1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Resource Director Technology(RDT) 4 * - Monitoring code 5 * 6 * Copyright (C) 2017 Intel Corporation 7 * 8 * Author: 9 * Vikas Shivappa <vikas.shivappa@intel.com> 10 * 11 * This replaces the cqm.c based on perf but we reuse a lot of 12 * code and datastructures originally from Peter Zijlstra and Matt Fleming. 13 * 14 * More information about RDT be found in the Intel (R) x86 Architecture 15 * Software Developer Manual June 2016, volume 3, section 17.17. 16 */ 17 18 #define pr_fmt(fmt) "resctrl: " fmt 19 20 #include <linux/cpu.h> 21 #include <linux/resctrl.h> 22 #include <linux/sizes.h> 23 #include <linux/slab.h> 24 25 #include "internal.h" 26 27 #define CREATE_TRACE_POINTS 28 29 #include "monitor_trace.h" 30 31 /** 32 * struct rmid_entry - dirty tracking for all RMID. 33 * @closid: The CLOSID for this entry. 34 * @rmid: The RMID for this entry. 35 * @busy: The number of domains with cached data using this RMID. 36 * @list: Member of the rmid_free_lru list when busy == 0. 37 * 38 * Depending on the architecture the correct monitor is accessed using 39 * both @closid and @rmid, or @rmid only. 40 * 41 * Take the rdtgroup_mutex when accessing. 42 */ 43 struct rmid_entry { 44 u32 closid; 45 u32 rmid; 46 int busy; 47 struct list_head list; 48 }; 49 50 /* 51 * @rmid_free_lru - A least recently used list of free RMIDs 52 * These RMIDs are guaranteed to have an occupancy less than the 53 * threshold occupancy 54 */ 55 static LIST_HEAD(rmid_free_lru); 56 57 /* 58 * @closid_num_dirty_rmid The number of dirty RMID each CLOSID has. 59 * Only allocated when CONFIG_RESCTRL_RMID_DEPENDS_ON_CLOSID is defined. 60 * Indexed by CLOSID. Protected by rdtgroup_mutex. 61 */ 62 static u32 *closid_num_dirty_rmid; 63 64 /* 65 * @rmid_limbo_count - count of currently unused but (potentially) 66 * dirty RMIDs. 67 * This counts RMIDs that no one is currently using but that 68 * may have a occupancy value > resctrl_rmid_realloc_threshold. User can 69 * change the threshold occupancy value. 70 */ 71 static unsigned int rmid_limbo_count; 72 73 /* 74 * @rmid_entry - The entry in the limbo and free lists. 75 */ 76 static struct rmid_entry *rmid_ptrs; 77 78 /* 79 * This is the threshold cache occupancy in bytes at which we will consider an 80 * RMID available for re-allocation. 81 */ 82 unsigned int resctrl_rmid_realloc_threshold; 83 84 /* 85 * This is the maximum value for the reallocation threshold, in bytes. 86 */ 87 unsigned int resctrl_rmid_realloc_limit; 88 89 /* 90 * x86 and arm64 differ in their handling of monitoring. 91 * x86's RMID are independent numbers, there is only one source of traffic 92 * with an RMID value of '1'. 93 * arm64's PMG extends the PARTID/CLOSID space, there are multiple sources of 94 * traffic with a PMG value of '1', one for each CLOSID, meaning the RMID 95 * value is no longer unique. 96 * To account for this, resctrl uses an index. On x86 this is just the RMID, 97 * on arm64 it encodes the CLOSID and RMID. This gives a unique number. 98 * 99 * The domain's rmid_busy_llc and rmid_ptrs[] are sized by index. The arch code 100 * must accept an attempt to read every index. 101 */ 102 static inline struct rmid_entry *__rmid_entry(u32 idx) 103 { 104 struct rmid_entry *entry; 105 u32 closid, rmid; 106 107 entry = &rmid_ptrs[idx]; 108 resctrl_arch_rmid_idx_decode(idx, &closid, &rmid); 109 110 WARN_ON_ONCE(entry->closid != closid); 111 WARN_ON_ONCE(entry->rmid != rmid); 112 113 return entry; 114 } 115 116 static void limbo_release_entry(struct rmid_entry *entry) 117 { 118 lockdep_assert_held(&rdtgroup_mutex); 119 120 rmid_limbo_count--; 121 list_add_tail(&entry->list, &rmid_free_lru); 122 123 if (IS_ENABLED(CONFIG_RESCTRL_RMID_DEPENDS_ON_CLOSID)) 124 closid_num_dirty_rmid[entry->closid]--; 125 } 126 127 /* 128 * Check the RMIDs that are marked as busy for this domain. If the 129 * reported LLC occupancy is below the threshold clear the busy bit and 130 * decrement the count. If the busy count gets to zero on an RMID, we 131 * free the RMID 132 */ 133 void __check_limbo(struct rdt_mon_domain *d, bool force_free) 134 { 135 struct rdt_resource *r = resctrl_arch_get_resource(RDT_RESOURCE_L3); 136 u32 idx_limit = resctrl_arch_system_num_rmid_idx(); 137 struct rmid_entry *entry; 138 u32 idx, cur_idx = 1; 139 void *arch_mon_ctx; 140 bool rmid_dirty; 141 u64 val = 0; 142 143 arch_mon_ctx = resctrl_arch_mon_ctx_alloc(r, QOS_L3_OCCUP_EVENT_ID); 144 if (IS_ERR(arch_mon_ctx)) { 145 pr_warn_ratelimited("Failed to allocate monitor context: %ld", 146 PTR_ERR(arch_mon_ctx)); 147 return; 148 } 149 150 /* 151 * Skip RMID 0 and start from RMID 1 and check all the RMIDs that 152 * are marked as busy for occupancy < threshold. If the occupancy 153 * is less than the threshold decrement the busy counter of the 154 * RMID and move it to the free list when the counter reaches 0. 155 */ 156 for (;;) { 157 idx = find_next_bit(d->rmid_busy_llc, idx_limit, cur_idx); 158 if (idx >= idx_limit) 159 break; 160 161 entry = __rmid_entry(idx); 162 if (resctrl_arch_rmid_read(r, d, entry->closid, entry->rmid, 163 QOS_L3_OCCUP_EVENT_ID, &val, 164 arch_mon_ctx)) { 165 rmid_dirty = true; 166 } else { 167 rmid_dirty = (val >= resctrl_rmid_realloc_threshold); 168 169 /* 170 * x86's CLOSID and RMID are independent numbers, so the entry's 171 * CLOSID is an empty CLOSID (X86_RESCTRL_EMPTY_CLOSID). On Arm the 172 * RMID (PMG) extends the CLOSID (PARTID) space with bits that aren't 173 * used to select the configuration. It is thus necessary to track both 174 * CLOSID and RMID because there may be dependencies between them 175 * on some architectures. 176 */ 177 trace_mon_llc_occupancy_limbo(entry->closid, entry->rmid, d->hdr.id, val); 178 } 179 180 if (force_free || !rmid_dirty) { 181 clear_bit(idx, d->rmid_busy_llc); 182 if (!--entry->busy) 183 limbo_release_entry(entry); 184 } 185 cur_idx = idx + 1; 186 } 187 188 resctrl_arch_mon_ctx_free(r, QOS_L3_OCCUP_EVENT_ID, arch_mon_ctx); 189 } 190 191 bool has_busy_rmid(struct rdt_mon_domain *d) 192 { 193 u32 idx_limit = resctrl_arch_system_num_rmid_idx(); 194 195 return find_first_bit(d->rmid_busy_llc, idx_limit) != idx_limit; 196 } 197 198 static struct rmid_entry *resctrl_find_free_rmid(u32 closid) 199 { 200 struct rmid_entry *itr; 201 u32 itr_idx, cmp_idx; 202 203 if (list_empty(&rmid_free_lru)) 204 return rmid_limbo_count ? ERR_PTR(-EBUSY) : ERR_PTR(-ENOSPC); 205 206 list_for_each_entry(itr, &rmid_free_lru, list) { 207 /* 208 * Get the index of this free RMID, and the index it would need 209 * to be if it were used with this CLOSID. 210 * If the CLOSID is irrelevant on this architecture, the two 211 * index values are always the same on every entry and thus the 212 * very first entry will be returned. 213 */ 214 itr_idx = resctrl_arch_rmid_idx_encode(itr->closid, itr->rmid); 215 cmp_idx = resctrl_arch_rmid_idx_encode(closid, itr->rmid); 216 217 if (itr_idx == cmp_idx) 218 return itr; 219 } 220 221 return ERR_PTR(-ENOSPC); 222 } 223 224 /** 225 * resctrl_find_cleanest_closid() - Find a CLOSID where all the associated 226 * RMID are clean, or the CLOSID that has 227 * the most clean RMID. 228 * 229 * MPAM's equivalent of RMID are per-CLOSID, meaning a freshly allocated CLOSID 230 * may not be able to allocate clean RMID. To avoid this the allocator will 231 * choose the CLOSID with the most clean RMID. 232 * 233 * When the CLOSID and RMID are independent numbers, the first free CLOSID will 234 * be returned. 235 */ 236 int resctrl_find_cleanest_closid(void) 237 { 238 u32 cleanest_closid = ~0; 239 int i = 0; 240 241 lockdep_assert_held(&rdtgroup_mutex); 242 243 if (!IS_ENABLED(CONFIG_RESCTRL_RMID_DEPENDS_ON_CLOSID)) 244 return -EIO; 245 246 for (i = 0; i < closids_supported(); i++) { 247 int num_dirty; 248 249 if (closid_allocated(i)) 250 continue; 251 252 num_dirty = closid_num_dirty_rmid[i]; 253 if (num_dirty == 0) 254 return i; 255 256 if (cleanest_closid == ~0) 257 cleanest_closid = i; 258 259 if (num_dirty < closid_num_dirty_rmid[cleanest_closid]) 260 cleanest_closid = i; 261 } 262 263 if (cleanest_closid == ~0) 264 return -ENOSPC; 265 266 return cleanest_closid; 267 } 268 269 /* 270 * For MPAM the RMID value is not unique, and has to be considered with 271 * the CLOSID. The (CLOSID, RMID) pair is allocated on all domains, which 272 * allows all domains to be managed by a single free list. 273 * Each domain also has a rmid_busy_llc to reduce the work of the limbo handler. 274 */ 275 int alloc_rmid(u32 closid) 276 { 277 struct rmid_entry *entry; 278 279 lockdep_assert_held(&rdtgroup_mutex); 280 281 entry = resctrl_find_free_rmid(closid); 282 if (IS_ERR(entry)) 283 return PTR_ERR(entry); 284 285 list_del(&entry->list); 286 return entry->rmid; 287 } 288 289 static void add_rmid_to_limbo(struct rmid_entry *entry) 290 { 291 struct rdt_resource *r = resctrl_arch_get_resource(RDT_RESOURCE_L3); 292 struct rdt_mon_domain *d; 293 u32 idx; 294 295 lockdep_assert_held(&rdtgroup_mutex); 296 297 /* Walking r->domains, ensure it can't race with cpuhp */ 298 lockdep_assert_cpus_held(); 299 300 idx = resctrl_arch_rmid_idx_encode(entry->closid, entry->rmid); 301 302 entry->busy = 0; 303 list_for_each_entry(d, &r->mon_domains, hdr.list) { 304 /* 305 * For the first limbo RMID in the domain, 306 * setup up the limbo worker. 307 */ 308 if (!has_busy_rmid(d)) 309 cqm_setup_limbo_handler(d, CQM_LIMBOCHECK_INTERVAL, 310 RESCTRL_PICK_ANY_CPU); 311 set_bit(idx, d->rmid_busy_llc); 312 entry->busy++; 313 } 314 315 rmid_limbo_count++; 316 if (IS_ENABLED(CONFIG_RESCTRL_RMID_DEPENDS_ON_CLOSID)) 317 closid_num_dirty_rmid[entry->closid]++; 318 } 319 320 void free_rmid(u32 closid, u32 rmid) 321 { 322 u32 idx = resctrl_arch_rmid_idx_encode(closid, rmid); 323 struct rmid_entry *entry; 324 325 lockdep_assert_held(&rdtgroup_mutex); 326 327 /* 328 * Do not allow the default rmid to be free'd. Comparing by index 329 * allows architectures that ignore the closid parameter to avoid an 330 * unnecessary check. 331 */ 332 if (!resctrl_arch_mon_capable() || 333 idx == resctrl_arch_rmid_idx_encode(RESCTRL_RESERVED_CLOSID, 334 RESCTRL_RESERVED_RMID)) 335 return; 336 337 entry = __rmid_entry(idx); 338 339 if (resctrl_is_mon_event_enabled(QOS_L3_OCCUP_EVENT_ID)) 340 add_rmid_to_limbo(entry); 341 else 342 list_add_tail(&entry->list, &rmid_free_lru); 343 } 344 345 static struct mbm_state *get_mbm_state(struct rdt_mon_domain *d, u32 closid, 346 u32 rmid, enum resctrl_event_id evtid) 347 { 348 u32 idx = resctrl_arch_rmid_idx_encode(closid, rmid); 349 struct mbm_state *state; 350 351 if (!resctrl_is_mbm_event(evtid)) 352 return NULL; 353 354 state = d->mbm_states[MBM_STATE_IDX(evtid)]; 355 356 return state ? &state[idx] : NULL; 357 } 358 359 /* 360 * mbm_cntr_get() - Return the counter ID for the matching @evtid and @rdtgrp. 361 * 362 * Return: 363 * Valid counter ID on success, or -ENOENT on failure. 364 */ 365 static int mbm_cntr_get(struct rdt_resource *r, struct rdt_mon_domain *d, 366 struct rdtgroup *rdtgrp, enum resctrl_event_id evtid) 367 { 368 int cntr_id; 369 370 if (!r->mon.mbm_cntr_assignable) 371 return -ENOENT; 372 373 if (!resctrl_is_mbm_event(evtid)) 374 return -ENOENT; 375 376 for (cntr_id = 0; cntr_id < r->mon.num_mbm_cntrs; cntr_id++) { 377 if (d->cntr_cfg[cntr_id].rdtgrp == rdtgrp && 378 d->cntr_cfg[cntr_id].evtid == evtid) 379 return cntr_id; 380 } 381 382 return -ENOENT; 383 } 384 385 /* 386 * mbm_cntr_alloc() - Initialize and return a new counter ID in the domain @d. 387 * Caller must ensure that the specified event is not assigned already. 388 * 389 * Return: 390 * Valid counter ID on success, or -ENOSPC on failure. 391 */ 392 static int mbm_cntr_alloc(struct rdt_resource *r, struct rdt_mon_domain *d, 393 struct rdtgroup *rdtgrp, enum resctrl_event_id evtid) 394 { 395 int cntr_id; 396 397 for (cntr_id = 0; cntr_id < r->mon.num_mbm_cntrs; cntr_id++) { 398 if (!d->cntr_cfg[cntr_id].rdtgrp) { 399 d->cntr_cfg[cntr_id].rdtgrp = rdtgrp; 400 d->cntr_cfg[cntr_id].evtid = evtid; 401 return cntr_id; 402 } 403 } 404 405 return -ENOSPC; 406 } 407 408 /* 409 * mbm_cntr_free() - Clear the counter ID configuration details in the domain @d. 410 */ 411 static void mbm_cntr_free(struct rdt_mon_domain *d, int cntr_id) 412 { 413 memset(&d->cntr_cfg[cntr_id], 0, sizeof(*d->cntr_cfg)); 414 } 415 416 static int __mon_event_count(struct rdtgroup *rdtgrp, struct rmid_read *rr) 417 { 418 int cpu = smp_processor_id(); 419 u32 closid = rdtgrp->closid; 420 u32 rmid = rdtgrp->mon.rmid; 421 struct rdt_mon_domain *d; 422 int cntr_id = -ENOENT; 423 struct mbm_state *m; 424 int err, ret; 425 u64 tval = 0; 426 427 if (rr->is_mbm_cntr) { 428 cntr_id = mbm_cntr_get(rr->r, rr->d, rdtgrp, rr->evtid); 429 if (cntr_id < 0) { 430 rr->err = -ENOENT; 431 return -EINVAL; 432 } 433 } 434 435 if (rr->first) { 436 if (rr->is_mbm_cntr) 437 resctrl_arch_reset_cntr(rr->r, rr->d, closid, rmid, cntr_id, rr->evtid); 438 else 439 resctrl_arch_reset_rmid(rr->r, rr->d, closid, rmid, rr->evtid); 440 m = get_mbm_state(rr->d, closid, rmid, rr->evtid); 441 if (m) 442 memset(m, 0, sizeof(struct mbm_state)); 443 return 0; 444 } 445 446 if (rr->d) { 447 /* Reading a single domain, must be on a CPU in that domain. */ 448 if (!cpumask_test_cpu(cpu, &rr->d->hdr.cpu_mask)) 449 return -EINVAL; 450 if (rr->is_mbm_cntr) 451 rr->err = resctrl_arch_cntr_read(rr->r, rr->d, closid, rmid, cntr_id, 452 rr->evtid, &tval); 453 else 454 rr->err = resctrl_arch_rmid_read(rr->r, rr->d, closid, rmid, 455 rr->evtid, &tval, rr->arch_mon_ctx); 456 if (rr->err) 457 return rr->err; 458 459 rr->val += tval; 460 461 return 0; 462 } 463 464 /* Summing domains that share a cache, must be on a CPU for that cache. */ 465 if (!cpumask_test_cpu(cpu, &rr->ci->shared_cpu_map)) 466 return -EINVAL; 467 468 /* 469 * Legacy files must report the sum of an event across all 470 * domains that share the same L3 cache instance. 471 * Report success if a read from any domain succeeds, -EINVAL 472 * (translated to "Unavailable" for user space) if reading from 473 * all domains fail for any reason. 474 */ 475 ret = -EINVAL; 476 list_for_each_entry(d, &rr->r->mon_domains, hdr.list) { 477 if (d->ci_id != rr->ci->id) 478 continue; 479 if (rr->is_mbm_cntr) 480 err = resctrl_arch_cntr_read(rr->r, d, closid, rmid, cntr_id, 481 rr->evtid, &tval); 482 else 483 err = resctrl_arch_rmid_read(rr->r, d, closid, rmid, 484 rr->evtid, &tval, rr->arch_mon_ctx); 485 if (!err) { 486 rr->val += tval; 487 ret = 0; 488 } 489 } 490 491 if (ret) 492 rr->err = ret; 493 494 return ret; 495 } 496 497 /* 498 * mbm_bw_count() - Update bw count from values previously read by 499 * __mon_event_count(). 500 * @rdtgrp: resctrl group associated with the CLOSID and RMID to identify 501 * the cached mbm_state. 502 * @rr: The struct rmid_read populated by __mon_event_count(). 503 * 504 * Supporting function to calculate the memory bandwidth 505 * and delta bandwidth in MBps. The chunks value previously read by 506 * __mon_event_count() is compared with the chunks value from the previous 507 * invocation. This must be called once per second to maintain values in MBps. 508 */ 509 static void mbm_bw_count(struct rdtgroup *rdtgrp, struct rmid_read *rr) 510 { 511 u64 cur_bw, bytes, cur_bytes; 512 u32 closid = rdtgrp->closid; 513 u32 rmid = rdtgrp->mon.rmid; 514 struct mbm_state *m; 515 516 m = get_mbm_state(rr->d, closid, rmid, rr->evtid); 517 if (WARN_ON_ONCE(!m)) 518 return; 519 520 cur_bytes = rr->val; 521 bytes = cur_bytes - m->prev_bw_bytes; 522 m->prev_bw_bytes = cur_bytes; 523 524 cur_bw = bytes / SZ_1M; 525 526 m->prev_bw = cur_bw; 527 } 528 529 /* 530 * This is scheduled by mon_event_read() to read the CQM/MBM counters 531 * on a domain. 532 */ 533 void mon_event_count(void *info) 534 { 535 struct rdtgroup *rdtgrp, *entry; 536 struct rmid_read *rr = info; 537 struct list_head *head; 538 int ret; 539 540 rdtgrp = rr->rgrp; 541 542 ret = __mon_event_count(rdtgrp, rr); 543 544 /* 545 * For Ctrl groups read data from child monitor groups and 546 * add them together. Count events which are read successfully. 547 * Discard the rmid_read's reporting errors. 548 */ 549 head = &rdtgrp->mon.crdtgrp_list; 550 551 if (rdtgrp->type == RDTCTRL_GROUP) { 552 list_for_each_entry(entry, head, mon.crdtgrp_list) { 553 if (__mon_event_count(entry, rr) == 0) 554 ret = 0; 555 } 556 } 557 558 /* 559 * __mon_event_count() calls for newly created monitor groups may 560 * report -EINVAL/Unavailable if the monitor hasn't seen any traffic. 561 * Discard error if any of the monitor event reads succeeded. 562 */ 563 if (ret == 0) 564 rr->err = 0; 565 } 566 567 static struct rdt_ctrl_domain *get_ctrl_domain_from_cpu(int cpu, 568 struct rdt_resource *r) 569 { 570 struct rdt_ctrl_domain *d; 571 572 lockdep_assert_cpus_held(); 573 574 list_for_each_entry(d, &r->ctrl_domains, hdr.list) { 575 /* Find the domain that contains this CPU */ 576 if (cpumask_test_cpu(cpu, &d->hdr.cpu_mask)) 577 return d; 578 } 579 580 return NULL; 581 } 582 583 /* 584 * Feedback loop for MBA software controller (mba_sc) 585 * 586 * mba_sc is a feedback loop where we periodically read MBM counters and 587 * adjust the bandwidth percentage values via the IA32_MBA_THRTL_MSRs so 588 * that: 589 * 590 * current bandwidth(cur_bw) < user specified bandwidth(user_bw) 591 * 592 * This uses the MBM counters to measure the bandwidth and MBA throttle 593 * MSRs to control the bandwidth for a particular rdtgrp. It builds on the 594 * fact that resctrl rdtgroups have both monitoring and control. 595 * 596 * The frequency of the checks is 1s and we just tag along the MBM overflow 597 * timer. Having 1s interval makes the calculation of bandwidth simpler. 598 * 599 * Although MBA's goal is to restrict the bandwidth to a maximum, there may 600 * be a need to increase the bandwidth to avoid unnecessarily restricting 601 * the L2 <-> L3 traffic. 602 * 603 * Since MBA controls the L2 external bandwidth where as MBM measures the 604 * L3 external bandwidth the following sequence could lead to such a 605 * situation. 606 * 607 * Consider an rdtgroup which had high L3 <-> memory traffic in initial 608 * phases -> mba_sc kicks in and reduced bandwidth percentage values -> but 609 * after some time rdtgroup has mostly L2 <-> L3 traffic. 610 * 611 * In this case we may restrict the rdtgroup's L2 <-> L3 traffic as its 612 * throttle MSRs already have low percentage values. To avoid 613 * unnecessarily restricting such rdtgroups, we also increase the bandwidth. 614 */ 615 static void update_mba_bw(struct rdtgroup *rgrp, struct rdt_mon_domain *dom_mbm) 616 { 617 u32 closid, rmid, cur_msr_val, new_msr_val; 618 struct mbm_state *pmbm_data, *cmbm_data; 619 struct rdt_ctrl_domain *dom_mba; 620 enum resctrl_event_id evt_id; 621 struct rdt_resource *r_mba; 622 struct list_head *head; 623 struct rdtgroup *entry; 624 u32 cur_bw, user_bw; 625 626 r_mba = resctrl_arch_get_resource(RDT_RESOURCE_MBA); 627 evt_id = rgrp->mba_mbps_event; 628 629 closid = rgrp->closid; 630 rmid = rgrp->mon.rmid; 631 pmbm_data = get_mbm_state(dom_mbm, closid, rmid, evt_id); 632 if (WARN_ON_ONCE(!pmbm_data)) 633 return; 634 635 dom_mba = get_ctrl_domain_from_cpu(smp_processor_id(), r_mba); 636 if (!dom_mba) { 637 pr_warn_once("Failure to get domain for MBA update\n"); 638 return; 639 } 640 641 cur_bw = pmbm_data->prev_bw; 642 user_bw = dom_mba->mbps_val[closid]; 643 644 /* MBA resource doesn't support CDP */ 645 cur_msr_val = resctrl_arch_get_config(r_mba, dom_mba, closid, CDP_NONE); 646 647 /* 648 * For Ctrl groups read data from child monitor groups. 649 */ 650 head = &rgrp->mon.crdtgrp_list; 651 list_for_each_entry(entry, head, mon.crdtgrp_list) { 652 cmbm_data = get_mbm_state(dom_mbm, entry->closid, entry->mon.rmid, evt_id); 653 if (WARN_ON_ONCE(!cmbm_data)) 654 return; 655 cur_bw += cmbm_data->prev_bw; 656 } 657 658 /* 659 * Scale up/down the bandwidth linearly for the ctrl group. The 660 * bandwidth step is the bandwidth granularity specified by the 661 * hardware. 662 * Always increase throttling if current bandwidth is above the 663 * target set by user. 664 * But avoid thrashing up and down on every poll by checking 665 * whether a decrease in throttling is likely to push the group 666 * back over target. E.g. if currently throttling to 30% of bandwidth 667 * on a system with 10% granularity steps, check whether moving to 668 * 40% would go past the limit by multiplying current bandwidth by 669 * "(30 + 10) / 30". 670 */ 671 if (cur_msr_val > r_mba->membw.min_bw && user_bw < cur_bw) { 672 new_msr_val = cur_msr_val - r_mba->membw.bw_gran; 673 } else if (cur_msr_val < MAX_MBA_BW && 674 (user_bw > (cur_bw * (cur_msr_val + r_mba->membw.min_bw) / cur_msr_val))) { 675 new_msr_val = cur_msr_val + r_mba->membw.bw_gran; 676 } else { 677 return; 678 } 679 680 resctrl_arch_update_one(r_mba, dom_mba, closid, CDP_NONE, new_msr_val); 681 } 682 683 static void mbm_update_one_event(struct rdt_resource *r, struct rdt_mon_domain *d, 684 struct rdtgroup *rdtgrp, enum resctrl_event_id evtid) 685 { 686 struct rmid_read rr = {0}; 687 688 rr.r = r; 689 rr.d = d; 690 rr.evtid = evtid; 691 if (resctrl_arch_mbm_cntr_assign_enabled(r)) { 692 rr.is_mbm_cntr = true; 693 } else { 694 rr.arch_mon_ctx = resctrl_arch_mon_ctx_alloc(rr.r, rr.evtid); 695 if (IS_ERR(rr.arch_mon_ctx)) { 696 pr_warn_ratelimited("Failed to allocate monitor context: %ld", 697 PTR_ERR(rr.arch_mon_ctx)); 698 return; 699 } 700 } 701 702 __mon_event_count(rdtgrp, &rr); 703 704 /* 705 * If the software controller is enabled, compute the 706 * bandwidth for this event id. 707 */ 708 if (is_mba_sc(NULL)) 709 mbm_bw_count(rdtgrp, &rr); 710 711 if (rr.arch_mon_ctx) 712 resctrl_arch_mon_ctx_free(rr.r, rr.evtid, rr.arch_mon_ctx); 713 } 714 715 static void mbm_update(struct rdt_resource *r, struct rdt_mon_domain *d, 716 struct rdtgroup *rdtgrp) 717 { 718 /* 719 * This is protected from concurrent reads from user as both 720 * the user and overflow handler hold the global mutex. 721 */ 722 if (resctrl_is_mon_event_enabled(QOS_L3_MBM_TOTAL_EVENT_ID)) 723 mbm_update_one_event(r, d, rdtgrp, QOS_L3_MBM_TOTAL_EVENT_ID); 724 725 if (resctrl_is_mon_event_enabled(QOS_L3_MBM_LOCAL_EVENT_ID)) 726 mbm_update_one_event(r, d, rdtgrp, QOS_L3_MBM_LOCAL_EVENT_ID); 727 } 728 729 /* 730 * Handler to scan the limbo list and move the RMIDs 731 * to free list whose occupancy < threshold_occupancy. 732 */ 733 void cqm_handle_limbo(struct work_struct *work) 734 { 735 unsigned long delay = msecs_to_jiffies(CQM_LIMBOCHECK_INTERVAL); 736 struct rdt_mon_domain *d; 737 738 cpus_read_lock(); 739 mutex_lock(&rdtgroup_mutex); 740 741 d = container_of(work, struct rdt_mon_domain, cqm_limbo.work); 742 743 __check_limbo(d, false); 744 745 if (has_busy_rmid(d)) { 746 d->cqm_work_cpu = cpumask_any_housekeeping(&d->hdr.cpu_mask, 747 RESCTRL_PICK_ANY_CPU); 748 schedule_delayed_work_on(d->cqm_work_cpu, &d->cqm_limbo, 749 delay); 750 } 751 752 mutex_unlock(&rdtgroup_mutex); 753 cpus_read_unlock(); 754 } 755 756 /** 757 * cqm_setup_limbo_handler() - Schedule the limbo handler to run for this 758 * domain. 759 * @dom: The domain the limbo handler should run for. 760 * @delay_ms: How far in the future the handler should run. 761 * @exclude_cpu: Which CPU the handler should not run on, 762 * RESCTRL_PICK_ANY_CPU to pick any CPU. 763 */ 764 void cqm_setup_limbo_handler(struct rdt_mon_domain *dom, unsigned long delay_ms, 765 int exclude_cpu) 766 { 767 unsigned long delay = msecs_to_jiffies(delay_ms); 768 int cpu; 769 770 cpu = cpumask_any_housekeeping(&dom->hdr.cpu_mask, exclude_cpu); 771 dom->cqm_work_cpu = cpu; 772 773 if (cpu < nr_cpu_ids) 774 schedule_delayed_work_on(cpu, &dom->cqm_limbo, delay); 775 } 776 777 void mbm_handle_overflow(struct work_struct *work) 778 { 779 unsigned long delay = msecs_to_jiffies(MBM_OVERFLOW_INTERVAL); 780 struct rdtgroup *prgrp, *crgrp; 781 struct rdt_mon_domain *d; 782 struct list_head *head; 783 struct rdt_resource *r; 784 785 cpus_read_lock(); 786 mutex_lock(&rdtgroup_mutex); 787 788 /* 789 * If the filesystem has been unmounted this work no longer needs to 790 * run. 791 */ 792 if (!resctrl_mounted || !resctrl_arch_mon_capable()) 793 goto out_unlock; 794 795 r = resctrl_arch_get_resource(RDT_RESOURCE_L3); 796 d = container_of(work, struct rdt_mon_domain, mbm_over.work); 797 798 list_for_each_entry(prgrp, &rdt_all_groups, rdtgroup_list) { 799 mbm_update(r, d, prgrp); 800 801 head = &prgrp->mon.crdtgrp_list; 802 list_for_each_entry(crgrp, head, mon.crdtgrp_list) 803 mbm_update(r, d, crgrp); 804 805 if (is_mba_sc(NULL)) 806 update_mba_bw(prgrp, d); 807 } 808 809 /* 810 * Re-check for housekeeping CPUs. This allows the overflow handler to 811 * move off a nohz_full CPU quickly. 812 */ 813 d->mbm_work_cpu = cpumask_any_housekeeping(&d->hdr.cpu_mask, 814 RESCTRL_PICK_ANY_CPU); 815 schedule_delayed_work_on(d->mbm_work_cpu, &d->mbm_over, delay); 816 817 out_unlock: 818 mutex_unlock(&rdtgroup_mutex); 819 cpus_read_unlock(); 820 } 821 822 /** 823 * mbm_setup_overflow_handler() - Schedule the overflow handler to run for this 824 * domain. 825 * @dom: The domain the overflow handler should run for. 826 * @delay_ms: How far in the future the handler should run. 827 * @exclude_cpu: Which CPU the handler should not run on, 828 * RESCTRL_PICK_ANY_CPU to pick any CPU. 829 */ 830 void mbm_setup_overflow_handler(struct rdt_mon_domain *dom, unsigned long delay_ms, 831 int exclude_cpu) 832 { 833 unsigned long delay = msecs_to_jiffies(delay_ms); 834 int cpu; 835 836 /* 837 * When a domain comes online there is no guarantee the filesystem is 838 * mounted. If not, there is no need to catch counter overflow. 839 */ 840 if (!resctrl_mounted || !resctrl_arch_mon_capable()) 841 return; 842 cpu = cpumask_any_housekeeping(&dom->hdr.cpu_mask, exclude_cpu); 843 dom->mbm_work_cpu = cpu; 844 845 if (cpu < nr_cpu_ids) 846 schedule_delayed_work_on(cpu, &dom->mbm_over, delay); 847 } 848 849 static int dom_data_init(struct rdt_resource *r) 850 { 851 u32 idx_limit = resctrl_arch_system_num_rmid_idx(); 852 u32 num_closid = resctrl_arch_get_num_closid(r); 853 struct rmid_entry *entry = NULL; 854 int err = 0, i; 855 u32 idx; 856 857 mutex_lock(&rdtgroup_mutex); 858 if (IS_ENABLED(CONFIG_RESCTRL_RMID_DEPENDS_ON_CLOSID)) { 859 u32 *tmp; 860 861 /* 862 * If the architecture hasn't provided a sanitised value here, 863 * this may result in larger arrays than necessary. Resctrl will 864 * use a smaller system wide value based on the resources in 865 * use. 866 */ 867 tmp = kcalloc(num_closid, sizeof(*tmp), GFP_KERNEL); 868 if (!tmp) { 869 err = -ENOMEM; 870 goto out_unlock; 871 } 872 873 closid_num_dirty_rmid = tmp; 874 } 875 876 rmid_ptrs = kcalloc(idx_limit, sizeof(struct rmid_entry), GFP_KERNEL); 877 if (!rmid_ptrs) { 878 if (IS_ENABLED(CONFIG_RESCTRL_RMID_DEPENDS_ON_CLOSID)) { 879 kfree(closid_num_dirty_rmid); 880 closid_num_dirty_rmid = NULL; 881 } 882 err = -ENOMEM; 883 goto out_unlock; 884 } 885 886 for (i = 0; i < idx_limit; i++) { 887 entry = &rmid_ptrs[i]; 888 INIT_LIST_HEAD(&entry->list); 889 890 resctrl_arch_rmid_idx_decode(i, &entry->closid, &entry->rmid); 891 list_add_tail(&entry->list, &rmid_free_lru); 892 } 893 894 /* 895 * RESCTRL_RESERVED_CLOSID and RESCTRL_RESERVED_RMID are special and 896 * are always allocated. These are used for the rdtgroup_default 897 * control group, which will be setup later in resctrl_init(). 898 */ 899 idx = resctrl_arch_rmid_idx_encode(RESCTRL_RESERVED_CLOSID, 900 RESCTRL_RESERVED_RMID); 901 entry = __rmid_entry(idx); 902 list_del(&entry->list); 903 904 out_unlock: 905 mutex_unlock(&rdtgroup_mutex); 906 907 return err; 908 } 909 910 static void dom_data_exit(struct rdt_resource *r) 911 { 912 mutex_lock(&rdtgroup_mutex); 913 914 if (!r->mon_capable) 915 goto out_unlock; 916 917 if (IS_ENABLED(CONFIG_RESCTRL_RMID_DEPENDS_ON_CLOSID)) { 918 kfree(closid_num_dirty_rmid); 919 closid_num_dirty_rmid = NULL; 920 } 921 922 kfree(rmid_ptrs); 923 rmid_ptrs = NULL; 924 925 out_unlock: 926 mutex_unlock(&rdtgroup_mutex); 927 } 928 929 /* 930 * All available events. Architecture code marks the ones that 931 * are supported by a system using resctrl_enable_mon_event() 932 * to set .enabled. 933 */ 934 struct mon_evt mon_event_all[QOS_NUM_EVENTS] = { 935 [QOS_L3_OCCUP_EVENT_ID] = { 936 .name = "llc_occupancy", 937 .evtid = QOS_L3_OCCUP_EVENT_ID, 938 .rid = RDT_RESOURCE_L3, 939 }, 940 [QOS_L3_MBM_TOTAL_EVENT_ID] = { 941 .name = "mbm_total_bytes", 942 .evtid = QOS_L3_MBM_TOTAL_EVENT_ID, 943 .rid = RDT_RESOURCE_L3, 944 }, 945 [QOS_L3_MBM_LOCAL_EVENT_ID] = { 946 .name = "mbm_local_bytes", 947 .evtid = QOS_L3_MBM_LOCAL_EVENT_ID, 948 .rid = RDT_RESOURCE_L3, 949 }, 950 }; 951 952 void resctrl_enable_mon_event(enum resctrl_event_id eventid) 953 { 954 if (WARN_ON_ONCE(eventid < QOS_FIRST_EVENT || eventid >= QOS_NUM_EVENTS)) 955 return; 956 if (mon_event_all[eventid].enabled) { 957 pr_warn("Duplicate enable for event %d\n", eventid); 958 return; 959 } 960 961 mon_event_all[eventid].enabled = true; 962 } 963 964 bool resctrl_is_mon_event_enabled(enum resctrl_event_id eventid) 965 { 966 return eventid >= QOS_FIRST_EVENT && eventid < QOS_NUM_EVENTS && 967 mon_event_all[eventid].enabled; 968 } 969 970 u32 resctrl_get_mon_evt_cfg(enum resctrl_event_id evtid) 971 { 972 return mon_event_all[evtid].evt_cfg; 973 } 974 975 /** 976 * struct mbm_transaction - Memory transaction an MBM event can be configured with. 977 * @name: Name of memory transaction (read, write ...). 978 * @val: The bit (eg. READS_TO_LOCAL_MEM or READS_TO_REMOTE_MEM) used to 979 * represent the memory transaction within an event's configuration. 980 */ 981 struct mbm_transaction { 982 char name[32]; 983 u32 val; 984 }; 985 986 /* Decoded values for each type of memory transaction. */ 987 static struct mbm_transaction mbm_transactions[NUM_MBM_TRANSACTIONS] = { 988 {"local_reads", READS_TO_LOCAL_MEM}, 989 {"remote_reads", READS_TO_REMOTE_MEM}, 990 {"local_non_temporal_writes", NON_TEMP_WRITE_TO_LOCAL_MEM}, 991 {"remote_non_temporal_writes", NON_TEMP_WRITE_TO_REMOTE_MEM}, 992 {"local_reads_slow_memory", READS_TO_LOCAL_S_MEM}, 993 {"remote_reads_slow_memory", READS_TO_REMOTE_S_MEM}, 994 {"dirty_victim_writes_all", DIRTY_VICTIMS_TO_ALL_MEM}, 995 }; 996 997 int event_filter_show(struct kernfs_open_file *of, struct seq_file *seq, void *v) 998 { 999 struct mon_evt *mevt = rdt_kn_parent_priv(of->kn); 1000 struct rdt_resource *r; 1001 bool sep = false; 1002 int ret = 0, i; 1003 1004 mutex_lock(&rdtgroup_mutex); 1005 rdt_last_cmd_clear(); 1006 1007 r = resctrl_arch_get_resource(mevt->rid); 1008 if (!resctrl_arch_mbm_cntr_assign_enabled(r)) { 1009 rdt_last_cmd_puts("mbm_event counter assignment mode is not enabled\n"); 1010 ret = -EINVAL; 1011 goto out_unlock; 1012 } 1013 1014 for (i = 0; i < NUM_MBM_TRANSACTIONS; i++) { 1015 if (mevt->evt_cfg & mbm_transactions[i].val) { 1016 if (sep) 1017 seq_putc(seq, ','); 1018 seq_printf(seq, "%s", mbm_transactions[i].name); 1019 sep = true; 1020 } 1021 } 1022 seq_putc(seq, '\n'); 1023 1024 out_unlock: 1025 mutex_unlock(&rdtgroup_mutex); 1026 1027 return ret; 1028 } 1029 1030 int resctrl_mbm_assign_on_mkdir_show(struct kernfs_open_file *of, struct seq_file *s, 1031 void *v) 1032 { 1033 struct rdt_resource *r = rdt_kn_parent_priv(of->kn); 1034 int ret = 0; 1035 1036 mutex_lock(&rdtgroup_mutex); 1037 rdt_last_cmd_clear(); 1038 1039 if (!resctrl_arch_mbm_cntr_assign_enabled(r)) { 1040 rdt_last_cmd_puts("mbm_event counter assignment mode is not enabled\n"); 1041 ret = -EINVAL; 1042 goto out_unlock; 1043 } 1044 1045 seq_printf(s, "%u\n", r->mon.mbm_assign_on_mkdir); 1046 1047 out_unlock: 1048 mutex_unlock(&rdtgroup_mutex); 1049 1050 return ret; 1051 } 1052 1053 ssize_t resctrl_mbm_assign_on_mkdir_write(struct kernfs_open_file *of, char *buf, 1054 size_t nbytes, loff_t off) 1055 { 1056 struct rdt_resource *r = rdt_kn_parent_priv(of->kn); 1057 bool value; 1058 int ret; 1059 1060 ret = kstrtobool(buf, &value); 1061 if (ret) 1062 return ret; 1063 1064 mutex_lock(&rdtgroup_mutex); 1065 rdt_last_cmd_clear(); 1066 1067 if (!resctrl_arch_mbm_cntr_assign_enabled(r)) { 1068 rdt_last_cmd_puts("mbm_event counter assignment mode is not enabled\n"); 1069 ret = -EINVAL; 1070 goto out_unlock; 1071 } 1072 1073 r->mon.mbm_assign_on_mkdir = value; 1074 1075 out_unlock: 1076 mutex_unlock(&rdtgroup_mutex); 1077 1078 return ret ?: nbytes; 1079 } 1080 1081 /* 1082 * mbm_cntr_free_all() - Clear all the counter ID configuration details in the 1083 * domain @d. Called when mbm_assign_mode is changed. 1084 */ 1085 static void mbm_cntr_free_all(struct rdt_resource *r, struct rdt_mon_domain *d) 1086 { 1087 memset(d->cntr_cfg, 0, sizeof(*d->cntr_cfg) * r->mon.num_mbm_cntrs); 1088 } 1089 1090 /* 1091 * resctrl_reset_rmid_all() - Reset all non-architecture states for all the 1092 * supported RMIDs. 1093 */ 1094 static void resctrl_reset_rmid_all(struct rdt_resource *r, struct rdt_mon_domain *d) 1095 { 1096 u32 idx_limit = resctrl_arch_system_num_rmid_idx(); 1097 enum resctrl_event_id evt; 1098 int idx; 1099 1100 for_each_mbm_event_id(evt) { 1101 if (!resctrl_is_mon_event_enabled(evt)) 1102 continue; 1103 idx = MBM_STATE_IDX(evt); 1104 memset(d->mbm_states[idx], 0, sizeof(*d->mbm_states[0]) * idx_limit); 1105 } 1106 } 1107 1108 /* 1109 * rdtgroup_assign_cntr() - Assign/unassign the counter ID for the event, RMID 1110 * pair in the domain. 1111 * 1112 * Assign the counter if @assign is true else unassign the counter. Reset the 1113 * associated non-architectural state. 1114 */ 1115 static void rdtgroup_assign_cntr(struct rdt_resource *r, struct rdt_mon_domain *d, 1116 enum resctrl_event_id evtid, u32 rmid, u32 closid, 1117 u32 cntr_id, bool assign) 1118 { 1119 struct mbm_state *m; 1120 1121 resctrl_arch_config_cntr(r, d, evtid, rmid, closid, cntr_id, assign); 1122 1123 m = get_mbm_state(d, closid, rmid, evtid); 1124 if (m) 1125 memset(m, 0, sizeof(*m)); 1126 } 1127 1128 /* 1129 * rdtgroup_alloc_assign_cntr() - Allocate a counter ID and assign it to the event 1130 * pointed to by @mevt and the resctrl group @rdtgrp within the domain @d. 1131 * 1132 * Return: 1133 * 0 on success, < 0 on failure. 1134 */ 1135 static int rdtgroup_alloc_assign_cntr(struct rdt_resource *r, struct rdt_mon_domain *d, 1136 struct rdtgroup *rdtgrp, struct mon_evt *mevt) 1137 { 1138 int cntr_id; 1139 1140 /* No action required if the counter is assigned already. */ 1141 cntr_id = mbm_cntr_get(r, d, rdtgrp, mevt->evtid); 1142 if (cntr_id >= 0) 1143 return 0; 1144 1145 cntr_id = mbm_cntr_alloc(r, d, rdtgrp, mevt->evtid); 1146 if (cntr_id < 0) { 1147 rdt_last_cmd_printf("Failed to allocate counter for %s in domain %d\n", 1148 mevt->name, d->hdr.id); 1149 return cntr_id; 1150 } 1151 1152 rdtgroup_assign_cntr(r, d, mevt->evtid, rdtgrp->mon.rmid, rdtgrp->closid, cntr_id, true); 1153 1154 return 0; 1155 } 1156 1157 /* 1158 * rdtgroup_assign_cntr_event() - Assign a hardware counter for the event in 1159 * @mevt to the resctrl group @rdtgrp. Assign counters to all domains if @d is 1160 * NULL; otherwise, assign the counter to the specified domain @d. 1161 * 1162 * If all counters in a domain are already in use, rdtgroup_alloc_assign_cntr() 1163 * will fail. The assignment process will abort at the first failure encountered 1164 * during domain traversal, which may result in the event being only partially 1165 * assigned. 1166 * 1167 * Return: 1168 * 0 on success, < 0 on failure. 1169 */ 1170 static int rdtgroup_assign_cntr_event(struct rdt_mon_domain *d, struct rdtgroup *rdtgrp, 1171 struct mon_evt *mevt) 1172 { 1173 struct rdt_resource *r = resctrl_arch_get_resource(mevt->rid); 1174 int ret = 0; 1175 1176 if (!d) { 1177 list_for_each_entry(d, &r->mon_domains, hdr.list) { 1178 ret = rdtgroup_alloc_assign_cntr(r, d, rdtgrp, mevt); 1179 if (ret) 1180 return ret; 1181 } 1182 } else { 1183 ret = rdtgroup_alloc_assign_cntr(r, d, rdtgrp, mevt); 1184 } 1185 1186 return ret; 1187 } 1188 1189 /* 1190 * rdtgroup_assign_cntrs() - Assign counters to MBM events. Called when 1191 * a new group is created. 1192 * 1193 * Each group can accommodate two counters per domain: one for the total 1194 * event and one for the local event. Assignments may fail due to the limited 1195 * number of counters. However, it is not necessary to fail the group creation 1196 * and thus no failure is returned. Users have the option to modify the 1197 * counter assignments after the group has been created. 1198 */ 1199 void rdtgroup_assign_cntrs(struct rdtgroup *rdtgrp) 1200 { 1201 struct rdt_resource *r = resctrl_arch_get_resource(RDT_RESOURCE_L3); 1202 1203 if (!r->mon_capable || !resctrl_arch_mbm_cntr_assign_enabled(r) || 1204 !r->mon.mbm_assign_on_mkdir) 1205 return; 1206 1207 if (resctrl_is_mon_event_enabled(QOS_L3_MBM_TOTAL_EVENT_ID)) 1208 rdtgroup_assign_cntr_event(NULL, rdtgrp, 1209 &mon_event_all[QOS_L3_MBM_TOTAL_EVENT_ID]); 1210 1211 if (resctrl_is_mon_event_enabled(QOS_L3_MBM_LOCAL_EVENT_ID)) 1212 rdtgroup_assign_cntr_event(NULL, rdtgrp, 1213 &mon_event_all[QOS_L3_MBM_LOCAL_EVENT_ID]); 1214 } 1215 1216 /* 1217 * rdtgroup_free_unassign_cntr() - Unassign and reset the counter ID configuration 1218 * for the event pointed to by @mevt within the domain @d and resctrl group @rdtgrp. 1219 */ 1220 static void rdtgroup_free_unassign_cntr(struct rdt_resource *r, struct rdt_mon_domain *d, 1221 struct rdtgroup *rdtgrp, struct mon_evt *mevt) 1222 { 1223 int cntr_id; 1224 1225 cntr_id = mbm_cntr_get(r, d, rdtgrp, mevt->evtid); 1226 1227 /* If there is no cntr_id assigned, nothing to do */ 1228 if (cntr_id < 0) 1229 return; 1230 1231 rdtgroup_assign_cntr(r, d, mevt->evtid, rdtgrp->mon.rmid, rdtgrp->closid, cntr_id, false); 1232 1233 mbm_cntr_free(d, cntr_id); 1234 } 1235 1236 /* 1237 * rdtgroup_unassign_cntr_event() - Unassign a hardware counter associated with 1238 * the event structure @mevt from the domain @d and the group @rdtgrp. Unassign 1239 * the counters from all the domains if @d is NULL else unassign from @d. 1240 */ 1241 static void rdtgroup_unassign_cntr_event(struct rdt_mon_domain *d, struct rdtgroup *rdtgrp, 1242 struct mon_evt *mevt) 1243 { 1244 struct rdt_resource *r = resctrl_arch_get_resource(mevt->rid); 1245 1246 if (!d) { 1247 list_for_each_entry(d, &r->mon_domains, hdr.list) 1248 rdtgroup_free_unassign_cntr(r, d, rdtgrp, mevt); 1249 } else { 1250 rdtgroup_free_unassign_cntr(r, d, rdtgrp, mevt); 1251 } 1252 } 1253 1254 /* 1255 * rdtgroup_unassign_cntrs() - Unassign the counters associated with MBM events. 1256 * Called when a group is deleted. 1257 */ 1258 void rdtgroup_unassign_cntrs(struct rdtgroup *rdtgrp) 1259 { 1260 struct rdt_resource *r = resctrl_arch_get_resource(RDT_RESOURCE_L3); 1261 1262 if (!r->mon_capable || !resctrl_arch_mbm_cntr_assign_enabled(r)) 1263 return; 1264 1265 if (resctrl_is_mon_event_enabled(QOS_L3_MBM_TOTAL_EVENT_ID)) 1266 rdtgroup_unassign_cntr_event(NULL, rdtgrp, 1267 &mon_event_all[QOS_L3_MBM_TOTAL_EVENT_ID]); 1268 1269 if (resctrl_is_mon_event_enabled(QOS_L3_MBM_LOCAL_EVENT_ID)) 1270 rdtgroup_unassign_cntr_event(NULL, rdtgrp, 1271 &mon_event_all[QOS_L3_MBM_LOCAL_EVENT_ID]); 1272 } 1273 1274 static int resctrl_parse_mem_transactions(char *tok, u32 *val) 1275 { 1276 u32 temp_val = 0; 1277 char *evt_str; 1278 bool found; 1279 int i; 1280 1281 next_config: 1282 if (!tok || tok[0] == '\0') { 1283 *val = temp_val; 1284 return 0; 1285 } 1286 1287 /* Start processing the strings for each memory transaction type */ 1288 evt_str = strim(strsep(&tok, ",")); 1289 found = false; 1290 for (i = 0; i < NUM_MBM_TRANSACTIONS; i++) { 1291 if (!strcmp(mbm_transactions[i].name, evt_str)) { 1292 temp_val |= mbm_transactions[i].val; 1293 found = true; 1294 break; 1295 } 1296 } 1297 1298 if (!found) { 1299 rdt_last_cmd_printf("Invalid memory transaction type %s\n", evt_str); 1300 return -EINVAL; 1301 } 1302 1303 goto next_config; 1304 } 1305 1306 /* 1307 * rdtgroup_update_cntr_event - Update the counter assignments for the event 1308 * in a group. 1309 * @r: Resource to which update needs to be done. 1310 * @rdtgrp: Resctrl group. 1311 * @evtid: MBM monitor event. 1312 */ 1313 static void rdtgroup_update_cntr_event(struct rdt_resource *r, struct rdtgroup *rdtgrp, 1314 enum resctrl_event_id evtid) 1315 { 1316 struct rdt_mon_domain *d; 1317 int cntr_id; 1318 1319 list_for_each_entry(d, &r->mon_domains, hdr.list) { 1320 cntr_id = mbm_cntr_get(r, d, rdtgrp, evtid); 1321 if (cntr_id >= 0) 1322 rdtgroup_assign_cntr(r, d, evtid, rdtgrp->mon.rmid, 1323 rdtgrp->closid, cntr_id, true); 1324 } 1325 } 1326 1327 /* 1328 * resctrl_update_cntr_allrdtgrp - Update the counter assignments for the event 1329 * for all the groups. 1330 * @mevt MBM Monitor event. 1331 */ 1332 static void resctrl_update_cntr_allrdtgrp(struct mon_evt *mevt) 1333 { 1334 struct rdt_resource *r = resctrl_arch_get_resource(mevt->rid); 1335 struct rdtgroup *prgrp, *crgrp; 1336 1337 /* 1338 * Find all the groups where the event is assigned and update the 1339 * configuration of existing assignments. 1340 */ 1341 list_for_each_entry(prgrp, &rdt_all_groups, rdtgroup_list) { 1342 rdtgroup_update_cntr_event(r, prgrp, mevt->evtid); 1343 1344 list_for_each_entry(crgrp, &prgrp->mon.crdtgrp_list, mon.crdtgrp_list) 1345 rdtgroup_update_cntr_event(r, crgrp, mevt->evtid); 1346 } 1347 } 1348 1349 ssize_t event_filter_write(struct kernfs_open_file *of, char *buf, size_t nbytes, 1350 loff_t off) 1351 { 1352 struct mon_evt *mevt = rdt_kn_parent_priv(of->kn); 1353 struct rdt_resource *r; 1354 u32 evt_cfg = 0; 1355 int ret = 0; 1356 1357 /* Valid input requires a trailing newline */ 1358 if (nbytes == 0 || buf[nbytes - 1] != '\n') 1359 return -EINVAL; 1360 1361 buf[nbytes - 1] = '\0'; 1362 1363 cpus_read_lock(); 1364 mutex_lock(&rdtgroup_mutex); 1365 1366 rdt_last_cmd_clear(); 1367 1368 r = resctrl_arch_get_resource(mevt->rid); 1369 if (!resctrl_arch_mbm_cntr_assign_enabled(r)) { 1370 rdt_last_cmd_puts("mbm_event counter assignment mode is not enabled\n"); 1371 ret = -EINVAL; 1372 goto out_unlock; 1373 } 1374 1375 ret = resctrl_parse_mem_transactions(buf, &evt_cfg); 1376 if (!ret && mevt->evt_cfg != evt_cfg) { 1377 mevt->evt_cfg = evt_cfg; 1378 resctrl_update_cntr_allrdtgrp(mevt); 1379 } 1380 1381 out_unlock: 1382 mutex_unlock(&rdtgroup_mutex); 1383 cpus_read_unlock(); 1384 1385 return ret ?: nbytes; 1386 } 1387 1388 int resctrl_mbm_assign_mode_show(struct kernfs_open_file *of, 1389 struct seq_file *s, void *v) 1390 { 1391 struct rdt_resource *r = rdt_kn_parent_priv(of->kn); 1392 bool enabled; 1393 1394 mutex_lock(&rdtgroup_mutex); 1395 enabled = resctrl_arch_mbm_cntr_assign_enabled(r); 1396 1397 if (r->mon.mbm_cntr_assignable) { 1398 if (enabled) 1399 seq_puts(s, "[mbm_event]\n"); 1400 else 1401 seq_puts(s, "[default]\n"); 1402 1403 if (!IS_ENABLED(CONFIG_RESCTRL_ASSIGN_FIXED)) { 1404 if (enabled) 1405 seq_puts(s, "default\n"); 1406 else 1407 seq_puts(s, "mbm_event\n"); 1408 } 1409 } else { 1410 seq_puts(s, "[default]\n"); 1411 } 1412 1413 mutex_unlock(&rdtgroup_mutex); 1414 1415 return 0; 1416 } 1417 1418 ssize_t resctrl_mbm_assign_mode_write(struct kernfs_open_file *of, char *buf, 1419 size_t nbytes, loff_t off) 1420 { 1421 struct rdt_resource *r = rdt_kn_parent_priv(of->kn); 1422 struct rdt_mon_domain *d; 1423 int ret = 0; 1424 bool enable; 1425 1426 /* Valid input requires a trailing newline */ 1427 if (nbytes == 0 || buf[nbytes - 1] != '\n') 1428 return -EINVAL; 1429 1430 buf[nbytes - 1] = '\0'; 1431 1432 cpus_read_lock(); 1433 mutex_lock(&rdtgroup_mutex); 1434 1435 rdt_last_cmd_clear(); 1436 1437 if (!strcmp(buf, "default")) { 1438 enable = 0; 1439 } else if (!strcmp(buf, "mbm_event")) { 1440 if (r->mon.mbm_cntr_assignable) { 1441 enable = 1; 1442 } else { 1443 ret = -EINVAL; 1444 rdt_last_cmd_puts("mbm_event mode is not supported\n"); 1445 goto out_unlock; 1446 } 1447 } else { 1448 ret = -EINVAL; 1449 rdt_last_cmd_puts("Unsupported assign mode\n"); 1450 goto out_unlock; 1451 } 1452 1453 if (enable != resctrl_arch_mbm_cntr_assign_enabled(r)) { 1454 ret = resctrl_arch_mbm_cntr_assign_set(r, enable); 1455 if (ret) 1456 goto out_unlock; 1457 1458 /* Update the visibility of BMEC related files */ 1459 resctrl_bmec_files_show(r, NULL, !enable); 1460 1461 /* 1462 * Initialize the default memory transaction values for 1463 * total and local events. 1464 */ 1465 if (resctrl_is_mon_event_enabled(QOS_L3_MBM_TOTAL_EVENT_ID)) 1466 mon_event_all[QOS_L3_MBM_TOTAL_EVENT_ID].evt_cfg = r->mon.mbm_cfg_mask; 1467 if (resctrl_is_mon_event_enabled(QOS_L3_MBM_LOCAL_EVENT_ID)) 1468 mon_event_all[QOS_L3_MBM_LOCAL_EVENT_ID].evt_cfg = r->mon.mbm_cfg_mask & 1469 (READS_TO_LOCAL_MEM | 1470 READS_TO_LOCAL_S_MEM | 1471 NON_TEMP_WRITE_TO_LOCAL_MEM); 1472 /* Enable auto assignment when switching to "mbm_event" mode */ 1473 if (enable) 1474 r->mon.mbm_assign_on_mkdir = true; 1475 /* 1476 * Reset all the non-achitectural RMID state and assignable counters. 1477 */ 1478 list_for_each_entry(d, &r->mon_domains, hdr.list) { 1479 mbm_cntr_free_all(r, d); 1480 resctrl_reset_rmid_all(r, d); 1481 } 1482 } 1483 1484 out_unlock: 1485 mutex_unlock(&rdtgroup_mutex); 1486 cpus_read_unlock(); 1487 1488 return ret ?: nbytes; 1489 } 1490 1491 int resctrl_num_mbm_cntrs_show(struct kernfs_open_file *of, 1492 struct seq_file *s, void *v) 1493 { 1494 struct rdt_resource *r = rdt_kn_parent_priv(of->kn); 1495 struct rdt_mon_domain *dom; 1496 bool sep = false; 1497 1498 cpus_read_lock(); 1499 mutex_lock(&rdtgroup_mutex); 1500 1501 list_for_each_entry(dom, &r->mon_domains, hdr.list) { 1502 if (sep) 1503 seq_putc(s, ';'); 1504 1505 seq_printf(s, "%d=%d", dom->hdr.id, r->mon.num_mbm_cntrs); 1506 sep = true; 1507 } 1508 seq_putc(s, '\n'); 1509 1510 mutex_unlock(&rdtgroup_mutex); 1511 cpus_read_unlock(); 1512 return 0; 1513 } 1514 1515 int resctrl_available_mbm_cntrs_show(struct kernfs_open_file *of, 1516 struct seq_file *s, void *v) 1517 { 1518 struct rdt_resource *r = rdt_kn_parent_priv(of->kn); 1519 struct rdt_mon_domain *dom; 1520 bool sep = false; 1521 u32 cntrs, i; 1522 int ret = 0; 1523 1524 cpus_read_lock(); 1525 mutex_lock(&rdtgroup_mutex); 1526 1527 rdt_last_cmd_clear(); 1528 1529 if (!resctrl_arch_mbm_cntr_assign_enabled(r)) { 1530 rdt_last_cmd_puts("mbm_event counter assignment mode is not enabled\n"); 1531 ret = -EINVAL; 1532 goto out_unlock; 1533 } 1534 1535 list_for_each_entry(dom, &r->mon_domains, hdr.list) { 1536 if (sep) 1537 seq_putc(s, ';'); 1538 1539 cntrs = 0; 1540 for (i = 0; i < r->mon.num_mbm_cntrs; i++) { 1541 if (!dom->cntr_cfg[i].rdtgrp) 1542 cntrs++; 1543 } 1544 1545 seq_printf(s, "%d=%u", dom->hdr.id, cntrs); 1546 sep = true; 1547 } 1548 seq_putc(s, '\n'); 1549 1550 out_unlock: 1551 mutex_unlock(&rdtgroup_mutex); 1552 cpus_read_unlock(); 1553 1554 return ret; 1555 } 1556 1557 int mbm_L3_assignments_show(struct kernfs_open_file *of, struct seq_file *s, void *v) 1558 { 1559 struct rdt_resource *r = resctrl_arch_get_resource(RDT_RESOURCE_L3); 1560 struct rdt_mon_domain *d; 1561 struct rdtgroup *rdtgrp; 1562 struct mon_evt *mevt; 1563 int ret = 0; 1564 bool sep; 1565 1566 rdtgrp = rdtgroup_kn_lock_live(of->kn); 1567 if (!rdtgrp) { 1568 ret = -ENOENT; 1569 goto out_unlock; 1570 } 1571 1572 rdt_last_cmd_clear(); 1573 if (!resctrl_arch_mbm_cntr_assign_enabled(r)) { 1574 rdt_last_cmd_puts("mbm_event counter assignment mode is not enabled\n"); 1575 ret = -EINVAL; 1576 goto out_unlock; 1577 } 1578 1579 for_each_mon_event(mevt) { 1580 if (mevt->rid != r->rid || !mevt->enabled || !resctrl_is_mbm_event(mevt->evtid)) 1581 continue; 1582 1583 sep = false; 1584 seq_printf(s, "%s:", mevt->name); 1585 list_for_each_entry(d, &r->mon_domains, hdr.list) { 1586 if (sep) 1587 seq_putc(s, ';'); 1588 1589 if (mbm_cntr_get(r, d, rdtgrp, mevt->evtid) < 0) 1590 seq_printf(s, "%d=_", d->hdr.id); 1591 else 1592 seq_printf(s, "%d=e", d->hdr.id); 1593 1594 sep = true; 1595 } 1596 seq_putc(s, '\n'); 1597 } 1598 1599 out_unlock: 1600 rdtgroup_kn_unlock(of->kn); 1601 1602 return ret; 1603 } 1604 1605 /* 1606 * mbm_get_mon_event_by_name() - Return the mon_evt entry for the matching 1607 * event name. 1608 */ 1609 static struct mon_evt *mbm_get_mon_event_by_name(struct rdt_resource *r, char *name) 1610 { 1611 struct mon_evt *mevt; 1612 1613 for_each_mon_event(mevt) { 1614 if (mevt->rid == r->rid && mevt->enabled && 1615 resctrl_is_mbm_event(mevt->evtid) && 1616 !strcmp(mevt->name, name)) 1617 return mevt; 1618 } 1619 1620 return NULL; 1621 } 1622 1623 static int rdtgroup_modify_assign_state(char *assign, struct rdt_mon_domain *d, 1624 struct rdtgroup *rdtgrp, struct mon_evt *mevt) 1625 { 1626 int ret = 0; 1627 1628 if (!assign || strlen(assign) != 1) 1629 return -EINVAL; 1630 1631 switch (*assign) { 1632 case 'e': 1633 ret = rdtgroup_assign_cntr_event(d, rdtgrp, mevt); 1634 break; 1635 case '_': 1636 rdtgroup_unassign_cntr_event(d, rdtgrp, mevt); 1637 break; 1638 default: 1639 ret = -EINVAL; 1640 break; 1641 } 1642 1643 return ret; 1644 } 1645 1646 static int resctrl_parse_mbm_assignment(struct rdt_resource *r, struct rdtgroup *rdtgrp, 1647 char *event, char *tok) 1648 { 1649 struct rdt_mon_domain *d; 1650 unsigned long dom_id = 0; 1651 char *dom_str, *id_str; 1652 struct mon_evt *mevt; 1653 int ret; 1654 1655 mevt = mbm_get_mon_event_by_name(r, event); 1656 if (!mevt) { 1657 rdt_last_cmd_printf("Invalid event %s\n", event); 1658 return -ENOENT; 1659 } 1660 1661 next: 1662 if (!tok || tok[0] == '\0') 1663 return 0; 1664 1665 /* Start processing the strings for each domain */ 1666 dom_str = strim(strsep(&tok, ";")); 1667 1668 id_str = strsep(&dom_str, "="); 1669 1670 /* Check for domain id '*' which means all domains */ 1671 if (id_str && *id_str == '*') { 1672 ret = rdtgroup_modify_assign_state(dom_str, NULL, rdtgrp, mevt); 1673 if (ret) 1674 rdt_last_cmd_printf("Assign operation '%s:*=%s' failed\n", 1675 event, dom_str); 1676 return ret; 1677 } else if (!id_str || kstrtoul(id_str, 10, &dom_id)) { 1678 rdt_last_cmd_puts("Missing domain id\n"); 1679 return -EINVAL; 1680 } 1681 1682 /* Verify if the dom_id is valid */ 1683 list_for_each_entry(d, &r->mon_domains, hdr.list) { 1684 if (d->hdr.id == dom_id) { 1685 ret = rdtgroup_modify_assign_state(dom_str, d, rdtgrp, mevt); 1686 if (ret) { 1687 rdt_last_cmd_printf("Assign operation '%s:%ld=%s' failed\n", 1688 event, dom_id, dom_str); 1689 return ret; 1690 } 1691 goto next; 1692 } 1693 } 1694 1695 rdt_last_cmd_printf("Invalid domain id %ld\n", dom_id); 1696 return -EINVAL; 1697 } 1698 1699 ssize_t mbm_L3_assignments_write(struct kernfs_open_file *of, char *buf, 1700 size_t nbytes, loff_t off) 1701 { 1702 struct rdt_resource *r = resctrl_arch_get_resource(RDT_RESOURCE_L3); 1703 struct rdtgroup *rdtgrp; 1704 char *token, *event; 1705 int ret = 0; 1706 1707 /* Valid input requires a trailing newline */ 1708 if (nbytes == 0 || buf[nbytes - 1] != '\n') 1709 return -EINVAL; 1710 1711 buf[nbytes - 1] = '\0'; 1712 1713 rdtgrp = rdtgroup_kn_lock_live(of->kn); 1714 if (!rdtgrp) { 1715 rdtgroup_kn_unlock(of->kn); 1716 return -ENOENT; 1717 } 1718 rdt_last_cmd_clear(); 1719 1720 if (!resctrl_arch_mbm_cntr_assign_enabled(r)) { 1721 rdt_last_cmd_puts("mbm_event mode is not enabled\n"); 1722 rdtgroup_kn_unlock(of->kn); 1723 return -EINVAL; 1724 } 1725 1726 while ((token = strsep(&buf, "\n")) != NULL) { 1727 /* 1728 * The write command follows the following format: 1729 * "<Event>:<Domain ID>=<Assignment state>" 1730 * Extract the event name first. 1731 */ 1732 event = strsep(&token, ":"); 1733 1734 ret = resctrl_parse_mbm_assignment(r, rdtgrp, event, token); 1735 if (ret) 1736 break; 1737 } 1738 1739 rdtgroup_kn_unlock(of->kn); 1740 1741 return ret ?: nbytes; 1742 } 1743 1744 /** 1745 * resctrl_mon_resource_init() - Initialise global monitoring structures. 1746 * 1747 * Allocate and initialise global monitor resources that do not belong to a 1748 * specific domain. i.e. the rmid_ptrs[] used for the limbo and free lists. 1749 * Called once during boot after the struct rdt_resource's have been configured 1750 * but before the filesystem is mounted. 1751 * Resctrl's cpuhp callbacks may be called before this point to bring a domain 1752 * online. 1753 * 1754 * Returns 0 for success, or -ENOMEM. 1755 */ 1756 int resctrl_mon_resource_init(void) 1757 { 1758 struct rdt_resource *r = resctrl_arch_get_resource(RDT_RESOURCE_L3); 1759 int ret; 1760 1761 if (!r->mon_capable) 1762 return 0; 1763 1764 ret = dom_data_init(r); 1765 if (ret) 1766 return ret; 1767 1768 if (resctrl_arch_is_evt_configurable(QOS_L3_MBM_TOTAL_EVENT_ID)) { 1769 mon_event_all[QOS_L3_MBM_TOTAL_EVENT_ID].configurable = true; 1770 resctrl_file_fflags_init("mbm_total_bytes_config", 1771 RFTYPE_MON_INFO | RFTYPE_RES_CACHE); 1772 } 1773 if (resctrl_arch_is_evt_configurable(QOS_L3_MBM_LOCAL_EVENT_ID)) { 1774 mon_event_all[QOS_L3_MBM_LOCAL_EVENT_ID].configurable = true; 1775 resctrl_file_fflags_init("mbm_local_bytes_config", 1776 RFTYPE_MON_INFO | RFTYPE_RES_CACHE); 1777 } 1778 1779 if (resctrl_is_mon_event_enabled(QOS_L3_MBM_LOCAL_EVENT_ID)) 1780 mba_mbps_default_event = QOS_L3_MBM_LOCAL_EVENT_ID; 1781 else if (resctrl_is_mon_event_enabled(QOS_L3_MBM_TOTAL_EVENT_ID)) 1782 mba_mbps_default_event = QOS_L3_MBM_TOTAL_EVENT_ID; 1783 1784 if (r->mon.mbm_cntr_assignable) { 1785 if (!resctrl_is_mon_event_enabled(QOS_L3_MBM_TOTAL_EVENT_ID)) 1786 resctrl_enable_mon_event(QOS_L3_MBM_TOTAL_EVENT_ID); 1787 if (!resctrl_is_mon_event_enabled(QOS_L3_MBM_LOCAL_EVENT_ID)) 1788 resctrl_enable_mon_event(QOS_L3_MBM_LOCAL_EVENT_ID); 1789 mon_event_all[QOS_L3_MBM_TOTAL_EVENT_ID].evt_cfg = r->mon.mbm_cfg_mask; 1790 mon_event_all[QOS_L3_MBM_LOCAL_EVENT_ID].evt_cfg = r->mon.mbm_cfg_mask & 1791 (READS_TO_LOCAL_MEM | 1792 READS_TO_LOCAL_S_MEM | 1793 NON_TEMP_WRITE_TO_LOCAL_MEM); 1794 r->mon.mbm_assign_on_mkdir = true; 1795 resctrl_file_fflags_init("num_mbm_cntrs", 1796 RFTYPE_MON_INFO | RFTYPE_RES_CACHE); 1797 resctrl_file_fflags_init("available_mbm_cntrs", 1798 RFTYPE_MON_INFO | RFTYPE_RES_CACHE); 1799 resctrl_file_fflags_init("event_filter", RFTYPE_ASSIGN_CONFIG); 1800 resctrl_file_fflags_init("mbm_assign_on_mkdir", RFTYPE_MON_INFO | 1801 RFTYPE_RES_CACHE); 1802 resctrl_file_fflags_init("mbm_L3_assignments", RFTYPE_MON_BASE); 1803 } 1804 1805 return 0; 1806 } 1807 1808 void resctrl_mon_resource_exit(void) 1809 { 1810 struct rdt_resource *r = resctrl_arch_get_resource(RDT_RESOURCE_L3); 1811 1812 dom_data_exit(r); 1813 } 1814