1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Copyright (C) 2017, Microsoft Corporation. 4 * 5 * Author(s): Long Li <longli@microsoft.com> 6 */ 7 #include <linux/module.h> 8 #include <linux/highmem.h> 9 #include <linux/folio_queue.h> 10 #include "smbdirect.h" 11 #include "cifs_debug.h" 12 #include "cifsproto.h" 13 #include "smb2proto.h" 14 15 static struct smbd_response *get_empty_queue_buffer( 16 struct smbd_connection *info); 17 static struct smbd_response *get_receive_buffer( 18 struct smbd_connection *info); 19 static void put_receive_buffer( 20 struct smbd_connection *info, 21 struct smbd_response *response); 22 static int allocate_receive_buffers(struct smbd_connection *info, int num_buf); 23 static void destroy_receive_buffers(struct smbd_connection *info); 24 25 static void put_empty_packet( 26 struct smbd_connection *info, struct smbd_response *response); 27 static void enqueue_reassembly( 28 struct smbd_connection *info, 29 struct smbd_response *response, int data_length); 30 static struct smbd_response *_get_first_reassembly( 31 struct smbd_connection *info); 32 33 static int smbd_post_recv( 34 struct smbd_connection *info, 35 struct smbd_response *response); 36 37 static int smbd_post_send_empty(struct smbd_connection *info); 38 39 static void destroy_mr_list(struct smbd_connection *info); 40 static int allocate_mr_list(struct smbd_connection *info); 41 42 struct smb_extract_to_rdma { 43 struct ib_sge *sge; 44 unsigned int nr_sge; 45 unsigned int max_sge; 46 struct ib_device *device; 47 u32 local_dma_lkey; 48 enum dma_data_direction direction; 49 }; 50 static ssize_t smb_extract_iter_to_rdma(struct iov_iter *iter, size_t len, 51 struct smb_extract_to_rdma *rdma); 52 53 /* SMBD version number */ 54 #define SMBD_V1 0x0100 55 56 /* Port numbers for SMBD transport */ 57 #define SMB_PORT 445 58 #define SMBD_PORT 5445 59 60 /* Address lookup and resolve timeout in ms */ 61 #define RDMA_RESOLVE_TIMEOUT 5000 62 63 /* SMBD negotiation timeout in seconds */ 64 #define SMBD_NEGOTIATE_TIMEOUT 120 65 66 /* SMBD minimum receive size and fragmented sized defined in [MS-SMBD] */ 67 #define SMBD_MIN_RECEIVE_SIZE 128 68 #define SMBD_MIN_FRAGMENTED_SIZE 131072 69 70 /* 71 * Default maximum number of RDMA read/write outstanding on this connection 72 * This value is possibly decreased during QP creation on hardware limit 73 */ 74 #define SMBD_CM_RESPONDER_RESOURCES 32 75 76 /* Maximum number of retries on data transfer operations */ 77 #define SMBD_CM_RETRY 6 78 /* No need to retry on Receiver Not Ready since SMBD manages credits */ 79 #define SMBD_CM_RNR_RETRY 0 80 81 /* 82 * User configurable initial values per SMBD transport connection 83 * as defined in [MS-SMBD] 3.1.1.1 84 * Those may change after a SMBD negotiation 85 */ 86 /* The local peer's maximum number of credits to grant to the peer */ 87 int smbd_receive_credit_max = 255; 88 89 /* The remote peer's credit request of local peer */ 90 int smbd_send_credit_target = 255; 91 92 /* The maximum single message size can be sent to remote peer */ 93 int smbd_max_send_size = 1364; 94 95 /* The maximum fragmented upper-layer payload receive size supported */ 96 int smbd_max_fragmented_recv_size = 1024 * 1024; 97 98 /* The maximum single-message size which can be received */ 99 int smbd_max_receive_size = 1364; 100 101 /* The timeout to initiate send of a keepalive message on idle */ 102 int smbd_keep_alive_interval = 120; 103 104 /* 105 * User configurable initial values for RDMA transport 106 * The actual values used may be lower and are limited to hardware capabilities 107 */ 108 /* Default maximum number of pages in a single RDMA write/read */ 109 int smbd_max_frmr_depth = 2048; 110 111 /* If payload is less than this byte, use RDMA send/recv not read/write */ 112 int rdma_readwrite_threshold = 4096; 113 114 /* Transport logging functions 115 * Logging are defined as classes. They can be OR'ed to define the actual 116 * logging level via module parameter smbd_logging_class 117 * e.g. cifs.smbd_logging_class=0xa0 will log all log_rdma_recv() and 118 * log_rdma_event() 119 */ 120 #define LOG_OUTGOING 0x1 121 #define LOG_INCOMING 0x2 122 #define LOG_READ 0x4 123 #define LOG_WRITE 0x8 124 #define LOG_RDMA_SEND 0x10 125 #define LOG_RDMA_RECV 0x20 126 #define LOG_KEEP_ALIVE 0x40 127 #define LOG_RDMA_EVENT 0x80 128 #define LOG_RDMA_MR 0x100 129 static unsigned int smbd_logging_class; 130 module_param(smbd_logging_class, uint, 0644); 131 MODULE_PARM_DESC(smbd_logging_class, 132 "Logging class for SMBD transport 0x0 to 0x100"); 133 134 #define ERR 0x0 135 #define INFO 0x1 136 static unsigned int smbd_logging_level = ERR; 137 module_param(smbd_logging_level, uint, 0644); 138 MODULE_PARM_DESC(smbd_logging_level, 139 "Logging level for SMBD transport, 0 (default): error, 1: info"); 140 141 #define log_rdma(level, class, fmt, args...) \ 142 do { \ 143 if (level <= smbd_logging_level || class & smbd_logging_class) \ 144 cifs_dbg(VFS, "%s:%d " fmt, __func__, __LINE__, ##args);\ 145 } while (0) 146 147 #define log_outgoing(level, fmt, args...) \ 148 log_rdma(level, LOG_OUTGOING, fmt, ##args) 149 #define log_incoming(level, fmt, args...) \ 150 log_rdma(level, LOG_INCOMING, fmt, ##args) 151 #define log_read(level, fmt, args...) log_rdma(level, LOG_READ, fmt, ##args) 152 #define log_write(level, fmt, args...) log_rdma(level, LOG_WRITE, fmt, ##args) 153 #define log_rdma_send(level, fmt, args...) \ 154 log_rdma(level, LOG_RDMA_SEND, fmt, ##args) 155 #define log_rdma_recv(level, fmt, args...) \ 156 log_rdma(level, LOG_RDMA_RECV, fmt, ##args) 157 #define log_keep_alive(level, fmt, args...) \ 158 log_rdma(level, LOG_KEEP_ALIVE, fmt, ##args) 159 #define log_rdma_event(level, fmt, args...) \ 160 log_rdma(level, LOG_RDMA_EVENT, fmt, ##args) 161 #define log_rdma_mr(level, fmt, args...) \ 162 log_rdma(level, LOG_RDMA_MR, fmt, ##args) 163 164 static void smbd_disconnect_rdma_work(struct work_struct *work) 165 { 166 struct smbd_connection *info = 167 container_of(work, struct smbd_connection, disconnect_work); 168 169 if (info->transport_status == SMBD_CONNECTED) { 170 info->transport_status = SMBD_DISCONNECTING; 171 rdma_disconnect(info->id); 172 } 173 } 174 175 static void smbd_disconnect_rdma_connection(struct smbd_connection *info) 176 { 177 queue_work(info->workqueue, &info->disconnect_work); 178 } 179 180 /* Upcall from RDMA CM */ 181 static int smbd_conn_upcall( 182 struct rdma_cm_id *id, struct rdma_cm_event *event) 183 { 184 struct smbd_connection *info = id->context; 185 186 log_rdma_event(INFO, "event=%d status=%d\n", 187 event->event, event->status); 188 189 switch (event->event) { 190 case RDMA_CM_EVENT_ADDR_RESOLVED: 191 case RDMA_CM_EVENT_ROUTE_RESOLVED: 192 info->ri_rc = 0; 193 complete(&info->ri_done); 194 break; 195 196 case RDMA_CM_EVENT_ADDR_ERROR: 197 info->ri_rc = -EHOSTUNREACH; 198 complete(&info->ri_done); 199 break; 200 201 case RDMA_CM_EVENT_ROUTE_ERROR: 202 info->ri_rc = -ENETUNREACH; 203 complete(&info->ri_done); 204 break; 205 206 case RDMA_CM_EVENT_ESTABLISHED: 207 log_rdma_event(INFO, "connected event=%d\n", event->event); 208 info->transport_status = SMBD_CONNECTED; 209 wake_up_interruptible(&info->conn_wait); 210 break; 211 212 case RDMA_CM_EVENT_CONNECT_ERROR: 213 case RDMA_CM_EVENT_UNREACHABLE: 214 case RDMA_CM_EVENT_REJECTED: 215 log_rdma_event(INFO, "connecting failed event=%d\n", event->event); 216 info->transport_status = SMBD_DISCONNECTED; 217 wake_up_interruptible(&info->conn_wait); 218 break; 219 220 case RDMA_CM_EVENT_DEVICE_REMOVAL: 221 case RDMA_CM_EVENT_DISCONNECTED: 222 /* This happenes when we fail the negotiation */ 223 if (info->transport_status == SMBD_NEGOTIATE_FAILED) { 224 info->transport_status = SMBD_DISCONNECTED; 225 wake_up(&info->conn_wait); 226 break; 227 } 228 229 info->transport_status = SMBD_DISCONNECTED; 230 wake_up_interruptible(&info->disconn_wait); 231 wake_up_interruptible(&info->wait_reassembly_queue); 232 wake_up_interruptible_all(&info->wait_send_queue); 233 break; 234 235 default: 236 break; 237 } 238 239 return 0; 240 } 241 242 /* Upcall from RDMA QP */ 243 static void 244 smbd_qp_async_error_upcall(struct ib_event *event, void *context) 245 { 246 struct smbd_connection *info = context; 247 248 log_rdma_event(ERR, "%s on device %s info %p\n", 249 ib_event_msg(event->event), event->device->name, info); 250 251 switch (event->event) { 252 case IB_EVENT_CQ_ERR: 253 case IB_EVENT_QP_FATAL: 254 smbd_disconnect_rdma_connection(info); 255 break; 256 257 default: 258 break; 259 } 260 } 261 262 static inline void *smbd_request_payload(struct smbd_request *request) 263 { 264 return (void *)request->packet; 265 } 266 267 static inline void *smbd_response_payload(struct smbd_response *response) 268 { 269 return (void *)response->packet; 270 } 271 272 /* Called when a RDMA send is done */ 273 static void send_done(struct ib_cq *cq, struct ib_wc *wc) 274 { 275 int i; 276 struct smbd_request *request = 277 container_of(wc->wr_cqe, struct smbd_request, cqe); 278 279 log_rdma_send(INFO, "smbd_request 0x%p completed wc->status=%d\n", 280 request, wc->status); 281 282 if (wc->status != IB_WC_SUCCESS || wc->opcode != IB_WC_SEND) { 283 log_rdma_send(ERR, "wc->status=%d wc->opcode=%d\n", 284 wc->status, wc->opcode); 285 smbd_disconnect_rdma_connection(request->info); 286 } 287 288 for (i = 0; i < request->num_sge; i++) 289 ib_dma_unmap_single(request->info->id->device, 290 request->sge[i].addr, 291 request->sge[i].length, 292 DMA_TO_DEVICE); 293 294 if (atomic_dec_and_test(&request->info->send_pending)) 295 wake_up(&request->info->wait_send_pending); 296 297 wake_up(&request->info->wait_post_send); 298 299 mempool_free(request, request->info->request_mempool); 300 } 301 302 static void dump_smbd_negotiate_resp(struct smbd_negotiate_resp *resp) 303 { 304 log_rdma_event(INFO, "resp message min_version %u max_version %u negotiated_version %u credits_requested %u credits_granted %u status %u max_readwrite_size %u preferred_send_size %u max_receive_size %u max_fragmented_size %u\n", 305 resp->min_version, resp->max_version, 306 resp->negotiated_version, resp->credits_requested, 307 resp->credits_granted, resp->status, 308 resp->max_readwrite_size, resp->preferred_send_size, 309 resp->max_receive_size, resp->max_fragmented_size); 310 } 311 312 /* 313 * Process a negotiation response message, according to [MS-SMBD]3.1.5.7 314 * response, packet_length: the negotiation response message 315 * return value: true if negotiation is a success, false if failed 316 */ 317 static bool process_negotiation_response( 318 struct smbd_response *response, int packet_length) 319 { 320 struct smbd_connection *info = response->info; 321 struct smbd_negotiate_resp *packet = smbd_response_payload(response); 322 323 if (packet_length < sizeof(struct smbd_negotiate_resp)) { 324 log_rdma_event(ERR, 325 "error: packet_length=%d\n", packet_length); 326 return false; 327 } 328 329 if (le16_to_cpu(packet->negotiated_version) != SMBD_V1) { 330 log_rdma_event(ERR, "error: negotiated_version=%x\n", 331 le16_to_cpu(packet->negotiated_version)); 332 return false; 333 } 334 info->protocol = le16_to_cpu(packet->negotiated_version); 335 336 if (packet->credits_requested == 0) { 337 log_rdma_event(ERR, "error: credits_requested==0\n"); 338 return false; 339 } 340 info->receive_credit_target = le16_to_cpu(packet->credits_requested); 341 342 if (packet->credits_granted == 0) { 343 log_rdma_event(ERR, "error: credits_granted==0\n"); 344 return false; 345 } 346 atomic_set(&info->send_credits, le16_to_cpu(packet->credits_granted)); 347 348 atomic_set(&info->receive_credits, 0); 349 350 if (le32_to_cpu(packet->preferred_send_size) > info->max_receive_size) { 351 log_rdma_event(ERR, "error: preferred_send_size=%d\n", 352 le32_to_cpu(packet->preferred_send_size)); 353 return false; 354 } 355 info->max_receive_size = le32_to_cpu(packet->preferred_send_size); 356 357 if (le32_to_cpu(packet->max_receive_size) < SMBD_MIN_RECEIVE_SIZE) { 358 log_rdma_event(ERR, "error: max_receive_size=%d\n", 359 le32_to_cpu(packet->max_receive_size)); 360 return false; 361 } 362 info->max_send_size = min_t(int, info->max_send_size, 363 le32_to_cpu(packet->max_receive_size)); 364 365 if (le32_to_cpu(packet->max_fragmented_size) < 366 SMBD_MIN_FRAGMENTED_SIZE) { 367 log_rdma_event(ERR, "error: max_fragmented_size=%d\n", 368 le32_to_cpu(packet->max_fragmented_size)); 369 return false; 370 } 371 info->max_fragmented_send_size = 372 le32_to_cpu(packet->max_fragmented_size); 373 info->rdma_readwrite_threshold = 374 rdma_readwrite_threshold > info->max_fragmented_send_size ? 375 info->max_fragmented_send_size : 376 rdma_readwrite_threshold; 377 378 379 info->max_readwrite_size = min_t(u32, 380 le32_to_cpu(packet->max_readwrite_size), 381 info->max_frmr_depth * PAGE_SIZE); 382 info->max_frmr_depth = info->max_readwrite_size / PAGE_SIZE; 383 384 return true; 385 } 386 387 static void smbd_post_send_credits(struct work_struct *work) 388 { 389 int ret = 0; 390 int use_receive_queue = 1; 391 int rc; 392 struct smbd_response *response; 393 struct smbd_connection *info = 394 container_of(work, struct smbd_connection, 395 post_send_credits_work); 396 397 if (info->transport_status != SMBD_CONNECTED) { 398 wake_up(&info->wait_receive_queues); 399 return; 400 } 401 402 if (info->receive_credit_target > 403 atomic_read(&info->receive_credits)) { 404 while (true) { 405 if (use_receive_queue) 406 response = get_receive_buffer(info); 407 else 408 response = get_empty_queue_buffer(info); 409 if (!response) { 410 /* now switch to empty packet queue */ 411 if (use_receive_queue) { 412 use_receive_queue = 0; 413 continue; 414 } else 415 break; 416 } 417 418 response->type = SMBD_TRANSFER_DATA; 419 response->first_segment = false; 420 rc = smbd_post_recv(info, response); 421 if (rc) { 422 log_rdma_recv(ERR, 423 "post_recv failed rc=%d\n", rc); 424 put_receive_buffer(info, response); 425 break; 426 } 427 428 ret++; 429 } 430 } 431 432 spin_lock(&info->lock_new_credits_offered); 433 info->new_credits_offered += ret; 434 spin_unlock(&info->lock_new_credits_offered); 435 436 /* Promptly send an immediate packet as defined in [MS-SMBD] 3.1.1.1 */ 437 info->send_immediate = true; 438 if (atomic_read(&info->receive_credits) < 439 info->receive_credit_target - 1) { 440 if (info->keep_alive_requested == KEEP_ALIVE_PENDING || 441 info->send_immediate) { 442 log_keep_alive(INFO, "send an empty message\n"); 443 smbd_post_send_empty(info); 444 } 445 } 446 } 447 448 /* Called from softirq, when recv is done */ 449 static void recv_done(struct ib_cq *cq, struct ib_wc *wc) 450 { 451 struct smbd_data_transfer *data_transfer; 452 struct smbd_response *response = 453 container_of(wc->wr_cqe, struct smbd_response, cqe); 454 struct smbd_connection *info = response->info; 455 int data_length = 0; 456 457 log_rdma_recv(INFO, "response=0x%p type=%d wc status=%d wc opcode %d byte_len=%d pkey_index=%u\n", 458 response, response->type, wc->status, wc->opcode, 459 wc->byte_len, wc->pkey_index); 460 461 if (wc->status != IB_WC_SUCCESS || wc->opcode != IB_WC_RECV) { 462 log_rdma_recv(INFO, "wc->status=%d opcode=%d\n", 463 wc->status, wc->opcode); 464 smbd_disconnect_rdma_connection(info); 465 goto error; 466 } 467 468 ib_dma_sync_single_for_cpu( 469 wc->qp->device, 470 response->sge.addr, 471 response->sge.length, 472 DMA_FROM_DEVICE); 473 474 switch (response->type) { 475 /* SMBD negotiation response */ 476 case SMBD_NEGOTIATE_RESP: 477 dump_smbd_negotiate_resp(smbd_response_payload(response)); 478 info->full_packet_received = true; 479 info->negotiate_done = 480 process_negotiation_response(response, wc->byte_len); 481 complete(&info->negotiate_completion); 482 break; 483 484 /* SMBD data transfer packet */ 485 case SMBD_TRANSFER_DATA: 486 data_transfer = smbd_response_payload(response); 487 data_length = le32_to_cpu(data_transfer->data_length); 488 489 /* 490 * If this is a packet with data playload place the data in 491 * reassembly queue and wake up the reading thread 492 */ 493 if (data_length) { 494 if (info->full_packet_received) 495 response->first_segment = true; 496 497 if (le32_to_cpu(data_transfer->remaining_data_length)) 498 info->full_packet_received = false; 499 else 500 info->full_packet_received = true; 501 502 enqueue_reassembly( 503 info, 504 response, 505 data_length); 506 } else 507 put_empty_packet(info, response); 508 509 if (data_length) 510 wake_up_interruptible(&info->wait_reassembly_queue); 511 512 atomic_dec(&info->receive_credits); 513 info->receive_credit_target = 514 le16_to_cpu(data_transfer->credits_requested); 515 if (le16_to_cpu(data_transfer->credits_granted)) { 516 atomic_add(le16_to_cpu(data_transfer->credits_granted), 517 &info->send_credits); 518 /* 519 * We have new send credits granted from remote peer 520 * If any sender is waiting for credits, unblock it 521 */ 522 wake_up_interruptible(&info->wait_send_queue); 523 } 524 525 log_incoming(INFO, "data flags %d data_offset %d data_length %d remaining_data_length %d\n", 526 le16_to_cpu(data_transfer->flags), 527 le32_to_cpu(data_transfer->data_offset), 528 le32_to_cpu(data_transfer->data_length), 529 le32_to_cpu(data_transfer->remaining_data_length)); 530 531 /* Send a KEEP_ALIVE response right away if requested */ 532 info->keep_alive_requested = KEEP_ALIVE_NONE; 533 if (le16_to_cpu(data_transfer->flags) & 534 SMB_DIRECT_RESPONSE_REQUESTED) { 535 info->keep_alive_requested = KEEP_ALIVE_PENDING; 536 } 537 538 return; 539 540 default: 541 log_rdma_recv(ERR, 542 "unexpected response type=%d\n", response->type); 543 } 544 545 error: 546 put_receive_buffer(info, response); 547 } 548 549 static struct rdma_cm_id *smbd_create_id( 550 struct smbd_connection *info, 551 struct sockaddr *dstaddr, int port) 552 { 553 struct rdma_cm_id *id; 554 int rc; 555 __be16 *sport; 556 557 id = rdma_create_id(&init_net, smbd_conn_upcall, info, 558 RDMA_PS_TCP, IB_QPT_RC); 559 if (IS_ERR(id)) { 560 rc = PTR_ERR(id); 561 log_rdma_event(ERR, "rdma_create_id() failed %i\n", rc); 562 return id; 563 } 564 565 if (dstaddr->sa_family == AF_INET6) 566 sport = &((struct sockaddr_in6 *)dstaddr)->sin6_port; 567 else 568 sport = &((struct sockaddr_in *)dstaddr)->sin_port; 569 570 *sport = htons(port); 571 572 init_completion(&info->ri_done); 573 info->ri_rc = -ETIMEDOUT; 574 575 rc = rdma_resolve_addr(id, NULL, (struct sockaddr *)dstaddr, 576 RDMA_RESOLVE_TIMEOUT); 577 if (rc) { 578 log_rdma_event(ERR, "rdma_resolve_addr() failed %i\n", rc); 579 goto out; 580 } 581 rc = wait_for_completion_interruptible_timeout( 582 &info->ri_done, msecs_to_jiffies(RDMA_RESOLVE_TIMEOUT)); 583 /* e.g. if interrupted returns -ERESTARTSYS */ 584 if (rc < 0) { 585 log_rdma_event(ERR, "rdma_resolve_addr timeout rc: %i\n", rc); 586 goto out; 587 } 588 rc = info->ri_rc; 589 if (rc) { 590 log_rdma_event(ERR, "rdma_resolve_addr() completed %i\n", rc); 591 goto out; 592 } 593 594 info->ri_rc = -ETIMEDOUT; 595 rc = rdma_resolve_route(id, RDMA_RESOLVE_TIMEOUT); 596 if (rc) { 597 log_rdma_event(ERR, "rdma_resolve_route() failed %i\n", rc); 598 goto out; 599 } 600 rc = wait_for_completion_interruptible_timeout( 601 &info->ri_done, msecs_to_jiffies(RDMA_RESOLVE_TIMEOUT)); 602 /* e.g. if interrupted returns -ERESTARTSYS */ 603 if (rc < 0) { 604 log_rdma_event(ERR, "rdma_resolve_addr timeout rc: %i\n", rc); 605 goto out; 606 } 607 rc = info->ri_rc; 608 if (rc) { 609 log_rdma_event(ERR, "rdma_resolve_route() completed %i\n", rc); 610 goto out; 611 } 612 613 return id; 614 615 out: 616 rdma_destroy_id(id); 617 return ERR_PTR(rc); 618 } 619 620 /* 621 * Test if FRWR (Fast Registration Work Requests) is supported on the device 622 * This implementation requires FRWR on RDMA read/write 623 * return value: true if it is supported 624 */ 625 static bool frwr_is_supported(struct ib_device_attr *attrs) 626 { 627 if (!(attrs->device_cap_flags & IB_DEVICE_MEM_MGT_EXTENSIONS)) 628 return false; 629 if (attrs->max_fast_reg_page_list_len == 0) 630 return false; 631 return true; 632 } 633 634 static int smbd_ia_open( 635 struct smbd_connection *info, 636 struct sockaddr *dstaddr, int port) 637 { 638 int rc; 639 640 info->id = smbd_create_id(info, dstaddr, port); 641 if (IS_ERR(info->id)) { 642 rc = PTR_ERR(info->id); 643 goto out1; 644 } 645 646 if (!frwr_is_supported(&info->id->device->attrs)) { 647 log_rdma_event(ERR, "Fast Registration Work Requests (FRWR) is not supported\n"); 648 log_rdma_event(ERR, "Device capability flags = %llx max_fast_reg_page_list_len = %u\n", 649 info->id->device->attrs.device_cap_flags, 650 info->id->device->attrs.max_fast_reg_page_list_len); 651 rc = -EPROTONOSUPPORT; 652 goto out2; 653 } 654 info->max_frmr_depth = min_t(int, 655 smbd_max_frmr_depth, 656 info->id->device->attrs.max_fast_reg_page_list_len); 657 info->mr_type = IB_MR_TYPE_MEM_REG; 658 if (info->id->device->attrs.kernel_cap_flags & IBK_SG_GAPS_REG) 659 info->mr_type = IB_MR_TYPE_SG_GAPS; 660 661 info->pd = ib_alloc_pd(info->id->device, 0); 662 if (IS_ERR(info->pd)) { 663 rc = PTR_ERR(info->pd); 664 log_rdma_event(ERR, "ib_alloc_pd() returned %d\n", rc); 665 goto out2; 666 } 667 668 return 0; 669 670 out2: 671 rdma_destroy_id(info->id); 672 info->id = NULL; 673 674 out1: 675 return rc; 676 } 677 678 /* 679 * Send a negotiation request message to the peer 680 * The negotiation procedure is in [MS-SMBD] 3.1.5.2 and 3.1.5.3 681 * After negotiation, the transport is connected and ready for 682 * carrying upper layer SMB payload 683 */ 684 static int smbd_post_send_negotiate_req(struct smbd_connection *info) 685 { 686 struct ib_send_wr send_wr; 687 int rc = -ENOMEM; 688 struct smbd_request *request; 689 struct smbd_negotiate_req *packet; 690 691 request = mempool_alloc(info->request_mempool, GFP_KERNEL); 692 if (!request) 693 return rc; 694 695 request->info = info; 696 697 packet = smbd_request_payload(request); 698 packet->min_version = cpu_to_le16(SMBD_V1); 699 packet->max_version = cpu_to_le16(SMBD_V1); 700 packet->reserved = 0; 701 packet->credits_requested = cpu_to_le16(info->send_credit_target); 702 packet->preferred_send_size = cpu_to_le32(info->max_send_size); 703 packet->max_receive_size = cpu_to_le32(info->max_receive_size); 704 packet->max_fragmented_size = 705 cpu_to_le32(info->max_fragmented_recv_size); 706 707 request->num_sge = 1; 708 request->sge[0].addr = ib_dma_map_single( 709 info->id->device, (void *)packet, 710 sizeof(*packet), DMA_TO_DEVICE); 711 if (ib_dma_mapping_error(info->id->device, request->sge[0].addr)) { 712 rc = -EIO; 713 goto dma_mapping_failed; 714 } 715 716 request->sge[0].length = sizeof(*packet); 717 request->sge[0].lkey = info->pd->local_dma_lkey; 718 719 ib_dma_sync_single_for_device( 720 info->id->device, request->sge[0].addr, 721 request->sge[0].length, DMA_TO_DEVICE); 722 723 request->cqe.done = send_done; 724 725 send_wr.next = NULL; 726 send_wr.wr_cqe = &request->cqe; 727 send_wr.sg_list = request->sge; 728 send_wr.num_sge = request->num_sge; 729 send_wr.opcode = IB_WR_SEND; 730 send_wr.send_flags = IB_SEND_SIGNALED; 731 732 log_rdma_send(INFO, "sge addr=0x%llx length=%u lkey=0x%x\n", 733 request->sge[0].addr, 734 request->sge[0].length, request->sge[0].lkey); 735 736 atomic_inc(&info->send_pending); 737 rc = ib_post_send(info->id->qp, &send_wr, NULL); 738 if (!rc) 739 return 0; 740 741 /* if we reach here, post send failed */ 742 log_rdma_send(ERR, "ib_post_send failed rc=%d\n", rc); 743 atomic_dec(&info->send_pending); 744 ib_dma_unmap_single(info->id->device, request->sge[0].addr, 745 request->sge[0].length, DMA_TO_DEVICE); 746 747 smbd_disconnect_rdma_connection(info); 748 749 dma_mapping_failed: 750 mempool_free(request, info->request_mempool); 751 return rc; 752 } 753 754 /* 755 * Extend the credits to remote peer 756 * This implements [MS-SMBD] 3.1.5.9 757 * The idea is that we should extend credits to remote peer as quickly as 758 * it's allowed, to maintain data flow. We allocate as much receive 759 * buffer as possible, and extend the receive credits to remote peer 760 * return value: the new credtis being granted. 761 */ 762 static int manage_credits_prior_sending(struct smbd_connection *info) 763 { 764 int new_credits; 765 766 spin_lock(&info->lock_new_credits_offered); 767 new_credits = info->new_credits_offered; 768 info->new_credits_offered = 0; 769 spin_unlock(&info->lock_new_credits_offered); 770 771 return new_credits; 772 } 773 774 /* 775 * Check if we need to send a KEEP_ALIVE message 776 * The idle connection timer triggers a KEEP_ALIVE message when expires 777 * SMB_DIRECT_RESPONSE_REQUESTED is set in the message flag to have peer send 778 * back a response. 779 * return value: 780 * 1 if SMB_DIRECT_RESPONSE_REQUESTED needs to be set 781 * 0: otherwise 782 */ 783 static int manage_keep_alive_before_sending(struct smbd_connection *info) 784 { 785 if (info->keep_alive_requested == KEEP_ALIVE_PENDING) { 786 info->keep_alive_requested = KEEP_ALIVE_SENT; 787 return 1; 788 } 789 return 0; 790 } 791 792 /* Post the send request */ 793 static int smbd_post_send(struct smbd_connection *info, 794 struct smbd_request *request) 795 { 796 struct ib_send_wr send_wr; 797 int rc, i; 798 799 for (i = 0; i < request->num_sge; i++) { 800 log_rdma_send(INFO, 801 "rdma_request sge[%d] addr=0x%llx length=%u\n", 802 i, request->sge[i].addr, request->sge[i].length); 803 ib_dma_sync_single_for_device( 804 info->id->device, 805 request->sge[i].addr, 806 request->sge[i].length, 807 DMA_TO_DEVICE); 808 } 809 810 request->cqe.done = send_done; 811 812 send_wr.next = NULL; 813 send_wr.wr_cqe = &request->cqe; 814 send_wr.sg_list = request->sge; 815 send_wr.num_sge = request->num_sge; 816 send_wr.opcode = IB_WR_SEND; 817 send_wr.send_flags = IB_SEND_SIGNALED; 818 819 rc = ib_post_send(info->id->qp, &send_wr, NULL); 820 if (rc) { 821 log_rdma_send(ERR, "ib_post_send failed rc=%d\n", rc); 822 smbd_disconnect_rdma_connection(info); 823 rc = -EAGAIN; 824 } else 825 /* Reset timer for idle connection after packet is sent */ 826 mod_delayed_work(info->workqueue, &info->idle_timer_work, 827 info->keep_alive_interval*HZ); 828 829 return rc; 830 } 831 832 static int smbd_post_send_iter(struct smbd_connection *info, 833 struct iov_iter *iter, 834 int *_remaining_data_length) 835 { 836 int i, rc; 837 int header_length; 838 int data_length; 839 struct smbd_request *request; 840 struct smbd_data_transfer *packet; 841 int new_credits = 0; 842 843 wait_credit: 844 /* Wait for send credits. A SMBD packet needs one credit */ 845 rc = wait_event_interruptible(info->wait_send_queue, 846 atomic_read(&info->send_credits) > 0 || 847 info->transport_status != SMBD_CONNECTED); 848 if (rc) 849 goto err_wait_credit; 850 851 if (info->transport_status != SMBD_CONNECTED) { 852 log_outgoing(ERR, "disconnected not sending on wait_credit\n"); 853 rc = -EAGAIN; 854 goto err_wait_credit; 855 } 856 if (unlikely(atomic_dec_return(&info->send_credits) < 0)) { 857 atomic_inc(&info->send_credits); 858 goto wait_credit; 859 } 860 861 wait_send_queue: 862 wait_event(info->wait_post_send, 863 atomic_read(&info->send_pending) < info->send_credit_target || 864 info->transport_status != SMBD_CONNECTED); 865 866 if (info->transport_status != SMBD_CONNECTED) { 867 log_outgoing(ERR, "disconnected not sending on wait_send_queue\n"); 868 rc = -EAGAIN; 869 goto err_wait_send_queue; 870 } 871 872 if (unlikely(atomic_inc_return(&info->send_pending) > 873 info->send_credit_target)) { 874 atomic_dec(&info->send_pending); 875 goto wait_send_queue; 876 } 877 878 request = mempool_alloc(info->request_mempool, GFP_KERNEL); 879 if (!request) { 880 rc = -ENOMEM; 881 goto err_alloc; 882 } 883 884 request->info = info; 885 memset(request->sge, 0, sizeof(request->sge)); 886 887 /* Fill in the data payload to find out how much data we can add */ 888 if (iter) { 889 struct smb_extract_to_rdma extract = { 890 .nr_sge = 1, 891 .max_sge = SMBDIRECT_MAX_SEND_SGE, 892 .sge = request->sge, 893 .device = info->id->device, 894 .local_dma_lkey = info->pd->local_dma_lkey, 895 .direction = DMA_TO_DEVICE, 896 }; 897 898 rc = smb_extract_iter_to_rdma(iter, *_remaining_data_length, 899 &extract); 900 if (rc < 0) 901 goto err_dma; 902 data_length = rc; 903 request->num_sge = extract.nr_sge; 904 *_remaining_data_length -= data_length; 905 } else { 906 data_length = 0; 907 request->num_sge = 1; 908 } 909 910 /* Fill in the packet header */ 911 packet = smbd_request_payload(request); 912 packet->credits_requested = cpu_to_le16(info->send_credit_target); 913 914 new_credits = manage_credits_prior_sending(info); 915 atomic_add(new_credits, &info->receive_credits); 916 packet->credits_granted = cpu_to_le16(new_credits); 917 918 info->send_immediate = false; 919 920 packet->flags = 0; 921 if (manage_keep_alive_before_sending(info)) 922 packet->flags |= cpu_to_le16(SMB_DIRECT_RESPONSE_REQUESTED); 923 924 packet->reserved = 0; 925 if (!data_length) 926 packet->data_offset = 0; 927 else 928 packet->data_offset = cpu_to_le32(24); 929 packet->data_length = cpu_to_le32(data_length); 930 packet->remaining_data_length = cpu_to_le32(*_remaining_data_length); 931 packet->padding = 0; 932 933 log_outgoing(INFO, "credits_requested=%d credits_granted=%d data_offset=%d data_length=%d remaining_data_length=%d\n", 934 le16_to_cpu(packet->credits_requested), 935 le16_to_cpu(packet->credits_granted), 936 le32_to_cpu(packet->data_offset), 937 le32_to_cpu(packet->data_length), 938 le32_to_cpu(packet->remaining_data_length)); 939 940 /* Map the packet to DMA */ 941 header_length = sizeof(struct smbd_data_transfer); 942 /* If this is a packet without payload, don't send padding */ 943 if (!data_length) 944 header_length = offsetof(struct smbd_data_transfer, padding); 945 946 request->sge[0].addr = ib_dma_map_single(info->id->device, 947 (void *)packet, 948 header_length, 949 DMA_TO_DEVICE); 950 if (ib_dma_mapping_error(info->id->device, request->sge[0].addr)) { 951 rc = -EIO; 952 request->sge[0].addr = 0; 953 goto err_dma; 954 } 955 956 request->sge[0].length = header_length; 957 request->sge[0].lkey = info->pd->local_dma_lkey; 958 959 rc = smbd_post_send(info, request); 960 if (!rc) 961 return 0; 962 963 err_dma: 964 for (i = 0; i < request->num_sge; i++) 965 if (request->sge[i].addr) 966 ib_dma_unmap_single(info->id->device, 967 request->sge[i].addr, 968 request->sge[i].length, 969 DMA_TO_DEVICE); 970 mempool_free(request, info->request_mempool); 971 972 /* roll back receive credits and credits to be offered */ 973 spin_lock(&info->lock_new_credits_offered); 974 info->new_credits_offered += new_credits; 975 spin_unlock(&info->lock_new_credits_offered); 976 atomic_sub(new_credits, &info->receive_credits); 977 978 err_alloc: 979 if (atomic_dec_and_test(&info->send_pending)) 980 wake_up(&info->wait_send_pending); 981 982 err_wait_send_queue: 983 /* roll back send credits and pending */ 984 atomic_inc(&info->send_credits); 985 986 err_wait_credit: 987 return rc; 988 } 989 990 /* 991 * Send an empty message 992 * Empty message is used to extend credits to peer to for keep live 993 * while there is no upper layer payload to send at the time 994 */ 995 static int smbd_post_send_empty(struct smbd_connection *info) 996 { 997 int remaining_data_length = 0; 998 999 info->count_send_empty++; 1000 return smbd_post_send_iter(info, NULL, &remaining_data_length); 1001 } 1002 1003 /* 1004 * Post a receive request to the transport 1005 * The remote peer can only send data when a receive request is posted 1006 * The interaction is controlled by send/receive credit system 1007 */ 1008 static int smbd_post_recv( 1009 struct smbd_connection *info, struct smbd_response *response) 1010 { 1011 struct ib_recv_wr recv_wr; 1012 int rc = -EIO; 1013 1014 response->sge.addr = ib_dma_map_single( 1015 info->id->device, response->packet, 1016 info->max_receive_size, DMA_FROM_DEVICE); 1017 if (ib_dma_mapping_error(info->id->device, response->sge.addr)) 1018 return rc; 1019 1020 response->sge.length = info->max_receive_size; 1021 response->sge.lkey = info->pd->local_dma_lkey; 1022 1023 response->cqe.done = recv_done; 1024 1025 recv_wr.wr_cqe = &response->cqe; 1026 recv_wr.next = NULL; 1027 recv_wr.sg_list = &response->sge; 1028 recv_wr.num_sge = 1; 1029 1030 rc = ib_post_recv(info->id->qp, &recv_wr, NULL); 1031 if (rc) { 1032 ib_dma_unmap_single(info->id->device, response->sge.addr, 1033 response->sge.length, DMA_FROM_DEVICE); 1034 smbd_disconnect_rdma_connection(info); 1035 log_rdma_recv(ERR, "ib_post_recv failed rc=%d\n", rc); 1036 } 1037 1038 return rc; 1039 } 1040 1041 /* Perform SMBD negotiate according to [MS-SMBD] 3.1.5.2 */ 1042 static int smbd_negotiate(struct smbd_connection *info) 1043 { 1044 int rc; 1045 struct smbd_response *response = get_receive_buffer(info); 1046 1047 response->type = SMBD_NEGOTIATE_RESP; 1048 rc = smbd_post_recv(info, response); 1049 log_rdma_event(INFO, "smbd_post_recv rc=%d iov.addr=0x%llx iov.length=%u iov.lkey=0x%x\n", 1050 rc, response->sge.addr, 1051 response->sge.length, response->sge.lkey); 1052 if (rc) 1053 return rc; 1054 1055 init_completion(&info->negotiate_completion); 1056 info->negotiate_done = false; 1057 rc = smbd_post_send_negotiate_req(info); 1058 if (rc) 1059 return rc; 1060 1061 rc = wait_for_completion_interruptible_timeout( 1062 &info->negotiate_completion, SMBD_NEGOTIATE_TIMEOUT * HZ); 1063 log_rdma_event(INFO, "wait_for_completion_timeout rc=%d\n", rc); 1064 1065 if (info->negotiate_done) 1066 return 0; 1067 1068 if (rc == 0) 1069 rc = -ETIMEDOUT; 1070 else if (rc == -ERESTARTSYS) 1071 rc = -EINTR; 1072 else 1073 rc = -ENOTCONN; 1074 1075 return rc; 1076 } 1077 1078 static void put_empty_packet( 1079 struct smbd_connection *info, struct smbd_response *response) 1080 { 1081 spin_lock(&info->empty_packet_queue_lock); 1082 list_add_tail(&response->list, &info->empty_packet_queue); 1083 info->count_empty_packet_queue++; 1084 spin_unlock(&info->empty_packet_queue_lock); 1085 1086 queue_work(info->workqueue, &info->post_send_credits_work); 1087 } 1088 1089 /* 1090 * Implement Connection.FragmentReassemblyBuffer defined in [MS-SMBD] 3.1.1.1 1091 * This is a queue for reassembling upper layer payload and present to upper 1092 * layer. All the inncoming payload go to the reassembly queue, regardless of 1093 * if reassembly is required. The uuper layer code reads from the queue for all 1094 * incoming payloads. 1095 * Put a received packet to the reassembly queue 1096 * response: the packet received 1097 * data_length: the size of payload in this packet 1098 */ 1099 static void enqueue_reassembly( 1100 struct smbd_connection *info, 1101 struct smbd_response *response, 1102 int data_length) 1103 { 1104 spin_lock(&info->reassembly_queue_lock); 1105 list_add_tail(&response->list, &info->reassembly_queue); 1106 info->reassembly_queue_length++; 1107 /* 1108 * Make sure reassembly_data_length is updated after list and 1109 * reassembly_queue_length are updated. On the dequeue side 1110 * reassembly_data_length is checked without a lock to determine 1111 * if reassembly_queue_length and list is up to date 1112 */ 1113 virt_wmb(); 1114 info->reassembly_data_length += data_length; 1115 spin_unlock(&info->reassembly_queue_lock); 1116 info->count_reassembly_queue++; 1117 info->count_enqueue_reassembly_queue++; 1118 } 1119 1120 /* 1121 * Get the first entry at the front of reassembly queue 1122 * Caller is responsible for locking 1123 * return value: the first entry if any, NULL if queue is empty 1124 */ 1125 static struct smbd_response *_get_first_reassembly(struct smbd_connection *info) 1126 { 1127 struct smbd_response *ret = NULL; 1128 1129 if (!list_empty(&info->reassembly_queue)) { 1130 ret = list_first_entry( 1131 &info->reassembly_queue, 1132 struct smbd_response, list); 1133 } 1134 return ret; 1135 } 1136 1137 static struct smbd_response *get_empty_queue_buffer( 1138 struct smbd_connection *info) 1139 { 1140 struct smbd_response *ret = NULL; 1141 unsigned long flags; 1142 1143 spin_lock_irqsave(&info->empty_packet_queue_lock, flags); 1144 if (!list_empty(&info->empty_packet_queue)) { 1145 ret = list_first_entry( 1146 &info->empty_packet_queue, 1147 struct smbd_response, list); 1148 list_del(&ret->list); 1149 info->count_empty_packet_queue--; 1150 } 1151 spin_unlock_irqrestore(&info->empty_packet_queue_lock, flags); 1152 1153 return ret; 1154 } 1155 1156 /* 1157 * Get a receive buffer 1158 * For each remote send, we need to post a receive. The receive buffers are 1159 * pre-allocated in advance. 1160 * return value: the receive buffer, NULL if none is available 1161 */ 1162 static struct smbd_response *get_receive_buffer(struct smbd_connection *info) 1163 { 1164 struct smbd_response *ret = NULL; 1165 unsigned long flags; 1166 1167 spin_lock_irqsave(&info->receive_queue_lock, flags); 1168 if (!list_empty(&info->receive_queue)) { 1169 ret = list_first_entry( 1170 &info->receive_queue, 1171 struct smbd_response, list); 1172 list_del(&ret->list); 1173 info->count_receive_queue--; 1174 info->count_get_receive_buffer++; 1175 } 1176 spin_unlock_irqrestore(&info->receive_queue_lock, flags); 1177 1178 return ret; 1179 } 1180 1181 /* 1182 * Return a receive buffer 1183 * Upon returning of a receive buffer, we can post new receive and extend 1184 * more receive credits to remote peer. This is done immediately after a 1185 * receive buffer is returned. 1186 */ 1187 static void put_receive_buffer( 1188 struct smbd_connection *info, struct smbd_response *response) 1189 { 1190 unsigned long flags; 1191 1192 ib_dma_unmap_single(info->id->device, response->sge.addr, 1193 response->sge.length, DMA_FROM_DEVICE); 1194 1195 spin_lock_irqsave(&info->receive_queue_lock, flags); 1196 list_add_tail(&response->list, &info->receive_queue); 1197 info->count_receive_queue++; 1198 info->count_put_receive_buffer++; 1199 spin_unlock_irqrestore(&info->receive_queue_lock, flags); 1200 1201 queue_work(info->workqueue, &info->post_send_credits_work); 1202 } 1203 1204 /* Preallocate all receive buffer on transport establishment */ 1205 static int allocate_receive_buffers(struct smbd_connection *info, int num_buf) 1206 { 1207 int i; 1208 struct smbd_response *response; 1209 1210 INIT_LIST_HEAD(&info->reassembly_queue); 1211 spin_lock_init(&info->reassembly_queue_lock); 1212 info->reassembly_data_length = 0; 1213 info->reassembly_queue_length = 0; 1214 1215 INIT_LIST_HEAD(&info->receive_queue); 1216 spin_lock_init(&info->receive_queue_lock); 1217 info->count_receive_queue = 0; 1218 1219 INIT_LIST_HEAD(&info->empty_packet_queue); 1220 spin_lock_init(&info->empty_packet_queue_lock); 1221 info->count_empty_packet_queue = 0; 1222 1223 init_waitqueue_head(&info->wait_receive_queues); 1224 1225 for (i = 0; i < num_buf; i++) { 1226 response = mempool_alloc(info->response_mempool, GFP_KERNEL); 1227 if (!response) 1228 goto allocate_failed; 1229 1230 response->info = info; 1231 list_add_tail(&response->list, &info->receive_queue); 1232 info->count_receive_queue++; 1233 } 1234 1235 return 0; 1236 1237 allocate_failed: 1238 while (!list_empty(&info->receive_queue)) { 1239 response = list_first_entry( 1240 &info->receive_queue, 1241 struct smbd_response, list); 1242 list_del(&response->list); 1243 info->count_receive_queue--; 1244 1245 mempool_free(response, info->response_mempool); 1246 } 1247 return -ENOMEM; 1248 } 1249 1250 static void destroy_receive_buffers(struct smbd_connection *info) 1251 { 1252 struct smbd_response *response; 1253 1254 while ((response = get_receive_buffer(info))) 1255 mempool_free(response, info->response_mempool); 1256 1257 while ((response = get_empty_queue_buffer(info))) 1258 mempool_free(response, info->response_mempool); 1259 } 1260 1261 /* Implement idle connection timer [MS-SMBD] 3.1.6.2 */ 1262 static void idle_connection_timer(struct work_struct *work) 1263 { 1264 struct smbd_connection *info = container_of( 1265 work, struct smbd_connection, 1266 idle_timer_work.work); 1267 1268 if (info->keep_alive_requested != KEEP_ALIVE_NONE) { 1269 log_keep_alive(ERR, 1270 "error status info->keep_alive_requested=%d\n", 1271 info->keep_alive_requested); 1272 smbd_disconnect_rdma_connection(info); 1273 return; 1274 } 1275 1276 log_keep_alive(INFO, "about to send an empty idle message\n"); 1277 smbd_post_send_empty(info); 1278 1279 /* Setup the next idle timeout work */ 1280 queue_delayed_work(info->workqueue, &info->idle_timer_work, 1281 info->keep_alive_interval*HZ); 1282 } 1283 1284 /* 1285 * Destroy the transport and related RDMA and memory resources 1286 * Need to go through all the pending counters and make sure on one is using 1287 * the transport while it is destroyed 1288 */ 1289 void smbd_destroy(struct TCP_Server_Info *server) 1290 { 1291 struct smbd_connection *info = server->smbd_conn; 1292 struct smbd_response *response; 1293 unsigned long flags; 1294 1295 if (!info) { 1296 log_rdma_event(INFO, "rdma session already destroyed\n"); 1297 return; 1298 } 1299 1300 log_rdma_event(INFO, "destroying rdma session\n"); 1301 if (info->transport_status != SMBD_DISCONNECTED) { 1302 rdma_disconnect(server->smbd_conn->id); 1303 log_rdma_event(INFO, "wait for transport being disconnected\n"); 1304 wait_event_interruptible( 1305 info->disconn_wait, 1306 info->transport_status == SMBD_DISCONNECTED); 1307 } 1308 1309 log_rdma_event(INFO, "destroying qp\n"); 1310 ib_drain_qp(info->id->qp); 1311 rdma_destroy_qp(info->id); 1312 1313 log_rdma_event(INFO, "cancelling idle timer\n"); 1314 cancel_delayed_work_sync(&info->idle_timer_work); 1315 1316 log_rdma_event(INFO, "wait for all send posted to IB to finish\n"); 1317 wait_event(info->wait_send_pending, 1318 atomic_read(&info->send_pending) == 0); 1319 1320 /* It's not possible for upper layer to get to reassembly */ 1321 log_rdma_event(INFO, "drain the reassembly queue\n"); 1322 do { 1323 spin_lock_irqsave(&info->reassembly_queue_lock, flags); 1324 response = _get_first_reassembly(info); 1325 if (response) { 1326 list_del(&response->list); 1327 spin_unlock_irqrestore( 1328 &info->reassembly_queue_lock, flags); 1329 put_receive_buffer(info, response); 1330 } else 1331 spin_unlock_irqrestore( 1332 &info->reassembly_queue_lock, flags); 1333 } while (response); 1334 info->reassembly_data_length = 0; 1335 1336 log_rdma_event(INFO, "free receive buffers\n"); 1337 wait_event(info->wait_receive_queues, 1338 info->count_receive_queue + info->count_empty_packet_queue 1339 == info->receive_credit_max); 1340 destroy_receive_buffers(info); 1341 1342 /* 1343 * For performance reasons, memory registration and deregistration 1344 * are not locked by srv_mutex. It is possible some processes are 1345 * blocked on transport srv_mutex while holding memory registration. 1346 * Release the transport srv_mutex to allow them to hit the failure 1347 * path when sending data, and then release memory registartions. 1348 */ 1349 log_rdma_event(INFO, "freeing mr list\n"); 1350 wake_up_interruptible_all(&info->wait_mr); 1351 while (atomic_read(&info->mr_used_count)) { 1352 cifs_server_unlock(server); 1353 msleep(1000); 1354 cifs_server_lock(server); 1355 } 1356 destroy_mr_list(info); 1357 1358 ib_free_cq(info->send_cq); 1359 ib_free_cq(info->recv_cq); 1360 ib_dealloc_pd(info->pd); 1361 rdma_destroy_id(info->id); 1362 1363 /* free mempools */ 1364 mempool_destroy(info->request_mempool); 1365 kmem_cache_destroy(info->request_cache); 1366 1367 mempool_destroy(info->response_mempool); 1368 kmem_cache_destroy(info->response_cache); 1369 1370 info->transport_status = SMBD_DESTROYED; 1371 1372 destroy_workqueue(info->workqueue); 1373 log_rdma_event(INFO, "rdma session destroyed\n"); 1374 kfree(info); 1375 server->smbd_conn = NULL; 1376 } 1377 1378 /* 1379 * Reconnect this SMBD connection, called from upper layer 1380 * return value: 0 on success, or actual error code 1381 */ 1382 int smbd_reconnect(struct TCP_Server_Info *server) 1383 { 1384 log_rdma_event(INFO, "reconnecting rdma session\n"); 1385 1386 if (!server->smbd_conn) { 1387 log_rdma_event(INFO, "rdma session already destroyed\n"); 1388 goto create_conn; 1389 } 1390 1391 /* 1392 * This is possible if transport is disconnected and we haven't received 1393 * notification from RDMA, but upper layer has detected timeout 1394 */ 1395 if (server->smbd_conn->transport_status == SMBD_CONNECTED) { 1396 log_rdma_event(INFO, "disconnecting transport\n"); 1397 smbd_destroy(server); 1398 } 1399 1400 create_conn: 1401 log_rdma_event(INFO, "creating rdma session\n"); 1402 server->smbd_conn = smbd_get_connection( 1403 server, (struct sockaddr *) &server->dstaddr); 1404 1405 if (server->smbd_conn) { 1406 cifs_dbg(VFS, "RDMA transport re-established\n"); 1407 trace_smb3_smbd_connect_done(server->hostname, server->conn_id, &server->dstaddr); 1408 return 0; 1409 } 1410 trace_smb3_smbd_connect_err(server->hostname, server->conn_id, &server->dstaddr); 1411 return -ENOENT; 1412 } 1413 1414 static void destroy_caches_and_workqueue(struct smbd_connection *info) 1415 { 1416 destroy_receive_buffers(info); 1417 destroy_workqueue(info->workqueue); 1418 mempool_destroy(info->response_mempool); 1419 kmem_cache_destroy(info->response_cache); 1420 mempool_destroy(info->request_mempool); 1421 kmem_cache_destroy(info->request_cache); 1422 } 1423 1424 #define MAX_NAME_LEN 80 1425 static int allocate_caches_and_workqueue(struct smbd_connection *info) 1426 { 1427 char name[MAX_NAME_LEN]; 1428 int rc; 1429 1430 scnprintf(name, MAX_NAME_LEN, "smbd_request_%p", info); 1431 info->request_cache = 1432 kmem_cache_create( 1433 name, 1434 sizeof(struct smbd_request) + 1435 sizeof(struct smbd_data_transfer), 1436 0, SLAB_HWCACHE_ALIGN, NULL); 1437 if (!info->request_cache) 1438 return -ENOMEM; 1439 1440 info->request_mempool = 1441 mempool_create(info->send_credit_target, mempool_alloc_slab, 1442 mempool_free_slab, info->request_cache); 1443 if (!info->request_mempool) 1444 goto out1; 1445 1446 scnprintf(name, MAX_NAME_LEN, "smbd_response_%p", info); 1447 info->response_cache = 1448 kmem_cache_create( 1449 name, 1450 sizeof(struct smbd_response) + 1451 info->max_receive_size, 1452 0, SLAB_HWCACHE_ALIGN, NULL); 1453 if (!info->response_cache) 1454 goto out2; 1455 1456 info->response_mempool = 1457 mempool_create(info->receive_credit_max, mempool_alloc_slab, 1458 mempool_free_slab, info->response_cache); 1459 if (!info->response_mempool) 1460 goto out3; 1461 1462 scnprintf(name, MAX_NAME_LEN, "smbd_%p", info); 1463 info->workqueue = create_workqueue(name); 1464 if (!info->workqueue) 1465 goto out4; 1466 1467 rc = allocate_receive_buffers(info, info->receive_credit_max); 1468 if (rc) { 1469 log_rdma_event(ERR, "failed to allocate receive buffers\n"); 1470 goto out5; 1471 } 1472 1473 return 0; 1474 1475 out5: 1476 destroy_workqueue(info->workqueue); 1477 out4: 1478 mempool_destroy(info->response_mempool); 1479 out3: 1480 kmem_cache_destroy(info->response_cache); 1481 out2: 1482 mempool_destroy(info->request_mempool); 1483 out1: 1484 kmem_cache_destroy(info->request_cache); 1485 return -ENOMEM; 1486 } 1487 1488 /* Create a SMBD connection, called by upper layer */ 1489 static struct smbd_connection *_smbd_get_connection( 1490 struct TCP_Server_Info *server, struct sockaddr *dstaddr, int port) 1491 { 1492 int rc; 1493 struct smbd_connection *info; 1494 struct rdma_conn_param conn_param; 1495 struct ib_qp_init_attr qp_attr; 1496 struct sockaddr_in *addr_in = (struct sockaddr_in *) dstaddr; 1497 struct ib_port_immutable port_immutable; 1498 u32 ird_ord_hdr[2]; 1499 1500 info = kzalloc(sizeof(struct smbd_connection), GFP_KERNEL); 1501 if (!info) 1502 return NULL; 1503 1504 info->transport_status = SMBD_CONNECTING; 1505 rc = smbd_ia_open(info, dstaddr, port); 1506 if (rc) { 1507 log_rdma_event(INFO, "smbd_ia_open rc=%d\n", rc); 1508 goto create_id_failed; 1509 } 1510 1511 if (smbd_send_credit_target > info->id->device->attrs.max_cqe || 1512 smbd_send_credit_target > info->id->device->attrs.max_qp_wr) { 1513 log_rdma_event(ERR, "consider lowering send_credit_target = %d. Possible CQE overrun, device reporting max_cqe %d max_qp_wr %d\n", 1514 smbd_send_credit_target, 1515 info->id->device->attrs.max_cqe, 1516 info->id->device->attrs.max_qp_wr); 1517 goto config_failed; 1518 } 1519 1520 if (smbd_receive_credit_max > info->id->device->attrs.max_cqe || 1521 smbd_receive_credit_max > info->id->device->attrs.max_qp_wr) { 1522 log_rdma_event(ERR, "consider lowering receive_credit_max = %d. Possible CQE overrun, device reporting max_cqe %d max_qp_wr %d\n", 1523 smbd_receive_credit_max, 1524 info->id->device->attrs.max_cqe, 1525 info->id->device->attrs.max_qp_wr); 1526 goto config_failed; 1527 } 1528 1529 info->receive_credit_max = smbd_receive_credit_max; 1530 info->send_credit_target = smbd_send_credit_target; 1531 info->max_send_size = smbd_max_send_size; 1532 info->max_fragmented_recv_size = smbd_max_fragmented_recv_size; 1533 info->max_receive_size = smbd_max_receive_size; 1534 info->keep_alive_interval = smbd_keep_alive_interval; 1535 1536 if (info->id->device->attrs.max_send_sge < SMBDIRECT_MAX_SEND_SGE || 1537 info->id->device->attrs.max_recv_sge < SMBDIRECT_MAX_RECV_SGE) { 1538 log_rdma_event(ERR, 1539 "device %.*s max_send_sge/max_recv_sge = %d/%d too small\n", 1540 IB_DEVICE_NAME_MAX, 1541 info->id->device->name, 1542 info->id->device->attrs.max_send_sge, 1543 info->id->device->attrs.max_recv_sge); 1544 goto config_failed; 1545 } 1546 1547 info->send_cq = NULL; 1548 info->recv_cq = NULL; 1549 info->send_cq = 1550 ib_alloc_cq_any(info->id->device, info, 1551 info->send_credit_target, IB_POLL_SOFTIRQ); 1552 if (IS_ERR(info->send_cq)) { 1553 info->send_cq = NULL; 1554 goto alloc_cq_failed; 1555 } 1556 1557 info->recv_cq = 1558 ib_alloc_cq_any(info->id->device, info, 1559 info->receive_credit_max, IB_POLL_SOFTIRQ); 1560 if (IS_ERR(info->recv_cq)) { 1561 info->recv_cq = NULL; 1562 goto alloc_cq_failed; 1563 } 1564 1565 memset(&qp_attr, 0, sizeof(qp_attr)); 1566 qp_attr.event_handler = smbd_qp_async_error_upcall; 1567 qp_attr.qp_context = info; 1568 qp_attr.cap.max_send_wr = info->send_credit_target; 1569 qp_attr.cap.max_recv_wr = info->receive_credit_max; 1570 qp_attr.cap.max_send_sge = SMBDIRECT_MAX_SEND_SGE; 1571 qp_attr.cap.max_recv_sge = SMBDIRECT_MAX_RECV_SGE; 1572 qp_attr.cap.max_inline_data = 0; 1573 qp_attr.sq_sig_type = IB_SIGNAL_REQ_WR; 1574 qp_attr.qp_type = IB_QPT_RC; 1575 qp_attr.send_cq = info->send_cq; 1576 qp_attr.recv_cq = info->recv_cq; 1577 qp_attr.port_num = ~0; 1578 1579 rc = rdma_create_qp(info->id, info->pd, &qp_attr); 1580 if (rc) { 1581 log_rdma_event(ERR, "rdma_create_qp failed %i\n", rc); 1582 goto create_qp_failed; 1583 } 1584 1585 memset(&conn_param, 0, sizeof(conn_param)); 1586 conn_param.initiator_depth = 0; 1587 1588 conn_param.responder_resources = 1589 min(info->id->device->attrs.max_qp_rd_atom, 1590 SMBD_CM_RESPONDER_RESOURCES); 1591 info->responder_resources = conn_param.responder_resources; 1592 log_rdma_mr(INFO, "responder_resources=%d\n", 1593 info->responder_resources); 1594 1595 /* Need to send IRD/ORD in private data for iWARP */ 1596 info->id->device->ops.get_port_immutable( 1597 info->id->device, info->id->port_num, &port_immutable); 1598 if (port_immutable.core_cap_flags & RDMA_CORE_PORT_IWARP) { 1599 ird_ord_hdr[0] = info->responder_resources; 1600 ird_ord_hdr[1] = 1; 1601 conn_param.private_data = ird_ord_hdr; 1602 conn_param.private_data_len = sizeof(ird_ord_hdr); 1603 } else { 1604 conn_param.private_data = NULL; 1605 conn_param.private_data_len = 0; 1606 } 1607 1608 conn_param.retry_count = SMBD_CM_RETRY; 1609 conn_param.rnr_retry_count = SMBD_CM_RNR_RETRY; 1610 conn_param.flow_control = 0; 1611 1612 log_rdma_event(INFO, "connecting to IP %pI4 port %d\n", 1613 &addr_in->sin_addr, port); 1614 1615 init_waitqueue_head(&info->conn_wait); 1616 init_waitqueue_head(&info->disconn_wait); 1617 init_waitqueue_head(&info->wait_reassembly_queue); 1618 rc = rdma_connect(info->id, &conn_param); 1619 if (rc) { 1620 log_rdma_event(ERR, "rdma_connect() failed with %i\n", rc); 1621 goto rdma_connect_failed; 1622 } 1623 1624 wait_event_interruptible( 1625 info->conn_wait, info->transport_status != SMBD_CONNECTING); 1626 1627 if (info->transport_status != SMBD_CONNECTED) { 1628 log_rdma_event(ERR, "rdma_connect failed port=%d\n", port); 1629 goto rdma_connect_failed; 1630 } 1631 1632 log_rdma_event(INFO, "rdma_connect connected\n"); 1633 1634 rc = allocate_caches_and_workqueue(info); 1635 if (rc) { 1636 log_rdma_event(ERR, "cache allocation failed\n"); 1637 goto allocate_cache_failed; 1638 } 1639 1640 init_waitqueue_head(&info->wait_send_queue); 1641 INIT_DELAYED_WORK(&info->idle_timer_work, idle_connection_timer); 1642 queue_delayed_work(info->workqueue, &info->idle_timer_work, 1643 info->keep_alive_interval*HZ); 1644 1645 init_waitqueue_head(&info->wait_send_pending); 1646 atomic_set(&info->send_pending, 0); 1647 1648 init_waitqueue_head(&info->wait_post_send); 1649 1650 INIT_WORK(&info->disconnect_work, smbd_disconnect_rdma_work); 1651 INIT_WORK(&info->post_send_credits_work, smbd_post_send_credits); 1652 info->new_credits_offered = 0; 1653 spin_lock_init(&info->lock_new_credits_offered); 1654 1655 rc = smbd_negotiate(info); 1656 if (rc) { 1657 log_rdma_event(ERR, "smbd_negotiate rc=%d\n", rc); 1658 goto negotiation_failed; 1659 } 1660 1661 rc = allocate_mr_list(info); 1662 if (rc) { 1663 log_rdma_mr(ERR, "memory registration allocation failed\n"); 1664 goto allocate_mr_failed; 1665 } 1666 1667 return info; 1668 1669 allocate_mr_failed: 1670 /* At this point, need to a full transport shutdown */ 1671 server->smbd_conn = info; 1672 smbd_destroy(server); 1673 return NULL; 1674 1675 negotiation_failed: 1676 cancel_delayed_work_sync(&info->idle_timer_work); 1677 destroy_caches_and_workqueue(info); 1678 info->transport_status = SMBD_NEGOTIATE_FAILED; 1679 init_waitqueue_head(&info->conn_wait); 1680 rdma_disconnect(info->id); 1681 wait_event(info->conn_wait, 1682 info->transport_status == SMBD_DISCONNECTED); 1683 1684 allocate_cache_failed: 1685 rdma_connect_failed: 1686 rdma_destroy_qp(info->id); 1687 1688 create_qp_failed: 1689 alloc_cq_failed: 1690 if (info->send_cq) 1691 ib_free_cq(info->send_cq); 1692 if (info->recv_cq) 1693 ib_free_cq(info->recv_cq); 1694 1695 config_failed: 1696 ib_dealloc_pd(info->pd); 1697 rdma_destroy_id(info->id); 1698 1699 create_id_failed: 1700 kfree(info); 1701 return NULL; 1702 } 1703 1704 struct smbd_connection *smbd_get_connection( 1705 struct TCP_Server_Info *server, struct sockaddr *dstaddr) 1706 { 1707 struct smbd_connection *ret; 1708 int port = SMBD_PORT; 1709 1710 try_again: 1711 ret = _smbd_get_connection(server, dstaddr, port); 1712 1713 /* Try SMB_PORT if SMBD_PORT doesn't work */ 1714 if (!ret && port == SMBD_PORT) { 1715 port = SMB_PORT; 1716 goto try_again; 1717 } 1718 return ret; 1719 } 1720 1721 /* 1722 * Receive data from receive reassembly queue 1723 * All the incoming data packets are placed in reassembly queue 1724 * buf: the buffer to read data into 1725 * size: the length of data to read 1726 * return value: actual data read 1727 * Note: this implementation copies the data from reassebmly queue to receive 1728 * buffers used by upper layer. This is not the optimal code path. A better way 1729 * to do it is to not have upper layer allocate its receive buffers but rather 1730 * borrow the buffer from reassembly queue, and return it after data is 1731 * consumed. But this will require more changes to upper layer code, and also 1732 * need to consider packet boundaries while they still being reassembled. 1733 */ 1734 static int smbd_recv_buf(struct smbd_connection *info, char *buf, 1735 unsigned int size) 1736 { 1737 struct smbd_response *response; 1738 struct smbd_data_transfer *data_transfer; 1739 int to_copy, to_read, data_read, offset; 1740 u32 data_length, remaining_data_length, data_offset; 1741 int rc; 1742 1743 again: 1744 /* 1745 * No need to hold the reassembly queue lock all the time as we are 1746 * the only one reading from the front of the queue. The transport 1747 * may add more entries to the back of the queue at the same time 1748 */ 1749 log_read(INFO, "size=%d info->reassembly_data_length=%d\n", size, 1750 info->reassembly_data_length); 1751 if (info->reassembly_data_length >= size) { 1752 int queue_length; 1753 int queue_removed = 0; 1754 1755 /* 1756 * Need to make sure reassembly_data_length is read before 1757 * reading reassembly_queue_length and calling 1758 * _get_first_reassembly. This call is lock free 1759 * as we never read at the end of the queue which are being 1760 * updated in SOFTIRQ as more data is received 1761 */ 1762 virt_rmb(); 1763 queue_length = info->reassembly_queue_length; 1764 data_read = 0; 1765 to_read = size; 1766 offset = info->first_entry_offset; 1767 while (data_read < size) { 1768 response = _get_first_reassembly(info); 1769 data_transfer = smbd_response_payload(response); 1770 data_length = le32_to_cpu(data_transfer->data_length); 1771 remaining_data_length = 1772 le32_to_cpu( 1773 data_transfer->remaining_data_length); 1774 data_offset = le32_to_cpu(data_transfer->data_offset); 1775 1776 /* 1777 * The upper layer expects RFC1002 length at the 1778 * beginning of the payload. Return it to indicate 1779 * the total length of the packet. This minimize the 1780 * change to upper layer packet processing logic. This 1781 * will be eventually remove when an intermediate 1782 * transport layer is added 1783 */ 1784 if (response->first_segment && size == 4) { 1785 unsigned int rfc1002_len = 1786 data_length + remaining_data_length; 1787 *((__be32 *)buf) = cpu_to_be32(rfc1002_len); 1788 data_read = 4; 1789 response->first_segment = false; 1790 log_read(INFO, "returning rfc1002 length %d\n", 1791 rfc1002_len); 1792 goto read_rfc1002_done; 1793 } 1794 1795 to_copy = min_t(int, data_length - offset, to_read); 1796 memcpy( 1797 buf + data_read, 1798 (char *)data_transfer + data_offset + offset, 1799 to_copy); 1800 1801 /* move on to the next buffer? */ 1802 if (to_copy == data_length - offset) { 1803 queue_length--; 1804 /* 1805 * No need to lock if we are not at the 1806 * end of the queue 1807 */ 1808 if (queue_length) 1809 list_del(&response->list); 1810 else { 1811 spin_lock_irq( 1812 &info->reassembly_queue_lock); 1813 list_del(&response->list); 1814 spin_unlock_irq( 1815 &info->reassembly_queue_lock); 1816 } 1817 queue_removed++; 1818 info->count_reassembly_queue--; 1819 info->count_dequeue_reassembly_queue++; 1820 put_receive_buffer(info, response); 1821 offset = 0; 1822 log_read(INFO, "put_receive_buffer offset=0\n"); 1823 } else 1824 offset += to_copy; 1825 1826 to_read -= to_copy; 1827 data_read += to_copy; 1828 1829 log_read(INFO, "_get_first_reassembly memcpy %d bytes data_transfer_length-offset=%d after that to_read=%d data_read=%d offset=%d\n", 1830 to_copy, data_length - offset, 1831 to_read, data_read, offset); 1832 } 1833 1834 spin_lock_irq(&info->reassembly_queue_lock); 1835 info->reassembly_data_length -= data_read; 1836 info->reassembly_queue_length -= queue_removed; 1837 spin_unlock_irq(&info->reassembly_queue_lock); 1838 1839 info->first_entry_offset = offset; 1840 log_read(INFO, "returning to thread data_read=%d reassembly_data_length=%d first_entry_offset=%d\n", 1841 data_read, info->reassembly_data_length, 1842 info->first_entry_offset); 1843 read_rfc1002_done: 1844 return data_read; 1845 } 1846 1847 log_read(INFO, "wait_event on more data\n"); 1848 rc = wait_event_interruptible( 1849 info->wait_reassembly_queue, 1850 info->reassembly_data_length >= size || 1851 info->transport_status != SMBD_CONNECTED); 1852 /* Don't return any data if interrupted */ 1853 if (rc) 1854 return rc; 1855 1856 if (info->transport_status != SMBD_CONNECTED) { 1857 log_read(ERR, "disconnected\n"); 1858 return -ECONNABORTED; 1859 } 1860 1861 goto again; 1862 } 1863 1864 /* 1865 * Receive a page from receive reassembly queue 1866 * page: the page to read data into 1867 * to_read: the length of data to read 1868 * return value: actual data read 1869 */ 1870 static int smbd_recv_page(struct smbd_connection *info, 1871 struct page *page, unsigned int page_offset, 1872 unsigned int to_read) 1873 { 1874 int ret; 1875 char *to_address; 1876 void *page_address; 1877 1878 /* make sure we have the page ready for read */ 1879 ret = wait_event_interruptible( 1880 info->wait_reassembly_queue, 1881 info->reassembly_data_length >= to_read || 1882 info->transport_status != SMBD_CONNECTED); 1883 if (ret) 1884 return ret; 1885 1886 /* now we can read from reassembly queue and not sleep */ 1887 page_address = kmap_atomic(page); 1888 to_address = (char *) page_address + page_offset; 1889 1890 log_read(INFO, "reading from page=%p address=%p to_read=%d\n", 1891 page, to_address, to_read); 1892 1893 ret = smbd_recv_buf(info, to_address, to_read); 1894 kunmap_atomic(page_address); 1895 1896 return ret; 1897 } 1898 1899 /* 1900 * Receive data from transport 1901 * msg: a msghdr point to the buffer, can be ITER_KVEC or ITER_BVEC 1902 * return: total bytes read, or 0. SMB Direct will not do partial read. 1903 */ 1904 int smbd_recv(struct smbd_connection *info, struct msghdr *msg) 1905 { 1906 char *buf; 1907 struct page *page; 1908 unsigned int to_read, page_offset; 1909 int rc; 1910 1911 if (iov_iter_rw(&msg->msg_iter) == WRITE) { 1912 /* It's a bug in upper layer to get there */ 1913 cifs_dbg(VFS, "Invalid msg iter dir %u\n", 1914 iov_iter_rw(&msg->msg_iter)); 1915 rc = -EINVAL; 1916 goto out; 1917 } 1918 1919 switch (iov_iter_type(&msg->msg_iter)) { 1920 case ITER_KVEC: 1921 buf = msg->msg_iter.kvec->iov_base; 1922 to_read = msg->msg_iter.kvec->iov_len; 1923 rc = smbd_recv_buf(info, buf, to_read); 1924 break; 1925 1926 case ITER_BVEC: 1927 page = msg->msg_iter.bvec->bv_page; 1928 page_offset = msg->msg_iter.bvec->bv_offset; 1929 to_read = msg->msg_iter.bvec->bv_len; 1930 rc = smbd_recv_page(info, page, page_offset, to_read); 1931 break; 1932 1933 default: 1934 /* It's a bug in upper layer to get there */ 1935 cifs_dbg(VFS, "Invalid msg type %d\n", 1936 iov_iter_type(&msg->msg_iter)); 1937 rc = -EINVAL; 1938 } 1939 1940 out: 1941 /* SMBDirect will read it all or nothing */ 1942 if (rc > 0) 1943 msg->msg_iter.count = 0; 1944 return rc; 1945 } 1946 1947 /* 1948 * Send data to transport 1949 * Each rqst is transported as a SMBDirect payload 1950 * rqst: the data to write 1951 * return value: 0 if successfully write, otherwise error code 1952 */ 1953 int smbd_send(struct TCP_Server_Info *server, 1954 int num_rqst, struct smb_rqst *rqst_array) 1955 { 1956 struct smbd_connection *info = server->smbd_conn; 1957 struct smb_rqst *rqst; 1958 struct iov_iter iter; 1959 unsigned int remaining_data_length, klen; 1960 int rc, i, rqst_idx; 1961 1962 if (info->transport_status != SMBD_CONNECTED) 1963 return -EAGAIN; 1964 1965 /* 1966 * Add in the page array if there is one. The caller needs to set 1967 * rq_tailsz to PAGE_SIZE when the buffer has multiple pages and 1968 * ends at page boundary 1969 */ 1970 remaining_data_length = 0; 1971 for (i = 0; i < num_rqst; i++) 1972 remaining_data_length += smb_rqst_len(server, &rqst_array[i]); 1973 1974 if (unlikely(remaining_data_length > info->max_fragmented_send_size)) { 1975 /* assertion: payload never exceeds negotiated maximum */ 1976 log_write(ERR, "payload size %d > max size %d\n", 1977 remaining_data_length, info->max_fragmented_send_size); 1978 return -EINVAL; 1979 } 1980 1981 log_write(INFO, "num_rqst=%d total length=%u\n", 1982 num_rqst, remaining_data_length); 1983 1984 rqst_idx = 0; 1985 do { 1986 rqst = &rqst_array[rqst_idx]; 1987 1988 cifs_dbg(FYI, "Sending smb (RDMA): idx=%d smb_len=%lu\n", 1989 rqst_idx, smb_rqst_len(server, rqst)); 1990 for (i = 0; i < rqst->rq_nvec; i++) 1991 dump_smb(rqst->rq_iov[i].iov_base, rqst->rq_iov[i].iov_len); 1992 1993 log_write(INFO, "RDMA-WR[%u] nvec=%d len=%u iter=%zu rqlen=%lu\n", 1994 rqst_idx, rqst->rq_nvec, remaining_data_length, 1995 iov_iter_count(&rqst->rq_iter), smb_rqst_len(server, rqst)); 1996 1997 /* Send the metadata pages. */ 1998 klen = 0; 1999 for (i = 0; i < rqst->rq_nvec; i++) 2000 klen += rqst->rq_iov[i].iov_len; 2001 iov_iter_kvec(&iter, ITER_SOURCE, rqst->rq_iov, rqst->rq_nvec, klen); 2002 2003 rc = smbd_post_send_iter(info, &iter, &remaining_data_length); 2004 if (rc < 0) 2005 break; 2006 2007 if (iov_iter_count(&rqst->rq_iter) > 0) { 2008 /* And then the data pages if there are any */ 2009 rc = smbd_post_send_iter(info, &rqst->rq_iter, 2010 &remaining_data_length); 2011 if (rc < 0) 2012 break; 2013 } 2014 2015 } while (++rqst_idx < num_rqst); 2016 2017 /* 2018 * As an optimization, we don't wait for individual I/O to finish 2019 * before sending the next one. 2020 * Send them all and wait for pending send count to get to 0 2021 * that means all the I/Os have been out and we are good to return 2022 */ 2023 2024 wait_event(info->wait_send_pending, 2025 atomic_read(&info->send_pending) == 0); 2026 2027 return rc; 2028 } 2029 2030 static void register_mr_done(struct ib_cq *cq, struct ib_wc *wc) 2031 { 2032 struct smbd_mr *mr; 2033 struct ib_cqe *cqe; 2034 2035 if (wc->status) { 2036 log_rdma_mr(ERR, "status=%d\n", wc->status); 2037 cqe = wc->wr_cqe; 2038 mr = container_of(cqe, struct smbd_mr, cqe); 2039 smbd_disconnect_rdma_connection(mr->conn); 2040 } 2041 } 2042 2043 /* 2044 * The work queue function that recovers MRs 2045 * We need to call ib_dereg_mr() and ib_alloc_mr() before this MR can be used 2046 * again. Both calls are slow, so finish them in a workqueue. This will not 2047 * block I/O path. 2048 * There is one workqueue that recovers MRs, there is no need to lock as the 2049 * I/O requests calling smbd_register_mr will never update the links in the 2050 * mr_list. 2051 */ 2052 static void smbd_mr_recovery_work(struct work_struct *work) 2053 { 2054 struct smbd_connection *info = 2055 container_of(work, struct smbd_connection, mr_recovery_work); 2056 struct smbd_mr *smbdirect_mr; 2057 int rc; 2058 2059 list_for_each_entry(smbdirect_mr, &info->mr_list, list) { 2060 if (smbdirect_mr->state == MR_ERROR) { 2061 2062 /* recover this MR entry */ 2063 rc = ib_dereg_mr(smbdirect_mr->mr); 2064 if (rc) { 2065 log_rdma_mr(ERR, 2066 "ib_dereg_mr failed rc=%x\n", 2067 rc); 2068 smbd_disconnect_rdma_connection(info); 2069 continue; 2070 } 2071 2072 smbdirect_mr->mr = ib_alloc_mr( 2073 info->pd, info->mr_type, 2074 info->max_frmr_depth); 2075 if (IS_ERR(smbdirect_mr->mr)) { 2076 log_rdma_mr(ERR, "ib_alloc_mr failed mr_type=%x max_frmr_depth=%x\n", 2077 info->mr_type, 2078 info->max_frmr_depth); 2079 smbd_disconnect_rdma_connection(info); 2080 continue; 2081 } 2082 } else 2083 /* This MR is being used, don't recover it */ 2084 continue; 2085 2086 smbdirect_mr->state = MR_READY; 2087 2088 /* smbdirect_mr->state is updated by this function 2089 * and is read and updated by I/O issuing CPUs trying 2090 * to get a MR, the call to atomic_inc_return 2091 * implicates a memory barrier and guarantees this 2092 * value is updated before waking up any calls to 2093 * get_mr() from the I/O issuing CPUs 2094 */ 2095 if (atomic_inc_return(&info->mr_ready_count) == 1) 2096 wake_up_interruptible(&info->wait_mr); 2097 } 2098 } 2099 2100 static void destroy_mr_list(struct smbd_connection *info) 2101 { 2102 struct smbd_mr *mr, *tmp; 2103 2104 cancel_work_sync(&info->mr_recovery_work); 2105 list_for_each_entry_safe(mr, tmp, &info->mr_list, list) { 2106 if (mr->state == MR_INVALIDATED) 2107 ib_dma_unmap_sg(info->id->device, mr->sgt.sgl, 2108 mr->sgt.nents, mr->dir); 2109 ib_dereg_mr(mr->mr); 2110 kfree(mr->sgt.sgl); 2111 kfree(mr); 2112 } 2113 } 2114 2115 /* 2116 * Allocate MRs used for RDMA read/write 2117 * The number of MRs will not exceed hardware capability in responder_resources 2118 * All MRs are kept in mr_list. The MR can be recovered after it's used 2119 * Recovery is done in smbd_mr_recovery_work. The content of list entry changes 2120 * as MRs are used and recovered for I/O, but the list links will not change 2121 */ 2122 static int allocate_mr_list(struct smbd_connection *info) 2123 { 2124 int i; 2125 struct smbd_mr *smbdirect_mr, *tmp; 2126 2127 INIT_LIST_HEAD(&info->mr_list); 2128 init_waitqueue_head(&info->wait_mr); 2129 spin_lock_init(&info->mr_list_lock); 2130 atomic_set(&info->mr_ready_count, 0); 2131 atomic_set(&info->mr_used_count, 0); 2132 init_waitqueue_head(&info->wait_for_mr_cleanup); 2133 INIT_WORK(&info->mr_recovery_work, smbd_mr_recovery_work); 2134 /* Allocate more MRs (2x) than hardware responder_resources */ 2135 for (i = 0; i < info->responder_resources * 2; i++) { 2136 smbdirect_mr = kzalloc(sizeof(*smbdirect_mr), GFP_KERNEL); 2137 if (!smbdirect_mr) 2138 goto cleanup_entries; 2139 smbdirect_mr->mr = ib_alloc_mr(info->pd, info->mr_type, 2140 info->max_frmr_depth); 2141 if (IS_ERR(smbdirect_mr->mr)) { 2142 log_rdma_mr(ERR, "ib_alloc_mr failed mr_type=%x max_frmr_depth=%x\n", 2143 info->mr_type, info->max_frmr_depth); 2144 goto out; 2145 } 2146 smbdirect_mr->sgt.sgl = kcalloc(info->max_frmr_depth, 2147 sizeof(struct scatterlist), 2148 GFP_KERNEL); 2149 if (!smbdirect_mr->sgt.sgl) { 2150 log_rdma_mr(ERR, "failed to allocate sgl\n"); 2151 ib_dereg_mr(smbdirect_mr->mr); 2152 goto out; 2153 } 2154 smbdirect_mr->state = MR_READY; 2155 smbdirect_mr->conn = info; 2156 2157 list_add_tail(&smbdirect_mr->list, &info->mr_list); 2158 atomic_inc(&info->mr_ready_count); 2159 } 2160 return 0; 2161 2162 out: 2163 kfree(smbdirect_mr); 2164 cleanup_entries: 2165 list_for_each_entry_safe(smbdirect_mr, tmp, &info->mr_list, list) { 2166 list_del(&smbdirect_mr->list); 2167 ib_dereg_mr(smbdirect_mr->mr); 2168 kfree(smbdirect_mr->sgt.sgl); 2169 kfree(smbdirect_mr); 2170 } 2171 return -ENOMEM; 2172 } 2173 2174 /* 2175 * Get a MR from mr_list. This function waits until there is at least one 2176 * MR available in the list. It may access the list while the 2177 * smbd_mr_recovery_work is recovering the MR list. This doesn't need a lock 2178 * as they never modify the same places. However, there may be several CPUs 2179 * issuing I/O trying to get MR at the same time, mr_list_lock is used to 2180 * protect this situation. 2181 */ 2182 static struct smbd_mr *get_mr(struct smbd_connection *info) 2183 { 2184 struct smbd_mr *ret; 2185 int rc; 2186 again: 2187 rc = wait_event_interruptible(info->wait_mr, 2188 atomic_read(&info->mr_ready_count) || 2189 info->transport_status != SMBD_CONNECTED); 2190 if (rc) { 2191 log_rdma_mr(ERR, "wait_event_interruptible rc=%x\n", rc); 2192 return NULL; 2193 } 2194 2195 if (info->transport_status != SMBD_CONNECTED) { 2196 log_rdma_mr(ERR, "info->transport_status=%x\n", 2197 info->transport_status); 2198 return NULL; 2199 } 2200 2201 spin_lock(&info->mr_list_lock); 2202 list_for_each_entry(ret, &info->mr_list, list) { 2203 if (ret->state == MR_READY) { 2204 ret->state = MR_REGISTERED; 2205 spin_unlock(&info->mr_list_lock); 2206 atomic_dec(&info->mr_ready_count); 2207 atomic_inc(&info->mr_used_count); 2208 return ret; 2209 } 2210 } 2211 2212 spin_unlock(&info->mr_list_lock); 2213 /* 2214 * It is possible that we could fail to get MR because other processes may 2215 * try to acquire a MR at the same time. If this is the case, retry it. 2216 */ 2217 goto again; 2218 } 2219 2220 /* 2221 * Transcribe the pages from an iterator into an MR scatterlist. 2222 */ 2223 static int smbd_iter_to_mr(struct smbd_connection *info, 2224 struct iov_iter *iter, 2225 struct sg_table *sgt, 2226 unsigned int max_sg) 2227 { 2228 int ret; 2229 2230 memset(sgt->sgl, 0, max_sg * sizeof(struct scatterlist)); 2231 2232 ret = extract_iter_to_sg(iter, iov_iter_count(iter), sgt, max_sg, 0); 2233 WARN_ON(ret < 0); 2234 if (sgt->nents > 0) 2235 sg_mark_end(&sgt->sgl[sgt->nents - 1]); 2236 return ret; 2237 } 2238 2239 /* 2240 * Register memory for RDMA read/write 2241 * iter: the buffer to register memory with 2242 * writing: true if this is a RDMA write (SMB read), false for RDMA read 2243 * need_invalidate: true if this MR needs to be locally invalidated after I/O 2244 * return value: the MR registered, NULL if failed. 2245 */ 2246 struct smbd_mr *smbd_register_mr(struct smbd_connection *info, 2247 struct iov_iter *iter, 2248 bool writing, bool need_invalidate) 2249 { 2250 struct smbd_mr *smbdirect_mr; 2251 int rc, num_pages; 2252 enum dma_data_direction dir; 2253 struct ib_reg_wr *reg_wr; 2254 2255 num_pages = iov_iter_npages(iter, info->max_frmr_depth + 1); 2256 if (num_pages > info->max_frmr_depth) { 2257 log_rdma_mr(ERR, "num_pages=%d max_frmr_depth=%d\n", 2258 num_pages, info->max_frmr_depth); 2259 WARN_ON_ONCE(1); 2260 return NULL; 2261 } 2262 2263 smbdirect_mr = get_mr(info); 2264 if (!smbdirect_mr) { 2265 log_rdma_mr(ERR, "get_mr returning NULL\n"); 2266 return NULL; 2267 } 2268 2269 dir = writing ? DMA_FROM_DEVICE : DMA_TO_DEVICE; 2270 smbdirect_mr->dir = dir; 2271 smbdirect_mr->need_invalidate = need_invalidate; 2272 smbdirect_mr->sgt.nents = 0; 2273 smbdirect_mr->sgt.orig_nents = 0; 2274 2275 log_rdma_mr(INFO, "num_pages=0x%x count=0x%zx depth=%u\n", 2276 num_pages, iov_iter_count(iter), info->max_frmr_depth); 2277 smbd_iter_to_mr(info, iter, &smbdirect_mr->sgt, info->max_frmr_depth); 2278 2279 rc = ib_dma_map_sg(info->id->device, smbdirect_mr->sgt.sgl, 2280 smbdirect_mr->sgt.nents, dir); 2281 if (!rc) { 2282 log_rdma_mr(ERR, "ib_dma_map_sg num_pages=%x dir=%x rc=%x\n", 2283 num_pages, dir, rc); 2284 goto dma_map_error; 2285 } 2286 2287 rc = ib_map_mr_sg(smbdirect_mr->mr, smbdirect_mr->sgt.sgl, 2288 smbdirect_mr->sgt.nents, NULL, PAGE_SIZE); 2289 if (rc != smbdirect_mr->sgt.nents) { 2290 log_rdma_mr(ERR, 2291 "ib_map_mr_sg failed rc = %d nents = %x\n", 2292 rc, smbdirect_mr->sgt.nents); 2293 goto map_mr_error; 2294 } 2295 2296 ib_update_fast_reg_key(smbdirect_mr->mr, 2297 ib_inc_rkey(smbdirect_mr->mr->rkey)); 2298 reg_wr = &smbdirect_mr->wr; 2299 reg_wr->wr.opcode = IB_WR_REG_MR; 2300 smbdirect_mr->cqe.done = register_mr_done; 2301 reg_wr->wr.wr_cqe = &smbdirect_mr->cqe; 2302 reg_wr->wr.num_sge = 0; 2303 reg_wr->wr.send_flags = IB_SEND_SIGNALED; 2304 reg_wr->mr = smbdirect_mr->mr; 2305 reg_wr->key = smbdirect_mr->mr->rkey; 2306 reg_wr->access = writing ? 2307 IB_ACCESS_REMOTE_WRITE | IB_ACCESS_LOCAL_WRITE : 2308 IB_ACCESS_REMOTE_READ; 2309 2310 /* 2311 * There is no need for waiting for complemtion on ib_post_send 2312 * on IB_WR_REG_MR. Hardware enforces a barrier and order of execution 2313 * on the next ib_post_send when we actually send I/O to remote peer 2314 */ 2315 rc = ib_post_send(info->id->qp, ®_wr->wr, NULL); 2316 if (!rc) 2317 return smbdirect_mr; 2318 2319 log_rdma_mr(ERR, "ib_post_send failed rc=%x reg_wr->key=%x\n", 2320 rc, reg_wr->key); 2321 2322 /* If all failed, attempt to recover this MR by setting it MR_ERROR*/ 2323 map_mr_error: 2324 ib_dma_unmap_sg(info->id->device, smbdirect_mr->sgt.sgl, 2325 smbdirect_mr->sgt.nents, smbdirect_mr->dir); 2326 2327 dma_map_error: 2328 smbdirect_mr->state = MR_ERROR; 2329 if (atomic_dec_and_test(&info->mr_used_count)) 2330 wake_up(&info->wait_for_mr_cleanup); 2331 2332 smbd_disconnect_rdma_connection(info); 2333 2334 return NULL; 2335 } 2336 2337 static void local_inv_done(struct ib_cq *cq, struct ib_wc *wc) 2338 { 2339 struct smbd_mr *smbdirect_mr; 2340 struct ib_cqe *cqe; 2341 2342 cqe = wc->wr_cqe; 2343 smbdirect_mr = container_of(cqe, struct smbd_mr, cqe); 2344 smbdirect_mr->state = MR_INVALIDATED; 2345 if (wc->status != IB_WC_SUCCESS) { 2346 log_rdma_mr(ERR, "invalidate failed status=%x\n", wc->status); 2347 smbdirect_mr->state = MR_ERROR; 2348 } 2349 complete(&smbdirect_mr->invalidate_done); 2350 } 2351 2352 /* 2353 * Deregister a MR after I/O is done 2354 * This function may wait if remote invalidation is not used 2355 * and we have to locally invalidate the buffer to prevent data is being 2356 * modified by remote peer after upper layer consumes it 2357 */ 2358 int smbd_deregister_mr(struct smbd_mr *smbdirect_mr) 2359 { 2360 struct ib_send_wr *wr; 2361 struct smbd_connection *info = smbdirect_mr->conn; 2362 int rc = 0; 2363 2364 if (smbdirect_mr->need_invalidate) { 2365 /* Need to finish local invalidation before returning */ 2366 wr = &smbdirect_mr->inv_wr; 2367 wr->opcode = IB_WR_LOCAL_INV; 2368 smbdirect_mr->cqe.done = local_inv_done; 2369 wr->wr_cqe = &smbdirect_mr->cqe; 2370 wr->num_sge = 0; 2371 wr->ex.invalidate_rkey = smbdirect_mr->mr->rkey; 2372 wr->send_flags = IB_SEND_SIGNALED; 2373 2374 init_completion(&smbdirect_mr->invalidate_done); 2375 rc = ib_post_send(info->id->qp, wr, NULL); 2376 if (rc) { 2377 log_rdma_mr(ERR, "ib_post_send failed rc=%x\n", rc); 2378 smbd_disconnect_rdma_connection(info); 2379 goto done; 2380 } 2381 wait_for_completion(&smbdirect_mr->invalidate_done); 2382 smbdirect_mr->need_invalidate = false; 2383 } else 2384 /* 2385 * For remote invalidation, just set it to MR_INVALIDATED 2386 * and defer to mr_recovery_work to recover the MR for next use 2387 */ 2388 smbdirect_mr->state = MR_INVALIDATED; 2389 2390 if (smbdirect_mr->state == MR_INVALIDATED) { 2391 ib_dma_unmap_sg( 2392 info->id->device, smbdirect_mr->sgt.sgl, 2393 smbdirect_mr->sgt.nents, 2394 smbdirect_mr->dir); 2395 smbdirect_mr->state = MR_READY; 2396 if (atomic_inc_return(&info->mr_ready_count) == 1) 2397 wake_up_interruptible(&info->wait_mr); 2398 } else 2399 /* 2400 * Schedule the work to do MR recovery for future I/Os MR 2401 * recovery is slow and don't want it to block current I/O 2402 */ 2403 queue_work(info->workqueue, &info->mr_recovery_work); 2404 2405 done: 2406 if (atomic_dec_and_test(&info->mr_used_count)) 2407 wake_up(&info->wait_for_mr_cleanup); 2408 2409 return rc; 2410 } 2411 2412 static bool smb_set_sge(struct smb_extract_to_rdma *rdma, 2413 struct page *lowest_page, size_t off, size_t len) 2414 { 2415 struct ib_sge *sge = &rdma->sge[rdma->nr_sge]; 2416 u64 addr; 2417 2418 addr = ib_dma_map_page(rdma->device, lowest_page, 2419 off, len, rdma->direction); 2420 if (ib_dma_mapping_error(rdma->device, addr)) 2421 return false; 2422 2423 sge->addr = addr; 2424 sge->length = len; 2425 sge->lkey = rdma->local_dma_lkey; 2426 rdma->nr_sge++; 2427 return true; 2428 } 2429 2430 /* 2431 * Extract page fragments from a BVEC-class iterator and add them to an RDMA 2432 * element list. The pages are not pinned. 2433 */ 2434 static ssize_t smb_extract_bvec_to_rdma(struct iov_iter *iter, 2435 struct smb_extract_to_rdma *rdma, 2436 ssize_t maxsize) 2437 { 2438 const struct bio_vec *bv = iter->bvec; 2439 unsigned long start = iter->iov_offset; 2440 unsigned int i; 2441 ssize_t ret = 0; 2442 2443 for (i = 0; i < iter->nr_segs; i++) { 2444 size_t off, len; 2445 2446 len = bv[i].bv_len; 2447 if (start >= len) { 2448 start -= len; 2449 continue; 2450 } 2451 2452 len = min_t(size_t, maxsize, len - start); 2453 off = bv[i].bv_offset + start; 2454 2455 if (!smb_set_sge(rdma, bv[i].bv_page, off, len)) 2456 return -EIO; 2457 2458 ret += len; 2459 maxsize -= len; 2460 if (rdma->nr_sge >= rdma->max_sge || maxsize <= 0) 2461 break; 2462 start = 0; 2463 } 2464 2465 if (ret > 0) 2466 iov_iter_advance(iter, ret); 2467 return ret; 2468 } 2469 2470 /* 2471 * Extract fragments from a KVEC-class iterator and add them to an RDMA list. 2472 * This can deal with vmalloc'd buffers as well as kmalloc'd or static buffers. 2473 * The pages are not pinned. 2474 */ 2475 static ssize_t smb_extract_kvec_to_rdma(struct iov_iter *iter, 2476 struct smb_extract_to_rdma *rdma, 2477 ssize_t maxsize) 2478 { 2479 const struct kvec *kv = iter->kvec; 2480 unsigned long start = iter->iov_offset; 2481 unsigned int i; 2482 ssize_t ret = 0; 2483 2484 for (i = 0; i < iter->nr_segs; i++) { 2485 struct page *page; 2486 unsigned long kaddr; 2487 size_t off, len, seg; 2488 2489 len = kv[i].iov_len; 2490 if (start >= len) { 2491 start -= len; 2492 continue; 2493 } 2494 2495 kaddr = (unsigned long)kv[i].iov_base + start; 2496 off = kaddr & ~PAGE_MASK; 2497 len = min_t(size_t, maxsize, len - start); 2498 kaddr &= PAGE_MASK; 2499 2500 maxsize -= len; 2501 do { 2502 seg = min_t(size_t, len, PAGE_SIZE - off); 2503 2504 if (is_vmalloc_or_module_addr((void *)kaddr)) 2505 page = vmalloc_to_page((void *)kaddr); 2506 else 2507 page = virt_to_page((void *)kaddr); 2508 2509 if (!smb_set_sge(rdma, page, off, seg)) 2510 return -EIO; 2511 2512 ret += seg; 2513 len -= seg; 2514 kaddr += PAGE_SIZE; 2515 off = 0; 2516 } while (len > 0 && rdma->nr_sge < rdma->max_sge); 2517 2518 if (rdma->nr_sge >= rdma->max_sge || maxsize <= 0) 2519 break; 2520 start = 0; 2521 } 2522 2523 if (ret > 0) 2524 iov_iter_advance(iter, ret); 2525 return ret; 2526 } 2527 2528 /* 2529 * Extract folio fragments from a FOLIOQ-class iterator and add them to an RDMA 2530 * list. The folios are not pinned. 2531 */ 2532 static ssize_t smb_extract_folioq_to_rdma(struct iov_iter *iter, 2533 struct smb_extract_to_rdma *rdma, 2534 ssize_t maxsize) 2535 { 2536 const struct folio_queue *folioq = iter->folioq; 2537 unsigned int slot = iter->folioq_slot; 2538 ssize_t ret = 0; 2539 size_t offset = iter->iov_offset; 2540 2541 BUG_ON(!folioq); 2542 2543 if (slot >= folioq_nr_slots(folioq)) { 2544 folioq = folioq->next; 2545 if (WARN_ON_ONCE(!folioq)) 2546 return -EIO; 2547 slot = 0; 2548 } 2549 2550 do { 2551 struct folio *folio = folioq_folio(folioq, slot); 2552 size_t fsize = folioq_folio_size(folioq, slot); 2553 2554 if (offset < fsize) { 2555 size_t part = umin(maxsize - ret, fsize - offset); 2556 2557 if (!smb_set_sge(rdma, folio_page(folio, 0), offset, part)) 2558 return -EIO; 2559 2560 offset += part; 2561 ret += part; 2562 } 2563 2564 if (offset >= fsize) { 2565 offset = 0; 2566 slot++; 2567 if (slot >= folioq_nr_slots(folioq)) { 2568 if (!folioq->next) { 2569 WARN_ON_ONCE(ret < iter->count); 2570 break; 2571 } 2572 folioq = folioq->next; 2573 slot = 0; 2574 } 2575 } 2576 } while (rdma->nr_sge < rdma->max_sge || maxsize > 0); 2577 2578 iter->folioq = folioq; 2579 iter->folioq_slot = slot; 2580 iter->iov_offset = offset; 2581 iter->count -= ret; 2582 return ret; 2583 } 2584 2585 /* 2586 * Extract page fragments from up to the given amount of the source iterator 2587 * and build up an RDMA list that refers to all of those bits. The RDMA list 2588 * is appended to, up to the maximum number of elements set in the parameter 2589 * block. 2590 * 2591 * The extracted page fragments are not pinned or ref'd in any way; if an 2592 * IOVEC/UBUF-type iterator is to be used, it should be converted to a 2593 * BVEC-type iterator and the pages pinned, ref'd or otherwise held in some 2594 * way. 2595 */ 2596 static ssize_t smb_extract_iter_to_rdma(struct iov_iter *iter, size_t len, 2597 struct smb_extract_to_rdma *rdma) 2598 { 2599 ssize_t ret; 2600 int before = rdma->nr_sge; 2601 2602 switch (iov_iter_type(iter)) { 2603 case ITER_BVEC: 2604 ret = smb_extract_bvec_to_rdma(iter, rdma, len); 2605 break; 2606 case ITER_KVEC: 2607 ret = smb_extract_kvec_to_rdma(iter, rdma, len); 2608 break; 2609 case ITER_FOLIOQ: 2610 ret = smb_extract_folioq_to_rdma(iter, rdma, len); 2611 break; 2612 default: 2613 WARN_ON_ONCE(1); 2614 return -EIO; 2615 } 2616 2617 if (ret < 0) { 2618 while (rdma->nr_sge > before) { 2619 struct ib_sge *sge = &rdma->sge[rdma->nr_sge--]; 2620 2621 ib_dma_unmap_single(rdma->device, sge->addr, sge->length, 2622 rdma->direction); 2623 sge->addr = 0; 2624 } 2625 } 2626 2627 return ret; 2628 } 2629