1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * DFS referral cache routines 4 * 5 * Copyright (c) 2018-2019 Paulo Alcantara <palcantara@suse.de> 6 */ 7 8 #include <linux/jhash.h> 9 #include <linux/ktime.h> 10 #include <linux/slab.h> 11 #include <linux/proc_fs.h> 12 #include <linux/nls.h> 13 #include <linux/workqueue.h> 14 #include <linux/uuid.h> 15 #include "cifsglob.h" 16 #include "smb2pdu.h" 17 #include "smb2proto.h" 18 #include "cifsproto.h" 19 #include "cifs_debug.h" 20 #include "cifs_unicode.h" 21 #include "smb2glob.h" 22 #include "dns_resolve.h" 23 #include "dfs.h" 24 25 #include "dfs_cache.h" 26 27 #define CACHE_HTABLE_SIZE 512 28 #define CACHE_MAX_ENTRIES 1024 29 #define CACHE_MIN_TTL 120 /* 2 minutes */ 30 #define CACHE_DEFAULT_TTL 300 /* 5 minutes */ 31 32 struct cache_dfs_tgt { 33 char *name; 34 int path_consumed; 35 struct list_head list; 36 }; 37 38 struct cache_entry { 39 struct hlist_node hlist; 40 const char *path; 41 int hdr_flags; /* RESP_GET_DFS_REFERRAL.ReferralHeaderFlags */ 42 int ttl; /* DFS_REREFERRAL_V3.TimeToLive */ 43 int srvtype; /* DFS_REREFERRAL_V3.ServerType */ 44 int ref_flags; /* DFS_REREFERRAL_V3.ReferralEntryFlags */ 45 struct timespec64 etime; 46 int path_consumed; /* RESP_GET_DFS_REFERRAL.PathConsumed */ 47 int numtgts; 48 struct list_head tlist; 49 struct cache_dfs_tgt *tgthint; 50 }; 51 52 static struct kmem_cache *cache_slab __read_mostly; 53 struct workqueue_struct *dfscache_wq; 54 55 atomic_t dfs_cache_ttl; 56 57 static struct nls_table *cache_cp; 58 59 /* 60 * Number of entries in the cache 61 */ 62 static atomic_t cache_count; 63 64 static struct hlist_head cache_htable[CACHE_HTABLE_SIZE]; 65 static DECLARE_RWSEM(htable_rw_lock); 66 67 /** 68 * dfs_cache_canonical_path - get a canonical DFS path 69 * 70 * @path: DFS path 71 * @cp: codepage 72 * @remap: mapping type 73 * 74 * Return canonical path if success, otherwise error. 75 */ 76 char *dfs_cache_canonical_path(const char *path, const struct nls_table *cp, int remap) 77 { 78 char *tmp; 79 int plen = 0; 80 char *npath; 81 82 if (!path || strlen(path) < 3 || (*path != '\\' && *path != '/')) 83 return ERR_PTR(-EINVAL); 84 85 if (unlikely(strcmp(cp->charset, cache_cp->charset))) { 86 tmp = (char *)cifs_strndup_to_utf16(path, strlen(path), &plen, cp, remap); 87 if (!tmp) { 88 cifs_dbg(VFS, "%s: failed to convert path to utf16\n", __func__); 89 return ERR_PTR(-EINVAL); 90 } 91 92 npath = cifs_strndup_from_utf16(tmp, plen, true, cache_cp); 93 kfree(tmp); 94 95 if (!npath) { 96 cifs_dbg(VFS, "%s: failed to convert path from utf16\n", __func__); 97 return ERR_PTR(-EINVAL); 98 } 99 } else { 100 npath = kstrdup(path, GFP_KERNEL); 101 if (!npath) 102 return ERR_PTR(-ENOMEM); 103 } 104 convert_delimiter(npath, '\\'); 105 return npath; 106 } 107 108 static inline bool cache_entry_expired(const struct cache_entry *ce) 109 { 110 struct timespec64 ts; 111 112 ktime_get_coarse_real_ts64(&ts); 113 return timespec64_compare(&ts, &ce->etime) >= 0; 114 } 115 116 static inline void free_tgts(struct cache_entry *ce) 117 { 118 struct cache_dfs_tgt *t, *n; 119 120 list_for_each_entry_safe(t, n, &ce->tlist, list) { 121 list_del(&t->list); 122 kfree(t->name); 123 kfree(t); 124 } 125 } 126 127 static inline void flush_cache_ent(struct cache_entry *ce) 128 { 129 cifs_dbg(FYI, "%s: %s\n", __func__, ce->path); 130 hlist_del_init(&ce->hlist); 131 kfree(ce->path); 132 free_tgts(ce); 133 atomic_dec(&cache_count); 134 kmem_cache_free(cache_slab, ce); 135 } 136 137 static void flush_cache_ents(void) 138 { 139 int i; 140 141 for (i = 0; i < CACHE_HTABLE_SIZE; i++) { 142 struct hlist_head *l = &cache_htable[i]; 143 struct hlist_node *n; 144 struct cache_entry *ce; 145 146 hlist_for_each_entry_safe(ce, n, l, hlist) { 147 if (!hlist_unhashed(&ce->hlist)) 148 flush_cache_ent(ce); 149 } 150 } 151 } 152 153 /* 154 * dfs cache /proc file 155 */ 156 static int dfscache_proc_show(struct seq_file *m, void *v) 157 { 158 int i; 159 struct cache_entry *ce; 160 struct cache_dfs_tgt *t; 161 162 seq_puts(m, "DFS cache\n---------\n"); 163 164 down_read(&htable_rw_lock); 165 for (i = 0; i < CACHE_HTABLE_SIZE; i++) { 166 struct hlist_head *l = &cache_htable[i]; 167 168 hlist_for_each_entry(ce, l, hlist) { 169 if (hlist_unhashed(&ce->hlist)) 170 continue; 171 172 seq_printf(m, 173 "cache entry: path=%s,type=%s,ttl=%d,etime=%ld,hdr_flags=0x%x,ref_flags=0x%x,interlink=%s,path_consumed=%d,expired=%s\n", 174 ce->path, ce->srvtype == DFS_TYPE_ROOT ? "root" : "link", 175 ce->ttl, ce->etime.tv_nsec, ce->hdr_flags, ce->ref_flags, 176 str_yes_no(DFS_INTERLINK(ce->hdr_flags)), 177 ce->path_consumed, str_yes_no(cache_entry_expired(ce))); 178 179 list_for_each_entry(t, &ce->tlist, list) { 180 seq_printf(m, " %s%s\n", 181 t->name, 182 READ_ONCE(ce->tgthint) == t ? " (target hint)" : ""); 183 } 184 } 185 } 186 up_read(&htable_rw_lock); 187 188 return 0; 189 } 190 191 static ssize_t dfscache_proc_write(struct file *file, const char __user *buffer, 192 size_t count, loff_t *ppos) 193 { 194 char c; 195 int rc; 196 197 rc = get_user(c, buffer); 198 if (rc) 199 return rc; 200 201 if (c != '0') 202 return -EINVAL; 203 204 cifs_dbg(FYI, "clearing dfs cache\n"); 205 206 down_write(&htable_rw_lock); 207 flush_cache_ents(); 208 up_write(&htable_rw_lock); 209 210 return count; 211 } 212 213 static int dfscache_proc_open(struct inode *inode, struct file *file) 214 { 215 return single_open(file, dfscache_proc_show, NULL); 216 } 217 218 const struct proc_ops dfscache_proc_ops = { 219 .proc_open = dfscache_proc_open, 220 .proc_read = seq_read, 221 .proc_lseek = seq_lseek, 222 .proc_release = single_release, 223 .proc_write = dfscache_proc_write, 224 }; 225 226 #ifdef CONFIG_CIFS_DEBUG2 227 static inline void dump_tgts(const struct cache_entry *ce) 228 { 229 struct cache_dfs_tgt *t; 230 231 cifs_dbg(FYI, "target list:\n"); 232 list_for_each_entry(t, &ce->tlist, list) { 233 cifs_dbg(FYI, " %s%s\n", t->name, 234 READ_ONCE(ce->tgthint) == t ? " (target hint)" : ""); 235 } 236 } 237 238 static inline void dump_ce(const struct cache_entry *ce) 239 { 240 cifs_dbg(FYI, "cache entry: path=%s,type=%s,ttl=%d,etime=%ld,hdr_flags=0x%x,ref_flags=0x%x,interlink=%s,path_consumed=%d,expired=%s\n", 241 ce->path, 242 ce->srvtype == DFS_TYPE_ROOT ? "root" : "link", ce->ttl, 243 ce->etime.tv_nsec, 244 ce->hdr_flags, ce->ref_flags, 245 str_yes_no(DFS_INTERLINK(ce->hdr_flags)), 246 ce->path_consumed, 247 str_yes_no(cache_entry_expired(ce))); 248 dump_tgts(ce); 249 } 250 251 static inline void dump_refs(const struct dfs_info3_param *refs, int numrefs) 252 { 253 int i; 254 255 cifs_dbg(FYI, "DFS referrals returned by the server:\n"); 256 for (i = 0; i < numrefs; i++) { 257 const struct dfs_info3_param *ref = &refs[i]; 258 259 cifs_dbg(FYI, 260 "\n" 261 "flags: 0x%x\n" 262 "path_consumed: %d\n" 263 "server_type: 0x%x\n" 264 "ref_flag: 0x%x\n" 265 "path_name: %s\n" 266 "node_name: %s\n" 267 "ttl: %d (%dm)\n", 268 ref->flags, ref->path_consumed, ref->server_type, 269 ref->ref_flag, ref->path_name, ref->node_name, 270 ref->ttl, ref->ttl / 60); 271 } 272 } 273 #else 274 #define dump_tgts(e) 275 #define dump_ce(e) 276 #define dump_refs(r, n) 277 #endif 278 279 /** 280 * dfs_cache_init - Initialize DFS referral cache. 281 * 282 * Return zero if initialized successfully, otherwise non-zero. 283 */ 284 int dfs_cache_init(void) 285 { 286 int rc; 287 int i; 288 289 dfscache_wq = alloc_workqueue("cifs-dfscache", 290 WQ_UNBOUND|WQ_FREEZABLE|WQ_MEM_RECLAIM, 291 0); 292 if (!dfscache_wq) 293 return -ENOMEM; 294 295 cache_slab = kmem_cache_create("cifs_dfs_cache", 296 sizeof(struct cache_entry), 0, 297 SLAB_HWCACHE_ALIGN, NULL); 298 if (!cache_slab) { 299 rc = -ENOMEM; 300 goto out_destroy_wq; 301 } 302 303 for (i = 0; i < CACHE_HTABLE_SIZE; i++) 304 INIT_HLIST_HEAD(&cache_htable[i]); 305 306 atomic_set(&cache_count, 0); 307 atomic_set(&dfs_cache_ttl, CACHE_DEFAULT_TTL); 308 cache_cp = load_nls("utf8"); 309 if (!cache_cp) 310 cache_cp = load_nls_default(); 311 312 cifs_dbg(FYI, "%s: initialized DFS referral cache\n", __func__); 313 return 0; 314 315 out_destroy_wq: 316 destroy_workqueue(dfscache_wq); 317 return rc; 318 } 319 320 static int cache_entry_hash(const void *data, int size, unsigned int *hash) 321 { 322 int i, clen; 323 const unsigned char *s = data; 324 wchar_t c; 325 unsigned int h = 0; 326 327 for (i = 0; i < size; i += clen) { 328 clen = cache_cp->char2uni(&s[i], size - i, &c); 329 if (unlikely(clen < 0)) { 330 cifs_dbg(VFS, "%s: can't convert char\n", __func__); 331 return clen; 332 } 333 c = cifs_toupper(c); 334 h = jhash(&c, sizeof(c), h); 335 } 336 *hash = h % CACHE_HTABLE_SIZE; 337 return 0; 338 } 339 340 /* Return target hint of a DFS cache entry */ 341 static inline char *get_tgt_name(const struct cache_entry *ce) 342 { 343 struct cache_dfs_tgt *t = READ_ONCE(ce->tgthint); 344 345 return t ? t->name : ERR_PTR(-ENOENT); 346 } 347 348 /* Return expire time out of a new entry's TTL */ 349 static inline struct timespec64 get_expire_time(int ttl) 350 { 351 struct timespec64 ts = { 352 .tv_sec = ttl, 353 .tv_nsec = 0, 354 }; 355 struct timespec64 now; 356 357 ktime_get_coarse_real_ts64(&now); 358 return timespec64_add(now, ts); 359 } 360 361 /* Allocate a new DFS target */ 362 static struct cache_dfs_tgt *alloc_target(const char *name, int path_consumed) 363 { 364 struct cache_dfs_tgt *t; 365 366 t = kmalloc(sizeof(*t), GFP_ATOMIC); 367 if (!t) 368 return ERR_PTR(-ENOMEM); 369 t->name = kstrdup(name, GFP_ATOMIC); 370 if (!t->name) { 371 kfree(t); 372 return ERR_PTR(-ENOMEM); 373 } 374 t->path_consumed = path_consumed; 375 INIT_LIST_HEAD(&t->list); 376 return t; 377 } 378 379 /* 380 * Copy DFS referral information to a cache entry and conditionally update 381 * target hint. 382 */ 383 static int copy_ref_data(const struct dfs_info3_param *refs, int numrefs, 384 struct cache_entry *ce, const char *tgthint) 385 { 386 struct cache_dfs_tgt *target; 387 int i; 388 389 ce->ttl = max_t(int, refs[0].ttl, CACHE_MIN_TTL); 390 ce->etime = get_expire_time(ce->ttl); 391 ce->srvtype = refs[0].server_type; 392 ce->hdr_flags = refs[0].flags; 393 ce->ref_flags = refs[0].ref_flag; 394 ce->path_consumed = refs[0].path_consumed; 395 396 for (i = 0; i < numrefs; i++) { 397 struct cache_dfs_tgt *t; 398 399 t = alloc_target(refs[i].node_name, refs[i].path_consumed); 400 if (IS_ERR(t)) { 401 free_tgts(ce); 402 return PTR_ERR(t); 403 } 404 if (tgthint && !strcasecmp(t->name, tgthint)) { 405 list_add(&t->list, &ce->tlist); 406 tgthint = NULL; 407 } else { 408 list_add_tail(&t->list, &ce->tlist); 409 } 410 ce->numtgts++; 411 } 412 413 target = list_first_entry_or_null(&ce->tlist, struct cache_dfs_tgt, 414 list); 415 WRITE_ONCE(ce->tgthint, target); 416 417 return 0; 418 } 419 420 /* Allocate a new cache entry */ 421 static struct cache_entry *alloc_cache_entry(struct dfs_info3_param *refs, int numrefs) 422 { 423 struct cache_entry *ce; 424 int rc; 425 426 ce = kmem_cache_zalloc(cache_slab, GFP_KERNEL); 427 if (!ce) 428 return ERR_PTR(-ENOMEM); 429 430 ce->path = refs[0].path_name; 431 refs[0].path_name = NULL; 432 433 INIT_HLIST_NODE(&ce->hlist); 434 INIT_LIST_HEAD(&ce->tlist); 435 436 rc = copy_ref_data(refs, numrefs, ce, NULL); 437 if (rc) { 438 kfree(ce->path); 439 kmem_cache_free(cache_slab, ce); 440 ce = ERR_PTR(rc); 441 } 442 return ce; 443 } 444 445 /* Remove all referrals that have a single target or oldest entry */ 446 static void purge_cache(void) 447 { 448 int i; 449 struct cache_entry *ce; 450 struct cache_entry *oldest = NULL; 451 452 for (i = 0; i < CACHE_HTABLE_SIZE; i++) { 453 struct hlist_head *l = &cache_htable[i]; 454 struct hlist_node *n; 455 456 hlist_for_each_entry_safe(ce, n, l, hlist) { 457 if (hlist_unhashed(&ce->hlist)) 458 continue; 459 if (ce->numtgts == 1) 460 flush_cache_ent(ce); 461 else if (!oldest || 462 timespec64_compare(&ce->etime, 463 &oldest->etime) < 0) 464 oldest = ce; 465 } 466 } 467 468 if (atomic_read(&cache_count) >= CACHE_MAX_ENTRIES && oldest) 469 flush_cache_ent(oldest); 470 } 471 472 /* Add a new DFS cache entry */ 473 static struct cache_entry *add_cache_entry_locked(struct dfs_info3_param *refs, 474 int numrefs) 475 { 476 int rc; 477 struct cache_entry *ce; 478 unsigned int hash; 479 int ttl; 480 481 WARN_ON(!rwsem_is_locked(&htable_rw_lock)); 482 483 if (atomic_read(&cache_count) >= CACHE_MAX_ENTRIES) { 484 cifs_dbg(FYI, "%s: reached max cache size (%d)\n", __func__, CACHE_MAX_ENTRIES); 485 purge_cache(); 486 } 487 488 rc = cache_entry_hash(refs[0].path_name, strlen(refs[0].path_name), &hash); 489 if (rc) 490 return ERR_PTR(rc); 491 492 ce = alloc_cache_entry(refs, numrefs); 493 if (IS_ERR(ce)) 494 return ce; 495 496 ttl = min_t(int, atomic_read(&dfs_cache_ttl), ce->ttl); 497 atomic_set(&dfs_cache_ttl, ttl); 498 499 hlist_add_head(&ce->hlist, &cache_htable[hash]); 500 dump_ce(ce); 501 502 atomic_inc(&cache_count); 503 504 return ce; 505 } 506 507 /* Check if two DFS paths are equal. @s1 and @s2 are expected to be in @cache_cp's charset */ 508 static bool dfs_path_equal(const char *s1, int len1, const char *s2, int len2) 509 { 510 int i, l1, l2; 511 wchar_t c1, c2; 512 513 if (len1 != len2) 514 return false; 515 516 for (i = 0; i < len1; i += l1) { 517 l1 = cache_cp->char2uni(&s1[i], len1 - i, &c1); 518 l2 = cache_cp->char2uni(&s2[i], len2 - i, &c2); 519 if (unlikely(l1 < 0 && l2 < 0)) { 520 if (s1[i] != s2[i]) 521 return false; 522 l1 = 1; 523 continue; 524 } 525 if (l1 != l2) 526 return false; 527 if (cifs_toupper(c1) != cifs_toupper(c2)) 528 return false; 529 } 530 return true; 531 } 532 533 static struct cache_entry *__lookup_cache_entry(const char *path, unsigned int hash, int len) 534 { 535 struct cache_entry *ce; 536 537 hlist_for_each_entry(ce, &cache_htable[hash], hlist) { 538 if (dfs_path_equal(ce->path, strlen(ce->path), path, len)) { 539 dump_ce(ce); 540 return ce; 541 } 542 } 543 return ERR_PTR(-ENOENT); 544 } 545 546 /* 547 * Find a DFS cache entry in hash table and optionally check prefix path against normalized @path. 548 * 549 * Use whole path components in the match. Must be called with htable_rw_lock held. 550 * 551 * Return cached entry if successful. 552 * Return ERR_PTR(-ENOENT) if the entry is not found. 553 * Return error ptr otherwise. 554 */ 555 static struct cache_entry *lookup_cache_entry(const char *path) 556 { 557 struct cache_entry *ce; 558 int cnt = 0; 559 const char *s = path, *e; 560 char sep = *s; 561 unsigned int hash; 562 int rc; 563 564 while ((s = strchr(s, sep)) && ++cnt < 3) 565 s++; 566 567 if (cnt < 3) { 568 rc = cache_entry_hash(path, strlen(path), &hash); 569 if (rc) 570 return ERR_PTR(rc); 571 return __lookup_cache_entry(path, hash, strlen(path)); 572 } 573 /* 574 * Handle paths that have more than two path components and are a complete prefix of the DFS 575 * referral request path (@path). 576 * 577 * See MS-DFSC 3.2.5.5 "Receiving a Root Referral Request or Link Referral Request". 578 */ 579 e = path + strlen(path) - 1; 580 while (e > s) { 581 int len; 582 583 /* skip separators */ 584 while (e > s && *e == sep) 585 e--; 586 if (e == s) 587 break; 588 589 len = e + 1 - path; 590 rc = cache_entry_hash(path, len, &hash); 591 if (rc) 592 return ERR_PTR(rc); 593 ce = __lookup_cache_entry(path, hash, len); 594 if (!IS_ERR(ce)) 595 return ce; 596 597 /* backward until separator */ 598 while (e > s && *e != sep) 599 e--; 600 } 601 return ERR_PTR(-ENOENT); 602 } 603 604 /** 605 * dfs_cache_destroy - destroy DFS referral cache 606 */ 607 void dfs_cache_destroy(void) 608 { 609 unload_nls(cache_cp); 610 flush_cache_ents(); 611 kmem_cache_destroy(cache_slab); 612 destroy_workqueue(dfscache_wq); 613 614 cifs_dbg(FYI, "%s: destroyed DFS referral cache\n", __func__); 615 } 616 617 /* Update a cache entry with the new referral in @refs */ 618 static int update_cache_entry_locked(struct cache_entry *ce, const struct dfs_info3_param *refs, 619 int numrefs) 620 { 621 struct cache_dfs_tgt *target; 622 char *th = NULL; 623 int rc; 624 625 WARN_ON(!rwsem_is_locked(&htable_rw_lock)); 626 627 target = READ_ONCE(ce->tgthint); 628 if (target) { 629 th = kstrdup(target->name, GFP_ATOMIC); 630 if (!th) 631 return -ENOMEM; 632 } 633 634 free_tgts(ce); 635 ce->numtgts = 0; 636 637 rc = copy_ref_data(refs, numrefs, ce, th); 638 639 kfree(th); 640 641 return rc; 642 } 643 644 static int get_dfs_referral(const unsigned int xid, struct cifs_ses *ses, const char *path, 645 struct dfs_info3_param **refs, int *numrefs) 646 { 647 int rc; 648 int i; 649 650 *refs = NULL; 651 *numrefs = 0; 652 653 if (!ses || !ses->server || !ses->server->ops->get_dfs_refer) 654 return -EOPNOTSUPP; 655 if (unlikely(!cache_cp)) 656 return -EINVAL; 657 658 cifs_dbg(FYI, "%s: ipc=%s referral=%s\n", __func__, ses->tcon_ipc->tree_name, path); 659 rc = ses->server->ops->get_dfs_refer(xid, ses, path, refs, numrefs, cache_cp, 660 NO_MAP_UNI_RSVD); 661 if (!rc) { 662 struct dfs_info3_param *ref = *refs; 663 664 for (i = 0; i < *numrefs; i++) 665 convert_delimiter(ref[i].path_name, '\\'); 666 } 667 return rc; 668 } 669 670 /* 671 * Find, create or update a DFS cache entry. 672 * 673 * If the entry wasn't found, it will create a new one. Or if it was found but 674 * expired, then it will update the entry accordingly. 675 * 676 * For interlinks, cifs_mount() and expand_dfs_referral() are supposed to 677 * handle them properly. 678 * 679 * On success, return entry with acquired lock for reading, otherwise error ptr. 680 */ 681 static struct cache_entry *cache_refresh_path(const unsigned int xid, 682 struct cifs_ses *ses, 683 const char *path, 684 bool force_refresh) 685 { 686 struct dfs_info3_param *refs = NULL; 687 struct cache_entry *ce; 688 int numrefs = 0; 689 int rc; 690 691 cifs_dbg(FYI, "%s: search path: %s\n", __func__, path); 692 693 down_read(&htable_rw_lock); 694 695 ce = lookup_cache_entry(path); 696 if (!IS_ERR(ce)) { 697 if (!force_refresh && !cache_entry_expired(ce)) 698 return ce; 699 } else if (PTR_ERR(ce) != -ENOENT) { 700 up_read(&htable_rw_lock); 701 return ce; 702 } 703 704 /* 705 * Unlock shared access as we don't want to hold any locks while getting 706 * a new referral. The @ses used for performing the I/O could be 707 * reconnecting and it acquires @htable_rw_lock to look up the dfs cache 708 * in order to failover -- if necessary. 709 */ 710 up_read(&htable_rw_lock); 711 712 /* 713 * Either the entry was not found, or it is expired, or it is a forced 714 * refresh. 715 * Request a new DFS referral in order to create or update a cache entry. 716 */ 717 rc = get_dfs_referral(xid, ses, path, &refs, &numrefs); 718 if (rc) { 719 ce = ERR_PTR(rc); 720 goto out; 721 } 722 723 dump_refs(refs, numrefs); 724 725 down_write(&htable_rw_lock); 726 /* Re-check as another task might have it added or refreshed already */ 727 ce = lookup_cache_entry(path); 728 if (!IS_ERR(ce)) { 729 if (force_refresh || cache_entry_expired(ce)) { 730 rc = update_cache_entry_locked(ce, refs, numrefs); 731 if (rc) 732 ce = ERR_PTR(rc); 733 } 734 } else if (PTR_ERR(ce) == -ENOENT) { 735 ce = add_cache_entry_locked(refs, numrefs); 736 } 737 738 if (IS_ERR(ce)) { 739 up_write(&htable_rw_lock); 740 goto out; 741 } 742 743 downgrade_write(&htable_rw_lock); 744 out: 745 free_dfs_info_array(refs, numrefs); 746 return ce; 747 } 748 749 /* 750 * Set up a DFS referral from a given cache entry. 751 * 752 * Must be called with htable_rw_lock held. 753 */ 754 static int setup_referral(const char *path, struct cache_entry *ce, 755 struct dfs_info3_param *ref, const char *target) 756 { 757 int rc; 758 759 cifs_dbg(FYI, "%s: set up new ref\n", __func__); 760 761 memset(ref, 0, sizeof(*ref)); 762 763 ref->path_name = kstrdup(path, GFP_ATOMIC); 764 if (!ref->path_name) 765 return -ENOMEM; 766 767 ref->node_name = kstrdup(target, GFP_ATOMIC); 768 if (!ref->node_name) { 769 rc = -ENOMEM; 770 goto err_free_path; 771 } 772 773 ref->path_consumed = ce->path_consumed; 774 ref->ttl = ce->ttl; 775 ref->server_type = ce->srvtype; 776 ref->ref_flag = ce->ref_flags; 777 ref->flags = ce->hdr_flags; 778 779 return 0; 780 781 err_free_path: 782 kfree(ref->path_name); 783 ref->path_name = NULL; 784 return rc; 785 } 786 787 /* Return target list of a DFS cache entry */ 788 static int get_targets(struct cache_entry *ce, struct dfs_cache_tgt_list *tl) 789 { 790 int rc; 791 struct list_head *head = &tl->tl_list; 792 struct cache_dfs_tgt *t; 793 struct dfs_cache_tgt_iterator *it, *nit; 794 795 memset(tl, 0, sizeof(*tl)); 796 INIT_LIST_HEAD(head); 797 798 list_for_each_entry(t, &ce->tlist, list) { 799 it = kzalloc(sizeof(*it), GFP_ATOMIC); 800 if (!it) { 801 rc = -ENOMEM; 802 goto err_free_it; 803 } 804 805 it->it_name = kstrdup(t->name, GFP_ATOMIC); 806 if (!it->it_name) { 807 kfree(it); 808 rc = -ENOMEM; 809 goto err_free_it; 810 } 811 it->it_path_consumed = t->path_consumed; 812 813 if (READ_ONCE(ce->tgthint) == t) 814 list_add(&it->it_list, head); 815 else 816 list_add_tail(&it->it_list, head); 817 } 818 819 tl->tl_numtgts = ce->numtgts; 820 821 return 0; 822 823 err_free_it: 824 list_for_each_entry_safe(it, nit, head, it_list) { 825 list_del(&it->it_list); 826 kfree(it->it_name); 827 kfree(it); 828 } 829 return rc; 830 } 831 832 /** 833 * dfs_cache_find - find a DFS cache entry 834 * 835 * If it doesn't find the cache entry, then it will get a DFS referral 836 * for @path and create a new entry. 837 * 838 * In case the cache entry exists but expired, it will get a DFS referral 839 * for @path and then update the respective cache entry. 840 * 841 * These parameters are passed down to the get_dfs_refer() call if it 842 * needs to be issued: 843 * @xid: syscall xid 844 * @ses: smb session to issue the request on 845 * @cp: codepage 846 * @remap: path character remapping type 847 * @path: path to lookup in DFS referral cache. 848 * 849 * @ref: when non-NULL, store single DFS referral result in it. 850 * @tgt_list: when non-NULL, store complete DFS target list in it. 851 * 852 * Return zero if the target was found, otherwise non-zero. 853 */ 854 int dfs_cache_find(const unsigned int xid, struct cifs_ses *ses, const struct nls_table *cp, 855 int remap, const char *path, struct dfs_info3_param *ref, 856 struct dfs_cache_tgt_list *tgt_list) 857 { 858 int rc; 859 const char *npath; 860 struct cache_entry *ce; 861 862 npath = dfs_cache_canonical_path(path, cp, remap); 863 if (IS_ERR(npath)) 864 return PTR_ERR(npath); 865 866 ce = cache_refresh_path(xid, ses, npath, false); 867 if (IS_ERR(ce)) { 868 rc = PTR_ERR(ce); 869 goto out_free_path; 870 } 871 872 if (ref) 873 rc = setup_referral(path, ce, ref, get_tgt_name(ce)); 874 else 875 rc = 0; 876 if (!rc && tgt_list) 877 rc = get_targets(ce, tgt_list); 878 879 up_read(&htable_rw_lock); 880 881 out_free_path: 882 kfree(npath); 883 return rc; 884 } 885 886 /** 887 * dfs_cache_noreq_find - find a DFS cache entry without sending any requests to 888 * the currently connected server. 889 * 890 * NOTE: This function will neither update a cache entry in case it was 891 * expired, nor create a new cache entry if @path hasn't been found. It heavily 892 * relies on an existing cache entry. 893 * 894 * @path: canonical DFS path to lookup in the DFS referral cache. 895 * @ref: when non-NULL, store single DFS referral result in it. 896 * @tgt_list: when non-NULL, store complete DFS target list in it. 897 * 898 * Return 0 if successful. 899 * Return -ENOENT if the entry was not found. 900 * Return non-zero for other errors. 901 */ 902 int dfs_cache_noreq_find(const char *path, struct dfs_info3_param *ref, 903 struct dfs_cache_tgt_list *tgt_list) 904 { 905 int rc; 906 struct cache_entry *ce; 907 908 cifs_dbg(FYI, "%s: path: %s\n", __func__, path); 909 910 down_read(&htable_rw_lock); 911 912 ce = lookup_cache_entry(path); 913 if (IS_ERR(ce)) { 914 rc = PTR_ERR(ce); 915 goto out_unlock; 916 } 917 918 if (ref) 919 rc = setup_referral(path, ce, ref, get_tgt_name(ce)); 920 else 921 rc = 0; 922 if (!rc && tgt_list) 923 rc = get_targets(ce, tgt_list); 924 925 out_unlock: 926 up_read(&htable_rw_lock); 927 return rc; 928 } 929 930 /** 931 * dfs_cache_noreq_update_tgthint - update target hint of a DFS cache entry 932 * without sending any requests to the currently connected server. 933 * 934 * NOTE: This function will neither update a cache entry in case it was 935 * expired, nor create a new cache entry if @path hasn't been found. It heavily 936 * relies on an existing cache entry. 937 * 938 * @path: canonical DFS path to lookup in DFS referral cache. 939 * @it: target iterator which contains the target hint to update the cache 940 * entry with. 941 * 942 * Return zero if the target hint was updated successfully, otherwise non-zero. 943 */ 944 void dfs_cache_noreq_update_tgthint(const char *path, const struct dfs_cache_tgt_iterator *it) 945 { 946 struct cache_dfs_tgt *t; 947 struct cache_entry *ce; 948 949 if (!path || !it) 950 return; 951 952 cifs_dbg(FYI, "%s: path: %s\n", __func__, path); 953 954 down_read(&htable_rw_lock); 955 956 ce = lookup_cache_entry(path); 957 if (IS_ERR(ce)) 958 goto out_unlock; 959 960 t = READ_ONCE(ce->tgthint); 961 962 if (unlikely(!strcasecmp(it->it_name, t->name))) 963 goto out_unlock; 964 965 list_for_each_entry(t, &ce->tlist, list) { 966 if (!strcasecmp(t->name, it->it_name)) { 967 WRITE_ONCE(ce->tgthint, t); 968 cifs_dbg(FYI, "%s: new target hint: %s\n", __func__, 969 it->it_name); 970 break; 971 } 972 } 973 974 out_unlock: 975 up_read(&htable_rw_lock); 976 } 977 978 /** 979 * dfs_cache_get_tgt_referral - returns a DFS referral (@ref) from a given 980 * target iterator (@it). 981 * 982 * @path: canonical DFS path to lookup in DFS referral cache. 983 * @it: DFS target iterator. 984 * @ref: DFS referral pointer to set up the gathered information. 985 * 986 * Return zero if the DFS referral was set up correctly, otherwise non-zero. 987 */ 988 int dfs_cache_get_tgt_referral(const char *path, const struct dfs_cache_tgt_iterator *it, 989 struct dfs_info3_param *ref) 990 { 991 int rc; 992 struct cache_entry *ce; 993 994 if (!it || !ref) 995 return -EINVAL; 996 997 cifs_dbg(FYI, "%s: path: %s\n", __func__, path); 998 999 down_read(&htable_rw_lock); 1000 1001 ce = lookup_cache_entry(path); 1002 if (IS_ERR(ce)) { 1003 rc = PTR_ERR(ce); 1004 goto out_unlock; 1005 } 1006 1007 cifs_dbg(FYI, "%s: target name: %s\n", __func__, it->it_name); 1008 1009 rc = setup_referral(path, ce, ref, it->it_name); 1010 1011 out_unlock: 1012 up_read(&htable_rw_lock); 1013 return rc; 1014 } 1015 1016 /* Extract share from DFS target and return a pointer to prefix path or NULL */ 1017 static const char *parse_target_share(const char *target, char **share) 1018 { 1019 const char *s, *seps = "/\\"; 1020 size_t len; 1021 1022 s = strpbrk(target + 1, seps); 1023 if (!s) 1024 return ERR_PTR(-EINVAL); 1025 1026 len = strcspn(s + 1, seps); 1027 if (!len) 1028 return ERR_PTR(-EINVAL); 1029 s += len; 1030 1031 len = s - target + 1; 1032 *share = kstrndup(target, len, GFP_KERNEL); 1033 if (!*share) 1034 return ERR_PTR(-ENOMEM); 1035 1036 s = target + len; 1037 return s + strspn(s, seps); 1038 } 1039 1040 /** 1041 * dfs_cache_get_tgt_share - parse a DFS target 1042 * 1043 * @path: DFS full path 1044 * @it: DFS target iterator. 1045 * @share: tree name. 1046 * @prefix: prefix path. 1047 * 1048 * Return zero if target was parsed correctly, otherwise non-zero. 1049 */ 1050 int dfs_cache_get_tgt_share(char *path, const struct dfs_cache_tgt_iterator *it, char **share, 1051 char **prefix) 1052 { 1053 char sep; 1054 char *target_share; 1055 char *ppath = NULL; 1056 const char *target_ppath, *dfsref_ppath; 1057 size_t target_pplen, dfsref_pplen; 1058 size_t len, c; 1059 1060 if (!it || !path || !share || !prefix || strlen(path) < it->it_path_consumed) 1061 return -EINVAL; 1062 1063 sep = it->it_name[0]; 1064 if (sep != '\\' && sep != '/') 1065 return -EINVAL; 1066 1067 target_ppath = parse_target_share(it->it_name, &target_share); 1068 if (IS_ERR(target_ppath)) 1069 return PTR_ERR(target_ppath); 1070 1071 /* point to prefix in DFS referral path */ 1072 dfsref_ppath = path + it->it_path_consumed; 1073 dfsref_ppath += strspn(dfsref_ppath, "/\\"); 1074 1075 target_pplen = strlen(target_ppath); 1076 dfsref_pplen = strlen(dfsref_ppath); 1077 1078 /* merge prefix paths from DFS referral path and target node */ 1079 if (target_pplen || dfsref_pplen) { 1080 len = target_pplen + dfsref_pplen + 2; 1081 ppath = kzalloc(len, GFP_KERNEL); 1082 if (!ppath) { 1083 kfree(target_share); 1084 return -ENOMEM; 1085 } 1086 c = strscpy(ppath, target_ppath, len); 1087 if (c && dfsref_pplen) 1088 ppath[c] = sep; 1089 strlcat(ppath, dfsref_ppath, len); 1090 } 1091 *share = target_share; 1092 *prefix = ppath; 1093 return 0; 1094 } 1095 1096 static bool target_share_equal(struct cifs_tcon *tcon, const char *s1) 1097 { 1098 struct TCP_Server_Info *server = tcon->ses->server; 1099 struct sockaddr_storage ss; 1100 const char *host; 1101 const char *s2 = &tcon->tree_name[1]; 1102 size_t hostlen; 1103 char unc[sizeof("\\\\") + SERVER_NAME_LENGTH] = {0}; 1104 bool match; 1105 int rc; 1106 1107 if (strcasecmp(s2, s1)) 1108 return false; 1109 1110 /* 1111 * Resolve share's hostname and check if server address matches. Otherwise just ignore it 1112 * as we could not have upcall to resolve hostname or failed to convert ip address. 1113 */ 1114 extract_unc_hostname(s1, &host, &hostlen); 1115 scnprintf(unc, sizeof(unc), "\\\\%.*s", (int)hostlen, host); 1116 1117 rc = dns_resolve_server_name_to_ip(unc, (struct sockaddr *)&ss, NULL); 1118 if (rc < 0) { 1119 cifs_dbg(FYI, "%s: could not resolve %.*s. assuming server address matches.\n", 1120 __func__, (int)hostlen, host); 1121 return true; 1122 } 1123 1124 cifs_server_lock(server); 1125 match = cifs_match_ipaddr((struct sockaddr *)&server->dstaddr, (struct sockaddr *)&ss); 1126 cifs_server_unlock(server); 1127 1128 return match; 1129 } 1130 1131 static bool is_ses_good(struct cifs_ses *ses) 1132 { 1133 struct TCP_Server_Info *server = ses->server; 1134 struct cifs_tcon *tcon = ses->tcon_ipc; 1135 bool ret; 1136 1137 spin_lock(&ses->ses_lock); 1138 spin_lock(&ses->chan_lock); 1139 ret = !cifs_chan_needs_reconnect(ses, server) && 1140 ses->ses_status == SES_GOOD && 1141 !tcon->need_reconnect; 1142 spin_unlock(&ses->chan_lock); 1143 spin_unlock(&ses->ses_lock); 1144 return ret; 1145 } 1146 1147 static char *get_ses_refpath(struct cifs_ses *ses) 1148 { 1149 struct TCP_Server_Info *server = ses->server; 1150 char *path = ERR_PTR(-ENOENT); 1151 1152 mutex_lock(&server->refpath_lock); 1153 if (server->leaf_fullpath) { 1154 path = kstrdup(server->leaf_fullpath + 1, GFP_ATOMIC); 1155 if (!path) 1156 path = ERR_PTR(-ENOMEM); 1157 } 1158 mutex_unlock(&server->refpath_lock); 1159 return path; 1160 } 1161 1162 /* Refresh dfs referral of @ses */ 1163 static void refresh_ses_referral(struct cifs_ses *ses) 1164 { 1165 struct cache_entry *ce; 1166 unsigned int xid; 1167 char *path; 1168 int rc = 0; 1169 1170 xid = get_xid(); 1171 1172 path = get_ses_refpath(ses); 1173 if (IS_ERR(path)) { 1174 rc = PTR_ERR(path); 1175 path = NULL; 1176 goto out; 1177 } 1178 1179 ses = CIFS_DFS_ROOT_SES(ses); 1180 if (!is_ses_good(ses)) { 1181 cifs_dbg(FYI, "%s: skip cache refresh due to disconnected ipc\n", 1182 __func__); 1183 goto out; 1184 } 1185 1186 ce = cache_refresh_path(xid, ses, path, false); 1187 if (!IS_ERR(ce)) 1188 up_read(&htable_rw_lock); 1189 else 1190 rc = PTR_ERR(ce); 1191 1192 out: 1193 free_xid(xid); 1194 kfree(path); 1195 } 1196 1197 static int __refresh_tcon_referral(struct cifs_tcon *tcon, 1198 const char *path, 1199 struct dfs_info3_param *refs, 1200 int numrefs, bool force_refresh) 1201 { 1202 struct cache_entry *ce; 1203 bool reconnect = force_refresh; 1204 int rc = 0; 1205 int i; 1206 1207 if (unlikely(!numrefs)) 1208 return 0; 1209 1210 if (force_refresh) { 1211 for (i = 0; i < numrefs; i++) { 1212 /* TODO: include prefix paths in the matching */ 1213 if (target_share_equal(tcon, refs[i].node_name)) { 1214 reconnect = false; 1215 break; 1216 } 1217 } 1218 } 1219 1220 down_write(&htable_rw_lock); 1221 ce = lookup_cache_entry(path); 1222 if (!IS_ERR(ce)) { 1223 if (force_refresh || cache_entry_expired(ce)) 1224 rc = update_cache_entry_locked(ce, refs, numrefs); 1225 } else if (PTR_ERR(ce) == -ENOENT) { 1226 ce = add_cache_entry_locked(refs, numrefs); 1227 } 1228 up_write(&htable_rw_lock); 1229 1230 if (IS_ERR(ce)) 1231 rc = PTR_ERR(ce); 1232 if (reconnect) { 1233 cifs_tcon_dbg(FYI, "%s: mark for reconnect\n", __func__); 1234 cifs_signal_cifsd_for_reconnect(tcon->ses->server, true); 1235 } 1236 return rc; 1237 } 1238 1239 static void refresh_tcon_referral(struct cifs_tcon *tcon, bool force_refresh) 1240 { 1241 struct dfs_info3_param *refs = NULL; 1242 struct cache_entry *ce; 1243 struct cifs_ses *ses; 1244 unsigned int xid; 1245 bool needs_refresh; 1246 char *path; 1247 int numrefs = 0; 1248 int rc = 0; 1249 1250 xid = get_xid(); 1251 ses = tcon->ses; 1252 1253 path = get_ses_refpath(ses); 1254 if (IS_ERR(path)) { 1255 rc = PTR_ERR(path); 1256 path = NULL; 1257 goto out; 1258 } 1259 1260 down_read(&htable_rw_lock); 1261 ce = lookup_cache_entry(path); 1262 needs_refresh = force_refresh || IS_ERR(ce) || cache_entry_expired(ce); 1263 if (!needs_refresh) { 1264 up_read(&htable_rw_lock); 1265 goto out; 1266 } 1267 up_read(&htable_rw_lock); 1268 1269 ses = CIFS_DFS_ROOT_SES(ses); 1270 if (!is_ses_good(ses)) { 1271 cifs_dbg(FYI, "%s: skip cache refresh due to disconnected ipc\n", 1272 __func__); 1273 goto out; 1274 } 1275 1276 rc = get_dfs_referral(xid, ses, path, &refs, &numrefs); 1277 if (!rc) { 1278 rc = __refresh_tcon_referral(tcon, path, refs, 1279 numrefs, force_refresh); 1280 } 1281 1282 out: 1283 free_xid(xid); 1284 kfree(path); 1285 free_dfs_info_array(refs, numrefs); 1286 } 1287 1288 /** 1289 * dfs_cache_remount_fs - remount a DFS share 1290 * 1291 * Reconfigure dfs mount by forcing a new DFS referral and if the currently cached targets do not 1292 * match any of the new targets, mark it for reconnect. 1293 * 1294 * @cifs_sb: cifs superblock. 1295 * 1296 * Return zero if remounted, otherwise non-zero. 1297 */ 1298 int dfs_cache_remount_fs(struct cifs_sb_info *cifs_sb) 1299 { 1300 struct cifs_tcon *tcon; 1301 1302 if (!cifs_sb || !cifs_sb->master_tlink) 1303 return -EINVAL; 1304 1305 tcon = cifs_sb_master_tcon(cifs_sb); 1306 1307 spin_lock(&tcon->tc_lock); 1308 if (!tcon->origin_fullpath) { 1309 spin_unlock(&tcon->tc_lock); 1310 cifs_dbg(FYI, "%s: not a dfs mount\n", __func__); 1311 return 0; 1312 } 1313 spin_unlock(&tcon->tc_lock); 1314 1315 /* 1316 * After reconnecting to a different server, unique ids won't match anymore, so we disable 1317 * serverino. This prevents dentry revalidation to think the dentry are stale (ESTALE). 1318 */ 1319 cifs_autodisable_serverino(cifs_sb); 1320 /* 1321 * Force the use of prefix path to support failover on DFS paths that resolve to targets 1322 * that have different prefix paths. 1323 */ 1324 cifs_sb->mnt_cifs_flags |= CIFS_MOUNT_USE_PREFIX_PATH; 1325 1326 refresh_tcon_referral(tcon, true); 1327 return 0; 1328 } 1329 1330 /* Refresh all DFS referrals related to DFS tcon */ 1331 void dfs_cache_refresh(struct work_struct *work) 1332 { 1333 struct cifs_tcon *tcon; 1334 struct cifs_ses *ses; 1335 1336 tcon = container_of(work, struct cifs_tcon, dfs_cache_work.work); 1337 1338 list_for_each_entry(ses, &tcon->dfs_ses_list, dlist) 1339 refresh_ses_referral(ses); 1340 refresh_tcon_referral(tcon, false); 1341 1342 queue_delayed_work(dfscache_wq, &tcon->dfs_cache_work, 1343 atomic_read(&dfs_cache_ttl) * HZ); 1344 } 1345