xref: /linux/fs/smb/client/misc.c (revision 6490bec6d5bf1001032c5efea94bdf5b5104bce9)
1 // SPDX-License-Identifier: LGPL-2.1
2 /*
3  *
4  *   Copyright (C) International Business Machines  Corp., 2002,2008
5  *   Author(s): Steve French (sfrench@us.ibm.com)
6  *
7  */
8 
9 #include <linux/slab.h>
10 #include <linux/ctype.h>
11 #include <linux/mempool.h>
12 #include <linux/vmalloc.h>
13 #include "cifspdu.h"
14 #include "cifsglob.h"
15 #include "cifsproto.h"
16 #include "cifs_debug.h"
17 #include "smberr.h"
18 #include "nterr.h"
19 #include "cifs_unicode.h"
20 #include "smb2pdu.h"
21 #include "cifsfs.h"
22 #ifdef CONFIG_CIFS_DFS_UPCALL
23 #include "dns_resolve.h"
24 #include "dfs_cache.h"
25 #include "dfs.h"
26 #endif
27 #include "fs_context.h"
28 #include "cached_dir.h"
29 
30 /* The xid serves as a useful identifier for each incoming vfs request,
31    in a similar way to the mid which is useful to track each sent smb,
32    and CurrentXid can also provide a running counter (although it
33    will eventually wrap past zero) of the total vfs operations handled
34    since the cifs fs was mounted */
35 
36 unsigned int
37 _get_xid(void)
38 {
39 	unsigned int xid;
40 
41 	spin_lock(&GlobalMid_Lock);
42 	GlobalTotalActiveXid++;
43 
44 	/* keep high water mark for number of simultaneous ops in filesystem */
45 	if (GlobalTotalActiveXid > GlobalMaxActiveXid)
46 		GlobalMaxActiveXid = GlobalTotalActiveXid;
47 	if (GlobalTotalActiveXid > 65000)
48 		cifs_dbg(FYI, "warning: more than 65000 requests active\n");
49 	xid = GlobalCurrentXid++;
50 	spin_unlock(&GlobalMid_Lock);
51 	return xid;
52 }
53 
54 void
55 _free_xid(unsigned int xid)
56 {
57 	spin_lock(&GlobalMid_Lock);
58 	/* if (GlobalTotalActiveXid == 0)
59 		BUG(); */
60 	GlobalTotalActiveXid--;
61 	spin_unlock(&GlobalMid_Lock);
62 }
63 
64 struct cifs_ses *
65 sesInfoAlloc(void)
66 {
67 	struct cifs_ses *ret_buf;
68 
69 	ret_buf = kzalloc(sizeof(struct cifs_ses), GFP_KERNEL);
70 	if (ret_buf) {
71 		atomic_inc(&sesInfoAllocCount);
72 		spin_lock_init(&ret_buf->ses_lock);
73 		ret_buf->ses_status = SES_NEW;
74 		++ret_buf->ses_count;
75 		INIT_LIST_HEAD(&ret_buf->smb_ses_list);
76 		INIT_LIST_HEAD(&ret_buf->tcon_list);
77 		mutex_init(&ret_buf->session_mutex);
78 		spin_lock_init(&ret_buf->iface_lock);
79 		INIT_LIST_HEAD(&ret_buf->iface_list);
80 		spin_lock_init(&ret_buf->chan_lock);
81 	}
82 	return ret_buf;
83 }
84 
85 void
86 sesInfoFree(struct cifs_ses *buf_to_free)
87 {
88 	struct cifs_server_iface *iface = NULL, *niface = NULL;
89 
90 	if (buf_to_free == NULL) {
91 		cifs_dbg(FYI, "Null buffer passed to sesInfoFree\n");
92 		return;
93 	}
94 
95 	unload_nls(buf_to_free->local_nls);
96 	atomic_dec(&sesInfoAllocCount);
97 	kfree(buf_to_free->serverOS);
98 	kfree(buf_to_free->serverDomain);
99 	kfree(buf_to_free->serverNOS);
100 	kfree_sensitive(buf_to_free->password);
101 	kfree(buf_to_free->user_name);
102 	kfree(buf_to_free->domainName);
103 	kfree_sensitive(buf_to_free->auth_key.response);
104 	spin_lock(&buf_to_free->iface_lock);
105 	list_for_each_entry_safe(iface, niface, &buf_to_free->iface_list,
106 				 iface_head)
107 		kref_put(&iface->refcount, release_iface);
108 	spin_unlock(&buf_to_free->iface_lock);
109 	kfree_sensitive(buf_to_free);
110 }
111 
112 struct cifs_tcon *
113 tcon_info_alloc(bool dir_leases_enabled)
114 {
115 	struct cifs_tcon *ret_buf;
116 
117 	ret_buf = kzalloc(sizeof(*ret_buf), GFP_KERNEL);
118 	if (!ret_buf)
119 		return NULL;
120 
121 	if (dir_leases_enabled == true) {
122 		ret_buf->cfids = init_cached_dirs();
123 		if (!ret_buf->cfids) {
124 			kfree(ret_buf);
125 			return NULL;
126 		}
127 	}
128 	/* else ret_buf->cfids is already set to NULL above */
129 
130 	atomic_inc(&tconInfoAllocCount);
131 	ret_buf->status = TID_NEW;
132 	++ret_buf->tc_count;
133 	spin_lock_init(&ret_buf->tc_lock);
134 	INIT_LIST_HEAD(&ret_buf->openFileList);
135 	INIT_LIST_HEAD(&ret_buf->tcon_list);
136 	spin_lock_init(&ret_buf->open_file_lock);
137 	spin_lock_init(&ret_buf->stat_lock);
138 	atomic_set(&ret_buf->num_local_opens, 0);
139 	atomic_set(&ret_buf->num_remote_opens, 0);
140 	ret_buf->stats_from_time = ktime_get_real_seconds();
141 
142 	return ret_buf;
143 }
144 
145 void
146 tconInfoFree(struct cifs_tcon *tcon)
147 {
148 	if (tcon == NULL) {
149 		cifs_dbg(FYI, "Null buffer passed to tconInfoFree\n");
150 		return;
151 	}
152 	free_cached_dirs(tcon->cfids);
153 	atomic_dec(&tconInfoAllocCount);
154 	kfree(tcon->nativeFileSystem);
155 	kfree_sensitive(tcon->password);
156 	kfree(tcon->origin_fullpath);
157 	kfree(tcon);
158 }
159 
160 struct smb_hdr *
161 cifs_buf_get(void)
162 {
163 	struct smb_hdr *ret_buf = NULL;
164 	/*
165 	 * SMB2 header is bigger than CIFS one - no problems to clean some
166 	 * more bytes for CIFS.
167 	 */
168 	size_t buf_size = sizeof(struct smb2_hdr);
169 
170 	/*
171 	 * We could use negotiated size instead of max_msgsize -
172 	 * but it may be more efficient to always alloc same size
173 	 * albeit slightly larger than necessary and maxbuffersize
174 	 * defaults to this and can not be bigger.
175 	 */
176 	ret_buf = mempool_alloc(cifs_req_poolp, GFP_NOFS);
177 
178 	/* clear the first few header bytes */
179 	/* for most paths, more is cleared in header_assemble */
180 	memset(ret_buf, 0, buf_size + 3);
181 	atomic_inc(&buf_alloc_count);
182 #ifdef CONFIG_CIFS_STATS2
183 	atomic_inc(&total_buf_alloc_count);
184 #endif /* CONFIG_CIFS_STATS2 */
185 
186 	return ret_buf;
187 }
188 
189 void
190 cifs_buf_release(void *buf_to_free)
191 {
192 	if (buf_to_free == NULL) {
193 		/* cifs_dbg(FYI, "Null buffer passed to cifs_buf_release\n");*/
194 		return;
195 	}
196 	mempool_free(buf_to_free, cifs_req_poolp);
197 
198 	atomic_dec(&buf_alloc_count);
199 	return;
200 }
201 
202 struct smb_hdr *
203 cifs_small_buf_get(void)
204 {
205 	struct smb_hdr *ret_buf = NULL;
206 
207 /* We could use negotiated size instead of max_msgsize -
208    but it may be more efficient to always alloc same size
209    albeit slightly larger than necessary and maxbuffersize
210    defaults to this and can not be bigger */
211 	ret_buf = mempool_alloc(cifs_sm_req_poolp, GFP_NOFS);
212 	/* No need to clear memory here, cleared in header assemble */
213 	/*	memset(ret_buf, 0, sizeof(struct smb_hdr) + 27);*/
214 	atomic_inc(&small_buf_alloc_count);
215 #ifdef CONFIG_CIFS_STATS2
216 	atomic_inc(&total_small_buf_alloc_count);
217 #endif /* CONFIG_CIFS_STATS2 */
218 
219 	return ret_buf;
220 }
221 
222 void
223 cifs_small_buf_release(void *buf_to_free)
224 {
225 
226 	if (buf_to_free == NULL) {
227 		cifs_dbg(FYI, "Null buffer passed to cifs_small_buf_release\n");
228 		return;
229 	}
230 	mempool_free(buf_to_free, cifs_sm_req_poolp);
231 
232 	atomic_dec(&small_buf_alloc_count);
233 	return;
234 }
235 
236 void
237 free_rsp_buf(int resp_buftype, void *rsp)
238 {
239 	if (resp_buftype == CIFS_SMALL_BUFFER)
240 		cifs_small_buf_release(rsp);
241 	else if (resp_buftype == CIFS_LARGE_BUFFER)
242 		cifs_buf_release(rsp);
243 }
244 
245 /* NB: MID can not be set if treeCon not passed in, in that
246    case it is responsbility of caller to set the mid */
247 void
248 header_assemble(struct smb_hdr *buffer, char smb_command /* command */ ,
249 		const struct cifs_tcon *treeCon, int word_count
250 		/* length of fixed section (word count) in two byte units  */)
251 {
252 	char *temp = (char *) buffer;
253 
254 	memset(temp, 0, 256); /* bigger than MAX_CIFS_HDR_SIZE */
255 
256 	buffer->smb_buf_length = cpu_to_be32(
257 	    (2 * word_count) + sizeof(struct smb_hdr) -
258 	    4 /*  RFC 1001 length field does not count */  +
259 	    2 /* for bcc field itself */) ;
260 
261 	buffer->Protocol[0] = 0xFF;
262 	buffer->Protocol[1] = 'S';
263 	buffer->Protocol[2] = 'M';
264 	buffer->Protocol[3] = 'B';
265 	buffer->Command = smb_command;
266 	buffer->Flags = 0x00;	/* case sensitive */
267 	buffer->Flags2 = SMBFLG2_KNOWS_LONG_NAMES;
268 	buffer->Pid = cpu_to_le16((__u16)current->tgid);
269 	buffer->PidHigh = cpu_to_le16((__u16)(current->tgid >> 16));
270 	if (treeCon) {
271 		buffer->Tid = treeCon->tid;
272 		if (treeCon->ses) {
273 			if (treeCon->ses->capabilities & CAP_UNICODE)
274 				buffer->Flags2 |= SMBFLG2_UNICODE;
275 			if (treeCon->ses->capabilities & CAP_STATUS32)
276 				buffer->Flags2 |= SMBFLG2_ERR_STATUS;
277 
278 			/* Uid is not converted */
279 			buffer->Uid = treeCon->ses->Suid;
280 			if (treeCon->ses->server)
281 				buffer->Mid = get_next_mid(treeCon->ses->server);
282 		}
283 		if (treeCon->Flags & SMB_SHARE_IS_IN_DFS)
284 			buffer->Flags2 |= SMBFLG2_DFS;
285 		if (treeCon->nocase)
286 			buffer->Flags  |= SMBFLG_CASELESS;
287 		if ((treeCon->ses) && (treeCon->ses->server))
288 			if (treeCon->ses->server->sign)
289 				buffer->Flags2 |= SMBFLG2_SECURITY_SIGNATURE;
290 	}
291 
292 /*  endian conversion of flags is now done just before sending */
293 	buffer->WordCount = (char) word_count;
294 	return;
295 }
296 
297 static int
298 check_smb_hdr(struct smb_hdr *smb)
299 {
300 	/* does it have the right SMB "signature" ? */
301 	if (*(__le32 *) smb->Protocol != cpu_to_le32(0x424d53ff)) {
302 		cifs_dbg(VFS, "Bad protocol string signature header 0x%x\n",
303 			 *(unsigned int *)smb->Protocol);
304 		return 1;
305 	}
306 
307 	/* if it's a response then accept */
308 	if (smb->Flags & SMBFLG_RESPONSE)
309 		return 0;
310 
311 	/* only one valid case where server sends us request */
312 	if (smb->Command == SMB_COM_LOCKING_ANDX)
313 		return 0;
314 
315 	cifs_dbg(VFS, "Server sent request, not response. mid=%u\n",
316 		 get_mid(smb));
317 	return 1;
318 }
319 
320 int
321 checkSMB(char *buf, unsigned int total_read, struct TCP_Server_Info *server)
322 {
323 	struct smb_hdr *smb = (struct smb_hdr *)buf;
324 	__u32 rfclen = be32_to_cpu(smb->smb_buf_length);
325 	__u32 clc_len;  /* calculated length */
326 	cifs_dbg(FYI, "checkSMB Length: 0x%x, smb_buf_length: 0x%x\n",
327 		 total_read, rfclen);
328 
329 	/* is this frame too small to even get to a BCC? */
330 	if (total_read < 2 + sizeof(struct smb_hdr)) {
331 		if ((total_read >= sizeof(struct smb_hdr) - 1)
332 			    && (smb->Status.CifsError != 0)) {
333 			/* it's an error return */
334 			smb->WordCount = 0;
335 			/* some error cases do not return wct and bcc */
336 			return 0;
337 		} else if ((total_read == sizeof(struct smb_hdr) + 1) &&
338 				(smb->WordCount == 0)) {
339 			char *tmp = (char *)smb;
340 			/* Need to work around a bug in two servers here */
341 			/* First, check if the part of bcc they sent was zero */
342 			if (tmp[sizeof(struct smb_hdr)] == 0) {
343 				/* some servers return only half of bcc
344 				 * on simple responses (wct, bcc both zero)
345 				 * in particular have seen this on
346 				 * ulogoffX and FindClose. This leaves
347 				 * one byte of bcc potentially unitialized
348 				 */
349 				/* zero rest of bcc */
350 				tmp[sizeof(struct smb_hdr)+1] = 0;
351 				return 0;
352 			}
353 			cifs_dbg(VFS, "rcvd invalid byte count (bcc)\n");
354 		} else {
355 			cifs_dbg(VFS, "Length less than smb header size\n");
356 		}
357 		return -EIO;
358 	} else if (total_read < sizeof(*smb) + 2 * smb->WordCount) {
359 		cifs_dbg(VFS, "%s: can't read BCC due to invalid WordCount(%u)\n",
360 			 __func__, smb->WordCount);
361 		return -EIO;
362 	}
363 
364 	/* otherwise, there is enough to get to the BCC */
365 	if (check_smb_hdr(smb))
366 		return -EIO;
367 	clc_len = smbCalcSize(smb);
368 
369 	if (4 + rfclen != total_read) {
370 		cifs_dbg(VFS, "Length read does not match RFC1001 length %d\n",
371 			 rfclen);
372 		return -EIO;
373 	}
374 
375 	if (4 + rfclen != clc_len) {
376 		__u16 mid = get_mid(smb);
377 		/* check if bcc wrapped around for large read responses */
378 		if ((rfclen > 64 * 1024) && (rfclen > clc_len)) {
379 			/* check if lengths match mod 64K */
380 			if (((4 + rfclen) & 0xFFFF) == (clc_len & 0xFFFF))
381 				return 0; /* bcc wrapped */
382 		}
383 		cifs_dbg(FYI, "Calculated size %u vs length %u mismatch for mid=%u\n",
384 			 clc_len, 4 + rfclen, mid);
385 
386 		if (4 + rfclen < clc_len) {
387 			cifs_dbg(VFS, "RFC1001 size %u smaller than SMB for mid=%u\n",
388 				 rfclen, mid);
389 			return -EIO;
390 		} else if (rfclen > clc_len + 512) {
391 			/*
392 			 * Some servers (Windows XP in particular) send more
393 			 * data than the lengths in the SMB packet would
394 			 * indicate on certain calls (byte range locks and
395 			 * trans2 find first calls in particular). While the
396 			 * client can handle such a frame by ignoring the
397 			 * trailing data, we choose limit the amount of extra
398 			 * data to 512 bytes.
399 			 */
400 			cifs_dbg(VFS, "RFC1001 size %u more than 512 bytes larger than SMB for mid=%u\n",
401 				 rfclen, mid);
402 			return -EIO;
403 		}
404 	}
405 	return 0;
406 }
407 
408 bool
409 is_valid_oplock_break(char *buffer, struct TCP_Server_Info *srv)
410 {
411 	struct smb_hdr *buf = (struct smb_hdr *)buffer;
412 	struct smb_com_lock_req *pSMB = (struct smb_com_lock_req *)buf;
413 	struct TCP_Server_Info *pserver;
414 	struct cifs_ses *ses;
415 	struct cifs_tcon *tcon;
416 	struct cifsInodeInfo *pCifsInode;
417 	struct cifsFileInfo *netfile;
418 
419 	cifs_dbg(FYI, "Checking for oplock break or dnotify response\n");
420 	if ((pSMB->hdr.Command == SMB_COM_NT_TRANSACT) &&
421 	   (pSMB->hdr.Flags & SMBFLG_RESPONSE)) {
422 		struct smb_com_transaction_change_notify_rsp *pSMBr =
423 			(struct smb_com_transaction_change_notify_rsp *)buf;
424 		struct file_notify_information *pnotify;
425 		__u32 data_offset = 0;
426 		size_t len = srv->total_read - sizeof(pSMBr->hdr.smb_buf_length);
427 
428 		if (get_bcc(buf) > sizeof(struct file_notify_information)) {
429 			data_offset = le32_to_cpu(pSMBr->DataOffset);
430 
431 			if (data_offset >
432 			    len - sizeof(struct file_notify_information)) {
433 				cifs_dbg(FYI, "Invalid data_offset %u\n",
434 					 data_offset);
435 				return true;
436 			}
437 			pnotify = (struct file_notify_information *)
438 				((char *)&pSMBr->hdr.Protocol + data_offset);
439 			cifs_dbg(FYI, "dnotify on %s Action: 0x%x\n",
440 				 pnotify->FileName, pnotify->Action);
441 			/*   cifs_dump_mem("Rcvd notify Data: ",buf,
442 				sizeof(struct smb_hdr)+60); */
443 			return true;
444 		}
445 		if (pSMBr->hdr.Status.CifsError) {
446 			cifs_dbg(FYI, "notify err 0x%x\n",
447 				 pSMBr->hdr.Status.CifsError);
448 			return true;
449 		}
450 		return false;
451 	}
452 	if (pSMB->hdr.Command != SMB_COM_LOCKING_ANDX)
453 		return false;
454 	if (pSMB->hdr.Flags & SMBFLG_RESPONSE) {
455 		/* no sense logging error on invalid handle on oplock
456 		   break - harmless race between close request and oplock
457 		   break response is expected from time to time writing out
458 		   large dirty files cached on the client */
459 		if ((NT_STATUS_INVALID_HANDLE) ==
460 		   le32_to_cpu(pSMB->hdr.Status.CifsError)) {
461 			cifs_dbg(FYI, "Invalid handle on oplock break\n");
462 			return true;
463 		} else if (ERRbadfid ==
464 		   le16_to_cpu(pSMB->hdr.Status.DosError.Error)) {
465 			return true;
466 		} else {
467 			return false; /* on valid oplock brk we get "request" */
468 		}
469 	}
470 	if (pSMB->hdr.WordCount != 8)
471 		return false;
472 
473 	cifs_dbg(FYI, "oplock type 0x%x level 0x%x\n",
474 		 pSMB->LockType, pSMB->OplockLevel);
475 	if (!(pSMB->LockType & LOCKING_ANDX_OPLOCK_RELEASE))
476 		return false;
477 
478 	/* If server is a channel, select the primary channel */
479 	pserver = SERVER_IS_CHAN(srv) ? srv->primary_server : srv;
480 
481 	/* look up tcon based on tid & uid */
482 	spin_lock(&cifs_tcp_ses_lock);
483 	list_for_each_entry(ses, &pserver->smb_ses_list, smb_ses_list) {
484 		if (cifs_ses_exiting(ses))
485 			continue;
486 		list_for_each_entry(tcon, &ses->tcon_list, tcon_list) {
487 			if (tcon->tid != buf->Tid)
488 				continue;
489 
490 			cifs_stats_inc(&tcon->stats.cifs_stats.num_oplock_brks);
491 			spin_lock(&tcon->open_file_lock);
492 			list_for_each_entry(netfile, &tcon->openFileList, tlist) {
493 				if (pSMB->Fid != netfile->fid.netfid)
494 					continue;
495 
496 				cifs_dbg(FYI, "file id match, oplock break\n");
497 				pCifsInode = CIFS_I(d_inode(netfile->dentry));
498 
499 				set_bit(CIFS_INODE_PENDING_OPLOCK_BREAK,
500 					&pCifsInode->flags);
501 
502 				netfile->oplock_epoch = 0;
503 				netfile->oplock_level = pSMB->OplockLevel;
504 				netfile->oplock_break_cancelled = false;
505 				cifs_queue_oplock_break(netfile);
506 
507 				spin_unlock(&tcon->open_file_lock);
508 				spin_unlock(&cifs_tcp_ses_lock);
509 				return true;
510 			}
511 			spin_unlock(&tcon->open_file_lock);
512 			spin_unlock(&cifs_tcp_ses_lock);
513 			cifs_dbg(FYI, "No matching file for oplock break\n");
514 			return true;
515 		}
516 	}
517 	spin_unlock(&cifs_tcp_ses_lock);
518 	cifs_dbg(FYI, "Can not process oplock break for non-existent connection\n");
519 	return true;
520 }
521 
522 void
523 dump_smb(void *buf, int smb_buf_length)
524 {
525 	if (traceSMB == 0)
526 		return;
527 
528 	print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_NONE, 8, 2, buf,
529 		       smb_buf_length, true);
530 }
531 
532 void
533 cifs_autodisable_serverino(struct cifs_sb_info *cifs_sb)
534 {
535 	if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_SERVER_INUM) {
536 		struct cifs_tcon *tcon = NULL;
537 
538 		if (cifs_sb->master_tlink)
539 			tcon = cifs_sb_master_tcon(cifs_sb);
540 
541 		cifs_sb->mnt_cifs_flags &= ~CIFS_MOUNT_SERVER_INUM;
542 		cifs_sb->mnt_cifs_serverino_autodisabled = true;
543 		cifs_dbg(VFS, "Autodisabling the use of server inode numbers on %s\n",
544 			 tcon ? tcon->tree_name : "new server");
545 		cifs_dbg(VFS, "The server doesn't seem to support them properly or the files might be on different servers (DFS)\n");
546 		cifs_dbg(VFS, "Hardlinks will not be recognized on this mount. Consider mounting with the \"noserverino\" option to silence this message.\n");
547 
548 	}
549 }
550 
551 void cifs_set_oplock_level(struct cifsInodeInfo *cinode, __u32 oplock)
552 {
553 	oplock &= 0xF;
554 
555 	if (oplock == OPLOCK_EXCLUSIVE) {
556 		cinode->oplock = CIFS_CACHE_WRITE_FLG | CIFS_CACHE_READ_FLG;
557 		cifs_dbg(FYI, "Exclusive Oplock granted on inode %p\n",
558 			 &cinode->netfs.inode);
559 	} else if (oplock == OPLOCK_READ) {
560 		cinode->oplock = CIFS_CACHE_READ_FLG;
561 		cifs_dbg(FYI, "Level II Oplock granted on inode %p\n",
562 			 &cinode->netfs.inode);
563 	} else
564 		cinode->oplock = 0;
565 }
566 
567 /*
568  * We wait for oplock breaks to be processed before we attempt to perform
569  * writes.
570  */
571 int cifs_get_writer(struct cifsInodeInfo *cinode)
572 {
573 	int rc;
574 
575 start:
576 	rc = wait_on_bit(&cinode->flags, CIFS_INODE_PENDING_OPLOCK_BREAK,
577 			 TASK_KILLABLE);
578 	if (rc)
579 		return rc;
580 
581 	spin_lock(&cinode->writers_lock);
582 	if (!cinode->writers)
583 		set_bit(CIFS_INODE_PENDING_WRITERS, &cinode->flags);
584 	cinode->writers++;
585 	/* Check to see if we have started servicing an oplock break */
586 	if (test_bit(CIFS_INODE_PENDING_OPLOCK_BREAK, &cinode->flags)) {
587 		cinode->writers--;
588 		if (cinode->writers == 0) {
589 			clear_bit(CIFS_INODE_PENDING_WRITERS, &cinode->flags);
590 			wake_up_bit(&cinode->flags, CIFS_INODE_PENDING_WRITERS);
591 		}
592 		spin_unlock(&cinode->writers_lock);
593 		goto start;
594 	}
595 	spin_unlock(&cinode->writers_lock);
596 	return 0;
597 }
598 
599 void cifs_put_writer(struct cifsInodeInfo *cinode)
600 {
601 	spin_lock(&cinode->writers_lock);
602 	cinode->writers--;
603 	if (cinode->writers == 0) {
604 		clear_bit(CIFS_INODE_PENDING_WRITERS, &cinode->flags);
605 		wake_up_bit(&cinode->flags, CIFS_INODE_PENDING_WRITERS);
606 	}
607 	spin_unlock(&cinode->writers_lock);
608 }
609 
610 /**
611  * cifs_queue_oplock_break - queue the oplock break handler for cfile
612  * @cfile: The file to break the oplock on
613  *
614  * This function is called from the demultiplex thread when it
615  * receives an oplock break for @cfile.
616  *
617  * Assumes the tcon->open_file_lock is held.
618  * Assumes cfile->file_info_lock is NOT held.
619  */
620 void cifs_queue_oplock_break(struct cifsFileInfo *cfile)
621 {
622 	/*
623 	 * Bump the handle refcount now while we hold the
624 	 * open_file_lock to enforce the validity of it for the oplock
625 	 * break handler. The matching put is done at the end of the
626 	 * handler.
627 	 */
628 	cifsFileInfo_get(cfile);
629 
630 	queue_work(cifsoplockd_wq, &cfile->oplock_break);
631 }
632 
633 void cifs_done_oplock_break(struct cifsInodeInfo *cinode)
634 {
635 	clear_bit(CIFS_INODE_PENDING_OPLOCK_BREAK, &cinode->flags);
636 	wake_up_bit(&cinode->flags, CIFS_INODE_PENDING_OPLOCK_BREAK);
637 }
638 
639 bool
640 backup_cred(struct cifs_sb_info *cifs_sb)
641 {
642 	if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_CIFS_BACKUPUID) {
643 		if (uid_eq(cifs_sb->ctx->backupuid, current_fsuid()))
644 			return true;
645 	}
646 	if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_CIFS_BACKUPGID) {
647 		if (in_group_p(cifs_sb->ctx->backupgid))
648 			return true;
649 	}
650 
651 	return false;
652 }
653 
654 void
655 cifs_del_pending_open(struct cifs_pending_open *open)
656 {
657 	spin_lock(&tlink_tcon(open->tlink)->open_file_lock);
658 	list_del(&open->olist);
659 	spin_unlock(&tlink_tcon(open->tlink)->open_file_lock);
660 }
661 
662 void
663 cifs_add_pending_open_locked(struct cifs_fid *fid, struct tcon_link *tlink,
664 			     struct cifs_pending_open *open)
665 {
666 	memcpy(open->lease_key, fid->lease_key, SMB2_LEASE_KEY_SIZE);
667 	open->oplock = CIFS_OPLOCK_NO_CHANGE;
668 	open->tlink = tlink;
669 	fid->pending_open = open;
670 	list_add_tail(&open->olist, &tlink_tcon(tlink)->pending_opens);
671 }
672 
673 void
674 cifs_add_pending_open(struct cifs_fid *fid, struct tcon_link *tlink,
675 		      struct cifs_pending_open *open)
676 {
677 	spin_lock(&tlink_tcon(tlink)->open_file_lock);
678 	cifs_add_pending_open_locked(fid, tlink, open);
679 	spin_unlock(&tlink_tcon(open->tlink)->open_file_lock);
680 }
681 
682 /*
683  * Critical section which runs after acquiring deferred_lock.
684  * As there is no reference count on cifs_deferred_close, pdclose
685  * should not be used outside deferred_lock.
686  */
687 bool
688 cifs_is_deferred_close(struct cifsFileInfo *cfile, struct cifs_deferred_close **pdclose)
689 {
690 	struct cifs_deferred_close *dclose;
691 
692 	list_for_each_entry(dclose, &CIFS_I(d_inode(cfile->dentry))->deferred_closes, dlist) {
693 		if ((dclose->netfid == cfile->fid.netfid) &&
694 			(dclose->persistent_fid == cfile->fid.persistent_fid) &&
695 			(dclose->volatile_fid == cfile->fid.volatile_fid)) {
696 			*pdclose = dclose;
697 			return true;
698 		}
699 	}
700 	return false;
701 }
702 
703 /*
704  * Critical section which runs after acquiring deferred_lock.
705  */
706 void
707 cifs_add_deferred_close(struct cifsFileInfo *cfile, struct cifs_deferred_close *dclose)
708 {
709 	bool is_deferred = false;
710 	struct cifs_deferred_close *pdclose;
711 
712 	is_deferred = cifs_is_deferred_close(cfile, &pdclose);
713 	if (is_deferred) {
714 		kfree(dclose);
715 		return;
716 	}
717 
718 	dclose->tlink = cfile->tlink;
719 	dclose->netfid = cfile->fid.netfid;
720 	dclose->persistent_fid = cfile->fid.persistent_fid;
721 	dclose->volatile_fid = cfile->fid.volatile_fid;
722 	list_add_tail(&dclose->dlist, &CIFS_I(d_inode(cfile->dentry))->deferred_closes);
723 }
724 
725 /*
726  * Critical section which runs after acquiring deferred_lock.
727  */
728 void
729 cifs_del_deferred_close(struct cifsFileInfo *cfile)
730 {
731 	bool is_deferred = false;
732 	struct cifs_deferred_close *dclose;
733 
734 	is_deferred = cifs_is_deferred_close(cfile, &dclose);
735 	if (!is_deferred)
736 		return;
737 	list_del(&dclose->dlist);
738 	kfree(dclose);
739 }
740 
741 void
742 cifs_close_deferred_file(struct cifsInodeInfo *cifs_inode)
743 {
744 	struct cifsFileInfo *cfile = NULL;
745 	struct file_list *tmp_list, *tmp_next_list;
746 	struct list_head file_head;
747 
748 	if (cifs_inode == NULL)
749 		return;
750 
751 	INIT_LIST_HEAD(&file_head);
752 	spin_lock(&cifs_inode->open_file_lock);
753 	list_for_each_entry(cfile, &cifs_inode->openFileList, flist) {
754 		if (delayed_work_pending(&cfile->deferred)) {
755 			if (cancel_delayed_work(&cfile->deferred)) {
756 				spin_lock(&cifs_inode->deferred_lock);
757 				cifs_del_deferred_close(cfile);
758 				spin_unlock(&cifs_inode->deferred_lock);
759 
760 				tmp_list = kmalloc(sizeof(struct file_list), GFP_ATOMIC);
761 				if (tmp_list == NULL)
762 					break;
763 				tmp_list->cfile = cfile;
764 				list_add_tail(&tmp_list->list, &file_head);
765 			}
766 		}
767 	}
768 	spin_unlock(&cifs_inode->open_file_lock);
769 
770 	list_for_each_entry_safe(tmp_list, tmp_next_list, &file_head, list) {
771 		_cifsFileInfo_put(tmp_list->cfile, false, false);
772 		list_del(&tmp_list->list);
773 		kfree(tmp_list);
774 	}
775 }
776 
777 void
778 cifs_close_all_deferred_files(struct cifs_tcon *tcon)
779 {
780 	struct cifsFileInfo *cfile;
781 	struct file_list *tmp_list, *tmp_next_list;
782 	struct list_head file_head;
783 
784 	INIT_LIST_HEAD(&file_head);
785 	spin_lock(&tcon->open_file_lock);
786 	list_for_each_entry(cfile, &tcon->openFileList, tlist) {
787 		if (delayed_work_pending(&cfile->deferred)) {
788 			if (cancel_delayed_work(&cfile->deferred)) {
789 				spin_lock(&CIFS_I(d_inode(cfile->dentry))->deferred_lock);
790 				cifs_del_deferred_close(cfile);
791 				spin_unlock(&CIFS_I(d_inode(cfile->dentry))->deferred_lock);
792 
793 				tmp_list = kmalloc(sizeof(struct file_list), GFP_ATOMIC);
794 				if (tmp_list == NULL)
795 					break;
796 				tmp_list->cfile = cfile;
797 				list_add_tail(&tmp_list->list, &file_head);
798 			}
799 		}
800 	}
801 	spin_unlock(&tcon->open_file_lock);
802 
803 	list_for_each_entry_safe(tmp_list, tmp_next_list, &file_head, list) {
804 		_cifsFileInfo_put(tmp_list->cfile, true, false);
805 		list_del(&tmp_list->list);
806 		kfree(tmp_list);
807 	}
808 }
809 void
810 cifs_close_deferred_file_under_dentry(struct cifs_tcon *tcon, const char *path)
811 {
812 	struct cifsFileInfo *cfile;
813 	struct file_list *tmp_list, *tmp_next_list;
814 	struct list_head file_head;
815 	void *page;
816 	const char *full_path;
817 
818 	INIT_LIST_HEAD(&file_head);
819 	page = alloc_dentry_path();
820 	spin_lock(&tcon->open_file_lock);
821 	list_for_each_entry(cfile, &tcon->openFileList, tlist) {
822 		full_path = build_path_from_dentry(cfile->dentry, page);
823 		if (strstr(full_path, path)) {
824 			if (delayed_work_pending(&cfile->deferred)) {
825 				if (cancel_delayed_work(&cfile->deferred)) {
826 					spin_lock(&CIFS_I(d_inode(cfile->dentry))->deferred_lock);
827 					cifs_del_deferred_close(cfile);
828 					spin_unlock(&CIFS_I(d_inode(cfile->dentry))->deferred_lock);
829 
830 					tmp_list = kmalloc(sizeof(struct file_list), GFP_ATOMIC);
831 					if (tmp_list == NULL)
832 						break;
833 					tmp_list->cfile = cfile;
834 					list_add_tail(&tmp_list->list, &file_head);
835 				}
836 			}
837 		}
838 	}
839 	spin_unlock(&tcon->open_file_lock);
840 
841 	list_for_each_entry_safe(tmp_list, tmp_next_list, &file_head, list) {
842 		_cifsFileInfo_put(tmp_list->cfile, true, false);
843 		list_del(&tmp_list->list);
844 		kfree(tmp_list);
845 	}
846 	free_dentry_path(page);
847 }
848 
849 /*
850  * If a dentry has been deleted, all corresponding open handles should know that
851  * so that we do not defer close them.
852  */
853 void cifs_mark_open_handles_for_deleted_file(struct inode *inode,
854 					     const char *path)
855 {
856 	struct cifsFileInfo *cfile;
857 	void *page;
858 	const char *full_path;
859 	struct cifsInodeInfo *cinode = CIFS_I(inode);
860 
861 	page = alloc_dentry_path();
862 	spin_lock(&cinode->open_file_lock);
863 
864 	/*
865 	 * note: we need to construct path from dentry and compare only if the
866 	 * inode has any hardlinks. When number of hardlinks is 1, we can just
867 	 * mark all open handles since they are going to be from the same file.
868 	 */
869 	if (inode->i_nlink > 1) {
870 		list_for_each_entry(cfile, &cinode->openFileList, flist) {
871 			full_path = build_path_from_dentry(cfile->dentry, page);
872 			if (!IS_ERR(full_path) && strcmp(full_path, path) == 0)
873 				cfile->status_file_deleted = true;
874 		}
875 	} else {
876 		list_for_each_entry(cfile, &cinode->openFileList, flist)
877 			cfile->status_file_deleted = true;
878 	}
879 	spin_unlock(&cinode->open_file_lock);
880 	free_dentry_path(page);
881 }
882 
883 /* parses DFS referral V3 structure
884  * caller is responsible for freeing target_nodes
885  * returns:
886  * - on success - 0
887  * - on failure - errno
888  */
889 int
890 parse_dfs_referrals(struct get_dfs_referral_rsp *rsp, u32 rsp_size,
891 		    unsigned int *num_of_nodes,
892 		    struct dfs_info3_param **target_nodes,
893 		    const struct nls_table *nls_codepage, int remap,
894 		    const char *searchName, bool is_unicode)
895 {
896 	int i, rc = 0;
897 	char *data_end;
898 	struct dfs_referral_level_3 *ref;
899 
900 	*num_of_nodes = le16_to_cpu(rsp->NumberOfReferrals);
901 
902 	if (*num_of_nodes < 1) {
903 		cifs_dbg(VFS, "num_referrals: must be at least > 0, but we get num_referrals = %d\n",
904 			 *num_of_nodes);
905 		rc = -EINVAL;
906 		goto parse_DFS_referrals_exit;
907 	}
908 
909 	ref = (struct dfs_referral_level_3 *) &(rsp->referrals);
910 	if (ref->VersionNumber != cpu_to_le16(3)) {
911 		cifs_dbg(VFS, "Referrals of V%d version are not supported, should be V3\n",
912 			 le16_to_cpu(ref->VersionNumber));
913 		rc = -EINVAL;
914 		goto parse_DFS_referrals_exit;
915 	}
916 
917 	/* get the upper boundary of the resp buffer */
918 	data_end = (char *)rsp + rsp_size;
919 
920 	cifs_dbg(FYI, "num_referrals: %d dfs flags: 0x%x ...\n",
921 		 *num_of_nodes, le32_to_cpu(rsp->DFSFlags));
922 
923 	*target_nodes = kcalloc(*num_of_nodes, sizeof(struct dfs_info3_param),
924 				GFP_KERNEL);
925 	if (*target_nodes == NULL) {
926 		rc = -ENOMEM;
927 		goto parse_DFS_referrals_exit;
928 	}
929 
930 	/* collect necessary data from referrals */
931 	for (i = 0; i < *num_of_nodes; i++) {
932 		char *temp;
933 		int max_len;
934 		struct dfs_info3_param *node = (*target_nodes)+i;
935 
936 		node->flags = le32_to_cpu(rsp->DFSFlags);
937 		if (is_unicode) {
938 			__le16 *tmp = kmalloc(strlen(searchName)*2 + 2,
939 						GFP_KERNEL);
940 			if (tmp == NULL) {
941 				rc = -ENOMEM;
942 				goto parse_DFS_referrals_exit;
943 			}
944 			cifsConvertToUTF16((__le16 *) tmp, searchName,
945 					   PATH_MAX, nls_codepage, remap);
946 			node->path_consumed = cifs_utf16_bytes(tmp,
947 					le16_to_cpu(rsp->PathConsumed),
948 					nls_codepage);
949 			kfree(tmp);
950 		} else
951 			node->path_consumed = le16_to_cpu(rsp->PathConsumed);
952 
953 		node->server_type = le16_to_cpu(ref->ServerType);
954 		node->ref_flag = le16_to_cpu(ref->ReferralEntryFlags);
955 
956 		/* copy DfsPath */
957 		temp = (char *)ref + le16_to_cpu(ref->DfsPathOffset);
958 		max_len = data_end - temp;
959 		node->path_name = cifs_strndup_from_utf16(temp, max_len,
960 						is_unicode, nls_codepage);
961 		if (!node->path_name) {
962 			rc = -ENOMEM;
963 			goto parse_DFS_referrals_exit;
964 		}
965 
966 		/* copy link target UNC */
967 		temp = (char *)ref + le16_to_cpu(ref->NetworkAddressOffset);
968 		max_len = data_end - temp;
969 		node->node_name = cifs_strndup_from_utf16(temp, max_len,
970 						is_unicode, nls_codepage);
971 		if (!node->node_name) {
972 			rc = -ENOMEM;
973 			goto parse_DFS_referrals_exit;
974 		}
975 
976 		node->ttl = le32_to_cpu(ref->TimeToLive);
977 
978 		ref++;
979 	}
980 
981 parse_DFS_referrals_exit:
982 	if (rc) {
983 		free_dfs_info_array(*target_nodes, *num_of_nodes);
984 		*target_nodes = NULL;
985 		*num_of_nodes = 0;
986 	}
987 	return rc;
988 }
989 
990 struct cifs_aio_ctx *
991 cifs_aio_ctx_alloc(void)
992 {
993 	struct cifs_aio_ctx *ctx;
994 
995 	/*
996 	 * Must use kzalloc to initialize ctx->bv to NULL and ctx->direct_io
997 	 * to false so that we know when we have to unreference pages within
998 	 * cifs_aio_ctx_release()
999 	 */
1000 	ctx = kzalloc(sizeof(struct cifs_aio_ctx), GFP_KERNEL);
1001 	if (!ctx)
1002 		return NULL;
1003 
1004 	INIT_LIST_HEAD(&ctx->list);
1005 	mutex_init(&ctx->aio_mutex);
1006 	init_completion(&ctx->done);
1007 	kref_init(&ctx->refcount);
1008 	return ctx;
1009 }
1010 
1011 void
1012 cifs_aio_ctx_release(struct kref *refcount)
1013 {
1014 	struct cifs_aio_ctx *ctx = container_of(refcount,
1015 					struct cifs_aio_ctx, refcount);
1016 
1017 	cifsFileInfo_put(ctx->cfile);
1018 
1019 	/*
1020 	 * ctx->bv is only set if setup_aio_ctx_iter() was call successfuly
1021 	 * which means that iov_iter_extract_pages() was a success and thus
1022 	 * that we may have references or pins on pages that we need to
1023 	 * release.
1024 	 */
1025 	if (ctx->bv) {
1026 		if (ctx->should_dirty || ctx->bv_need_unpin) {
1027 			unsigned int i;
1028 
1029 			for (i = 0; i < ctx->nr_pinned_pages; i++) {
1030 				struct page *page = ctx->bv[i].bv_page;
1031 
1032 				if (ctx->should_dirty)
1033 					set_page_dirty(page);
1034 				if (ctx->bv_need_unpin)
1035 					unpin_user_page(page);
1036 			}
1037 		}
1038 		kvfree(ctx->bv);
1039 	}
1040 
1041 	kfree(ctx);
1042 }
1043 
1044 /**
1045  * cifs_alloc_hash - allocate hash and hash context together
1046  * @name: The name of the crypto hash algo
1047  * @sdesc: SHASH descriptor where to put the pointer to the hash TFM
1048  *
1049  * The caller has to make sure @sdesc is initialized to either NULL or
1050  * a valid context. It can be freed via cifs_free_hash().
1051  */
1052 int
1053 cifs_alloc_hash(const char *name, struct shash_desc **sdesc)
1054 {
1055 	int rc = 0;
1056 	struct crypto_shash *alg = NULL;
1057 
1058 	if (*sdesc)
1059 		return 0;
1060 
1061 	alg = crypto_alloc_shash(name, 0, 0);
1062 	if (IS_ERR(alg)) {
1063 		cifs_dbg(VFS, "Could not allocate shash TFM '%s'\n", name);
1064 		rc = PTR_ERR(alg);
1065 		*sdesc = NULL;
1066 		return rc;
1067 	}
1068 
1069 	*sdesc = kmalloc(sizeof(struct shash_desc) + crypto_shash_descsize(alg), GFP_KERNEL);
1070 	if (*sdesc == NULL) {
1071 		cifs_dbg(VFS, "no memory left to allocate shash TFM '%s'\n", name);
1072 		crypto_free_shash(alg);
1073 		return -ENOMEM;
1074 	}
1075 
1076 	(*sdesc)->tfm = alg;
1077 	return 0;
1078 }
1079 
1080 /**
1081  * cifs_free_hash - free hash and hash context together
1082  * @sdesc: Where to find the pointer to the hash TFM
1083  *
1084  * Freeing a NULL descriptor is safe.
1085  */
1086 void
1087 cifs_free_hash(struct shash_desc **sdesc)
1088 {
1089 	if (unlikely(!sdesc) || !*sdesc)
1090 		return;
1091 
1092 	if ((*sdesc)->tfm) {
1093 		crypto_free_shash((*sdesc)->tfm);
1094 		(*sdesc)->tfm = NULL;
1095 	}
1096 
1097 	kfree_sensitive(*sdesc);
1098 	*sdesc = NULL;
1099 }
1100 
1101 void extract_unc_hostname(const char *unc, const char **h, size_t *len)
1102 {
1103 	const char *end;
1104 
1105 	/* skip initial slashes */
1106 	while (*unc && (*unc == '\\' || *unc == '/'))
1107 		unc++;
1108 
1109 	end = unc;
1110 
1111 	while (*end && !(*end == '\\' || *end == '/'))
1112 		end++;
1113 
1114 	*h = unc;
1115 	*len = end - unc;
1116 }
1117 
1118 /**
1119  * copy_path_name - copy src path to dst, possibly truncating
1120  * @dst: The destination buffer
1121  * @src: The source name
1122  *
1123  * returns number of bytes written (including trailing nul)
1124  */
1125 int copy_path_name(char *dst, const char *src)
1126 {
1127 	int name_len;
1128 
1129 	/*
1130 	 * PATH_MAX includes nul, so if strlen(src) >= PATH_MAX it
1131 	 * will truncate and strlen(dst) will be PATH_MAX-1
1132 	 */
1133 	name_len = strscpy(dst, src, PATH_MAX);
1134 	if (WARN_ON_ONCE(name_len < 0))
1135 		name_len = PATH_MAX-1;
1136 
1137 	/* we count the trailing nul */
1138 	name_len++;
1139 	return name_len;
1140 }
1141 
1142 struct super_cb_data {
1143 	void *data;
1144 	struct super_block *sb;
1145 };
1146 
1147 static void tcon_super_cb(struct super_block *sb, void *arg)
1148 {
1149 	struct super_cb_data *sd = arg;
1150 	struct cifs_sb_info *cifs_sb;
1151 	struct cifs_tcon *t1 = sd->data, *t2;
1152 
1153 	if (sd->sb)
1154 		return;
1155 
1156 	cifs_sb = CIFS_SB(sb);
1157 	t2 = cifs_sb_master_tcon(cifs_sb);
1158 
1159 	spin_lock(&t2->tc_lock);
1160 	if (t1->ses == t2->ses &&
1161 	    t1->ses->server == t2->ses->server &&
1162 	    t2->origin_fullpath &&
1163 	    dfs_src_pathname_equal(t2->origin_fullpath, t1->origin_fullpath))
1164 		sd->sb = sb;
1165 	spin_unlock(&t2->tc_lock);
1166 }
1167 
1168 static struct super_block *__cifs_get_super(void (*f)(struct super_block *, void *),
1169 					    void *data)
1170 {
1171 	struct super_cb_data sd = {
1172 		.data = data,
1173 		.sb = NULL,
1174 	};
1175 	struct file_system_type **fs_type = (struct file_system_type *[]) {
1176 		&cifs_fs_type, &smb3_fs_type, NULL,
1177 	};
1178 
1179 	for (; *fs_type; fs_type++) {
1180 		iterate_supers_type(*fs_type, f, &sd);
1181 		if (sd.sb) {
1182 			/*
1183 			 * Grab an active reference in order to prevent automounts (DFS links)
1184 			 * of expiring and then freeing up our cifs superblock pointer while
1185 			 * we're doing failover.
1186 			 */
1187 			cifs_sb_active(sd.sb);
1188 			return sd.sb;
1189 		}
1190 	}
1191 	pr_warn_once("%s: could not find dfs superblock\n", __func__);
1192 	return ERR_PTR(-EINVAL);
1193 }
1194 
1195 static void __cifs_put_super(struct super_block *sb)
1196 {
1197 	if (!IS_ERR_OR_NULL(sb))
1198 		cifs_sb_deactive(sb);
1199 }
1200 
1201 struct super_block *cifs_get_dfs_tcon_super(struct cifs_tcon *tcon)
1202 {
1203 	spin_lock(&tcon->tc_lock);
1204 	if (!tcon->origin_fullpath) {
1205 		spin_unlock(&tcon->tc_lock);
1206 		return ERR_PTR(-ENOENT);
1207 	}
1208 	spin_unlock(&tcon->tc_lock);
1209 	return __cifs_get_super(tcon_super_cb, tcon);
1210 }
1211 
1212 void cifs_put_tcp_super(struct super_block *sb)
1213 {
1214 	__cifs_put_super(sb);
1215 }
1216 
1217 #ifdef CONFIG_CIFS_DFS_UPCALL
1218 int match_target_ip(struct TCP_Server_Info *server,
1219 		    const char *share, size_t share_len,
1220 		    bool *result)
1221 {
1222 	int rc;
1223 	char *target;
1224 	struct sockaddr_storage ss;
1225 
1226 	*result = false;
1227 
1228 	target = kzalloc(share_len + 3, GFP_KERNEL);
1229 	if (!target)
1230 		return -ENOMEM;
1231 
1232 	scnprintf(target, share_len + 3, "\\\\%.*s", (int)share_len, share);
1233 
1234 	cifs_dbg(FYI, "%s: target name: %s\n", __func__, target + 2);
1235 
1236 	rc = dns_resolve_server_name_to_ip(target, (struct sockaddr *)&ss, NULL);
1237 	kfree(target);
1238 
1239 	if (rc < 0)
1240 		return rc;
1241 
1242 	spin_lock(&server->srv_lock);
1243 	*result = cifs_match_ipaddr((struct sockaddr *)&server->dstaddr, (struct sockaddr *)&ss);
1244 	spin_unlock(&server->srv_lock);
1245 	cifs_dbg(FYI, "%s: ip addresses match: %u\n", __func__, *result);
1246 	return 0;
1247 }
1248 
1249 int cifs_update_super_prepath(struct cifs_sb_info *cifs_sb, char *prefix)
1250 {
1251 	int rc;
1252 
1253 	kfree(cifs_sb->prepath);
1254 	cifs_sb->prepath = NULL;
1255 
1256 	if (prefix && *prefix) {
1257 		cifs_sb->prepath = cifs_sanitize_prepath(prefix, GFP_ATOMIC);
1258 		if (IS_ERR(cifs_sb->prepath)) {
1259 			rc = PTR_ERR(cifs_sb->prepath);
1260 			cifs_sb->prepath = NULL;
1261 			return rc;
1262 		}
1263 		if (cifs_sb->prepath)
1264 			convert_delimiter(cifs_sb->prepath, CIFS_DIR_SEP(cifs_sb));
1265 	}
1266 
1267 	cifs_sb->mnt_cifs_flags |= CIFS_MOUNT_USE_PREFIX_PATH;
1268 	return 0;
1269 }
1270 
1271 /*
1272  * Handle weird Windows SMB server behaviour. It responds with
1273  * STATUS_OBJECT_NAME_INVALID code to SMB2 QUERY_INFO request for
1274  * "\<server>\<dfsname>\<linkpath>" DFS reference, where <dfsname> contains
1275  * non-ASCII unicode symbols.
1276  */
1277 int cifs_inval_name_dfs_link_error(const unsigned int xid,
1278 				   struct cifs_tcon *tcon,
1279 				   struct cifs_sb_info *cifs_sb,
1280 				   const char *full_path,
1281 				   bool *islink)
1282 {
1283 	struct cifs_ses *ses = tcon->ses;
1284 	size_t len;
1285 	char *path;
1286 	char *ref_path;
1287 
1288 	*islink = false;
1289 
1290 	/*
1291 	 * Fast path - skip check when @full_path doesn't have a prefix path to
1292 	 * look up or tcon is not DFS.
1293 	 */
1294 	if (strlen(full_path) < 2 || !cifs_sb ||
1295 	    (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_NO_DFS) ||
1296 	    !is_tcon_dfs(tcon))
1297 		return 0;
1298 
1299 	spin_lock(&tcon->tc_lock);
1300 	if (!tcon->origin_fullpath) {
1301 		spin_unlock(&tcon->tc_lock);
1302 		return 0;
1303 	}
1304 	spin_unlock(&tcon->tc_lock);
1305 
1306 	/*
1307 	 * Slow path - tcon is DFS and @full_path has prefix path, so attempt
1308 	 * to get a referral to figure out whether it is an DFS link.
1309 	 */
1310 	len = strnlen(tcon->tree_name, MAX_TREE_SIZE + 1) + strlen(full_path) + 1;
1311 	path = kmalloc(len, GFP_KERNEL);
1312 	if (!path)
1313 		return -ENOMEM;
1314 
1315 	scnprintf(path, len, "%s%s", tcon->tree_name, full_path);
1316 	ref_path = dfs_cache_canonical_path(path + 1, cifs_sb->local_nls,
1317 					    cifs_remap(cifs_sb));
1318 	kfree(path);
1319 
1320 	if (IS_ERR(ref_path)) {
1321 		if (PTR_ERR(ref_path) != -EINVAL)
1322 			return PTR_ERR(ref_path);
1323 	} else {
1324 		struct dfs_info3_param *refs = NULL;
1325 		int num_refs = 0;
1326 
1327 		/*
1328 		 * XXX: we are not using dfs_cache_find() here because we might
1329 		 * end up filling all the DFS cache and thus potentially
1330 		 * removing cached DFS targets that the client would eventually
1331 		 * need during failover.
1332 		 */
1333 		ses = CIFS_DFS_ROOT_SES(ses);
1334 		if (ses->server->ops->get_dfs_refer &&
1335 		    !ses->server->ops->get_dfs_refer(xid, ses, ref_path, &refs,
1336 						     &num_refs, cifs_sb->local_nls,
1337 						     cifs_remap(cifs_sb)))
1338 			*islink = refs[0].server_type == DFS_TYPE_LINK;
1339 		free_dfs_info_array(refs, num_refs);
1340 		kfree(ref_path);
1341 	}
1342 	return 0;
1343 }
1344 #endif
1345 
1346 int cifs_wait_for_server_reconnect(struct TCP_Server_Info *server, bool retry)
1347 {
1348 	int timeout = 10;
1349 	int rc;
1350 
1351 	spin_lock(&server->srv_lock);
1352 	if (server->tcpStatus != CifsNeedReconnect) {
1353 		spin_unlock(&server->srv_lock);
1354 		return 0;
1355 	}
1356 	timeout *= server->nr_targets;
1357 	spin_unlock(&server->srv_lock);
1358 
1359 	/*
1360 	 * Give demultiplex thread up to 10 seconds to each target available for
1361 	 * reconnect -- should be greater than cifs socket timeout which is 7
1362 	 * seconds.
1363 	 *
1364 	 * On "soft" mounts we wait once. Hard mounts keep retrying until
1365 	 * process is killed or server comes back on-line.
1366 	 */
1367 	do {
1368 		rc = wait_event_interruptible_timeout(server->response_q,
1369 						      (server->tcpStatus != CifsNeedReconnect),
1370 						      timeout * HZ);
1371 		if (rc < 0) {
1372 			cifs_dbg(FYI, "%s: aborting reconnect due to received signal\n",
1373 				 __func__);
1374 			return -ERESTARTSYS;
1375 		}
1376 
1377 		/* are we still trying to reconnect? */
1378 		spin_lock(&server->srv_lock);
1379 		if (server->tcpStatus != CifsNeedReconnect) {
1380 			spin_unlock(&server->srv_lock);
1381 			return 0;
1382 		}
1383 		spin_unlock(&server->srv_lock);
1384 	} while (retry);
1385 
1386 	cifs_dbg(FYI, "%s: gave up waiting on reconnect\n", __func__);
1387 	return -EHOSTDOWN;
1388 }
1389