xref: /linux/fs/smb/client/misc.c (revision 07fdad3a93756b872da7b53647715c48d0f4a2d0)
1 // SPDX-License-Identifier: LGPL-2.1
2 /*
3  *
4  *   Copyright (C) International Business Machines  Corp., 2002,2008
5  *   Author(s): Steve French (sfrench@us.ibm.com)
6  *
7  */
8 
9 #include <linux/slab.h>
10 #include <linux/ctype.h>
11 #include <linux/mempool.h>
12 #include <linux/vmalloc.h>
13 #include "cifspdu.h"
14 #include "cifsglob.h"
15 #include "cifsproto.h"
16 #include "cifs_debug.h"
17 #include "smberr.h"
18 #include "nterr.h"
19 #include "cifs_unicode.h"
20 #include "smb2pdu.h"
21 #include "cifsfs.h"
22 #ifdef CONFIG_CIFS_DFS_UPCALL
23 #include "dns_resolve.h"
24 #include "dfs_cache.h"
25 #include "dfs.h"
26 #endif
27 #include "fs_context.h"
28 #include "cached_dir.h"
29 
30 /* The xid serves as a useful identifier for each incoming vfs request,
31    in a similar way to the mid which is useful to track each sent smb,
32    and CurrentXid can also provide a running counter (although it
33    will eventually wrap past zero) of the total vfs operations handled
34    since the cifs fs was mounted */
35 
36 unsigned int
37 _get_xid(void)
38 {
39 	unsigned int xid;
40 
41 	spin_lock(&GlobalMid_Lock);
42 	GlobalTotalActiveXid++;
43 
44 	/* keep high water mark for number of simultaneous ops in filesystem */
45 	if (GlobalTotalActiveXid > GlobalMaxActiveXid)
46 		GlobalMaxActiveXid = GlobalTotalActiveXid;
47 	if (GlobalTotalActiveXid > 65000)
48 		cifs_dbg(FYI, "warning: more than 65000 requests active\n");
49 	xid = GlobalCurrentXid++;
50 	spin_unlock(&GlobalMid_Lock);
51 	return xid;
52 }
53 
54 void
55 _free_xid(unsigned int xid)
56 {
57 	spin_lock(&GlobalMid_Lock);
58 	/* if (GlobalTotalActiveXid == 0)
59 		BUG(); */
60 	GlobalTotalActiveXid--;
61 	spin_unlock(&GlobalMid_Lock);
62 }
63 
64 struct cifs_ses *
65 sesInfoAlloc(void)
66 {
67 	struct cifs_ses *ret_buf;
68 
69 	ret_buf = kzalloc(sizeof(struct cifs_ses), GFP_KERNEL);
70 	if (ret_buf) {
71 		atomic_inc(&sesInfoAllocCount);
72 		spin_lock_init(&ret_buf->ses_lock);
73 		ret_buf->ses_status = SES_NEW;
74 		++ret_buf->ses_count;
75 		INIT_LIST_HEAD(&ret_buf->smb_ses_list);
76 		INIT_LIST_HEAD(&ret_buf->tcon_list);
77 		mutex_init(&ret_buf->session_mutex);
78 		spin_lock_init(&ret_buf->iface_lock);
79 		INIT_LIST_HEAD(&ret_buf->iface_list);
80 		spin_lock_init(&ret_buf->chan_lock);
81 	}
82 	return ret_buf;
83 }
84 
85 void
86 sesInfoFree(struct cifs_ses *buf_to_free)
87 {
88 	struct cifs_server_iface *iface = NULL, *niface = NULL;
89 
90 	if (buf_to_free == NULL) {
91 		cifs_dbg(FYI, "Null buffer passed to sesInfoFree\n");
92 		return;
93 	}
94 
95 	unload_nls(buf_to_free->local_nls);
96 	atomic_dec(&sesInfoAllocCount);
97 	kfree(buf_to_free->serverOS);
98 	kfree(buf_to_free->serverDomain);
99 	kfree(buf_to_free->serverNOS);
100 	kfree_sensitive(buf_to_free->password);
101 	kfree_sensitive(buf_to_free->password2);
102 	kfree(buf_to_free->user_name);
103 	kfree(buf_to_free->domainName);
104 	kfree(buf_to_free->dns_dom);
105 	kfree_sensitive(buf_to_free->auth_key.response);
106 	spin_lock(&buf_to_free->iface_lock);
107 	list_for_each_entry_safe(iface, niface, &buf_to_free->iface_list,
108 				 iface_head)
109 		kref_put(&iface->refcount, release_iface);
110 	spin_unlock(&buf_to_free->iface_lock);
111 	kfree_sensitive(buf_to_free);
112 }
113 
114 struct cifs_tcon *
115 tcon_info_alloc(bool dir_leases_enabled, enum smb3_tcon_ref_trace trace)
116 {
117 	struct cifs_tcon *ret_buf;
118 	static atomic_t tcon_debug_id;
119 
120 	ret_buf = kzalloc(sizeof(*ret_buf), GFP_KERNEL);
121 	if (!ret_buf)
122 		return NULL;
123 
124 	if (dir_leases_enabled == true) {
125 		ret_buf->cfids = init_cached_dirs();
126 		if (!ret_buf->cfids) {
127 			kfree(ret_buf);
128 			return NULL;
129 		}
130 	}
131 	/* else ret_buf->cfids is already set to NULL above */
132 
133 	atomic_inc(&tconInfoAllocCount);
134 	ret_buf->status = TID_NEW;
135 	ret_buf->debug_id = atomic_inc_return(&tcon_debug_id);
136 	ret_buf->tc_count = 1;
137 	spin_lock_init(&ret_buf->tc_lock);
138 	INIT_LIST_HEAD(&ret_buf->openFileList);
139 	INIT_LIST_HEAD(&ret_buf->tcon_list);
140 	INIT_LIST_HEAD(&ret_buf->cifs_sb_list);
141 	spin_lock_init(&ret_buf->open_file_lock);
142 	spin_lock_init(&ret_buf->stat_lock);
143 	spin_lock_init(&ret_buf->sb_list_lock);
144 	atomic_set(&ret_buf->num_local_opens, 0);
145 	atomic_set(&ret_buf->num_remote_opens, 0);
146 	ret_buf->stats_from_time = ktime_get_real_seconds();
147 #ifdef CONFIG_CIFS_FSCACHE
148 	mutex_init(&ret_buf->fscache_lock);
149 #endif
150 	trace_smb3_tcon_ref(ret_buf->debug_id, ret_buf->tc_count, trace);
151 #ifdef CONFIG_CIFS_DFS_UPCALL
152 	INIT_LIST_HEAD(&ret_buf->dfs_ses_list);
153 #endif
154 	INIT_LIST_HEAD(&ret_buf->pending_opens);
155 	INIT_DELAYED_WORK(&ret_buf->query_interfaces,
156 			  smb2_query_server_interfaces);
157 #ifdef CONFIG_CIFS_DFS_UPCALL
158 	INIT_DELAYED_WORK(&ret_buf->dfs_cache_work, dfs_cache_refresh);
159 #endif
160 
161 	return ret_buf;
162 }
163 
164 void
165 tconInfoFree(struct cifs_tcon *tcon, enum smb3_tcon_ref_trace trace)
166 {
167 	if (tcon == NULL) {
168 		cifs_dbg(FYI, "Null buffer passed to tconInfoFree\n");
169 		return;
170 	}
171 	trace_smb3_tcon_ref(tcon->debug_id, tcon->tc_count, trace);
172 	free_cached_dirs(tcon->cfids);
173 	atomic_dec(&tconInfoAllocCount);
174 	kfree(tcon->nativeFileSystem);
175 	kfree_sensitive(tcon->password);
176 	kfree(tcon->origin_fullpath);
177 	kfree(tcon);
178 }
179 
180 struct smb_hdr *
181 cifs_buf_get(void)
182 {
183 	struct smb_hdr *ret_buf = NULL;
184 	/*
185 	 * SMB2 header is bigger than CIFS one - no problems to clean some
186 	 * more bytes for CIFS.
187 	 */
188 	size_t buf_size = sizeof(struct smb2_hdr);
189 
190 	/*
191 	 * We could use negotiated size instead of max_msgsize -
192 	 * but it may be more efficient to always alloc same size
193 	 * albeit slightly larger than necessary and maxbuffersize
194 	 * defaults to this and can not be bigger.
195 	 */
196 	ret_buf = mempool_alloc(cifs_req_poolp, GFP_NOFS);
197 
198 	/* clear the first few header bytes */
199 	/* for most paths, more is cleared in header_assemble */
200 	memset(ret_buf, 0, buf_size + 3);
201 	atomic_inc(&buf_alloc_count);
202 #ifdef CONFIG_CIFS_STATS2
203 	atomic_inc(&total_buf_alloc_count);
204 #endif /* CONFIG_CIFS_STATS2 */
205 
206 	return ret_buf;
207 }
208 
209 void
210 cifs_buf_release(void *buf_to_free)
211 {
212 	if (buf_to_free == NULL) {
213 		/* cifs_dbg(FYI, "Null buffer passed to cifs_buf_release\n");*/
214 		return;
215 	}
216 	mempool_free(buf_to_free, cifs_req_poolp);
217 
218 	atomic_dec(&buf_alloc_count);
219 	return;
220 }
221 
222 struct smb_hdr *
223 cifs_small_buf_get(void)
224 {
225 	struct smb_hdr *ret_buf = NULL;
226 
227 /* We could use negotiated size instead of max_msgsize -
228    but it may be more efficient to always alloc same size
229    albeit slightly larger than necessary and maxbuffersize
230    defaults to this and can not be bigger */
231 	ret_buf = mempool_alloc(cifs_sm_req_poolp, GFP_NOFS);
232 	/* No need to clear memory here, cleared in header assemble */
233 	/*	memset(ret_buf, 0, sizeof(struct smb_hdr) + 27);*/
234 	atomic_inc(&small_buf_alloc_count);
235 #ifdef CONFIG_CIFS_STATS2
236 	atomic_inc(&total_small_buf_alloc_count);
237 #endif /* CONFIG_CIFS_STATS2 */
238 
239 	return ret_buf;
240 }
241 
242 void
243 cifs_small_buf_release(void *buf_to_free)
244 {
245 
246 	if (buf_to_free == NULL) {
247 		cifs_dbg(FYI, "Null buffer passed to cifs_small_buf_release\n");
248 		return;
249 	}
250 	mempool_free(buf_to_free, cifs_sm_req_poolp);
251 
252 	atomic_dec(&small_buf_alloc_count);
253 	return;
254 }
255 
256 void
257 free_rsp_buf(int resp_buftype, void *rsp)
258 {
259 	if (resp_buftype == CIFS_SMALL_BUFFER)
260 		cifs_small_buf_release(rsp);
261 	else if (resp_buftype == CIFS_LARGE_BUFFER)
262 		cifs_buf_release(rsp);
263 }
264 
265 /* NB: MID can not be set if treeCon not passed in, in that
266    case it is responsibility of caller to set the mid */
267 void
268 header_assemble(struct smb_hdr *buffer, char smb_command /* command */ ,
269 		const struct cifs_tcon *treeCon, int word_count
270 		/* length of fixed section (word count) in two byte units  */)
271 {
272 	char *temp = (char *) buffer;
273 
274 	memset(temp, 0, 256); /* bigger than MAX_CIFS_HDR_SIZE */
275 
276 	buffer->smb_buf_length = cpu_to_be32(
277 	    (2 * word_count) + sizeof(struct smb_hdr) -
278 	    4 /*  RFC 1001 length field does not count */  +
279 	    2 /* for bcc field itself */) ;
280 
281 	buffer->Protocol[0] = 0xFF;
282 	buffer->Protocol[1] = 'S';
283 	buffer->Protocol[2] = 'M';
284 	buffer->Protocol[3] = 'B';
285 	buffer->Command = smb_command;
286 	buffer->Flags = 0x00;	/* case sensitive */
287 	buffer->Flags2 = SMBFLG2_KNOWS_LONG_NAMES;
288 	buffer->Pid = cpu_to_le16((__u16)current->tgid);
289 	buffer->PidHigh = cpu_to_le16((__u16)(current->tgid >> 16));
290 	if (treeCon) {
291 		buffer->Tid = treeCon->tid;
292 		if (treeCon->ses) {
293 			if (treeCon->ses->capabilities & CAP_UNICODE)
294 				buffer->Flags2 |= SMBFLG2_UNICODE;
295 			if (treeCon->ses->capabilities & CAP_STATUS32)
296 				buffer->Flags2 |= SMBFLG2_ERR_STATUS;
297 
298 			/* Uid is not converted */
299 			buffer->Uid = treeCon->ses->Suid;
300 			if (treeCon->ses->server)
301 				buffer->Mid = get_next_mid(treeCon->ses->server);
302 		}
303 		if (treeCon->Flags & SMB_SHARE_IS_IN_DFS)
304 			buffer->Flags2 |= SMBFLG2_DFS;
305 		if (treeCon->nocase)
306 			buffer->Flags  |= SMBFLG_CASELESS;
307 		if ((treeCon->ses) && (treeCon->ses->server))
308 			if (treeCon->ses->server->sign)
309 				buffer->Flags2 |= SMBFLG2_SECURITY_SIGNATURE;
310 	}
311 
312 /*  endian conversion of flags is now done just before sending */
313 	buffer->WordCount = (char) word_count;
314 	return;
315 }
316 
317 static int
318 check_smb_hdr(struct smb_hdr *smb)
319 {
320 	/* does it have the right SMB "signature" ? */
321 	if (*(__le32 *) smb->Protocol != cpu_to_le32(0x424d53ff)) {
322 		cifs_dbg(VFS, "Bad protocol string signature header 0x%x\n",
323 			 *(unsigned int *)smb->Protocol);
324 		return 1;
325 	}
326 
327 	/* if it's a response then accept */
328 	if (smb->Flags & SMBFLG_RESPONSE)
329 		return 0;
330 
331 	/* only one valid case where server sends us request */
332 	if (smb->Command == SMB_COM_LOCKING_ANDX)
333 		return 0;
334 
335 	/*
336 	 * Windows NT server returns error resposne (e.g. STATUS_DELETE_PENDING
337 	 * or STATUS_OBJECT_NAME_NOT_FOUND or ERRDOS/ERRbadfile or any other)
338 	 * for some TRANS2 requests without the RESPONSE flag set in header.
339 	 */
340 	if (smb->Command == SMB_COM_TRANSACTION2 && smb->Status.CifsError != 0)
341 		return 0;
342 
343 	cifs_dbg(VFS, "Server sent request, not response. mid=%u\n",
344 		 get_mid(smb));
345 	return 1;
346 }
347 
348 int
349 checkSMB(char *buf, unsigned int total_read, struct TCP_Server_Info *server)
350 {
351 	struct smb_hdr *smb = (struct smb_hdr *)buf;
352 	__u32 rfclen = be32_to_cpu(smb->smb_buf_length);
353 	__u32 clc_len;  /* calculated length */
354 	cifs_dbg(FYI, "checkSMB Length: 0x%x, smb_buf_length: 0x%x\n",
355 		 total_read, rfclen);
356 
357 	/* is this frame too small to even get to a BCC? */
358 	if (total_read < 2 + sizeof(struct smb_hdr)) {
359 		if ((total_read >= sizeof(struct smb_hdr) - 1)
360 			    && (smb->Status.CifsError != 0)) {
361 			/* it's an error return */
362 			smb->WordCount = 0;
363 			/* some error cases do not return wct and bcc */
364 			return 0;
365 		} else if ((total_read == sizeof(struct smb_hdr) + 1) &&
366 				(smb->WordCount == 0)) {
367 			char *tmp = (char *)smb;
368 			/* Need to work around a bug in two servers here */
369 			/* First, check if the part of bcc they sent was zero */
370 			if (tmp[sizeof(struct smb_hdr)] == 0) {
371 				/* some servers return only half of bcc
372 				 * on simple responses (wct, bcc both zero)
373 				 * in particular have seen this on
374 				 * ulogoffX and FindClose. This leaves
375 				 * one byte of bcc potentially uninitialized
376 				 */
377 				/* zero rest of bcc */
378 				tmp[sizeof(struct smb_hdr)+1] = 0;
379 				return 0;
380 			}
381 			cifs_dbg(VFS, "rcvd invalid byte count (bcc)\n");
382 		} else {
383 			cifs_dbg(VFS, "Length less than smb header size\n");
384 		}
385 		return -EIO;
386 	} else if (total_read < sizeof(*smb) + 2 * smb->WordCount) {
387 		cifs_dbg(VFS, "%s: can't read BCC due to invalid WordCount(%u)\n",
388 			 __func__, smb->WordCount);
389 		return -EIO;
390 	}
391 
392 	/* otherwise, there is enough to get to the BCC */
393 	if (check_smb_hdr(smb))
394 		return -EIO;
395 	clc_len = smbCalcSize(smb);
396 
397 	if (4 + rfclen != total_read) {
398 		cifs_dbg(VFS, "Length read does not match RFC1001 length %d\n",
399 			 rfclen);
400 		return -EIO;
401 	}
402 
403 	if (4 + rfclen != clc_len) {
404 		__u16 mid = get_mid(smb);
405 		/* check if bcc wrapped around for large read responses */
406 		if ((rfclen > 64 * 1024) && (rfclen > clc_len)) {
407 			/* check if lengths match mod 64K */
408 			if (((4 + rfclen) & 0xFFFF) == (clc_len & 0xFFFF))
409 				return 0; /* bcc wrapped */
410 		}
411 		cifs_dbg(FYI, "Calculated size %u vs length %u mismatch for mid=%u\n",
412 			 clc_len, 4 + rfclen, mid);
413 
414 		if (4 + rfclen < clc_len) {
415 			cifs_dbg(VFS, "RFC1001 size %u smaller than SMB for mid=%u\n",
416 				 rfclen, mid);
417 			return -EIO;
418 		} else if (rfclen > clc_len + 512) {
419 			/*
420 			 * Some servers (Windows XP in particular) send more
421 			 * data than the lengths in the SMB packet would
422 			 * indicate on certain calls (byte range locks and
423 			 * trans2 find first calls in particular). While the
424 			 * client can handle such a frame by ignoring the
425 			 * trailing data, we choose limit the amount of extra
426 			 * data to 512 bytes.
427 			 */
428 			cifs_dbg(VFS, "RFC1001 size %u more than 512 bytes larger than SMB for mid=%u\n",
429 				 rfclen, mid);
430 			return -EIO;
431 		}
432 	}
433 	return 0;
434 }
435 
436 bool
437 is_valid_oplock_break(char *buffer, struct TCP_Server_Info *srv)
438 {
439 	struct smb_hdr *buf = (struct smb_hdr *)buffer;
440 	struct smb_com_lock_req *pSMB = (struct smb_com_lock_req *)buf;
441 	struct TCP_Server_Info *pserver;
442 	struct cifs_ses *ses;
443 	struct cifs_tcon *tcon;
444 	struct cifsInodeInfo *pCifsInode;
445 	struct cifsFileInfo *netfile;
446 
447 	cifs_dbg(FYI, "Checking for oplock break or dnotify response\n");
448 	if ((pSMB->hdr.Command == SMB_COM_NT_TRANSACT) &&
449 	   (pSMB->hdr.Flags & SMBFLG_RESPONSE)) {
450 		struct smb_com_transaction_change_notify_rsp *pSMBr =
451 			(struct smb_com_transaction_change_notify_rsp *)buf;
452 		struct file_notify_information *pnotify;
453 		__u32 data_offset = 0;
454 		size_t len = srv->total_read - sizeof(pSMBr->hdr.smb_buf_length);
455 
456 		if (get_bcc(buf) > sizeof(struct file_notify_information)) {
457 			data_offset = le32_to_cpu(pSMBr->DataOffset);
458 
459 			if (data_offset >
460 			    len - sizeof(struct file_notify_information)) {
461 				cifs_dbg(FYI, "Invalid data_offset %u\n",
462 					 data_offset);
463 				return true;
464 			}
465 			pnotify = (struct file_notify_information *)
466 				((char *)&pSMBr->hdr.Protocol + data_offset);
467 			cifs_dbg(FYI, "dnotify on %s Action: 0x%x\n",
468 				 pnotify->FileName, pnotify->Action);
469 			/*   cifs_dump_mem("Rcvd notify Data: ",buf,
470 				sizeof(struct smb_hdr)+60); */
471 			return true;
472 		}
473 		if (pSMBr->hdr.Status.CifsError) {
474 			cifs_dbg(FYI, "notify err 0x%x\n",
475 				 pSMBr->hdr.Status.CifsError);
476 			return true;
477 		}
478 		return false;
479 	}
480 	if (pSMB->hdr.Command != SMB_COM_LOCKING_ANDX)
481 		return false;
482 	if (pSMB->hdr.Flags & SMBFLG_RESPONSE) {
483 		/* no sense logging error on invalid handle on oplock
484 		   break - harmless race between close request and oplock
485 		   break response is expected from time to time writing out
486 		   large dirty files cached on the client */
487 		if ((NT_STATUS_INVALID_HANDLE) ==
488 		   le32_to_cpu(pSMB->hdr.Status.CifsError)) {
489 			cifs_dbg(FYI, "Invalid handle on oplock break\n");
490 			return true;
491 		} else if (ERRbadfid ==
492 		   le16_to_cpu(pSMB->hdr.Status.DosError.Error)) {
493 			return true;
494 		} else {
495 			return false; /* on valid oplock brk we get "request" */
496 		}
497 	}
498 	if (pSMB->hdr.WordCount != 8)
499 		return false;
500 
501 	cifs_dbg(FYI, "oplock type 0x%x level 0x%x\n",
502 		 pSMB->LockType, pSMB->OplockLevel);
503 	if (!(pSMB->LockType & LOCKING_ANDX_OPLOCK_RELEASE))
504 		return false;
505 
506 	/* If server is a channel, select the primary channel */
507 	pserver = SERVER_IS_CHAN(srv) ? srv->primary_server : srv;
508 
509 	/* look up tcon based on tid & uid */
510 	spin_lock(&cifs_tcp_ses_lock);
511 	list_for_each_entry(ses, &pserver->smb_ses_list, smb_ses_list) {
512 		if (cifs_ses_exiting(ses))
513 			continue;
514 		list_for_each_entry(tcon, &ses->tcon_list, tcon_list) {
515 			if (tcon->tid != buf->Tid)
516 				continue;
517 
518 			cifs_stats_inc(&tcon->stats.cifs_stats.num_oplock_brks);
519 			spin_lock(&tcon->open_file_lock);
520 			list_for_each_entry(netfile, &tcon->openFileList, tlist) {
521 				if (pSMB->Fid != netfile->fid.netfid)
522 					continue;
523 
524 				cifs_dbg(FYI, "file id match, oplock break\n");
525 				pCifsInode = CIFS_I(d_inode(netfile->dentry));
526 
527 				set_bit(CIFS_INODE_PENDING_OPLOCK_BREAK,
528 					&pCifsInode->flags);
529 
530 				netfile->oplock_epoch = 0;
531 				netfile->oplock_level = pSMB->OplockLevel;
532 				netfile->oplock_break_cancelled = false;
533 				cifs_queue_oplock_break(netfile);
534 
535 				spin_unlock(&tcon->open_file_lock);
536 				spin_unlock(&cifs_tcp_ses_lock);
537 				return true;
538 			}
539 			spin_unlock(&tcon->open_file_lock);
540 			spin_unlock(&cifs_tcp_ses_lock);
541 			cifs_dbg(FYI, "No matching file for oplock break\n");
542 			return true;
543 		}
544 	}
545 	spin_unlock(&cifs_tcp_ses_lock);
546 	cifs_dbg(FYI, "Can not process oplock break for non-existent connection\n");
547 	return true;
548 }
549 
550 void
551 dump_smb(void *buf, int smb_buf_length)
552 {
553 	if (traceSMB == 0)
554 		return;
555 
556 	print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_NONE, 8, 2, buf,
557 		       smb_buf_length, true);
558 }
559 
560 void
561 cifs_autodisable_serverino(struct cifs_sb_info *cifs_sb)
562 {
563 	if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_SERVER_INUM) {
564 		struct cifs_tcon *tcon = NULL;
565 
566 		if (cifs_sb->master_tlink)
567 			tcon = cifs_sb_master_tcon(cifs_sb);
568 
569 		cifs_sb->mnt_cifs_flags &= ~CIFS_MOUNT_SERVER_INUM;
570 		cifs_sb->mnt_cifs_serverino_autodisabled = true;
571 		cifs_dbg(VFS, "Autodisabling the use of server inode numbers on %s\n",
572 			 tcon ? tcon->tree_name : "new server");
573 		cifs_dbg(VFS, "The server doesn't seem to support them properly or the files might be on different servers (DFS)\n");
574 		cifs_dbg(VFS, "Hardlinks will not be recognized on this mount. Consider mounting with the \"noserverino\" option to silence this message.\n");
575 
576 	}
577 }
578 
579 void cifs_set_oplock_level(struct cifsInodeInfo *cinode, __u32 oplock)
580 {
581 	oplock &= 0xF;
582 
583 	if (oplock == OPLOCK_EXCLUSIVE) {
584 		cinode->oplock = CIFS_CACHE_WRITE_FLG | CIFS_CACHE_READ_FLG;
585 		cifs_dbg(FYI, "Exclusive Oplock granted on inode %p\n",
586 			 &cinode->netfs.inode);
587 	} else if (oplock == OPLOCK_READ) {
588 		cinode->oplock = CIFS_CACHE_READ_FLG;
589 		cifs_dbg(FYI, "Level II Oplock granted on inode %p\n",
590 			 &cinode->netfs.inode);
591 	} else
592 		cinode->oplock = 0;
593 }
594 
595 /*
596  * We wait for oplock breaks to be processed before we attempt to perform
597  * writes.
598  */
599 int cifs_get_writer(struct cifsInodeInfo *cinode)
600 {
601 	int rc;
602 
603 start:
604 	rc = wait_on_bit(&cinode->flags, CIFS_INODE_PENDING_OPLOCK_BREAK,
605 			 TASK_KILLABLE);
606 	if (rc)
607 		return rc;
608 
609 	spin_lock(&cinode->writers_lock);
610 	if (!cinode->writers)
611 		set_bit(CIFS_INODE_PENDING_WRITERS, &cinode->flags);
612 	cinode->writers++;
613 	/* Check to see if we have started servicing an oplock break */
614 	if (test_bit(CIFS_INODE_PENDING_OPLOCK_BREAK, &cinode->flags)) {
615 		cinode->writers--;
616 		if (cinode->writers == 0) {
617 			clear_bit(CIFS_INODE_PENDING_WRITERS, &cinode->flags);
618 			wake_up_bit(&cinode->flags, CIFS_INODE_PENDING_WRITERS);
619 		}
620 		spin_unlock(&cinode->writers_lock);
621 		goto start;
622 	}
623 	spin_unlock(&cinode->writers_lock);
624 	return 0;
625 }
626 
627 void cifs_put_writer(struct cifsInodeInfo *cinode)
628 {
629 	spin_lock(&cinode->writers_lock);
630 	cinode->writers--;
631 	if (cinode->writers == 0) {
632 		clear_bit(CIFS_INODE_PENDING_WRITERS, &cinode->flags);
633 		wake_up_bit(&cinode->flags, CIFS_INODE_PENDING_WRITERS);
634 	}
635 	spin_unlock(&cinode->writers_lock);
636 }
637 
638 /**
639  * cifs_queue_oplock_break - queue the oplock break handler for cfile
640  * @cfile: The file to break the oplock on
641  *
642  * This function is called from the demultiplex thread when it
643  * receives an oplock break for @cfile.
644  *
645  * Assumes the tcon->open_file_lock is held.
646  * Assumes cfile->file_info_lock is NOT held.
647  */
648 void cifs_queue_oplock_break(struct cifsFileInfo *cfile)
649 {
650 	/*
651 	 * Bump the handle refcount now while we hold the
652 	 * open_file_lock to enforce the validity of it for the oplock
653 	 * break handler. The matching put is done at the end of the
654 	 * handler.
655 	 */
656 	cifsFileInfo_get(cfile);
657 
658 	queue_work(cifsoplockd_wq, &cfile->oplock_break);
659 }
660 
661 void cifs_done_oplock_break(struct cifsInodeInfo *cinode)
662 {
663 	clear_bit(CIFS_INODE_PENDING_OPLOCK_BREAK, &cinode->flags);
664 	wake_up_bit(&cinode->flags, CIFS_INODE_PENDING_OPLOCK_BREAK);
665 }
666 
667 bool
668 backup_cred(struct cifs_sb_info *cifs_sb)
669 {
670 	if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_CIFS_BACKUPUID) {
671 		if (uid_eq(cifs_sb->ctx->backupuid, current_fsuid()))
672 			return true;
673 	}
674 	if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_CIFS_BACKUPGID) {
675 		if (in_group_p(cifs_sb->ctx->backupgid))
676 			return true;
677 	}
678 
679 	return false;
680 }
681 
682 void
683 cifs_del_pending_open(struct cifs_pending_open *open)
684 {
685 	spin_lock(&tlink_tcon(open->tlink)->open_file_lock);
686 	list_del(&open->olist);
687 	spin_unlock(&tlink_tcon(open->tlink)->open_file_lock);
688 }
689 
690 void
691 cifs_add_pending_open_locked(struct cifs_fid *fid, struct tcon_link *tlink,
692 			     struct cifs_pending_open *open)
693 {
694 	memcpy(open->lease_key, fid->lease_key, SMB2_LEASE_KEY_SIZE);
695 	open->oplock = CIFS_OPLOCK_NO_CHANGE;
696 	open->tlink = tlink;
697 	fid->pending_open = open;
698 	list_add_tail(&open->olist, &tlink_tcon(tlink)->pending_opens);
699 }
700 
701 void
702 cifs_add_pending_open(struct cifs_fid *fid, struct tcon_link *tlink,
703 		      struct cifs_pending_open *open)
704 {
705 	spin_lock(&tlink_tcon(tlink)->open_file_lock);
706 	cifs_add_pending_open_locked(fid, tlink, open);
707 	spin_unlock(&tlink_tcon(open->tlink)->open_file_lock);
708 }
709 
710 /*
711  * Critical section which runs after acquiring deferred_lock.
712  * As there is no reference count on cifs_deferred_close, pdclose
713  * should not be used outside deferred_lock.
714  */
715 bool
716 cifs_is_deferred_close(struct cifsFileInfo *cfile, struct cifs_deferred_close **pdclose)
717 {
718 	struct cifs_deferred_close *dclose;
719 
720 	list_for_each_entry(dclose, &CIFS_I(d_inode(cfile->dentry))->deferred_closes, dlist) {
721 		if ((dclose->netfid == cfile->fid.netfid) &&
722 			(dclose->persistent_fid == cfile->fid.persistent_fid) &&
723 			(dclose->volatile_fid == cfile->fid.volatile_fid)) {
724 			*pdclose = dclose;
725 			return true;
726 		}
727 	}
728 	return false;
729 }
730 
731 /*
732  * Critical section which runs after acquiring deferred_lock.
733  */
734 void
735 cifs_add_deferred_close(struct cifsFileInfo *cfile, struct cifs_deferred_close *dclose)
736 {
737 	bool is_deferred = false;
738 	struct cifs_deferred_close *pdclose;
739 
740 	is_deferred = cifs_is_deferred_close(cfile, &pdclose);
741 	if (is_deferred) {
742 		kfree(dclose);
743 		return;
744 	}
745 
746 	dclose->tlink = cfile->tlink;
747 	dclose->netfid = cfile->fid.netfid;
748 	dclose->persistent_fid = cfile->fid.persistent_fid;
749 	dclose->volatile_fid = cfile->fid.volatile_fid;
750 	list_add_tail(&dclose->dlist, &CIFS_I(d_inode(cfile->dentry))->deferred_closes);
751 }
752 
753 /*
754  * Critical section which runs after acquiring deferred_lock.
755  */
756 void
757 cifs_del_deferred_close(struct cifsFileInfo *cfile)
758 {
759 	bool is_deferred = false;
760 	struct cifs_deferred_close *dclose;
761 
762 	is_deferred = cifs_is_deferred_close(cfile, &dclose);
763 	if (!is_deferred)
764 		return;
765 	list_del(&dclose->dlist);
766 	kfree(dclose);
767 }
768 
769 void
770 cifs_close_deferred_file(struct cifsInodeInfo *cifs_inode)
771 {
772 	struct cifsFileInfo *cfile = NULL;
773 	struct file_list *tmp_list, *tmp_next_list;
774 	LIST_HEAD(file_head);
775 
776 	if (cifs_inode == NULL)
777 		return;
778 
779 	spin_lock(&cifs_inode->open_file_lock);
780 	list_for_each_entry(cfile, &cifs_inode->openFileList, flist) {
781 		if (delayed_work_pending(&cfile->deferred)) {
782 			if (cancel_delayed_work(&cfile->deferred)) {
783 				spin_lock(&cifs_inode->deferred_lock);
784 				cifs_del_deferred_close(cfile);
785 				spin_unlock(&cifs_inode->deferred_lock);
786 
787 				tmp_list = kmalloc(sizeof(struct file_list), GFP_ATOMIC);
788 				if (tmp_list == NULL)
789 					break;
790 				tmp_list->cfile = cfile;
791 				list_add_tail(&tmp_list->list, &file_head);
792 			}
793 		}
794 	}
795 	spin_unlock(&cifs_inode->open_file_lock);
796 
797 	list_for_each_entry_safe(tmp_list, tmp_next_list, &file_head, list) {
798 		_cifsFileInfo_put(tmp_list->cfile, false, false);
799 		list_del(&tmp_list->list);
800 		kfree(tmp_list);
801 	}
802 }
803 
804 void
805 cifs_close_all_deferred_files(struct cifs_tcon *tcon)
806 {
807 	struct cifsFileInfo *cfile;
808 	struct file_list *tmp_list, *tmp_next_list;
809 	LIST_HEAD(file_head);
810 
811 	spin_lock(&tcon->open_file_lock);
812 	list_for_each_entry(cfile, &tcon->openFileList, tlist) {
813 		if (delayed_work_pending(&cfile->deferred)) {
814 			if (cancel_delayed_work(&cfile->deferred)) {
815 				spin_lock(&CIFS_I(d_inode(cfile->dentry))->deferred_lock);
816 				cifs_del_deferred_close(cfile);
817 				spin_unlock(&CIFS_I(d_inode(cfile->dentry))->deferred_lock);
818 
819 				tmp_list = kmalloc(sizeof(struct file_list), GFP_ATOMIC);
820 				if (tmp_list == NULL)
821 					break;
822 				tmp_list->cfile = cfile;
823 				list_add_tail(&tmp_list->list, &file_head);
824 			}
825 		}
826 	}
827 	spin_unlock(&tcon->open_file_lock);
828 
829 	list_for_each_entry_safe(tmp_list, tmp_next_list, &file_head, list) {
830 		_cifsFileInfo_put(tmp_list->cfile, true, false);
831 		list_del(&tmp_list->list);
832 		kfree(tmp_list);
833 	}
834 }
835 
836 void cifs_close_deferred_file_under_dentry(struct cifs_tcon *tcon,
837 					   struct dentry *dentry)
838 {
839 	struct file_list *tmp_list, *tmp_next_list;
840 	struct cifsFileInfo *cfile;
841 	LIST_HEAD(file_head);
842 
843 	spin_lock(&tcon->open_file_lock);
844 	list_for_each_entry(cfile, &tcon->openFileList, tlist) {
845 		if ((cfile->dentry == dentry) &&
846 		    delayed_work_pending(&cfile->deferred) &&
847 		    cancel_delayed_work(&cfile->deferred)) {
848 			spin_lock(&CIFS_I(d_inode(cfile->dentry))->deferred_lock);
849 			cifs_del_deferred_close(cfile);
850 			spin_unlock(&CIFS_I(d_inode(cfile->dentry))->deferred_lock);
851 
852 			tmp_list = kmalloc(sizeof(struct file_list), GFP_ATOMIC);
853 			if (tmp_list == NULL)
854 				break;
855 			tmp_list->cfile = cfile;
856 			list_add_tail(&tmp_list->list, &file_head);
857 		}
858 	}
859 	spin_unlock(&tcon->open_file_lock);
860 
861 	list_for_each_entry_safe(tmp_list, tmp_next_list, &file_head, list) {
862 		_cifsFileInfo_put(tmp_list->cfile, true, false);
863 		list_del(&tmp_list->list);
864 		kfree(tmp_list);
865 	}
866 }
867 
868 /*
869  * If a dentry has been deleted, all corresponding open handles should know that
870  * so that we do not defer close them.
871  */
872 void cifs_mark_open_handles_for_deleted_file(struct inode *inode,
873 					     const char *path)
874 {
875 	struct cifsFileInfo *cfile;
876 	void *page;
877 	const char *full_path;
878 	struct cifsInodeInfo *cinode = CIFS_I(inode);
879 
880 	page = alloc_dentry_path();
881 	spin_lock(&cinode->open_file_lock);
882 
883 	/*
884 	 * note: we need to construct path from dentry and compare only if the
885 	 * inode has any hardlinks. When number of hardlinks is 1, we can just
886 	 * mark all open handles since they are going to be from the same file.
887 	 */
888 	if (inode->i_nlink > 1) {
889 		list_for_each_entry(cfile, &cinode->openFileList, flist) {
890 			full_path = build_path_from_dentry(cfile->dentry, page);
891 			if (!IS_ERR(full_path) && strcmp(full_path, path) == 0)
892 				cfile->status_file_deleted = true;
893 		}
894 	} else {
895 		list_for_each_entry(cfile, &cinode->openFileList, flist)
896 			cfile->status_file_deleted = true;
897 	}
898 	spin_unlock(&cinode->open_file_lock);
899 	free_dentry_path(page);
900 }
901 
902 /* parses DFS referral V3 structure
903  * caller is responsible for freeing target_nodes
904  * returns:
905  * - on success - 0
906  * - on failure - errno
907  */
908 int
909 parse_dfs_referrals(struct get_dfs_referral_rsp *rsp, u32 rsp_size,
910 		    unsigned int *num_of_nodes,
911 		    struct dfs_info3_param **target_nodes,
912 		    const struct nls_table *nls_codepage, int remap,
913 		    const char *searchName, bool is_unicode)
914 {
915 	int i, rc = 0;
916 	char *data_end;
917 	struct dfs_referral_level_3 *ref;
918 
919 	*num_of_nodes = le16_to_cpu(rsp->NumberOfReferrals);
920 
921 	if (*num_of_nodes < 1) {
922 		cifs_dbg(VFS | ONCE, "%s: [path=%s] num_referrals must be at least > 0, but we got %d\n",
923 			 __func__, searchName, *num_of_nodes);
924 		rc = -ENOENT;
925 		goto parse_DFS_referrals_exit;
926 	}
927 
928 	ref = (struct dfs_referral_level_3 *) &(rsp->referrals);
929 	if (ref->VersionNumber != cpu_to_le16(3)) {
930 		cifs_dbg(VFS, "Referrals of V%d version are not supported, should be V3\n",
931 			 le16_to_cpu(ref->VersionNumber));
932 		rc = -EINVAL;
933 		goto parse_DFS_referrals_exit;
934 	}
935 
936 	/* get the upper boundary of the resp buffer */
937 	data_end = (char *)rsp + rsp_size;
938 
939 	cifs_dbg(FYI, "num_referrals: %d dfs flags: 0x%x ...\n",
940 		 *num_of_nodes, le32_to_cpu(rsp->DFSFlags));
941 
942 	*target_nodes = kcalloc(*num_of_nodes, sizeof(struct dfs_info3_param),
943 				GFP_KERNEL);
944 	if (*target_nodes == NULL) {
945 		rc = -ENOMEM;
946 		goto parse_DFS_referrals_exit;
947 	}
948 
949 	/* collect necessary data from referrals */
950 	for (i = 0; i < *num_of_nodes; i++) {
951 		char *temp;
952 		int max_len;
953 		struct dfs_info3_param *node = (*target_nodes)+i;
954 
955 		node->flags = le32_to_cpu(rsp->DFSFlags);
956 		if (is_unicode) {
957 			__le16 *tmp = kmalloc(strlen(searchName)*2 + 2,
958 						GFP_KERNEL);
959 			if (tmp == NULL) {
960 				rc = -ENOMEM;
961 				goto parse_DFS_referrals_exit;
962 			}
963 			cifsConvertToUTF16((__le16 *) tmp, searchName,
964 					   PATH_MAX, nls_codepage, remap);
965 			node->path_consumed = cifs_utf16_bytes(tmp,
966 					le16_to_cpu(rsp->PathConsumed),
967 					nls_codepage);
968 			kfree(tmp);
969 		} else
970 			node->path_consumed = le16_to_cpu(rsp->PathConsumed);
971 
972 		node->server_type = le16_to_cpu(ref->ServerType);
973 		node->ref_flag = le16_to_cpu(ref->ReferralEntryFlags);
974 
975 		/* copy DfsPath */
976 		temp = (char *)ref + le16_to_cpu(ref->DfsPathOffset);
977 		max_len = data_end - temp;
978 		node->path_name = cifs_strndup_from_utf16(temp, max_len,
979 						is_unicode, nls_codepage);
980 		if (!node->path_name) {
981 			rc = -ENOMEM;
982 			goto parse_DFS_referrals_exit;
983 		}
984 
985 		/* copy link target UNC */
986 		temp = (char *)ref + le16_to_cpu(ref->NetworkAddressOffset);
987 		max_len = data_end - temp;
988 		node->node_name = cifs_strndup_from_utf16(temp, max_len,
989 						is_unicode, nls_codepage);
990 		if (!node->node_name) {
991 			rc = -ENOMEM;
992 			goto parse_DFS_referrals_exit;
993 		}
994 
995 		node->ttl = le32_to_cpu(ref->TimeToLive);
996 
997 		ref++;
998 	}
999 
1000 parse_DFS_referrals_exit:
1001 	if (rc) {
1002 		free_dfs_info_array(*target_nodes, *num_of_nodes);
1003 		*target_nodes = NULL;
1004 		*num_of_nodes = 0;
1005 	}
1006 	return rc;
1007 }
1008 
1009 /**
1010  * cifs_alloc_hash - allocate hash and hash context together
1011  * @name: The name of the crypto hash algo
1012  * @sdesc: SHASH descriptor where to put the pointer to the hash TFM
1013  *
1014  * The caller has to make sure @sdesc is initialized to either NULL or
1015  * a valid context. It can be freed via cifs_free_hash().
1016  */
1017 int
1018 cifs_alloc_hash(const char *name, struct shash_desc **sdesc)
1019 {
1020 	int rc = 0;
1021 	struct crypto_shash *alg = NULL;
1022 
1023 	if (*sdesc)
1024 		return 0;
1025 
1026 	alg = crypto_alloc_shash(name, 0, 0);
1027 	if (IS_ERR(alg)) {
1028 		cifs_dbg(VFS, "Could not allocate shash TFM '%s'\n", name);
1029 		rc = PTR_ERR(alg);
1030 		*sdesc = NULL;
1031 		return rc;
1032 	}
1033 
1034 	*sdesc = kmalloc(sizeof(struct shash_desc) + crypto_shash_descsize(alg), GFP_KERNEL);
1035 	if (*sdesc == NULL) {
1036 		cifs_dbg(VFS, "no memory left to allocate shash TFM '%s'\n", name);
1037 		crypto_free_shash(alg);
1038 		return -ENOMEM;
1039 	}
1040 
1041 	(*sdesc)->tfm = alg;
1042 	return 0;
1043 }
1044 
1045 /**
1046  * cifs_free_hash - free hash and hash context together
1047  * @sdesc: Where to find the pointer to the hash TFM
1048  *
1049  * Freeing a NULL descriptor is safe.
1050  */
1051 void
1052 cifs_free_hash(struct shash_desc **sdesc)
1053 {
1054 	if (unlikely(!sdesc) || !*sdesc)
1055 		return;
1056 
1057 	if ((*sdesc)->tfm) {
1058 		crypto_free_shash((*sdesc)->tfm);
1059 		(*sdesc)->tfm = NULL;
1060 	}
1061 
1062 	kfree_sensitive(*sdesc);
1063 	*sdesc = NULL;
1064 }
1065 
1066 void extract_unc_hostname(const char *unc, const char **h, size_t *len)
1067 {
1068 	const char *end;
1069 
1070 	/* skip initial slashes */
1071 	while (*unc && (*unc == '\\' || *unc == '/'))
1072 		unc++;
1073 
1074 	end = unc;
1075 
1076 	while (*end && !(*end == '\\' || *end == '/'))
1077 		end++;
1078 
1079 	*h = unc;
1080 	*len = end - unc;
1081 }
1082 
1083 /**
1084  * copy_path_name - copy src path to dst, possibly truncating
1085  * @dst: The destination buffer
1086  * @src: The source name
1087  *
1088  * returns number of bytes written (including trailing nul)
1089  */
1090 int copy_path_name(char *dst, const char *src)
1091 {
1092 	int name_len;
1093 
1094 	/*
1095 	 * PATH_MAX includes nul, so if strlen(src) >= PATH_MAX it
1096 	 * will truncate and strlen(dst) will be PATH_MAX-1
1097 	 */
1098 	name_len = strscpy(dst, src, PATH_MAX);
1099 	if (WARN_ON_ONCE(name_len < 0))
1100 		name_len = PATH_MAX-1;
1101 
1102 	/* we count the trailing nul */
1103 	name_len++;
1104 	return name_len;
1105 }
1106 
1107 struct super_cb_data {
1108 	void *data;
1109 	struct super_block *sb;
1110 };
1111 
1112 static void tcon_super_cb(struct super_block *sb, void *arg)
1113 {
1114 	struct super_cb_data *sd = arg;
1115 	struct cifs_sb_info *cifs_sb;
1116 	struct cifs_tcon *t1 = sd->data, *t2;
1117 
1118 	if (sd->sb)
1119 		return;
1120 
1121 	cifs_sb = CIFS_SB(sb);
1122 	t2 = cifs_sb_master_tcon(cifs_sb);
1123 
1124 	spin_lock(&t2->tc_lock);
1125 	if ((t1->ses == t2->ses ||
1126 	     t1->ses->dfs_root_ses == t2->ses->dfs_root_ses) &&
1127 	    t1->ses->server == t2->ses->server &&
1128 	    t2->origin_fullpath &&
1129 	    dfs_src_pathname_equal(t2->origin_fullpath, t1->origin_fullpath))
1130 		sd->sb = sb;
1131 	spin_unlock(&t2->tc_lock);
1132 }
1133 
1134 static struct super_block *__cifs_get_super(void (*f)(struct super_block *, void *),
1135 					    void *data)
1136 {
1137 	struct super_cb_data sd = {
1138 		.data = data,
1139 		.sb = NULL,
1140 	};
1141 	struct file_system_type **fs_type = (struct file_system_type *[]) {
1142 		&cifs_fs_type, &smb3_fs_type, NULL,
1143 	};
1144 
1145 	for (; *fs_type; fs_type++) {
1146 		iterate_supers_type(*fs_type, f, &sd);
1147 		if (sd.sb) {
1148 			/*
1149 			 * Grab an active reference in order to prevent automounts (DFS links)
1150 			 * of expiring and then freeing up our cifs superblock pointer while
1151 			 * we're doing failover.
1152 			 */
1153 			cifs_sb_active(sd.sb);
1154 			return sd.sb;
1155 		}
1156 	}
1157 	pr_warn_once("%s: could not find dfs superblock\n", __func__);
1158 	return ERR_PTR(-EINVAL);
1159 }
1160 
1161 static void __cifs_put_super(struct super_block *sb)
1162 {
1163 	if (!IS_ERR_OR_NULL(sb))
1164 		cifs_sb_deactive(sb);
1165 }
1166 
1167 struct super_block *cifs_get_dfs_tcon_super(struct cifs_tcon *tcon)
1168 {
1169 	spin_lock(&tcon->tc_lock);
1170 	if (!tcon->origin_fullpath) {
1171 		spin_unlock(&tcon->tc_lock);
1172 		return ERR_PTR(-ENOENT);
1173 	}
1174 	spin_unlock(&tcon->tc_lock);
1175 	return __cifs_get_super(tcon_super_cb, tcon);
1176 }
1177 
1178 void cifs_put_tcp_super(struct super_block *sb)
1179 {
1180 	__cifs_put_super(sb);
1181 }
1182 
1183 #ifdef CONFIG_CIFS_DFS_UPCALL
1184 int match_target_ip(struct TCP_Server_Info *server,
1185 		    const char *host, size_t hostlen,
1186 		    bool *result)
1187 {
1188 	struct sockaddr_storage ss;
1189 	int rc;
1190 
1191 	cifs_dbg(FYI, "%s: hostname=%.*s\n", __func__, (int)hostlen, host);
1192 
1193 	*result = false;
1194 
1195 	rc = dns_resolve_name(server->dns_dom, host, hostlen,
1196 			      (struct sockaddr *)&ss);
1197 	if (rc < 0)
1198 		return rc;
1199 
1200 	spin_lock(&server->srv_lock);
1201 	*result = cifs_match_ipaddr((struct sockaddr *)&server->dstaddr, (struct sockaddr *)&ss);
1202 	spin_unlock(&server->srv_lock);
1203 	cifs_dbg(FYI, "%s: ip addresses matched: %s\n", __func__, str_yes_no(*result));
1204 	return 0;
1205 }
1206 
1207 int cifs_update_super_prepath(struct cifs_sb_info *cifs_sb, char *prefix)
1208 {
1209 	int rc;
1210 
1211 	kfree(cifs_sb->prepath);
1212 	cifs_sb->prepath = NULL;
1213 
1214 	if (prefix && *prefix) {
1215 		cifs_sb->prepath = cifs_sanitize_prepath(prefix, GFP_ATOMIC);
1216 		if (IS_ERR(cifs_sb->prepath)) {
1217 			rc = PTR_ERR(cifs_sb->prepath);
1218 			cifs_sb->prepath = NULL;
1219 			return rc;
1220 		}
1221 		if (cifs_sb->prepath)
1222 			convert_delimiter(cifs_sb->prepath, CIFS_DIR_SEP(cifs_sb));
1223 	}
1224 
1225 	cifs_sb->mnt_cifs_flags |= CIFS_MOUNT_USE_PREFIX_PATH;
1226 	return 0;
1227 }
1228 
1229 /*
1230  * Handle weird Windows SMB server behaviour. It responds with
1231  * STATUS_OBJECT_NAME_INVALID code to SMB2 QUERY_INFO request for
1232  * "\<server>\<dfsname>\<linkpath>" DFS reference, where <dfsname> contains
1233  * non-ASCII unicode symbols.
1234  */
1235 int cifs_inval_name_dfs_link_error(const unsigned int xid,
1236 				   struct cifs_tcon *tcon,
1237 				   struct cifs_sb_info *cifs_sb,
1238 				   const char *full_path,
1239 				   bool *islink)
1240 {
1241 	struct TCP_Server_Info *server = tcon->ses->server;
1242 	struct cifs_ses *ses = tcon->ses;
1243 	size_t len;
1244 	char *path;
1245 	char *ref_path;
1246 
1247 	*islink = false;
1248 
1249 	/*
1250 	 * Fast path - skip check when @full_path doesn't have a prefix path to
1251 	 * look up or tcon is not DFS.
1252 	 */
1253 	if (strlen(full_path) < 2 || !cifs_sb ||
1254 	    (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_NO_DFS) ||
1255 	    !is_tcon_dfs(tcon))
1256 		return 0;
1257 
1258 	spin_lock(&server->srv_lock);
1259 	if (!server->leaf_fullpath) {
1260 		spin_unlock(&server->srv_lock);
1261 		return 0;
1262 	}
1263 	spin_unlock(&server->srv_lock);
1264 
1265 	/*
1266 	 * Slow path - tcon is DFS and @full_path has prefix path, so attempt
1267 	 * to get a referral to figure out whether it is an DFS link.
1268 	 */
1269 	len = strnlen(tcon->tree_name, MAX_TREE_SIZE + 1) + strlen(full_path) + 1;
1270 	path = kmalloc(len, GFP_KERNEL);
1271 	if (!path)
1272 		return -ENOMEM;
1273 
1274 	scnprintf(path, len, "%s%s", tcon->tree_name, full_path);
1275 	ref_path = dfs_cache_canonical_path(path + 1, cifs_sb->local_nls,
1276 					    cifs_remap(cifs_sb));
1277 	kfree(path);
1278 
1279 	if (IS_ERR(ref_path)) {
1280 		if (PTR_ERR(ref_path) != -EINVAL)
1281 			return PTR_ERR(ref_path);
1282 	} else {
1283 		struct dfs_info3_param *refs = NULL;
1284 		int num_refs = 0;
1285 
1286 		/*
1287 		 * XXX: we are not using dfs_cache_find() here because we might
1288 		 * end up filling all the DFS cache and thus potentially
1289 		 * removing cached DFS targets that the client would eventually
1290 		 * need during failover.
1291 		 */
1292 		ses = CIFS_DFS_ROOT_SES(ses);
1293 		if (ses->server->ops->get_dfs_refer &&
1294 		    !ses->server->ops->get_dfs_refer(xid, ses, ref_path, &refs,
1295 						     &num_refs, cifs_sb->local_nls,
1296 						     cifs_remap(cifs_sb)))
1297 			*islink = refs[0].server_type == DFS_TYPE_LINK;
1298 		free_dfs_info_array(refs, num_refs);
1299 		kfree(ref_path);
1300 	}
1301 	return 0;
1302 }
1303 #endif
1304 
1305 int cifs_wait_for_server_reconnect(struct TCP_Server_Info *server, bool retry)
1306 {
1307 	int timeout = 10;
1308 	int rc;
1309 
1310 	spin_lock(&server->srv_lock);
1311 	if (server->tcpStatus != CifsNeedReconnect) {
1312 		spin_unlock(&server->srv_lock);
1313 		return 0;
1314 	}
1315 	timeout *= server->nr_targets;
1316 	spin_unlock(&server->srv_lock);
1317 
1318 	/*
1319 	 * Give demultiplex thread up to 10 seconds to each target available for
1320 	 * reconnect -- should be greater than cifs socket timeout which is 7
1321 	 * seconds.
1322 	 *
1323 	 * On "soft" mounts we wait once. Hard mounts keep retrying until
1324 	 * process is killed or server comes back on-line.
1325 	 */
1326 	do {
1327 		rc = wait_event_interruptible_timeout(server->response_q,
1328 						      (server->tcpStatus != CifsNeedReconnect),
1329 						      timeout * HZ);
1330 		if (rc < 0) {
1331 			cifs_dbg(FYI, "%s: aborting reconnect due to received signal\n",
1332 				 __func__);
1333 			return -ERESTARTSYS;
1334 		}
1335 
1336 		/* are we still trying to reconnect? */
1337 		spin_lock(&server->srv_lock);
1338 		if (server->tcpStatus != CifsNeedReconnect) {
1339 			spin_unlock(&server->srv_lock);
1340 			return 0;
1341 		}
1342 		spin_unlock(&server->srv_lock);
1343 	} while (retry);
1344 
1345 	cifs_dbg(FYI, "%s: gave up waiting on reconnect\n", __func__);
1346 	return -EHOSTDOWN;
1347 }
1348