xref: /linux/fs/select.c (revision ca55b2fef3a9373fcfc30f82fd26bc7fccbda732)
1 /*
2  * This file contains the procedures for the handling of select and poll
3  *
4  * Created for Linux based loosely upon Mathius Lattner's minix
5  * patches by Peter MacDonald. Heavily edited by Linus.
6  *
7  *  4 February 1994
8  *     COFF/ELF binary emulation. If the process has the STICKY_TIMEOUTS
9  *     flag set in its personality we do *not* modify the given timeout
10  *     parameter to reflect time remaining.
11  *
12  *  24 January 2000
13  *     Changed sys_poll()/do_poll() to use PAGE_SIZE chunk-based allocation
14  *     of fds to overcome nfds < 16390 descriptors limit (Tigran Aivazian).
15  */
16 
17 #include <linux/kernel.h>
18 #include <linux/sched.h>
19 #include <linux/syscalls.h>
20 #include <linux/export.h>
21 #include <linux/slab.h>
22 #include <linux/poll.h>
23 #include <linux/personality.h> /* for STICKY_TIMEOUTS */
24 #include <linux/file.h>
25 #include <linux/fdtable.h>
26 #include <linux/fs.h>
27 #include <linux/rcupdate.h>
28 #include <linux/hrtimer.h>
29 #include <linux/sched/rt.h>
30 #include <linux/freezer.h>
31 #include <net/busy_poll.h>
32 
33 #include <asm/uaccess.h>
34 
35 
36 /*
37  * Estimate expected accuracy in ns from a timeval.
38  *
39  * After quite a bit of churning around, we've settled on
40  * a simple thing of taking 0.1% of the timeout as the
41  * slack, with a cap of 100 msec.
42  * "nice" tasks get a 0.5% slack instead.
43  *
44  * Consider this comment an open invitation to come up with even
45  * better solutions..
46  */
47 
48 #define MAX_SLACK	(100 * NSEC_PER_MSEC)
49 
50 static long __estimate_accuracy(struct timespec *tv)
51 {
52 	long slack;
53 	int divfactor = 1000;
54 
55 	if (tv->tv_sec < 0)
56 		return 0;
57 
58 	if (task_nice(current) > 0)
59 		divfactor = divfactor / 5;
60 
61 	if (tv->tv_sec > MAX_SLACK / (NSEC_PER_SEC/divfactor))
62 		return MAX_SLACK;
63 
64 	slack = tv->tv_nsec / divfactor;
65 	slack += tv->tv_sec * (NSEC_PER_SEC/divfactor);
66 
67 	if (slack > MAX_SLACK)
68 		return MAX_SLACK;
69 
70 	return slack;
71 }
72 
73 long select_estimate_accuracy(struct timespec *tv)
74 {
75 	unsigned long ret;
76 	struct timespec now;
77 
78 	/*
79 	 * Realtime tasks get a slack of 0 for obvious reasons.
80 	 */
81 
82 	if (rt_task(current))
83 		return 0;
84 
85 	ktime_get_ts(&now);
86 	now = timespec_sub(*tv, now);
87 	ret = __estimate_accuracy(&now);
88 	if (ret < current->timer_slack_ns)
89 		return current->timer_slack_ns;
90 	return ret;
91 }
92 
93 
94 
95 struct poll_table_page {
96 	struct poll_table_page * next;
97 	struct poll_table_entry * entry;
98 	struct poll_table_entry entries[0];
99 };
100 
101 #define POLL_TABLE_FULL(table) \
102 	((unsigned long)((table)->entry+1) > PAGE_SIZE + (unsigned long)(table))
103 
104 /*
105  * Ok, Peter made a complicated, but straightforward multiple_wait() function.
106  * I have rewritten this, taking some shortcuts: This code may not be easy to
107  * follow, but it should be free of race-conditions, and it's practical. If you
108  * understand what I'm doing here, then you understand how the linux
109  * sleep/wakeup mechanism works.
110  *
111  * Two very simple procedures, poll_wait() and poll_freewait() make all the
112  * work.  poll_wait() is an inline-function defined in <linux/poll.h>,
113  * as all select/poll functions have to call it to add an entry to the
114  * poll table.
115  */
116 static void __pollwait(struct file *filp, wait_queue_head_t *wait_address,
117 		       poll_table *p);
118 
119 void poll_initwait(struct poll_wqueues *pwq)
120 {
121 	init_poll_funcptr(&pwq->pt, __pollwait);
122 	pwq->polling_task = current;
123 	pwq->triggered = 0;
124 	pwq->error = 0;
125 	pwq->table = NULL;
126 	pwq->inline_index = 0;
127 }
128 EXPORT_SYMBOL(poll_initwait);
129 
130 static void free_poll_entry(struct poll_table_entry *entry)
131 {
132 	remove_wait_queue(entry->wait_address, &entry->wait);
133 	fput(entry->filp);
134 }
135 
136 void poll_freewait(struct poll_wqueues *pwq)
137 {
138 	struct poll_table_page * p = pwq->table;
139 	int i;
140 	for (i = 0; i < pwq->inline_index; i++)
141 		free_poll_entry(pwq->inline_entries + i);
142 	while (p) {
143 		struct poll_table_entry * entry;
144 		struct poll_table_page *old;
145 
146 		entry = p->entry;
147 		do {
148 			entry--;
149 			free_poll_entry(entry);
150 		} while (entry > p->entries);
151 		old = p;
152 		p = p->next;
153 		free_page((unsigned long) old);
154 	}
155 }
156 EXPORT_SYMBOL(poll_freewait);
157 
158 static struct poll_table_entry *poll_get_entry(struct poll_wqueues *p)
159 {
160 	struct poll_table_page *table = p->table;
161 
162 	if (p->inline_index < N_INLINE_POLL_ENTRIES)
163 		return p->inline_entries + p->inline_index++;
164 
165 	if (!table || POLL_TABLE_FULL(table)) {
166 		struct poll_table_page *new_table;
167 
168 		new_table = (struct poll_table_page *) __get_free_page(GFP_KERNEL);
169 		if (!new_table) {
170 			p->error = -ENOMEM;
171 			return NULL;
172 		}
173 		new_table->entry = new_table->entries;
174 		new_table->next = table;
175 		p->table = new_table;
176 		table = new_table;
177 	}
178 
179 	return table->entry++;
180 }
181 
182 static int __pollwake(wait_queue_t *wait, unsigned mode, int sync, void *key)
183 {
184 	struct poll_wqueues *pwq = wait->private;
185 	DECLARE_WAITQUEUE(dummy_wait, pwq->polling_task);
186 
187 	/*
188 	 * Although this function is called under waitqueue lock, LOCK
189 	 * doesn't imply write barrier and the users expect write
190 	 * barrier semantics on wakeup functions.  The following
191 	 * smp_wmb() is equivalent to smp_wmb() in try_to_wake_up()
192 	 * and is paired with smp_store_mb() in poll_schedule_timeout.
193 	 */
194 	smp_wmb();
195 	pwq->triggered = 1;
196 
197 	/*
198 	 * Perform the default wake up operation using a dummy
199 	 * waitqueue.
200 	 *
201 	 * TODO: This is hacky but there currently is no interface to
202 	 * pass in @sync.  @sync is scheduled to be removed and once
203 	 * that happens, wake_up_process() can be used directly.
204 	 */
205 	return default_wake_function(&dummy_wait, mode, sync, key);
206 }
207 
208 static int pollwake(wait_queue_t *wait, unsigned mode, int sync, void *key)
209 {
210 	struct poll_table_entry *entry;
211 
212 	entry = container_of(wait, struct poll_table_entry, wait);
213 	if (key && !((unsigned long)key & entry->key))
214 		return 0;
215 	return __pollwake(wait, mode, sync, key);
216 }
217 
218 /* Add a new entry */
219 static void __pollwait(struct file *filp, wait_queue_head_t *wait_address,
220 				poll_table *p)
221 {
222 	struct poll_wqueues *pwq = container_of(p, struct poll_wqueues, pt);
223 	struct poll_table_entry *entry = poll_get_entry(pwq);
224 	if (!entry)
225 		return;
226 	entry->filp = get_file(filp);
227 	entry->wait_address = wait_address;
228 	entry->key = p->_key;
229 	init_waitqueue_func_entry(&entry->wait, pollwake);
230 	entry->wait.private = pwq;
231 	add_wait_queue(wait_address, &entry->wait);
232 }
233 
234 int poll_schedule_timeout(struct poll_wqueues *pwq, int state,
235 			  ktime_t *expires, unsigned long slack)
236 {
237 	int rc = -EINTR;
238 
239 	set_current_state(state);
240 	if (!pwq->triggered)
241 		rc = schedule_hrtimeout_range(expires, slack, HRTIMER_MODE_ABS);
242 	__set_current_state(TASK_RUNNING);
243 
244 	/*
245 	 * Prepare for the next iteration.
246 	 *
247 	 * The following smp_store_mb() serves two purposes.  First, it's
248 	 * the counterpart rmb of the wmb in pollwake() such that data
249 	 * written before wake up is always visible after wake up.
250 	 * Second, the full barrier guarantees that triggered clearing
251 	 * doesn't pass event check of the next iteration.  Note that
252 	 * this problem doesn't exist for the first iteration as
253 	 * add_wait_queue() has full barrier semantics.
254 	 */
255 	smp_store_mb(pwq->triggered, 0);
256 
257 	return rc;
258 }
259 EXPORT_SYMBOL(poll_schedule_timeout);
260 
261 /**
262  * poll_select_set_timeout - helper function to setup the timeout value
263  * @to:		pointer to timespec variable for the final timeout
264  * @sec:	seconds (from user space)
265  * @nsec:	nanoseconds (from user space)
266  *
267  * Note, we do not use a timespec for the user space value here, That
268  * way we can use the function for timeval and compat interfaces as well.
269  *
270  * Returns -EINVAL if sec/nsec are not normalized. Otherwise 0.
271  */
272 int poll_select_set_timeout(struct timespec *to, long sec, long nsec)
273 {
274 	struct timespec ts = {.tv_sec = sec, .tv_nsec = nsec};
275 
276 	if (!timespec_valid(&ts))
277 		return -EINVAL;
278 
279 	/* Optimize for the zero timeout value here */
280 	if (!sec && !nsec) {
281 		to->tv_sec = to->tv_nsec = 0;
282 	} else {
283 		ktime_get_ts(to);
284 		*to = timespec_add_safe(*to, ts);
285 	}
286 	return 0;
287 }
288 
289 static int poll_select_copy_remaining(struct timespec *end_time, void __user *p,
290 				      int timeval, int ret)
291 {
292 	struct timespec rts;
293 	struct timeval rtv;
294 
295 	if (!p)
296 		return ret;
297 
298 	if (current->personality & STICKY_TIMEOUTS)
299 		goto sticky;
300 
301 	/* No update for zero timeout */
302 	if (!end_time->tv_sec && !end_time->tv_nsec)
303 		return ret;
304 
305 	ktime_get_ts(&rts);
306 	rts = timespec_sub(*end_time, rts);
307 	if (rts.tv_sec < 0)
308 		rts.tv_sec = rts.tv_nsec = 0;
309 
310 	if (timeval) {
311 		if (sizeof(rtv) > sizeof(rtv.tv_sec) + sizeof(rtv.tv_usec))
312 			memset(&rtv, 0, sizeof(rtv));
313 		rtv.tv_sec = rts.tv_sec;
314 		rtv.tv_usec = rts.tv_nsec / NSEC_PER_USEC;
315 
316 		if (!copy_to_user(p, &rtv, sizeof(rtv)))
317 			return ret;
318 
319 	} else if (!copy_to_user(p, &rts, sizeof(rts)))
320 		return ret;
321 
322 	/*
323 	 * If an application puts its timeval in read-only memory, we
324 	 * don't want the Linux-specific update to the timeval to
325 	 * cause a fault after the select has completed
326 	 * successfully. However, because we're not updating the
327 	 * timeval, we can't restart the system call.
328 	 */
329 
330 sticky:
331 	if (ret == -ERESTARTNOHAND)
332 		ret = -EINTR;
333 	return ret;
334 }
335 
336 #define FDS_IN(fds, n)		(fds->in + n)
337 #define FDS_OUT(fds, n)		(fds->out + n)
338 #define FDS_EX(fds, n)		(fds->ex + n)
339 
340 #define BITS(fds, n)	(*FDS_IN(fds, n)|*FDS_OUT(fds, n)|*FDS_EX(fds, n))
341 
342 static int max_select_fd(unsigned long n, fd_set_bits *fds)
343 {
344 	unsigned long *open_fds;
345 	unsigned long set;
346 	int max;
347 	struct fdtable *fdt;
348 
349 	/* handle last in-complete long-word first */
350 	set = ~(~0UL << (n & (BITS_PER_LONG-1)));
351 	n /= BITS_PER_LONG;
352 	fdt = files_fdtable(current->files);
353 	open_fds = fdt->open_fds + n;
354 	max = 0;
355 	if (set) {
356 		set &= BITS(fds, n);
357 		if (set) {
358 			if (!(set & ~*open_fds))
359 				goto get_max;
360 			return -EBADF;
361 		}
362 	}
363 	while (n) {
364 		open_fds--;
365 		n--;
366 		set = BITS(fds, n);
367 		if (!set)
368 			continue;
369 		if (set & ~*open_fds)
370 			return -EBADF;
371 		if (max)
372 			continue;
373 get_max:
374 		do {
375 			max++;
376 			set >>= 1;
377 		} while (set);
378 		max += n * BITS_PER_LONG;
379 	}
380 
381 	return max;
382 }
383 
384 #define POLLIN_SET (POLLRDNORM | POLLRDBAND | POLLIN | POLLHUP | POLLERR)
385 #define POLLOUT_SET (POLLWRBAND | POLLWRNORM | POLLOUT | POLLERR)
386 #define POLLEX_SET (POLLPRI)
387 
388 static inline void wait_key_set(poll_table *wait, unsigned long in,
389 				unsigned long out, unsigned long bit,
390 				unsigned int ll_flag)
391 {
392 	wait->_key = POLLEX_SET | ll_flag;
393 	if (in & bit)
394 		wait->_key |= POLLIN_SET;
395 	if (out & bit)
396 		wait->_key |= POLLOUT_SET;
397 }
398 
399 int do_select(int n, fd_set_bits *fds, struct timespec *end_time)
400 {
401 	ktime_t expire, *to = NULL;
402 	struct poll_wqueues table;
403 	poll_table *wait;
404 	int retval, i, timed_out = 0;
405 	unsigned long slack = 0;
406 	unsigned int busy_flag = net_busy_loop_on() ? POLL_BUSY_LOOP : 0;
407 	unsigned long busy_end = 0;
408 
409 	rcu_read_lock();
410 	retval = max_select_fd(n, fds);
411 	rcu_read_unlock();
412 
413 	if (retval < 0)
414 		return retval;
415 	n = retval;
416 
417 	poll_initwait(&table);
418 	wait = &table.pt;
419 	if (end_time && !end_time->tv_sec && !end_time->tv_nsec) {
420 		wait->_qproc = NULL;
421 		timed_out = 1;
422 	}
423 
424 	if (end_time && !timed_out)
425 		slack = select_estimate_accuracy(end_time);
426 
427 	retval = 0;
428 	for (;;) {
429 		unsigned long *rinp, *routp, *rexp, *inp, *outp, *exp;
430 		bool can_busy_loop = false;
431 
432 		inp = fds->in; outp = fds->out; exp = fds->ex;
433 		rinp = fds->res_in; routp = fds->res_out; rexp = fds->res_ex;
434 
435 		for (i = 0; i < n; ++rinp, ++routp, ++rexp) {
436 			unsigned long in, out, ex, all_bits, bit = 1, mask, j;
437 			unsigned long res_in = 0, res_out = 0, res_ex = 0;
438 
439 			in = *inp++; out = *outp++; ex = *exp++;
440 			all_bits = in | out | ex;
441 			if (all_bits == 0) {
442 				i += BITS_PER_LONG;
443 				continue;
444 			}
445 
446 			for (j = 0; j < BITS_PER_LONG; ++j, ++i, bit <<= 1) {
447 				struct fd f;
448 				if (i >= n)
449 					break;
450 				if (!(bit & all_bits))
451 					continue;
452 				f = fdget(i);
453 				if (f.file) {
454 					const struct file_operations *f_op;
455 					f_op = f.file->f_op;
456 					mask = DEFAULT_POLLMASK;
457 					if (f_op->poll) {
458 						wait_key_set(wait, in, out,
459 							     bit, busy_flag);
460 						mask = (*f_op->poll)(f.file, wait);
461 					}
462 					fdput(f);
463 					if ((mask & POLLIN_SET) && (in & bit)) {
464 						res_in |= bit;
465 						retval++;
466 						wait->_qproc = NULL;
467 					}
468 					if ((mask & POLLOUT_SET) && (out & bit)) {
469 						res_out |= bit;
470 						retval++;
471 						wait->_qproc = NULL;
472 					}
473 					if ((mask & POLLEX_SET) && (ex & bit)) {
474 						res_ex |= bit;
475 						retval++;
476 						wait->_qproc = NULL;
477 					}
478 					/* got something, stop busy polling */
479 					if (retval) {
480 						can_busy_loop = false;
481 						busy_flag = 0;
482 
483 					/*
484 					 * only remember a returned
485 					 * POLL_BUSY_LOOP if we asked for it
486 					 */
487 					} else if (busy_flag & mask)
488 						can_busy_loop = true;
489 
490 				}
491 			}
492 			if (res_in)
493 				*rinp = res_in;
494 			if (res_out)
495 				*routp = res_out;
496 			if (res_ex)
497 				*rexp = res_ex;
498 			cond_resched();
499 		}
500 		wait->_qproc = NULL;
501 		if (retval || timed_out || signal_pending(current))
502 			break;
503 		if (table.error) {
504 			retval = table.error;
505 			break;
506 		}
507 
508 		/* only if found POLL_BUSY_LOOP sockets && not out of time */
509 		if (can_busy_loop && !need_resched()) {
510 			if (!busy_end) {
511 				busy_end = busy_loop_end_time();
512 				continue;
513 			}
514 			if (!busy_loop_timeout(busy_end))
515 				continue;
516 		}
517 		busy_flag = 0;
518 
519 		/*
520 		 * If this is the first loop and we have a timeout
521 		 * given, then we convert to ktime_t and set the to
522 		 * pointer to the expiry value.
523 		 */
524 		if (end_time && !to) {
525 			expire = timespec_to_ktime(*end_time);
526 			to = &expire;
527 		}
528 
529 		if (!poll_schedule_timeout(&table, TASK_INTERRUPTIBLE,
530 					   to, slack))
531 			timed_out = 1;
532 	}
533 
534 	poll_freewait(&table);
535 
536 	return retval;
537 }
538 
539 /*
540  * We can actually return ERESTARTSYS instead of EINTR, but I'd
541  * like to be certain this leads to no problems. So I return
542  * EINTR just for safety.
543  *
544  * Update: ERESTARTSYS breaks at least the xview clock binary, so
545  * I'm trying ERESTARTNOHAND which restart only when you want to.
546  */
547 int core_sys_select(int n, fd_set __user *inp, fd_set __user *outp,
548 			   fd_set __user *exp, struct timespec *end_time)
549 {
550 	fd_set_bits fds;
551 	void *bits;
552 	int ret, max_fds;
553 	unsigned int size;
554 	struct fdtable *fdt;
555 	/* Allocate small arguments on the stack to save memory and be faster */
556 	long stack_fds[SELECT_STACK_ALLOC/sizeof(long)];
557 
558 	ret = -EINVAL;
559 	if (n < 0)
560 		goto out_nofds;
561 
562 	/* max_fds can increase, so grab it once to avoid race */
563 	rcu_read_lock();
564 	fdt = files_fdtable(current->files);
565 	max_fds = fdt->max_fds;
566 	rcu_read_unlock();
567 	if (n > max_fds)
568 		n = max_fds;
569 
570 	/*
571 	 * We need 6 bitmaps (in/out/ex for both incoming and outgoing),
572 	 * since we used fdset we need to allocate memory in units of
573 	 * long-words.
574 	 */
575 	size = FDS_BYTES(n);
576 	bits = stack_fds;
577 	if (size > sizeof(stack_fds) / 6) {
578 		/* Not enough space in on-stack array; must use kmalloc */
579 		ret = -ENOMEM;
580 		bits = kmalloc(6 * size, GFP_KERNEL);
581 		if (!bits)
582 			goto out_nofds;
583 	}
584 	fds.in      = bits;
585 	fds.out     = bits +   size;
586 	fds.ex      = bits + 2*size;
587 	fds.res_in  = bits + 3*size;
588 	fds.res_out = bits + 4*size;
589 	fds.res_ex  = bits + 5*size;
590 
591 	if ((ret = get_fd_set(n, inp, fds.in)) ||
592 	    (ret = get_fd_set(n, outp, fds.out)) ||
593 	    (ret = get_fd_set(n, exp, fds.ex)))
594 		goto out;
595 	zero_fd_set(n, fds.res_in);
596 	zero_fd_set(n, fds.res_out);
597 	zero_fd_set(n, fds.res_ex);
598 
599 	ret = do_select(n, &fds, end_time);
600 
601 	if (ret < 0)
602 		goto out;
603 	if (!ret) {
604 		ret = -ERESTARTNOHAND;
605 		if (signal_pending(current))
606 			goto out;
607 		ret = 0;
608 	}
609 
610 	if (set_fd_set(n, inp, fds.res_in) ||
611 	    set_fd_set(n, outp, fds.res_out) ||
612 	    set_fd_set(n, exp, fds.res_ex))
613 		ret = -EFAULT;
614 
615 out:
616 	if (bits != stack_fds)
617 		kfree(bits);
618 out_nofds:
619 	return ret;
620 }
621 
622 SYSCALL_DEFINE5(select, int, n, fd_set __user *, inp, fd_set __user *, outp,
623 		fd_set __user *, exp, struct timeval __user *, tvp)
624 {
625 	struct timespec end_time, *to = NULL;
626 	struct timeval tv;
627 	int ret;
628 
629 	if (tvp) {
630 		if (copy_from_user(&tv, tvp, sizeof(tv)))
631 			return -EFAULT;
632 
633 		to = &end_time;
634 		if (poll_select_set_timeout(to,
635 				tv.tv_sec + (tv.tv_usec / USEC_PER_SEC),
636 				(tv.tv_usec % USEC_PER_SEC) * NSEC_PER_USEC))
637 			return -EINVAL;
638 	}
639 
640 	ret = core_sys_select(n, inp, outp, exp, to);
641 	ret = poll_select_copy_remaining(&end_time, tvp, 1, ret);
642 
643 	return ret;
644 }
645 
646 static long do_pselect(int n, fd_set __user *inp, fd_set __user *outp,
647 		       fd_set __user *exp, struct timespec __user *tsp,
648 		       const sigset_t __user *sigmask, size_t sigsetsize)
649 {
650 	sigset_t ksigmask, sigsaved;
651 	struct timespec ts, end_time, *to = NULL;
652 	int ret;
653 
654 	if (tsp) {
655 		if (copy_from_user(&ts, tsp, sizeof(ts)))
656 			return -EFAULT;
657 
658 		to = &end_time;
659 		if (poll_select_set_timeout(to, ts.tv_sec, ts.tv_nsec))
660 			return -EINVAL;
661 	}
662 
663 	if (sigmask) {
664 		/* XXX: Don't preclude handling different sized sigset_t's.  */
665 		if (sigsetsize != sizeof(sigset_t))
666 			return -EINVAL;
667 		if (copy_from_user(&ksigmask, sigmask, sizeof(ksigmask)))
668 			return -EFAULT;
669 
670 		sigdelsetmask(&ksigmask, sigmask(SIGKILL)|sigmask(SIGSTOP));
671 		sigprocmask(SIG_SETMASK, &ksigmask, &sigsaved);
672 	}
673 
674 	ret = core_sys_select(n, inp, outp, exp, to);
675 	ret = poll_select_copy_remaining(&end_time, tsp, 0, ret);
676 
677 	if (ret == -ERESTARTNOHAND) {
678 		/*
679 		 * Don't restore the signal mask yet. Let do_signal() deliver
680 		 * the signal on the way back to userspace, before the signal
681 		 * mask is restored.
682 		 */
683 		if (sigmask) {
684 			memcpy(&current->saved_sigmask, &sigsaved,
685 					sizeof(sigsaved));
686 			set_restore_sigmask();
687 		}
688 	} else if (sigmask)
689 		sigprocmask(SIG_SETMASK, &sigsaved, NULL);
690 
691 	return ret;
692 }
693 
694 /*
695  * Most architectures can't handle 7-argument syscalls. So we provide a
696  * 6-argument version where the sixth argument is a pointer to a structure
697  * which has a pointer to the sigset_t itself followed by a size_t containing
698  * the sigset size.
699  */
700 SYSCALL_DEFINE6(pselect6, int, n, fd_set __user *, inp, fd_set __user *, outp,
701 		fd_set __user *, exp, struct timespec __user *, tsp,
702 		void __user *, sig)
703 {
704 	size_t sigsetsize = 0;
705 	sigset_t __user *up = NULL;
706 
707 	if (sig) {
708 		if (!access_ok(VERIFY_READ, sig, sizeof(void *)+sizeof(size_t))
709 		    || __get_user(up, (sigset_t __user * __user *)sig)
710 		    || __get_user(sigsetsize,
711 				(size_t __user *)(sig+sizeof(void *))))
712 			return -EFAULT;
713 	}
714 
715 	return do_pselect(n, inp, outp, exp, tsp, up, sigsetsize);
716 }
717 
718 #ifdef __ARCH_WANT_SYS_OLD_SELECT
719 struct sel_arg_struct {
720 	unsigned long n;
721 	fd_set __user *inp, *outp, *exp;
722 	struct timeval __user *tvp;
723 };
724 
725 SYSCALL_DEFINE1(old_select, struct sel_arg_struct __user *, arg)
726 {
727 	struct sel_arg_struct a;
728 
729 	if (copy_from_user(&a, arg, sizeof(a)))
730 		return -EFAULT;
731 	return sys_select(a.n, a.inp, a.outp, a.exp, a.tvp);
732 }
733 #endif
734 
735 struct poll_list {
736 	struct poll_list *next;
737 	int len;
738 	struct pollfd entries[0];
739 };
740 
741 #define POLLFD_PER_PAGE  ((PAGE_SIZE-sizeof(struct poll_list)) / sizeof(struct pollfd))
742 
743 /*
744  * Fish for pollable events on the pollfd->fd file descriptor. We're only
745  * interested in events matching the pollfd->events mask, and the result
746  * matching that mask is both recorded in pollfd->revents and returned. The
747  * pwait poll_table will be used by the fd-provided poll handler for waiting,
748  * if pwait->_qproc is non-NULL.
749  */
750 static inline unsigned int do_pollfd(struct pollfd *pollfd, poll_table *pwait,
751 				     bool *can_busy_poll,
752 				     unsigned int busy_flag)
753 {
754 	unsigned int mask;
755 	int fd;
756 
757 	mask = 0;
758 	fd = pollfd->fd;
759 	if (fd >= 0) {
760 		struct fd f = fdget(fd);
761 		mask = POLLNVAL;
762 		if (f.file) {
763 			mask = DEFAULT_POLLMASK;
764 			if (f.file->f_op->poll) {
765 				pwait->_key = pollfd->events|POLLERR|POLLHUP;
766 				pwait->_key |= busy_flag;
767 				mask = f.file->f_op->poll(f.file, pwait);
768 				if (mask & busy_flag)
769 					*can_busy_poll = true;
770 			}
771 			/* Mask out unneeded events. */
772 			mask &= pollfd->events | POLLERR | POLLHUP;
773 			fdput(f);
774 		}
775 	}
776 	pollfd->revents = mask;
777 
778 	return mask;
779 }
780 
781 static int do_poll(unsigned int nfds,  struct poll_list *list,
782 		   struct poll_wqueues *wait, struct timespec *end_time)
783 {
784 	poll_table* pt = &wait->pt;
785 	ktime_t expire, *to = NULL;
786 	int timed_out = 0, count = 0;
787 	unsigned long slack = 0;
788 	unsigned int busy_flag = net_busy_loop_on() ? POLL_BUSY_LOOP : 0;
789 	unsigned long busy_end = 0;
790 
791 	/* Optimise the no-wait case */
792 	if (end_time && !end_time->tv_sec && !end_time->tv_nsec) {
793 		pt->_qproc = NULL;
794 		timed_out = 1;
795 	}
796 
797 	if (end_time && !timed_out)
798 		slack = select_estimate_accuracy(end_time);
799 
800 	for (;;) {
801 		struct poll_list *walk;
802 		bool can_busy_loop = false;
803 
804 		for (walk = list; walk != NULL; walk = walk->next) {
805 			struct pollfd * pfd, * pfd_end;
806 
807 			pfd = walk->entries;
808 			pfd_end = pfd + walk->len;
809 			for (; pfd != pfd_end; pfd++) {
810 				/*
811 				 * Fish for events. If we found one, record it
812 				 * and kill poll_table->_qproc, so we don't
813 				 * needlessly register any other waiters after
814 				 * this. They'll get immediately deregistered
815 				 * when we break out and return.
816 				 */
817 				if (do_pollfd(pfd, pt, &can_busy_loop,
818 					      busy_flag)) {
819 					count++;
820 					pt->_qproc = NULL;
821 					/* found something, stop busy polling */
822 					busy_flag = 0;
823 					can_busy_loop = false;
824 				}
825 			}
826 		}
827 		/*
828 		 * All waiters have already been registered, so don't provide
829 		 * a poll_table->_qproc to them on the next loop iteration.
830 		 */
831 		pt->_qproc = NULL;
832 		if (!count) {
833 			count = wait->error;
834 			if (signal_pending(current))
835 				count = -EINTR;
836 		}
837 		if (count || timed_out)
838 			break;
839 
840 		/* only if found POLL_BUSY_LOOP sockets && not out of time */
841 		if (can_busy_loop && !need_resched()) {
842 			if (!busy_end) {
843 				busy_end = busy_loop_end_time();
844 				continue;
845 			}
846 			if (!busy_loop_timeout(busy_end))
847 				continue;
848 		}
849 		busy_flag = 0;
850 
851 		/*
852 		 * If this is the first loop and we have a timeout
853 		 * given, then we convert to ktime_t and set the to
854 		 * pointer to the expiry value.
855 		 */
856 		if (end_time && !to) {
857 			expire = timespec_to_ktime(*end_time);
858 			to = &expire;
859 		}
860 
861 		if (!poll_schedule_timeout(wait, TASK_INTERRUPTIBLE, to, slack))
862 			timed_out = 1;
863 	}
864 	return count;
865 }
866 
867 #define N_STACK_PPS ((sizeof(stack_pps) - sizeof(struct poll_list))  / \
868 			sizeof(struct pollfd))
869 
870 int do_sys_poll(struct pollfd __user *ufds, unsigned int nfds,
871 		struct timespec *end_time)
872 {
873 	struct poll_wqueues table;
874  	int err = -EFAULT, fdcount, len, size;
875 	/* Allocate small arguments on the stack to save memory and be
876 	   faster - use long to make sure the buffer is aligned properly
877 	   on 64 bit archs to avoid unaligned access */
878 	long stack_pps[POLL_STACK_ALLOC/sizeof(long)];
879 	struct poll_list *const head = (struct poll_list *)stack_pps;
880  	struct poll_list *walk = head;
881  	unsigned long todo = nfds;
882 
883 	if (nfds > rlimit(RLIMIT_NOFILE))
884 		return -EINVAL;
885 
886 	len = min_t(unsigned int, nfds, N_STACK_PPS);
887 	for (;;) {
888 		walk->next = NULL;
889 		walk->len = len;
890 		if (!len)
891 			break;
892 
893 		if (copy_from_user(walk->entries, ufds + nfds-todo,
894 					sizeof(struct pollfd) * walk->len))
895 			goto out_fds;
896 
897 		todo -= walk->len;
898 		if (!todo)
899 			break;
900 
901 		len = min(todo, POLLFD_PER_PAGE);
902 		size = sizeof(struct poll_list) + sizeof(struct pollfd) * len;
903 		walk = walk->next = kmalloc(size, GFP_KERNEL);
904 		if (!walk) {
905 			err = -ENOMEM;
906 			goto out_fds;
907 		}
908 	}
909 
910 	poll_initwait(&table);
911 	fdcount = do_poll(nfds, head, &table, end_time);
912 	poll_freewait(&table);
913 
914 	for (walk = head; walk; walk = walk->next) {
915 		struct pollfd *fds = walk->entries;
916 		int j;
917 
918 		for (j = 0; j < walk->len; j++, ufds++)
919 			if (__put_user(fds[j].revents, &ufds->revents))
920 				goto out_fds;
921   	}
922 
923 	err = fdcount;
924 out_fds:
925 	walk = head->next;
926 	while (walk) {
927 		struct poll_list *pos = walk;
928 		walk = walk->next;
929 		kfree(pos);
930 	}
931 
932 	return err;
933 }
934 
935 static long do_restart_poll(struct restart_block *restart_block)
936 {
937 	struct pollfd __user *ufds = restart_block->poll.ufds;
938 	int nfds = restart_block->poll.nfds;
939 	struct timespec *to = NULL, end_time;
940 	int ret;
941 
942 	if (restart_block->poll.has_timeout) {
943 		end_time.tv_sec = restart_block->poll.tv_sec;
944 		end_time.tv_nsec = restart_block->poll.tv_nsec;
945 		to = &end_time;
946 	}
947 
948 	ret = do_sys_poll(ufds, nfds, to);
949 
950 	if (ret == -EINTR) {
951 		restart_block->fn = do_restart_poll;
952 		ret = -ERESTART_RESTARTBLOCK;
953 	}
954 	return ret;
955 }
956 
957 SYSCALL_DEFINE3(poll, struct pollfd __user *, ufds, unsigned int, nfds,
958 		int, timeout_msecs)
959 {
960 	struct timespec end_time, *to = NULL;
961 	int ret;
962 
963 	if (timeout_msecs >= 0) {
964 		to = &end_time;
965 		poll_select_set_timeout(to, timeout_msecs / MSEC_PER_SEC,
966 			NSEC_PER_MSEC * (timeout_msecs % MSEC_PER_SEC));
967 	}
968 
969 	ret = do_sys_poll(ufds, nfds, to);
970 
971 	if (ret == -EINTR) {
972 		struct restart_block *restart_block;
973 
974 		restart_block = &current->restart_block;
975 		restart_block->fn = do_restart_poll;
976 		restart_block->poll.ufds = ufds;
977 		restart_block->poll.nfds = nfds;
978 
979 		if (timeout_msecs >= 0) {
980 			restart_block->poll.tv_sec = end_time.tv_sec;
981 			restart_block->poll.tv_nsec = end_time.tv_nsec;
982 			restart_block->poll.has_timeout = 1;
983 		} else
984 			restart_block->poll.has_timeout = 0;
985 
986 		ret = -ERESTART_RESTARTBLOCK;
987 	}
988 	return ret;
989 }
990 
991 SYSCALL_DEFINE5(ppoll, struct pollfd __user *, ufds, unsigned int, nfds,
992 		struct timespec __user *, tsp, const sigset_t __user *, sigmask,
993 		size_t, sigsetsize)
994 {
995 	sigset_t ksigmask, sigsaved;
996 	struct timespec ts, end_time, *to = NULL;
997 	int ret;
998 
999 	if (tsp) {
1000 		if (copy_from_user(&ts, tsp, sizeof(ts)))
1001 			return -EFAULT;
1002 
1003 		to = &end_time;
1004 		if (poll_select_set_timeout(to, ts.tv_sec, ts.tv_nsec))
1005 			return -EINVAL;
1006 	}
1007 
1008 	if (sigmask) {
1009 		/* XXX: Don't preclude handling different sized sigset_t's.  */
1010 		if (sigsetsize != sizeof(sigset_t))
1011 			return -EINVAL;
1012 		if (copy_from_user(&ksigmask, sigmask, sizeof(ksigmask)))
1013 			return -EFAULT;
1014 
1015 		sigdelsetmask(&ksigmask, sigmask(SIGKILL)|sigmask(SIGSTOP));
1016 		sigprocmask(SIG_SETMASK, &ksigmask, &sigsaved);
1017 	}
1018 
1019 	ret = do_sys_poll(ufds, nfds, to);
1020 
1021 	/* We can restart this syscall, usually */
1022 	if (ret == -EINTR) {
1023 		/*
1024 		 * Don't restore the signal mask yet. Let do_signal() deliver
1025 		 * the signal on the way back to userspace, before the signal
1026 		 * mask is restored.
1027 		 */
1028 		if (sigmask) {
1029 			memcpy(&current->saved_sigmask, &sigsaved,
1030 					sizeof(sigsaved));
1031 			set_restore_sigmask();
1032 		}
1033 		ret = -ERESTARTNOHAND;
1034 	} else if (sigmask)
1035 		sigprocmask(SIG_SETMASK, &sigsaved, NULL);
1036 
1037 	ret = poll_select_copy_remaining(&end_time, tsp, 0, ret);
1038 
1039 	return ret;
1040 }
1041