1 /* 2 * Copyright 2000 by Hans Reiser, licensing governed by reiserfs/README 3 */ 4 5 #include <linux/time.h> 6 #include <linux/fs.h> 7 #include "reiserfs.h" 8 #include "acl.h" 9 #include "xattr.h" 10 #include <linux/exportfs.h> 11 #include <linux/pagemap.h> 12 #include <linux/highmem.h> 13 #include <linux/slab.h> 14 #include <linux/uaccess.h> 15 #include <asm/unaligned.h> 16 #include <linux/buffer_head.h> 17 #include <linux/mpage.h> 18 #include <linux/writeback.h> 19 #include <linux/quotaops.h> 20 #include <linux/swap.h> 21 #include <linux/uio.h> 22 #include <linux/bio.h> 23 24 int reiserfs_commit_write(struct file *f, struct page *page, 25 unsigned from, unsigned to); 26 27 void reiserfs_evict_inode(struct inode *inode) 28 { 29 /* 30 * We need blocks for transaction + (user+group) quota 31 * update (possibly delete) 32 */ 33 int jbegin_count = 34 JOURNAL_PER_BALANCE_CNT * 2 + 35 2 * REISERFS_QUOTA_INIT_BLOCKS(inode->i_sb); 36 struct reiserfs_transaction_handle th; 37 int err; 38 39 if (!inode->i_nlink && !is_bad_inode(inode)) 40 dquot_initialize(inode); 41 42 truncate_inode_pages_final(&inode->i_data); 43 if (inode->i_nlink) 44 goto no_delete; 45 46 /* 47 * The = 0 happens when we abort creating a new inode 48 * for some reason like lack of space.. 49 * also handles bad_inode case 50 */ 51 if (!(inode->i_state & I_NEW) && INODE_PKEY(inode)->k_objectid != 0) { 52 53 reiserfs_delete_xattrs(inode); 54 55 reiserfs_write_lock(inode->i_sb); 56 57 if (journal_begin(&th, inode->i_sb, jbegin_count)) 58 goto out; 59 reiserfs_update_inode_transaction(inode); 60 61 reiserfs_discard_prealloc(&th, inode); 62 63 err = reiserfs_delete_object(&th, inode); 64 65 /* 66 * Do quota update inside a transaction for journaled quotas. 67 * We must do that after delete_object so that quota updates 68 * go into the same transaction as stat data deletion 69 */ 70 if (!err) { 71 int depth = reiserfs_write_unlock_nested(inode->i_sb); 72 dquot_free_inode(inode); 73 reiserfs_write_lock_nested(inode->i_sb, depth); 74 } 75 76 if (journal_end(&th)) 77 goto out; 78 79 /* 80 * check return value from reiserfs_delete_object after 81 * ending the transaction 82 */ 83 if (err) 84 goto out; 85 86 /* 87 * all items of file are deleted, so we can remove 88 * "save" link 89 * we can't do anything about an error here 90 */ 91 remove_save_link(inode, 0 /* not truncate */); 92 out: 93 reiserfs_write_unlock(inode->i_sb); 94 } else { 95 /* no object items are in the tree */ 96 ; 97 } 98 99 /* note this must go after the journal_end to prevent deadlock */ 100 clear_inode(inode); 101 102 dquot_drop(inode); 103 inode->i_blocks = 0; 104 return; 105 106 no_delete: 107 clear_inode(inode); 108 dquot_drop(inode); 109 } 110 111 static void _make_cpu_key(struct cpu_key *key, int version, __u32 dirid, 112 __u32 objectid, loff_t offset, int type, int length) 113 { 114 key->version = version; 115 116 key->on_disk_key.k_dir_id = dirid; 117 key->on_disk_key.k_objectid = objectid; 118 set_cpu_key_k_offset(key, offset); 119 set_cpu_key_k_type(key, type); 120 key->key_length = length; 121 } 122 123 /* 124 * take base of inode_key (it comes from inode always) (dirid, objectid) 125 * and version from an inode, set offset and type of key 126 */ 127 void make_cpu_key(struct cpu_key *key, struct inode *inode, loff_t offset, 128 int type, int length) 129 { 130 _make_cpu_key(key, get_inode_item_key_version(inode), 131 le32_to_cpu(INODE_PKEY(inode)->k_dir_id), 132 le32_to_cpu(INODE_PKEY(inode)->k_objectid), offset, type, 133 length); 134 } 135 136 /* when key is 0, do not set version and short key */ 137 inline void make_le_item_head(struct item_head *ih, const struct cpu_key *key, 138 int version, 139 loff_t offset, int type, int length, 140 int entry_count /*or ih_free_space */ ) 141 { 142 if (key) { 143 ih->ih_key.k_dir_id = cpu_to_le32(key->on_disk_key.k_dir_id); 144 ih->ih_key.k_objectid = 145 cpu_to_le32(key->on_disk_key.k_objectid); 146 } 147 put_ih_version(ih, version); 148 set_le_ih_k_offset(ih, offset); 149 set_le_ih_k_type(ih, type); 150 put_ih_item_len(ih, length); 151 /* set_ih_free_space (ih, 0); */ 152 /* 153 * for directory items it is entry count, for directs and stat 154 * datas - 0xffff, for indirects - 0 155 */ 156 put_ih_entry_count(ih, entry_count); 157 } 158 159 /* 160 * FIXME: we might cache recently accessed indirect item 161 * Ugh. Not too eager for that.... 162 * I cut the code until such time as I see a convincing argument (benchmark). 163 * I don't want a bloated inode struct..., and I don't like code complexity.... 164 */ 165 166 /* 167 * cutting the code is fine, since it really isn't in use yet and is easy 168 * to add back in. But, Vladimir has a really good idea here. Think 169 * about what happens for reading a file. For each page, 170 * The VFS layer calls reiserfs_read_folio, who searches the tree to find 171 * an indirect item. This indirect item has X number of pointers, where 172 * X is a big number if we've done the block allocation right. But, 173 * we only use one or two of these pointers during each call to read_folio, 174 * needlessly researching again later on. 175 * 176 * The size of the cache could be dynamic based on the size of the file. 177 * 178 * I'd also like to see us cache the location the stat data item, since 179 * we are needlessly researching for that frequently. 180 * 181 * --chris 182 */ 183 184 /* 185 * If this page has a file tail in it, and 186 * it was read in by get_block_create_0, the page data is valid, 187 * but tail is still sitting in a direct item, and we can't write to 188 * it. So, look through this page, and check all the mapped buffers 189 * to make sure they have valid block numbers. Any that don't need 190 * to be unmapped, so that __block_write_begin will correctly call 191 * reiserfs_get_block to convert the tail into an unformatted node 192 */ 193 static inline void fix_tail_page_for_writing(struct page *page) 194 { 195 struct buffer_head *head, *next, *bh; 196 197 if (page && page_has_buffers(page)) { 198 head = page_buffers(page); 199 bh = head; 200 do { 201 next = bh->b_this_page; 202 if (buffer_mapped(bh) && bh->b_blocknr == 0) { 203 reiserfs_unmap_buffer(bh); 204 } 205 bh = next; 206 } while (bh != head); 207 } 208 } 209 210 /* 211 * reiserfs_get_block does not need to allocate a block only if it has been 212 * done already or non-hole position has been found in the indirect item 213 */ 214 static inline int allocation_needed(int retval, b_blocknr_t allocated, 215 struct item_head *ih, 216 __le32 * item, int pos_in_item) 217 { 218 if (allocated) 219 return 0; 220 if (retval == POSITION_FOUND && is_indirect_le_ih(ih) && 221 get_block_num(item, pos_in_item)) 222 return 0; 223 return 1; 224 } 225 226 static inline int indirect_item_found(int retval, struct item_head *ih) 227 { 228 return (retval == POSITION_FOUND) && is_indirect_le_ih(ih); 229 } 230 231 static inline void set_block_dev_mapped(struct buffer_head *bh, 232 b_blocknr_t block, struct inode *inode) 233 { 234 map_bh(bh, inode->i_sb, block); 235 } 236 237 /* 238 * files which were created in the earlier version can not be longer, 239 * than 2 gb 240 */ 241 static int file_capable(struct inode *inode, sector_t block) 242 { 243 /* it is new file. */ 244 if (get_inode_item_key_version(inode) != KEY_FORMAT_3_5 || 245 /* old file, but 'block' is inside of 2gb */ 246 block < (1 << (31 - inode->i_sb->s_blocksize_bits))) 247 return 1; 248 249 return 0; 250 } 251 252 static int restart_transaction(struct reiserfs_transaction_handle *th, 253 struct inode *inode, struct treepath *path) 254 { 255 struct super_block *s = th->t_super; 256 int err; 257 258 BUG_ON(!th->t_trans_id); 259 BUG_ON(!th->t_refcount); 260 261 pathrelse(path); 262 263 /* we cannot restart while nested */ 264 if (th->t_refcount > 1) { 265 return 0; 266 } 267 reiserfs_update_sd(th, inode); 268 err = journal_end(th); 269 if (!err) { 270 err = journal_begin(th, s, JOURNAL_PER_BALANCE_CNT * 6); 271 if (!err) 272 reiserfs_update_inode_transaction(inode); 273 } 274 return err; 275 } 276 277 /* 278 * it is called by get_block when create == 0. Returns block number 279 * for 'block'-th logical block of file. When it hits direct item it 280 * returns 0 (being called from bmap) or read direct item into piece 281 * of page (bh_result) 282 * Please improve the english/clarity in the comment above, as it is 283 * hard to understand. 284 */ 285 static int _get_block_create_0(struct inode *inode, sector_t block, 286 struct buffer_head *bh_result, int args) 287 { 288 INITIALIZE_PATH(path); 289 struct cpu_key key; 290 struct buffer_head *bh; 291 struct item_head *ih, tmp_ih; 292 b_blocknr_t blocknr; 293 char *p; 294 int chars; 295 int ret; 296 int result; 297 int done = 0; 298 unsigned long offset; 299 300 /* prepare the key to look for the 'block'-th block of file */ 301 make_cpu_key(&key, inode, 302 (loff_t) block * inode->i_sb->s_blocksize + 1, TYPE_ANY, 303 3); 304 305 result = search_for_position_by_key(inode->i_sb, &key, &path); 306 if (result != POSITION_FOUND) { 307 pathrelse(&path); 308 if (result == IO_ERROR) 309 return -EIO; 310 /* 311 * We do not return -ENOENT if there is a hole but page is 312 * uptodate, because it means that there is some MMAPED data 313 * associated with it that is yet to be written to disk. 314 */ 315 if ((args & GET_BLOCK_NO_HOLE) 316 && !PageUptodate(bh_result->b_page)) { 317 return -ENOENT; 318 } 319 return 0; 320 } 321 322 bh = get_last_bh(&path); 323 ih = tp_item_head(&path); 324 if (is_indirect_le_ih(ih)) { 325 __le32 *ind_item = (__le32 *) ih_item_body(bh, ih); 326 327 /* 328 * FIXME: here we could cache indirect item or part of it in 329 * the inode to avoid search_by_key in case of subsequent 330 * access to file 331 */ 332 blocknr = get_block_num(ind_item, path.pos_in_item); 333 ret = 0; 334 if (blocknr) { 335 map_bh(bh_result, inode->i_sb, blocknr); 336 if (path.pos_in_item == 337 ((ih_item_len(ih) / UNFM_P_SIZE) - 1)) { 338 set_buffer_boundary(bh_result); 339 } 340 } else 341 /* 342 * We do not return -ENOENT if there is a hole but 343 * page is uptodate, because it means that there is 344 * some MMAPED data associated with it that is 345 * yet to be written to disk. 346 */ 347 if ((args & GET_BLOCK_NO_HOLE) 348 && !PageUptodate(bh_result->b_page)) { 349 ret = -ENOENT; 350 } 351 352 pathrelse(&path); 353 return ret; 354 } 355 /* requested data are in direct item(s) */ 356 if (!(args & GET_BLOCK_READ_DIRECT)) { 357 /* 358 * we are called by bmap. FIXME: we can not map block of file 359 * when it is stored in direct item(s) 360 */ 361 pathrelse(&path); 362 return -ENOENT; 363 } 364 365 /* 366 * if we've got a direct item, and the buffer or page was uptodate, 367 * we don't want to pull data off disk again. skip to the 368 * end, where we map the buffer and return 369 */ 370 if (buffer_uptodate(bh_result)) { 371 goto finished; 372 } else 373 /* 374 * grab_tail_page can trigger calls to reiserfs_get_block on 375 * up to date pages without any buffers. If the page is up 376 * to date, we don't want read old data off disk. Set the up 377 * to date bit on the buffer instead and jump to the end 378 */ 379 if (!bh_result->b_page || PageUptodate(bh_result->b_page)) { 380 set_buffer_uptodate(bh_result); 381 goto finished; 382 } 383 /* read file tail into part of page */ 384 offset = (cpu_key_k_offset(&key) - 1) & (PAGE_SIZE - 1); 385 copy_item_head(&tmp_ih, ih); 386 387 /* 388 * we only want to kmap if we are reading the tail into the page. 389 * this is not the common case, so we don't kmap until we are 390 * sure we need to. But, this means the item might move if 391 * kmap schedules 392 */ 393 p = (char *)kmap(bh_result->b_page); 394 p += offset; 395 memset(p, 0, inode->i_sb->s_blocksize); 396 do { 397 if (!is_direct_le_ih(ih)) { 398 BUG(); 399 } 400 /* 401 * make sure we don't read more bytes than actually exist in 402 * the file. This can happen in odd cases where i_size isn't 403 * correct, and when direct item padding results in a few 404 * extra bytes at the end of the direct item 405 */ 406 if ((le_ih_k_offset(ih) + path.pos_in_item) > inode->i_size) 407 break; 408 if ((le_ih_k_offset(ih) - 1 + ih_item_len(ih)) > inode->i_size) { 409 chars = 410 inode->i_size - (le_ih_k_offset(ih) - 1) - 411 path.pos_in_item; 412 done = 1; 413 } else { 414 chars = ih_item_len(ih) - path.pos_in_item; 415 } 416 memcpy(p, ih_item_body(bh, ih) + path.pos_in_item, chars); 417 418 if (done) 419 break; 420 421 p += chars; 422 423 /* 424 * we done, if read direct item is not the last item of 425 * node FIXME: we could try to check right delimiting key 426 * to see whether direct item continues in the right 427 * neighbor or rely on i_size 428 */ 429 if (PATH_LAST_POSITION(&path) != (B_NR_ITEMS(bh) - 1)) 430 break; 431 432 /* update key to look for the next piece */ 433 set_cpu_key_k_offset(&key, cpu_key_k_offset(&key) + chars); 434 result = search_for_position_by_key(inode->i_sb, &key, &path); 435 if (result != POSITION_FOUND) 436 /* i/o error most likely */ 437 break; 438 bh = get_last_bh(&path); 439 ih = tp_item_head(&path); 440 } while (1); 441 442 flush_dcache_page(bh_result->b_page); 443 kunmap(bh_result->b_page); 444 445 finished: 446 pathrelse(&path); 447 448 if (result == IO_ERROR) 449 return -EIO; 450 451 /* 452 * this buffer has valid data, but isn't valid for io. mapping it to 453 * block #0 tells the rest of reiserfs it just has a tail in it 454 */ 455 map_bh(bh_result, inode->i_sb, 0); 456 set_buffer_uptodate(bh_result); 457 return 0; 458 } 459 460 /* 461 * this is called to create file map. So, _get_block_create_0 will not 462 * read direct item 463 */ 464 static int reiserfs_bmap(struct inode *inode, sector_t block, 465 struct buffer_head *bh_result, int create) 466 { 467 if (!file_capable(inode, block)) 468 return -EFBIG; 469 470 reiserfs_write_lock(inode->i_sb); 471 /* do not read the direct item */ 472 _get_block_create_0(inode, block, bh_result, 0); 473 reiserfs_write_unlock(inode->i_sb); 474 return 0; 475 } 476 477 /* 478 * special version of get_block that is only used by grab_tail_page right 479 * now. It is sent to __block_write_begin, and when you try to get a 480 * block past the end of the file (or a block from a hole) it returns 481 * -ENOENT instead of a valid buffer. __block_write_begin expects to 482 * be able to do i/o on the buffers returned, unless an error value 483 * is also returned. 484 * 485 * So, this allows __block_write_begin to be used for reading a single block 486 * in a page. Where it does not produce a valid page for holes, or past the 487 * end of the file. This turns out to be exactly what we need for reading 488 * tails for conversion. 489 * 490 * The point of the wrapper is forcing a certain value for create, even 491 * though the VFS layer is calling this function with create==1. If you 492 * don't want to send create == GET_BLOCK_NO_HOLE to reiserfs_get_block, 493 * don't use this function. 494 */ 495 static int reiserfs_get_block_create_0(struct inode *inode, sector_t block, 496 struct buffer_head *bh_result, 497 int create) 498 { 499 return reiserfs_get_block(inode, block, bh_result, GET_BLOCK_NO_HOLE); 500 } 501 502 /* 503 * This is special helper for reiserfs_get_block in case we are executing 504 * direct_IO request. 505 */ 506 static int reiserfs_get_blocks_direct_io(struct inode *inode, 507 sector_t iblock, 508 struct buffer_head *bh_result, 509 int create) 510 { 511 int ret; 512 513 bh_result->b_page = NULL; 514 515 /* 516 * We set the b_size before reiserfs_get_block call since it is 517 * referenced in convert_tail_for_hole() that may be called from 518 * reiserfs_get_block() 519 */ 520 bh_result->b_size = i_blocksize(inode); 521 522 ret = reiserfs_get_block(inode, iblock, bh_result, 523 create | GET_BLOCK_NO_DANGLE); 524 if (ret) 525 goto out; 526 527 /* don't allow direct io onto tail pages */ 528 if (buffer_mapped(bh_result) && bh_result->b_blocknr == 0) { 529 /* 530 * make sure future calls to the direct io funcs for this 531 * offset in the file fail by unmapping the buffer 532 */ 533 clear_buffer_mapped(bh_result); 534 ret = -EINVAL; 535 } 536 537 /* 538 * Possible unpacked tail. Flush the data before pages have 539 * disappeared 540 */ 541 if (REISERFS_I(inode)->i_flags & i_pack_on_close_mask) { 542 int err; 543 544 reiserfs_write_lock(inode->i_sb); 545 546 err = reiserfs_commit_for_inode(inode); 547 REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask; 548 549 reiserfs_write_unlock(inode->i_sb); 550 551 if (err < 0) 552 ret = err; 553 } 554 out: 555 return ret; 556 } 557 558 /* 559 * helper function for when reiserfs_get_block is called for a hole 560 * but the file tail is still in a direct item 561 * bh_result is the buffer head for the hole 562 * tail_offset is the offset of the start of the tail in the file 563 * 564 * This calls prepare_write, which will start a new transaction 565 * you should not be in a transaction, or have any paths held when you 566 * call this. 567 */ 568 static int convert_tail_for_hole(struct inode *inode, 569 struct buffer_head *bh_result, 570 loff_t tail_offset) 571 { 572 unsigned long index; 573 unsigned long tail_end; 574 unsigned long tail_start; 575 struct page *tail_page; 576 struct page *hole_page = bh_result->b_page; 577 int retval = 0; 578 579 if ((tail_offset & (bh_result->b_size - 1)) != 1) 580 return -EIO; 581 582 /* always try to read until the end of the block */ 583 tail_start = tail_offset & (PAGE_SIZE - 1); 584 tail_end = (tail_start | (bh_result->b_size - 1)) + 1; 585 586 index = tail_offset >> PAGE_SHIFT; 587 /* 588 * hole_page can be zero in case of direct_io, we are sure 589 * that we cannot get here if we write with O_DIRECT into tail page 590 */ 591 if (!hole_page || index != hole_page->index) { 592 tail_page = grab_cache_page(inode->i_mapping, index); 593 retval = -ENOMEM; 594 if (!tail_page) { 595 goto out; 596 } 597 } else { 598 tail_page = hole_page; 599 } 600 601 /* 602 * we don't have to make sure the conversion did not happen while 603 * we were locking the page because anyone that could convert 604 * must first take i_mutex. 605 * 606 * We must fix the tail page for writing because it might have buffers 607 * that are mapped, but have a block number of 0. This indicates tail 608 * data that has been read directly into the page, and 609 * __block_write_begin won't trigger a get_block in this case. 610 */ 611 fix_tail_page_for_writing(tail_page); 612 retval = __reiserfs_write_begin(tail_page, tail_start, 613 tail_end - tail_start); 614 if (retval) 615 goto unlock; 616 617 /* tail conversion might change the data in the page */ 618 flush_dcache_page(tail_page); 619 620 retval = reiserfs_commit_write(NULL, tail_page, tail_start, tail_end); 621 622 unlock: 623 if (tail_page != hole_page) { 624 unlock_page(tail_page); 625 put_page(tail_page); 626 } 627 out: 628 return retval; 629 } 630 631 static inline int _allocate_block(struct reiserfs_transaction_handle *th, 632 sector_t block, 633 struct inode *inode, 634 b_blocknr_t * allocated_block_nr, 635 struct treepath *path, int flags) 636 { 637 BUG_ON(!th->t_trans_id); 638 639 #ifdef REISERFS_PREALLOCATE 640 if (!(flags & GET_BLOCK_NO_IMUX)) { 641 return reiserfs_new_unf_blocknrs2(th, inode, allocated_block_nr, 642 path, block); 643 } 644 #endif 645 return reiserfs_new_unf_blocknrs(th, inode, allocated_block_nr, path, 646 block); 647 } 648 649 int reiserfs_get_block(struct inode *inode, sector_t block, 650 struct buffer_head *bh_result, int create) 651 { 652 int repeat, retval = 0; 653 /* b_blocknr_t is (unsigned) 32 bit int*/ 654 b_blocknr_t allocated_block_nr = 0; 655 INITIALIZE_PATH(path); 656 int pos_in_item; 657 struct cpu_key key; 658 struct buffer_head *bh, *unbh = NULL; 659 struct item_head *ih, tmp_ih; 660 __le32 *item; 661 int done; 662 int fs_gen; 663 struct reiserfs_transaction_handle *th = NULL; 664 /* 665 * space reserved in transaction batch: 666 * . 3 balancings in direct->indirect conversion 667 * . 1 block involved into reiserfs_update_sd() 668 * XXX in practically impossible worst case direct2indirect() 669 * can incur (much) more than 3 balancings. 670 * quota update for user, group 671 */ 672 int jbegin_count = 673 JOURNAL_PER_BALANCE_CNT * 3 + 1 + 674 2 * REISERFS_QUOTA_TRANS_BLOCKS(inode->i_sb); 675 int version; 676 int dangle = 1; 677 loff_t new_offset = 678 (((loff_t) block) << inode->i_sb->s_blocksize_bits) + 1; 679 680 reiserfs_write_lock(inode->i_sb); 681 version = get_inode_item_key_version(inode); 682 683 if (!file_capable(inode, block)) { 684 reiserfs_write_unlock(inode->i_sb); 685 return -EFBIG; 686 } 687 688 /* 689 * if !create, we aren't changing the FS, so we don't need to 690 * log anything, so we don't need to start a transaction 691 */ 692 if (!(create & GET_BLOCK_CREATE)) { 693 int ret; 694 /* find number of block-th logical block of the file */ 695 ret = _get_block_create_0(inode, block, bh_result, 696 create | GET_BLOCK_READ_DIRECT); 697 reiserfs_write_unlock(inode->i_sb); 698 return ret; 699 } 700 701 /* 702 * if we're already in a transaction, make sure to close 703 * any new transactions we start in this func 704 */ 705 if ((create & GET_BLOCK_NO_DANGLE) || 706 reiserfs_transaction_running(inode->i_sb)) 707 dangle = 0; 708 709 /* 710 * If file is of such a size, that it might have a tail and 711 * tails are enabled we should mark it as possibly needing 712 * tail packing on close 713 */ 714 if ((have_large_tails(inode->i_sb) 715 && inode->i_size < i_block_size(inode) * 4) 716 || (have_small_tails(inode->i_sb) 717 && inode->i_size < i_block_size(inode))) 718 REISERFS_I(inode)->i_flags |= i_pack_on_close_mask; 719 720 /* set the key of the first byte in the 'block'-th block of file */ 721 make_cpu_key(&key, inode, new_offset, TYPE_ANY, 3 /*key length */ ); 722 if ((new_offset + inode->i_sb->s_blocksize - 1) > inode->i_size) { 723 start_trans: 724 th = reiserfs_persistent_transaction(inode->i_sb, jbegin_count); 725 if (!th) { 726 retval = -ENOMEM; 727 goto failure; 728 } 729 reiserfs_update_inode_transaction(inode); 730 } 731 research: 732 733 retval = search_for_position_by_key(inode->i_sb, &key, &path); 734 if (retval == IO_ERROR) { 735 retval = -EIO; 736 goto failure; 737 } 738 739 bh = get_last_bh(&path); 740 ih = tp_item_head(&path); 741 item = tp_item_body(&path); 742 pos_in_item = path.pos_in_item; 743 744 fs_gen = get_generation(inode->i_sb); 745 copy_item_head(&tmp_ih, ih); 746 747 if (allocation_needed 748 (retval, allocated_block_nr, ih, item, pos_in_item)) { 749 /* we have to allocate block for the unformatted node */ 750 if (!th) { 751 pathrelse(&path); 752 goto start_trans; 753 } 754 755 repeat = 756 _allocate_block(th, block, inode, &allocated_block_nr, 757 &path, create); 758 759 /* 760 * restart the transaction to give the journal a chance to free 761 * some blocks. releases the path, so we have to go back to 762 * research if we succeed on the second try 763 */ 764 if (repeat == NO_DISK_SPACE || repeat == QUOTA_EXCEEDED) { 765 SB_JOURNAL(inode->i_sb)->j_next_async_flush = 1; 766 retval = restart_transaction(th, inode, &path); 767 if (retval) 768 goto failure; 769 repeat = 770 _allocate_block(th, block, inode, 771 &allocated_block_nr, NULL, create); 772 773 if (repeat != NO_DISK_SPACE && repeat != QUOTA_EXCEEDED) { 774 goto research; 775 } 776 if (repeat == QUOTA_EXCEEDED) 777 retval = -EDQUOT; 778 else 779 retval = -ENOSPC; 780 goto failure; 781 } 782 783 if (fs_changed(fs_gen, inode->i_sb) 784 && item_moved(&tmp_ih, &path)) { 785 goto research; 786 } 787 } 788 789 if (indirect_item_found(retval, ih)) { 790 b_blocknr_t unfm_ptr; 791 /* 792 * 'block'-th block is in the file already (there is 793 * corresponding cell in some indirect item). But it may be 794 * zero unformatted node pointer (hole) 795 */ 796 unfm_ptr = get_block_num(item, pos_in_item); 797 if (unfm_ptr == 0) { 798 /* use allocated block to plug the hole */ 799 reiserfs_prepare_for_journal(inode->i_sb, bh, 1); 800 if (fs_changed(fs_gen, inode->i_sb) 801 && item_moved(&tmp_ih, &path)) { 802 reiserfs_restore_prepared_buffer(inode->i_sb, 803 bh); 804 goto research; 805 } 806 set_buffer_new(bh_result); 807 if (buffer_dirty(bh_result) 808 && reiserfs_data_ordered(inode->i_sb)) 809 reiserfs_add_ordered_list(inode, bh_result); 810 put_block_num(item, pos_in_item, allocated_block_nr); 811 unfm_ptr = allocated_block_nr; 812 journal_mark_dirty(th, bh); 813 reiserfs_update_sd(th, inode); 814 } 815 set_block_dev_mapped(bh_result, unfm_ptr, inode); 816 pathrelse(&path); 817 retval = 0; 818 if (!dangle && th) 819 retval = reiserfs_end_persistent_transaction(th); 820 821 reiserfs_write_unlock(inode->i_sb); 822 823 /* 824 * the item was found, so new blocks were not added to the file 825 * there is no need to make sure the inode is updated with this 826 * transaction 827 */ 828 return retval; 829 } 830 831 if (!th) { 832 pathrelse(&path); 833 goto start_trans; 834 } 835 836 /* 837 * desired position is not found or is in the direct item. We have 838 * to append file with holes up to 'block'-th block converting 839 * direct items to indirect one if necessary 840 */ 841 done = 0; 842 do { 843 if (is_statdata_le_ih(ih)) { 844 __le32 unp = 0; 845 struct cpu_key tmp_key; 846 847 /* indirect item has to be inserted */ 848 make_le_item_head(&tmp_ih, &key, version, 1, 849 TYPE_INDIRECT, UNFM_P_SIZE, 850 0 /* free_space */ ); 851 852 /* 853 * we are going to add 'block'-th block to the file. 854 * Use allocated block for that 855 */ 856 if (cpu_key_k_offset(&key) == 1) { 857 unp = cpu_to_le32(allocated_block_nr); 858 set_block_dev_mapped(bh_result, 859 allocated_block_nr, inode); 860 set_buffer_new(bh_result); 861 done = 1; 862 } 863 tmp_key = key; /* ;) */ 864 set_cpu_key_k_offset(&tmp_key, 1); 865 PATH_LAST_POSITION(&path)++; 866 867 retval = 868 reiserfs_insert_item(th, &path, &tmp_key, &tmp_ih, 869 inode, (char *)&unp); 870 if (retval) { 871 reiserfs_free_block(th, inode, 872 allocated_block_nr, 1); 873 /* 874 * retval == -ENOSPC, -EDQUOT or -EIO 875 * or -EEXIST 876 */ 877 goto failure; 878 } 879 } else if (is_direct_le_ih(ih)) { 880 /* direct item has to be converted */ 881 loff_t tail_offset; 882 883 tail_offset = 884 ((le_ih_k_offset(ih) - 885 1) & ~(inode->i_sb->s_blocksize - 1)) + 1; 886 887 /* 888 * direct item we just found fits into block we have 889 * to map. Convert it into unformatted node: use 890 * bh_result for the conversion 891 */ 892 if (tail_offset == cpu_key_k_offset(&key)) { 893 set_block_dev_mapped(bh_result, 894 allocated_block_nr, inode); 895 unbh = bh_result; 896 done = 1; 897 } else { 898 /* 899 * we have to pad file tail stored in direct 900 * item(s) up to block size and convert it 901 * to unformatted node. FIXME: this should 902 * also get into page cache 903 */ 904 905 pathrelse(&path); 906 /* 907 * ugly, but we can only end the transaction if 908 * we aren't nested 909 */ 910 BUG_ON(!th->t_refcount); 911 if (th->t_refcount == 1) { 912 retval = 913 reiserfs_end_persistent_transaction 914 (th); 915 th = NULL; 916 if (retval) 917 goto failure; 918 } 919 920 retval = 921 convert_tail_for_hole(inode, bh_result, 922 tail_offset); 923 if (retval) { 924 if (retval != -ENOSPC) 925 reiserfs_error(inode->i_sb, 926 "clm-6004", 927 "convert tail failed " 928 "inode %lu, error %d", 929 inode->i_ino, 930 retval); 931 if (allocated_block_nr) { 932 /* 933 * the bitmap, the super, 934 * and the stat data == 3 935 */ 936 if (!th) 937 th = reiserfs_persistent_transaction(inode->i_sb, 3); 938 if (th) 939 reiserfs_free_block(th, 940 inode, 941 allocated_block_nr, 942 1); 943 } 944 goto failure; 945 } 946 goto research; 947 } 948 retval = 949 direct2indirect(th, inode, &path, unbh, 950 tail_offset); 951 if (retval) { 952 reiserfs_unmap_buffer(unbh); 953 reiserfs_free_block(th, inode, 954 allocated_block_nr, 1); 955 goto failure; 956 } 957 /* 958 * it is important the set_buffer_uptodate is done 959 * after the direct2indirect. The buffer might 960 * contain valid data newer than the data on disk 961 * (read by read_folio, changed, and then sent here by 962 * writepage). direct2indirect needs to know if unbh 963 * was already up to date, so it can decide if the 964 * data in unbh needs to be replaced with data from 965 * the disk 966 */ 967 set_buffer_uptodate(unbh); 968 969 /* 970 * unbh->b_page == NULL in case of DIRECT_IO request, 971 * this means buffer will disappear shortly, so it 972 * should not be added to 973 */ 974 if (unbh->b_page) { 975 /* 976 * we've converted the tail, so we must 977 * flush unbh before the transaction commits 978 */ 979 reiserfs_add_tail_list(inode, unbh); 980 981 /* 982 * mark it dirty now to prevent commit_write 983 * from adding this buffer to the inode's 984 * dirty buffer list 985 */ 986 /* 987 * AKPM: changed __mark_buffer_dirty to 988 * mark_buffer_dirty(). It's still atomic, 989 * but it sets the page dirty too, which makes 990 * it eligible for writeback at any time by the 991 * VM (which was also the case with 992 * __mark_buffer_dirty()) 993 */ 994 mark_buffer_dirty(unbh); 995 } 996 } else { 997 /* 998 * append indirect item with holes if needed, when 999 * appending pointer to 'block'-th block use block, 1000 * which is already allocated 1001 */ 1002 struct cpu_key tmp_key; 1003 /* 1004 * We use this in case we need to allocate 1005 * only one block which is a fastpath 1006 */ 1007 unp_t unf_single = 0; 1008 unp_t *un; 1009 __u64 max_to_insert = 1010 MAX_ITEM_LEN(inode->i_sb->s_blocksize) / 1011 UNFM_P_SIZE; 1012 __u64 blocks_needed; 1013 1014 RFALSE(pos_in_item != ih_item_len(ih) / UNFM_P_SIZE, 1015 "vs-804: invalid position for append"); 1016 /* 1017 * indirect item has to be appended, 1018 * set up key of that position 1019 * (key type is unimportant) 1020 */ 1021 make_cpu_key(&tmp_key, inode, 1022 le_key_k_offset(version, 1023 &ih->ih_key) + 1024 op_bytes_number(ih, 1025 inode->i_sb->s_blocksize), 1026 TYPE_INDIRECT, 3); 1027 1028 RFALSE(cpu_key_k_offset(&tmp_key) > cpu_key_k_offset(&key), 1029 "green-805: invalid offset"); 1030 blocks_needed = 1031 1 + 1032 ((cpu_key_k_offset(&key) - 1033 cpu_key_k_offset(&tmp_key)) >> inode->i_sb-> 1034 s_blocksize_bits); 1035 1036 if (blocks_needed == 1) { 1037 un = &unf_single; 1038 } else { 1039 un = kcalloc(min(blocks_needed, max_to_insert), 1040 UNFM_P_SIZE, GFP_NOFS); 1041 if (!un) { 1042 un = &unf_single; 1043 blocks_needed = 1; 1044 max_to_insert = 0; 1045 } 1046 } 1047 if (blocks_needed <= max_to_insert) { 1048 /* 1049 * we are going to add target block to 1050 * the file. Use allocated block for that 1051 */ 1052 un[blocks_needed - 1] = 1053 cpu_to_le32(allocated_block_nr); 1054 set_block_dev_mapped(bh_result, 1055 allocated_block_nr, inode); 1056 set_buffer_new(bh_result); 1057 done = 1; 1058 } else { 1059 /* paste hole to the indirect item */ 1060 /* 1061 * If kcalloc failed, max_to_insert becomes 1062 * zero and it means we only have space for 1063 * one block 1064 */ 1065 blocks_needed = 1066 max_to_insert ? max_to_insert : 1; 1067 } 1068 retval = 1069 reiserfs_paste_into_item(th, &path, &tmp_key, inode, 1070 (char *)un, 1071 UNFM_P_SIZE * 1072 blocks_needed); 1073 1074 if (blocks_needed != 1) 1075 kfree(un); 1076 1077 if (retval) { 1078 reiserfs_free_block(th, inode, 1079 allocated_block_nr, 1); 1080 goto failure; 1081 } 1082 if (!done) { 1083 /* 1084 * We need to mark new file size in case 1085 * this function will be interrupted/aborted 1086 * later on. And we may do this only for 1087 * holes. 1088 */ 1089 inode->i_size += 1090 inode->i_sb->s_blocksize * blocks_needed; 1091 } 1092 } 1093 1094 if (done == 1) 1095 break; 1096 1097 /* 1098 * this loop could log more blocks than we had originally 1099 * asked for. So, we have to allow the transaction to end 1100 * if it is too big or too full. Update the inode so things 1101 * are consistent if we crash before the function returns 1102 * release the path so that anybody waiting on the path before 1103 * ending their transaction will be able to continue. 1104 */ 1105 if (journal_transaction_should_end(th, th->t_blocks_allocated)) { 1106 retval = restart_transaction(th, inode, &path); 1107 if (retval) 1108 goto failure; 1109 } 1110 /* 1111 * inserting indirect pointers for a hole can take a 1112 * long time. reschedule if needed and also release the write 1113 * lock for others. 1114 */ 1115 reiserfs_cond_resched(inode->i_sb); 1116 1117 retval = search_for_position_by_key(inode->i_sb, &key, &path); 1118 if (retval == IO_ERROR) { 1119 retval = -EIO; 1120 goto failure; 1121 } 1122 if (retval == POSITION_FOUND) { 1123 reiserfs_warning(inode->i_sb, "vs-825", 1124 "%K should not be found", &key); 1125 retval = -EEXIST; 1126 if (allocated_block_nr) 1127 reiserfs_free_block(th, inode, 1128 allocated_block_nr, 1); 1129 pathrelse(&path); 1130 goto failure; 1131 } 1132 bh = get_last_bh(&path); 1133 ih = tp_item_head(&path); 1134 item = tp_item_body(&path); 1135 pos_in_item = path.pos_in_item; 1136 } while (1); 1137 1138 retval = 0; 1139 1140 failure: 1141 if (th && (!dangle || (retval && !th->t_trans_id))) { 1142 int err; 1143 if (th->t_trans_id) 1144 reiserfs_update_sd(th, inode); 1145 err = reiserfs_end_persistent_transaction(th); 1146 if (err) 1147 retval = err; 1148 } 1149 1150 reiserfs_write_unlock(inode->i_sb); 1151 reiserfs_check_path(&path); 1152 return retval; 1153 } 1154 1155 static void reiserfs_readahead(struct readahead_control *rac) 1156 { 1157 mpage_readahead(rac, reiserfs_get_block); 1158 } 1159 1160 /* 1161 * Compute real number of used bytes by file 1162 * Following three functions can go away when we'll have enough space in 1163 * stat item 1164 */ 1165 static int real_space_diff(struct inode *inode, int sd_size) 1166 { 1167 int bytes; 1168 loff_t blocksize = inode->i_sb->s_blocksize; 1169 1170 if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode)) 1171 return sd_size; 1172 1173 /* 1174 * End of file is also in full block with indirect reference, so round 1175 * up to the next block. 1176 * 1177 * there is just no way to know if the tail is actually packed 1178 * on the file, so we have to assume it isn't. When we pack the 1179 * tail, we add 4 bytes to pretend there really is an unformatted 1180 * node pointer 1181 */ 1182 bytes = 1183 ((inode->i_size + 1184 (blocksize - 1)) >> inode->i_sb->s_blocksize_bits) * UNFM_P_SIZE + 1185 sd_size; 1186 return bytes; 1187 } 1188 1189 static inline loff_t to_real_used_space(struct inode *inode, ulong blocks, 1190 int sd_size) 1191 { 1192 if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode)) { 1193 return inode->i_size + 1194 (loff_t) (real_space_diff(inode, sd_size)); 1195 } 1196 return ((loff_t) real_space_diff(inode, sd_size)) + 1197 (((loff_t) blocks) << 9); 1198 } 1199 1200 /* Compute number of blocks used by file in ReiserFS counting */ 1201 static inline ulong to_fake_used_blocks(struct inode *inode, int sd_size) 1202 { 1203 loff_t bytes = inode_get_bytes(inode); 1204 loff_t real_space = real_space_diff(inode, sd_size); 1205 1206 /* keeps fsck and non-quota versions of reiserfs happy */ 1207 if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode)) { 1208 bytes += (loff_t) 511; 1209 } 1210 1211 /* 1212 * files from before the quota patch might i_blocks such that 1213 * bytes < real_space. Deal with that here to prevent it from 1214 * going negative. 1215 */ 1216 if (bytes < real_space) 1217 return 0; 1218 return (bytes - real_space) >> 9; 1219 } 1220 1221 /* 1222 * BAD: new directories have stat data of new type and all other items 1223 * of old type. Version stored in the inode says about body items, so 1224 * in update_stat_data we can not rely on inode, but have to check 1225 * item version directly 1226 */ 1227 1228 /* called by read_locked_inode */ 1229 static void init_inode(struct inode *inode, struct treepath *path) 1230 { 1231 struct buffer_head *bh; 1232 struct item_head *ih; 1233 __u32 rdev; 1234 1235 bh = PATH_PLAST_BUFFER(path); 1236 ih = tp_item_head(path); 1237 1238 copy_key(INODE_PKEY(inode), &ih->ih_key); 1239 1240 INIT_LIST_HEAD(&REISERFS_I(inode)->i_prealloc_list); 1241 REISERFS_I(inode)->i_flags = 0; 1242 REISERFS_I(inode)->i_prealloc_block = 0; 1243 REISERFS_I(inode)->i_prealloc_count = 0; 1244 REISERFS_I(inode)->i_trans_id = 0; 1245 REISERFS_I(inode)->i_jl = NULL; 1246 reiserfs_init_xattr_rwsem(inode); 1247 1248 if (stat_data_v1(ih)) { 1249 struct stat_data_v1 *sd = 1250 (struct stat_data_v1 *)ih_item_body(bh, ih); 1251 unsigned long blocks; 1252 1253 set_inode_item_key_version(inode, KEY_FORMAT_3_5); 1254 set_inode_sd_version(inode, STAT_DATA_V1); 1255 inode->i_mode = sd_v1_mode(sd); 1256 set_nlink(inode, sd_v1_nlink(sd)); 1257 i_uid_write(inode, sd_v1_uid(sd)); 1258 i_gid_write(inode, sd_v1_gid(sd)); 1259 inode->i_size = sd_v1_size(sd); 1260 inode->i_atime.tv_sec = sd_v1_atime(sd); 1261 inode->i_mtime.tv_sec = sd_v1_mtime(sd); 1262 inode->i_ctime.tv_sec = sd_v1_ctime(sd); 1263 inode->i_atime.tv_nsec = 0; 1264 inode->i_ctime.tv_nsec = 0; 1265 inode->i_mtime.tv_nsec = 0; 1266 1267 inode->i_blocks = sd_v1_blocks(sd); 1268 inode->i_generation = le32_to_cpu(INODE_PKEY(inode)->k_dir_id); 1269 blocks = (inode->i_size + 511) >> 9; 1270 blocks = _ROUND_UP(blocks, inode->i_sb->s_blocksize >> 9); 1271 1272 /* 1273 * there was a bug in <=3.5.23 when i_blocks could take 1274 * negative values. Starting from 3.5.17 this value could 1275 * even be stored in stat data. For such files we set 1276 * i_blocks based on file size. Just 2 notes: this can be 1277 * wrong for sparse files. On-disk value will be only 1278 * updated if file's inode will ever change 1279 */ 1280 if (inode->i_blocks > blocks) { 1281 inode->i_blocks = blocks; 1282 } 1283 1284 rdev = sd_v1_rdev(sd); 1285 REISERFS_I(inode)->i_first_direct_byte = 1286 sd_v1_first_direct_byte(sd); 1287 1288 /* 1289 * an early bug in the quota code can give us an odd 1290 * number for the block count. This is incorrect, fix it here. 1291 */ 1292 if (inode->i_blocks & 1) { 1293 inode->i_blocks++; 1294 } 1295 inode_set_bytes(inode, 1296 to_real_used_space(inode, inode->i_blocks, 1297 SD_V1_SIZE)); 1298 /* 1299 * nopack is initially zero for v1 objects. For v2 objects, 1300 * nopack is initialised from sd_attrs 1301 */ 1302 REISERFS_I(inode)->i_flags &= ~i_nopack_mask; 1303 } else { 1304 /* 1305 * new stat data found, but object may have old items 1306 * (directories and symlinks) 1307 */ 1308 struct stat_data *sd = (struct stat_data *)ih_item_body(bh, ih); 1309 1310 inode->i_mode = sd_v2_mode(sd); 1311 set_nlink(inode, sd_v2_nlink(sd)); 1312 i_uid_write(inode, sd_v2_uid(sd)); 1313 inode->i_size = sd_v2_size(sd); 1314 i_gid_write(inode, sd_v2_gid(sd)); 1315 inode->i_mtime.tv_sec = sd_v2_mtime(sd); 1316 inode->i_atime.tv_sec = sd_v2_atime(sd); 1317 inode->i_ctime.tv_sec = sd_v2_ctime(sd); 1318 inode->i_ctime.tv_nsec = 0; 1319 inode->i_mtime.tv_nsec = 0; 1320 inode->i_atime.tv_nsec = 0; 1321 inode->i_blocks = sd_v2_blocks(sd); 1322 rdev = sd_v2_rdev(sd); 1323 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) 1324 inode->i_generation = 1325 le32_to_cpu(INODE_PKEY(inode)->k_dir_id); 1326 else 1327 inode->i_generation = sd_v2_generation(sd); 1328 1329 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode)) 1330 set_inode_item_key_version(inode, KEY_FORMAT_3_5); 1331 else 1332 set_inode_item_key_version(inode, KEY_FORMAT_3_6); 1333 REISERFS_I(inode)->i_first_direct_byte = 0; 1334 set_inode_sd_version(inode, STAT_DATA_V2); 1335 inode_set_bytes(inode, 1336 to_real_used_space(inode, inode->i_blocks, 1337 SD_V2_SIZE)); 1338 /* 1339 * read persistent inode attributes from sd and initialise 1340 * generic inode flags from them 1341 */ 1342 REISERFS_I(inode)->i_attrs = sd_v2_attrs(sd); 1343 sd_attrs_to_i_attrs(sd_v2_attrs(sd), inode); 1344 } 1345 1346 pathrelse(path); 1347 if (S_ISREG(inode->i_mode)) { 1348 inode->i_op = &reiserfs_file_inode_operations; 1349 inode->i_fop = &reiserfs_file_operations; 1350 inode->i_mapping->a_ops = &reiserfs_address_space_operations; 1351 } else if (S_ISDIR(inode->i_mode)) { 1352 inode->i_op = &reiserfs_dir_inode_operations; 1353 inode->i_fop = &reiserfs_dir_operations; 1354 } else if (S_ISLNK(inode->i_mode)) { 1355 inode->i_op = &reiserfs_symlink_inode_operations; 1356 inode_nohighmem(inode); 1357 inode->i_mapping->a_ops = &reiserfs_address_space_operations; 1358 } else { 1359 inode->i_blocks = 0; 1360 inode->i_op = &reiserfs_special_inode_operations; 1361 init_special_inode(inode, inode->i_mode, new_decode_dev(rdev)); 1362 } 1363 } 1364 1365 /* update new stat data with inode fields */ 1366 static void inode2sd(void *sd, struct inode *inode, loff_t size) 1367 { 1368 struct stat_data *sd_v2 = (struct stat_data *)sd; 1369 1370 set_sd_v2_mode(sd_v2, inode->i_mode); 1371 set_sd_v2_nlink(sd_v2, inode->i_nlink); 1372 set_sd_v2_uid(sd_v2, i_uid_read(inode)); 1373 set_sd_v2_size(sd_v2, size); 1374 set_sd_v2_gid(sd_v2, i_gid_read(inode)); 1375 set_sd_v2_mtime(sd_v2, inode->i_mtime.tv_sec); 1376 set_sd_v2_atime(sd_v2, inode->i_atime.tv_sec); 1377 set_sd_v2_ctime(sd_v2, inode->i_ctime.tv_sec); 1378 set_sd_v2_blocks(sd_v2, to_fake_used_blocks(inode, SD_V2_SIZE)); 1379 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) 1380 set_sd_v2_rdev(sd_v2, new_encode_dev(inode->i_rdev)); 1381 else 1382 set_sd_v2_generation(sd_v2, inode->i_generation); 1383 set_sd_v2_attrs(sd_v2, REISERFS_I(inode)->i_attrs); 1384 } 1385 1386 /* used to copy inode's fields to old stat data */ 1387 static void inode2sd_v1(void *sd, struct inode *inode, loff_t size) 1388 { 1389 struct stat_data_v1 *sd_v1 = (struct stat_data_v1 *)sd; 1390 1391 set_sd_v1_mode(sd_v1, inode->i_mode); 1392 set_sd_v1_uid(sd_v1, i_uid_read(inode)); 1393 set_sd_v1_gid(sd_v1, i_gid_read(inode)); 1394 set_sd_v1_nlink(sd_v1, inode->i_nlink); 1395 set_sd_v1_size(sd_v1, size); 1396 set_sd_v1_atime(sd_v1, inode->i_atime.tv_sec); 1397 set_sd_v1_ctime(sd_v1, inode->i_ctime.tv_sec); 1398 set_sd_v1_mtime(sd_v1, inode->i_mtime.tv_sec); 1399 1400 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) 1401 set_sd_v1_rdev(sd_v1, new_encode_dev(inode->i_rdev)); 1402 else 1403 set_sd_v1_blocks(sd_v1, to_fake_used_blocks(inode, SD_V1_SIZE)); 1404 1405 /* Sigh. i_first_direct_byte is back */ 1406 set_sd_v1_first_direct_byte(sd_v1, 1407 REISERFS_I(inode)->i_first_direct_byte); 1408 } 1409 1410 /* 1411 * NOTE, you must prepare the buffer head before sending it here, 1412 * and then log it after the call 1413 */ 1414 static void update_stat_data(struct treepath *path, struct inode *inode, 1415 loff_t size) 1416 { 1417 struct buffer_head *bh; 1418 struct item_head *ih; 1419 1420 bh = PATH_PLAST_BUFFER(path); 1421 ih = tp_item_head(path); 1422 1423 if (!is_statdata_le_ih(ih)) 1424 reiserfs_panic(inode->i_sb, "vs-13065", "key %k, found item %h", 1425 INODE_PKEY(inode), ih); 1426 1427 /* path points to old stat data */ 1428 if (stat_data_v1(ih)) { 1429 inode2sd_v1(ih_item_body(bh, ih), inode, size); 1430 } else { 1431 inode2sd(ih_item_body(bh, ih), inode, size); 1432 } 1433 1434 return; 1435 } 1436 1437 void reiserfs_update_sd_size(struct reiserfs_transaction_handle *th, 1438 struct inode *inode, loff_t size) 1439 { 1440 struct cpu_key key; 1441 INITIALIZE_PATH(path); 1442 struct buffer_head *bh; 1443 int fs_gen; 1444 struct item_head *ih, tmp_ih; 1445 int retval; 1446 1447 BUG_ON(!th->t_trans_id); 1448 1449 /* key type is unimportant */ 1450 make_cpu_key(&key, inode, SD_OFFSET, TYPE_STAT_DATA, 3); 1451 1452 for (;;) { 1453 int pos; 1454 /* look for the object's stat data */ 1455 retval = search_item(inode->i_sb, &key, &path); 1456 if (retval == IO_ERROR) { 1457 reiserfs_error(inode->i_sb, "vs-13050", 1458 "i/o failure occurred trying to " 1459 "update %K stat data", &key); 1460 return; 1461 } 1462 if (retval == ITEM_NOT_FOUND) { 1463 pos = PATH_LAST_POSITION(&path); 1464 pathrelse(&path); 1465 if (inode->i_nlink == 0) { 1466 /*reiserfs_warning (inode->i_sb, "vs-13050: reiserfs_update_sd: i_nlink == 0, stat data not found"); */ 1467 return; 1468 } 1469 reiserfs_warning(inode->i_sb, "vs-13060", 1470 "stat data of object %k (nlink == %d) " 1471 "not found (pos %d)", 1472 INODE_PKEY(inode), inode->i_nlink, 1473 pos); 1474 reiserfs_check_path(&path); 1475 return; 1476 } 1477 1478 /* 1479 * sigh, prepare_for_journal might schedule. When it 1480 * schedules the FS might change. We have to detect that, 1481 * and loop back to the search if the stat data item has moved 1482 */ 1483 bh = get_last_bh(&path); 1484 ih = tp_item_head(&path); 1485 copy_item_head(&tmp_ih, ih); 1486 fs_gen = get_generation(inode->i_sb); 1487 reiserfs_prepare_for_journal(inode->i_sb, bh, 1); 1488 1489 /* Stat_data item has been moved after scheduling. */ 1490 if (fs_changed(fs_gen, inode->i_sb) 1491 && item_moved(&tmp_ih, &path)) { 1492 reiserfs_restore_prepared_buffer(inode->i_sb, bh); 1493 continue; 1494 } 1495 break; 1496 } 1497 update_stat_data(&path, inode, size); 1498 journal_mark_dirty(th, bh); 1499 pathrelse(&path); 1500 return; 1501 } 1502 1503 /* 1504 * reiserfs_read_locked_inode is called to read the inode off disk, and it 1505 * does a make_bad_inode when things go wrong. But, we need to make sure 1506 * and clear the key in the private portion of the inode, otherwise a 1507 * corresponding iput might try to delete whatever object the inode last 1508 * represented. 1509 */ 1510 static void reiserfs_make_bad_inode(struct inode *inode) 1511 { 1512 memset(INODE_PKEY(inode), 0, KEY_SIZE); 1513 make_bad_inode(inode); 1514 } 1515 1516 /* 1517 * initially this function was derived from minix or ext2's analog and 1518 * evolved as the prototype did 1519 */ 1520 int reiserfs_init_locked_inode(struct inode *inode, void *p) 1521 { 1522 struct reiserfs_iget_args *args = (struct reiserfs_iget_args *)p; 1523 inode->i_ino = args->objectid; 1524 INODE_PKEY(inode)->k_dir_id = cpu_to_le32(args->dirid); 1525 return 0; 1526 } 1527 1528 /* 1529 * looks for stat data in the tree, and fills up the fields of in-core 1530 * inode stat data fields 1531 */ 1532 void reiserfs_read_locked_inode(struct inode *inode, 1533 struct reiserfs_iget_args *args) 1534 { 1535 INITIALIZE_PATH(path_to_sd); 1536 struct cpu_key key; 1537 unsigned long dirino; 1538 int retval; 1539 1540 dirino = args->dirid; 1541 1542 /* 1543 * set version 1, version 2 could be used too, because stat data 1544 * key is the same in both versions 1545 */ 1546 _make_cpu_key(&key, KEY_FORMAT_3_5, dirino, inode->i_ino, 0, 0, 3); 1547 1548 /* look for the object's stat data */ 1549 retval = search_item(inode->i_sb, &key, &path_to_sd); 1550 if (retval == IO_ERROR) { 1551 reiserfs_error(inode->i_sb, "vs-13070", 1552 "i/o failure occurred trying to find " 1553 "stat data of %K", &key); 1554 reiserfs_make_bad_inode(inode); 1555 return; 1556 } 1557 1558 /* a stale NFS handle can trigger this without it being an error */ 1559 if (retval != ITEM_FOUND) { 1560 pathrelse(&path_to_sd); 1561 reiserfs_make_bad_inode(inode); 1562 clear_nlink(inode); 1563 return; 1564 } 1565 1566 init_inode(inode, &path_to_sd); 1567 1568 /* 1569 * It is possible that knfsd is trying to access inode of a file 1570 * that is being removed from the disk by some other thread. As we 1571 * update sd on unlink all that is required is to check for nlink 1572 * here. This bug was first found by Sizif when debugging 1573 * SquidNG/Butterfly, forgotten, and found again after Philippe 1574 * Gramoulle <philippe.gramoulle@mmania.com> reproduced it. 1575 1576 * More logical fix would require changes in fs/inode.c:iput() to 1577 * remove inode from hash-table _after_ fs cleaned disk stuff up and 1578 * in iget() to return NULL if I_FREEING inode is found in 1579 * hash-table. 1580 */ 1581 1582 /* 1583 * Currently there is one place where it's ok to meet inode with 1584 * nlink==0: processing of open-unlinked and half-truncated files 1585 * during mount (fs/reiserfs/super.c:finish_unfinished()). 1586 */ 1587 if ((inode->i_nlink == 0) && 1588 !REISERFS_SB(inode->i_sb)->s_is_unlinked_ok) { 1589 reiserfs_warning(inode->i_sb, "vs-13075", 1590 "dead inode read from disk %K. " 1591 "This is likely to be race with knfsd. Ignore", 1592 &key); 1593 reiserfs_make_bad_inode(inode); 1594 } 1595 1596 /* init inode should be relsing */ 1597 reiserfs_check_path(&path_to_sd); 1598 1599 /* 1600 * Stat data v1 doesn't support ACLs. 1601 */ 1602 if (get_inode_sd_version(inode) == STAT_DATA_V1) 1603 cache_no_acl(inode); 1604 } 1605 1606 /* 1607 * reiserfs_find_actor() - "find actor" reiserfs supplies to iget5_locked(). 1608 * 1609 * @inode: inode from hash table to check 1610 * @opaque: "cookie" passed to iget5_locked(). This is &reiserfs_iget_args. 1611 * 1612 * This function is called by iget5_locked() to distinguish reiserfs inodes 1613 * having the same inode numbers. Such inodes can only exist due to some 1614 * error condition. One of them should be bad. Inodes with identical 1615 * inode numbers (objectids) are distinguished by parent directory ids. 1616 * 1617 */ 1618 int reiserfs_find_actor(struct inode *inode, void *opaque) 1619 { 1620 struct reiserfs_iget_args *args; 1621 1622 args = opaque; 1623 /* args is already in CPU order */ 1624 return (inode->i_ino == args->objectid) && 1625 (le32_to_cpu(INODE_PKEY(inode)->k_dir_id) == args->dirid); 1626 } 1627 1628 struct inode *reiserfs_iget(struct super_block *s, const struct cpu_key *key) 1629 { 1630 struct inode *inode; 1631 struct reiserfs_iget_args args; 1632 int depth; 1633 1634 args.objectid = key->on_disk_key.k_objectid; 1635 args.dirid = key->on_disk_key.k_dir_id; 1636 depth = reiserfs_write_unlock_nested(s); 1637 inode = iget5_locked(s, key->on_disk_key.k_objectid, 1638 reiserfs_find_actor, reiserfs_init_locked_inode, 1639 (void *)(&args)); 1640 reiserfs_write_lock_nested(s, depth); 1641 if (!inode) 1642 return ERR_PTR(-ENOMEM); 1643 1644 if (inode->i_state & I_NEW) { 1645 reiserfs_read_locked_inode(inode, &args); 1646 unlock_new_inode(inode); 1647 } 1648 1649 if (comp_short_keys(INODE_PKEY(inode), key) || is_bad_inode(inode)) { 1650 /* either due to i/o error or a stale NFS handle */ 1651 iput(inode); 1652 inode = NULL; 1653 } 1654 return inode; 1655 } 1656 1657 static struct dentry *reiserfs_get_dentry(struct super_block *sb, 1658 u32 objectid, u32 dir_id, u32 generation) 1659 1660 { 1661 struct cpu_key key; 1662 struct inode *inode; 1663 1664 key.on_disk_key.k_objectid = objectid; 1665 key.on_disk_key.k_dir_id = dir_id; 1666 reiserfs_write_lock(sb); 1667 inode = reiserfs_iget(sb, &key); 1668 if (inode && !IS_ERR(inode) && generation != 0 && 1669 generation != inode->i_generation) { 1670 iput(inode); 1671 inode = NULL; 1672 } 1673 reiserfs_write_unlock(sb); 1674 1675 return d_obtain_alias(inode); 1676 } 1677 1678 struct dentry *reiserfs_fh_to_dentry(struct super_block *sb, struct fid *fid, 1679 int fh_len, int fh_type) 1680 { 1681 /* 1682 * fhtype happens to reflect the number of u32s encoded. 1683 * due to a bug in earlier code, fhtype might indicate there 1684 * are more u32s then actually fitted. 1685 * so if fhtype seems to be more than len, reduce fhtype. 1686 * Valid types are: 1687 * 2 - objectid + dir_id - legacy support 1688 * 3 - objectid + dir_id + generation 1689 * 4 - objectid + dir_id + objectid and dirid of parent - legacy 1690 * 5 - objectid + dir_id + generation + objectid and dirid of parent 1691 * 6 - as above plus generation of directory 1692 * 6 does not fit in NFSv2 handles 1693 */ 1694 if (fh_type > fh_len) { 1695 if (fh_type != 6 || fh_len != 5) 1696 reiserfs_warning(sb, "reiserfs-13077", 1697 "nfsd/reiserfs, fhtype=%d, len=%d - odd", 1698 fh_type, fh_len); 1699 fh_type = fh_len; 1700 } 1701 if (fh_len < 2) 1702 return NULL; 1703 1704 return reiserfs_get_dentry(sb, fid->raw[0], fid->raw[1], 1705 (fh_type == 3 || fh_type >= 5) ? fid->raw[2] : 0); 1706 } 1707 1708 struct dentry *reiserfs_fh_to_parent(struct super_block *sb, struct fid *fid, 1709 int fh_len, int fh_type) 1710 { 1711 if (fh_type > fh_len) 1712 fh_type = fh_len; 1713 if (fh_type < 4) 1714 return NULL; 1715 1716 return reiserfs_get_dentry(sb, 1717 (fh_type >= 5) ? fid->raw[3] : fid->raw[2], 1718 (fh_type >= 5) ? fid->raw[4] : fid->raw[3], 1719 (fh_type == 6) ? fid->raw[5] : 0); 1720 } 1721 1722 int reiserfs_encode_fh(struct inode *inode, __u32 * data, int *lenp, 1723 struct inode *parent) 1724 { 1725 int maxlen = *lenp; 1726 1727 if (parent && (maxlen < 5)) { 1728 *lenp = 5; 1729 return FILEID_INVALID; 1730 } else if (maxlen < 3) { 1731 *lenp = 3; 1732 return FILEID_INVALID; 1733 } 1734 1735 data[0] = inode->i_ino; 1736 data[1] = le32_to_cpu(INODE_PKEY(inode)->k_dir_id); 1737 data[2] = inode->i_generation; 1738 *lenp = 3; 1739 if (parent) { 1740 data[3] = parent->i_ino; 1741 data[4] = le32_to_cpu(INODE_PKEY(parent)->k_dir_id); 1742 *lenp = 5; 1743 if (maxlen >= 6) { 1744 data[5] = parent->i_generation; 1745 *lenp = 6; 1746 } 1747 } 1748 return *lenp; 1749 } 1750 1751 /* 1752 * looks for stat data, then copies fields to it, marks the buffer 1753 * containing stat data as dirty 1754 */ 1755 /* 1756 * reiserfs inodes are never really dirty, since the dirty inode call 1757 * always logs them. This call allows the VFS inode marking routines 1758 * to properly mark inodes for datasync and such, but only actually 1759 * does something when called for a synchronous update. 1760 */ 1761 int reiserfs_write_inode(struct inode *inode, struct writeback_control *wbc) 1762 { 1763 struct reiserfs_transaction_handle th; 1764 int jbegin_count = 1; 1765 1766 if (sb_rdonly(inode->i_sb)) 1767 return -EROFS; 1768 /* 1769 * memory pressure can sometimes initiate write_inode calls with 1770 * sync == 1, 1771 * these cases are just when the system needs ram, not when the 1772 * inode needs to reach disk for safety, and they can safely be 1773 * ignored because the altered inode has already been logged. 1774 */ 1775 if (wbc->sync_mode == WB_SYNC_ALL && !(current->flags & PF_MEMALLOC)) { 1776 reiserfs_write_lock(inode->i_sb); 1777 if (!journal_begin(&th, inode->i_sb, jbegin_count)) { 1778 reiserfs_update_sd(&th, inode); 1779 journal_end_sync(&th); 1780 } 1781 reiserfs_write_unlock(inode->i_sb); 1782 } 1783 return 0; 1784 } 1785 1786 /* 1787 * stat data of new object is inserted already, this inserts the item 1788 * containing "." and ".." entries 1789 */ 1790 static int reiserfs_new_directory(struct reiserfs_transaction_handle *th, 1791 struct inode *inode, 1792 struct item_head *ih, struct treepath *path, 1793 struct inode *dir) 1794 { 1795 struct super_block *sb = th->t_super; 1796 char empty_dir[EMPTY_DIR_SIZE]; 1797 char *body = empty_dir; 1798 struct cpu_key key; 1799 int retval; 1800 1801 BUG_ON(!th->t_trans_id); 1802 1803 _make_cpu_key(&key, KEY_FORMAT_3_5, le32_to_cpu(ih->ih_key.k_dir_id), 1804 le32_to_cpu(ih->ih_key.k_objectid), DOT_OFFSET, 1805 TYPE_DIRENTRY, 3 /*key length */ ); 1806 1807 /* 1808 * compose item head for new item. Directories consist of items of 1809 * old type (ITEM_VERSION_1). Do not set key (second arg is 0), it 1810 * is done by reiserfs_new_inode 1811 */ 1812 if (old_format_only(sb)) { 1813 make_le_item_head(ih, NULL, KEY_FORMAT_3_5, DOT_OFFSET, 1814 TYPE_DIRENTRY, EMPTY_DIR_SIZE_V1, 2); 1815 1816 make_empty_dir_item_v1(body, ih->ih_key.k_dir_id, 1817 ih->ih_key.k_objectid, 1818 INODE_PKEY(dir)->k_dir_id, 1819 INODE_PKEY(dir)->k_objectid); 1820 } else { 1821 make_le_item_head(ih, NULL, KEY_FORMAT_3_5, DOT_OFFSET, 1822 TYPE_DIRENTRY, EMPTY_DIR_SIZE, 2); 1823 1824 make_empty_dir_item(body, ih->ih_key.k_dir_id, 1825 ih->ih_key.k_objectid, 1826 INODE_PKEY(dir)->k_dir_id, 1827 INODE_PKEY(dir)->k_objectid); 1828 } 1829 1830 /* look for place in the tree for new item */ 1831 retval = search_item(sb, &key, path); 1832 if (retval == IO_ERROR) { 1833 reiserfs_error(sb, "vs-13080", 1834 "i/o failure occurred creating new directory"); 1835 return -EIO; 1836 } 1837 if (retval == ITEM_FOUND) { 1838 pathrelse(path); 1839 reiserfs_warning(sb, "vs-13070", 1840 "object with this key exists (%k)", 1841 &(ih->ih_key)); 1842 return -EEXIST; 1843 } 1844 1845 /* insert item, that is empty directory item */ 1846 return reiserfs_insert_item(th, path, &key, ih, inode, body); 1847 } 1848 1849 /* 1850 * stat data of object has been inserted, this inserts the item 1851 * containing the body of symlink 1852 */ 1853 static int reiserfs_new_symlink(struct reiserfs_transaction_handle *th, 1854 struct inode *inode, 1855 struct item_head *ih, 1856 struct treepath *path, const char *symname, 1857 int item_len) 1858 { 1859 struct super_block *sb = th->t_super; 1860 struct cpu_key key; 1861 int retval; 1862 1863 BUG_ON(!th->t_trans_id); 1864 1865 _make_cpu_key(&key, KEY_FORMAT_3_5, 1866 le32_to_cpu(ih->ih_key.k_dir_id), 1867 le32_to_cpu(ih->ih_key.k_objectid), 1868 1, TYPE_DIRECT, 3 /*key length */ ); 1869 1870 make_le_item_head(ih, NULL, KEY_FORMAT_3_5, 1, TYPE_DIRECT, item_len, 1871 0 /*free_space */ ); 1872 1873 /* look for place in the tree for new item */ 1874 retval = search_item(sb, &key, path); 1875 if (retval == IO_ERROR) { 1876 reiserfs_error(sb, "vs-13080", 1877 "i/o failure occurred creating new symlink"); 1878 return -EIO; 1879 } 1880 if (retval == ITEM_FOUND) { 1881 pathrelse(path); 1882 reiserfs_warning(sb, "vs-13080", 1883 "object with this key exists (%k)", 1884 &(ih->ih_key)); 1885 return -EEXIST; 1886 } 1887 1888 /* insert item, that is body of symlink */ 1889 return reiserfs_insert_item(th, path, &key, ih, inode, symname); 1890 } 1891 1892 /* 1893 * inserts the stat data into the tree, and then calls 1894 * reiserfs_new_directory (to insert ".", ".." item if new object is 1895 * directory) or reiserfs_new_symlink (to insert symlink body if new 1896 * object is symlink) or nothing (if new object is regular file) 1897 1898 * NOTE! uid and gid must already be set in the inode. If we return 1899 * non-zero due to an error, we have to drop the quota previously allocated 1900 * for the fresh inode. This can only be done outside a transaction, so 1901 * if we return non-zero, we also end the transaction. 1902 * 1903 * @th: active transaction handle 1904 * @dir: parent directory for new inode 1905 * @mode: mode of new inode 1906 * @symname: symlink contents if inode is symlink 1907 * @isize: 0 for regular file, EMPTY_DIR_SIZE for dirs, strlen(symname) for 1908 * symlinks 1909 * @inode: inode to be filled 1910 * @security: optional security context to associate with this inode 1911 */ 1912 int reiserfs_new_inode(struct reiserfs_transaction_handle *th, 1913 struct inode *dir, umode_t mode, const char *symname, 1914 /* 0 for regular, EMTRY_DIR_SIZE for dirs, 1915 strlen (symname) for symlinks) */ 1916 loff_t i_size, struct dentry *dentry, 1917 struct inode *inode, 1918 struct reiserfs_security_handle *security) 1919 { 1920 struct super_block *sb = dir->i_sb; 1921 struct reiserfs_iget_args args; 1922 INITIALIZE_PATH(path_to_key); 1923 struct cpu_key key; 1924 struct item_head ih; 1925 struct stat_data sd; 1926 int retval; 1927 int err; 1928 int depth; 1929 1930 BUG_ON(!th->t_trans_id); 1931 1932 depth = reiserfs_write_unlock_nested(sb); 1933 err = dquot_alloc_inode(inode); 1934 reiserfs_write_lock_nested(sb, depth); 1935 if (err) 1936 goto out_end_trans; 1937 if (!dir->i_nlink) { 1938 err = -EPERM; 1939 goto out_bad_inode; 1940 } 1941 1942 /* item head of new item */ 1943 ih.ih_key.k_dir_id = reiserfs_choose_packing(dir); 1944 ih.ih_key.k_objectid = cpu_to_le32(reiserfs_get_unused_objectid(th)); 1945 if (!ih.ih_key.k_objectid) { 1946 err = -ENOMEM; 1947 goto out_bad_inode; 1948 } 1949 args.objectid = inode->i_ino = le32_to_cpu(ih.ih_key.k_objectid); 1950 if (old_format_only(sb)) 1951 make_le_item_head(&ih, NULL, KEY_FORMAT_3_5, SD_OFFSET, 1952 TYPE_STAT_DATA, SD_V1_SIZE, MAX_US_INT); 1953 else 1954 make_le_item_head(&ih, NULL, KEY_FORMAT_3_6, SD_OFFSET, 1955 TYPE_STAT_DATA, SD_SIZE, MAX_US_INT); 1956 memcpy(INODE_PKEY(inode), &ih.ih_key, KEY_SIZE); 1957 args.dirid = le32_to_cpu(ih.ih_key.k_dir_id); 1958 1959 depth = reiserfs_write_unlock_nested(inode->i_sb); 1960 err = insert_inode_locked4(inode, args.objectid, 1961 reiserfs_find_actor, &args); 1962 reiserfs_write_lock_nested(inode->i_sb, depth); 1963 if (err) { 1964 err = -EINVAL; 1965 goto out_bad_inode; 1966 } 1967 1968 if (old_format_only(sb)) 1969 /* 1970 * not a perfect generation count, as object ids can be reused, 1971 * but this is as good as reiserfs can do right now. 1972 * note that the private part of inode isn't filled in yet, 1973 * we have to use the directory. 1974 */ 1975 inode->i_generation = le32_to_cpu(INODE_PKEY(dir)->k_objectid); 1976 else 1977 #if defined( USE_INODE_GENERATION_COUNTER ) 1978 inode->i_generation = 1979 le32_to_cpu(REISERFS_SB(sb)->s_rs->s_inode_generation); 1980 #else 1981 inode->i_generation = ++event; 1982 #endif 1983 1984 /* fill stat data */ 1985 set_nlink(inode, (S_ISDIR(mode) ? 2 : 1)); 1986 1987 /* uid and gid must already be set by the caller for quota init */ 1988 1989 inode->i_mtime = inode->i_atime = inode->i_ctime = current_time(inode); 1990 inode->i_size = i_size; 1991 inode->i_blocks = 0; 1992 inode->i_bytes = 0; 1993 REISERFS_I(inode)->i_first_direct_byte = S_ISLNK(mode) ? 1 : 1994 U32_MAX /*NO_BYTES_IN_DIRECT_ITEM */ ; 1995 1996 INIT_LIST_HEAD(&REISERFS_I(inode)->i_prealloc_list); 1997 REISERFS_I(inode)->i_flags = 0; 1998 REISERFS_I(inode)->i_prealloc_block = 0; 1999 REISERFS_I(inode)->i_prealloc_count = 0; 2000 REISERFS_I(inode)->i_trans_id = 0; 2001 REISERFS_I(inode)->i_jl = NULL; 2002 REISERFS_I(inode)->i_attrs = 2003 REISERFS_I(dir)->i_attrs & REISERFS_INHERIT_MASK; 2004 sd_attrs_to_i_attrs(REISERFS_I(inode)->i_attrs, inode); 2005 reiserfs_init_xattr_rwsem(inode); 2006 2007 /* key to search for correct place for new stat data */ 2008 _make_cpu_key(&key, KEY_FORMAT_3_6, le32_to_cpu(ih.ih_key.k_dir_id), 2009 le32_to_cpu(ih.ih_key.k_objectid), SD_OFFSET, 2010 TYPE_STAT_DATA, 3 /*key length */ ); 2011 2012 /* find proper place for inserting of stat data */ 2013 retval = search_item(sb, &key, &path_to_key); 2014 if (retval == IO_ERROR) { 2015 err = -EIO; 2016 goto out_bad_inode; 2017 } 2018 if (retval == ITEM_FOUND) { 2019 pathrelse(&path_to_key); 2020 err = -EEXIST; 2021 goto out_bad_inode; 2022 } 2023 if (old_format_only(sb)) { 2024 /* i_uid or i_gid is too big to be stored in stat data v3.5 */ 2025 if (i_uid_read(inode) & ~0xffff || i_gid_read(inode) & ~0xffff) { 2026 pathrelse(&path_to_key); 2027 err = -EINVAL; 2028 goto out_bad_inode; 2029 } 2030 inode2sd_v1(&sd, inode, inode->i_size); 2031 } else { 2032 inode2sd(&sd, inode, inode->i_size); 2033 } 2034 /* 2035 * store in in-core inode the key of stat data and version all 2036 * object items will have (directory items will have old offset 2037 * format, other new objects will consist of new items) 2038 */ 2039 if (old_format_only(sb) || S_ISDIR(mode) || S_ISLNK(mode)) 2040 set_inode_item_key_version(inode, KEY_FORMAT_3_5); 2041 else 2042 set_inode_item_key_version(inode, KEY_FORMAT_3_6); 2043 if (old_format_only(sb)) 2044 set_inode_sd_version(inode, STAT_DATA_V1); 2045 else 2046 set_inode_sd_version(inode, STAT_DATA_V2); 2047 2048 /* insert the stat data into the tree */ 2049 #ifdef DISPLACE_NEW_PACKING_LOCALITIES 2050 if (REISERFS_I(dir)->new_packing_locality) 2051 th->displace_new_blocks = 1; 2052 #endif 2053 retval = 2054 reiserfs_insert_item(th, &path_to_key, &key, &ih, inode, 2055 (char *)(&sd)); 2056 if (retval) { 2057 err = retval; 2058 reiserfs_check_path(&path_to_key); 2059 goto out_bad_inode; 2060 } 2061 #ifdef DISPLACE_NEW_PACKING_LOCALITIES 2062 if (!th->displace_new_blocks) 2063 REISERFS_I(dir)->new_packing_locality = 0; 2064 #endif 2065 if (S_ISDIR(mode)) { 2066 /* insert item with "." and ".." */ 2067 retval = 2068 reiserfs_new_directory(th, inode, &ih, &path_to_key, dir); 2069 } 2070 2071 if (S_ISLNK(mode)) { 2072 /* insert body of symlink */ 2073 if (!old_format_only(sb)) 2074 i_size = ROUND_UP(i_size); 2075 retval = 2076 reiserfs_new_symlink(th, inode, &ih, &path_to_key, symname, 2077 i_size); 2078 } 2079 if (retval) { 2080 err = retval; 2081 reiserfs_check_path(&path_to_key); 2082 journal_end(th); 2083 goto out_inserted_sd; 2084 } 2085 2086 /* 2087 * Mark it private if we're creating the privroot 2088 * or something under it. 2089 */ 2090 if (IS_PRIVATE(dir) || dentry == REISERFS_SB(sb)->priv_root) { 2091 inode->i_flags |= S_PRIVATE; 2092 inode->i_opflags &= ~IOP_XATTR; 2093 } 2094 2095 if (reiserfs_posixacl(inode->i_sb)) { 2096 reiserfs_write_unlock(inode->i_sb); 2097 retval = reiserfs_inherit_default_acl(th, dir, dentry, inode); 2098 reiserfs_write_lock(inode->i_sb); 2099 if (retval) { 2100 err = retval; 2101 reiserfs_check_path(&path_to_key); 2102 journal_end(th); 2103 goto out_inserted_sd; 2104 } 2105 } else if (inode->i_sb->s_flags & SB_POSIXACL) { 2106 reiserfs_warning(inode->i_sb, "jdm-13090", 2107 "ACLs aren't enabled in the fs, " 2108 "but vfs thinks they are!"); 2109 } 2110 2111 if (security->name) { 2112 reiserfs_write_unlock(inode->i_sb); 2113 retval = reiserfs_security_write(th, inode, security); 2114 reiserfs_write_lock(inode->i_sb); 2115 if (retval) { 2116 err = retval; 2117 reiserfs_check_path(&path_to_key); 2118 retval = journal_end(th); 2119 if (retval) 2120 err = retval; 2121 goto out_inserted_sd; 2122 } 2123 } 2124 2125 reiserfs_update_sd(th, inode); 2126 reiserfs_check_path(&path_to_key); 2127 2128 return 0; 2129 2130 out_bad_inode: 2131 /* Invalidate the object, nothing was inserted yet */ 2132 INODE_PKEY(inode)->k_objectid = 0; 2133 2134 /* Quota change must be inside a transaction for journaling */ 2135 depth = reiserfs_write_unlock_nested(inode->i_sb); 2136 dquot_free_inode(inode); 2137 reiserfs_write_lock_nested(inode->i_sb, depth); 2138 2139 out_end_trans: 2140 journal_end(th); 2141 /* 2142 * Drop can be outside and it needs more credits so it's better 2143 * to have it outside 2144 */ 2145 depth = reiserfs_write_unlock_nested(inode->i_sb); 2146 dquot_drop(inode); 2147 reiserfs_write_lock_nested(inode->i_sb, depth); 2148 inode->i_flags |= S_NOQUOTA; 2149 make_bad_inode(inode); 2150 2151 out_inserted_sd: 2152 clear_nlink(inode); 2153 th->t_trans_id = 0; /* so the caller can't use this handle later */ 2154 if (inode->i_state & I_NEW) 2155 unlock_new_inode(inode); 2156 iput(inode); 2157 return err; 2158 } 2159 2160 /* 2161 * finds the tail page in the page cache, 2162 * reads the last block in. 2163 * 2164 * On success, page_result is set to a locked, pinned page, and bh_result 2165 * is set to an up to date buffer for the last block in the file. returns 0. 2166 * 2167 * tail conversion is not done, so bh_result might not be valid for writing 2168 * check buffer_mapped(bh_result) and bh_result->b_blocknr != 0 before 2169 * trying to write the block. 2170 * 2171 * on failure, nonzero is returned, page_result and bh_result are untouched. 2172 */ 2173 static int grab_tail_page(struct inode *inode, 2174 struct page **page_result, 2175 struct buffer_head **bh_result) 2176 { 2177 2178 /* 2179 * we want the page with the last byte in the file, 2180 * not the page that will hold the next byte for appending 2181 */ 2182 unsigned long index = (inode->i_size - 1) >> PAGE_SHIFT; 2183 unsigned long pos = 0; 2184 unsigned long start = 0; 2185 unsigned long blocksize = inode->i_sb->s_blocksize; 2186 unsigned long offset = (inode->i_size) & (PAGE_SIZE - 1); 2187 struct buffer_head *bh; 2188 struct buffer_head *head; 2189 struct page *page; 2190 int error; 2191 2192 /* 2193 * we know that we are only called with inode->i_size > 0. 2194 * we also know that a file tail can never be as big as a block 2195 * If i_size % blocksize == 0, our file is currently block aligned 2196 * and it won't need converting or zeroing after a truncate. 2197 */ 2198 if ((offset & (blocksize - 1)) == 0) { 2199 return -ENOENT; 2200 } 2201 page = grab_cache_page(inode->i_mapping, index); 2202 error = -ENOMEM; 2203 if (!page) { 2204 goto out; 2205 } 2206 /* start within the page of the last block in the file */ 2207 start = (offset / blocksize) * blocksize; 2208 2209 error = __block_write_begin(page, start, offset - start, 2210 reiserfs_get_block_create_0); 2211 if (error) 2212 goto unlock; 2213 2214 head = page_buffers(page); 2215 bh = head; 2216 do { 2217 if (pos >= start) { 2218 break; 2219 } 2220 bh = bh->b_this_page; 2221 pos += blocksize; 2222 } while (bh != head); 2223 2224 if (!buffer_uptodate(bh)) { 2225 /* 2226 * note, this should never happen, prepare_write should be 2227 * taking care of this for us. If the buffer isn't up to 2228 * date, I've screwed up the code to find the buffer, or the 2229 * code to call prepare_write 2230 */ 2231 reiserfs_error(inode->i_sb, "clm-6000", 2232 "error reading block %lu", bh->b_blocknr); 2233 error = -EIO; 2234 goto unlock; 2235 } 2236 *bh_result = bh; 2237 *page_result = page; 2238 2239 out: 2240 return error; 2241 2242 unlock: 2243 unlock_page(page); 2244 put_page(page); 2245 return error; 2246 } 2247 2248 /* 2249 * vfs version of truncate file. Must NOT be called with 2250 * a transaction already started. 2251 * 2252 * some code taken from block_truncate_page 2253 */ 2254 int reiserfs_truncate_file(struct inode *inode, int update_timestamps) 2255 { 2256 struct reiserfs_transaction_handle th; 2257 /* we want the offset for the first byte after the end of the file */ 2258 unsigned long offset = inode->i_size & (PAGE_SIZE - 1); 2259 unsigned blocksize = inode->i_sb->s_blocksize; 2260 unsigned length; 2261 struct page *page = NULL; 2262 int error; 2263 struct buffer_head *bh = NULL; 2264 int err2; 2265 2266 reiserfs_write_lock(inode->i_sb); 2267 2268 if (inode->i_size > 0) { 2269 error = grab_tail_page(inode, &page, &bh); 2270 if (error) { 2271 /* 2272 * -ENOENT means we truncated past the end of the 2273 * file, and get_block_create_0 could not find a 2274 * block to read in, which is ok. 2275 */ 2276 if (error != -ENOENT) 2277 reiserfs_error(inode->i_sb, "clm-6001", 2278 "grab_tail_page failed %d", 2279 error); 2280 page = NULL; 2281 bh = NULL; 2282 } 2283 } 2284 2285 /* 2286 * so, if page != NULL, we have a buffer head for the offset at 2287 * the end of the file. if the bh is mapped, and bh->b_blocknr != 0, 2288 * then we have an unformatted node. Otherwise, we have a direct item, 2289 * and no zeroing is required on disk. We zero after the truncate, 2290 * because the truncate might pack the item anyway 2291 * (it will unmap bh if it packs). 2292 * 2293 * it is enough to reserve space in transaction for 2 balancings: 2294 * one for "save" link adding and another for the first 2295 * cut_from_item. 1 is for update_sd 2296 */ 2297 error = journal_begin(&th, inode->i_sb, 2298 JOURNAL_PER_BALANCE_CNT * 2 + 1); 2299 if (error) 2300 goto out; 2301 reiserfs_update_inode_transaction(inode); 2302 if (update_timestamps) 2303 /* 2304 * we are doing real truncate: if the system crashes 2305 * before the last transaction of truncating gets committed 2306 * - on reboot the file either appears truncated properly 2307 * or not truncated at all 2308 */ 2309 add_save_link(&th, inode, 1); 2310 err2 = reiserfs_do_truncate(&th, inode, page, update_timestamps); 2311 error = journal_end(&th); 2312 if (error) 2313 goto out; 2314 2315 /* check reiserfs_do_truncate after ending the transaction */ 2316 if (err2) { 2317 error = err2; 2318 goto out; 2319 } 2320 2321 if (update_timestamps) { 2322 error = remove_save_link(inode, 1 /* truncate */); 2323 if (error) 2324 goto out; 2325 } 2326 2327 if (page) { 2328 length = offset & (blocksize - 1); 2329 /* if we are not on a block boundary */ 2330 if (length) { 2331 length = blocksize - length; 2332 zero_user(page, offset, length); 2333 if (buffer_mapped(bh) && bh->b_blocknr != 0) { 2334 mark_buffer_dirty(bh); 2335 } 2336 } 2337 unlock_page(page); 2338 put_page(page); 2339 } 2340 2341 reiserfs_write_unlock(inode->i_sb); 2342 2343 return 0; 2344 out: 2345 if (page) { 2346 unlock_page(page); 2347 put_page(page); 2348 } 2349 2350 reiserfs_write_unlock(inode->i_sb); 2351 2352 return error; 2353 } 2354 2355 static int map_block_for_writepage(struct inode *inode, 2356 struct buffer_head *bh_result, 2357 unsigned long block) 2358 { 2359 struct reiserfs_transaction_handle th; 2360 int fs_gen; 2361 struct item_head tmp_ih; 2362 struct item_head *ih; 2363 struct buffer_head *bh; 2364 __le32 *item; 2365 struct cpu_key key; 2366 INITIALIZE_PATH(path); 2367 int pos_in_item; 2368 int jbegin_count = JOURNAL_PER_BALANCE_CNT; 2369 loff_t byte_offset = ((loff_t)block << inode->i_sb->s_blocksize_bits)+1; 2370 int retval; 2371 int use_get_block = 0; 2372 int bytes_copied = 0; 2373 int copy_size; 2374 int trans_running = 0; 2375 2376 /* 2377 * catch places below that try to log something without 2378 * starting a trans 2379 */ 2380 th.t_trans_id = 0; 2381 2382 if (!buffer_uptodate(bh_result)) { 2383 return -EIO; 2384 } 2385 2386 kmap(bh_result->b_page); 2387 start_over: 2388 reiserfs_write_lock(inode->i_sb); 2389 make_cpu_key(&key, inode, byte_offset, TYPE_ANY, 3); 2390 2391 research: 2392 retval = search_for_position_by_key(inode->i_sb, &key, &path); 2393 if (retval != POSITION_FOUND) { 2394 use_get_block = 1; 2395 goto out; 2396 } 2397 2398 bh = get_last_bh(&path); 2399 ih = tp_item_head(&path); 2400 item = tp_item_body(&path); 2401 pos_in_item = path.pos_in_item; 2402 2403 /* we've found an unformatted node */ 2404 if (indirect_item_found(retval, ih)) { 2405 if (bytes_copied > 0) { 2406 reiserfs_warning(inode->i_sb, "clm-6002", 2407 "bytes_copied %d", bytes_copied); 2408 } 2409 if (!get_block_num(item, pos_in_item)) { 2410 /* crap, we are writing to a hole */ 2411 use_get_block = 1; 2412 goto out; 2413 } 2414 set_block_dev_mapped(bh_result, 2415 get_block_num(item, pos_in_item), inode); 2416 } else if (is_direct_le_ih(ih)) { 2417 char *p; 2418 p = page_address(bh_result->b_page); 2419 p += (byte_offset - 1) & (PAGE_SIZE - 1); 2420 copy_size = ih_item_len(ih) - pos_in_item; 2421 2422 fs_gen = get_generation(inode->i_sb); 2423 copy_item_head(&tmp_ih, ih); 2424 2425 if (!trans_running) { 2426 /* vs-3050 is gone, no need to drop the path */ 2427 retval = journal_begin(&th, inode->i_sb, jbegin_count); 2428 if (retval) 2429 goto out; 2430 reiserfs_update_inode_transaction(inode); 2431 trans_running = 1; 2432 if (fs_changed(fs_gen, inode->i_sb) 2433 && item_moved(&tmp_ih, &path)) { 2434 reiserfs_restore_prepared_buffer(inode->i_sb, 2435 bh); 2436 goto research; 2437 } 2438 } 2439 2440 reiserfs_prepare_for_journal(inode->i_sb, bh, 1); 2441 2442 if (fs_changed(fs_gen, inode->i_sb) 2443 && item_moved(&tmp_ih, &path)) { 2444 reiserfs_restore_prepared_buffer(inode->i_sb, bh); 2445 goto research; 2446 } 2447 2448 memcpy(ih_item_body(bh, ih) + pos_in_item, p + bytes_copied, 2449 copy_size); 2450 2451 journal_mark_dirty(&th, bh); 2452 bytes_copied += copy_size; 2453 set_block_dev_mapped(bh_result, 0, inode); 2454 2455 /* are there still bytes left? */ 2456 if (bytes_copied < bh_result->b_size && 2457 (byte_offset + bytes_copied) < inode->i_size) { 2458 set_cpu_key_k_offset(&key, 2459 cpu_key_k_offset(&key) + 2460 copy_size); 2461 goto research; 2462 } 2463 } else { 2464 reiserfs_warning(inode->i_sb, "clm-6003", 2465 "bad item inode %lu", inode->i_ino); 2466 retval = -EIO; 2467 goto out; 2468 } 2469 retval = 0; 2470 2471 out: 2472 pathrelse(&path); 2473 if (trans_running) { 2474 int err = journal_end(&th); 2475 if (err) 2476 retval = err; 2477 trans_running = 0; 2478 } 2479 reiserfs_write_unlock(inode->i_sb); 2480 2481 /* this is where we fill in holes in the file. */ 2482 if (use_get_block) { 2483 retval = reiserfs_get_block(inode, block, bh_result, 2484 GET_BLOCK_CREATE | GET_BLOCK_NO_IMUX 2485 | GET_BLOCK_NO_DANGLE); 2486 if (!retval) { 2487 if (!buffer_mapped(bh_result) 2488 || bh_result->b_blocknr == 0) { 2489 /* get_block failed to find a mapped unformatted node. */ 2490 use_get_block = 0; 2491 goto start_over; 2492 } 2493 } 2494 } 2495 kunmap(bh_result->b_page); 2496 2497 if (!retval && buffer_mapped(bh_result) && bh_result->b_blocknr == 0) { 2498 /* 2499 * we've copied data from the page into the direct item, so the 2500 * buffer in the page is now clean, mark it to reflect that. 2501 */ 2502 lock_buffer(bh_result); 2503 clear_buffer_dirty(bh_result); 2504 unlock_buffer(bh_result); 2505 } 2506 return retval; 2507 } 2508 2509 /* 2510 * mason@suse.com: updated in 2.5.54 to follow the same general io 2511 * start/recovery path as __block_write_full_page, along with special 2512 * code to handle reiserfs tails. 2513 */ 2514 static int reiserfs_write_full_page(struct page *page, 2515 struct writeback_control *wbc) 2516 { 2517 struct inode *inode = page->mapping->host; 2518 unsigned long end_index = inode->i_size >> PAGE_SHIFT; 2519 int error = 0; 2520 unsigned long block; 2521 sector_t last_block; 2522 struct buffer_head *head, *bh; 2523 int partial = 0; 2524 int nr = 0; 2525 int checked = PageChecked(page); 2526 struct reiserfs_transaction_handle th; 2527 struct super_block *s = inode->i_sb; 2528 int bh_per_page = PAGE_SIZE / s->s_blocksize; 2529 th.t_trans_id = 0; 2530 2531 /* no logging allowed when nonblocking or from PF_MEMALLOC */ 2532 if (checked && (current->flags & PF_MEMALLOC)) { 2533 redirty_page_for_writepage(wbc, page); 2534 unlock_page(page); 2535 return 0; 2536 } 2537 2538 /* 2539 * The page dirty bit is cleared before writepage is called, which 2540 * means we have to tell create_empty_buffers to make dirty buffers 2541 * The page really should be up to date at this point, so tossing 2542 * in the BH_Uptodate is just a sanity check. 2543 */ 2544 if (!page_has_buffers(page)) { 2545 create_empty_buffers(page, s->s_blocksize, 2546 (1 << BH_Dirty) | (1 << BH_Uptodate)); 2547 } 2548 head = page_buffers(page); 2549 2550 /* 2551 * last page in the file, zero out any contents past the 2552 * last byte in the file 2553 */ 2554 if (page->index >= end_index) { 2555 unsigned last_offset; 2556 2557 last_offset = inode->i_size & (PAGE_SIZE - 1); 2558 /* no file contents in this page */ 2559 if (page->index >= end_index + 1 || !last_offset) { 2560 unlock_page(page); 2561 return 0; 2562 } 2563 zero_user_segment(page, last_offset, PAGE_SIZE); 2564 } 2565 bh = head; 2566 block = page->index << (PAGE_SHIFT - s->s_blocksize_bits); 2567 last_block = (i_size_read(inode) - 1) >> inode->i_blkbits; 2568 /* first map all the buffers, logging any direct items we find */ 2569 do { 2570 if (block > last_block) { 2571 /* 2572 * This can happen when the block size is less than 2573 * the page size. The corresponding bytes in the page 2574 * were zero filled above 2575 */ 2576 clear_buffer_dirty(bh); 2577 set_buffer_uptodate(bh); 2578 } else if ((checked || buffer_dirty(bh)) && 2579 (!buffer_mapped(bh) || bh->b_blocknr == 0)) { 2580 /* 2581 * not mapped yet, or it points to a direct item, search 2582 * the btree for the mapping info, and log any direct 2583 * items found 2584 */ 2585 if ((error = map_block_for_writepage(inode, bh, block))) { 2586 goto fail; 2587 } 2588 } 2589 bh = bh->b_this_page; 2590 block++; 2591 } while (bh != head); 2592 2593 /* 2594 * we start the transaction after map_block_for_writepage, 2595 * because it can create holes in the file (an unbounded operation). 2596 * starting it here, we can make a reliable estimate for how many 2597 * blocks we're going to log 2598 */ 2599 if (checked) { 2600 ClearPageChecked(page); 2601 reiserfs_write_lock(s); 2602 error = journal_begin(&th, s, bh_per_page + 1); 2603 if (error) { 2604 reiserfs_write_unlock(s); 2605 goto fail; 2606 } 2607 reiserfs_update_inode_transaction(inode); 2608 } 2609 /* now go through and lock any dirty buffers on the page */ 2610 do { 2611 get_bh(bh); 2612 if (!buffer_mapped(bh)) 2613 continue; 2614 if (buffer_mapped(bh) && bh->b_blocknr == 0) 2615 continue; 2616 2617 if (checked) { 2618 reiserfs_prepare_for_journal(s, bh, 1); 2619 journal_mark_dirty(&th, bh); 2620 continue; 2621 } 2622 /* 2623 * from this point on, we know the buffer is mapped to a 2624 * real block and not a direct item 2625 */ 2626 if (wbc->sync_mode != WB_SYNC_NONE) { 2627 lock_buffer(bh); 2628 } else { 2629 if (!trylock_buffer(bh)) { 2630 redirty_page_for_writepage(wbc, page); 2631 continue; 2632 } 2633 } 2634 if (test_clear_buffer_dirty(bh)) { 2635 mark_buffer_async_write(bh); 2636 } else { 2637 unlock_buffer(bh); 2638 } 2639 } while ((bh = bh->b_this_page) != head); 2640 2641 if (checked) { 2642 error = journal_end(&th); 2643 reiserfs_write_unlock(s); 2644 if (error) 2645 goto fail; 2646 } 2647 BUG_ON(PageWriteback(page)); 2648 set_page_writeback(page); 2649 unlock_page(page); 2650 2651 /* 2652 * since any buffer might be the only dirty buffer on the page, 2653 * the first submit_bh can bring the page out of writeback. 2654 * be careful with the buffers. 2655 */ 2656 do { 2657 struct buffer_head *next = bh->b_this_page; 2658 if (buffer_async_write(bh)) { 2659 submit_bh(REQ_OP_WRITE, bh); 2660 nr++; 2661 } 2662 put_bh(bh); 2663 bh = next; 2664 } while (bh != head); 2665 2666 error = 0; 2667 done: 2668 if (nr == 0) { 2669 /* 2670 * if this page only had a direct item, it is very possible for 2671 * no io to be required without there being an error. Or, 2672 * someone else could have locked them and sent them down the 2673 * pipe without locking the page 2674 */ 2675 bh = head; 2676 do { 2677 if (!buffer_uptodate(bh)) { 2678 partial = 1; 2679 break; 2680 } 2681 bh = bh->b_this_page; 2682 } while (bh != head); 2683 if (!partial) 2684 SetPageUptodate(page); 2685 end_page_writeback(page); 2686 } 2687 return error; 2688 2689 fail: 2690 /* 2691 * catches various errors, we need to make sure any valid dirty blocks 2692 * get to the media. The page is currently locked and not marked for 2693 * writeback 2694 */ 2695 ClearPageUptodate(page); 2696 bh = head; 2697 do { 2698 get_bh(bh); 2699 if (buffer_mapped(bh) && buffer_dirty(bh) && bh->b_blocknr) { 2700 lock_buffer(bh); 2701 mark_buffer_async_write(bh); 2702 } else { 2703 /* 2704 * clear any dirty bits that might have come from 2705 * getting attached to a dirty page 2706 */ 2707 clear_buffer_dirty(bh); 2708 } 2709 bh = bh->b_this_page; 2710 } while (bh != head); 2711 SetPageError(page); 2712 BUG_ON(PageWriteback(page)); 2713 set_page_writeback(page); 2714 unlock_page(page); 2715 do { 2716 struct buffer_head *next = bh->b_this_page; 2717 if (buffer_async_write(bh)) { 2718 clear_buffer_dirty(bh); 2719 submit_bh(REQ_OP_WRITE, bh); 2720 nr++; 2721 } 2722 put_bh(bh); 2723 bh = next; 2724 } while (bh != head); 2725 goto done; 2726 } 2727 2728 static int reiserfs_read_folio(struct file *f, struct folio *folio) 2729 { 2730 return block_read_full_folio(folio, reiserfs_get_block); 2731 } 2732 2733 static int reiserfs_writepage(struct page *page, struct writeback_control *wbc) 2734 { 2735 struct inode *inode = page->mapping->host; 2736 reiserfs_wait_on_write_block(inode->i_sb); 2737 return reiserfs_write_full_page(page, wbc); 2738 } 2739 2740 static void reiserfs_truncate_failed_write(struct inode *inode) 2741 { 2742 truncate_inode_pages(inode->i_mapping, inode->i_size); 2743 reiserfs_truncate_file(inode, 0); 2744 } 2745 2746 static int reiserfs_write_begin(struct file *file, 2747 struct address_space *mapping, 2748 loff_t pos, unsigned len, 2749 struct page **pagep, void **fsdata) 2750 { 2751 struct inode *inode; 2752 struct page *page; 2753 pgoff_t index; 2754 int ret; 2755 int old_ref = 0; 2756 2757 inode = mapping->host; 2758 index = pos >> PAGE_SHIFT; 2759 page = grab_cache_page_write_begin(mapping, index); 2760 if (!page) 2761 return -ENOMEM; 2762 *pagep = page; 2763 2764 reiserfs_wait_on_write_block(inode->i_sb); 2765 fix_tail_page_for_writing(page); 2766 if (reiserfs_transaction_running(inode->i_sb)) { 2767 struct reiserfs_transaction_handle *th; 2768 th = (struct reiserfs_transaction_handle *)current-> 2769 journal_info; 2770 BUG_ON(!th->t_refcount); 2771 BUG_ON(!th->t_trans_id); 2772 old_ref = th->t_refcount; 2773 th->t_refcount++; 2774 } 2775 ret = __block_write_begin(page, pos, len, reiserfs_get_block); 2776 if (ret && reiserfs_transaction_running(inode->i_sb)) { 2777 struct reiserfs_transaction_handle *th = current->journal_info; 2778 /* 2779 * this gets a little ugly. If reiserfs_get_block returned an 2780 * error and left a transacstion running, we've got to close 2781 * it, and we've got to free handle if it was a persistent 2782 * transaction. 2783 * 2784 * But, if we had nested into an existing transaction, we need 2785 * to just drop the ref count on the handle. 2786 * 2787 * If old_ref == 0, the transaction is from reiserfs_get_block, 2788 * and it was a persistent trans. Otherwise, it was nested 2789 * above. 2790 */ 2791 if (th->t_refcount > old_ref) { 2792 if (old_ref) 2793 th->t_refcount--; 2794 else { 2795 int err; 2796 reiserfs_write_lock(inode->i_sb); 2797 err = reiserfs_end_persistent_transaction(th); 2798 reiserfs_write_unlock(inode->i_sb); 2799 if (err) 2800 ret = err; 2801 } 2802 } 2803 } 2804 if (ret) { 2805 unlock_page(page); 2806 put_page(page); 2807 /* Truncate allocated blocks */ 2808 reiserfs_truncate_failed_write(inode); 2809 } 2810 return ret; 2811 } 2812 2813 int __reiserfs_write_begin(struct page *page, unsigned from, unsigned len) 2814 { 2815 struct inode *inode = page->mapping->host; 2816 int ret; 2817 int old_ref = 0; 2818 int depth; 2819 2820 depth = reiserfs_write_unlock_nested(inode->i_sb); 2821 reiserfs_wait_on_write_block(inode->i_sb); 2822 reiserfs_write_lock_nested(inode->i_sb, depth); 2823 2824 fix_tail_page_for_writing(page); 2825 if (reiserfs_transaction_running(inode->i_sb)) { 2826 struct reiserfs_transaction_handle *th; 2827 th = (struct reiserfs_transaction_handle *)current-> 2828 journal_info; 2829 BUG_ON(!th->t_refcount); 2830 BUG_ON(!th->t_trans_id); 2831 old_ref = th->t_refcount; 2832 th->t_refcount++; 2833 } 2834 2835 ret = __block_write_begin(page, from, len, reiserfs_get_block); 2836 if (ret && reiserfs_transaction_running(inode->i_sb)) { 2837 struct reiserfs_transaction_handle *th = current->journal_info; 2838 /* 2839 * this gets a little ugly. If reiserfs_get_block returned an 2840 * error and left a transacstion running, we've got to close 2841 * it, and we've got to free handle if it was a persistent 2842 * transaction. 2843 * 2844 * But, if we had nested into an existing transaction, we need 2845 * to just drop the ref count on the handle. 2846 * 2847 * If old_ref == 0, the transaction is from reiserfs_get_block, 2848 * and it was a persistent trans. Otherwise, it was nested 2849 * above. 2850 */ 2851 if (th->t_refcount > old_ref) { 2852 if (old_ref) 2853 th->t_refcount--; 2854 else { 2855 int err; 2856 reiserfs_write_lock(inode->i_sb); 2857 err = reiserfs_end_persistent_transaction(th); 2858 reiserfs_write_unlock(inode->i_sb); 2859 if (err) 2860 ret = err; 2861 } 2862 } 2863 } 2864 return ret; 2865 2866 } 2867 2868 static sector_t reiserfs_aop_bmap(struct address_space *as, sector_t block) 2869 { 2870 return generic_block_bmap(as, block, reiserfs_bmap); 2871 } 2872 2873 static int reiserfs_write_end(struct file *file, struct address_space *mapping, 2874 loff_t pos, unsigned len, unsigned copied, 2875 struct page *page, void *fsdata) 2876 { 2877 struct inode *inode = page->mapping->host; 2878 int ret = 0; 2879 int update_sd = 0; 2880 struct reiserfs_transaction_handle *th; 2881 unsigned start; 2882 bool locked = false; 2883 2884 reiserfs_wait_on_write_block(inode->i_sb); 2885 if (reiserfs_transaction_running(inode->i_sb)) 2886 th = current->journal_info; 2887 else 2888 th = NULL; 2889 2890 start = pos & (PAGE_SIZE - 1); 2891 if (unlikely(copied < len)) { 2892 if (!PageUptodate(page)) 2893 copied = 0; 2894 2895 page_zero_new_buffers(page, start + copied, start + len); 2896 } 2897 flush_dcache_page(page); 2898 2899 reiserfs_commit_page(inode, page, start, start + copied); 2900 2901 /* 2902 * generic_commit_write does this for us, but does not update the 2903 * transaction tracking stuff when the size changes. So, we have 2904 * to do the i_size updates here. 2905 */ 2906 if (pos + copied > inode->i_size) { 2907 struct reiserfs_transaction_handle myth; 2908 reiserfs_write_lock(inode->i_sb); 2909 locked = true; 2910 /* 2911 * If the file have grown beyond the border where it 2912 * can have a tail, unmark it as needing a tail 2913 * packing 2914 */ 2915 if ((have_large_tails(inode->i_sb) 2916 && inode->i_size > i_block_size(inode) * 4) 2917 || (have_small_tails(inode->i_sb) 2918 && inode->i_size > i_block_size(inode))) 2919 REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask; 2920 2921 ret = journal_begin(&myth, inode->i_sb, 1); 2922 if (ret) 2923 goto journal_error; 2924 2925 reiserfs_update_inode_transaction(inode); 2926 inode->i_size = pos + copied; 2927 /* 2928 * this will just nest into our transaction. It's important 2929 * to use mark_inode_dirty so the inode gets pushed around on 2930 * the dirty lists, and so that O_SYNC works as expected 2931 */ 2932 mark_inode_dirty(inode); 2933 reiserfs_update_sd(&myth, inode); 2934 update_sd = 1; 2935 ret = journal_end(&myth); 2936 if (ret) 2937 goto journal_error; 2938 } 2939 if (th) { 2940 if (!locked) { 2941 reiserfs_write_lock(inode->i_sb); 2942 locked = true; 2943 } 2944 if (!update_sd) 2945 mark_inode_dirty(inode); 2946 ret = reiserfs_end_persistent_transaction(th); 2947 if (ret) 2948 goto out; 2949 } 2950 2951 out: 2952 if (locked) 2953 reiserfs_write_unlock(inode->i_sb); 2954 unlock_page(page); 2955 put_page(page); 2956 2957 if (pos + len > inode->i_size) 2958 reiserfs_truncate_failed_write(inode); 2959 2960 return ret == 0 ? copied : ret; 2961 2962 journal_error: 2963 reiserfs_write_unlock(inode->i_sb); 2964 locked = false; 2965 if (th) { 2966 if (!update_sd) 2967 reiserfs_update_sd(th, inode); 2968 ret = reiserfs_end_persistent_transaction(th); 2969 } 2970 goto out; 2971 } 2972 2973 int reiserfs_commit_write(struct file *f, struct page *page, 2974 unsigned from, unsigned to) 2975 { 2976 struct inode *inode = page->mapping->host; 2977 loff_t pos = ((loff_t) page->index << PAGE_SHIFT) + to; 2978 int ret = 0; 2979 int update_sd = 0; 2980 struct reiserfs_transaction_handle *th = NULL; 2981 int depth; 2982 2983 depth = reiserfs_write_unlock_nested(inode->i_sb); 2984 reiserfs_wait_on_write_block(inode->i_sb); 2985 reiserfs_write_lock_nested(inode->i_sb, depth); 2986 2987 if (reiserfs_transaction_running(inode->i_sb)) { 2988 th = current->journal_info; 2989 } 2990 reiserfs_commit_page(inode, page, from, to); 2991 2992 /* 2993 * generic_commit_write does this for us, but does not update the 2994 * transaction tracking stuff when the size changes. So, we have 2995 * to do the i_size updates here. 2996 */ 2997 if (pos > inode->i_size) { 2998 struct reiserfs_transaction_handle myth; 2999 /* 3000 * If the file have grown beyond the border where it 3001 * can have a tail, unmark it as needing a tail 3002 * packing 3003 */ 3004 if ((have_large_tails(inode->i_sb) 3005 && inode->i_size > i_block_size(inode) * 4) 3006 || (have_small_tails(inode->i_sb) 3007 && inode->i_size > i_block_size(inode))) 3008 REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask; 3009 3010 ret = journal_begin(&myth, inode->i_sb, 1); 3011 if (ret) 3012 goto journal_error; 3013 3014 reiserfs_update_inode_transaction(inode); 3015 inode->i_size = pos; 3016 /* 3017 * this will just nest into our transaction. It's important 3018 * to use mark_inode_dirty so the inode gets pushed around 3019 * on the dirty lists, and so that O_SYNC works as expected 3020 */ 3021 mark_inode_dirty(inode); 3022 reiserfs_update_sd(&myth, inode); 3023 update_sd = 1; 3024 ret = journal_end(&myth); 3025 if (ret) 3026 goto journal_error; 3027 } 3028 if (th) { 3029 if (!update_sd) 3030 mark_inode_dirty(inode); 3031 ret = reiserfs_end_persistent_transaction(th); 3032 if (ret) 3033 goto out; 3034 } 3035 3036 out: 3037 return ret; 3038 3039 journal_error: 3040 if (th) { 3041 if (!update_sd) 3042 reiserfs_update_sd(th, inode); 3043 ret = reiserfs_end_persistent_transaction(th); 3044 } 3045 3046 return ret; 3047 } 3048 3049 void sd_attrs_to_i_attrs(__u16 sd_attrs, struct inode *inode) 3050 { 3051 if (reiserfs_attrs(inode->i_sb)) { 3052 if (sd_attrs & REISERFS_SYNC_FL) 3053 inode->i_flags |= S_SYNC; 3054 else 3055 inode->i_flags &= ~S_SYNC; 3056 if (sd_attrs & REISERFS_IMMUTABLE_FL) 3057 inode->i_flags |= S_IMMUTABLE; 3058 else 3059 inode->i_flags &= ~S_IMMUTABLE; 3060 if (sd_attrs & REISERFS_APPEND_FL) 3061 inode->i_flags |= S_APPEND; 3062 else 3063 inode->i_flags &= ~S_APPEND; 3064 if (sd_attrs & REISERFS_NOATIME_FL) 3065 inode->i_flags |= S_NOATIME; 3066 else 3067 inode->i_flags &= ~S_NOATIME; 3068 if (sd_attrs & REISERFS_NOTAIL_FL) 3069 REISERFS_I(inode)->i_flags |= i_nopack_mask; 3070 else 3071 REISERFS_I(inode)->i_flags &= ~i_nopack_mask; 3072 } 3073 } 3074 3075 /* 3076 * decide if this buffer needs to stay around for data logging or ordered 3077 * write purposes 3078 */ 3079 static int invalidate_folio_can_drop(struct inode *inode, struct buffer_head *bh) 3080 { 3081 int ret = 1; 3082 struct reiserfs_journal *j = SB_JOURNAL(inode->i_sb); 3083 3084 lock_buffer(bh); 3085 spin_lock(&j->j_dirty_buffers_lock); 3086 if (!buffer_mapped(bh)) { 3087 goto free_jh; 3088 } 3089 /* 3090 * the page is locked, and the only places that log a data buffer 3091 * also lock the page. 3092 */ 3093 if (reiserfs_file_data_log(inode)) { 3094 /* 3095 * very conservative, leave the buffer pinned if 3096 * anyone might need it. 3097 */ 3098 if (buffer_journaled(bh) || buffer_journal_dirty(bh)) { 3099 ret = 0; 3100 } 3101 } else if (buffer_dirty(bh)) { 3102 struct reiserfs_journal_list *jl; 3103 struct reiserfs_jh *jh = bh->b_private; 3104 3105 /* 3106 * why is this safe? 3107 * reiserfs_setattr updates i_size in the on disk 3108 * stat data before allowing vmtruncate to be called. 3109 * 3110 * If buffer was put onto the ordered list for this 3111 * transaction, we know for sure either this transaction 3112 * or an older one already has updated i_size on disk, 3113 * and this ordered data won't be referenced in the file 3114 * if we crash. 3115 * 3116 * if the buffer was put onto the ordered list for an older 3117 * transaction, we need to leave it around 3118 */ 3119 if (jh && (jl = jh->jl) 3120 && jl != SB_JOURNAL(inode->i_sb)->j_current_jl) 3121 ret = 0; 3122 } 3123 free_jh: 3124 if (ret && bh->b_private) { 3125 reiserfs_free_jh(bh); 3126 } 3127 spin_unlock(&j->j_dirty_buffers_lock); 3128 unlock_buffer(bh); 3129 return ret; 3130 } 3131 3132 /* clm -- taken from fs/buffer.c:block_invalidate_folio */ 3133 static void reiserfs_invalidate_folio(struct folio *folio, size_t offset, 3134 size_t length) 3135 { 3136 struct buffer_head *head, *bh, *next; 3137 struct inode *inode = folio->mapping->host; 3138 unsigned int curr_off = 0; 3139 unsigned int stop = offset + length; 3140 int partial_page = (offset || length < folio_size(folio)); 3141 int ret = 1; 3142 3143 BUG_ON(!folio_test_locked(folio)); 3144 3145 if (!partial_page) 3146 folio_clear_checked(folio); 3147 3148 head = folio_buffers(folio); 3149 if (!head) 3150 goto out; 3151 3152 bh = head; 3153 do { 3154 unsigned int next_off = curr_off + bh->b_size; 3155 next = bh->b_this_page; 3156 3157 if (next_off > stop) 3158 goto out; 3159 3160 /* 3161 * is this block fully invalidated? 3162 */ 3163 if (offset <= curr_off) { 3164 if (invalidate_folio_can_drop(inode, bh)) 3165 reiserfs_unmap_buffer(bh); 3166 else 3167 ret = 0; 3168 } 3169 curr_off = next_off; 3170 bh = next; 3171 } while (bh != head); 3172 3173 /* 3174 * We release buffers only if the entire page is being invalidated. 3175 * The get_block cached value has been unconditionally invalidated, 3176 * so real IO is not possible anymore. 3177 */ 3178 if (!partial_page && ret) { 3179 ret = filemap_release_folio(folio, 0); 3180 /* maybe should BUG_ON(!ret); - neilb */ 3181 } 3182 out: 3183 return; 3184 } 3185 3186 static bool reiserfs_dirty_folio(struct address_space *mapping, 3187 struct folio *folio) 3188 { 3189 if (reiserfs_file_data_log(mapping->host)) { 3190 folio_set_checked(folio); 3191 return filemap_dirty_folio(mapping, folio); 3192 } 3193 return block_dirty_folio(mapping, folio); 3194 } 3195 3196 /* 3197 * Returns true if the folio's buffers were dropped. The folio is locked. 3198 * 3199 * Takes j_dirty_buffers_lock to protect the b_assoc_buffers list_heads 3200 * in the buffers at folio_buffers(folio). 3201 * 3202 * even in -o notail mode, we can't be sure an old mount without -o notail 3203 * didn't create files with tails. 3204 */ 3205 static bool reiserfs_release_folio(struct folio *folio, gfp_t unused_gfp_flags) 3206 { 3207 struct inode *inode = folio->mapping->host; 3208 struct reiserfs_journal *j = SB_JOURNAL(inode->i_sb); 3209 struct buffer_head *head; 3210 struct buffer_head *bh; 3211 bool ret = true; 3212 3213 WARN_ON(folio_test_checked(folio)); 3214 spin_lock(&j->j_dirty_buffers_lock); 3215 head = folio_buffers(folio); 3216 bh = head; 3217 do { 3218 if (bh->b_private) { 3219 if (!buffer_dirty(bh) && !buffer_locked(bh)) { 3220 reiserfs_free_jh(bh); 3221 } else { 3222 ret = false; 3223 break; 3224 } 3225 } 3226 bh = bh->b_this_page; 3227 } while (bh != head); 3228 if (ret) 3229 ret = try_to_free_buffers(folio); 3230 spin_unlock(&j->j_dirty_buffers_lock); 3231 return ret; 3232 } 3233 3234 /* 3235 * We thank Mingming Cao for helping us understand in great detail what 3236 * to do in this section of the code. 3237 */ 3238 static ssize_t reiserfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter) 3239 { 3240 struct file *file = iocb->ki_filp; 3241 struct inode *inode = file->f_mapping->host; 3242 size_t count = iov_iter_count(iter); 3243 ssize_t ret; 3244 3245 ret = blockdev_direct_IO(iocb, inode, iter, 3246 reiserfs_get_blocks_direct_io); 3247 3248 /* 3249 * In case of error extending write may have instantiated a few 3250 * blocks outside i_size. Trim these off again. 3251 */ 3252 if (unlikely(iov_iter_rw(iter) == WRITE && ret < 0)) { 3253 loff_t isize = i_size_read(inode); 3254 loff_t end = iocb->ki_pos + count; 3255 3256 if ((end > isize) && inode_newsize_ok(inode, isize) == 0) { 3257 truncate_setsize(inode, isize); 3258 reiserfs_vfs_truncate_file(inode); 3259 } 3260 } 3261 3262 return ret; 3263 } 3264 3265 int reiserfs_setattr(struct user_namespace *mnt_userns, struct dentry *dentry, 3266 struct iattr *attr) 3267 { 3268 struct inode *inode = d_inode(dentry); 3269 unsigned int ia_valid; 3270 int error; 3271 3272 error = setattr_prepare(&init_user_ns, dentry, attr); 3273 if (error) 3274 return error; 3275 3276 /* must be turned off for recursive notify_change calls */ 3277 ia_valid = attr->ia_valid &= ~(ATTR_KILL_SUID|ATTR_KILL_SGID); 3278 3279 if (is_quota_modification(mnt_userns, inode, attr)) { 3280 error = dquot_initialize(inode); 3281 if (error) 3282 return error; 3283 } 3284 reiserfs_write_lock(inode->i_sb); 3285 if (attr->ia_valid & ATTR_SIZE) { 3286 /* 3287 * version 2 items will be caught by the s_maxbytes check 3288 * done for us in vmtruncate 3289 */ 3290 if (get_inode_item_key_version(inode) == KEY_FORMAT_3_5 && 3291 attr->ia_size > MAX_NON_LFS) { 3292 reiserfs_write_unlock(inode->i_sb); 3293 error = -EFBIG; 3294 goto out; 3295 } 3296 3297 inode_dio_wait(inode); 3298 3299 /* fill in hole pointers in the expanding truncate case. */ 3300 if (attr->ia_size > inode->i_size) { 3301 loff_t pos = attr->ia_size; 3302 3303 if ((pos & (inode->i_sb->s_blocksize - 1)) == 0) 3304 pos++; 3305 error = generic_cont_expand_simple(inode, pos); 3306 if (REISERFS_I(inode)->i_prealloc_count > 0) { 3307 int err; 3308 struct reiserfs_transaction_handle th; 3309 /* we're changing at most 2 bitmaps, inode + super */ 3310 err = journal_begin(&th, inode->i_sb, 4); 3311 if (!err) { 3312 reiserfs_discard_prealloc(&th, inode); 3313 err = journal_end(&th); 3314 } 3315 if (err) 3316 error = err; 3317 } 3318 if (error) { 3319 reiserfs_write_unlock(inode->i_sb); 3320 goto out; 3321 } 3322 /* 3323 * file size is changed, ctime and mtime are 3324 * to be updated 3325 */ 3326 attr->ia_valid |= (ATTR_MTIME | ATTR_CTIME); 3327 } 3328 } 3329 reiserfs_write_unlock(inode->i_sb); 3330 3331 if ((((attr->ia_valid & ATTR_UID) && (from_kuid(&init_user_ns, attr->ia_uid) & ~0xffff)) || 3332 ((attr->ia_valid & ATTR_GID) && (from_kgid(&init_user_ns, attr->ia_gid) & ~0xffff))) && 3333 (get_inode_sd_version(inode) == STAT_DATA_V1)) { 3334 /* stat data of format v3.5 has 16 bit uid and gid */ 3335 error = -EINVAL; 3336 goto out; 3337 } 3338 3339 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) || 3340 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) { 3341 struct reiserfs_transaction_handle th; 3342 int jbegin_count = 3343 2 * 3344 (REISERFS_QUOTA_INIT_BLOCKS(inode->i_sb) + 3345 REISERFS_QUOTA_DEL_BLOCKS(inode->i_sb)) + 3346 2; 3347 3348 error = reiserfs_chown_xattrs(inode, attr); 3349 3350 if (error) 3351 return error; 3352 3353 /* 3354 * (user+group)*(old+new) structure - we count quota 3355 * info and , inode write (sb, inode) 3356 */ 3357 reiserfs_write_lock(inode->i_sb); 3358 error = journal_begin(&th, inode->i_sb, jbegin_count); 3359 reiserfs_write_unlock(inode->i_sb); 3360 if (error) 3361 goto out; 3362 error = dquot_transfer(mnt_userns, inode, attr); 3363 reiserfs_write_lock(inode->i_sb); 3364 if (error) { 3365 journal_end(&th); 3366 reiserfs_write_unlock(inode->i_sb); 3367 goto out; 3368 } 3369 3370 /* 3371 * Update corresponding info in inode so that everything 3372 * is in one transaction 3373 */ 3374 if (attr->ia_valid & ATTR_UID) 3375 inode->i_uid = attr->ia_uid; 3376 if (attr->ia_valid & ATTR_GID) 3377 inode->i_gid = attr->ia_gid; 3378 mark_inode_dirty(inode); 3379 error = journal_end(&th); 3380 reiserfs_write_unlock(inode->i_sb); 3381 if (error) 3382 goto out; 3383 } 3384 3385 if ((attr->ia_valid & ATTR_SIZE) && 3386 attr->ia_size != i_size_read(inode)) { 3387 error = inode_newsize_ok(inode, attr->ia_size); 3388 if (!error) { 3389 /* 3390 * Could race against reiserfs_file_release 3391 * if called from NFS, so take tailpack mutex. 3392 */ 3393 mutex_lock(&REISERFS_I(inode)->tailpack); 3394 truncate_setsize(inode, attr->ia_size); 3395 reiserfs_truncate_file(inode, 1); 3396 mutex_unlock(&REISERFS_I(inode)->tailpack); 3397 } 3398 } 3399 3400 if (!error) { 3401 setattr_copy(&init_user_ns, inode, attr); 3402 mark_inode_dirty(inode); 3403 } 3404 3405 if (!error && reiserfs_posixacl(inode->i_sb)) { 3406 if (attr->ia_valid & ATTR_MODE) 3407 error = reiserfs_acl_chmod(inode); 3408 } 3409 3410 out: 3411 return error; 3412 } 3413 3414 const struct address_space_operations reiserfs_address_space_operations = { 3415 .writepage = reiserfs_writepage, 3416 .read_folio = reiserfs_read_folio, 3417 .readahead = reiserfs_readahead, 3418 .release_folio = reiserfs_release_folio, 3419 .invalidate_folio = reiserfs_invalidate_folio, 3420 .write_begin = reiserfs_write_begin, 3421 .write_end = reiserfs_write_end, 3422 .bmap = reiserfs_aop_bmap, 3423 .direct_IO = reiserfs_direct_IO, 3424 .dirty_folio = reiserfs_dirty_folio, 3425 }; 3426