xref: /linux/fs/smb/client/misc.c (revision 0b364cf53b20204e92bac7c6ebd1ee7d3ec62931)
1 // SPDX-License-Identifier: LGPL-2.1
2 /*
3  *
4  *   Copyright (C) International Business Machines  Corp., 2002,2008
5  *   Author(s): Steve French (sfrench@us.ibm.com)
6  *
7  */
8 
9 #include <linux/slab.h>
10 #include <linux/ctype.h>
11 #include <linux/mempool.h>
12 #include <linux/vmalloc.h>
13 #include "cifspdu.h"
14 #include "cifsglob.h"
15 #include "cifsproto.h"
16 #include "cifs_debug.h"
17 #include "smberr.h"
18 #include "nterr.h"
19 #include "cifs_unicode.h"
20 #include "smb2pdu.h"
21 #include "cifsfs.h"
22 #ifdef CONFIG_CIFS_DFS_UPCALL
23 #include "dns_resolve.h"
24 #include "dfs_cache.h"
25 #include "dfs.h"
26 #endif
27 #include "fs_context.h"
28 #include "cached_dir.h"
29 
30 /* The xid serves as a useful identifier for each incoming vfs request,
31    in a similar way to the mid which is useful to track each sent smb,
32    and CurrentXid can also provide a running counter (although it
33    will eventually wrap past zero) of the total vfs operations handled
34    since the cifs fs was mounted */
35 
36 unsigned int
37 _get_xid(void)
38 {
39 	unsigned int xid;
40 
41 	spin_lock(&GlobalMid_Lock);
42 	GlobalTotalActiveXid++;
43 
44 	/* keep high water mark for number of simultaneous ops in filesystem */
45 	if (GlobalTotalActiveXid > GlobalMaxActiveXid)
46 		GlobalMaxActiveXid = GlobalTotalActiveXid;
47 	if (GlobalTotalActiveXid > 65000)
48 		cifs_dbg(FYI, "warning: more than 65000 requests active\n");
49 	xid = GlobalCurrentXid++;
50 	spin_unlock(&GlobalMid_Lock);
51 	return xid;
52 }
53 
54 void
55 _free_xid(unsigned int xid)
56 {
57 	spin_lock(&GlobalMid_Lock);
58 	/* if (GlobalTotalActiveXid == 0)
59 		BUG(); */
60 	GlobalTotalActiveXid--;
61 	spin_unlock(&GlobalMid_Lock);
62 }
63 
64 struct cifs_ses *
65 sesInfoAlloc(void)
66 {
67 	struct cifs_ses *ret_buf;
68 
69 	ret_buf = kzalloc(sizeof(struct cifs_ses), GFP_KERNEL);
70 	if (ret_buf) {
71 		atomic_inc(&sesInfoAllocCount);
72 		spin_lock_init(&ret_buf->ses_lock);
73 		ret_buf->ses_status = SES_NEW;
74 		++ret_buf->ses_count;
75 		INIT_LIST_HEAD(&ret_buf->smb_ses_list);
76 		INIT_LIST_HEAD(&ret_buf->tcon_list);
77 		mutex_init(&ret_buf->session_mutex);
78 		spin_lock_init(&ret_buf->iface_lock);
79 		INIT_LIST_HEAD(&ret_buf->iface_list);
80 		spin_lock_init(&ret_buf->chan_lock);
81 	}
82 	return ret_buf;
83 }
84 
85 void
86 sesInfoFree(struct cifs_ses *buf_to_free)
87 {
88 	struct cifs_server_iface *iface = NULL, *niface = NULL;
89 
90 	if (buf_to_free == NULL) {
91 		cifs_dbg(FYI, "Null buffer passed to sesInfoFree\n");
92 		return;
93 	}
94 
95 	unload_nls(buf_to_free->local_nls);
96 	atomic_dec(&sesInfoAllocCount);
97 	kfree(buf_to_free->serverOS);
98 	kfree(buf_to_free->serverDomain);
99 	kfree(buf_to_free->serverNOS);
100 	kfree_sensitive(buf_to_free->password);
101 	kfree_sensitive(buf_to_free->password2);
102 	kfree(buf_to_free->user_name);
103 	kfree(buf_to_free->domainName);
104 	kfree_sensitive(buf_to_free->auth_key.response);
105 	spin_lock(&buf_to_free->iface_lock);
106 	list_for_each_entry_safe(iface, niface, &buf_to_free->iface_list,
107 				 iface_head)
108 		kref_put(&iface->refcount, release_iface);
109 	spin_unlock(&buf_to_free->iface_lock);
110 	kfree_sensitive(buf_to_free);
111 }
112 
113 struct cifs_tcon *
114 tcon_info_alloc(bool dir_leases_enabled, enum smb3_tcon_ref_trace trace)
115 {
116 	struct cifs_tcon *ret_buf;
117 	static atomic_t tcon_debug_id;
118 
119 	ret_buf = kzalloc(sizeof(*ret_buf), GFP_KERNEL);
120 	if (!ret_buf)
121 		return NULL;
122 
123 	if (dir_leases_enabled == true) {
124 		ret_buf->cfids = init_cached_dirs();
125 		if (!ret_buf->cfids) {
126 			kfree(ret_buf);
127 			return NULL;
128 		}
129 	}
130 	/* else ret_buf->cfids is already set to NULL above */
131 
132 	atomic_inc(&tconInfoAllocCount);
133 	ret_buf->status = TID_NEW;
134 	ret_buf->debug_id = atomic_inc_return(&tcon_debug_id);
135 	ret_buf->tc_count = 1;
136 	spin_lock_init(&ret_buf->tc_lock);
137 	INIT_LIST_HEAD(&ret_buf->openFileList);
138 	INIT_LIST_HEAD(&ret_buf->tcon_list);
139 	spin_lock_init(&ret_buf->open_file_lock);
140 	spin_lock_init(&ret_buf->stat_lock);
141 	atomic_set(&ret_buf->num_local_opens, 0);
142 	atomic_set(&ret_buf->num_remote_opens, 0);
143 	ret_buf->stats_from_time = ktime_get_real_seconds();
144 #ifdef CONFIG_CIFS_FSCACHE
145 	mutex_init(&ret_buf->fscache_lock);
146 #endif
147 	trace_smb3_tcon_ref(ret_buf->debug_id, ret_buf->tc_count, trace);
148 #ifdef CONFIG_CIFS_DFS_UPCALL
149 	INIT_LIST_HEAD(&ret_buf->dfs_ses_list);
150 #endif
151 
152 	return ret_buf;
153 }
154 
155 void
156 tconInfoFree(struct cifs_tcon *tcon, enum smb3_tcon_ref_trace trace)
157 {
158 	if (tcon == NULL) {
159 		cifs_dbg(FYI, "Null buffer passed to tconInfoFree\n");
160 		return;
161 	}
162 	trace_smb3_tcon_ref(tcon->debug_id, tcon->tc_count, trace);
163 	free_cached_dirs(tcon->cfids);
164 	atomic_dec(&tconInfoAllocCount);
165 	kfree(tcon->nativeFileSystem);
166 	kfree_sensitive(tcon->password);
167 	kfree(tcon->origin_fullpath);
168 	kfree(tcon);
169 }
170 
171 struct smb_hdr *
172 cifs_buf_get(void)
173 {
174 	struct smb_hdr *ret_buf = NULL;
175 	/*
176 	 * SMB2 header is bigger than CIFS one - no problems to clean some
177 	 * more bytes for CIFS.
178 	 */
179 	size_t buf_size = sizeof(struct smb2_hdr);
180 
181 	/*
182 	 * We could use negotiated size instead of max_msgsize -
183 	 * but it may be more efficient to always alloc same size
184 	 * albeit slightly larger than necessary and maxbuffersize
185 	 * defaults to this and can not be bigger.
186 	 */
187 	ret_buf = mempool_alloc(cifs_req_poolp, GFP_NOFS);
188 
189 	/* clear the first few header bytes */
190 	/* for most paths, more is cleared in header_assemble */
191 	memset(ret_buf, 0, buf_size + 3);
192 	atomic_inc(&buf_alloc_count);
193 #ifdef CONFIG_CIFS_STATS2
194 	atomic_inc(&total_buf_alloc_count);
195 #endif /* CONFIG_CIFS_STATS2 */
196 
197 	return ret_buf;
198 }
199 
200 void
201 cifs_buf_release(void *buf_to_free)
202 {
203 	if (buf_to_free == NULL) {
204 		/* cifs_dbg(FYI, "Null buffer passed to cifs_buf_release\n");*/
205 		return;
206 	}
207 	mempool_free(buf_to_free, cifs_req_poolp);
208 
209 	atomic_dec(&buf_alloc_count);
210 	return;
211 }
212 
213 struct smb_hdr *
214 cifs_small_buf_get(void)
215 {
216 	struct smb_hdr *ret_buf = NULL;
217 
218 /* We could use negotiated size instead of max_msgsize -
219    but it may be more efficient to always alloc same size
220    albeit slightly larger than necessary and maxbuffersize
221    defaults to this and can not be bigger */
222 	ret_buf = mempool_alloc(cifs_sm_req_poolp, GFP_NOFS);
223 	/* No need to clear memory here, cleared in header assemble */
224 	/*	memset(ret_buf, 0, sizeof(struct smb_hdr) + 27);*/
225 	atomic_inc(&small_buf_alloc_count);
226 #ifdef CONFIG_CIFS_STATS2
227 	atomic_inc(&total_small_buf_alloc_count);
228 #endif /* CONFIG_CIFS_STATS2 */
229 
230 	return ret_buf;
231 }
232 
233 void
234 cifs_small_buf_release(void *buf_to_free)
235 {
236 
237 	if (buf_to_free == NULL) {
238 		cifs_dbg(FYI, "Null buffer passed to cifs_small_buf_release\n");
239 		return;
240 	}
241 	mempool_free(buf_to_free, cifs_sm_req_poolp);
242 
243 	atomic_dec(&small_buf_alloc_count);
244 	return;
245 }
246 
247 void
248 free_rsp_buf(int resp_buftype, void *rsp)
249 {
250 	if (resp_buftype == CIFS_SMALL_BUFFER)
251 		cifs_small_buf_release(rsp);
252 	else if (resp_buftype == CIFS_LARGE_BUFFER)
253 		cifs_buf_release(rsp);
254 }
255 
256 /* NB: MID can not be set if treeCon not passed in, in that
257    case it is responsibility of caller to set the mid */
258 void
259 header_assemble(struct smb_hdr *buffer, char smb_command /* command */ ,
260 		const struct cifs_tcon *treeCon, int word_count
261 		/* length of fixed section (word count) in two byte units  */)
262 {
263 	char *temp = (char *) buffer;
264 
265 	memset(temp, 0, 256); /* bigger than MAX_CIFS_HDR_SIZE */
266 
267 	buffer->smb_buf_length = cpu_to_be32(
268 	    (2 * word_count) + sizeof(struct smb_hdr) -
269 	    4 /*  RFC 1001 length field does not count */  +
270 	    2 /* for bcc field itself */) ;
271 
272 	buffer->Protocol[0] = 0xFF;
273 	buffer->Protocol[1] = 'S';
274 	buffer->Protocol[2] = 'M';
275 	buffer->Protocol[3] = 'B';
276 	buffer->Command = smb_command;
277 	buffer->Flags = 0x00;	/* case sensitive */
278 	buffer->Flags2 = SMBFLG2_KNOWS_LONG_NAMES;
279 	buffer->Pid = cpu_to_le16((__u16)current->tgid);
280 	buffer->PidHigh = cpu_to_le16((__u16)(current->tgid >> 16));
281 	if (treeCon) {
282 		buffer->Tid = treeCon->tid;
283 		if (treeCon->ses) {
284 			if (treeCon->ses->capabilities & CAP_UNICODE)
285 				buffer->Flags2 |= SMBFLG2_UNICODE;
286 			if (treeCon->ses->capabilities & CAP_STATUS32)
287 				buffer->Flags2 |= SMBFLG2_ERR_STATUS;
288 
289 			/* Uid is not converted */
290 			buffer->Uid = treeCon->ses->Suid;
291 			if (treeCon->ses->server)
292 				buffer->Mid = get_next_mid(treeCon->ses->server);
293 		}
294 		if (treeCon->Flags & SMB_SHARE_IS_IN_DFS)
295 			buffer->Flags2 |= SMBFLG2_DFS;
296 		if (treeCon->nocase)
297 			buffer->Flags  |= SMBFLG_CASELESS;
298 		if ((treeCon->ses) && (treeCon->ses->server))
299 			if (treeCon->ses->server->sign)
300 				buffer->Flags2 |= SMBFLG2_SECURITY_SIGNATURE;
301 	}
302 
303 /*  endian conversion of flags is now done just before sending */
304 	buffer->WordCount = (char) word_count;
305 	return;
306 }
307 
308 static int
309 check_smb_hdr(struct smb_hdr *smb)
310 {
311 	/* does it have the right SMB "signature" ? */
312 	if (*(__le32 *) smb->Protocol != cpu_to_le32(0x424d53ff)) {
313 		cifs_dbg(VFS, "Bad protocol string signature header 0x%x\n",
314 			 *(unsigned int *)smb->Protocol);
315 		return 1;
316 	}
317 
318 	/* if it's a response then accept */
319 	if (smb->Flags & SMBFLG_RESPONSE)
320 		return 0;
321 
322 	/* only one valid case where server sends us request */
323 	if (smb->Command == SMB_COM_LOCKING_ANDX)
324 		return 0;
325 
326 	cifs_dbg(VFS, "Server sent request, not response. mid=%u\n",
327 		 get_mid(smb));
328 	return 1;
329 }
330 
331 int
332 checkSMB(char *buf, unsigned int total_read, struct TCP_Server_Info *server)
333 {
334 	struct smb_hdr *smb = (struct smb_hdr *)buf;
335 	__u32 rfclen = be32_to_cpu(smb->smb_buf_length);
336 	__u32 clc_len;  /* calculated length */
337 	cifs_dbg(FYI, "checkSMB Length: 0x%x, smb_buf_length: 0x%x\n",
338 		 total_read, rfclen);
339 
340 	/* is this frame too small to even get to a BCC? */
341 	if (total_read < 2 + sizeof(struct smb_hdr)) {
342 		if ((total_read >= sizeof(struct smb_hdr) - 1)
343 			    && (smb->Status.CifsError != 0)) {
344 			/* it's an error return */
345 			smb->WordCount = 0;
346 			/* some error cases do not return wct and bcc */
347 			return 0;
348 		} else if ((total_read == sizeof(struct smb_hdr) + 1) &&
349 				(smb->WordCount == 0)) {
350 			char *tmp = (char *)smb;
351 			/* Need to work around a bug in two servers here */
352 			/* First, check if the part of bcc they sent was zero */
353 			if (tmp[sizeof(struct smb_hdr)] == 0) {
354 				/* some servers return only half of bcc
355 				 * on simple responses (wct, bcc both zero)
356 				 * in particular have seen this on
357 				 * ulogoffX and FindClose. This leaves
358 				 * one byte of bcc potentially uninitialized
359 				 */
360 				/* zero rest of bcc */
361 				tmp[sizeof(struct smb_hdr)+1] = 0;
362 				return 0;
363 			}
364 			cifs_dbg(VFS, "rcvd invalid byte count (bcc)\n");
365 		} else {
366 			cifs_dbg(VFS, "Length less than smb header size\n");
367 		}
368 		return -EIO;
369 	} else if (total_read < sizeof(*smb) + 2 * smb->WordCount) {
370 		cifs_dbg(VFS, "%s: can't read BCC due to invalid WordCount(%u)\n",
371 			 __func__, smb->WordCount);
372 		return -EIO;
373 	}
374 
375 	/* otherwise, there is enough to get to the BCC */
376 	if (check_smb_hdr(smb))
377 		return -EIO;
378 	clc_len = smbCalcSize(smb);
379 
380 	if (4 + rfclen != total_read) {
381 		cifs_dbg(VFS, "Length read does not match RFC1001 length %d\n",
382 			 rfclen);
383 		return -EIO;
384 	}
385 
386 	if (4 + rfclen != clc_len) {
387 		__u16 mid = get_mid(smb);
388 		/* check if bcc wrapped around for large read responses */
389 		if ((rfclen > 64 * 1024) && (rfclen > clc_len)) {
390 			/* check if lengths match mod 64K */
391 			if (((4 + rfclen) & 0xFFFF) == (clc_len & 0xFFFF))
392 				return 0; /* bcc wrapped */
393 		}
394 		cifs_dbg(FYI, "Calculated size %u vs length %u mismatch for mid=%u\n",
395 			 clc_len, 4 + rfclen, mid);
396 
397 		if (4 + rfclen < clc_len) {
398 			cifs_dbg(VFS, "RFC1001 size %u smaller than SMB for mid=%u\n",
399 				 rfclen, mid);
400 			return -EIO;
401 		} else if (rfclen > clc_len + 512) {
402 			/*
403 			 * Some servers (Windows XP in particular) send more
404 			 * data than the lengths in the SMB packet would
405 			 * indicate on certain calls (byte range locks and
406 			 * trans2 find first calls in particular). While the
407 			 * client can handle such a frame by ignoring the
408 			 * trailing data, we choose limit the amount of extra
409 			 * data to 512 bytes.
410 			 */
411 			cifs_dbg(VFS, "RFC1001 size %u more than 512 bytes larger than SMB for mid=%u\n",
412 				 rfclen, mid);
413 			return -EIO;
414 		}
415 	}
416 	return 0;
417 }
418 
419 bool
420 is_valid_oplock_break(char *buffer, struct TCP_Server_Info *srv)
421 {
422 	struct smb_hdr *buf = (struct smb_hdr *)buffer;
423 	struct smb_com_lock_req *pSMB = (struct smb_com_lock_req *)buf;
424 	struct TCP_Server_Info *pserver;
425 	struct cifs_ses *ses;
426 	struct cifs_tcon *tcon;
427 	struct cifsInodeInfo *pCifsInode;
428 	struct cifsFileInfo *netfile;
429 
430 	cifs_dbg(FYI, "Checking for oplock break or dnotify response\n");
431 	if ((pSMB->hdr.Command == SMB_COM_NT_TRANSACT) &&
432 	   (pSMB->hdr.Flags & SMBFLG_RESPONSE)) {
433 		struct smb_com_transaction_change_notify_rsp *pSMBr =
434 			(struct smb_com_transaction_change_notify_rsp *)buf;
435 		struct file_notify_information *pnotify;
436 		__u32 data_offset = 0;
437 		size_t len = srv->total_read - sizeof(pSMBr->hdr.smb_buf_length);
438 
439 		if (get_bcc(buf) > sizeof(struct file_notify_information)) {
440 			data_offset = le32_to_cpu(pSMBr->DataOffset);
441 
442 			if (data_offset >
443 			    len - sizeof(struct file_notify_information)) {
444 				cifs_dbg(FYI, "Invalid data_offset %u\n",
445 					 data_offset);
446 				return true;
447 			}
448 			pnotify = (struct file_notify_information *)
449 				((char *)&pSMBr->hdr.Protocol + data_offset);
450 			cifs_dbg(FYI, "dnotify on %s Action: 0x%x\n",
451 				 pnotify->FileName, pnotify->Action);
452 			/*   cifs_dump_mem("Rcvd notify Data: ",buf,
453 				sizeof(struct smb_hdr)+60); */
454 			return true;
455 		}
456 		if (pSMBr->hdr.Status.CifsError) {
457 			cifs_dbg(FYI, "notify err 0x%x\n",
458 				 pSMBr->hdr.Status.CifsError);
459 			return true;
460 		}
461 		return false;
462 	}
463 	if (pSMB->hdr.Command != SMB_COM_LOCKING_ANDX)
464 		return false;
465 	if (pSMB->hdr.Flags & SMBFLG_RESPONSE) {
466 		/* no sense logging error on invalid handle on oplock
467 		   break - harmless race between close request and oplock
468 		   break response is expected from time to time writing out
469 		   large dirty files cached on the client */
470 		if ((NT_STATUS_INVALID_HANDLE) ==
471 		   le32_to_cpu(pSMB->hdr.Status.CifsError)) {
472 			cifs_dbg(FYI, "Invalid handle on oplock break\n");
473 			return true;
474 		} else if (ERRbadfid ==
475 		   le16_to_cpu(pSMB->hdr.Status.DosError.Error)) {
476 			return true;
477 		} else {
478 			return false; /* on valid oplock brk we get "request" */
479 		}
480 	}
481 	if (pSMB->hdr.WordCount != 8)
482 		return false;
483 
484 	cifs_dbg(FYI, "oplock type 0x%x level 0x%x\n",
485 		 pSMB->LockType, pSMB->OplockLevel);
486 	if (!(pSMB->LockType & LOCKING_ANDX_OPLOCK_RELEASE))
487 		return false;
488 
489 	/* If server is a channel, select the primary channel */
490 	pserver = SERVER_IS_CHAN(srv) ? srv->primary_server : srv;
491 
492 	/* look up tcon based on tid & uid */
493 	spin_lock(&cifs_tcp_ses_lock);
494 	list_for_each_entry(ses, &pserver->smb_ses_list, smb_ses_list) {
495 		if (cifs_ses_exiting(ses))
496 			continue;
497 		list_for_each_entry(tcon, &ses->tcon_list, tcon_list) {
498 			if (tcon->tid != buf->Tid)
499 				continue;
500 
501 			cifs_stats_inc(&tcon->stats.cifs_stats.num_oplock_brks);
502 			spin_lock(&tcon->open_file_lock);
503 			list_for_each_entry(netfile, &tcon->openFileList, tlist) {
504 				if (pSMB->Fid != netfile->fid.netfid)
505 					continue;
506 
507 				cifs_dbg(FYI, "file id match, oplock break\n");
508 				pCifsInode = CIFS_I(d_inode(netfile->dentry));
509 
510 				set_bit(CIFS_INODE_PENDING_OPLOCK_BREAK,
511 					&pCifsInode->flags);
512 
513 				netfile->oplock_epoch = 0;
514 				netfile->oplock_level = pSMB->OplockLevel;
515 				netfile->oplock_break_cancelled = false;
516 				cifs_queue_oplock_break(netfile);
517 
518 				spin_unlock(&tcon->open_file_lock);
519 				spin_unlock(&cifs_tcp_ses_lock);
520 				return true;
521 			}
522 			spin_unlock(&tcon->open_file_lock);
523 			spin_unlock(&cifs_tcp_ses_lock);
524 			cifs_dbg(FYI, "No matching file for oplock break\n");
525 			return true;
526 		}
527 	}
528 	spin_unlock(&cifs_tcp_ses_lock);
529 	cifs_dbg(FYI, "Can not process oplock break for non-existent connection\n");
530 	return true;
531 }
532 
533 void
534 dump_smb(void *buf, int smb_buf_length)
535 {
536 	if (traceSMB == 0)
537 		return;
538 
539 	print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_NONE, 8, 2, buf,
540 		       smb_buf_length, true);
541 }
542 
543 void
544 cifs_autodisable_serverino(struct cifs_sb_info *cifs_sb)
545 {
546 	if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_SERVER_INUM) {
547 		struct cifs_tcon *tcon = NULL;
548 
549 		if (cifs_sb->master_tlink)
550 			tcon = cifs_sb_master_tcon(cifs_sb);
551 
552 		cifs_sb->mnt_cifs_flags &= ~CIFS_MOUNT_SERVER_INUM;
553 		cifs_sb->mnt_cifs_serverino_autodisabled = true;
554 		cifs_dbg(VFS, "Autodisabling the use of server inode numbers on %s\n",
555 			 tcon ? tcon->tree_name : "new server");
556 		cifs_dbg(VFS, "The server doesn't seem to support them properly or the files might be on different servers (DFS)\n");
557 		cifs_dbg(VFS, "Hardlinks will not be recognized on this mount. Consider mounting with the \"noserverino\" option to silence this message.\n");
558 
559 	}
560 }
561 
562 void cifs_set_oplock_level(struct cifsInodeInfo *cinode, __u32 oplock)
563 {
564 	oplock &= 0xF;
565 
566 	if (oplock == OPLOCK_EXCLUSIVE) {
567 		cinode->oplock = CIFS_CACHE_WRITE_FLG | CIFS_CACHE_READ_FLG;
568 		cifs_dbg(FYI, "Exclusive Oplock granted on inode %p\n",
569 			 &cinode->netfs.inode);
570 	} else if (oplock == OPLOCK_READ) {
571 		cinode->oplock = CIFS_CACHE_READ_FLG;
572 		cifs_dbg(FYI, "Level II Oplock granted on inode %p\n",
573 			 &cinode->netfs.inode);
574 	} else
575 		cinode->oplock = 0;
576 }
577 
578 /*
579  * We wait for oplock breaks to be processed before we attempt to perform
580  * writes.
581  */
582 int cifs_get_writer(struct cifsInodeInfo *cinode)
583 {
584 	int rc;
585 
586 start:
587 	rc = wait_on_bit(&cinode->flags, CIFS_INODE_PENDING_OPLOCK_BREAK,
588 			 TASK_KILLABLE);
589 	if (rc)
590 		return rc;
591 
592 	spin_lock(&cinode->writers_lock);
593 	if (!cinode->writers)
594 		set_bit(CIFS_INODE_PENDING_WRITERS, &cinode->flags);
595 	cinode->writers++;
596 	/* Check to see if we have started servicing an oplock break */
597 	if (test_bit(CIFS_INODE_PENDING_OPLOCK_BREAK, &cinode->flags)) {
598 		cinode->writers--;
599 		if (cinode->writers == 0) {
600 			clear_bit(CIFS_INODE_PENDING_WRITERS, &cinode->flags);
601 			wake_up_bit(&cinode->flags, CIFS_INODE_PENDING_WRITERS);
602 		}
603 		spin_unlock(&cinode->writers_lock);
604 		goto start;
605 	}
606 	spin_unlock(&cinode->writers_lock);
607 	return 0;
608 }
609 
610 void cifs_put_writer(struct cifsInodeInfo *cinode)
611 {
612 	spin_lock(&cinode->writers_lock);
613 	cinode->writers--;
614 	if (cinode->writers == 0) {
615 		clear_bit(CIFS_INODE_PENDING_WRITERS, &cinode->flags);
616 		wake_up_bit(&cinode->flags, CIFS_INODE_PENDING_WRITERS);
617 	}
618 	spin_unlock(&cinode->writers_lock);
619 }
620 
621 /**
622  * cifs_queue_oplock_break - queue the oplock break handler for cfile
623  * @cfile: The file to break the oplock on
624  *
625  * This function is called from the demultiplex thread when it
626  * receives an oplock break for @cfile.
627  *
628  * Assumes the tcon->open_file_lock is held.
629  * Assumes cfile->file_info_lock is NOT held.
630  */
631 void cifs_queue_oplock_break(struct cifsFileInfo *cfile)
632 {
633 	/*
634 	 * Bump the handle refcount now while we hold the
635 	 * open_file_lock to enforce the validity of it for the oplock
636 	 * break handler. The matching put is done at the end of the
637 	 * handler.
638 	 */
639 	cifsFileInfo_get(cfile);
640 
641 	queue_work(cifsoplockd_wq, &cfile->oplock_break);
642 }
643 
644 void cifs_done_oplock_break(struct cifsInodeInfo *cinode)
645 {
646 	clear_bit(CIFS_INODE_PENDING_OPLOCK_BREAK, &cinode->flags);
647 	wake_up_bit(&cinode->flags, CIFS_INODE_PENDING_OPLOCK_BREAK);
648 }
649 
650 bool
651 backup_cred(struct cifs_sb_info *cifs_sb)
652 {
653 	if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_CIFS_BACKUPUID) {
654 		if (uid_eq(cifs_sb->ctx->backupuid, current_fsuid()))
655 			return true;
656 	}
657 	if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_CIFS_BACKUPGID) {
658 		if (in_group_p(cifs_sb->ctx->backupgid))
659 			return true;
660 	}
661 
662 	return false;
663 }
664 
665 void
666 cifs_del_pending_open(struct cifs_pending_open *open)
667 {
668 	spin_lock(&tlink_tcon(open->tlink)->open_file_lock);
669 	list_del(&open->olist);
670 	spin_unlock(&tlink_tcon(open->tlink)->open_file_lock);
671 }
672 
673 void
674 cifs_add_pending_open_locked(struct cifs_fid *fid, struct tcon_link *tlink,
675 			     struct cifs_pending_open *open)
676 {
677 	memcpy(open->lease_key, fid->lease_key, SMB2_LEASE_KEY_SIZE);
678 	open->oplock = CIFS_OPLOCK_NO_CHANGE;
679 	open->tlink = tlink;
680 	fid->pending_open = open;
681 	list_add_tail(&open->olist, &tlink_tcon(tlink)->pending_opens);
682 }
683 
684 void
685 cifs_add_pending_open(struct cifs_fid *fid, struct tcon_link *tlink,
686 		      struct cifs_pending_open *open)
687 {
688 	spin_lock(&tlink_tcon(tlink)->open_file_lock);
689 	cifs_add_pending_open_locked(fid, tlink, open);
690 	spin_unlock(&tlink_tcon(open->tlink)->open_file_lock);
691 }
692 
693 /*
694  * Critical section which runs after acquiring deferred_lock.
695  * As there is no reference count on cifs_deferred_close, pdclose
696  * should not be used outside deferred_lock.
697  */
698 bool
699 cifs_is_deferred_close(struct cifsFileInfo *cfile, struct cifs_deferred_close **pdclose)
700 {
701 	struct cifs_deferred_close *dclose;
702 
703 	list_for_each_entry(dclose, &CIFS_I(d_inode(cfile->dentry))->deferred_closes, dlist) {
704 		if ((dclose->netfid == cfile->fid.netfid) &&
705 			(dclose->persistent_fid == cfile->fid.persistent_fid) &&
706 			(dclose->volatile_fid == cfile->fid.volatile_fid)) {
707 			*pdclose = dclose;
708 			return true;
709 		}
710 	}
711 	return false;
712 }
713 
714 /*
715  * Critical section which runs after acquiring deferred_lock.
716  */
717 void
718 cifs_add_deferred_close(struct cifsFileInfo *cfile, struct cifs_deferred_close *dclose)
719 {
720 	bool is_deferred = false;
721 	struct cifs_deferred_close *pdclose;
722 
723 	is_deferred = cifs_is_deferred_close(cfile, &pdclose);
724 	if (is_deferred) {
725 		kfree(dclose);
726 		return;
727 	}
728 
729 	dclose->tlink = cfile->tlink;
730 	dclose->netfid = cfile->fid.netfid;
731 	dclose->persistent_fid = cfile->fid.persistent_fid;
732 	dclose->volatile_fid = cfile->fid.volatile_fid;
733 	list_add_tail(&dclose->dlist, &CIFS_I(d_inode(cfile->dentry))->deferred_closes);
734 }
735 
736 /*
737  * Critical section which runs after acquiring deferred_lock.
738  */
739 void
740 cifs_del_deferred_close(struct cifsFileInfo *cfile)
741 {
742 	bool is_deferred = false;
743 	struct cifs_deferred_close *dclose;
744 
745 	is_deferred = cifs_is_deferred_close(cfile, &dclose);
746 	if (!is_deferred)
747 		return;
748 	list_del(&dclose->dlist);
749 	kfree(dclose);
750 }
751 
752 void
753 cifs_close_deferred_file(struct cifsInodeInfo *cifs_inode)
754 {
755 	struct cifsFileInfo *cfile = NULL;
756 	struct file_list *tmp_list, *tmp_next_list;
757 	LIST_HEAD(file_head);
758 
759 	if (cifs_inode == NULL)
760 		return;
761 
762 	spin_lock(&cifs_inode->open_file_lock);
763 	list_for_each_entry(cfile, &cifs_inode->openFileList, flist) {
764 		if (delayed_work_pending(&cfile->deferred)) {
765 			if (cancel_delayed_work(&cfile->deferred)) {
766 				spin_lock(&cifs_inode->deferred_lock);
767 				cifs_del_deferred_close(cfile);
768 				spin_unlock(&cifs_inode->deferred_lock);
769 
770 				tmp_list = kmalloc(sizeof(struct file_list), GFP_ATOMIC);
771 				if (tmp_list == NULL)
772 					break;
773 				tmp_list->cfile = cfile;
774 				list_add_tail(&tmp_list->list, &file_head);
775 			}
776 		}
777 	}
778 	spin_unlock(&cifs_inode->open_file_lock);
779 
780 	list_for_each_entry_safe(tmp_list, tmp_next_list, &file_head, list) {
781 		_cifsFileInfo_put(tmp_list->cfile, false, false);
782 		list_del(&tmp_list->list);
783 		kfree(tmp_list);
784 	}
785 }
786 
787 void
788 cifs_close_all_deferred_files(struct cifs_tcon *tcon)
789 {
790 	struct cifsFileInfo *cfile;
791 	struct file_list *tmp_list, *tmp_next_list;
792 	LIST_HEAD(file_head);
793 
794 	spin_lock(&tcon->open_file_lock);
795 	list_for_each_entry(cfile, &tcon->openFileList, tlist) {
796 		if (delayed_work_pending(&cfile->deferred)) {
797 			if (cancel_delayed_work(&cfile->deferred)) {
798 				spin_lock(&CIFS_I(d_inode(cfile->dentry))->deferred_lock);
799 				cifs_del_deferred_close(cfile);
800 				spin_unlock(&CIFS_I(d_inode(cfile->dentry))->deferred_lock);
801 
802 				tmp_list = kmalloc(sizeof(struct file_list), GFP_ATOMIC);
803 				if (tmp_list == NULL)
804 					break;
805 				tmp_list->cfile = cfile;
806 				list_add_tail(&tmp_list->list, &file_head);
807 			}
808 		}
809 	}
810 	spin_unlock(&tcon->open_file_lock);
811 
812 	list_for_each_entry_safe(tmp_list, tmp_next_list, &file_head, list) {
813 		_cifsFileInfo_put(tmp_list->cfile, true, false);
814 		list_del(&tmp_list->list);
815 		kfree(tmp_list);
816 	}
817 }
818 void
819 cifs_close_deferred_file_under_dentry(struct cifs_tcon *tcon, const char *path)
820 {
821 	struct cifsFileInfo *cfile;
822 	struct file_list *tmp_list, *tmp_next_list;
823 	void *page;
824 	const char *full_path;
825 	LIST_HEAD(file_head);
826 
827 	page = alloc_dentry_path();
828 	spin_lock(&tcon->open_file_lock);
829 	list_for_each_entry(cfile, &tcon->openFileList, tlist) {
830 		full_path = build_path_from_dentry(cfile->dentry, page);
831 		if (strstr(full_path, path)) {
832 			if (delayed_work_pending(&cfile->deferred)) {
833 				if (cancel_delayed_work(&cfile->deferred)) {
834 					spin_lock(&CIFS_I(d_inode(cfile->dentry))->deferred_lock);
835 					cifs_del_deferred_close(cfile);
836 					spin_unlock(&CIFS_I(d_inode(cfile->dentry))->deferred_lock);
837 
838 					tmp_list = kmalloc(sizeof(struct file_list), GFP_ATOMIC);
839 					if (tmp_list == NULL)
840 						break;
841 					tmp_list->cfile = cfile;
842 					list_add_tail(&tmp_list->list, &file_head);
843 				}
844 			}
845 		}
846 	}
847 	spin_unlock(&tcon->open_file_lock);
848 
849 	list_for_each_entry_safe(tmp_list, tmp_next_list, &file_head, list) {
850 		_cifsFileInfo_put(tmp_list->cfile, true, false);
851 		list_del(&tmp_list->list);
852 		kfree(tmp_list);
853 	}
854 	free_dentry_path(page);
855 }
856 
857 /*
858  * If a dentry has been deleted, all corresponding open handles should know that
859  * so that we do not defer close them.
860  */
861 void cifs_mark_open_handles_for_deleted_file(struct inode *inode,
862 					     const char *path)
863 {
864 	struct cifsFileInfo *cfile;
865 	void *page;
866 	const char *full_path;
867 	struct cifsInodeInfo *cinode = CIFS_I(inode);
868 
869 	page = alloc_dentry_path();
870 	spin_lock(&cinode->open_file_lock);
871 
872 	/*
873 	 * note: we need to construct path from dentry and compare only if the
874 	 * inode has any hardlinks. When number of hardlinks is 1, we can just
875 	 * mark all open handles since they are going to be from the same file.
876 	 */
877 	if (inode->i_nlink > 1) {
878 		list_for_each_entry(cfile, &cinode->openFileList, flist) {
879 			full_path = build_path_from_dentry(cfile->dentry, page);
880 			if (!IS_ERR(full_path) && strcmp(full_path, path) == 0)
881 				cfile->status_file_deleted = true;
882 		}
883 	} else {
884 		list_for_each_entry(cfile, &cinode->openFileList, flist)
885 			cfile->status_file_deleted = true;
886 	}
887 	spin_unlock(&cinode->open_file_lock);
888 	free_dentry_path(page);
889 }
890 
891 /* parses DFS referral V3 structure
892  * caller is responsible for freeing target_nodes
893  * returns:
894  * - on success - 0
895  * - on failure - errno
896  */
897 int
898 parse_dfs_referrals(struct get_dfs_referral_rsp *rsp, u32 rsp_size,
899 		    unsigned int *num_of_nodes,
900 		    struct dfs_info3_param **target_nodes,
901 		    const struct nls_table *nls_codepage, int remap,
902 		    const char *searchName, bool is_unicode)
903 {
904 	int i, rc = 0;
905 	char *data_end;
906 	struct dfs_referral_level_3 *ref;
907 
908 	*num_of_nodes = le16_to_cpu(rsp->NumberOfReferrals);
909 
910 	if (*num_of_nodes < 1) {
911 		cifs_dbg(VFS, "num_referrals: must be at least > 0, but we get num_referrals = %d\n",
912 			 *num_of_nodes);
913 		rc = -EINVAL;
914 		goto parse_DFS_referrals_exit;
915 	}
916 
917 	ref = (struct dfs_referral_level_3 *) &(rsp->referrals);
918 	if (ref->VersionNumber != cpu_to_le16(3)) {
919 		cifs_dbg(VFS, "Referrals of V%d version are not supported, should be V3\n",
920 			 le16_to_cpu(ref->VersionNumber));
921 		rc = -EINVAL;
922 		goto parse_DFS_referrals_exit;
923 	}
924 
925 	/* get the upper boundary of the resp buffer */
926 	data_end = (char *)rsp + rsp_size;
927 
928 	cifs_dbg(FYI, "num_referrals: %d dfs flags: 0x%x ...\n",
929 		 *num_of_nodes, le32_to_cpu(rsp->DFSFlags));
930 
931 	*target_nodes = kcalloc(*num_of_nodes, sizeof(struct dfs_info3_param),
932 				GFP_KERNEL);
933 	if (*target_nodes == NULL) {
934 		rc = -ENOMEM;
935 		goto parse_DFS_referrals_exit;
936 	}
937 
938 	/* collect necessary data from referrals */
939 	for (i = 0; i < *num_of_nodes; i++) {
940 		char *temp;
941 		int max_len;
942 		struct dfs_info3_param *node = (*target_nodes)+i;
943 
944 		node->flags = le32_to_cpu(rsp->DFSFlags);
945 		if (is_unicode) {
946 			__le16 *tmp = kmalloc(strlen(searchName)*2 + 2,
947 						GFP_KERNEL);
948 			if (tmp == NULL) {
949 				rc = -ENOMEM;
950 				goto parse_DFS_referrals_exit;
951 			}
952 			cifsConvertToUTF16((__le16 *) tmp, searchName,
953 					   PATH_MAX, nls_codepage, remap);
954 			node->path_consumed = cifs_utf16_bytes(tmp,
955 					le16_to_cpu(rsp->PathConsumed),
956 					nls_codepage);
957 			kfree(tmp);
958 		} else
959 			node->path_consumed = le16_to_cpu(rsp->PathConsumed);
960 
961 		node->server_type = le16_to_cpu(ref->ServerType);
962 		node->ref_flag = le16_to_cpu(ref->ReferralEntryFlags);
963 
964 		/* copy DfsPath */
965 		temp = (char *)ref + le16_to_cpu(ref->DfsPathOffset);
966 		max_len = data_end - temp;
967 		node->path_name = cifs_strndup_from_utf16(temp, max_len,
968 						is_unicode, nls_codepage);
969 		if (!node->path_name) {
970 			rc = -ENOMEM;
971 			goto parse_DFS_referrals_exit;
972 		}
973 
974 		/* copy link target UNC */
975 		temp = (char *)ref + le16_to_cpu(ref->NetworkAddressOffset);
976 		max_len = data_end - temp;
977 		node->node_name = cifs_strndup_from_utf16(temp, max_len,
978 						is_unicode, nls_codepage);
979 		if (!node->node_name) {
980 			rc = -ENOMEM;
981 			goto parse_DFS_referrals_exit;
982 		}
983 
984 		node->ttl = le32_to_cpu(ref->TimeToLive);
985 
986 		ref++;
987 	}
988 
989 parse_DFS_referrals_exit:
990 	if (rc) {
991 		free_dfs_info_array(*target_nodes, *num_of_nodes);
992 		*target_nodes = NULL;
993 		*num_of_nodes = 0;
994 	}
995 	return rc;
996 }
997 
998 /**
999  * cifs_alloc_hash - allocate hash and hash context together
1000  * @name: The name of the crypto hash algo
1001  * @sdesc: SHASH descriptor where to put the pointer to the hash TFM
1002  *
1003  * The caller has to make sure @sdesc is initialized to either NULL or
1004  * a valid context. It can be freed via cifs_free_hash().
1005  */
1006 int
1007 cifs_alloc_hash(const char *name, struct shash_desc **sdesc)
1008 {
1009 	int rc = 0;
1010 	struct crypto_shash *alg = NULL;
1011 
1012 	if (*sdesc)
1013 		return 0;
1014 
1015 	alg = crypto_alloc_shash(name, 0, 0);
1016 	if (IS_ERR(alg)) {
1017 		cifs_dbg(VFS, "Could not allocate shash TFM '%s'\n", name);
1018 		rc = PTR_ERR(alg);
1019 		*sdesc = NULL;
1020 		return rc;
1021 	}
1022 
1023 	*sdesc = kmalloc(sizeof(struct shash_desc) + crypto_shash_descsize(alg), GFP_KERNEL);
1024 	if (*sdesc == NULL) {
1025 		cifs_dbg(VFS, "no memory left to allocate shash TFM '%s'\n", name);
1026 		crypto_free_shash(alg);
1027 		return -ENOMEM;
1028 	}
1029 
1030 	(*sdesc)->tfm = alg;
1031 	return 0;
1032 }
1033 
1034 /**
1035  * cifs_free_hash - free hash and hash context together
1036  * @sdesc: Where to find the pointer to the hash TFM
1037  *
1038  * Freeing a NULL descriptor is safe.
1039  */
1040 void
1041 cifs_free_hash(struct shash_desc **sdesc)
1042 {
1043 	if (unlikely(!sdesc) || !*sdesc)
1044 		return;
1045 
1046 	if ((*sdesc)->tfm) {
1047 		crypto_free_shash((*sdesc)->tfm);
1048 		(*sdesc)->tfm = NULL;
1049 	}
1050 
1051 	kfree_sensitive(*sdesc);
1052 	*sdesc = NULL;
1053 }
1054 
1055 void extract_unc_hostname(const char *unc, const char **h, size_t *len)
1056 {
1057 	const char *end;
1058 
1059 	/* skip initial slashes */
1060 	while (*unc && (*unc == '\\' || *unc == '/'))
1061 		unc++;
1062 
1063 	end = unc;
1064 
1065 	while (*end && !(*end == '\\' || *end == '/'))
1066 		end++;
1067 
1068 	*h = unc;
1069 	*len = end - unc;
1070 }
1071 
1072 /**
1073  * copy_path_name - copy src path to dst, possibly truncating
1074  * @dst: The destination buffer
1075  * @src: The source name
1076  *
1077  * returns number of bytes written (including trailing nul)
1078  */
1079 int copy_path_name(char *dst, const char *src)
1080 {
1081 	int name_len;
1082 
1083 	/*
1084 	 * PATH_MAX includes nul, so if strlen(src) >= PATH_MAX it
1085 	 * will truncate and strlen(dst) will be PATH_MAX-1
1086 	 */
1087 	name_len = strscpy(dst, src, PATH_MAX);
1088 	if (WARN_ON_ONCE(name_len < 0))
1089 		name_len = PATH_MAX-1;
1090 
1091 	/* we count the trailing nul */
1092 	name_len++;
1093 	return name_len;
1094 }
1095 
1096 struct super_cb_data {
1097 	void *data;
1098 	struct super_block *sb;
1099 };
1100 
1101 static void tcon_super_cb(struct super_block *sb, void *arg)
1102 {
1103 	struct super_cb_data *sd = arg;
1104 	struct cifs_sb_info *cifs_sb;
1105 	struct cifs_tcon *t1 = sd->data, *t2;
1106 
1107 	if (sd->sb)
1108 		return;
1109 
1110 	cifs_sb = CIFS_SB(sb);
1111 	t2 = cifs_sb_master_tcon(cifs_sb);
1112 
1113 	spin_lock(&t2->tc_lock);
1114 	if ((t1->ses == t2->ses ||
1115 	     t1->ses->dfs_root_ses == t2->ses->dfs_root_ses) &&
1116 	    t1->ses->server == t2->ses->server &&
1117 	    t2->origin_fullpath &&
1118 	    dfs_src_pathname_equal(t2->origin_fullpath, t1->origin_fullpath))
1119 		sd->sb = sb;
1120 	spin_unlock(&t2->tc_lock);
1121 }
1122 
1123 static struct super_block *__cifs_get_super(void (*f)(struct super_block *, void *),
1124 					    void *data)
1125 {
1126 	struct super_cb_data sd = {
1127 		.data = data,
1128 		.sb = NULL,
1129 	};
1130 	struct file_system_type **fs_type = (struct file_system_type *[]) {
1131 		&cifs_fs_type, &smb3_fs_type, NULL,
1132 	};
1133 
1134 	for (; *fs_type; fs_type++) {
1135 		iterate_supers_type(*fs_type, f, &sd);
1136 		if (sd.sb) {
1137 			/*
1138 			 * Grab an active reference in order to prevent automounts (DFS links)
1139 			 * of expiring and then freeing up our cifs superblock pointer while
1140 			 * we're doing failover.
1141 			 */
1142 			cifs_sb_active(sd.sb);
1143 			return sd.sb;
1144 		}
1145 	}
1146 	pr_warn_once("%s: could not find dfs superblock\n", __func__);
1147 	return ERR_PTR(-EINVAL);
1148 }
1149 
1150 static void __cifs_put_super(struct super_block *sb)
1151 {
1152 	if (!IS_ERR_OR_NULL(sb))
1153 		cifs_sb_deactive(sb);
1154 }
1155 
1156 struct super_block *cifs_get_dfs_tcon_super(struct cifs_tcon *tcon)
1157 {
1158 	spin_lock(&tcon->tc_lock);
1159 	if (!tcon->origin_fullpath) {
1160 		spin_unlock(&tcon->tc_lock);
1161 		return ERR_PTR(-ENOENT);
1162 	}
1163 	spin_unlock(&tcon->tc_lock);
1164 	return __cifs_get_super(tcon_super_cb, tcon);
1165 }
1166 
1167 void cifs_put_tcp_super(struct super_block *sb)
1168 {
1169 	__cifs_put_super(sb);
1170 }
1171 
1172 #ifdef CONFIG_CIFS_DFS_UPCALL
1173 int match_target_ip(struct TCP_Server_Info *server,
1174 		    const char *share, size_t share_len,
1175 		    bool *result)
1176 {
1177 	int rc;
1178 	char *target;
1179 	struct sockaddr_storage ss;
1180 
1181 	*result = false;
1182 
1183 	target = kzalloc(share_len + 3, GFP_KERNEL);
1184 	if (!target)
1185 		return -ENOMEM;
1186 
1187 	scnprintf(target, share_len + 3, "\\\\%.*s", (int)share_len, share);
1188 
1189 	cifs_dbg(FYI, "%s: target name: %s\n", __func__, target + 2);
1190 
1191 	rc = dns_resolve_server_name_to_ip(target, (struct sockaddr *)&ss, NULL);
1192 	kfree(target);
1193 
1194 	if (rc < 0)
1195 		return rc;
1196 
1197 	spin_lock(&server->srv_lock);
1198 	*result = cifs_match_ipaddr((struct sockaddr *)&server->dstaddr, (struct sockaddr *)&ss);
1199 	spin_unlock(&server->srv_lock);
1200 	cifs_dbg(FYI, "%s: ip addresses match: %u\n", __func__, *result);
1201 	return 0;
1202 }
1203 
1204 int cifs_update_super_prepath(struct cifs_sb_info *cifs_sb, char *prefix)
1205 {
1206 	int rc;
1207 
1208 	kfree(cifs_sb->prepath);
1209 	cifs_sb->prepath = NULL;
1210 
1211 	if (prefix && *prefix) {
1212 		cifs_sb->prepath = cifs_sanitize_prepath(prefix, GFP_ATOMIC);
1213 		if (IS_ERR(cifs_sb->prepath)) {
1214 			rc = PTR_ERR(cifs_sb->prepath);
1215 			cifs_sb->prepath = NULL;
1216 			return rc;
1217 		}
1218 		if (cifs_sb->prepath)
1219 			convert_delimiter(cifs_sb->prepath, CIFS_DIR_SEP(cifs_sb));
1220 	}
1221 
1222 	cifs_sb->mnt_cifs_flags |= CIFS_MOUNT_USE_PREFIX_PATH;
1223 	return 0;
1224 }
1225 
1226 /*
1227  * Handle weird Windows SMB server behaviour. It responds with
1228  * STATUS_OBJECT_NAME_INVALID code to SMB2 QUERY_INFO request for
1229  * "\<server>\<dfsname>\<linkpath>" DFS reference, where <dfsname> contains
1230  * non-ASCII unicode symbols.
1231  */
1232 int cifs_inval_name_dfs_link_error(const unsigned int xid,
1233 				   struct cifs_tcon *tcon,
1234 				   struct cifs_sb_info *cifs_sb,
1235 				   const char *full_path,
1236 				   bool *islink)
1237 {
1238 	struct TCP_Server_Info *server = tcon->ses->server;
1239 	struct cifs_ses *ses = tcon->ses;
1240 	size_t len;
1241 	char *path;
1242 	char *ref_path;
1243 
1244 	*islink = false;
1245 
1246 	/*
1247 	 * Fast path - skip check when @full_path doesn't have a prefix path to
1248 	 * look up or tcon is not DFS.
1249 	 */
1250 	if (strlen(full_path) < 2 || !cifs_sb ||
1251 	    (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_NO_DFS) ||
1252 	    !is_tcon_dfs(tcon))
1253 		return 0;
1254 
1255 	spin_lock(&server->srv_lock);
1256 	if (!server->leaf_fullpath) {
1257 		spin_unlock(&server->srv_lock);
1258 		return 0;
1259 	}
1260 	spin_unlock(&server->srv_lock);
1261 
1262 	/*
1263 	 * Slow path - tcon is DFS and @full_path has prefix path, so attempt
1264 	 * to get a referral to figure out whether it is an DFS link.
1265 	 */
1266 	len = strnlen(tcon->tree_name, MAX_TREE_SIZE + 1) + strlen(full_path) + 1;
1267 	path = kmalloc(len, GFP_KERNEL);
1268 	if (!path)
1269 		return -ENOMEM;
1270 
1271 	scnprintf(path, len, "%s%s", tcon->tree_name, full_path);
1272 	ref_path = dfs_cache_canonical_path(path + 1, cifs_sb->local_nls,
1273 					    cifs_remap(cifs_sb));
1274 	kfree(path);
1275 
1276 	if (IS_ERR(ref_path)) {
1277 		if (PTR_ERR(ref_path) != -EINVAL)
1278 			return PTR_ERR(ref_path);
1279 	} else {
1280 		struct dfs_info3_param *refs = NULL;
1281 		int num_refs = 0;
1282 
1283 		/*
1284 		 * XXX: we are not using dfs_cache_find() here because we might
1285 		 * end up filling all the DFS cache and thus potentially
1286 		 * removing cached DFS targets that the client would eventually
1287 		 * need during failover.
1288 		 */
1289 		ses = CIFS_DFS_ROOT_SES(ses);
1290 		if (ses->server->ops->get_dfs_refer &&
1291 		    !ses->server->ops->get_dfs_refer(xid, ses, ref_path, &refs,
1292 						     &num_refs, cifs_sb->local_nls,
1293 						     cifs_remap(cifs_sb)))
1294 			*islink = refs[0].server_type == DFS_TYPE_LINK;
1295 		free_dfs_info_array(refs, num_refs);
1296 		kfree(ref_path);
1297 	}
1298 	return 0;
1299 }
1300 #endif
1301 
1302 int cifs_wait_for_server_reconnect(struct TCP_Server_Info *server, bool retry)
1303 {
1304 	int timeout = 10;
1305 	int rc;
1306 
1307 	spin_lock(&server->srv_lock);
1308 	if (server->tcpStatus != CifsNeedReconnect) {
1309 		spin_unlock(&server->srv_lock);
1310 		return 0;
1311 	}
1312 	timeout *= server->nr_targets;
1313 	spin_unlock(&server->srv_lock);
1314 
1315 	/*
1316 	 * Give demultiplex thread up to 10 seconds to each target available for
1317 	 * reconnect -- should be greater than cifs socket timeout which is 7
1318 	 * seconds.
1319 	 *
1320 	 * On "soft" mounts we wait once. Hard mounts keep retrying until
1321 	 * process is killed or server comes back on-line.
1322 	 */
1323 	do {
1324 		rc = wait_event_interruptible_timeout(server->response_q,
1325 						      (server->tcpStatus != CifsNeedReconnect),
1326 						      timeout * HZ);
1327 		if (rc < 0) {
1328 			cifs_dbg(FYI, "%s: aborting reconnect due to received signal\n",
1329 				 __func__);
1330 			return -ERESTARTSYS;
1331 		}
1332 
1333 		/* are we still trying to reconnect? */
1334 		spin_lock(&server->srv_lock);
1335 		if (server->tcpStatus != CifsNeedReconnect) {
1336 			spin_unlock(&server->srv_lock);
1337 			return 0;
1338 		}
1339 		spin_unlock(&server->srv_lock);
1340 	} while (retry);
1341 
1342 	cifs_dbg(FYI, "%s: gave up waiting on reconnect\n", __func__);
1343 	return -EHOSTDOWN;
1344 }
1345