1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * User interface for Resource Allocation in Resource Director Technology(RDT) 4 * 5 * Copyright (C) 2016 Intel Corporation 6 * 7 * Author: Fenghua Yu <fenghua.yu@intel.com> 8 * 9 * More information about RDT be found in the Intel (R) x86 Architecture 10 * Software Developer Manual. 11 */ 12 13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 14 15 #include <linux/cpu.h> 16 #include <linux/debugfs.h> 17 #include <linux/fs.h> 18 #include <linux/fs_parser.h> 19 #include <linux/sysfs.h> 20 #include <linux/kernfs.h> 21 #include <linux/resctrl.h> 22 #include <linux/seq_buf.h> 23 #include <linux/seq_file.h> 24 #include <linux/sched/task.h> 25 #include <linux/slab.h> 26 #include <linux/user_namespace.h> 27 28 #include <uapi/linux/magic.h> 29 30 #include "internal.h" 31 32 /* Mutex to protect rdtgroup access. */ 33 DEFINE_MUTEX(rdtgroup_mutex); 34 35 static struct kernfs_root *rdt_root; 36 37 struct rdtgroup rdtgroup_default; 38 39 LIST_HEAD(rdt_all_groups); 40 41 /* list of entries for the schemata file */ 42 LIST_HEAD(resctrl_schema_all); 43 44 /* 45 * List of struct mon_data containing private data of event files for use by 46 * rdtgroup_mondata_show(). Protected by rdtgroup_mutex. 47 */ 48 static LIST_HEAD(mon_data_kn_priv_list); 49 50 /* The filesystem can only be mounted once. */ 51 bool resctrl_mounted; 52 53 /* Kernel fs node for "info" directory under root */ 54 static struct kernfs_node *kn_info; 55 56 /* Kernel fs node for "mon_groups" directory under root */ 57 static struct kernfs_node *kn_mongrp; 58 59 /* Kernel fs node for "mon_data" directory under root */ 60 static struct kernfs_node *kn_mondata; 61 62 /* 63 * Used to store the max resource name width to display the schemata names in 64 * a tabular format. 65 */ 66 int max_name_width; 67 68 static struct seq_buf last_cmd_status; 69 70 static char last_cmd_status_buf[512]; 71 72 static int rdtgroup_setup_root(struct rdt_fs_context *ctx); 73 74 static void rdtgroup_destroy_root(void); 75 76 struct dentry *debugfs_resctrl; 77 78 /* 79 * Memory bandwidth monitoring event to use for the default CTRL_MON group 80 * and each new CTRL_MON group created by the user. Only relevant when 81 * the filesystem is mounted with the "mba_MBps" option so it does not 82 * matter that it remains uninitialized on systems that do not support 83 * the "mba_MBps" option. 84 */ 85 enum resctrl_event_id mba_mbps_default_event; 86 87 static bool resctrl_debug; 88 89 void rdt_last_cmd_clear(void) 90 { 91 lockdep_assert_held(&rdtgroup_mutex); 92 seq_buf_clear(&last_cmd_status); 93 } 94 95 void rdt_last_cmd_puts(const char *s) 96 { 97 lockdep_assert_held(&rdtgroup_mutex); 98 seq_buf_puts(&last_cmd_status, s); 99 } 100 101 void rdt_last_cmd_printf(const char *fmt, ...) 102 { 103 va_list ap; 104 105 va_start(ap, fmt); 106 lockdep_assert_held(&rdtgroup_mutex); 107 seq_buf_vprintf(&last_cmd_status, fmt, ap); 108 va_end(ap); 109 } 110 111 void rdt_staged_configs_clear(void) 112 { 113 struct rdt_ctrl_domain *dom; 114 struct rdt_resource *r; 115 116 lockdep_assert_held(&rdtgroup_mutex); 117 118 for_each_alloc_capable_rdt_resource(r) { 119 list_for_each_entry(dom, &r->ctrl_domains, hdr.list) 120 memset(dom->staged_config, 0, sizeof(dom->staged_config)); 121 } 122 } 123 124 static bool resctrl_is_mbm_enabled(void) 125 { 126 return (resctrl_is_mon_event_enabled(QOS_L3_MBM_TOTAL_EVENT_ID) || 127 resctrl_is_mon_event_enabled(QOS_L3_MBM_LOCAL_EVENT_ID)); 128 } 129 130 /* 131 * Trivial allocator for CLOSIDs. Use BITMAP APIs to manipulate a bitmap 132 * of free CLOSIDs. 133 * 134 * Using a global CLOSID across all resources has some advantages and 135 * some drawbacks: 136 * + We can simply set current's closid to assign a task to a resource 137 * group. 138 * + Context switch code can avoid extra memory references deciding which 139 * CLOSID to load into the PQR_ASSOC MSR 140 * - We give up some options in configuring resource groups across multi-socket 141 * systems. 142 * - Our choices on how to configure each resource become progressively more 143 * limited as the number of resources grows. 144 */ 145 static unsigned long *closid_free_map; 146 147 static int closid_free_map_len; 148 149 int closids_supported(void) 150 { 151 return closid_free_map_len; 152 } 153 154 static int closid_init(void) 155 { 156 struct resctrl_schema *s; 157 u32 rdt_min_closid = ~0; 158 159 /* Monitor only platforms still call closid_init() */ 160 if (list_empty(&resctrl_schema_all)) 161 return 0; 162 163 /* Compute rdt_min_closid across all resources */ 164 list_for_each_entry(s, &resctrl_schema_all, list) 165 rdt_min_closid = min(rdt_min_closid, s->num_closid); 166 167 closid_free_map = bitmap_alloc(rdt_min_closid, GFP_KERNEL); 168 if (!closid_free_map) 169 return -ENOMEM; 170 bitmap_fill(closid_free_map, rdt_min_closid); 171 172 /* RESCTRL_RESERVED_CLOSID is always reserved for the default group */ 173 __clear_bit(RESCTRL_RESERVED_CLOSID, closid_free_map); 174 closid_free_map_len = rdt_min_closid; 175 176 return 0; 177 } 178 179 static void closid_exit(void) 180 { 181 bitmap_free(closid_free_map); 182 closid_free_map = NULL; 183 } 184 185 static int closid_alloc(void) 186 { 187 int cleanest_closid; 188 u32 closid; 189 190 lockdep_assert_held(&rdtgroup_mutex); 191 192 if (IS_ENABLED(CONFIG_RESCTRL_RMID_DEPENDS_ON_CLOSID) && 193 resctrl_is_mon_event_enabled(QOS_L3_OCCUP_EVENT_ID)) { 194 cleanest_closid = resctrl_find_cleanest_closid(); 195 if (cleanest_closid < 0) 196 return cleanest_closid; 197 closid = cleanest_closid; 198 } else { 199 closid = find_first_bit(closid_free_map, closid_free_map_len); 200 if (closid == closid_free_map_len) 201 return -ENOSPC; 202 } 203 __clear_bit(closid, closid_free_map); 204 205 return closid; 206 } 207 208 void closid_free(int closid) 209 { 210 lockdep_assert_held(&rdtgroup_mutex); 211 212 __set_bit(closid, closid_free_map); 213 } 214 215 /** 216 * closid_allocated - test if provided closid is in use 217 * @closid: closid to be tested 218 * 219 * Return: true if @closid is currently associated with a resource group, 220 * false if @closid is free 221 */ 222 bool closid_allocated(unsigned int closid) 223 { 224 lockdep_assert_held(&rdtgroup_mutex); 225 226 return !test_bit(closid, closid_free_map); 227 } 228 229 bool closid_alloc_fixed(u32 closid) 230 { 231 return __test_and_clear_bit(closid, closid_free_map); 232 } 233 234 /** 235 * rdtgroup_mode_by_closid - Return mode of resource group with closid 236 * @closid: closid if the resource group 237 * 238 * Each resource group is associated with a @closid. Here the mode 239 * of a resource group can be queried by searching for it using its closid. 240 * 241 * Return: mode as &enum rdtgrp_mode of resource group with closid @closid 242 */ 243 enum rdtgrp_mode rdtgroup_mode_by_closid(int closid) 244 { 245 struct rdtgroup *rdtgrp; 246 247 list_for_each_entry(rdtgrp, &rdt_all_groups, rdtgroup_list) { 248 if (rdtgrp->closid == closid) 249 return rdtgrp->mode; 250 } 251 252 return RDT_NUM_MODES; 253 } 254 255 static const char * const rdt_mode_str[] = { 256 [RDT_MODE_SHAREABLE] = "shareable", 257 [RDT_MODE_EXCLUSIVE] = "exclusive", 258 [RDT_MODE_PSEUDO_LOCKSETUP] = "pseudo-locksetup", 259 [RDT_MODE_PSEUDO_LOCKED] = "pseudo-locked", 260 }; 261 262 /** 263 * rdtgroup_mode_str - Return the string representation of mode 264 * @mode: the resource group mode as &enum rdtgroup_mode 265 * 266 * Return: string representation of valid mode, "unknown" otherwise 267 */ 268 static const char *rdtgroup_mode_str(enum rdtgrp_mode mode) 269 { 270 if (mode < RDT_MODE_SHAREABLE || mode >= RDT_NUM_MODES) 271 return "unknown"; 272 273 return rdt_mode_str[mode]; 274 } 275 276 /* set uid and gid of rdtgroup dirs and files to that of the creator */ 277 static int rdtgroup_kn_set_ugid(struct kernfs_node *kn) 278 { 279 struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID, 280 .ia_uid = current_fsuid(), 281 .ia_gid = current_fsgid(), }; 282 283 if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) && 284 gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID)) 285 return 0; 286 287 return kernfs_setattr(kn, &iattr); 288 } 289 290 static int rdtgroup_add_file(struct kernfs_node *parent_kn, struct rftype *rft) 291 { 292 struct kernfs_node *kn; 293 int ret; 294 295 kn = __kernfs_create_file(parent_kn, rft->name, rft->mode, 296 GLOBAL_ROOT_UID, GLOBAL_ROOT_GID, 297 0, rft->kf_ops, rft, NULL, NULL); 298 if (IS_ERR(kn)) 299 return PTR_ERR(kn); 300 301 ret = rdtgroup_kn_set_ugid(kn); 302 if (ret) { 303 kernfs_remove(kn); 304 return ret; 305 } 306 307 return 0; 308 } 309 310 static int rdtgroup_seqfile_show(struct seq_file *m, void *arg) 311 { 312 struct kernfs_open_file *of = m->private; 313 struct rftype *rft = of->kn->priv; 314 315 if (rft->seq_show) 316 return rft->seq_show(of, m, arg); 317 return 0; 318 } 319 320 static ssize_t rdtgroup_file_write(struct kernfs_open_file *of, char *buf, 321 size_t nbytes, loff_t off) 322 { 323 struct rftype *rft = of->kn->priv; 324 325 if (rft->write) 326 return rft->write(of, buf, nbytes, off); 327 328 return -EINVAL; 329 } 330 331 static const struct kernfs_ops rdtgroup_kf_single_ops = { 332 .atomic_write_len = PAGE_SIZE, 333 .write = rdtgroup_file_write, 334 .seq_show = rdtgroup_seqfile_show, 335 }; 336 337 static const struct kernfs_ops kf_mondata_ops = { 338 .atomic_write_len = PAGE_SIZE, 339 .seq_show = rdtgroup_mondata_show, 340 }; 341 342 static bool is_cpu_list(struct kernfs_open_file *of) 343 { 344 struct rftype *rft = of->kn->priv; 345 346 return rft->flags & RFTYPE_FLAGS_CPUS_LIST; 347 } 348 349 static int rdtgroup_cpus_show(struct kernfs_open_file *of, 350 struct seq_file *s, void *v) 351 { 352 struct rdtgroup *rdtgrp; 353 struct cpumask *mask; 354 int ret = 0; 355 356 rdtgrp = rdtgroup_kn_lock_live(of->kn); 357 358 if (rdtgrp) { 359 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED) { 360 if (!rdtgrp->plr->d) { 361 rdt_last_cmd_clear(); 362 rdt_last_cmd_puts("Cache domain offline\n"); 363 ret = -ENODEV; 364 } else { 365 mask = &rdtgrp->plr->d->hdr.cpu_mask; 366 seq_printf(s, is_cpu_list(of) ? 367 "%*pbl\n" : "%*pb\n", 368 cpumask_pr_args(mask)); 369 } 370 } else { 371 seq_printf(s, is_cpu_list(of) ? "%*pbl\n" : "%*pb\n", 372 cpumask_pr_args(&rdtgrp->cpu_mask)); 373 } 374 } else { 375 ret = -ENOENT; 376 } 377 rdtgroup_kn_unlock(of->kn); 378 379 return ret; 380 } 381 382 /* 383 * Update the PGR_ASSOC MSR on all cpus in @cpu_mask, 384 * 385 * Per task closids/rmids must have been set up before calling this function. 386 * @r may be NULL. 387 */ 388 static void 389 update_closid_rmid(const struct cpumask *cpu_mask, struct rdtgroup *r) 390 { 391 struct resctrl_cpu_defaults defaults, *p = NULL; 392 393 if (r) { 394 defaults.closid = r->closid; 395 defaults.rmid = r->mon.rmid; 396 p = &defaults; 397 } 398 399 on_each_cpu_mask(cpu_mask, resctrl_arch_sync_cpu_closid_rmid, p, 1); 400 } 401 402 static int cpus_mon_write(struct rdtgroup *rdtgrp, cpumask_var_t newmask, 403 cpumask_var_t tmpmask) 404 { 405 struct rdtgroup *prgrp = rdtgrp->mon.parent, *crgrp; 406 struct list_head *head; 407 408 /* Check whether cpus belong to parent ctrl group */ 409 cpumask_andnot(tmpmask, newmask, &prgrp->cpu_mask); 410 if (!cpumask_empty(tmpmask)) { 411 rdt_last_cmd_puts("Can only add CPUs to mongroup that belong to parent\n"); 412 return -EINVAL; 413 } 414 415 /* Check whether cpus are dropped from this group */ 416 cpumask_andnot(tmpmask, &rdtgrp->cpu_mask, newmask); 417 if (!cpumask_empty(tmpmask)) { 418 /* Give any dropped cpus to parent rdtgroup */ 419 cpumask_or(&prgrp->cpu_mask, &prgrp->cpu_mask, tmpmask); 420 update_closid_rmid(tmpmask, prgrp); 421 } 422 423 /* 424 * If we added cpus, remove them from previous group that owned them 425 * and update per-cpu rmid 426 */ 427 cpumask_andnot(tmpmask, newmask, &rdtgrp->cpu_mask); 428 if (!cpumask_empty(tmpmask)) { 429 head = &prgrp->mon.crdtgrp_list; 430 list_for_each_entry(crgrp, head, mon.crdtgrp_list) { 431 if (crgrp == rdtgrp) 432 continue; 433 cpumask_andnot(&crgrp->cpu_mask, &crgrp->cpu_mask, 434 tmpmask); 435 } 436 update_closid_rmid(tmpmask, rdtgrp); 437 } 438 439 /* Done pushing/pulling - update this group with new mask */ 440 cpumask_copy(&rdtgrp->cpu_mask, newmask); 441 442 return 0; 443 } 444 445 static void cpumask_rdtgrp_clear(struct rdtgroup *r, struct cpumask *m) 446 { 447 struct rdtgroup *crgrp; 448 449 cpumask_andnot(&r->cpu_mask, &r->cpu_mask, m); 450 /* update the child mon group masks as well*/ 451 list_for_each_entry(crgrp, &r->mon.crdtgrp_list, mon.crdtgrp_list) 452 cpumask_and(&crgrp->cpu_mask, &r->cpu_mask, &crgrp->cpu_mask); 453 } 454 455 static int cpus_ctrl_write(struct rdtgroup *rdtgrp, cpumask_var_t newmask, 456 cpumask_var_t tmpmask, cpumask_var_t tmpmask1) 457 { 458 struct rdtgroup *r, *crgrp; 459 struct list_head *head; 460 461 /* Check whether cpus are dropped from this group */ 462 cpumask_andnot(tmpmask, &rdtgrp->cpu_mask, newmask); 463 if (!cpumask_empty(tmpmask)) { 464 /* Can't drop from default group */ 465 if (rdtgrp == &rdtgroup_default) { 466 rdt_last_cmd_puts("Can't drop CPUs from default group\n"); 467 return -EINVAL; 468 } 469 470 /* Give any dropped cpus to rdtgroup_default */ 471 cpumask_or(&rdtgroup_default.cpu_mask, 472 &rdtgroup_default.cpu_mask, tmpmask); 473 update_closid_rmid(tmpmask, &rdtgroup_default); 474 } 475 476 /* 477 * If we added cpus, remove them from previous group and 478 * the prev group's child groups that owned them 479 * and update per-cpu closid/rmid. 480 */ 481 cpumask_andnot(tmpmask, newmask, &rdtgrp->cpu_mask); 482 if (!cpumask_empty(tmpmask)) { 483 list_for_each_entry(r, &rdt_all_groups, rdtgroup_list) { 484 if (r == rdtgrp) 485 continue; 486 cpumask_and(tmpmask1, &r->cpu_mask, tmpmask); 487 if (!cpumask_empty(tmpmask1)) 488 cpumask_rdtgrp_clear(r, tmpmask1); 489 } 490 update_closid_rmid(tmpmask, rdtgrp); 491 } 492 493 /* Done pushing/pulling - update this group with new mask */ 494 cpumask_copy(&rdtgrp->cpu_mask, newmask); 495 496 /* 497 * Clear child mon group masks since there is a new parent mask 498 * now and update the rmid for the cpus the child lost. 499 */ 500 head = &rdtgrp->mon.crdtgrp_list; 501 list_for_each_entry(crgrp, head, mon.crdtgrp_list) { 502 cpumask_and(tmpmask, &rdtgrp->cpu_mask, &crgrp->cpu_mask); 503 update_closid_rmid(tmpmask, rdtgrp); 504 cpumask_clear(&crgrp->cpu_mask); 505 } 506 507 return 0; 508 } 509 510 static ssize_t rdtgroup_cpus_write(struct kernfs_open_file *of, 511 char *buf, size_t nbytes, loff_t off) 512 { 513 cpumask_var_t tmpmask, newmask, tmpmask1; 514 struct rdtgroup *rdtgrp; 515 int ret; 516 517 if (!buf) 518 return -EINVAL; 519 520 if (!zalloc_cpumask_var(&tmpmask, GFP_KERNEL)) 521 return -ENOMEM; 522 if (!zalloc_cpumask_var(&newmask, GFP_KERNEL)) { 523 free_cpumask_var(tmpmask); 524 return -ENOMEM; 525 } 526 if (!zalloc_cpumask_var(&tmpmask1, GFP_KERNEL)) { 527 free_cpumask_var(tmpmask); 528 free_cpumask_var(newmask); 529 return -ENOMEM; 530 } 531 532 rdtgrp = rdtgroup_kn_lock_live(of->kn); 533 if (!rdtgrp) { 534 ret = -ENOENT; 535 goto unlock; 536 } 537 538 rdt_last_cmd_clear(); 539 540 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED || 541 rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) { 542 ret = -EINVAL; 543 rdt_last_cmd_puts("Pseudo-locking in progress\n"); 544 goto unlock; 545 } 546 547 if (is_cpu_list(of)) 548 ret = cpulist_parse(buf, newmask); 549 else 550 ret = cpumask_parse(buf, newmask); 551 552 if (ret) { 553 rdt_last_cmd_puts("Bad CPU list/mask\n"); 554 goto unlock; 555 } 556 557 /* check that user didn't specify any offline cpus */ 558 cpumask_andnot(tmpmask, newmask, cpu_online_mask); 559 if (!cpumask_empty(tmpmask)) { 560 ret = -EINVAL; 561 rdt_last_cmd_puts("Can only assign online CPUs\n"); 562 goto unlock; 563 } 564 565 if (rdtgrp->type == RDTCTRL_GROUP) 566 ret = cpus_ctrl_write(rdtgrp, newmask, tmpmask, tmpmask1); 567 else if (rdtgrp->type == RDTMON_GROUP) 568 ret = cpus_mon_write(rdtgrp, newmask, tmpmask); 569 else 570 ret = -EINVAL; 571 572 unlock: 573 rdtgroup_kn_unlock(of->kn); 574 free_cpumask_var(tmpmask); 575 free_cpumask_var(newmask); 576 free_cpumask_var(tmpmask1); 577 578 return ret ?: nbytes; 579 } 580 581 /** 582 * rdtgroup_remove - the helper to remove resource group safely 583 * @rdtgrp: resource group to remove 584 * 585 * On resource group creation via a mkdir, an extra kernfs_node reference is 586 * taken to ensure that the rdtgroup structure remains accessible for the 587 * rdtgroup_kn_unlock() calls where it is removed. 588 * 589 * Drop the extra reference here, then free the rdtgroup structure. 590 * 591 * Return: void 592 */ 593 static void rdtgroup_remove(struct rdtgroup *rdtgrp) 594 { 595 kernfs_put(rdtgrp->kn); 596 kfree(rdtgrp); 597 } 598 599 static void _update_task_closid_rmid(void *task) 600 { 601 /* 602 * If the task is still current on this CPU, update PQR_ASSOC MSR. 603 * Otherwise, the MSR is updated when the task is scheduled in. 604 */ 605 if (task == current) 606 resctrl_arch_sched_in(task); 607 } 608 609 static void update_task_closid_rmid(struct task_struct *t) 610 { 611 if (IS_ENABLED(CONFIG_SMP) && task_curr(t)) 612 smp_call_function_single(task_cpu(t), _update_task_closid_rmid, t, 1); 613 else 614 _update_task_closid_rmid(t); 615 } 616 617 static bool task_in_rdtgroup(struct task_struct *tsk, struct rdtgroup *rdtgrp) 618 { 619 u32 closid, rmid = rdtgrp->mon.rmid; 620 621 if (rdtgrp->type == RDTCTRL_GROUP) 622 closid = rdtgrp->closid; 623 else if (rdtgrp->type == RDTMON_GROUP) 624 closid = rdtgrp->mon.parent->closid; 625 else 626 return false; 627 628 return resctrl_arch_match_closid(tsk, closid) && 629 resctrl_arch_match_rmid(tsk, closid, rmid); 630 } 631 632 static int __rdtgroup_move_task(struct task_struct *tsk, 633 struct rdtgroup *rdtgrp) 634 { 635 /* If the task is already in rdtgrp, no need to move the task. */ 636 if (task_in_rdtgroup(tsk, rdtgrp)) 637 return 0; 638 639 /* 640 * Set the task's closid/rmid before the PQR_ASSOC MSR can be 641 * updated by them. 642 * 643 * For ctrl_mon groups, move both closid and rmid. 644 * For monitor groups, can move the tasks only from 645 * their parent CTRL group. 646 */ 647 if (rdtgrp->type == RDTMON_GROUP && 648 !resctrl_arch_match_closid(tsk, rdtgrp->mon.parent->closid)) { 649 rdt_last_cmd_puts("Can't move task to different control group\n"); 650 return -EINVAL; 651 } 652 653 if (rdtgrp->type == RDTMON_GROUP) 654 resctrl_arch_set_closid_rmid(tsk, rdtgrp->mon.parent->closid, 655 rdtgrp->mon.rmid); 656 else 657 resctrl_arch_set_closid_rmid(tsk, rdtgrp->closid, 658 rdtgrp->mon.rmid); 659 660 /* 661 * Ensure the task's closid and rmid are written before determining if 662 * the task is current that will decide if it will be interrupted. 663 * This pairs with the full barrier between the rq->curr update and 664 * resctrl_arch_sched_in() during context switch. 665 */ 666 smp_mb(); 667 668 /* 669 * By now, the task's closid and rmid are set. If the task is current 670 * on a CPU, the PQR_ASSOC MSR needs to be updated to make the resource 671 * group go into effect. If the task is not current, the MSR will be 672 * updated when the task is scheduled in. 673 */ 674 update_task_closid_rmid(tsk); 675 676 return 0; 677 } 678 679 static bool is_closid_match(struct task_struct *t, struct rdtgroup *r) 680 { 681 return (resctrl_arch_alloc_capable() && (r->type == RDTCTRL_GROUP) && 682 resctrl_arch_match_closid(t, r->closid)); 683 } 684 685 static bool is_rmid_match(struct task_struct *t, struct rdtgroup *r) 686 { 687 return (resctrl_arch_mon_capable() && (r->type == RDTMON_GROUP) && 688 resctrl_arch_match_rmid(t, r->mon.parent->closid, 689 r->mon.rmid)); 690 } 691 692 /** 693 * rdtgroup_tasks_assigned - Test if tasks have been assigned to resource group 694 * @r: Resource group 695 * 696 * Return: 1 if tasks have been assigned to @r, 0 otherwise 697 */ 698 int rdtgroup_tasks_assigned(struct rdtgroup *r) 699 { 700 struct task_struct *p, *t; 701 int ret = 0; 702 703 lockdep_assert_held(&rdtgroup_mutex); 704 705 rcu_read_lock(); 706 for_each_process_thread(p, t) { 707 if (is_closid_match(t, r) || is_rmid_match(t, r)) { 708 ret = 1; 709 break; 710 } 711 } 712 rcu_read_unlock(); 713 714 return ret; 715 } 716 717 static int rdtgroup_task_write_permission(struct task_struct *task, 718 struct kernfs_open_file *of) 719 { 720 const struct cred *tcred = get_task_cred(task); 721 const struct cred *cred = current_cred(); 722 int ret = 0; 723 724 /* 725 * Even if we're attaching all tasks in the thread group, we only 726 * need to check permissions on one of them. 727 */ 728 if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) && 729 !uid_eq(cred->euid, tcred->uid) && 730 !uid_eq(cred->euid, tcred->suid)) { 731 rdt_last_cmd_printf("No permission to move task %d\n", task->pid); 732 ret = -EPERM; 733 } 734 735 put_cred(tcred); 736 return ret; 737 } 738 739 static int rdtgroup_move_task(pid_t pid, struct rdtgroup *rdtgrp, 740 struct kernfs_open_file *of) 741 { 742 struct task_struct *tsk; 743 int ret; 744 745 rcu_read_lock(); 746 if (pid) { 747 tsk = find_task_by_vpid(pid); 748 if (!tsk) { 749 rcu_read_unlock(); 750 rdt_last_cmd_printf("No task %d\n", pid); 751 return -ESRCH; 752 } 753 } else { 754 tsk = current; 755 } 756 757 get_task_struct(tsk); 758 rcu_read_unlock(); 759 760 ret = rdtgroup_task_write_permission(tsk, of); 761 if (!ret) 762 ret = __rdtgroup_move_task(tsk, rdtgrp); 763 764 put_task_struct(tsk); 765 return ret; 766 } 767 768 static ssize_t rdtgroup_tasks_write(struct kernfs_open_file *of, 769 char *buf, size_t nbytes, loff_t off) 770 { 771 struct rdtgroup *rdtgrp; 772 char *pid_str; 773 int ret = 0; 774 pid_t pid; 775 776 rdtgrp = rdtgroup_kn_lock_live(of->kn); 777 if (!rdtgrp) { 778 rdtgroup_kn_unlock(of->kn); 779 return -ENOENT; 780 } 781 rdt_last_cmd_clear(); 782 783 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED || 784 rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) { 785 ret = -EINVAL; 786 rdt_last_cmd_puts("Pseudo-locking in progress\n"); 787 goto unlock; 788 } 789 790 while (buf && buf[0] != '\0' && buf[0] != '\n') { 791 pid_str = strim(strsep(&buf, ",")); 792 793 if (kstrtoint(pid_str, 0, &pid)) { 794 rdt_last_cmd_printf("Task list parsing error pid %s\n", pid_str); 795 ret = -EINVAL; 796 break; 797 } 798 799 if (pid < 0) { 800 rdt_last_cmd_printf("Invalid pid %d\n", pid); 801 ret = -EINVAL; 802 break; 803 } 804 805 ret = rdtgroup_move_task(pid, rdtgrp, of); 806 if (ret) { 807 rdt_last_cmd_printf("Error while processing task %d\n", pid); 808 break; 809 } 810 } 811 812 unlock: 813 rdtgroup_kn_unlock(of->kn); 814 815 return ret ?: nbytes; 816 } 817 818 static void show_rdt_tasks(struct rdtgroup *r, struct seq_file *s) 819 { 820 struct task_struct *p, *t; 821 pid_t pid; 822 823 rcu_read_lock(); 824 for_each_process_thread(p, t) { 825 if (is_closid_match(t, r) || is_rmid_match(t, r)) { 826 pid = task_pid_vnr(t); 827 if (pid) 828 seq_printf(s, "%d\n", pid); 829 } 830 } 831 rcu_read_unlock(); 832 } 833 834 static int rdtgroup_tasks_show(struct kernfs_open_file *of, 835 struct seq_file *s, void *v) 836 { 837 struct rdtgroup *rdtgrp; 838 int ret = 0; 839 840 rdtgrp = rdtgroup_kn_lock_live(of->kn); 841 if (rdtgrp) 842 show_rdt_tasks(rdtgrp, s); 843 else 844 ret = -ENOENT; 845 rdtgroup_kn_unlock(of->kn); 846 847 return ret; 848 } 849 850 static int rdtgroup_closid_show(struct kernfs_open_file *of, 851 struct seq_file *s, void *v) 852 { 853 struct rdtgroup *rdtgrp; 854 int ret = 0; 855 856 rdtgrp = rdtgroup_kn_lock_live(of->kn); 857 if (rdtgrp) 858 seq_printf(s, "%u\n", rdtgrp->closid); 859 else 860 ret = -ENOENT; 861 rdtgroup_kn_unlock(of->kn); 862 863 return ret; 864 } 865 866 static int rdtgroup_rmid_show(struct kernfs_open_file *of, 867 struct seq_file *s, void *v) 868 { 869 struct rdtgroup *rdtgrp; 870 int ret = 0; 871 872 rdtgrp = rdtgroup_kn_lock_live(of->kn); 873 if (rdtgrp) 874 seq_printf(s, "%u\n", rdtgrp->mon.rmid); 875 else 876 ret = -ENOENT; 877 rdtgroup_kn_unlock(of->kn); 878 879 return ret; 880 } 881 882 #ifdef CONFIG_PROC_CPU_RESCTRL 883 /* 884 * A task can only be part of one resctrl control group and of one monitor 885 * group which is associated to that control group. 886 * 887 * 1) res: 888 * mon: 889 * 890 * resctrl is not available. 891 * 892 * 2) res:/ 893 * mon: 894 * 895 * Task is part of the root resctrl control group, and it is not associated 896 * to any monitor group. 897 * 898 * 3) res:/ 899 * mon:mon0 900 * 901 * Task is part of the root resctrl control group and monitor group mon0. 902 * 903 * 4) res:group0 904 * mon: 905 * 906 * Task is part of resctrl control group group0, and it is not associated 907 * to any monitor group. 908 * 909 * 5) res:group0 910 * mon:mon1 911 * 912 * Task is part of resctrl control group group0 and monitor group mon1. 913 */ 914 int proc_resctrl_show(struct seq_file *s, struct pid_namespace *ns, 915 struct pid *pid, struct task_struct *tsk) 916 { 917 struct rdtgroup *rdtg; 918 int ret = 0; 919 920 mutex_lock(&rdtgroup_mutex); 921 922 /* Return empty if resctrl has not been mounted. */ 923 if (!resctrl_mounted) { 924 seq_puts(s, "res:\nmon:\n"); 925 goto unlock; 926 } 927 928 list_for_each_entry(rdtg, &rdt_all_groups, rdtgroup_list) { 929 struct rdtgroup *crg; 930 931 /* 932 * Task information is only relevant for shareable 933 * and exclusive groups. 934 */ 935 if (rdtg->mode != RDT_MODE_SHAREABLE && 936 rdtg->mode != RDT_MODE_EXCLUSIVE) 937 continue; 938 939 if (!resctrl_arch_match_closid(tsk, rdtg->closid)) 940 continue; 941 942 seq_printf(s, "res:%s%s\n", (rdtg == &rdtgroup_default) ? "/" : "", 943 rdt_kn_name(rdtg->kn)); 944 seq_puts(s, "mon:"); 945 list_for_each_entry(crg, &rdtg->mon.crdtgrp_list, 946 mon.crdtgrp_list) { 947 if (!resctrl_arch_match_rmid(tsk, crg->mon.parent->closid, 948 crg->mon.rmid)) 949 continue; 950 seq_printf(s, "%s", rdt_kn_name(crg->kn)); 951 break; 952 } 953 seq_putc(s, '\n'); 954 goto unlock; 955 } 956 /* 957 * The above search should succeed. Otherwise return 958 * with an error. 959 */ 960 ret = -ENOENT; 961 unlock: 962 mutex_unlock(&rdtgroup_mutex); 963 964 return ret; 965 } 966 #endif 967 968 static int rdt_last_cmd_status_show(struct kernfs_open_file *of, 969 struct seq_file *seq, void *v) 970 { 971 int len; 972 973 mutex_lock(&rdtgroup_mutex); 974 len = seq_buf_used(&last_cmd_status); 975 if (len) 976 seq_printf(seq, "%.*s", len, last_cmd_status_buf); 977 else 978 seq_puts(seq, "ok\n"); 979 mutex_unlock(&rdtgroup_mutex); 980 return 0; 981 } 982 983 void *rdt_kn_parent_priv(struct kernfs_node *kn) 984 { 985 /* 986 * The parent pointer is only valid within RCU section since it can be 987 * replaced. 988 */ 989 guard(rcu)(); 990 return rcu_dereference(kn->__parent)->priv; 991 } 992 993 static int rdt_num_closids_show(struct kernfs_open_file *of, 994 struct seq_file *seq, void *v) 995 { 996 struct resctrl_schema *s = rdt_kn_parent_priv(of->kn); 997 998 seq_printf(seq, "%u\n", s->num_closid); 999 return 0; 1000 } 1001 1002 static int rdt_default_ctrl_show(struct kernfs_open_file *of, 1003 struct seq_file *seq, void *v) 1004 { 1005 struct resctrl_schema *s = rdt_kn_parent_priv(of->kn); 1006 struct rdt_resource *r = s->res; 1007 1008 seq_printf(seq, "%x\n", resctrl_get_default_ctrl(r)); 1009 return 0; 1010 } 1011 1012 static int rdt_min_cbm_bits_show(struct kernfs_open_file *of, 1013 struct seq_file *seq, void *v) 1014 { 1015 struct resctrl_schema *s = rdt_kn_parent_priv(of->kn); 1016 struct rdt_resource *r = s->res; 1017 1018 seq_printf(seq, "%u\n", r->cache.min_cbm_bits); 1019 return 0; 1020 } 1021 1022 static int rdt_shareable_bits_show(struct kernfs_open_file *of, 1023 struct seq_file *seq, void *v) 1024 { 1025 struct resctrl_schema *s = rdt_kn_parent_priv(of->kn); 1026 struct rdt_resource *r = s->res; 1027 1028 seq_printf(seq, "%x\n", r->cache.shareable_bits); 1029 return 0; 1030 } 1031 1032 /* 1033 * rdt_bit_usage_show - Display current usage of resources 1034 * 1035 * A domain is a shared resource that can now be allocated differently. Here 1036 * we display the current regions of the domain as an annotated bitmask. 1037 * For each domain of this resource its allocation bitmask 1038 * is annotated as below to indicate the current usage of the corresponding bit: 1039 * 0 - currently unused 1040 * X - currently available for sharing and used by software and hardware 1041 * H - currently used by hardware only but available for software use 1042 * S - currently used and shareable by software only 1043 * E - currently used exclusively by one resource group 1044 * P - currently pseudo-locked by one resource group 1045 */ 1046 static int rdt_bit_usage_show(struct kernfs_open_file *of, 1047 struct seq_file *seq, void *v) 1048 { 1049 struct resctrl_schema *s = rdt_kn_parent_priv(of->kn); 1050 /* 1051 * Use unsigned long even though only 32 bits are used to ensure 1052 * test_bit() is used safely. 1053 */ 1054 unsigned long sw_shareable = 0, hw_shareable = 0; 1055 unsigned long exclusive = 0, pseudo_locked = 0; 1056 struct rdt_resource *r = s->res; 1057 struct rdt_ctrl_domain *dom; 1058 int i, hwb, swb, excl, psl; 1059 enum rdtgrp_mode mode; 1060 bool sep = false; 1061 u32 ctrl_val; 1062 1063 cpus_read_lock(); 1064 mutex_lock(&rdtgroup_mutex); 1065 list_for_each_entry(dom, &r->ctrl_domains, hdr.list) { 1066 if (sep) 1067 seq_putc(seq, ';'); 1068 hw_shareable = r->cache.shareable_bits; 1069 sw_shareable = 0; 1070 exclusive = 0; 1071 seq_printf(seq, "%d=", dom->hdr.id); 1072 for (i = 0; i < closids_supported(); i++) { 1073 if (!closid_allocated(i) || 1074 (resctrl_arch_get_io_alloc_enabled(r) && 1075 i == resctrl_io_alloc_closid(r))) 1076 continue; 1077 ctrl_val = resctrl_arch_get_config(r, dom, i, 1078 s->conf_type); 1079 mode = rdtgroup_mode_by_closid(i); 1080 switch (mode) { 1081 case RDT_MODE_SHAREABLE: 1082 sw_shareable |= ctrl_val; 1083 break; 1084 case RDT_MODE_EXCLUSIVE: 1085 exclusive |= ctrl_val; 1086 break; 1087 case RDT_MODE_PSEUDO_LOCKSETUP: 1088 /* 1089 * RDT_MODE_PSEUDO_LOCKSETUP is possible 1090 * here but not included since the CBM 1091 * associated with this CLOSID in this mode 1092 * is not initialized and no task or cpu can be 1093 * assigned this CLOSID. 1094 */ 1095 break; 1096 case RDT_MODE_PSEUDO_LOCKED: 1097 case RDT_NUM_MODES: 1098 WARN(1, 1099 "invalid mode for closid %d\n", i); 1100 break; 1101 } 1102 } 1103 1104 /* 1105 * When the "io_alloc" feature is enabled, a portion of the cache 1106 * is configured for shared use between hardware and software. 1107 * Also, when CDP is enabled the CBMs of CDP_CODE and CDP_DATA 1108 * resources are kept in sync. So, the CBMs for "io_alloc" can 1109 * be accessed through either resource. 1110 */ 1111 if (resctrl_arch_get_io_alloc_enabled(r)) { 1112 ctrl_val = resctrl_arch_get_config(r, dom, 1113 resctrl_io_alloc_closid(r), 1114 s->conf_type); 1115 hw_shareable |= ctrl_val; 1116 } 1117 1118 for (i = r->cache.cbm_len - 1; i >= 0; i--) { 1119 pseudo_locked = dom->plr ? dom->plr->cbm : 0; 1120 hwb = test_bit(i, &hw_shareable); 1121 swb = test_bit(i, &sw_shareable); 1122 excl = test_bit(i, &exclusive); 1123 psl = test_bit(i, &pseudo_locked); 1124 if (hwb && swb) 1125 seq_putc(seq, 'X'); 1126 else if (hwb && !swb) 1127 seq_putc(seq, 'H'); 1128 else if (!hwb && swb) 1129 seq_putc(seq, 'S'); 1130 else if (excl) 1131 seq_putc(seq, 'E'); 1132 else if (psl) 1133 seq_putc(seq, 'P'); 1134 else /* Unused bits remain */ 1135 seq_putc(seq, '0'); 1136 } 1137 sep = true; 1138 } 1139 seq_putc(seq, '\n'); 1140 mutex_unlock(&rdtgroup_mutex); 1141 cpus_read_unlock(); 1142 return 0; 1143 } 1144 1145 static int rdt_min_bw_show(struct kernfs_open_file *of, 1146 struct seq_file *seq, void *v) 1147 { 1148 struct resctrl_schema *s = rdt_kn_parent_priv(of->kn); 1149 struct rdt_resource *r = s->res; 1150 1151 seq_printf(seq, "%u\n", r->membw.min_bw); 1152 return 0; 1153 } 1154 1155 static int rdt_num_rmids_show(struct kernfs_open_file *of, 1156 struct seq_file *seq, void *v) 1157 { 1158 struct rdt_resource *r = rdt_kn_parent_priv(of->kn); 1159 1160 seq_printf(seq, "%d\n", r->mon.num_rmid); 1161 1162 return 0; 1163 } 1164 1165 static int rdt_mon_features_show(struct kernfs_open_file *of, 1166 struct seq_file *seq, void *v) 1167 { 1168 struct rdt_resource *r = rdt_kn_parent_priv(of->kn); 1169 struct mon_evt *mevt; 1170 1171 for_each_mon_event(mevt) { 1172 if (mevt->rid != r->rid || !mevt->enabled) 1173 continue; 1174 seq_printf(seq, "%s\n", mevt->name); 1175 if (mevt->configurable && 1176 !resctrl_arch_mbm_cntr_assign_enabled(r)) 1177 seq_printf(seq, "%s_config\n", mevt->name); 1178 } 1179 1180 return 0; 1181 } 1182 1183 static int rdt_bw_gran_show(struct kernfs_open_file *of, 1184 struct seq_file *seq, void *v) 1185 { 1186 struct resctrl_schema *s = rdt_kn_parent_priv(of->kn); 1187 struct rdt_resource *r = s->res; 1188 1189 seq_printf(seq, "%u\n", r->membw.bw_gran); 1190 return 0; 1191 } 1192 1193 static int rdt_delay_linear_show(struct kernfs_open_file *of, 1194 struct seq_file *seq, void *v) 1195 { 1196 struct resctrl_schema *s = rdt_kn_parent_priv(of->kn); 1197 struct rdt_resource *r = s->res; 1198 1199 seq_printf(seq, "%u\n", r->membw.delay_linear); 1200 return 0; 1201 } 1202 1203 static int max_threshold_occ_show(struct kernfs_open_file *of, 1204 struct seq_file *seq, void *v) 1205 { 1206 seq_printf(seq, "%u\n", resctrl_rmid_realloc_threshold); 1207 1208 return 0; 1209 } 1210 1211 static int rdt_thread_throttle_mode_show(struct kernfs_open_file *of, 1212 struct seq_file *seq, void *v) 1213 { 1214 struct resctrl_schema *s = rdt_kn_parent_priv(of->kn); 1215 struct rdt_resource *r = s->res; 1216 1217 switch (r->membw.throttle_mode) { 1218 case THREAD_THROTTLE_PER_THREAD: 1219 seq_puts(seq, "per-thread\n"); 1220 return 0; 1221 case THREAD_THROTTLE_MAX: 1222 seq_puts(seq, "max\n"); 1223 return 0; 1224 case THREAD_THROTTLE_UNDEFINED: 1225 seq_puts(seq, "undefined\n"); 1226 return 0; 1227 } 1228 1229 WARN_ON_ONCE(1); 1230 1231 return 0; 1232 } 1233 1234 static ssize_t max_threshold_occ_write(struct kernfs_open_file *of, 1235 char *buf, size_t nbytes, loff_t off) 1236 { 1237 unsigned int bytes; 1238 int ret; 1239 1240 ret = kstrtouint(buf, 0, &bytes); 1241 if (ret) 1242 return ret; 1243 1244 if (bytes > resctrl_rmid_realloc_limit) 1245 return -EINVAL; 1246 1247 resctrl_rmid_realloc_threshold = resctrl_arch_round_mon_val(bytes); 1248 1249 return nbytes; 1250 } 1251 1252 /* 1253 * rdtgroup_mode_show - Display mode of this resource group 1254 */ 1255 static int rdtgroup_mode_show(struct kernfs_open_file *of, 1256 struct seq_file *s, void *v) 1257 { 1258 struct rdtgroup *rdtgrp; 1259 1260 rdtgrp = rdtgroup_kn_lock_live(of->kn); 1261 if (!rdtgrp) { 1262 rdtgroup_kn_unlock(of->kn); 1263 return -ENOENT; 1264 } 1265 1266 seq_printf(s, "%s\n", rdtgroup_mode_str(rdtgrp->mode)); 1267 1268 rdtgroup_kn_unlock(of->kn); 1269 return 0; 1270 } 1271 1272 enum resctrl_conf_type resctrl_peer_type(enum resctrl_conf_type my_type) 1273 { 1274 switch (my_type) { 1275 case CDP_CODE: 1276 return CDP_DATA; 1277 case CDP_DATA: 1278 return CDP_CODE; 1279 default: 1280 case CDP_NONE: 1281 return CDP_NONE; 1282 } 1283 } 1284 1285 static int rdt_has_sparse_bitmasks_show(struct kernfs_open_file *of, 1286 struct seq_file *seq, void *v) 1287 { 1288 struct resctrl_schema *s = rdt_kn_parent_priv(of->kn); 1289 struct rdt_resource *r = s->res; 1290 1291 seq_printf(seq, "%u\n", r->cache.arch_has_sparse_bitmasks); 1292 1293 return 0; 1294 } 1295 1296 /** 1297 * __rdtgroup_cbm_overlaps - Does CBM for intended closid overlap with other 1298 * @r: Resource to which domain instance @d belongs. 1299 * @d: The domain instance for which @closid is being tested. 1300 * @cbm: Capacity bitmask being tested. 1301 * @closid: Intended closid for @cbm. 1302 * @type: CDP type of @r. 1303 * @exclusive: Only check if overlaps with exclusive resource groups 1304 * 1305 * Checks if provided @cbm intended to be used for @closid on domain 1306 * @d overlaps with any other closids or other hardware usage associated 1307 * with this domain. If @exclusive is true then only overlaps with 1308 * resource groups in exclusive mode will be considered. If @exclusive 1309 * is false then overlaps with any resource group or hardware entities 1310 * will be considered. 1311 * 1312 * @cbm is unsigned long, even if only 32 bits are used, to make the 1313 * bitmap functions work correctly. 1314 * 1315 * Return: false if CBM does not overlap, true if it does. 1316 */ 1317 static bool __rdtgroup_cbm_overlaps(struct rdt_resource *r, struct rdt_ctrl_domain *d, 1318 unsigned long cbm, int closid, 1319 enum resctrl_conf_type type, bool exclusive) 1320 { 1321 enum rdtgrp_mode mode; 1322 unsigned long ctrl_b; 1323 int i; 1324 1325 /* Check for any overlap with regions used by hardware directly */ 1326 if (!exclusive) { 1327 ctrl_b = r->cache.shareable_bits; 1328 if (bitmap_intersects(&cbm, &ctrl_b, r->cache.cbm_len)) 1329 return true; 1330 } 1331 1332 /* Check for overlap with other resource groups */ 1333 for (i = 0; i < closids_supported(); i++) { 1334 ctrl_b = resctrl_arch_get_config(r, d, i, type); 1335 mode = rdtgroup_mode_by_closid(i); 1336 if (closid_allocated(i) && i != closid && 1337 mode != RDT_MODE_PSEUDO_LOCKSETUP) { 1338 if (bitmap_intersects(&cbm, &ctrl_b, r->cache.cbm_len)) { 1339 if (exclusive) { 1340 if (mode == RDT_MODE_EXCLUSIVE) 1341 return true; 1342 continue; 1343 } 1344 return true; 1345 } 1346 } 1347 } 1348 1349 return false; 1350 } 1351 1352 /** 1353 * rdtgroup_cbm_overlaps - Does CBM overlap with other use of hardware 1354 * @s: Schema for the resource to which domain instance @d belongs. 1355 * @d: The domain instance for which @closid is being tested. 1356 * @cbm: Capacity bitmask being tested. 1357 * @closid: Intended closid for @cbm. 1358 * @exclusive: Only check if overlaps with exclusive resource groups 1359 * 1360 * Resources that can be allocated using a CBM can use the CBM to control 1361 * the overlap of these allocations. rdtgroup_cmb_overlaps() is the test 1362 * for overlap. Overlap test is not limited to the specific resource for 1363 * which the CBM is intended though - when dealing with CDP resources that 1364 * share the underlying hardware the overlap check should be performed on 1365 * the CDP resource sharing the hardware also. 1366 * 1367 * Refer to description of __rdtgroup_cbm_overlaps() for the details of the 1368 * overlap test. 1369 * 1370 * Return: true if CBM overlap detected, false if there is no overlap 1371 */ 1372 bool rdtgroup_cbm_overlaps(struct resctrl_schema *s, struct rdt_ctrl_domain *d, 1373 unsigned long cbm, int closid, bool exclusive) 1374 { 1375 enum resctrl_conf_type peer_type = resctrl_peer_type(s->conf_type); 1376 struct rdt_resource *r = s->res; 1377 1378 if (__rdtgroup_cbm_overlaps(r, d, cbm, closid, s->conf_type, 1379 exclusive)) 1380 return true; 1381 1382 if (!resctrl_arch_get_cdp_enabled(r->rid)) 1383 return false; 1384 return __rdtgroup_cbm_overlaps(r, d, cbm, closid, peer_type, exclusive); 1385 } 1386 1387 /** 1388 * rdtgroup_mode_test_exclusive - Test if this resource group can be exclusive 1389 * @rdtgrp: Resource group identified through its closid. 1390 * 1391 * An exclusive resource group implies that there should be no sharing of 1392 * its allocated resources. At the time this group is considered to be 1393 * exclusive this test can determine if its current schemata supports this 1394 * setting by testing for overlap with all other resource groups. 1395 * 1396 * Return: true if resource group can be exclusive, false if there is overlap 1397 * with allocations of other resource groups and thus this resource group 1398 * cannot be exclusive. 1399 */ 1400 static bool rdtgroup_mode_test_exclusive(struct rdtgroup *rdtgrp) 1401 { 1402 int closid = rdtgrp->closid; 1403 struct rdt_ctrl_domain *d; 1404 struct resctrl_schema *s; 1405 struct rdt_resource *r; 1406 bool has_cache = false; 1407 u32 ctrl; 1408 1409 /* Walking r->domains, ensure it can't race with cpuhp */ 1410 lockdep_assert_cpus_held(); 1411 1412 list_for_each_entry(s, &resctrl_schema_all, list) { 1413 r = s->res; 1414 if (r->rid == RDT_RESOURCE_MBA || r->rid == RDT_RESOURCE_SMBA) 1415 continue; 1416 has_cache = true; 1417 list_for_each_entry(d, &r->ctrl_domains, hdr.list) { 1418 ctrl = resctrl_arch_get_config(r, d, closid, 1419 s->conf_type); 1420 if (rdtgroup_cbm_overlaps(s, d, ctrl, closid, false)) { 1421 rdt_last_cmd_puts("Schemata overlaps\n"); 1422 return false; 1423 } 1424 } 1425 } 1426 1427 if (!has_cache) { 1428 rdt_last_cmd_puts("Cannot be exclusive without CAT/CDP\n"); 1429 return false; 1430 } 1431 1432 return true; 1433 } 1434 1435 /* 1436 * rdtgroup_mode_write - Modify the resource group's mode 1437 */ 1438 static ssize_t rdtgroup_mode_write(struct kernfs_open_file *of, 1439 char *buf, size_t nbytes, loff_t off) 1440 { 1441 struct rdtgroup *rdtgrp; 1442 enum rdtgrp_mode mode; 1443 int ret = 0; 1444 1445 /* Valid input requires a trailing newline */ 1446 if (nbytes == 0 || buf[nbytes - 1] != '\n') 1447 return -EINVAL; 1448 buf[nbytes - 1] = '\0'; 1449 1450 rdtgrp = rdtgroup_kn_lock_live(of->kn); 1451 if (!rdtgrp) { 1452 rdtgroup_kn_unlock(of->kn); 1453 return -ENOENT; 1454 } 1455 1456 rdt_last_cmd_clear(); 1457 1458 mode = rdtgrp->mode; 1459 1460 if ((!strcmp(buf, "shareable") && mode == RDT_MODE_SHAREABLE) || 1461 (!strcmp(buf, "exclusive") && mode == RDT_MODE_EXCLUSIVE) || 1462 (!strcmp(buf, "pseudo-locksetup") && 1463 mode == RDT_MODE_PSEUDO_LOCKSETUP) || 1464 (!strcmp(buf, "pseudo-locked") && mode == RDT_MODE_PSEUDO_LOCKED)) 1465 goto out; 1466 1467 if (mode == RDT_MODE_PSEUDO_LOCKED) { 1468 rdt_last_cmd_puts("Cannot change pseudo-locked group\n"); 1469 ret = -EINVAL; 1470 goto out; 1471 } 1472 1473 if (!strcmp(buf, "shareable")) { 1474 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) { 1475 ret = rdtgroup_locksetup_exit(rdtgrp); 1476 if (ret) 1477 goto out; 1478 } 1479 rdtgrp->mode = RDT_MODE_SHAREABLE; 1480 } else if (!strcmp(buf, "exclusive")) { 1481 if (!rdtgroup_mode_test_exclusive(rdtgrp)) { 1482 ret = -EINVAL; 1483 goto out; 1484 } 1485 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) { 1486 ret = rdtgroup_locksetup_exit(rdtgrp); 1487 if (ret) 1488 goto out; 1489 } 1490 rdtgrp->mode = RDT_MODE_EXCLUSIVE; 1491 } else if (IS_ENABLED(CONFIG_RESCTRL_FS_PSEUDO_LOCK) && 1492 !strcmp(buf, "pseudo-locksetup")) { 1493 ret = rdtgroup_locksetup_enter(rdtgrp); 1494 if (ret) 1495 goto out; 1496 rdtgrp->mode = RDT_MODE_PSEUDO_LOCKSETUP; 1497 } else { 1498 rdt_last_cmd_puts("Unknown or unsupported mode\n"); 1499 ret = -EINVAL; 1500 } 1501 1502 out: 1503 rdtgroup_kn_unlock(of->kn); 1504 return ret ?: nbytes; 1505 } 1506 1507 /** 1508 * rdtgroup_cbm_to_size - Translate CBM to size in bytes 1509 * @r: RDT resource to which @d belongs. 1510 * @d: RDT domain instance. 1511 * @cbm: bitmask for which the size should be computed. 1512 * 1513 * The bitmask provided associated with the RDT domain instance @d will be 1514 * translated into how many bytes it represents. The size in bytes is 1515 * computed by first dividing the total cache size by the CBM length to 1516 * determine how many bytes each bit in the bitmask represents. The result 1517 * is multiplied with the number of bits set in the bitmask. 1518 * 1519 * @cbm is unsigned long, even if only 32 bits are used to make the 1520 * bitmap functions work correctly. 1521 */ 1522 unsigned int rdtgroup_cbm_to_size(struct rdt_resource *r, 1523 struct rdt_ctrl_domain *d, unsigned long cbm) 1524 { 1525 unsigned int size = 0; 1526 struct cacheinfo *ci; 1527 int num_b; 1528 1529 if (WARN_ON_ONCE(r->ctrl_scope != RESCTRL_L2_CACHE && r->ctrl_scope != RESCTRL_L3_CACHE)) 1530 return size; 1531 1532 num_b = bitmap_weight(&cbm, r->cache.cbm_len); 1533 ci = get_cpu_cacheinfo_level(cpumask_any(&d->hdr.cpu_mask), r->ctrl_scope); 1534 if (ci) 1535 size = ci->size / r->cache.cbm_len * num_b; 1536 1537 return size; 1538 } 1539 1540 bool is_mba_sc(struct rdt_resource *r) 1541 { 1542 if (!r) 1543 r = resctrl_arch_get_resource(RDT_RESOURCE_MBA); 1544 1545 /* 1546 * The software controller support is only applicable to MBA resource. 1547 * Make sure to check for resource type. 1548 */ 1549 if (r->rid != RDT_RESOURCE_MBA) 1550 return false; 1551 1552 return r->membw.mba_sc; 1553 } 1554 1555 /* 1556 * rdtgroup_size_show - Display size in bytes of allocated regions 1557 * 1558 * The "size" file mirrors the layout of the "schemata" file, printing the 1559 * size in bytes of each region instead of the capacity bitmask. 1560 */ 1561 static int rdtgroup_size_show(struct kernfs_open_file *of, 1562 struct seq_file *s, void *v) 1563 { 1564 struct resctrl_schema *schema; 1565 enum resctrl_conf_type type; 1566 struct rdt_ctrl_domain *d; 1567 struct rdtgroup *rdtgrp; 1568 struct rdt_resource *r; 1569 unsigned int size; 1570 int ret = 0; 1571 u32 closid; 1572 bool sep; 1573 u32 ctrl; 1574 1575 rdtgrp = rdtgroup_kn_lock_live(of->kn); 1576 if (!rdtgrp) { 1577 rdtgroup_kn_unlock(of->kn); 1578 return -ENOENT; 1579 } 1580 1581 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED) { 1582 if (!rdtgrp->plr->d) { 1583 rdt_last_cmd_clear(); 1584 rdt_last_cmd_puts("Cache domain offline\n"); 1585 ret = -ENODEV; 1586 } else { 1587 seq_printf(s, "%*s:", max_name_width, 1588 rdtgrp->plr->s->name); 1589 size = rdtgroup_cbm_to_size(rdtgrp->plr->s->res, 1590 rdtgrp->plr->d, 1591 rdtgrp->plr->cbm); 1592 seq_printf(s, "%d=%u\n", rdtgrp->plr->d->hdr.id, size); 1593 } 1594 goto out; 1595 } 1596 1597 closid = rdtgrp->closid; 1598 1599 list_for_each_entry(schema, &resctrl_schema_all, list) { 1600 r = schema->res; 1601 type = schema->conf_type; 1602 sep = false; 1603 seq_printf(s, "%*s:", max_name_width, schema->name); 1604 list_for_each_entry(d, &r->ctrl_domains, hdr.list) { 1605 if (sep) 1606 seq_putc(s, ';'); 1607 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) { 1608 size = 0; 1609 } else { 1610 if (is_mba_sc(r)) 1611 ctrl = d->mbps_val[closid]; 1612 else 1613 ctrl = resctrl_arch_get_config(r, d, 1614 closid, 1615 type); 1616 if (r->rid == RDT_RESOURCE_MBA || 1617 r->rid == RDT_RESOURCE_SMBA) 1618 size = ctrl; 1619 else 1620 size = rdtgroup_cbm_to_size(r, d, ctrl); 1621 } 1622 seq_printf(s, "%d=%u", d->hdr.id, size); 1623 sep = true; 1624 } 1625 seq_putc(s, '\n'); 1626 } 1627 1628 out: 1629 rdtgroup_kn_unlock(of->kn); 1630 1631 return ret; 1632 } 1633 1634 static void mondata_config_read(struct resctrl_mon_config_info *mon_info) 1635 { 1636 smp_call_function_any(&mon_info->d->hdr.cpu_mask, 1637 resctrl_arch_mon_event_config_read, mon_info, 1); 1638 } 1639 1640 static int mbm_config_show(struct seq_file *s, struct rdt_resource *r, u32 evtid) 1641 { 1642 struct resctrl_mon_config_info mon_info; 1643 struct rdt_mon_domain *dom; 1644 bool sep = false; 1645 1646 cpus_read_lock(); 1647 mutex_lock(&rdtgroup_mutex); 1648 1649 list_for_each_entry(dom, &r->mon_domains, hdr.list) { 1650 if (sep) 1651 seq_puts(s, ";"); 1652 1653 memset(&mon_info, 0, sizeof(struct resctrl_mon_config_info)); 1654 mon_info.r = r; 1655 mon_info.d = dom; 1656 mon_info.evtid = evtid; 1657 mondata_config_read(&mon_info); 1658 1659 seq_printf(s, "%d=0x%02x", dom->hdr.id, mon_info.mon_config); 1660 sep = true; 1661 } 1662 seq_puts(s, "\n"); 1663 1664 mutex_unlock(&rdtgroup_mutex); 1665 cpus_read_unlock(); 1666 1667 return 0; 1668 } 1669 1670 static int mbm_total_bytes_config_show(struct kernfs_open_file *of, 1671 struct seq_file *seq, void *v) 1672 { 1673 struct rdt_resource *r = rdt_kn_parent_priv(of->kn); 1674 1675 mbm_config_show(seq, r, QOS_L3_MBM_TOTAL_EVENT_ID); 1676 1677 return 0; 1678 } 1679 1680 static int mbm_local_bytes_config_show(struct kernfs_open_file *of, 1681 struct seq_file *seq, void *v) 1682 { 1683 struct rdt_resource *r = rdt_kn_parent_priv(of->kn); 1684 1685 mbm_config_show(seq, r, QOS_L3_MBM_LOCAL_EVENT_ID); 1686 1687 return 0; 1688 } 1689 1690 static void mbm_config_write_domain(struct rdt_resource *r, 1691 struct rdt_mon_domain *d, u32 evtid, u32 val) 1692 { 1693 struct resctrl_mon_config_info mon_info = {0}; 1694 1695 /* 1696 * Read the current config value first. If both are the same then 1697 * no need to write it again. 1698 */ 1699 mon_info.r = r; 1700 mon_info.d = d; 1701 mon_info.evtid = evtid; 1702 mondata_config_read(&mon_info); 1703 if (mon_info.mon_config == val) 1704 return; 1705 1706 mon_info.mon_config = val; 1707 1708 /* 1709 * Update MSR_IA32_EVT_CFG_BASE MSR on one of the CPUs in the 1710 * domain. The MSRs offset from MSR MSR_IA32_EVT_CFG_BASE 1711 * are scoped at the domain level. Writing any of these MSRs 1712 * on one CPU is observed by all the CPUs in the domain. 1713 */ 1714 smp_call_function_any(&d->hdr.cpu_mask, resctrl_arch_mon_event_config_write, 1715 &mon_info, 1); 1716 1717 /* 1718 * When an Event Configuration is changed, the bandwidth counters 1719 * for all RMIDs and Events will be cleared by the hardware. The 1720 * hardware also sets MSR_IA32_QM_CTR.Unavailable (bit 62) for 1721 * every RMID on the next read to any event for every RMID. 1722 * Subsequent reads will have MSR_IA32_QM_CTR.Unavailable (bit 62) 1723 * cleared while it is tracked by the hardware. Clear the 1724 * mbm_local and mbm_total counts for all the RMIDs. 1725 */ 1726 resctrl_arch_reset_rmid_all(r, d); 1727 } 1728 1729 static int mon_config_write(struct rdt_resource *r, char *tok, u32 evtid) 1730 { 1731 char *dom_str = NULL, *id_str; 1732 unsigned long dom_id, val; 1733 struct rdt_mon_domain *d; 1734 1735 /* Walking r->domains, ensure it can't race with cpuhp */ 1736 lockdep_assert_cpus_held(); 1737 1738 next: 1739 if (!tok || tok[0] == '\0') 1740 return 0; 1741 1742 /* Start processing the strings for each domain */ 1743 dom_str = strim(strsep(&tok, ";")); 1744 id_str = strsep(&dom_str, "="); 1745 1746 if (!id_str || kstrtoul(id_str, 10, &dom_id)) { 1747 rdt_last_cmd_puts("Missing '=' or non-numeric domain id\n"); 1748 return -EINVAL; 1749 } 1750 1751 if (!dom_str || kstrtoul(dom_str, 16, &val)) { 1752 rdt_last_cmd_puts("Non-numeric event configuration value\n"); 1753 return -EINVAL; 1754 } 1755 1756 /* Value from user cannot be more than the supported set of events */ 1757 if ((val & r->mon.mbm_cfg_mask) != val) { 1758 rdt_last_cmd_printf("Invalid event configuration: max valid mask is 0x%02x\n", 1759 r->mon.mbm_cfg_mask); 1760 return -EINVAL; 1761 } 1762 1763 list_for_each_entry(d, &r->mon_domains, hdr.list) { 1764 if (d->hdr.id == dom_id) { 1765 mbm_config_write_domain(r, d, evtid, val); 1766 goto next; 1767 } 1768 } 1769 1770 return -EINVAL; 1771 } 1772 1773 static ssize_t mbm_total_bytes_config_write(struct kernfs_open_file *of, 1774 char *buf, size_t nbytes, 1775 loff_t off) 1776 { 1777 struct rdt_resource *r = rdt_kn_parent_priv(of->kn); 1778 int ret; 1779 1780 /* Valid input requires a trailing newline */ 1781 if (nbytes == 0 || buf[nbytes - 1] != '\n') 1782 return -EINVAL; 1783 1784 cpus_read_lock(); 1785 mutex_lock(&rdtgroup_mutex); 1786 1787 rdt_last_cmd_clear(); 1788 1789 buf[nbytes - 1] = '\0'; 1790 1791 ret = mon_config_write(r, buf, QOS_L3_MBM_TOTAL_EVENT_ID); 1792 1793 mutex_unlock(&rdtgroup_mutex); 1794 cpus_read_unlock(); 1795 1796 return ret ?: nbytes; 1797 } 1798 1799 static ssize_t mbm_local_bytes_config_write(struct kernfs_open_file *of, 1800 char *buf, size_t nbytes, 1801 loff_t off) 1802 { 1803 struct rdt_resource *r = rdt_kn_parent_priv(of->kn); 1804 int ret; 1805 1806 /* Valid input requires a trailing newline */ 1807 if (nbytes == 0 || buf[nbytes - 1] != '\n') 1808 return -EINVAL; 1809 1810 cpus_read_lock(); 1811 mutex_lock(&rdtgroup_mutex); 1812 1813 rdt_last_cmd_clear(); 1814 1815 buf[nbytes - 1] = '\0'; 1816 1817 ret = mon_config_write(r, buf, QOS_L3_MBM_LOCAL_EVENT_ID); 1818 1819 mutex_unlock(&rdtgroup_mutex); 1820 cpus_read_unlock(); 1821 1822 return ret ?: nbytes; 1823 } 1824 1825 /* 1826 * resctrl_bmec_files_show() — Controls the visibility of BMEC-related resctrl 1827 * files. When @show is true, the files are displayed; when false, the files 1828 * are hidden. 1829 * Don't treat kernfs_find_and_get failure as an error, since this function may 1830 * be called regardless of whether BMEC is supported or the event is enabled. 1831 */ 1832 void resctrl_bmec_files_show(struct rdt_resource *r, struct kernfs_node *l3_mon_kn, 1833 bool show) 1834 { 1835 struct kernfs_node *kn_config, *mon_kn = NULL; 1836 char name[32]; 1837 1838 if (!l3_mon_kn) { 1839 sprintf(name, "%s_MON", r->name); 1840 mon_kn = kernfs_find_and_get(kn_info, name); 1841 if (!mon_kn) 1842 return; 1843 l3_mon_kn = mon_kn; 1844 } 1845 1846 kn_config = kernfs_find_and_get(l3_mon_kn, "mbm_total_bytes_config"); 1847 if (kn_config) { 1848 kernfs_show(kn_config, show); 1849 kernfs_put(kn_config); 1850 } 1851 1852 kn_config = kernfs_find_and_get(l3_mon_kn, "mbm_local_bytes_config"); 1853 if (kn_config) { 1854 kernfs_show(kn_config, show); 1855 kernfs_put(kn_config); 1856 } 1857 1858 /* Release the reference only if it was acquired */ 1859 if (mon_kn) 1860 kernfs_put(mon_kn); 1861 } 1862 1863 const char *rdtgroup_name_by_closid(u32 closid) 1864 { 1865 struct rdtgroup *rdtgrp; 1866 1867 list_for_each_entry(rdtgrp, &rdt_all_groups, rdtgroup_list) { 1868 if (rdtgrp->closid == closid) 1869 return rdt_kn_name(rdtgrp->kn); 1870 } 1871 1872 return NULL; 1873 } 1874 1875 /* rdtgroup information files for one cache resource. */ 1876 static struct rftype res_common_files[] = { 1877 { 1878 .name = "last_cmd_status", 1879 .mode = 0444, 1880 .kf_ops = &rdtgroup_kf_single_ops, 1881 .seq_show = rdt_last_cmd_status_show, 1882 .fflags = RFTYPE_TOP_INFO, 1883 }, 1884 { 1885 .name = "mbm_assign_on_mkdir", 1886 .mode = 0644, 1887 .kf_ops = &rdtgroup_kf_single_ops, 1888 .seq_show = resctrl_mbm_assign_on_mkdir_show, 1889 .write = resctrl_mbm_assign_on_mkdir_write, 1890 }, 1891 { 1892 .name = "num_closids", 1893 .mode = 0444, 1894 .kf_ops = &rdtgroup_kf_single_ops, 1895 .seq_show = rdt_num_closids_show, 1896 .fflags = RFTYPE_CTRL_INFO, 1897 }, 1898 { 1899 .name = "mon_features", 1900 .mode = 0444, 1901 .kf_ops = &rdtgroup_kf_single_ops, 1902 .seq_show = rdt_mon_features_show, 1903 .fflags = RFTYPE_MON_INFO, 1904 }, 1905 { 1906 .name = "available_mbm_cntrs", 1907 .mode = 0444, 1908 .kf_ops = &rdtgroup_kf_single_ops, 1909 .seq_show = resctrl_available_mbm_cntrs_show, 1910 }, 1911 { 1912 .name = "num_rmids", 1913 .mode = 0444, 1914 .kf_ops = &rdtgroup_kf_single_ops, 1915 .seq_show = rdt_num_rmids_show, 1916 .fflags = RFTYPE_MON_INFO, 1917 }, 1918 { 1919 .name = "cbm_mask", 1920 .mode = 0444, 1921 .kf_ops = &rdtgroup_kf_single_ops, 1922 .seq_show = rdt_default_ctrl_show, 1923 .fflags = RFTYPE_CTRL_INFO | RFTYPE_RES_CACHE, 1924 }, 1925 { 1926 .name = "num_mbm_cntrs", 1927 .mode = 0444, 1928 .kf_ops = &rdtgroup_kf_single_ops, 1929 .seq_show = resctrl_num_mbm_cntrs_show, 1930 }, 1931 { 1932 .name = "min_cbm_bits", 1933 .mode = 0444, 1934 .kf_ops = &rdtgroup_kf_single_ops, 1935 .seq_show = rdt_min_cbm_bits_show, 1936 .fflags = RFTYPE_CTRL_INFO | RFTYPE_RES_CACHE, 1937 }, 1938 { 1939 .name = "shareable_bits", 1940 .mode = 0444, 1941 .kf_ops = &rdtgroup_kf_single_ops, 1942 .seq_show = rdt_shareable_bits_show, 1943 .fflags = RFTYPE_CTRL_INFO | RFTYPE_RES_CACHE, 1944 }, 1945 { 1946 .name = "bit_usage", 1947 .mode = 0444, 1948 .kf_ops = &rdtgroup_kf_single_ops, 1949 .seq_show = rdt_bit_usage_show, 1950 .fflags = RFTYPE_CTRL_INFO | RFTYPE_RES_CACHE, 1951 }, 1952 { 1953 .name = "min_bandwidth", 1954 .mode = 0444, 1955 .kf_ops = &rdtgroup_kf_single_ops, 1956 .seq_show = rdt_min_bw_show, 1957 .fflags = RFTYPE_CTRL_INFO | RFTYPE_RES_MB, 1958 }, 1959 { 1960 .name = "bandwidth_gran", 1961 .mode = 0444, 1962 .kf_ops = &rdtgroup_kf_single_ops, 1963 .seq_show = rdt_bw_gran_show, 1964 .fflags = RFTYPE_CTRL_INFO | RFTYPE_RES_MB, 1965 }, 1966 { 1967 .name = "delay_linear", 1968 .mode = 0444, 1969 .kf_ops = &rdtgroup_kf_single_ops, 1970 .seq_show = rdt_delay_linear_show, 1971 .fflags = RFTYPE_CTRL_INFO | RFTYPE_RES_MB, 1972 }, 1973 /* 1974 * Platform specific which (if any) capabilities are provided by 1975 * thread_throttle_mode. Defer "fflags" initialization to platform 1976 * discovery. 1977 */ 1978 { 1979 .name = "thread_throttle_mode", 1980 .mode = 0444, 1981 .kf_ops = &rdtgroup_kf_single_ops, 1982 .seq_show = rdt_thread_throttle_mode_show, 1983 }, 1984 { 1985 .name = "io_alloc", 1986 .mode = 0644, 1987 .kf_ops = &rdtgroup_kf_single_ops, 1988 .seq_show = resctrl_io_alloc_show, 1989 .write = resctrl_io_alloc_write, 1990 }, 1991 { 1992 .name = "io_alloc_cbm", 1993 .mode = 0644, 1994 .kf_ops = &rdtgroup_kf_single_ops, 1995 .seq_show = resctrl_io_alloc_cbm_show, 1996 .write = resctrl_io_alloc_cbm_write, 1997 }, 1998 { 1999 .name = "max_threshold_occupancy", 2000 .mode = 0644, 2001 .kf_ops = &rdtgroup_kf_single_ops, 2002 .write = max_threshold_occ_write, 2003 .seq_show = max_threshold_occ_show, 2004 .fflags = RFTYPE_MON_INFO | RFTYPE_RES_CACHE, 2005 }, 2006 { 2007 .name = "mbm_total_bytes_config", 2008 .mode = 0644, 2009 .kf_ops = &rdtgroup_kf_single_ops, 2010 .seq_show = mbm_total_bytes_config_show, 2011 .write = mbm_total_bytes_config_write, 2012 }, 2013 { 2014 .name = "mbm_local_bytes_config", 2015 .mode = 0644, 2016 .kf_ops = &rdtgroup_kf_single_ops, 2017 .seq_show = mbm_local_bytes_config_show, 2018 .write = mbm_local_bytes_config_write, 2019 }, 2020 { 2021 .name = "event_filter", 2022 .mode = 0644, 2023 .kf_ops = &rdtgroup_kf_single_ops, 2024 .seq_show = event_filter_show, 2025 .write = event_filter_write, 2026 }, 2027 { 2028 .name = "mbm_L3_assignments", 2029 .mode = 0644, 2030 .kf_ops = &rdtgroup_kf_single_ops, 2031 .seq_show = mbm_L3_assignments_show, 2032 .write = mbm_L3_assignments_write, 2033 }, 2034 { 2035 .name = "mbm_assign_mode", 2036 .mode = 0644, 2037 .kf_ops = &rdtgroup_kf_single_ops, 2038 .seq_show = resctrl_mbm_assign_mode_show, 2039 .write = resctrl_mbm_assign_mode_write, 2040 .fflags = RFTYPE_MON_INFO | RFTYPE_RES_CACHE, 2041 }, 2042 { 2043 .name = "cpus", 2044 .mode = 0644, 2045 .kf_ops = &rdtgroup_kf_single_ops, 2046 .write = rdtgroup_cpus_write, 2047 .seq_show = rdtgroup_cpus_show, 2048 .fflags = RFTYPE_BASE, 2049 }, 2050 { 2051 .name = "cpus_list", 2052 .mode = 0644, 2053 .kf_ops = &rdtgroup_kf_single_ops, 2054 .write = rdtgroup_cpus_write, 2055 .seq_show = rdtgroup_cpus_show, 2056 .flags = RFTYPE_FLAGS_CPUS_LIST, 2057 .fflags = RFTYPE_BASE, 2058 }, 2059 { 2060 .name = "tasks", 2061 .mode = 0644, 2062 .kf_ops = &rdtgroup_kf_single_ops, 2063 .write = rdtgroup_tasks_write, 2064 .seq_show = rdtgroup_tasks_show, 2065 .fflags = RFTYPE_BASE, 2066 }, 2067 { 2068 .name = "mon_hw_id", 2069 .mode = 0444, 2070 .kf_ops = &rdtgroup_kf_single_ops, 2071 .seq_show = rdtgroup_rmid_show, 2072 .fflags = RFTYPE_MON_BASE | RFTYPE_DEBUG, 2073 }, 2074 { 2075 .name = "schemata", 2076 .mode = 0644, 2077 .kf_ops = &rdtgroup_kf_single_ops, 2078 .write = rdtgroup_schemata_write, 2079 .seq_show = rdtgroup_schemata_show, 2080 .fflags = RFTYPE_CTRL_BASE, 2081 }, 2082 { 2083 .name = "mba_MBps_event", 2084 .mode = 0644, 2085 .kf_ops = &rdtgroup_kf_single_ops, 2086 .write = rdtgroup_mba_mbps_event_write, 2087 .seq_show = rdtgroup_mba_mbps_event_show, 2088 }, 2089 { 2090 .name = "mode", 2091 .mode = 0644, 2092 .kf_ops = &rdtgroup_kf_single_ops, 2093 .write = rdtgroup_mode_write, 2094 .seq_show = rdtgroup_mode_show, 2095 .fflags = RFTYPE_CTRL_BASE, 2096 }, 2097 { 2098 .name = "size", 2099 .mode = 0444, 2100 .kf_ops = &rdtgroup_kf_single_ops, 2101 .seq_show = rdtgroup_size_show, 2102 .fflags = RFTYPE_CTRL_BASE, 2103 }, 2104 { 2105 .name = "sparse_masks", 2106 .mode = 0444, 2107 .kf_ops = &rdtgroup_kf_single_ops, 2108 .seq_show = rdt_has_sparse_bitmasks_show, 2109 .fflags = RFTYPE_CTRL_INFO | RFTYPE_RES_CACHE, 2110 }, 2111 { 2112 .name = "ctrl_hw_id", 2113 .mode = 0444, 2114 .kf_ops = &rdtgroup_kf_single_ops, 2115 .seq_show = rdtgroup_closid_show, 2116 .fflags = RFTYPE_CTRL_BASE | RFTYPE_DEBUG, 2117 }, 2118 }; 2119 2120 static int rdtgroup_add_files(struct kernfs_node *kn, unsigned long fflags) 2121 { 2122 struct rftype *rfts, *rft; 2123 int ret, len; 2124 2125 rfts = res_common_files; 2126 len = ARRAY_SIZE(res_common_files); 2127 2128 lockdep_assert_held(&rdtgroup_mutex); 2129 2130 if (resctrl_debug) 2131 fflags |= RFTYPE_DEBUG; 2132 2133 for (rft = rfts; rft < rfts + len; rft++) { 2134 if (rft->fflags && ((fflags & rft->fflags) == rft->fflags)) { 2135 ret = rdtgroup_add_file(kn, rft); 2136 if (ret) 2137 goto error; 2138 } 2139 } 2140 2141 return 0; 2142 error: 2143 pr_warn("Failed to add %s, err=%d\n", rft->name, ret); 2144 while (--rft >= rfts) { 2145 if ((fflags & rft->fflags) == rft->fflags) 2146 kernfs_remove_by_name(kn, rft->name); 2147 } 2148 return ret; 2149 } 2150 2151 static struct rftype *rdtgroup_get_rftype_by_name(const char *name) 2152 { 2153 struct rftype *rfts, *rft; 2154 int len; 2155 2156 rfts = res_common_files; 2157 len = ARRAY_SIZE(res_common_files); 2158 2159 for (rft = rfts; rft < rfts + len; rft++) { 2160 if (!strcmp(rft->name, name)) 2161 return rft; 2162 } 2163 2164 return NULL; 2165 } 2166 2167 static void thread_throttle_mode_init(void) 2168 { 2169 enum membw_throttle_mode throttle_mode = THREAD_THROTTLE_UNDEFINED; 2170 struct rdt_resource *r_mba, *r_smba; 2171 2172 r_mba = resctrl_arch_get_resource(RDT_RESOURCE_MBA); 2173 if (r_mba->alloc_capable && 2174 r_mba->membw.throttle_mode != THREAD_THROTTLE_UNDEFINED) 2175 throttle_mode = r_mba->membw.throttle_mode; 2176 2177 r_smba = resctrl_arch_get_resource(RDT_RESOURCE_SMBA); 2178 if (r_smba->alloc_capable && 2179 r_smba->membw.throttle_mode != THREAD_THROTTLE_UNDEFINED) 2180 throttle_mode = r_smba->membw.throttle_mode; 2181 2182 if (throttle_mode == THREAD_THROTTLE_UNDEFINED) 2183 return; 2184 2185 resctrl_file_fflags_init("thread_throttle_mode", 2186 RFTYPE_CTRL_INFO | RFTYPE_RES_MB); 2187 } 2188 2189 /* 2190 * The resctrl file "io_alloc" is added using L3 resource. However, it results 2191 * in this file being visible for *all* cache resources (eg. L2 cache), 2192 * whether it supports "io_alloc" or not. 2193 */ 2194 static void io_alloc_init(void) 2195 { 2196 struct rdt_resource *r = resctrl_arch_get_resource(RDT_RESOURCE_L3); 2197 2198 if (r->cache.io_alloc_capable) { 2199 resctrl_file_fflags_init("io_alloc", RFTYPE_CTRL_INFO | 2200 RFTYPE_RES_CACHE); 2201 resctrl_file_fflags_init("io_alloc_cbm", 2202 RFTYPE_CTRL_INFO | RFTYPE_RES_CACHE); 2203 } 2204 } 2205 2206 void resctrl_file_fflags_init(const char *config, unsigned long fflags) 2207 { 2208 struct rftype *rft; 2209 2210 rft = rdtgroup_get_rftype_by_name(config); 2211 if (rft) 2212 rft->fflags = fflags; 2213 } 2214 2215 /** 2216 * rdtgroup_kn_mode_restrict - Restrict user access to named resctrl file 2217 * @r: The resource group with which the file is associated. 2218 * @name: Name of the file 2219 * 2220 * The permissions of named resctrl file, directory, or link are modified 2221 * to not allow read, write, or execute by any user. 2222 * 2223 * WARNING: This function is intended to communicate to the user that the 2224 * resctrl file has been locked down - that it is not relevant to the 2225 * particular state the system finds itself in. It should not be relied 2226 * on to protect from user access because after the file's permissions 2227 * are restricted the user can still change the permissions using chmod 2228 * from the command line. 2229 * 2230 * Return: 0 on success, <0 on failure. 2231 */ 2232 int rdtgroup_kn_mode_restrict(struct rdtgroup *r, const char *name) 2233 { 2234 struct iattr iattr = {.ia_valid = ATTR_MODE,}; 2235 struct kernfs_node *kn; 2236 int ret = 0; 2237 2238 kn = kernfs_find_and_get_ns(r->kn, name, NULL); 2239 if (!kn) 2240 return -ENOENT; 2241 2242 switch (kernfs_type(kn)) { 2243 case KERNFS_DIR: 2244 iattr.ia_mode = S_IFDIR; 2245 break; 2246 case KERNFS_FILE: 2247 iattr.ia_mode = S_IFREG; 2248 break; 2249 case KERNFS_LINK: 2250 iattr.ia_mode = S_IFLNK; 2251 break; 2252 } 2253 2254 ret = kernfs_setattr(kn, &iattr); 2255 kernfs_put(kn); 2256 return ret; 2257 } 2258 2259 /** 2260 * rdtgroup_kn_mode_restore - Restore user access to named resctrl file 2261 * @r: The resource group with which the file is associated. 2262 * @name: Name of the file 2263 * @mask: Mask of permissions that should be restored 2264 * 2265 * Restore the permissions of the named file. If @name is a directory the 2266 * permissions of its parent will be used. 2267 * 2268 * Return: 0 on success, <0 on failure. 2269 */ 2270 int rdtgroup_kn_mode_restore(struct rdtgroup *r, const char *name, 2271 umode_t mask) 2272 { 2273 struct iattr iattr = {.ia_valid = ATTR_MODE,}; 2274 struct kernfs_node *kn, *parent; 2275 struct rftype *rfts, *rft; 2276 int ret, len; 2277 2278 rfts = res_common_files; 2279 len = ARRAY_SIZE(res_common_files); 2280 2281 for (rft = rfts; rft < rfts + len; rft++) { 2282 if (!strcmp(rft->name, name)) 2283 iattr.ia_mode = rft->mode & mask; 2284 } 2285 2286 kn = kernfs_find_and_get_ns(r->kn, name, NULL); 2287 if (!kn) 2288 return -ENOENT; 2289 2290 switch (kernfs_type(kn)) { 2291 case KERNFS_DIR: 2292 parent = kernfs_get_parent(kn); 2293 if (parent) { 2294 iattr.ia_mode |= parent->mode; 2295 kernfs_put(parent); 2296 } 2297 iattr.ia_mode |= S_IFDIR; 2298 break; 2299 case KERNFS_FILE: 2300 iattr.ia_mode |= S_IFREG; 2301 break; 2302 case KERNFS_LINK: 2303 iattr.ia_mode |= S_IFLNK; 2304 break; 2305 } 2306 2307 ret = kernfs_setattr(kn, &iattr); 2308 kernfs_put(kn); 2309 return ret; 2310 } 2311 2312 static int resctrl_mkdir_event_configs(struct rdt_resource *r, struct kernfs_node *l3_mon_kn) 2313 { 2314 struct kernfs_node *kn_subdir, *kn_subdir2; 2315 struct mon_evt *mevt; 2316 int ret; 2317 2318 kn_subdir = kernfs_create_dir(l3_mon_kn, "event_configs", l3_mon_kn->mode, NULL); 2319 if (IS_ERR(kn_subdir)) 2320 return PTR_ERR(kn_subdir); 2321 2322 ret = rdtgroup_kn_set_ugid(kn_subdir); 2323 if (ret) 2324 return ret; 2325 2326 for_each_mon_event(mevt) { 2327 if (mevt->rid != r->rid || !mevt->enabled || !resctrl_is_mbm_event(mevt->evtid)) 2328 continue; 2329 2330 kn_subdir2 = kernfs_create_dir(kn_subdir, mevt->name, kn_subdir->mode, mevt); 2331 if (IS_ERR(kn_subdir2)) { 2332 ret = PTR_ERR(kn_subdir2); 2333 goto out; 2334 } 2335 2336 ret = rdtgroup_kn_set_ugid(kn_subdir2); 2337 if (ret) 2338 goto out; 2339 2340 ret = rdtgroup_add_files(kn_subdir2, RFTYPE_ASSIGN_CONFIG); 2341 if (ret) 2342 break; 2343 } 2344 2345 out: 2346 return ret; 2347 } 2348 2349 static int rdtgroup_mkdir_info_resdir(void *priv, char *name, 2350 unsigned long fflags) 2351 { 2352 struct kernfs_node *kn_subdir; 2353 struct rdt_resource *r; 2354 int ret; 2355 2356 kn_subdir = kernfs_create_dir(kn_info, name, 2357 kn_info->mode, priv); 2358 if (IS_ERR(kn_subdir)) 2359 return PTR_ERR(kn_subdir); 2360 2361 ret = rdtgroup_kn_set_ugid(kn_subdir); 2362 if (ret) 2363 return ret; 2364 2365 ret = rdtgroup_add_files(kn_subdir, fflags); 2366 if (ret) 2367 return ret; 2368 2369 if ((fflags & RFTYPE_MON_INFO) == RFTYPE_MON_INFO) { 2370 r = priv; 2371 if (r->mon.mbm_cntr_assignable) { 2372 ret = resctrl_mkdir_event_configs(r, kn_subdir); 2373 if (ret) 2374 return ret; 2375 /* 2376 * Hide BMEC related files if mbm_event mode 2377 * is enabled. 2378 */ 2379 if (resctrl_arch_mbm_cntr_assign_enabled(r)) 2380 resctrl_bmec_files_show(r, kn_subdir, false); 2381 } 2382 } 2383 2384 kernfs_activate(kn_subdir); 2385 2386 return ret; 2387 } 2388 2389 static unsigned long fflags_from_resource(struct rdt_resource *r) 2390 { 2391 switch (r->rid) { 2392 case RDT_RESOURCE_L3: 2393 case RDT_RESOURCE_L2: 2394 return RFTYPE_RES_CACHE; 2395 case RDT_RESOURCE_MBA: 2396 case RDT_RESOURCE_SMBA: 2397 return RFTYPE_RES_MB; 2398 } 2399 2400 return WARN_ON_ONCE(1); 2401 } 2402 2403 static int rdtgroup_create_info_dir(struct kernfs_node *parent_kn) 2404 { 2405 struct resctrl_schema *s; 2406 struct rdt_resource *r; 2407 unsigned long fflags; 2408 char name[32]; 2409 int ret; 2410 2411 /* create the directory */ 2412 kn_info = kernfs_create_dir(parent_kn, "info", parent_kn->mode, NULL); 2413 if (IS_ERR(kn_info)) 2414 return PTR_ERR(kn_info); 2415 2416 ret = rdtgroup_add_files(kn_info, RFTYPE_TOP_INFO); 2417 if (ret) 2418 goto out_destroy; 2419 2420 /* loop over enabled controls, these are all alloc_capable */ 2421 list_for_each_entry(s, &resctrl_schema_all, list) { 2422 r = s->res; 2423 fflags = fflags_from_resource(r) | RFTYPE_CTRL_INFO; 2424 ret = rdtgroup_mkdir_info_resdir(s, s->name, fflags); 2425 if (ret) 2426 goto out_destroy; 2427 } 2428 2429 for_each_mon_capable_rdt_resource(r) { 2430 fflags = fflags_from_resource(r) | RFTYPE_MON_INFO; 2431 sprintf(name, "%s_MON", r->name); 2432 ret = rdtgroup_mkdir_info_resdir(r, name, fflags); 2433 if (ret) 2434 goto out_destroy; 2435 } 2436 2437 ret = rdtgroup_kn_set_ugid(kn_info); 2438 if (ret) 2439 goto out_destroy; 2440 2441 kernfs_activate(kn_info); 2442 2443 return 0; 2444 2445 out_destroy: 2446 kernfs_remove(kn_info); 2447 return ret; 2448 } 2449 2450 static int 2451 mongroup_create_dir(struct kernfs_node *parent_kn, struct rdtgroup *prgrp, 2452 char *name, struct kernfs_node **dest_kn) 2453 { 2454 struct kernfs_node *kn; 2455 int ret; 2456 2457 /* create the directory */ 2458 kn = kernfs_create_dir(parent_kn, name, parent_kn->mode, prgrp); 2459 if (IS_ERR(kn)) 2460 return PTR_ERR(kn); 2461 2462 if (dest_kn) 2463 *dest_kn = kn; 2464 2465 ret = rdtgroup_kn_set_ugid(kn); 2466 if (ret) 2467 goto out_destroy; 2468 2469 kernfs_activate(kn); 2470 2471 return 0; 2472 2473 out_destroy: 2474 kernfs_remove(kn); 2475 return ret; 2476 } 2477 2478 static inline bool is_mba_linear(void) 2479 { 2480 return resctrl_arch_get_resource(RDT_RESOURCE_MBA)->membw.delay_linear; 2481 } 2482 2483 static int mba_sc_domain_allocate(struct rdt_resource *r, struct rdt_ctrl_domain *d) 2484 { 2485 u32 num_closid = resctrl_arch_get_num_closid(r); 2486 int cpu = cpumask_any(&d->hdr.cpu_mask); 2487 int i; 2488 2489 d->mbps_val = kcalloc_node(num_closid, sizeof(*d->mbps_val), 2490 GFP_KERNEL, cpu_to_node(cpu)); 2491 if (!d->mbps_val) 2492 return -ENOMEM; 2493 2494 for (i = 0; i < num_closid; i++) 2495 d->mbps_val[i] = MBA_MAX_MBPS; 2496 2497 return 0; 2498 } 2499 2500 static void mba_sc_domain_destroy(struct rdt_resource *r, 2501 struct rdt_ctrl_domain *d) 2502 { 2503 kfree(d->mbps_val); 2504 d->mbps_val = NULL; 2505 } 2506 2507 /* 2508 * MBA software controller is supported only if 2509 * MBM is supported and MBA is in linear scale, 2510 * and the MBM monitor scope is the same as MBA 2511 * control scope. 2512 */ 2513 static bool supports_mba_mbps(void) 2514 { 2515 struct rdt_resource *rmbm = resctrl_arch_get_resource(RDT_RESOURCE_L3); 2516 struct rdt_resource *r = resctrl_arch_get_resource(RDT_RESOURCE_MBA); 2517 2518 return (resctrl_is_mbm_enabled() && 2519 r->alloc_capable && is_mba_linear() && 2520 r->ctrl_scope == rmbm->mon_scope); 2521 } 2522 2523 /* 2524 * Enable or disable the MBA software controller 2525 * which helps user specify bandwidth in MBps. 2526 */ 2527 static int set_mba_sc(bool mba_sc) 2528 { 2529 struct rdt_resource *r = resctrl_arch_get_resource(RDT_RESOURCE_MBA); 2530 u32 num_closid = resctrl_arch_get_num_closid(r); 2531 struct rdt_ctrl_domain *d; 2532 unsigned long fflags; 2533 int i; 2534 2535 if (!supports_mba_mbps() || mba_sc == is_mba_sc(r)) 2536 return -EINVAL; 2537 2538 r->membw.mba_sc = mba_sc; 2539 2540 rdtgroup_default.mba_mbps_event = mba_mbps_default_event; 2541 2542 list_for_each_entry(d, &r->ctrl_domains, hdr.list) { 2543 for (i = 0; i < num_closid; i++) 2544 d->mbps_val[i] = MBA_MAX_MBPS; 2545 } 2546 2547 fflags = mba_sc ? RFTYPE_CTRL_BASE | RFTYPE_MON_BASE : 0; 2548 resctrl_file_fflags_init("mba_MBps_event", fflags); 2549 2550 return 0; 2551 } 2552 2553 /* 2554 * We don't allow rdtgroup directories to be created anywhere 2555 * except the root directory. Thus when looking for the rdtgroup 2556 * structure for a kernfs node we are either looking at a directory, 2557 * in which case the rdtgroup structure is pointed at by the "priv" 2558 * field, otherwise we have a file, and need only look to the parent 2559 * to find the rdtgroup. 2560 */ 2561 static struct rdtgroup *kernfs_to_rdtgroup(struct kernfs_node *kn) 2562 { 2563 if (kernfs_type(kn) == KERNFS_DIR) { 2564 /* 2565 * All the resource directories use "kn->priv" 2566 * to point to the "struct rdtgroup" for the 2567 * resource. "info" and its subdirectories don't 2568 * have rdtgroup structures, so return NULL here. 2569 */ 2570 if (kn == kn_info || 2571 rcu_access_pointer(kn->__parent) == kn_info) 2572 return NULL; 2573 else 2574 return kn->priv; 2575 } else { 2576 return rdt_kn_parent_priv(kn); 2577 } 2578 } 2579 2580 static void rdtgroup_kn_get(struct rdtgroup *rdtgrp, struct kernfs_node *kn) 2581 { 2582 atomic_inc(&rdtgrp->waitcount); 2583 kernfs_break_active_protection(kn); 2584 } 2585 2586 static void rdtgroup_kn_put(struct rdtgroup *rdtgrp, struct kernfs_node *kn) 2587 { 2588 if (atomic_dec_and_test(&rdtgrp->waitcount) && 2589 (rdtgrp->flags & RDT_DELETED)) { 2590 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP || 2591 rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED) 2592 rdtgroup_pseudo_lock_remove(rdtgrp); 2593 kernfs_unbreak_active_protection(kn); 2594 rdtgroup_remove(rdtgrp); 2595 } else { 2596 kernfs_unbreak_active_protection(kn); 2597 } 2598 } 2599 2600 struct rdtgroup *rdtgroup_kn_lock_live(struct kernfs_node *kn) 2601 { 2602 struct rdtgroup *rdtgrp = kernfs_to_rdtgroup(kn); 2603 2604 if (!rdtgrp) 2605 return NULL; 2606 2607 rdtgroup_kn_get(rdtgrp, kn); 2608 2609 cpus_read_lock(); 2610 mutex_lock(&rdtgroup_mutex); 2611 2612 /* Was this group deleted while we waited? */ 2613 if (rdtgrp->flags & RDT_DELETED) 2614 return NULL; 2615 2616 return rdtgrp; 2617 } 2618 2619 void rdtgroup_kn_unlock(struct kernfs_node *kn) 2620 { 2621 struct rdtgroup *rdtgrp = kernfs_to_rdtgroup(kn); 2622 2623 if (!rdtgrp) 2624 return; 2625 2626 mutex_unlock(&rdtgroup_mutex); 2627 cpus_read_unlock(); 2628 2629 rdtgroup_kn_put(rdtgrp, kn); 2630 } 2631 2632 static int mkdir_mondata_all(struct kernfs_node *parent_kn, 2633 struct rdtgroup *prgrp, 2634 struct kernfs_node **mon_data_kn); 2635 2636 static void rdt_disable_ctx(void) 2637 { 2638 resctrl_arch_set_cdp_enabled(RDT_RESOURCE_L3, false); 2639 resctrl_arch_set_cdp_enabled(RDT_RESOURCE_L2, false); 2640 set_mba_sc(false); 2641 2642 resctrl_debug = false; 2643 } 2644 2645 static int rdt_enable_ctx(struct rdt_fs_context *ctx) 2646 { 2647 int ret = 0; 2648 2649 if (ctx->enable_cdpl2) { 2650 ret = resctrl_arch_set_cdp_enabled(RDT_RESOURCE_L2, true); 2651 if (ret) 2652 goto out_done; 2653 } 2654 2655 if (ctx->enable_cdpl3) { 2656 ret = resctrl_arch_set_cdp_enabled(RDT_RESOURCE_L3, true); 2657 if (ret) 2658 goto out_cdpl2; 2659 } 2660 2661 if (ctx->enable_mba_mbps) { 2662 ret = set_mba_sc(true); 2663 if (ret) 2664 goto out_cdpl3; 2665 } 2666 2667 if (ctx->enable_debug) 2668 resctrl_debug = true; 2669 2670 return 0; 2671 2672 out_cdpl3: 2673 resctrl_arch_set_cdp_enabled(RDT_RESOURCE_L3, false); 2674 out_cdpl2: 2675 resctrl_arch_set_cdp_enabled(RDT_RESOURCE_L2, false); 2676 out_done: 2677 return ret; 2678 } 2679 2680 static int schemata_list_add(struct rdt_resource *r, enum resctrl_conf_type type) 2681 { 2682 struct resctrl_schema *s; 2683 const char *suffix = ""; 2684 int ret, cl; 2685 2686 s = kzalloc(sizeof(*s), GFP_KERNEL); 2687 if (!s) 2688 return -ENOMEM; 2689 2690 s->res = r; 2691 s->num_closid = resctrl_arch_get_num_closid(r); 2692 if (resctrl_arch_get_cdp_enabled(r->rid)) 2693 s->num_closid /= 2; 2694 2695 s->conf_type = type; 2696 switch (type) { 2697 case CDP_CODE: 2698 suffix = "CODE"; 2699 break; 2700 case CDP_DATA: 2701 suffix = "DATA"; 2702 break; 2703 case CDP_NONE: 2704 suffix = ""; 2705 break; 2706 } 2707 2708 ret = snprintf(s->name, sizeof(s->name), "%s%s", r->name, suffix); 2709 if (ret >= sizeof(s->name)) { 2710 kfree(s); 2711 return -EINVAL; 2712 } 2713 2714 cl = strlen(s->name); 2715 2716 /* 2717 * If CDP is supported by this resource, but not enabled, 2718 * include the suffix. This ensures the tabular format of the 2719 * schemata file does not change between mounts of the filesystem. 2720 */ 2721 if (r->cdp_capable && !resctrl_arch_get_cdp_enabled(r->rid)) 2722 cl += 4; 2723 2724 if (cl > max_name_width) 2725 max_name_width = cl; 2726 2727 switch (r->schema_fmt) { 2728 case RESCTRL_SCHEMA_BITMAP: 2729 s->fmt_str = "%d=%x"; 2730 break; 2731 case RESCTRL_SCHEMA_RANGE: 2732 s->fmt_str = "%d=%u"; 2733 break; 2734 } 2735 2736 if (WARN_ON_ONCE(!s->fmt_str)) { 2737 kfree(s); 2738 return -EINVAL; 2739 } 2740 2741 INIT_LIST_HEAD(&s->list); 2742 list_add(&s->list, &resctrl_schema_all); 2743 2744 return 0; 2745 } 2746 2747 static int schemata_list_create(void) 2748 { 2749 struct rdt_resource *r; 2750 int ret = 0; 2751 2752 for_each_alloc_capable_rdt_resource(r) { 2753 if (resctrl_arch_get_cdp_enabled(r->rid)) { 2754 ret = schemata_list_add(r, CDP_CODE); 2755 if (ret) 2756 break; 2757 2758 ret = schemata_list_add(r, CDP_DATA); 2759 } else { 2760 ret = schemata_list_add(r, CDP_NONE); 2761 } 2762 2763 if (ret) 2764 break; 2765 } 2766 2767 return ret; 2768 } 2769 2770 static void schemata_list_destroy(void) 2771 { 2772 struct resctrl_schema *s, *tmp; 2773 2774 list_for_each_entry_safe(s, tmp, &resctrl_schema_all, list) { 2775 list_del(&s->list); 2776 kfree(s); 2777 } 2778 } 2779 2780 static int rdt_get_tree(struct fs_context *fc) 2781 { 2782 struct rdt_fs_context *ctx = rdt_fc2context(fc); 2783 unsigned long flags = RFTYPE_CTRL_BASE; 2784 struct rdt_mon_domain *dom; 2785 struct rdt_resource *r; 2786 int ret; 2787 2788 cpus_read_lock(); 2789 mutex_lock(&rdtgroup_mutex); 2790 /* 2791 * resctrl file system can only be mounted once. 2792 */ 2793 if (resctrl_mounted) { 2794 ret = -EBUSY; 2795 goto out; 2796 } 2797 2798 ret = rdtgroup_setup_root(ctx); 2799 if (ret) 2800 goto out; 2801 2802 ret = rdt_enable_ctx(ctx); 2803 if (ret) 2804 goto out_root; 2805 2806 ret = schemata_list_create(); 2807 if (ret) 2808 goto out_schemata_free; 2809 2810 ret = closid_init(); 2811 if (ret) 2812 goto out_schemata_free; 2813 2814 if (resctrl_arch_mon_capable()) 2815 flags |= RFTYPE_MON; 2816 2817 ret = rdtgroup_add_files(rdtgroup_default.kn, flags); 2818 if (ret) 2819 goto out_closid_exit; 2820 2821 kernfs_activate(rdtgroup_default.kn); 2822 2823 ret = rdtgroup_create_info_dir(rdtgroup_default.kn); 2824 if (ret < 0) 2825 goto out_closid_exit; 2826 2827 if (resctrl_arch_mon_capable()) { 2828 ret = mongroup_create_dir(rdtgroup_default.kn, 2829 &rdtgroup_default, "mon_groups", 2830 &kn_mongrp); 2831 if (ret < 0) 2832 goto out_info; 2833 2834 rdtgroup_assign_cntrs(&rdtgroup_default); 2835 2836 ret = mkdir_mondata_all(rdtgroup_default.kn, 2837 &rdtgroup_default, &kn_mondata); 2838 if (ret < 0) 2839 goto out_mongrp; 2840 rdtgroup_default.mon.mon_data_kn = kn_mondata; 2841 } 2842 2843 ret = rdt_pseudo_lock_init(); 2844 if (ret) 2845 goto out_mondata; 2846 2847 ret = kernfs_get_tree(fc); 2848 if (ret < 0) 2849 goto out_psl; 2850 2851 if (resctrl_arch_alloc_capable()) 2852 resctrl_arch_enable_alloc(); 2853 if (resctrl_arch_mon_capable()) 2854 resctrl_arch_enable_mon(); 2855 2856 if (resctrl_arch_alloc_capable() || resctrl_arch_mon_capable()) 2857 resctrl_mounted = true; 2858 2859 if (resctrl_is_mbm_enabled()) { 2860 r = resctrl_arch_get_resource(RDT_RESOURCE_L3); 2861 list_for_each_entry(dom, &r->mon_domains, hdr.list) 2862 mbm_setup_overflow_handler(dom, MBM_OVERFLOW_INTERVAL, 2863 RESCTRL_PICK_ANY_CPU); 2864 } 2865 2866 goto out; 2867 2868 out_psl: 2869 rdt_pseudo_lock_release(); 2870 out_mondata: 2871 if (resctrl_arch_mon_capable()) 2872 kernfs_remove(kn_mondata); 2873 out_mongrp: 2874 if (resctrl_arch_mon_capable()) { 2875 rdtgroup_unassign_cntrs(&rdtgroup_default); 2876 kernfs_remove(kn_mongrp); 2877 } 2878 out_info: 2879 kernfs_remove(kn_info); 2880 out_closid_exit: 2881 closid_exit(); 2882 out_schemata_free: 2883 schemata_list_destroy(); 2884 rdt_disable_ctx(); 2885 out_root: 2886 rdtgroup_destroy_root(); 2887 out: 2888 rdt_last_cmd_clear(); 2889 mutex_unlock(&rdtgroup_mutex); 2890 cpus_read_unlock(); 2891 return ret; 2892 } 2893 2894 enum rdt_param { 2895 Opt_cdp, 2896 Opt_cdpl2, 2897 Opt_mba_mbps, 2898 Opt_debug, 2899 nr__rdt_params 2900 }; 2901 2902 static const struct fs_parameter_spec rdt_fs_parameters[] = { 2903 fsparam_flag("cdp", Opt_cdp), 2904 fsparam_flag("cdpl2", Opt_cdpl2), 2905 fsparam_flag("mba_MBps", Opt_mba_mbps), 2906 fsparam_flag("debug", Opt_debug), 2907 {} 2908 }; 2909 2910 static int rdt_parse_param(struct fs_context *fc, struct fs_parameter *param) 2911 { 2912 struct rdt_fs_context *ctx = rdt_fc2context(fc); 2913 struct fs_parse_result result; 2914 const char *msg; 2915 int opt; 2916 2917 opt = fs_parse(fc, rdt_fs_parameters, param, &result); 2918 if (opt < 0) 2919 return opt; 2920 2921 switch (opt) { 2922 case Opt_cdp: 2923 ctx->enable_cdpl3 = true; 2924 return 0; 2925 case Opt_cdpl2: 2926 ctx->enable_cdpl2 = true; 2927 return 0; 2928 case Opt_mba_mbps: 2929 msg = "mba_MBps requires MBM and linear scale MBA at L3 scope"; 2930 if (!supports_mba_mbps()) 2931 return invalfc(fc, msg); 2932 ctx->enable_mba_mbps = true; 2933 return 0; 2934 case Opt_debug: 2935 ctx->enable_debug = true; 2936 return 0; 2937 } 2938 2939 return -EINVAL; 2940 } 2941 2942 static void rdt_fs_context_free(struct fs_context *fc) 2943 { 2944 struct rdt_fs_context *ctx = rdt_fc2context(fc); 2945 2946 kernfs_free_fs_context(fc); 2947 kfree(ctx); 2948 } 2949 2950 static const struct fs_context_operations rdt_fs_context_ops = { 2951 .free = rdt_fs_context_free, 2952 .parse_param = rdt_parse_param, 2953 .get_tree = rdt_get_tree, 2954 }; 2955 2956 static int rdt_init_fs_context(struct fs_context *fc) 2957 { 2958 struct rdt_fs_context *ctx; 2959 2960 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 2961 if (!ctx) 2962 return -ENOMEM; 2963 2964 ctx->kfc.magic = RDTGROUP_SUPER_MAGIC; 2965 fc->fs_private = &ctx->kfc; 2966 fc->ops = &rdt_fs_context_ops; 2967 put_user_ns(fc->user_ns); 2968 fc->user_ns = get_user_ns(&init_user_ns); 2969 fc->global = true; 2970 return 0; 2971 } 2972 2973 /* 2974 * Move tasks from one to the other group. If @from is NULL, then all tasks 2975 * in the systems are moved unconditionally (used for teardown). 2976 * 2977 * If @mask is not NULL the cpus on which moved tasks are running are set 2978 * in that mask so the update smp function call is restricted to affected 2979 * cpus. 2980 */ 2981 static void rdt_move_group_tasks(struct rdtgroup *from, struct rdtgroup *to, 2982 struct cpumask *mask) 2983 { 2984 struct task_struct *p, *t; 2985 2986 read_lock(&tasklist_lock); 2987 for_each_process_thread(p, t) { 2988 if (!from || is_closid_match(t, from) || 2989 is_rmid_match(t, from)) { 2990 resctrl_arch_set_closid_rmid(t, to->closid, 2991 to->mon.rmid); 2992 2993 /* 2994 * Order the closid/rmid stores above before the loads 2995 * in task_curr(). This pairs with the full barrier 2996 * between the rq->curr update and 2997 * resctrl_arch_sched_in() during context switch. 2998 */ 2999 smp_mb(); 3000 3001 /* 3002 * If the task is on a CPU, set the CPU in the mask. 3003 * The detection is inaccurate as tasks might move or 3004 * schedule before the smp function call takes place. 3005 * In such a case the function call is pointless, but 3006 * there is no other side effect. 3007 */ 3008 if (IS_ENABLED(CONFIG_SMP) && mask && task_curr(t)) 3009 cpumask_set_cpu(task_cpu(t), mask); 3010 } 3011 } 3012 read_unlock(&tasklist_lock); 3013 } 3014 3015 static void free_all_child_rdtgrp(struct rdtgroup *rdtgrp) 3016 { 3017 struct rdtgroup *sentry, *stmp; 3018 struct list_head *head; 3019 3020 head = &rdtgrp->mon.crdtgrp_list; 3021 list_for_each_entry_safe(sentry, stmp, head, mon.crdtgrp_list) { 3022 rdtgroup_unassign_cntrs(sentry); 3023 free_rmid(sentry->closid, sentry->mon.rmid); 3024 list_del(&sentry->mon.crdtgrp_list); 3025 3026 if (atomic_read(&sentry->waitcount) != 0) 3027 sentry->flags = RDT_DELETED; 3028 else 3029 rdtgroup_remove(sentry); 3030 } 3031 } 3032 3033 /* 3034 * Forcibly remove all of subdirectories under root. 3035 */ 3036 static void rmdir_all_sub(void) 3037 { 3038 struct rdtgroup *rdtgrp, *tmp; 3039 3040 /* Move all tasks to the default resource group */ 3041 rdt_move_group_tasks(NULL, &rdtgroup_default, NULL); 3042 3043 list_for_each_entry_safe(rdtgrp, tmp, &rdt_all_groups, rdtgroup_list) { 3044 /* Free any child rmids */ 3045 free_all_child_rdtgrp(rdtgrp); 3046 3047 /* Remove each rdtgroup other than root */ 3048 if (rdtgrp == &rdtgroup_default) 3049 continue; 3050 3051 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP || 3052 rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED) 3053 rdtgroup_pseudo_lock_remove(rdtgrp); 3054 3055 /* 3056 * Give any CPUs back to the default group. We cannot copy 3057 * cpu_online_mask because a CPU might have executed the 3058 * offline callback already, but is still marked online. 3059 */ 3060 cpumask_or(&rdtgroup_default.cpu_mask, 3061 &rdtgroup_default.cpu_mask, &rdtgrp->cpu_mask); 3062 3063 rdtgroup_unassign_cntrs(rdtgrp); 3064 3065 free_rmid(rdtgrp->closid, rdtgrp->mon.rmid); 3066 3067 kernfs_remove(rdtgrp->kn); 3068 list_del(&rdtgrp->rdtgroup_list); 3069 3070 if (atomic_read(&rdtgrp->waitcount) != 0) 3071 rdtgrp->flags = RDT_DELETED; 3072 else 3073 rdtgroup_remove(rdtgrp); 3074 } 3075 /* Notify online CPUs to update per cpu storage and PQR_ASSOC MSR */ 3076 update_closid_rmid(cpu_online_mask, &rdtgroup_default); 3077 3078 kernfs_remove(kn_info); 3079 kernfs_remove(kn_mongrp); 3080 kernfs_remove(kn_mondata); 3081 } 3082 3083 /** 3084 * mon_get_kn_priv() - Get the mon_data priv data for this event. 3085 * 3086 * The same values are used across the mon_data directories of all control and 3087 * monitor groups for the same event in the same domain. Keep a list of 3088 * allocated structures and re-use an existing one with the same values for 3089 * @rid, @domid, etc. 3090 * 3091 * @rid: The resource id for the event file being created. 3092 * @domid: The domain id for the event file being created. 3093 * @mevt: The type of event file being created. 3094 * @do_sum: Whether SNC summing monitors are being created. 3095 */ 3096 static struct mon_data *mon_get_kn_priv(enum resctrl_res_level rid, int domid, 3097 struct mon_evt *mevt, 3098 bool do_sum) 3099 { 3100 struct mon_data *priv; 3101 3102 lockdep_assert_held(&rdtgroup_mutex); 3103 3104 list_for_each_entry(priv, &mon_data_kn_priv_list, list) { 3105 if (priv->rid == rid && priv->domid == domid && 3106 priv->sum == do_sum && priv->evtid == mevt->evtid) 3107 return priv; 3108 } 3109 3110 priv = kzalloc(sizeof(*priv), GFP_KERNEL); 3111 if (!priv) 3112 return NULL; 3113 3114 priv->rid = rid; 3115 priv->domid = domid; 3116 priv->sum = do_sum; 3117 priv->evtid = mevt->evtid; 3118 list_add_tail(&priv->list, &mon_data_kn_priv_list); 3119 3120 return priv; 3121 } 3122 3123 /** 3124 * mon_put_kn_priv() - Free all allocated mon_data structures. 3125 * 3126 * Called when resctrl file system is unmounted. 3127 */ 3128 static void mon_put_kn_priv(void) 3129 { 3130 struct mon_data *priv, *tmp; 3131 3132 lockdep_assert_held(&rdtgroup_mutex); 3133 3134 list_for_each_entry_safe(priv, tmp, &mon_data_kn_priv_list, list) { 3135 list_del(&priv->list); 3136 kfree(priv); 3137 } 3138 } 3139 3140 static void resctrl_fs_teardown(void) 3141 { 3142 lockdep_assert_held(&rdtgroup_mutex); 3143 3144 /* Cleared by rdtgroup_destroy_root() */ 3145 if (!rdtgroup_default.kn) 3146 return; 3147 3148 rmdir_all_sub(); 3149 rdtgroup_unassign_cntrs(&rdtgroup_default); 3150 mon_put_kn_priv(); 3151 rdt_pseudo_lock_release(); 3152 rdtgroup_default.mode = RDT_MODE_SHAREABLE; 3153 closid_exit(); 3154 schemata_list_destroy(); 3155 rdtgroup_destroy_root(); 3156 } 3157 3158 static void rdt_kill_sb(struct super_block *sb) 3159 { 3160 struct rdt_resource *r; 3161 3162 cpus_read_lock(); 3163 mutex_lock(&rdtgroup_mutex); 3164 3165 rdt_disable_ctx(); 3166 3167 /* Put everything back to default values. */ 3168 for_each_alloc_capable_rdt_resource(r) 3169 resctrl_arch_reset_all_ctrls(r); 3170 3171 resctrl_fs_teardown(); 3172 if (resctrl_arch_alloc_capable()) 3173 resctrl_arch_disable_alloc(); 3174 if (resctrl_arch_mon_capable()) 3175 resctrl_arch_disable_mon(); 3176 resctrl_mounted = false; 3177 kernfs_kill_sb(sb); 3178 mutex_unlock(&rdtgroup_mutex); 3179 cpus_read_unlock(); 3180 } 3181 3182 static struct file_system_type rdt_fs_type = { 3183 .name = "resctrl", 3184 .init_fs_context = rdt_init_fs_context, 3185 .parameters = rdt_fs_parameters, 3186 .kill_sb = rdt_kill_sb, 3187 }; 3188 3189 static int mon_addfile(struct kernfs_node *parent_kn, const char *name, 3190 void *priv) 3191 { 3192 struct kernfs_node *kn; 3193 int ret = 0; 3194 3195 kn = __kernfs_create_file(parent_kn, name, 0444, 3196 GLOBAL_ROOT_UID, GLOBAL_ROOT_GID, 0, 3197 &kf_mondata_ops, priv, NULL, NULL); 3198 if (IS_ERR(kn)) 3199 return PTR_ERR(kn); 3200 3201 ret = rdtgroup_kn_set_ugid(kn); 3202 if (ret) { 3203 kernfs_remove(kn); 3204 return ret; 3205 } 3206 3207 return ret; 3208 } 3209 3210 static void mon_rmdir_one_subdir(struct kernfs_node *pkn, char *name, char *subname) 3211 { 3212 struct kernfs_node *kn; 3213 3214 kn = kernfs_find_and_get(pkn, name); 3215 if (!kn) 3216 return; 3217 kernfs_put(kn); 3218 3219 if (kn->dir.subdirs <= 1) 3220 kernfs_remove(kn); 3221 else 3222 kernfs_remove_by_name(kn, subname); 3223 } 3224 3225 /* 3226 * Remove all subdirectories of mon_data of ctrl_mon groups 3227 * and monitor groups for the given domain. 3228 * Remove files and directories containing "sum" of domain data 3229 * when last domain being summed is removed. 3230 */ 3231 static void rmdir_mondata_subdir_allrdtgrp(struct rdt_resource *r, 3232 struct rdt_mon_domain *d) 3233 { 3234 struct rdtgroup *prgrp, *crgrp; 3235 char subname[32]; 3236 bool snc_mode; 3237 char name[32]; 3238 3239 snc_mode = r->mon_scope == RESCTRL_L3_NODE; 3240 sprintf(name, "mon_%s_%02d", r->name, snc_mode ? d->ci_id : d->hdr.id); 3241 if (snc_mode) 3242 sprintf(subname, "mon_sub_%s_%02d", r->name, d->hdr.id); 3243 3244 list_for_each_entry(prgrp, &rdt_all_groups, rdtgroup_list) { 3245 mon_rmdir_one_subdir(prgrp->mon.mon_data_kn, name, subname); 3246 3247 list_for_each_entry(crgrp, &prgrp->mon.crdtgrp_list, mon.crdtgrp_list) 3248 mon_rmdir_one_subdir(crgrp->mon.mon_data_kn, name, subname); 3249 } 3250 } 3251 3252 static int mon_add_all_files(struct kernfs_node *kn, struct rdt_mon_domain *d, 3253 struct rdt_resource *r, struct rdtgroup *prgrp, 3254 bool do_sum) 3255 { 3256 struct rmid_read rr = {0}; 3257 struct mon_data *priv; 3258 struct mon_evt *mevt; 3259 int ret, domid; 3260 3261 for_each_mon_event(mevt) { 3262 if (mevt->rid != r->rid || !mevt->enabled) 3263 continue; 3264 domid = do_sum ? d->ci_id : d->hdr.id; 3265 priv = mon_get_kn_priv(r->rid, domid, mevt, do_sum); 3266 if (WARN_ON_ONCE(!priv)) 3267 return -EINVAL; 3268 3269 ret = mon_addfile(kn, mevt->name, priv); 3270 if (ret) 3271 return ret; 3272 3273 if (!do_sum && resctrl_is_mbm_event(mevt->evtid)) 3274 mon_event_read(&rr, r, d, prgrp, &d->hdr.cpu_mask, mevt->evtid, true); 3275 } 3276 3277 return 0; 3278 } 3279 3280 static int mkdir_mondata_subdir(struct kernfs_node *parent_kn, 3281 struct rdt_mon_domain *d, 3282 struct rdt_resource *r, struct rdtgroup *prgrp) 3283 { 3284 struct kernfs_node *kn, *ckn; 3285 char name[32]; 3286 bool snc_mode; 3287 int ret = 0; 3288 3289 lockdep_assert_held(&rdtgroup_mutex); 3290 3291 snc_mode = r->mon_scope == RESCTRL_L3_NODE; 3292 sprintf(name, "mon_%s_%02d", r->name, snc_mode ? d->ci_id : d->hdr.id); 3293 kn = kernfs_find_and_get(parent_kn, name); 3294 if (kn) { 3295 /* 3296 * rdtgroup_mutex will prevent this directory from being 3297 * removed. No need to keep this hold. 3298 */ 3299 kernfs_put(kn); 3300 } else { 3301 kn = kernfs_create_dir(parent_kn, name, parent_kn->mode, prgrp); 3302 if (IS_ERR(kn)) 3303 return PTR_ERR(kn); 3304 3305 ret = rdtgroup_kn_set_ugid(kn); 3306 if (ret) 3307 goto out_destroy; 3308 ret = mon_add_all_files(kn, d, r, prgrp, snc_mode); 3309 if (ret) 3310 goto out_destroy; 3311 } 3312 3313 if (snc_mode) { 3314 sprintf(name, "mon_sub_%s_%02d", r->name, d->hdr.id); 3315 ckn = kernfs_create_dir(kn, name, parent_kn->mode, prgrp); 3316 if (IS_ERR(ckn)) { 3317 ret = -EINVAL; 3318 goto out_destroy; 3319 } 3320 3321 ret = rdtgroup_kn_set_ugid(ckn); 3322 if (ret) 3323 goto out_destroy; 3324 3325 ret = mon_add_all_files(ckn, d, r, prgrp, false); 3326 if (ret) 3327 goto out_destroy; 3328 } 3329 3330 kernfs_activate(kn); 3331 return 0; 3332 3333 out_destroy: 3334 kernfs_remove(kn); 3335 return ret; 3336 } 3337 3338 /* 3339 * Add all subdirectories of mon_data for "ctrl_mon" groups 3340 * and "monitor" groups with given domain id. 3341 */ 3342 static void mkdir_mondata_subdir_allrdtgrp(struct rdt_resource *r, 3343 struct rdt_mon_domain *d) 3344 { 3345 struct kernfs_node *parent_kn; 3346 struct rdtgroup *prgrp, *crgrp; 3347 struct list_head *head; 3348 3349 list_for_each_entry(prgrp, &rdt_all_groups, rdtgroup_list) { 3350 parent_kn = prgrp->mon.mon_data_kn; 3351 mkdir_mondata_subdir(parent_kn, d, r, prgrp); 3352 3353 head = &prgrp->mon.crdtgrp_list; 3354 list_for_each_entry(crgrp, head, mon.crdtgrp_list) { 3355 parent_kn = crgrp->mon.mon_data_kn; 3356 mkdir_mondata_subdir(parent_kn, d, r, crgrp); 3357 } 3358 } 3359 } 3360 3361 static int mkdir_mondata_subdir_alldom(struct kernfs_node *parent_kn, 3362 struct rdt_resource *r, 3363 struct rdtgroup *prgrp) 3364 { 3365 struct rdt_mon_domain *dom; 3366 int ret; 3367 3368 /* Walking r->domains, ensure it can't race with cpuhp */ 3369 lockdep_assert_cpus_held(); 3370 3371 list_for_each_entry(dom, &r->mon_domains, hdr.list) { 3372 ret = mkdir_mondata_subdir(parent_kn, dom, r, prgrp); 3373 if (ret) 3374 return ret; 3375 } 3376 3377 return 0; 3378 } 3379 3380 /* 3381 * This creates a directory mon_data which contains the monitored data. 3382 * 3383 * mon_data has one directory for each domain which are named 3384 * in the format mon_<domain_name>_<domain_id>. For ex: A mon_data 3385 * with L3 domain looks as below: 3386 * ./mon_data: 3387 * mon_L3_00 3388 * mon_L3_01 3389 * mon_L3_02 3390 * ... 3391 * 3392 * Each domain directory has one file per event: 3393 * ./mon_L3_00/: 3394 * llc_occupancy 3395 * 3396 */ 3397 static int mkdir_mondata_all(struct kernfs_node *parent_kn, 3398 struct rdtgroup *prgrp, 3399 struct kernfs_node **dest_kn) 3400 { 3401 struct rdt_resource *r; 3402 struct kernfs_node *kn; 3403 int ret; 3404 3405 /* 3406 * Create the mon_data directory first. 3407 */ 3408 ret = mongroup_create_dir(parent_kn, prgrp, "mon_data", &kn); 3409 if (ret) 3410 return ret; 3411 3412 if (dest_kn) 3413 *dest_kn = kn; 3414 3415 /* 3416 * Create the subdirectories for each domain. Note that all events 3417 * in a domain like L3 are grouped into a resource whose domain is L3 3418 */ 3419 for_each_mon_capable_rdt_resource(r) { 3420 ret = mkdir_mondata_subdir_alldom(kn, r, prgrp); 3421 if (ret) 3422 goto out_destroy; 3423 } 3424 3425 return 0; 3426 3427 out_destroy: 3428 kernfs_remove(kn); 3429 return ret; 3430 } 3431 3432 /** 3433 * cbm_ensure_valid - Enforce validity on provided CBM 3434 * @_val: Candidate CBM 3435 * @r: RDT resource to which the CBM belongs 3436 * 3437 * The provided CBM represents all cache portions available for use. This 3438 * may be represented by a bitmap that does not consist of contiguous ones 3439 * and thus be an invalid CBM. 3440 * Here the provided CBM is forced to be a valid CBM by only considering 3441 * the first set of contiguous bits as valid and clearing all bits. 3442 * The intention here is to provide a valid default CBM with which a new 3443 * resource group is initialized. The user can follow this with a 3444 * modification to the CBM if the default does not satisfy the 3445 * requirements. 3446 */ 3447 static u32 cbm_ensure_valid(u32 _val, struct rdt_resource *r) 3448 { 3449 unsigned int cbm_len = r->cache.cbm_len; 3450 unsigned long first_bit, zero_bit; 3451 unsigned long val; 3452 3453 if (!_val || r->cache.arch_has_sparse_bitmasks) 3454 return _val; 3455 3456 val = _val; 3457 first_bit = find_first_bit(&val, cbm_len); 3458 zero_bit = find_next_zero_bit(&val, cbm_len, first_bit); 3459 3460 /* Clear any remaining bits to ensure contiguous region */ 3461 bitmap_clear(&val, zero_bit, cbm_len - zero_bit); 3462 return (u32)val; 3463 } 3464 3465 /* 3466 * Initialize cache resources per RDT domain 3467 * 3468 * Set the RDT domain up to start off with all usable allocations. That is, 3469 * all shareable and unused bits. All-zero CBM is invalid. 3470 */ 3471 static int __init_one_rdt_domain(struct rdt_ctrl_domain *d, struct resctrl_schema *s, 3472 u32 closid) 3473 { 3474 enum resctrl_conf_type peer_type = resctrl_peer_type(s->conf_type); 3475 enum resctrl_conf_type t = s->conf_type; 3476 struct resctrl_staged_config *cfg; 3477 struct rdt_resource *r = s->res; 3478 u32 used_b = 0, unused_b = 0; 3479 unsigned long tmp_cbm; 3480 enum rdtgrp_mode mode; 3481 u32 peer_ctl, ctrl_val; 3482 int i; 3483 3484 cfg = &d->staged_config[t]; 3485 cfg->have_new_ctrl = false; 3486 cfg->new_ctrl = r->cache.shareable_bits; 3487 used_b = r->cache.shareable_bits; 3488 for (i = 0; i < closids_supported(); i++) { 3489 if (closid_allocated(i) && i != closid) { 3490 mode = rdtgroup_mode_by_closid(i); 3491 if (mode == RDT_MODE_PSEUDO_LOCKSETUP) 3492 /* 3493 * ctrl values for locksetup aren't relevant 3494 * until the schemata is written, and the mode 3495 * becomes RDT_MODE_PSEUDO_LOCKED. 3496 */ 3497 continue; 3498 /* 3499 * If CDP is active include peer domain's 3500 * usage to ensure there is no overlap 3501 * with an exclusive group. 3502 */ 3503 if (resctrl_arch_get_cdp_enabled(r->rid)) 3504 peer_ctl = resctrl_arch_get_config(r, d, i, 3505 peer_type); 3506 else 3507 peer_ctl = 0; 3508 ctrl_val = resctrl_arch_get_config(r, d, i, 3509 s->conf_type); 3510 used_b |= ctrl_val | peer_ctl; 3511 if (mode == RDT_MODE_SHAREABLE) 3512 cfg->new_ctrl |= ctrl_val | peer_ctl; 3513 } 3514 } 3515 if (d->plr && d->plr->cbm > 0) 3516 used_b |= d->plr->cbm; 3517 unused_b = used_b ^ (BIT_MASK(r->cache.cbm_len) - 1); 3518 unused_b &= BIT_MASK(r->cache.cbm_len) - 1; 3519 cfg->new_ctrl |= unused_b; 3520 /* 3521 * Force the initial CBM to be valid, user can 3522 * modify the CBM based on system availability. 3523 */ 3524 cfg->new_ctrl = cbm_ensure_valid(cfg->new_ctrl, r); 3525 /* 3526 * Assign the u32 CBM to an unsigned long to ensure that 3527 * bitmap_weight() does not access out-of-bound memory. 3528 */ 3529 tmp_cbm = cfg->new_ctrl; 3530 if (bitmap_weight(&tmp_cbm, r->cache.cbm_len) < r->cache.min_cbm_bits) { 3531 rdt_last_cmd_printf("No space on %s:%d\n", s->name, d->hdr.id); 3532 return -ENOSPC; 3533 } 3534 cfg->have_new_ctrl = true; 3535 3536 return 0; 3537 } 3538 3539 /* 3540 * Initialize cache resources with default values. 3541 * 3542 * A new RDT group is being created on an allocation capable (CAT) 3543 * supporting system. Set this group up to start off with all usable 3544 * allocations. 3545 * 3546 * If there are no more shareable bits available on any domain then 3547 * the entire allocation will fail. 3548 */ 3549 int rdtgroup_init_cat(struct resctrl_schema *s, u32 closid) 3550 { 3551 struct rdt_ctrl_domain *d; 3552 int ret; 3553 3554 list_for_each_entry(d, &s->res->ctrl_domains, hdr.list) { 3555 ret = __init_one_rdt_domain(d, s, closid); 3556 if (ret < 0) 3557 return ret; 3558 } 3559 3560 return 0; 3561 } 3562 3563 /* Initialize MBA resource with default values. */ 3564 static void rdtgroup_init_mba(struct rdt_resource *r, u32 closid) 3565 { 3566 struct resctrl_staged_config *cfg; 3567 struct rdt_ctrl_domain *d; 3568 3569 list_for_each_entry(d, &r->ctrl_domains, hdr.list) { 3570 if (is_mba_sc(r)) { 3571 d->mbps_val[closid] = MBA_MAX_MBPS; 3572 continue; 3573 } 3574 3575 cfg = &d->staged_config[CDP_NONE]; 3576 cfg->new_ctrl = resctrl_get_default_ctrl(r); 3577 cfg->have_new_ctrl = true; 3578 } 3579 } 3580 3581 /* Initialize the RDT group's allocations. */ 3582 static int rdtgroup_init_alloc(struct rdtgroup *rdtgrp) 3583 { 3584 struct resctrl_schema *s; 3585 struct rdt_resource *r; 3586 int ret = 0; 3587 3588 rdt_staged_configs_clear(); 3589 3590 list_for_each_entry(s, &resctrl_schema_all, list) { 3591 r = s->res; 3592 if (r->rid == RDT_RESOURCE_MBA || 3593 r->rid == RDT_RESOURCE_SMBA) { 3594 rdtgroup_init_mba(r, rdtgrp->closid); 3595 if (is_mba_sc(r)) 3596 continue; 3597 } else { 3598 ret = rdtgroup_init_cat(s, rdtgrp->closid); 3599 if (ret < 0) 3600 goto out; 3601 } 3602 3603 ret = resctrl_arch_update_domains(r, rdtgrp->closid); 3604 if (ret < 0) { 3605 rdt_last_cmd_puts("Failed to initialize allocations\n"); 3606 goto out; 3607 } 3608 } 3609 3610 rdtgrp->mode = RDT_MODE_SHAREABLE; 3611 3612 out: 3613 rdt_staged_configs_clear(); 3614 return ret; 3615 } 3616 3617 static int mkdir_rdt_prepare_rmid_alloc(struct rdtgroup *rdtgrp) 3618 { 3619 int ret; 3620 3621 if (!resctrl_arch_mon_capable()) 3622 return 0; 3623 3624 ret = alloc_rmid(rdtgrp->closid); 3625 if (ret < 0) { 3626 rdt_last_cmd_puts("Out of RMIDs\n"); 3627 return ret; 3628 } 3629 rdtgrp->mon.rmid = ret; 3630 3631 rdtgroup_assign_cntrs(rdtgrp); 3632 3633 ret = mkdir_mondata_all(rdtgrp->kn, rdtgrp, &rdtgrp->mon.mon_data_kn); 3634 if (ret) { 3635 rdt_last_cmd_puts("kernfs subdir error\n"); 3636 rdtgroup_unassign_cntrs(rdtgrp); 3637 free_rmid(rdtgrp->closid, rdtgrp->mon.rmid); 3638 return ret; 3639 } 3640 3641 return 0; 3642 } 3643 3644 static void mkdir_rdt_prepare_rmid_free(struct rdtgroup *rgrp) 3645 { 3646 if (resctrl_arch_mon_capable()) { 3647 rdtgroup_unassign_cntrs(rgrp); 3648 free_rmid(rgrp->closid, rgrp->mon.rmid); 3649 } 3650 } 3651 3652 /* 3653 * We allow creating mon groups only with in a directory called "mon_groups" 3654 * which is present in every ctrl_mon group. Check if this is a valid 3655 * "mon_groups" directory. 3656 * 3657 * 1. The directory should be named "mon_groups". 3658 * 2. The mon group itself should "not" be named "mon_groups". 3659 * This makes sure "mon_groups" directory always has a ctrl_mon group 3660 * as parent. 3661 */ 3662 static bool is_mon_groups(struct kernfs_node *kn, const char *name) 3663 { 3664 return (!strcmp(rdt_kn_name(kn), "mon_groups") && 3665 strcmp(name, "mon_groups")); 3666 } 3667 3668 static int mkdir_rdt_prepare(struct kernfs_node *parent_kn, 3669 const char *name, umode_t mode, 3670 enum rdt_group_type rtype, struct rdtgroup **r) 3671 { 3672 struct rdtgroup *prdtgrp, *rdtgrp; 3673 unsigned long files = 0; 3674 struct kernfs_node *kn; 3675 int ret; 3676 3677 prdtgrp = rdtgroup_kn_lock_live(parent_kn); 3678 if (!prdtgrp) { 3679 ret = -ENODEV; 3680 goto out_unlock; 3681 } 3682 3683 rdt_last_cmd_clear(); 3684 3685 /* 3686 * Check that the parent directory for a monitor group is a "mon_groups" 3687 * directory. 3688 */ 3689 if (rtype == RDTMON_GROUP && !is_mon_groups(parent_kn, name)) { 3690 ret = -EPERM; 3691 goto out_unlock; 3692 } 3693 3694 if (rtype == RDTMON_GROUP && 3695 (prdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP || 3696 prdtgrp->mode == RDT_MODE_PSEUDO_LOCKED)) { 3697 ret = -EINVAL; 3698 rdt_last_cmd_puts("Pseudo-locking in progress\n"); 3699 goto out_unlock; 3700 } 3701 3702 /* allocate the rdtgroup. */ 3703 rdtgrp = kzalloc(sizeof(*rdtgrp), GFP_KERNEL); 3704 if (!rdtgrp) { 3705 ret = -ENOSPC; 3706 rdt_last_cmd_puts("Kernel out of memory\n"); 3707 goto out_unlock; 3708 } 3709 *r = rdtgrp; 3710 rdtgrp->mon.parent = prdtgrp; 3711 rdtgrp->type = rtype; 3712 INIT_LIST_HEAD(&rdtgrp->mon.crdtgrp_list); 3713 3714 /* kernfs creates the directory for rdtgrp */ 3715 kn = kernfs_create_dir(parent_kn, name, mode, rdtgrp); 3716 if (IS_ERR(kn)) { 3717 ret = PTR_ERR(kn); 3718 rdt_last_cmd_puts("kernfs create error\n"); 3719 goto out_free_rgrp; 3720 } 3721 rdtgrp->kn = kn; 3722 3723 /* 3724 * kernfs_remove() will drop the reference count on "kn" which 3725 * will free it. But we still need it to stick around for the 3726 * rdtgroup_kn_unlock(kn) call. Take one extra reference here, 3727 * which will be dropped by kernfs_put() in rdtgroup_remove(). 3728 */ 3729 kernfs_get(kn); 3730 3731 ret = rdtgroup_kn_set_ugid(kn); 3732 if (ret) { 3733 rdt_last_cmd_puts("kernfs perm error\n"); 3734 goto out_destroy; 3735 } 3736 3737 if (rtype == RDTCTRL_GROUP) { 3738 files = RFTYPE_BASE | RFTYPE_CTRL; 3739 if (resctrl_arch_mon_capable()) 3740 files |= RFTYPE_MON; 3741 } else { 3742 files = RFTYPE_BASE | RFTYPE_MON; 3743 } 3744 3745 ret = rdtgroup_add_files(kn, files); 3746 if (ret) { 3747 rdt_last_cmd_puts("kernfs fill error\n"); 3748 goto out_destroy; 3749 } 3750 3751 /* 3752 * The caller unlocks the parent_kn upon success. 3753 */ 3754 return 0; 3755 3756 out_destroy: 3757 kernfs_put(rdtgrp->kn); 3758 kernfs_remove(rdtgrp->kn); 3759 out_free_rgrp: 3760 kfree(rdtgrp); 3761 out_unlock: 3762 rdtgroup_kn_unlock(parent_kn); 3763 return ret; 3764 } 3765 3766 static void mkdir_rdt_prepare_clean(struct rdtgroup *rgrp) 3767 { 3768 kernfs_remove(rgrp->kn); 3769 rdtgroup_remove(rgrp); 3770 } 3771 3772 /* 3773 * Create a monitor group under "mon_groups" directory of a control 3774 * and monitor group(ctrl_mon). This is a resource group 3775 * to monitor a subset of tasks and cpus in its parent ctrl_mon group. 3776 */ 3777 static int rdtgroup_mkdir_mon(struct kernfs_node *parent_kn, 3778 const char *name, umode_t mode) 3779 { 3780 struct rdtgroup *rdtgrp, *prgrp; 3781 int ret; 3782 3783 ret = mkdir_rdt_prepare(parent_kn, name, mode, RDTMON_GROUP, &rdtgrp); 3784 if (ret) 3785 return ret; 3786 3787 prgrp = rdtgrp->mon.parent; 3788 rdtgrp->closid = prgrp->closid; 3789 3790 ret = mkdir_rdt_prepare_rmid_alloc(rdtgrp); 3791 if (ret) { 3792 mkdir_rdt_prepare_clean(rdtgrp); 3793 goto out_unlock; 3794 } 3795 3796 kernfs_activate(rdtgrp->kn); 3797 3798 /* 3799 * Add the rdtgrp to the list of rdtgrps the parent 3800 * ctrl_mon group has to track. 3801 */ 3802 list_add_tail(&rdtgrp->mon.crdtgrp_list, &prgrp->mon.crdtgrp_list); 3803 3804 out_unlock: 3805 rdtgroup_kn_unlock(parent_kn); 3806 return ret; 3807 } 3808 3809 /* 3810 * These are rdtgroups created under the root directory. Can be used 3811 * to allocate and monitor resources. 3812 */ 3813 static int rdtgroup_mkdir_ctrl_mon(struct kernfs_node *parent_kn, 3814 const char *name, umode_t mode) 3815 { 3816 struct rdtgroup *rdtgrp; 3817 struct kernfs_node *kn; 3818 u32 closid; 3819 int ret; 3820 3821 ret = mkdir_rdt_prepare(parent_kn, name, mode, RDTCTRL_GROUP, &rdtgrp); 3822 if (ret) 3823 return ret; 3824 3825 kn = rdtgrp->kn; 3826 ret = closid_alloc(); 3827 if (ret < 0) { 3828 rdt_last_cmd_puts("Out of CLOSIDs\n"); 3829 goto out_common_fail; 3830 } 3831 closid = ret; 3832 ret = 0; 3833 3834 rdtgrp->closid = closid; 3835 3836 ret = mkdir_rdt_prepare_rmid_alloc(rdtgrp); 3837 if (ret) 3838 goto out_closid_free; 3839 3840 kernfs_activate(rdtgrp->kn); 3841 3842 ret = rdtgroup_init_alloc(rdtgrp); 3843 if (ret < 0) 3844 goto out_rmid_free; 3845 3846 list_add(&rdtgrp->rdtgroup_list, &rdt_all_groups); 3847 3848 if (resctrl_arch_mon_capable()) { 3849 /* 3850 * Create an empty mon_groups directory to hold the subset 3851 * of tasks and cpus to monitor. 3852 */ 3853 ret = mongroup_create_dir(kn, rdtgrp, "mon_groups", NULL); 3854 if (ret) { 3855 rdt_last_cmd_puts("kernfs subdir error\n"); 3856 goto out_del_list; 3857 } 3858 if (is_mba_sc(NULL)) 3859 rdtgrp->mba_mbps_event = mba_mbps_default_event; 3860 } 3861 3862 goto out_unlock; 3863 3864 out_del_list: 3865 list_del(&rdtgrp->rdtgroup_list); 3866 out_rmid_free: 3867 mkdir_rdt_prepare_rmid_free(rdtgrp); 3868 out_closid_free: 3869 closid_free(closid); 3870 out_common_fail: 3871 mkdir_rdt_prepare_clean(rdtgrp); 3872 out_unlock: 3873 rdtgroup_kn_unlock(parent_kn); 3874 return ret; 3875 } 3876 3877 static int rdtgroup_mkdir(struct kernfs_node *parent_kn, const char *name, 3878 umode_t mode) 3879 { 3880 /* Do not accept '\n' to avoid unparsable situation. */ 3881 if (strchr(name, '\n')) 3882 return -EINVAL; 3883 3884 /* 3885 * If the parent directory is the root directory and RDT 3886 * allocation is supported, add a control and monitoring 3887 * subdirectory 3888 */ 3889 if (resctrl_arch_alloc_capable() && parent_kn == rdtgroup_default.kn) 3890 return rdtgroup_mkdir_ctrl_mon(parent_kn, name, mode); 3891 3892 /* Else, attempt to add a monitoring subdirectory. */ 3893 if (resctrl_arch_mon_capable()) 3894 return rdtgroup_mkdir_mon(parent_kn, name, mode); 3895 3896 return -EPERM; 3897 } 3898 3899 static int rdtgroup_rmdir_mon(struct rdtgroup *rdtgrp, cpumask_var_t tmpmask) 3900 { 3901 struct rdtgroup *prdtgrp = rdtgrp->mon.parent; 3902 u32 closid, rmid; 3903 int cpu; 3904 3905 /* Give any tasks back to the parent group */ 3906 rdt_move_group_tasks(rdtgrp, prdtgrp, tmpmask); 3907 3908 /* 3909 * Update per cpu closid/rmid of the moved CPUs first. 3910 * Note: the closid will not change, but the arch code still needs it. 3911 */ 3912 closid = prdtgrp->closid; 3913 rmid = prdtgrp->mon.rmid; 3914 for_each_cpu(cpu, &rdtgrp->cpu_mask) 3915 resctrl_arch_set_cpu_default_closid_rmid(cpu, closid, rmid); 3916 3917 /* 3918 * Update the MSR on moved CPUs and CPUs which have moved 3919 * task running on them. 3920 */ 3921 cpumask_or(tmpmask, tmpmask, &rdtgrp->cpu_mask); 3922 update_closid_rmid(tmpmask, NULL); 3923 3924 rdtgrp->flags = RDT_DELETED; 3925 3926 rdtgroup_unassign_cntrs(rdtgrp); 3927 3928 free_rmid(rdtgrp->closid, rdtgrp->mon.rmid); 3929 3930 /* 3931 * Remove the rdtgrp from the parent ctrl_mon group's list 3932 */ 3933 WARN_ON(list_empty(&prdtgrp->mon.crdtgrp_list)); 3934 list_del(&rdtgrp->mon.crdtgrp_list); 3935 3936 kernfs_remove(rdtgrp->kn); 3937 3938 return 0; 3939 } 3940 3941 static int rdtgroup_ctrl_remove(struct rdtgroup *rdtgrp) 3942 { 3943 rdtgrp->flags = RDT_DELETED; 3944 list_del(&rdtgrp->rdtgroup_list); 3945 3946 kernfs_remove(rdtgrp->kn); 3947 return 0; 3948 } 3949 3950 static int rdtgroup_rmdir_ctrl(struct rdtgroup *rdtgrp, cpumask_var_t tmpmask) 3951 { 3952 u32 closid, rmid; 3953 int cpu; 3954 3955 /* Give any tasks back to the default group */ 3956 rdt_move_group_tasks(rdtgrp, &rdtgroup_default, tmpmask); 3957 3958 /* Give any CPUs back to the default group */ 3959 cpumask_or(&rdtgroup_default.cpu_mask, 3960 &rdtgroup_default.cpu_mask, &rdtgrp->cpu_mask); 3961 3962 /* Update per cpu closid and rmid of the moved CPUs first */ 3963 closid = rdtgroup_default.closid; 3964 rmid = rdtgroup_default.mon.rmid; 3965 for_each_cpu(cpu, &rdtgrp->cpu_mask) 3966 resctrl_arch_set_cpu_default_closid_rmid(cpu, closid, rmid); 3967 3968 /* 3969 * Update the MSR on moved CPUs and CPUs which have moved 3970 * task running on them. 3971 */ 3972 cpumask_or(tmpmask, tmpmask, &rdtgrp->cpu_mask); 3973 update_closid_rmid(tmpmask, NULL); 3974 3975 rdtgroup_unassign_cntrs(rdtgrp); 3976 3977 free_rmid(rdtgrp->closid, rdtgrp->mon.rmid); 3978 closid_free(rdtgrp->closid); 3979 3980 rdtgroup_ctrl_remove(rdtgrp); 3981 3982 /* 3983 * Free all the child monitor group rmids. 3984 */ 3985 free_all_child_rdtgrp(rdtgrp); 3986 3987 return 0; 3988 } 3989 3990 static struct kernfs_node *rdt_kn_parent(struct kernfs_node *kn) 3991 { 3992 /* 3993 * Valid within the RCU section it was obtained or while rdtgroup_mutex 3994 * is held. 3995 */ 3996 return rcu_dereference_check(kn->__parent, lockdep_is_held(&rdtgroup_mutex)); 3997 } 3998 3999 static int rdtgroup_rmdir(struct kernfs_node *kn) 4000 { 4001 struct kernfs_node *parent_kn; 4002 struct rdtgroup *rdtgrp; 4003 cpumask_var_t tmpmask; 4004 int ret = 0; 4005 4006 if (!zalloc_cpumask_var(&tmpmask, GFP_KERNEL)) 4007 return -ENOMEM; 4008 4009 rdtgrp = rdtgroup_kn_lock_live(kn); 4010 if (!rdtgrp) { 4011 ret = -EPERM; 4012 goto out; 4013 } 4014 parent_kn = rdt_kn_parent(kn); 4015 4016 /* 4017 * If the rdtgroup is a ctrl_mon group and parent directory 4018 * is the root directory, remove the ctrl_mon group. 4019 * 4020 * If the rdtgroup is a mon group and parent directory 4021 * is a valid "mon_groups" directory, remove the mon group. 4022 */ 4023 if (rdtgrp->type == RDTCTRL_GROUP && parent_kn == rdtgroup_default.kn && 4024 rdtgrp != &rdtgroup_default) { 4025 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP || 4026 rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED) { 4027 ret = rdtgroup_ctrl_remove(rdtgrp); 4028 } else { 4029 ret = rdtgroup_rmdir_ctrl(rdtgrp, tmpmask); 4030 } 4031 } else if (rdtgrp->type == RDTMON_GROUP && 4032 is_mon_groups(parent_kn, rdt_kn_name(kn))) { 4033 ret = rdtgroup_rmdir_mon(rdtgrp, tmpmask); 4034 } else { 4035 ret = -EPERM; 4036 } 4037 4038 out: 4039 rdtgroup_kn_unlock(kn); 4040 free_cpumask_var(tmpmask); 4041 return ret; 4042 } 4043 4044 /** 4045 * mongrp_reparent() - replace parent CTRL_MON group of a MON group 4046 * @rdtgrp: the MON group whose parent should be replaced 4047 * @new_prdtgrp: replacement parent CTRL_MON group for @rdtgrp 4048 * @cpus: cpumask provided by the caller for use during this call 4049 * 4050 * Replaces the parent CTRL_MON group for a MON group, resulting in all member 4051 * tasks' CLOSID immediately changing to that of the new parent group. 4052 * Monitoring data for the group is unaffected by this operation. 4053 */ 4054 static void mongrp_reparent(struct rdtgroup *rdtgrp, 4055 struct rdtgroup *new_prdtgrp, 4056 cpumask_var_t cpus) 4057 { 4058 struct rdtgroup *prdtgrp = rdtgrp->mon.parent; 4059 4060 WARN_ON(rdtgrp->type != RDTMON_GROUP); 4061 WARN_ON(new_prdtgrp->type != RDTCTRL_GROUP); 4062 4063 /* Nothing to do when simply renaming a MON group. */ 4064 if (prdtgrp == new_prdtgrp) 4065 return; 4066 4067 WARN_ON(list_empty(&prdtgrp->mon.crdtgrp_list)); 4068 list_move_tail(&rdtgrp->mon.crdtgrp_list, 4069 &new_prdtgrp->mon.crdtgrp_list); 4070 4071 rdtgrp->mon.parent = new_prdtgrp; 4072 rdtgrp->closid = new_prdtgrp->closid; 4073 4074 /* Propagate updated closid to all tasks in this group. */ 4075 rdt_move_group_tasks(rdtgrp, rdtgrp, cpus); 4076 4077 update_closid_rmid(cpus, NULL); 4078 } 4079 4080 static int rdtgroup_rename(struct kernfs_node *kn, 4081 struct kernfs_node *new_parent, const char *new_name) 4082 { 4083 struct kernfs_node *kn_parent; 4084 struct rdtgroup *new_prdtgrp; 4085 struct rdtgroup *rdtgrp; 4086 cpumask_var_t tmpmask; 4087 int ret; 4088 4089 rdtgrp = kernfs_to_rdtgroup(kn); 4090 new_prdtgrp = kernfs_to_rdtgroup(new_parent); 4091 if (!rdtgrp || !new_prdtgrp) 4092 return -ENOENT; 4093 4094 /* Release both kernfs active_refs before obtaining rdtgroup mutex. */ 4095 rdtgroup_kn_get(rdtgrp, kn); 4096 rdtgroup_kn_get(new_prdtgrp, new_parent); 4097 4098 mutex_lock(&rdtgroup_mutex); 4099 4100 rdt_last_cmd_clear(); 4101 4102 /* 4103 * Don't allow kernfs_to_rdtgroup() to return a parent rdtgroup if 4104 * either kernfs_node is a file. 4105 */ 4106 if (kernfs_type(kn) != KERNFS_DIR || 4107 kernfs_type(new_parent) != KERNFS_DIR) { 4108 rdt_last_cmd_puts("Source and destination must be directories"); 4109 ret = -EPERM; 4110 goto out; 4111 } 4112 4113 if ((rdtgrp->flags & RDT_DELETED) || (new_prdtgrp->flags & RDT_DELETED)) { 4114 ret = -ENOENT; 4115 goto out; 4116 } 4117 4118 kn_parent = rdt_kn_parent(kn); 4119 if (rdtgrp->type != RDTMON_GROUP || !kn_parent || 4120 !is_mon_groups(kn_parent, rdt_kn_name(kn))) { 4121 rdt_last_cmd_puts("Source must be a MON group\n"); 4122 ret = -EPERM; 4123 goto out; 4124 } 4125 4126 if (!is_mon_groups(new_parent, new_name)) { 4127 rdt_last_cmd_puts("Destination must be a mon_groups subdirectory\n"); 4128 ret = -EPERM; 4129 goto out; 4130 } 4131 4132 /* 4133 * If the MON group is monitoring CPUs, the CPUs must be assigned to the 4134 * current parent CTRL_MON group and therefore cannot be assigned to 4135 * the new parent, making the move illegal. 4136 */ 4137 if (!cpumask_empty(&rdtgrp->cpu_mask) && 4138 rdtgrp->mon.parent != new_prdtgrp) { 4139 rdt_last_cmd_puts("Cannot move a MON group that monitors CPUs\n"); 4140 ret = -EPERM; 4141 goto out; 4142 } 4143 4144 /* 4145 * Allocate the cpumask for use in mongrp_reparent() to avoid the 4146 * possibility of failing to allocate it after kernfs_rename() has 4147 * succeeded. 4148 */ 4149 if (!zalloc_cpumask_var(&tmpmask, GFP_KERNEL)) { 4150 ret = -ENOMEM; 4151 goto out; 4152 } 4153 4154 /* 4155 * Perform all input validation and allocations needed to ensure 4156 * mongrp_reparent() will succeed before calling kernfs_rename(), 4157 * otherwise it would be necessary to revert this call if 4158 * mongrp_reparent() failed. 4159 */ 4160 ret = kernfs_rename(kn, new_parent, new_name); 4161 if (!ret) 4162 mongrp_reparent(rdtgrp, new_prdtgrp, tmpmask); 4163 4164 free_cpumask_var(tmpmask); 4165 4166 out: 4167 mutex_unlock(&rdtgroup_mutex); 4168 rdtgroup_kn_put(rdtgrp, kn); 4169 rdtgroup_kn_put(new_prdtgrp, new_parent); 4170 return ret; 4171 } 4172 4173 static int rdtgroup_show_options(struct seq_file *seq, struct kernfs_root *kf) 4174 { 4175 if (resctrl_arch_get_cdp_enabled(RDT_RESOURCE_L3)) 4176 seq_puts(seq, ",cdp"); 4177 4178 if (resctrl_arch_get_cdp_enabled(RDT_RESOURCE_L2)) 4179 seq_puts(seq, ",cdpl2"); 4180 4181 if (is_mba_sc(resctrl_arch_get_resource(RDT_RESOURCE_MBA))) 4182 seq_puts(seq, ",mba_MBps"); 4183 4184 if (resctrl_debug) 4185 seq_puts(seq, ",debug"); 4186 4187 return 0; 4188 } 4189 4190 static struct kernfs_syscall_ops rdtgroup_kf_syscall_ops = { 4191 .mkdir = rdtgroup_mkdir, 4192 .rmdir = rdtgroup_rmdir, 4193 .rename = rdtgroup_rename, 4194 .show_options = rdtgroup_show_options, 4195 }; 4196 4197 static int rdtgroup_setup_root(struct rdt_fs_context *ctx) 4198 { 4199 rdt_root = kernfs_create_root(&rdtgroup_kf_syscall_ops, 4200 KERNFS_ROOT_CREATE_DEACTIVATED | 4201 KERNFS_ROOT_EXTRA_OPEN_PERM_CHECK, 4202 &rdtgroup_default); 4203 if (IS_ERR(rdt_root)) 4204 return PTR_ERR(rdt_root); 4205 4206 ctx->kfc.root = rdt_root; 4207 rdtgroup_default.kn = kernfs_root_to_node(rdt_root); 4208 4209 return 0; 4210 } 4211 4212 static void rdtgroup_destroy_root(void) 4213 { 4214 lockdep_assert_held(&rdtgroup_mutex); 4215 4216 kernfs_destroy_root(rdt_root); 4217 rdtgroup_default.kn = NULL; 4218 } 4219 4220 static void rdtgroup_setup_default(void) 4221 { 4222 mutex_lock(&rdtgroup_mutex); 4223 4224 rdtgroup_default.closid = RESCTRL_RESERVED_CLOSID; 4225 rdtgroup_default.mon.rmid = RESCTRL_RESERVED_RMID; 4226 rdtgroup_default.type = RDTCTRL_GROUP; 4227 INIT_LIST_HEAD(&rdtgroup_default.mon.crdtgrp_list); 4228 4229 list_add(&rdtgroup_default.rdtgroup_list, &rdt_all_groups); 4230 4231 mutex_unlock(&rdtgroup_mutex); 4232 } 4233 4234 static void domain_destroy_mon_state(struct rdt_mon_domain *d) 4235 { 4236 int idx; 4237 4238 kfree(d->cntr_cfg); 4239 bitmap_free(d->rmid_busy_llc); 4240 for_each_mbm_idx(idx) { 4241 kfree(d->mbm_states[idx]); 4242 d->mbm_states[idx] = NULL; 4243 } 4244 } 4245 4246 void resctrl_offline_ctrl_domain(struct rdt_resource *r, struct rdt_ctrl_domain *d) 4247 { 4248 mutex_lock(&rdtgroup_mutex); 4249 4250 if (supports_mba_mbps() && r->rid == RDT_RESOURCE_MBA) 4251 mba_sc_domain_destroy(r, d); 4252 4253 mutex_unlock(&rdtgroup_mutex); 4254 } 4255 4256 void resctrl_offline_mon_domain(struct rdt_resource *r, struct rdt_mon_domain *d) 4257 { 4258 mutex_lock(&rdtgroup_mutex); 4259 4260 /* 4261 * If resctrl is mounted, remove all the 4262 * per domain monitor data directories. 4263 */ 4264 if (resctrl_mounted && resctrl_arch_mon_capable()) 4265 rmdir_mondata_subdir_allrdtgrp(r, d); 4266 4267 if (resctrl_is_mbm_enabled()) 4268 cancel_delayed_work(&d->mbm_over); 4269 if (resctrl_is_mon_event_enabled(QOS_L3_OCCUP_EVENT_ID) && has_busy_rmid(d)) { 4270 /* 4271 * When a package is going down, forcefully 4272 * decrement rmid->ebusy. There is no way to know 4273 * that the L3 was flushed and hence may lead to 4274 * incorrect counts in rare scenarios, but leaving 4275 * the RMID as busy creates RMID leaks if the 4276 * package never comes back. 4277 */ 4278 __check_limbo(d, true); 4279 cancel_delayed_work(&d->cqm_limbo); 4280 } 4281 4282 domain_destroy_mon_state(d); 4283 4284 mutex_unlock(&rdtgroup_mutex); 4285 } 4286 4287 /** 4288 * domain_setup_mon_state() - Initialise domain monitoring structures. 4289 * @r: The resource for the newly online domain. 4290 * @d: The newly online domain. 4291 * 4292 * Allocate monitor resources that belong to this domain. 4293 * Called when the first CPU of a domain comes online, regardless of whether 4294 * the filesystem is mounted. 4295 * During boot this may be called before global allocations have been made by 4296 * resctrl_mon_resource_init(). 4297 * 4298 * Returns 0 for success, or -ENOMEM. 4299 */ 4300 static int domain_setup_mon_state(struct rdt_resource *r, struct rdt_mon_domain *d) 4301 { 4302 u32 idx_limit = resctrl_arch_system_num_rmid_idx(); 4303 size_t tsize = sizeof(*d->mbm_states[0]); 4304 enum resctrl_event_id eventid; 4305 int idx; 4306 4307 if (resctrl_is_mon_event_enabled(QOS_L3_OCCUP_EVENT_ID)) { 4308 d->rmid_busy_llc = bitmap_zalloc(idx_limit, GFP_KERNEL); 4309 if (!d->rmid_busy_llc) 4310 return -ENOMEM; 4311 } 4312 4313 for_each_mbm_event_id(eventid) { 4314 if (!resctrl_is_mon_event_enabled(eventid)) 4315 continue; 4316 idx = MBM_STATE_IDX(eventid); 4317 d->mbm_states[idx] = kcalloc(idx_limit, tsize, GFP_KERNEL); 4318 if (!d->mbm_states[idx]) 4319 goto cleanup; 4320 } 4321 4322 if (resctrl_is_mbm_enabled() && r->mon.mbm_cntr_assignable) { 4323 tsize = sizeof(*d->cntr_cfg); 4324 d->cntr_cfg = kcalloc(r->mon.num_mbm_cntrs, tsize, GFP_KERNEL); 4325 if (!d->cntr_cfg) 4326 goto cleanup; 4327 } 4328 4329 return 0; 4330 cleanup: 4331 bitmap_free(d->rmid_busy_llc); 4332 for_each_mbm_idx(idx) { 4333 kfree(d->mbm_states[idx]); 4334 d->mbm_states[idx] = NULL; 4335 } 4336 4337 return -ENOMEM; 4338 } 4339 4340 int resctrl_online_ctrl_domain(struct rdt_resource *r, struct rdt_ctrl_domain *d) 4341 { 4342 int err = 0; 4343 4344 mutex_lock(&rdtgroup_mutex); 4345 4346 if (supports_mba_mbps() && r->rid == RDT_RESOURCE_MBA) { 4347 /* RDT_RESOURCE_MBA is never mon_capable */ 4348 err = mba_sc_domain_allocate(r, d); 4349 } 4350 4351 mutex_unlock(&rdtgroup_mutex); 4352 4353 return err; 4354 } 4355 4356 int resctrl_online_mon_domain(struct rdt_resource *r, struct rdt_mon_domain *d) 4357 { 4358 int err; 4359 4360 mutex_lock(&rdtgroup_mutex); 4361 4362 err = domain_setup_mon_state(r, d); 4363 if (err) 4364 goto out_unlock; 4365 4366 if (resctrl_is_mbm_enabled()) { 4367 INIT_DELAYED_WORK(&d->mbm_over, mbm_handle_overflow); 4368 mbm_setup_overflow_handler(d, MBM_OVERFLOW_INTERVAL, 4369 RESCTRL_PICK_ANY_CPU); 4370 } 4371 4372 if (resctrl_is_mon_event_enabled(QOS_L3_OCCUP_EVENT_ID)) 4373 INIT_DELAYED_WORK(&d->cqm_limbo, cqm_handle_limbo); 4374 4375 /* 4376 * If the filesystem is not mounted then only the default resource group 4377 * exists. Creation of its directories is deferred until mount time 4378 * by rdt_get_tree() calling mkdir_mondata_all(). 4379 * If resctrl is mounted, add per domain monitor data directories. 4380 */ 4381 if (resctrl_mounted && resctrl_arch_mon_capable()) 4382 mkdir_mondata_subdir_allrdtgrp(r, d); 4383 4384 out_unlock: 4385 mutex_unlock(&rdtgroup_mutex); 4386 4387 return err; 4388 } 4389 4390 void resctrl_online_cpu(unsigned int cpu) 4391 { 4392 mutex_lock(&rdtgroup_mutex); 4393 /* The CPU is set in default rdtgroup after online. */ 4394 cpumask_set_cpu(cpu, &rdtgroup_default.cpu_mask); 4395 mutex_unlock(&rdtgroup_mutex); 4396 } 4397 4398 static void clear_childcpus(struct rdtgroup *r, unsigned int cpu) 4399 { 4400 struct rdtgroup *cr; 4401 4402 list_for_each_entry(cr, &r->mon.crdtgrp_list, mon.crdtgrp_list) { 4403 if (cpumask_test_and_clear_cpu(cpu, &cr->cpu_mask)) 4404 break; 4405 } 4406 } 4407 4408 static struct rdt_mon_domain *get_mon_domain_from_cpu(int cpu, 4409 struct rdt_resource *r) 4410 { 4411 struct rdt_mon_domain *d; 4412 4413 lockdep_assert_cpus_held(); 4414 4415 list_for_each_entry(d, &r->mon_domains, hdr.list) { 4416 /* Find the domain that contains this CPU */ 4417 if (cpumask_test_cpu(cpu, &d->hdr.cpu_mask)) 4418 return d; 4419 } 4420 4421 return NULL; 4422 } 4423 4424 void resctrl_offline_cpu(unsigned int cpu) 4425 { 4426 struct rdt_resource *l3 = resctrl_arch_get_resource(RDT_RESOURCE_L3); 4427 struct rdt_mon_domain *d; 4428 struct rdtgroup *rdtgrp; 4429 4430 mutex_lock(&rdtgroup_mutex); 4431 list_for_each_entry(rdtgrp, &rdt_all_groups, rdtgroup_list) { 4432 if (cpumask_test_and_clear_cpu(cpu, &rdtgrp->cpu_mask)) { 4433 clear_childcpus(rdtgrp, cpu); 4434 break; 4435 } 4436 } 4437 4438 if (!l3->mon_capable) 4439 goto out_unlock; 4440 4441 d = get_mon_domain_from_cpu(cpu, l3); 4442 if (d) { 4443 if (resctrl_is_mbm_enabled() && cpu == d->mbm_work_cpu) { 4444 cancel_delayed_work(&d->mbm_over); 4445 mbm_setup_overflow_handler(d, 0, cpu); 4446 } 4447 if (resctrl_is_mon_event_enabled(QOS_L3_OCCUP_EVENT_ID) && 4448 cpu == d->cqm_work_cpu && has_busy_rmid(d)) { 4449 cancel_delayed_work(&d->cqm_limbo); 4450 cqm_setup_limbo_handler(d, 0, cpu); 4451 } 4452 } 4453 4454 out_unlock: 4455 mutex_unlock(&rdtgroup_mutex); 4456 } 4457 4458 /* 4459 * resctrl_init - resctrl filesystem initialization 4460 * 4461 * Setup resctrl file system including set up root, create mount point, 4462 * register resctrl filesystem, and initialize files under root directory. 4463 * 4464 * Return: 0 on success or -errno 4465 */ 4466 int resctrl_init(void) 4467 { 4468 int ret = 0; 4469 4470 seq_buf_init(&last_cmd_status, last_cmd_status_buf, 4471 sizeof(last_cmd_status_buf)); 4472 4473 rdtgroup_setup_default(); 4474 4475 thread_throttle_mode_init(); 4476 4477 io_alloc_init(); 4478 4479 ret = resctrl_mon_resource_init(); 4480 if (ret) 4481 return ret; 4482 4483 ret = sysfs_create_mount_point(fs_kobj, "resctrl"); 4484 if (ret) { 4485 resctrl_mon_resource_exit(); 4486 return ret; 4487 } 4488 4489 ret = register_filesystem(&rdt_fs_type); 4490 if (ret) 4491 goto cleanup_mountpoint; 4492 4493 /* 4494 * Adding the resctrl debugfs directory here may not be ideal since 4495 * it would let the resctrl debugfs directory appear on the debugfs 4496 * filesystem before the resctrl filesystem is mounted. 4497 * It may also be ok since that would enable debugging of RDT before 4498 * resctrl is mounted. 4499 * The reason why the debugfs directory is created here and not in 4500 * rdt_get_tree() is because rdt_get_tree() takes rdtgroup_mutex and 4501 * during the debugfs directory creation also &sb->s_type->i_mutex_key 4502 * (the lockdep class of inode->i_rwsem). Other filesystem 4503 * interactions (eg. SyS_getdents) have the lock ordering: 4504 * &sb->s_type->i_mutex_key --> &mm->mmap_lock 4505 * During mmap(), called with &mm->mmap_lock, the rdtgroup_mutex 4506 * is taken, thus creating dependency: 4507 * &mm->mmap_lock --> rdtgroup_mutex for the latter that can cause 4508 * issues considering the other two lock dependencies. 4509 * By creating the debugfs directory here we avoid a dependency 4510 * that may cause deadlock (even though file operations cannot 4511 * occur until the filesystem is mounted, but I do not know how to 4512 * tell lockdep that). 4513 */ 4514 debugfs_resctrl = debugfs_create_dir("resctrl", NULL); 4515 4516 return 0; 4517 4518 cleanup_mountpoint: 4519 sysfs_remove_mount_point(fs_kobj, "resctrl"); 4520 resctrl_mon_resource_exit(); 4521 4522 return ret; 4523 } 4524 4525 static bool resctrl_online_domains_exist(void) 4526 { 4527 struct rdt_resource *r; 4528 4529 /* 4530 * Only walk capable resources to allow resctrl_arch_get_resource() 4531 * to return dummy 'not capable' resources. 4532 */ 4533 for_each_alloc_capable_rdt_resource(r) { 4534 if (!list_empty(&r->ctrl_domains)) 4535 return true; 4536 } 4537 4538 for_each_mon_capable_rdt_resource(r) { 4539 if (!list_empty(&r->mon_domains)) 4540 return true; 4541 } 4542 4543 return false; 4544 } 4545 4546 /** 4547 * resctrl_exit() - Remove the resctrl filesystem and free resources. 4548 * 4549 * Called by the architecture code in response to a fatal error. 4550 * Removes resctrl files and structures from kernfs to prevent further 4551 * configuration. 4552 * 4553 * When called by the architecture code, all CPUs and resctrl domains must be 4554 * offline. This ensures the limbo and overflow handlers are not scheduled to 4555 * run, meaning the data structures they access can be freed by 4556 * resctrl_mon_resource_exit(). 4557 * 4558 * After resctrl_exit() returns, the architecture code should return an 4559 * error from all resctrl_arch_ functions that can do this. 4560 * resctrl_arch_get_resource() must continue to return struct rdt_resources 4561 * with the correct rid field to ensure the filesystem can be unmounted. 4562 */ 4563 void resctrl_exit(void) 4564 { 4565 cpus_read_lock(); 4566 WARN_ON_ONCE(resctrl_online_domains_exist()); 4567 4568 mutex_lock(&rdtgroup_mutex); 4569 resctrl_fs_teardown(); 4570 mutex_unlock(&rdtgroup_mutex); 4571 4572 cpus_read_unlock(); 4573 4574 debugfs_remove_recursive(debugfs_resctrl); 4575 debugfs_resctrl = NULL; 4576 unregister_filesystem(&rdt_fs_type); 4577 4578 /* 4579 * Do not remove the sysfs mount point added by resctrl_init() so that 4580 * it can be used to umount resctrl. 4581 */ 4582 4583 resctrl_mon_resource_exit(); 4584 } 4585