dstaddr, port); 1746 1747 /* Try SMB_PORT if SMBD_PORT doesn't work */ 1748 if (!ret && port == SMBD_PORT) { 1749 port = SMB_PORT; 1750 goto try_again; 1751 } 1752 return ret; 1753 } 1754 1755 /* 1756 * Receive data from the transport's receive reassembly queue 1757 * All the incoming data packets are placed in reassembly queue 1758 * iter: the buffer to read data into 1759 * size: the length of data to read 1760 * return value: actual data read 1761 * 1762 * Note: this implementation copies the data from reassembly queue to receive 1763 * buffers used by upper layer. This is not the optimal code path. A better way 1764 * to do it is to not have upper layer allocate its receive buffers but rather 1765 * borrow the buffer from reassembly queue, and return it after data is 1766 * consumed. But this will require more changes to upper layer code, and also 1767 * need to consider packet boundaries while they still being reassembled. 1768 */ 1769 int smbd_recv(struct smbd_connection *info, struct msghdr *msg) 1770 { 1771 struct smbdirect_socket *sc = &info->socket; 1772 struct smbdirect_recv_io *response; 1773 struct smbdirect_data_transfer *data_transfer; 1774 size_t size = iov_iter_count(&msg->msg_iter); 1775 int to_copy, to_read, data_read, offset; 1776 u32 data_length, remaining_data_length, data_offset; 1777 int rc; 1778 1779 if (WARN_ON_ONCE(iov_iter_rw(&msg->msg_iter) == WRITE)) 1780 return -EINVAL; /* It's a bug in upper layer to get there */ 1781 1782 again: 1783 /* 1784 * No need to hold the reassembly queue lock all the time as we are 1785 * the only one reading from the front of the queue. The transport 1786 * may add more entries to the back of the queue at the same time 1787 */ 1788 log_read(INFO, "size=%zd sc->recv_io.reassembly.data_length=%d\n", size, 1789 sc->recv_io.reassembly.data_length); 1790 if (sc->recv_io.reassembly.data_length >= size) { 1791 int queue_length; 1792 int queue_removed = 0; 1793 1794 /* 1795 * Need to make sure reassembly_data_length is read before 1796 * reading reassembly_queue_length and calling 1797 * _get_first_reassembly. This call is lock free 1798 * as we never read at the end of the queue which are being 1799 * updated in SOFTIRQ as more data is received 1800 */ 1801 virt_rmb(); 1802 queue_length = sc->recv_io.reassembly.queue_length; 1803 data_read = 0; 1804 to_read = size; 1805 offset = sc->recv_io.reassembly.first_entry_offset; 1806 while (data_read < size) { 1807 response = _get_first_reassembly(info); 1808 data_transfer = smbdirect_recv_io_payload(response); 1809 data_length = le32_to_cpu(data_transfer->data_length); 1810 remaining_data_length = 1811 le32_to_cpu( 1812 data_transfer->remaining_data_length); 1813 data_offset = le32_to_cpu(data_transfer->data_offset); 1814 1815 /* 1816 * The upper layer expects RFC1002 length at the 1817 * beginning of the payload. Return it to indicate 1818 * the total length of the packet. This minimize the 1819 * change to upper layer packet processing logic. This 1820 * will be eventually remove when an intermediate 1821 * transport layer is added 1822 */ 1823 if (response->first_segment && size == 4) { 1824 unsigned int rfc1002_len = 1825 data_length + remaining_data_length; 1826 __be32 rfc1002_hdr = cpu_to_be32(rfc1002_len); 1827 if (copy_to_iter(&rfc1002_hdr, sizeof(rfc1002_hdr), 1828 &msg->msg_iter) != sizeof(rfc1002_hdr)) 1829 return -EFAULT; 1830 data_read = 4; 1831 response->first_segment = false; 1832 log_read(INFO, "returning rfc1002 length %d\n", 1833 rfc1002_len); 1834 goto read_rfc1002_done; 1835 } 1836 1837 to_copy = min_t(int, data_length - offset, to_read); 1838 if (copy_to_iter((char *)data_transfer + data_offset + offset, 1839 to_copy, &msg->msg_iter) != to_copy) 1840 return -EFAULT; 1841 1842 /* move on to the next buffer? */ 1843 if (to_copy == data_length - offset) { 1844 queue_length--; 1845 /* 1846 * No need to lock if we are not at the 1847 * end of the queue 1848 */ 1849 if (queue_length) 1850 list_del(&response->list); 1851 else { 1852 spin_lock_irq( 1853 &sc->recv_io.reassembly.lock); 1854 list_del(&response->list); 1855 spin_unlock_irq( 1856 &sc->recv_io.reassembly.lock); 1857 } 1858 queue_removed++; 1859 info->count_reassembly_queue--; 1860 info->count_dequeue_reassembly_queue++; 1861 put_receive_buffer(info, response); 1862 offset = 0; 1863 log_read(INFO, "put_receive_buffer offset=0\n"); 1864 } else 1865 offset += to_copy; 1866 1867 to_read -= to_copy; 1868 data_read += to_copy; 1869 1870 log_read(INFO, "_get_first_reassembly memcpy %d bytes data_transfer_length-offset=%d after that to_read=%d data_read=%d offset=%d\n", 1871 to_copy, data_length - offset, 1872 to_read, data_read, offset); 1873 } 1874 1875 spin_lock_irq(&sc->recv_io.reassembly.lock); 1876 sc->recv_io.reassembly.data_length -= data_read; 1877 sc->recv_io.reassembly.queue_length -= queue_removed; 1878 spin_unlock_irq(&sc->recv_io.reassembly.lock); 1879 1880 sc->recv_io.reassembly.first_entry_offset = offset; 1881 log_read(INFO, "returning to thread data_read=%d reassembly_data_length=%d first_entry_offset=%d\n", 1882 data_read, sc->recv_io.reassembly.data_length, 1883 sc->recv_io.reassembly.first_entry_offset); 1884 read_rfc1002_done: 1885 return data_read; 1886 } 1887 1888 log_read(INFO, "wait_event on more data\n"); 1889 rc = wait_event_interruptible( 1890 sc->recv_io.reassembly.wait_queue, 1891 sc->recv_io.reassembly.data_length >= size || 1892 sc->status != SMBDIRECT_SOCKET_CONNECTED); 1893 /* Don't return any data if interrupted */ 1894 if (rc) 1895 return rc; 1896 1897 if (sc->status != SMBDIRECT_SOCKET_CONNECTED) { 1898 log_read(ERR, "disconnected\n"); 1899 return -ECONNABORTED; 1900 } 1901 1902 goto again; 1903 } 1904 1905 /* 1906 * Send data to transport 1907 * Each rqst is transported as a SMBDirect payload 1908 * rqst: the data to write 1909 * return value: 0 if successfully write, otherwise error code 1910 */ 1911 int smbd_send(struct TCP_Server_Info *server, 1912 int num_rqst, struct smb_rqst *rqst_array) 1913 { 1914 struct smbd_connection *info = server->smbd_conn; 1915 struct smbdirect_socket *sc = &info->socket; 1916 struct smbdirect_socket_parameters *sp = &sc->parameters; 1917 struct smb_rqst *rqst; 1918 struct iov_iter iter; 1919 unsigned int remaining_data_length, klen; 1920 int rc, i, rqst_idx; 1921 1922 if (sc->status != SMBDIRECT_SOCKET_CONNECTED) 1923 return -EAGAIN; 1924 1925 /* 1926 * Add in the page array if there is one. The caller needs to set 1927 * rq_tailsz to PAGE_SIZE when the buffer has multiple pages and 1928 * ends at page boundary 1929 */ 1930 remaining_data_length = 0; 1931 for (i = 0; i < num_rqst; i++) 1932 remaining_data_length += smb_rqst_len(server, &rqst_array[i]); 1933 1934 if (unlikely(remaining_data_length > sp->max_fragmented_send_size)) { 1935 /* assertion: payload never exceeds negotiated maximum */ 1936 log_write(ERR, "payload size %d > max size %d\n", 1937 remaining_data_length, sp->max_fragmented_send_size); 1938 return -EINVAL; 1939 } 1940 1941 log_write(INFO, "num_rqst=%d total length=%u\n", 1942 num_rqst, remaining_data_length); 1943 1944 rqst_idx = 0; 1945 do { 1946 rqst = &rqst_array[rqst_idx]; 1947 1948 cifs_dbg(FYI, "Sending smb (RDMA): idx=%d smb_len=%lu\n", 1949 rqst_idx, smb_rqst_len(server, rqst)); 1950 for (i = 0; i < rqst->rq_nvec; i++) 1951 dump_smb(rqst->rq_iov[i].iov_base, rqst->rq_iov[i].iov_len); 1952 1953 log_write(INFO, "RDMA-WR[%u] nvec=%d len=%u iter=%zu rqlen=%lu\n", 1954 rqst_idx, rqst->rq_nvec, remaining_data_length, 1955 iov_iter_count(&rqst->rq_iter), smb_rqst_len(server, rqst)); 1956 1957 /* Send the metadata pages. */ 1958 klen = 0; 1959 for (i = 0; i < rqst->rq_nvec; i++) 1960 klen += rqst->rq_iov[i].iov_len; 1961 iov_iter_kvec(&iter, ITER_SOURCE, rqst->rq_iov, rqst->rq_nvec, klen); 1962 1963 rc = smbd_post_send_full_iter(info, &iter, &remaining_data_length); 1964 if (rc < 0) 1965 break; 1966 1967 if (iov_iter_count(&rqst->rq_iter) > 0) { 1968 /* And then the data pages if there are any */ 1969 rc = smbd_post_send_full_iter(info, &rqst->rq_iter, 1970 &remaining_data_length); 1971 if (rc < 0) 1972 break; 1973 } 1974 1975 } while (++rqst_idx < num_rqst); 1976 1977 /* 1978 * As an optimization, we don't wait for individual I/O to finish 1979 * before sending the next one. 1980 * Send them all and wait for pending send count to get to 0 1981 * that means all the I/Os have been out and we are good to return 1982 */ 1983 1984 wait_event(info->wait_send_pending, 1985 atomic_read(&info->send_pending) == 0 || 1986 sc->status != SMBDIRECT_SOCKET_CONNECTED); 1987 1988 if (sc->status != SMBDIRECT_SOCKET_CONNECTED && rc == 0) 1989 rc = -EAGAIN; 1990 1991 return rc; 1992 } 1993 1994 static void register_mr_done(struct ib_cq *cq, struct ib_wc *wc) 1995 { 1996 struct smbd_mr *mr; 1997 struct ib_cqe *cqe; 1998 1999 if (wc->status) { 2000 log_rdma_mr(ERR, "status=%d\n", wc->status); 2001 cqe = wc->wr_cqe; 2002 mr = container_of(cqe, struct smbd_mr, cqe); 2003 smbd_disconnect_rdma_connection(mr->conn); 2004 } 2005 } 2006 2007 /* 2008 * The work queue function that recovers MRs 2009 * We need to call ib_dereg_mr() and ib_alloc_mr() before this MR can be used 2010 * again. Both calls are slow, so finish them in a workqueue. This will not 2011 * block I/O path. 2012 * There is one workqueue that recovers MRs, there is no need to lock as the 2013 * I/O requests calling smbd_register_mr will never update the links in the 2014 * mr_list. 2015 */ 2016 static void smbd_mr_recovery_work(struct work_struct *work) 2017 { 2018 struct smbd_connection *info = 2019 container_of(work, struct smbd_connection, mr_recovery_work); 2020 struct smbdirect_socket *sc = &info->socket; 2021 struct smbd_mr *smbdirect_mr; 2022 int rc; 2023 2024 list_for_each_entry(smbdirect_mr, &info->mr_list, list) { 2025 if (smbdirect_mr->state == MR_ERROR) { 2026 2027 /* recover this MR entry */ 2028 rc = ib_dereg_mr(smbdirect_mr->mr); 2029 if (rc) { 2030 log_rdma_mr(ERR, 2031 "ib_dereg_mr failed rc=%x\n", 2032 rc); 2033 smbd_disconnect_rdma_connection(info); 2034 continue; 2035 } 2036 2037 smbdirect_mr->mr = ib_alloc_mr( 2038 sc->ib.pd, info->mr_type, 2039 info->max_frmr_depth); 2040 if (IS_ERR(smbdirect_mr->mr)) { 2041 log_rdma_mr(ERR, "ib_alloc_mr failed mr_type=%x max_frmr_depth=%x\n", 2042 info->mr_type, 2043 info->max_frmr_depth); 2044 smbd_disconnect_rdma_connection(info); 2045 continue; 2046 } 2047 } else 2048 /* This MR is being used, don't recover it */ 2049 continue; 2050 2051 smbdirect_mr->state = MR_READY; 2052 2053 /* smbdirect_mr->state is updated by this function 2054 * and is read and updated by I/O issuing CPUs trying 2055 * to get a MR, the call to atomic_inc_return 2056 * implicates a memory barrier and guarantees this 2057 * value is updated before waking up any calls to 2058 * get_mr() from the I/O issuing CPUs 2059 */ 2060 if (atomic_inc_return(&info->mr_ready_count) == 1) 2061 wake_up_interruptible(&info->wait_mr); 2062 } 2063 } 2064 2065 static void destroy_mr_list(struct smbd_connection *info) 2066 { 2067 struct smbdirect_socket *sc = &info->socket; 2068 struct smbd_mr *mr, *tmp; 2069 2070 cancel_work_sync(&info->mr_recovery_work); 2071 list_for_each_entry_safe(mr, tmp, &info->mr_list, list) { 2072 if (mr->state == MR_INVALIDATED) 2073 ib_dma_unmap_sg(sc->ib.dev, mr->sgt.sgl, 2074 mr->sgt.nents, mr->dir); 2075 ib_dereg_mr(mr->mr); 2076 kfree(mr->sgt.sgl); 2077 kfree(mr); 2078 } 2079 } 2080 2081 /* 2082 * Allocate MRs used for RDMA read/write 2083 * The number of MRs will not exceed hardware capability in responder_resources 2084 * All MRs are kept in mr_list. The MR can be recovered after it's used 2085 * Recovery is done in smbd_mr_recovery_work. The content of list entry changes 2086 * as MRs are used and recovered for I/O, but the list links will not change 2087 */ 2088 static int allocate_mr_list(struct smbd_connection *info) 2089 { 2090 struct smbdirect_socket *sc = &info->socket; 2091 int i; 2092 struct smbd_mr *smbdirect_mr, *tmp; 2093 2094 INIT_LIST_HEAD(&info->mr_list); 2095 init_waitqueue_head(&info->wait_mr); 2096 spin_lock_init(&info->mr_list_lock); 2097 atomic_set(&info->mr_ready_count, 0); 2098 atomic_set(&info->mr_used_count, 0); 2099 init_waitqueue_head(&info->wait_for_mr_cleanup); 2100 INIT_WORK(&info->mr_recovery_work, smbd_mr_recovery_work); 2101 /* Allocate more MRs (2x) than hardware responder_resources */ 2102 for (i = 0; i < info->responder_resources * 2; i++) { 2103 smbdirect_mr = kzalloc(sizeof(*smbdirect_mr), GFP_KERNEL); 2104 if (!smbdirect_mr) 2105 goto cleanup_entries; 2106 smbdirect_mr->mr = ib_alloc_mr(sc->ib.pd, info->mr_type, 2107 info->max_frmr_depth); 2108 if (IS_ERR(smbdirect_mr->mr)) { 2109 log_rdma_mr(ERR, "ib_alloc_mr failed mr_type=%x max_frmr_depth=%x\n", 2110 info->mr_type, info->max_frmr_depth); 2111 goto out; 2112 } 2113 smbdirect_mr->sgt.sgl = kcalloc(info->max_frmr_depth, 2114 sizeof(struct scatterlist), 2115 GFP_KERNEL); 2116 if (!smbdirect_mr->sgt.sgl) { 2117 log_rdma_mr(ERR, "failed to allocate sgl\n"); 2118 ib_dereg_mr(smbdirect_mr->mr); 2119 goto out; 2120 } 2121 smbdirect_mr->state = MR_READY; 2122 smbdirect_mr->conn = info; 2123 2124 list_add_tail(&smbdirect_mr->list, &info->mr_list); 2125 atomic_inc(&info->mr_ready_count); 2126 } 2127 return 0; 2128 2129 out: 2130 kfree(smbdirect_mr); 2131 cleanup_entries: 2132 list_for_each_entry_safe(smbdirect_mr, tmp, &info->mr_list, list) { 2133 list_del(&smbdirect_mr->list); 2134 ib_dereg_mr(smbdirect_mr->mr); 2135 kfree(smbdirect_mr->sgt.sgl); 2136 kfree(smbdirect_mr); 2137 } 2138 return -ENOMEM; 2139 } 2140 2141 /* 2142 * Get a MR from mr_list. This function waits until there is at least one 2143 * MR available in the list. It may access the list while the 2144 * smbd_mr_recovery_work is recovering the MR list. This doesn't need a lock 2145 * as they never modify the same places. However, there may be several CPUs 2146 * issuing I/O trying to get MR at the same time, mr_list_lock is used to 2147 * protect this situation. 2148 */ 2149 static struct smbd_mr *get_mr(struct smbd_connection *info) 2150 { 2151 struct smbdirect_socket *sc = &info->socket; 2152 struct smbd_mr *ret; 2153 int rc; 2154 again: 2155 rc = wait_event_interruptible(info->wait_mr, 2156 atomic_read(&info->mr_ready_count) || 2157 sc->status != SMBDIRECT_SOCKET_CONNECTED); 2158 if (rc) { 2159 log_rdma_mr(ERR, "wait_event_interruptible rc=%x\n", rc); 2160 return NULL; 2161 } 2162 2163 if (sc->status != SMBDIRECT_SOCKET_CONNECTED) { 2164 log_rdma_mr(ERR, "sc->status=%x\n", sc->status); 2165 return NULL; 2166 } 2167 2168 spin_lock(&info->mr_list_lock); 2169 list_for_each_entry(ret, &info->mr_list, list) { 2170 if (ret->state == MR_READY) { 2171 ret->state = MR_REGISTERED; 2172 spin_unlock(&info->mr_list_lock); 2173 atomic_dec(&info->mr_ready_count); 2174 atomic_inc(&info->mr_used_count); 2175 return ret; 2176 } 2177 } 2178 2179 spin_unlock(&info->mr_list_lock); 2180 /* 2181 * It is possible that we could fail to get MR because other processes may 2182 * try to acquire a MR at the same time. If this is the case, retry it. 2183 */ 2184 goto again; 2185 } 2186 2187 /* 2188 * Transcribe the pages from an iterator into an MR scatterlist. 2189 */ 2190 static int smbd_iter_to_mr(struct smbd_connection *info, 2191 struct iov_iter *iter, 2192 struct sg_table *sgt, 2193 unsigned int max_sg) 2194 { 2195 int ret; 2196 2197 memset(sgt->sgl, 0, max_sg * sizeof(struct scatterlist)); 2198 2199 ret = extract_iter_to_sg(iter, iov_iter_count(iter), sgt, max_sg, 0); 2200 WARN_ON(ret < 0); 2201 if (sgt->nents > 0) 2202 sg_mark_end(&sgt->sgl[sgt->nents - 1]); 2203 return ret; 2204 } 2205 2206 /* 2207 * Register memory for RDMA read/write 2208 * iter: the buffer to register memory with 2209 * writing: true if this is a RDMA write (SMB read), false for RDMA read 2210 * need_invalidate: true if this MR needs to be locally invalidated after I/O 2211 * return value: the MR registered, NULL if failed. 2212 */ 2213 struct smbd_mr *smbd_register_mr(struct smbd_connection *info, 2214 struct iov_iter *iter, 2215 bool writing, bool need_invalidate) 2216 { 2217 struct smbdirect_socket *sc = &info->socket; 2218 struct smbd_mr *smbdirect_mr; 2219 int rc, num_pages; 2220 enum dma_data_direction dir; 2221 struct ib_reg_wr *reg_wr; 2222 2223 num_pages = iov_iter_npages(iter, info->max_frmr_depth + 1); 2224 if (num_pages > info->max_frmr_depth) { 2225 log_rdma_mr(ERR, "num_pages=%d max_frmr_depth=%d\n", 2226 num_pages, info->max_frmr_depth); 2227 WARN_ON_ONCE(1); 2228 return NULL; 2229 } 2230 2231 smbdirect_mr = get_mr(info); 2232 if (!smbdirect_mr) { 2233 log_rdma_mr(ERR, "get_mr returning NULL\n"); 2234 return NULL; 2235 } 2236 2237 dir = writing ? DMA_FROM_DEVICE : DMA_TO_DEVICE; 2238 smbdirect_mr->dir = dir; 2239 smbdirect_mr->need_invalidate = need_invalidate; 2240 smbdirect_mr->sgt.nents = 0; 2241 smbdirect_mr->sgt.orig_nents = 0; 2242 2243 log_rdma_mr(INFO, "num_pages=0x%x count=0x%zx depth=%u\n", 2244 num_pages, iov_iter_count(iter), info->max_frmr_depth); 2245 smbd_iter_to_mr(info, iter, &smbdirect_mr->sgt, info->max_frmr_depth); 2246 2247 rc = ib_dma_map_sg(sc->ib.dev, smbdirect_mr->sgt.sgl, 2248 smbdirect_mr->sgt.nents, dir); 2249 if (!rc) { 2250 log_rdma_mr(ERR, "ib_dma_map_sg num_pages=%x dir=%x rc=%x\n", 2251 num_pages, dir, rc); 2252 goto dma_map_error; 2253 } 2254 2255 rc = ib_map_mr_sg(smbdirect_mr->mr, smbdirect_mr->sgt.sgl, 2256 smbdirect_mr->sgt.nents, NULL, PAGE_SIZE); 2257 if (rc != smbdirect_mr->sgt.nents) { 2258 log_rdma_mr(ERR, 2259 "ib_map_mr_sg failed rc = %d nents = %x\n", 2260 rc, smbdirect_mr->sgt.nents); 2261 goto map_mr_error; 2262 } 2263 2264 ib_update_fast_reg_key(smbdirect_mr->mr, 2265 ib_inc_rkey(smbdirect_mr->mr->rkey)); 2266 reg_wr = &smbdirect_mr->wr; 2267 reg_wr->wr.opcode = IB_WR_REG_MR; 2268 smbdirect_mr->cqe.done = register_mr_done; 2269 reg_wr->wr.wr_cqe = &smbdirect_mr->cqe; 2270 reg_wr->wr.num_sge = 0; 2271 reg_wr->wr.send_flags = IB_SEND_SIGNALED; 2272 reg_wr->mr = smbdirect_mr->mr; 2273 reg_wr->key = smbdirect_mr->mr->rkey; 2274 reg_wr->access = writing ? 2275 IB_ACCESS_REMOTE_WRITE | IB_ACCESS_LOCAL_WRITE : 2276 IB_ACCESS_REMOTE_READ; 2277 2278 /* 2279 * There is no need for waiting for complemtion on ib_post_send 2280 * on IB_WR_REG_MR. Hardware enforces a barrier and order of execution 2281 * on the next ib_post_send when we actually send I/O to remote peer 2282 */ 2283 rc = ib_post_send(sc->ib.qp, ®_wr->wr, NULL); 2284 if (!rc) 2285 return smbdirect_mr; 2286 2287 log_rdma_mr(ERR, "ib_post_send failed rc=%x reg_wr->key=%x\n", 2288 rc, reg_wr->key); 2289 2290 /* If all failed, attempt to recover this MR by setting it MR_ERROR*/ 2291 map_mr_error: 2292 ib_dma_unmap_sg(sc->ib.dev, smbdirect_mr->sgt.sgl, 2293 smbdirect_mr->sgt.nents, smbdirect_mr->dir); 2294 2295 dma_map_error: 2296 smbdirect_mr->state = MR_ERROR; 2297 if (atomic_dec_and_test(&info->mr_used_count)) 2298 wake_up(&info->wait_for_mr_cleanup); 2299 2300 smbd_disconnect_rdma_connection(info); 2301 2302 return NULL; 2303 } 2304 2305 static void local_inv_done(struct ib_cq *cq, struct ib_wc *wc) 2306 { 2307 struct smbd_mr *smbdirect_mr; 2308 struct ib_cqe *cqe; 2309 2310 cqe = wc->wr_cqe; 2311 smbdirect_mr = container_of(cqe, struct smbd_mr, cqe); 2312 smbdirect_mr->state = MR_INVALIDATED; 2313 if (wc->status != IB_WC_SUCCESS) { 2314 log_rdma_mr(ERR, "invalidate failed status=%x\n", wc->status); 2315 smbdirect_mr->state = MR_ERROR; 2316 } 2317 complete(&smbdirect_mr->invalidate_done); 2318 } 2319 2320 /* 2321 * Deregister a MR after I/O is done 2322 * This function may wait if remote invalidation is not used 2323 * and we have to locally invalidate the buffer to prevent data is being 2324 * modified by remote peer after upper layer consumes it 2325 */ 2326 int smbd_deregister_mr(struct smbd_mr *smbdirect_mr) 2327 { 2328 struct ib_send_wr *wr; 2329 struct smbd_connection *info = smbdirect_mr->conn; 2330 struct smbdirect_socket *sc = &info->socket; 2331 int rc = 0; 2332 2333 if (smbdirect_mr->need_invalidate) { 2334 /* Need to finish local invalidation before returning */ 2335 wr = &smbdirect_mr->inv_wr; 2336 wr->opcode = IB_WR_LOCAL_INV; 2337 smbdirect_mr->cqe.done = local_inv_done; 2338 wr->wr_cqe = &smbdirect_mr->cqe; 2339 wr->num_sge = 0; 2340 wr->ex.invalidate_rkey = smbdirect_mr->mr->rkey; 2341 wr->send_flags = IB_SEND_SIGNALED; 2342 2343 init_completion(&smbdirect_mr->invalidate_done); 2344 rc = ib_post_send(sc->ib.qp, wr, NULL); 2345 if (rc) { 2346 log_rdma_mr(ERR, "ib_post_send failed rc=%x\n", rc); 2347 smbd_disconnect_rdma_connection(info); 2348 goto done; 2349 } 2350 wait_for_completion(&smbdirect_mr->invalidate_done); 2351 smbdirect_mr->need_invalidate = false; 2352 } else 2353 /* 2354 * For remote invalidation, just set it to MR_INVALIDATED 2355 * and defer to mr_recovery_work to recover the MR for next use 2356 */ 2357 smbdirect_mr->state = MR_INVALIDATED; 2358 2359 if (smbdirect_mr->state == MR_INVALIDATED) { 2360 ib_dma_unmap_sg( 2361 sc->ib.dev, smbdirect_mr->sgt.sgl, 2362 smbdirect_mr->sgt.nents, 2363 smbdirect_mr->dir); 2364 smbdirect_mr->state = MR_READY; 2365 if (atomic_inc_return(&info->mr_ready_count) == 1) 2366 wake_up_interruptible(&info->wait_mr); 2367 } else 2368 /* 2369 * Schedule the work to do MR recovery for future I/Os MR 2370 * recovery is slow and don't want it to block current I/O 2371 */ 2372 queue_work(info->workqueue, &info->mr_recovery_work); 2373 2374 done: 2375 if (atomic_dec_and_test(&info->mr_used_count)) 2376 wake_up(&info->wait_for_mr_cleanup); 2377 2378 return rc; 2379 } 2380 2381 static bool smb_set_sge(struct smb_extract_to_rdma *rdma, 2382 struct page *lowest_page, size_t off, size_t len) 2383 { 2384 struct ib_sge *sge = &rdma->sge[rdma->nr_sge]; 2385 u64 addr; 2386 2387 addr = ib_dma_map_page(rdma->device, lowest_page, 2388 off, len, rdma->direction); 2389 if (ib_dma_mapping_error(rdma->device, addr)) 2390 return false; 2391 2392 sge->addr = addr; 2393 sge->length = len; 2394 sge->lkey = rdma->local_dma_lkey; 2395 rdma->nr_sge++; 2396 return true; 2397 } 2398 2399 /* 2400 * Extract page fragments from a BVEC-class iterator and add them to an RDMA 2401 * element list. The pages are not pinned. 2402 */ 2403 static ssize_t smb_extract_bvec_to_rdma(struct iov_iter *iter, 2404 struct smb_extract_to_rdma *rdma, 2405 ssize_t maxsize) 2406 { 2407 const struct bio_vec *bv = iter->bvec; 2408 unsigned long start = iter->iov_offset; 2409 unsigned int i; 2410 ssize_t ret = 0; 2411 2412 for (i = 0; i < iter->nr_segs; i++) { 2413 size_t off, len; 2414 2415 len = bv[i].bv_len; 2416 if (start >= len) { 2417 start -= len; 2418 continue; 2419 } 2420 2421 len = min_t(size_t, maxsize, len - start); 2422 off = bv[i].bv_offset + start; 2423 2424 if (!smb_set_sge(rdma, bv[i].bv_page, off, len)) 2425 return -EIO; 2426 2427 ret += len; 2428 maxsize -= len; 2429 if (rdma->nr_sge >= rdma->max_sge || maxsize <= 0) 2430 break; 2431 start = 0; 2432 } 2433 2434 if (ret > 0) 2435 iov_iter_advance(iter, ret); 2436 return ret; 2437 } 2438 2439 /* 2440 * Extract fragments from a KVEC-class iterator and add them to an RDMA list. 2441 * This can deal with vmalloc'd buffers as well as kmalloc'd or static buffers. 2442 * The pages are not pinned. 2443 */ 2444 static ssize_t smb_extract_kvec_to_rdma(struct iov_iter *iter, 2445 struct smb_extract_to_rdma *rdma, 2446 ssize_t maxsize) 2447 { 2448 const struct kvec *kv = iter->kvec; 2449 unsigned long start = iter->iov_offset; 2450 unsigned int i; 2451 ssize_t ret = 0; 2452 2453 for (i = 0; i < iter->nr_segs; i++) { 2454 struct page *page; 2455 unsigned long kaddr; 2456 size_t off, len, seg; 2457 2458 len = kv[i].iov_len; 2459 if (start >= len) { 2460 start -= len; 2461 continue; 2462 } 2463 2464 kaddr = (unsigned long)kv[i].iov_base + start; 2465 off = kaddr & ~PAGE_MASK; 2466 len = min_t(size_t, maxsize, len - start); 2467 kaddr &= PAGE_MASK; 2468 2469 maxsize -= len; 2470 do { 2471 seg = min_t(size_t, len, PAGE_SIZE - off); 2472 2473 if (is_vmalloc_or_module_addr((void *)kaddr)) 2474 page = vmalloc_to_page((void *)kaddr); 2475 else 2476 page = virt_to_page((void *)kaddr); 2477 2478 if (!smb_set_sge(rdma, page, off, seg)) 2479 return -EIO; 2480 2481 ret += seg; 2482 len -= seg; 2483 kaddr += PAGE_SIZE; 2484 off = 0; 2485 } while (len > 0 && rdma->nr_sge < rdma->max_sge); 2486 2487 if (rdma->nr_sge >= rdma->max_sge || maxsize <= 0) 2488 break; 2489 start = 0; 2490 } 2491 2492 if (ret > 0) 2493 iov_iter_advance(iter, ret); 2494 return ret; 2495 } 2496 2497 /* 2498 * Extract folio fragments from a FOLIOQ-class iterator and add them to an RDMA 2499 * list. The folios are not pinned. 2500 */ 2501 static ssize_t smb_extract_folioq_to_rdma(struct iov_iter *iter, 2502 struct smb_extract_to_rdma *rdma, 2503 ssize_t maxsize) 2504 { 2505 const struct folio_queue *folioq = iter->folioq; 2506 unsigned int slot = iter->folioq_slot; 2507 ssize_t ret = 0; 2508 size_t offset = iter->iov_offset; 2509 2510 BUG_ON(!folioq); 2511 2512 if (slot >= folioq_nr_slots(folioq)) { 2513 folioq = folioq->next; 2514 if (WARN_ON_ONCE(!folioq)) 2515 return -EIO; 2516 slot = 0; 2517 } 2518 2519 do { 2520 struct folio *folio = folioq_folio(folioq, slot); 2521 size_t fsize = folioq_folio_size(folioq, slot); 2522 2523 if (offset < fsize) { 2524 size_t part = umin(maxsize, fsize - offset); 2525 2526 if (!smb_set_sge(rdma, folio_page(folio, 0), offset, part)) 2527 return -EIO; 2528 2529 offset += part; 2530 ret += part; 2531 maxsize -= part; 2532 } 2533 2534 if (offset >= fsize) { 2535 offset = 0; 2536 slot++; 2537 if (slot >= folioq_nr_slots(folioq)) { 2538 if (!folioq->next) { 2539 WARN_ON_ONCE(ret < iter->count); 2540 break; 2541 } 2542 folioq = folioq->next; 2543 slot = 0; 2544 } 2545 } 2546 } while (rdma->nr_sge < rdma->max_sge && maxsize > 0); 2547 2548 iter->folioq = folioq; 2549 iter->folioq_slot = slot; 2550 iter->iov_offset = offset; 2551 iter->count -= ret; 2552 return ret; 2553 } 2554 2555 /* 2556 * Extract page fragments from up to the given amount of the source iterator 2557 * and build up an RDMA list that refers to all of those bits. The RDMA list 2558 * is appended to, up to the maximum number of elements set in the parameter 2559 * block. 2560 * 2561 * The extracted page fragments are not pinned or ref'd in any way; if an 2562 * IOVEC/UBUF-type iterator is to be used, it should be converted to a 2563 * BVEC-type iterator and the pages pinned, ref'd or otherwise held in some 2564 * way. 2565 */ 2566 static ssize_t smb_extract_iter_to_rdma(struct iov_iter *iter, size_t len, 2567 struct smb_extract_to_rdma *rdma) 2568 { 2569 ssize_t ret; 2570 int before = rdma->nr_sge; 2571 2572 switch (iov_iter_type(iter)) { 2573 case ITER_BVEC: 2574 ret = smb_extract_bvec_to_rdma(iter, rdma, len); 2575 break; 2576 case ITER_KVEC: 2577 ret = smb_extract_kvec_to_rdma(iter, rdma, len); 2578 break; 2579 case ITER_FOLIOQ: 2580 ret = smb_extract_folioq_to_rdma(iter, rdma, len); 2581 break; 2582 default: 2583 WARN_ON_ONCE(1); 2584 return -EIO; 2585 } 2586 2587 if (ret < 0) { 2588 while (rdma->nr_sge > before) { 2589 struct ib_sge *sge = &rdma->sge[rdma->nr_sge--]; 2590 2591 ib_dma_unmap_single(rdma->device, sge->addr, sge->length, 2592 rdma->direction); 2593 sge->addr = 0; 2594 } 2595 } 2596 2597 return ret; 2598 } 2599