xref: /linux/fs/reiserfs/inode.c (revision bcefe12eff5dca6fdfa94ed85e5bee66380d5cd9)
1 /*
2  * Copyright 2000 by Hans Reiser, licensing governed by reiserfs/README
3  */
4 
5 #include <linux/time.h>
6 #include <linux/fs.h>
7 #include <linux/reiserfs_fs.h>
8 #include <linux/reiserfs_acl.h>
9 #include <linux/reiserfs_xattr.h>
10 #include <linux/exportfs.h>
11 #include <linux/smp_lock.h>
12 #include <linux/pagemap.h>
13 #include <linux/highmem.h>
14 #include <asm/uaccess.h>
15 #include <asm/unaligned.h>
16 #include <linux/buffer_head.h>
17 #include <linux/mpage.h>
18 #include <linux/writeback.h>
19 #include <linux/quotaops.h>
20 #include <linux/swap.h>
21 
22 int reiserfs_commit_write(struct file *f, struct page *page,
23 			  unsigned from, unsigned to);
24 int reiserfs_prepare_write(struct file *f, struct page *page,
25 			   unsigned from, unsigned to);
26 
27 void reiserfs_delete_inode(struct inode *inode)
28 {
29 	/* We need blocks for transaction + (user+group) quota update (possibly delete) */
30 	int jbegin_count =
31 	    JOURNAL_PER_BALANCE_CNT * 2 +
32 	    2 * REISERFS_QUOTA_INIT_BLOCKS(inode->i_sb);
33 	struct reiserfs_transaction_handle th;
34 	int err;
35 
36 	truncate_inode_pages(&inode->i_data, 0);
37 
38 	reiserfs_write_lock(inode->i_sb);
39 
40 	/* The = 0 happens when we abort creating a new inode for some reason like lack of space.. */
41 	if (!(inode->i_state & I_NEW) && INODE_PKEY(inode)->k_objectid != 0) {	/* also handles bad_inode case */
42 		reiserfs_delete_xattrs(inode);
43 
44 		if (journal_begin(&th, inode->i_sb, jbegin_count))
45 			goto out;
46 		reiserfs_update_inode_transaction(inode);
47 
48 		reiserfs_discard_prealloc(&th, inode);
49 
50 		err = reiserfs_delete_object(&th, inode);
51 
52 		/* Do quota update inside a transaction for journaled quotas. We must do that
53 		 * after delete_object so that quota updates go into the same transaction as
54 		 * stat data deletion */
55 		if (!err)
56 			vfs_dq_free_inode(inode);
57 
58 		if (journal_end(&th, inode->i_sb, jbegin_count))
59 			goto out;
60 
61 		/* check return value from reiserfs_delete_object after
62 		 * ending the transaction
63 		 */
64 		if (err)
65 		    goto out;
66 
67 		/* all items of file are deleted, so we can remove "save" link */
68 		remove_save_link(inode, 0 /* not truncate */ );	/* we can't do anything
69 								 * about an error here */
70 	} else {
71 		/* no object items are in the tree */
72 		;
73 	}
74       out:
75 	clear_inode(inode);	/* note this must go after the journal_end to prevent deadlock */
76 	inode->i_blocks = 0;
77 	reiserfs_write_unlock(inode->i_sb);
78 }
79 
80 static void _make_cpu_key(struct cpu_key *key, int version, __u32 dirid,
81 			  __u32 objectid, loff_t offset, int type, int length)
82 {
83 	key->version = version;
84 
85 	key->on_disk_key.k_dir_id = dirid;
86 	key->on_disk_key.k_objectid = objectid;
87 	set_cpu_key_k_offset(key, offset);
88 	set_cpu_key_k_type(key, type);
89 	key->key_length = length;
90 }
91 
92 /* take base of inode_key (it comes from inode always) (dirid, objectid) and version from an inode, set
93    offset and type of key */
94 void make_cpu_key(struct cpu_key *key, struct inode *inode, loff_t offset,
95 		  int type, int length)
96 {
97 	_make_cpu_key(key, get_inode_item_key_version(inode),
98 		      le32_to_cpu(INODE_PKEY(inode)->k_dir_id),
99 		      le32_to_cpu(INODE_PKEY(inode)->k_objectid), offset, type,
100 		      length);
101 }
102 
103 //
104 // when key is 0, do not set version and short key
105 //
106 inline void make_le_item_head(struct item_head *ih, const struct cpu_key *key,
107 			      int version,
108 			      loff_t offset, int type, int length,
109 			      int entry_count /*or ih_free_space */ )
110 {
111 	if (key) {
112 		ih->ih_key.k_dir_id = cpu_to_le32(key->on_disk_key.k_dir_id);
113 		ih->ih_key.k_objectid =
114 		    cpu_to_le32(key->on_disk_key.k_objectid);
115 	}
116 	put_ih_version(ih, version);
117 	set_le_ih_k_offset(ih, offset);
118 	set_le_ih_k_type(ih, type);
119 	put_ih_item_len(ih, length);
120 	/*    set_ih_free_space (ih, 0); */
121 	// for directory items it is entry count, for directs and stat
122 	// datas - 0xffff, for indirects - 0
123 	put_ih_entry_count(ih, entry_count);
124 }
125 
126 //
127 // FIXME: we might cache recently accessed indirect item
128 
129 // Ugh.  Not too eager for that....
130 //  I cut the code until such time as I see a convincing argument (benchmark).
131 // I don't want a bloated inode struct..., and I don't like code complexity....
132 
133 /* cutting the code is fine, since it really isn't in use yet and is easy
134 ** to add back in.  But, Vladimir has a really good idea here.  Think
135 ** about what happens for reading a file.  For each page,
136 ** The VFS layer calls reiserfs_readpage, who searches the tree to find
137 ** an indirect item.  This indirect item has X number of pointers, where
138 ** X is a big number if we've done the block allocation right.  But,
139 ** we only use one or two of these pointers during each call to readpage,
140 ** needlessly researching again later on.
141 **
142 ** The size of the cache could be dynamic based on the size of the file.
143 **
144 ** I'd also like to see us cache the location the stat data item, since
145 ** we are needlessly researching for that frequently.
146 **
147 ** --chris
148 */
149 
150 /* If this page has a file tail in it, and
151 ** it was read in by get_block_create_0, the page data is valid,
152 ** but tail is still sitting in a direct item, and we can't write to
153 ** it.  So, look through this page, and check all the mapped buffers
154 ** to make sure they have valid block numbers.  Any that don't need
155 ** to be unmapped, so that block_prepare_write will correctly call
156 ** reiserfs_get_block to convert the tail into an unformatted node
157 */
158 static inline void fix_tail_page_for_writing(struct page *page)
159 {
160 	struct buffer_head *head, *next, *bh;
161 
162 	if (page && page_has_buffers(page)) {
163 		head = page_buffers(page);
164 		bh = head;
165 		do {
166 			next = bh->b_this_page;
167 			if (buffer_mapped(bh) && bh->b_blocknr == 0) {
168 				reiserfs_unmap_buffer(bh);
169 			}
170 			bh = next;
171 		} while (bh != head);
172 	}
173 }
174 
175 /* reiserfs_get_block does not need to allocate a block only if it has been
176    done already or non-hole position has been found in the indirect item */
177 static inline int allocation_needed(int retval, b_blocknr_t allocated,
178 				    struct item_head *ih,
179 				    __le32 * item, int pos_in_item)
180 {
181 	if (allocated)
182 		return 0;
183 	if (retval == POSITION_FOUND && is_indirect_le_ih(ih) &&
184 	    get_block_num(item, pos_in_item))
185 		return 0;
186 	return 1;
187 }
188 
189 static inline int indirect_item_found(int retval, struct item_head *ih)
190 {
191 	return (retval == POSITION_FOUND) && is_indirect_le_ih(ih);
192 }
193 
194 static inline void set_block_dev_mapped(struct buffer_head *bh,
195 					b_blocknr_t block, struct inode *inode)
196 {
197 	map_bh(bh, inode->i_sb, block);
198 }
199 
200 //
201 // files which were created in the earlier version can not be longer,
202 // than 2 gb
203 //
204 static int file_capable(struct inode *inode, sector_t block)
205 {
206 	if (get_inode_item_key_version(inode) != KEY_FORMAT_3_5 ||	// it is new file.
207 	    block < (1 << (31 - inode->i_sb->s_blocksize_bits)))	// old file, but 'block' is inside of 2gb
208 		return 1;
209 
210 	return 0;
211 }
212 
213 static int restart_transaction(struct reiserfs_transaction_handle *th,
214 			       struct inode *inode, struct treepath *path)
215 {
216 	struct super_block *s = th->t_super;
217 	int len = th->t_blocks_allocated;
218 	int err;
219 
220 	BUG_ON(!th->t_trans_id);
221 	BUG_ON(!th->t_refcount);
222 
223 	pathrelse(path);
224 
225 	/* we cannot restart while nested */
226 	if (th->t_refcount > 1) {
227 		return 0;
228 	}
229 	reiserfs_update_sd(th, inode);
230 	err = journal_end(th, s, len);
231 	if (!err) {
232 		err = journal_begin(th, s, JOURNAL_PER_BALANCE_CNT * 6);
233 		if (!err)
234 			reiserfs_update_inode_transaction(inode);
235 	}
236 	return err;
237 }
238 
239 // it is called by get_block when create == 0. Returns block number
240 // for 'block'-th logical block of file. When it hits direct item it
241 // returns 0 (being called from bmap) or read direct item into piece
242 // of page (bh_result)
243 
244 // Please improve the english/clarity in the comment above, as it is
245 // hard to understand.
246 
247 static int _get_block_create_0(struct inode *inode, sector_t block,
248 			       struct buffer_head *bh_result, int args)
249 {
250 	INITIALIZE_PATH(path);
251 	struct cpu_key key;
252 	struct buffer_head *bh;
253 	struct item_head *ih, tmp_ih;
254 	int fs_gen;
255 	b_blocknr_t blocknr;
256 	char *p = NULL;
257 	int chars;
258 	int ret;
259 	int result;
260 	int done = 0;
261 	unsigned long offset;
262 
263 	// prepare the key to look for the 'block'-th block of file
264 	make_cpu_key(&key, inode,
265 		     (loff_t) block * inode->i_sb->s_blocksize + 1, TYPE_ANY,
266 		     3);
267 
268       research:
269 	result = search_for_position_by_key(inode->i_sb, &key, &path);
270 	if (result != POSITION_FOUND) {
271 		pathrelse(&path);
272 		if (p)
273 			kunmap(bh_result->b_page);
274 		if (result == IO_ERROR)
275 			return -EIO;
276 		// We do not return -ENOENT if there is a hole but page is uptodate, because it means
277 		// That there is some MMAPED data associated with it that is yet to be written to disk.
278 		if ((args & GET_BLOCK_NO_HOLE)
279 		    && !PageUptodate(bh_result->b_page)) {
280 			return -ENOENT;
281 		}
282 		return 0;
283 	}
284 	//
285 	bh = get_last_bh(&path);
286 	ih = get_ih(&path);
287 	if (is_indirect_le_ih(ih)) {
288 		__le32 *ind_item = (__le32 *) B_I_PITEM(bh, ih);
289 
290 		/* FIXME: here we could cache indirect item or part of it in
291 		   the inode to avoid search_by_key in case of subsequent
292 		   access to file */
293 		blocknr = get_block_num(ind_item, path.pos_in_item);
294 		ret = 0;
295 		if (blocknr) {
296 			map_bh(bh_result, inode->i_sb, blocknr);
297 			if (path.pos_in_item ==
298 			    ((ih_item_len(ih) / UNFM_P_SIZE) - 1)) {
299 				set_buffer_boundary(bh_result);
300 			}
301 		} else
302 			// We do not return -ENOENT if there is a hole but page is uptodate, because it means
303 			// That there is some MMAPED data associated with it that is yet to  be written to disk.
304 		if ((args & GET_BLOCK_NO_HOLE)
305 			    && !PageUptodate(bh_result->b_page)) {
306 			ret = -ENOENT;
307 		}
308 
309 		pathrelse(&path);
310 		if (p)
311 			kunmap(bh_result->b_page);
312 		return ret;
313 	}
314 	// requested data are in direct item(s)
315 	if (!(args & GET_BLOCK_READ_DIRECT)) {
316 		// we are called by bmap. FIXME: we can not map block of file
317 		// when it is stored in direct item(s)
318 		pathrelse(&path);
319 		if (p)
320 			kunmap(bh_result->b_page);
321 		return -ENOENT;
322 	}
323 
324 	/* if we've got a direct item, and the buffer or page was uptodate,
325 	 ** we don't want to pull data off disk again.  skip to the
326 	 ** end, where we map the buffer and return
327 	 */
328 	if (buffer_uptodate(bh_result)) {
329 		goto finished;
330 	} else
331 		/*
332 		 ** grab_tail_page can trigger calls to reiserfs_get_block on up to date
333 		 ** pages without any buffers.  If the page is up to date, we don't want
334 		 ** read old data off disk.  Set the up to date bit on the buffer instead
335 		 ** and jump to the end
336 		 */
337 	if (!bh_result->b_page || PageUptodate(bh_result->b_page)) {
338 		set_buffer_uptodate(bh_result);
339 		goto finished;
340 	}
341 	// read file tail into part of page
342 	offset = (cpu_key_k_offset(&key) - 1) & (PAGE_CACHE_SIZE - 1);
343 	fs_gen = get_generation(inode->i_sb);
344 	copy_item_head(&tmp_ih, ih);
345 
346 	/* we only want to kmap if we are reading the tail into the page.
347 	 ** this is not the common case, so we don't kmap until we are
348 	 ** sure we need to.  But, this means the item might move if
349 	 ** kmap schedules
350 	 */
351 	if (!p) {
352 		p = (char *)kmap(bh_result->b_page);
353 		if (fs_changed(fs_gen, inode->i_sb)
354 		    && item_moved(&tmp_ih, &path)) {
355 			goto research;
356 		}
357 	}
358 	p += offset;
359 	memset(p, 0, inode->i_sb->s_blocksize);
360 	do {
361 		if (!is_direct_le_ih(ih)) {
362 			BUG();
363 		}
364 		/* make sure we don't read more bytes than actually exist in
365 		 ** the file.  This can happen in odd cases where i_size isn't
366 		 ** correct, and when direct item padding results in a few
367 		 ** extra bytes at the end of the direct item
368 		 */
369 		if ((le_ih_k_offset(ih) + path.pos_in_item) > inode->i_size)
370 			break;
371 		if ((le_ih_k_offset(ih) - 1 + ih_item_len(ih)) > inode->i_size) {
372 			chars =
373 			    inode->i_size - (le_ih_k_offset(ih) - 1) -
374 			    path.pos_in_item;
375 			done = 1;
376 		} else {
377 			chars = ih_item_len(ih) - path.pos_in_item;
378 		}
379 		memcpy(p, B_I_PITEM(bh, ih) + path.pos_in_item, chars);
380 
381 		if (done)
382 			break;
383 
384 		p += chars;
385 
386 		if (PATH_LAST_POSITION(&path) != (B_NR_ITEMS(bh) - 1))
387 			// we done, if read direct item is not the last item of
388 			// node FIXME: we could try to check right delimiting key
389 			// to see whether direct item continues in the right
390 			// neighbor or rely on i_size
391 			break;
392 
393 		// update key to look for the next piece
394 		set_cpu_key_k_offset(&key, cpu_key_k_offset(&key) + chars);
395 		result = search_for_position_by_key(inode->i_sb, &key, &path);
396 		if (result != POSITION_FOUND)
397 			// i/o error most likely
398 			break;
399 		bh = get_last_bh(&path);
400 		ih = get_ih(&path);
401 	} while (1);
402 
403 	flush_dcache_page(bh_result->b_page);
404 	kunmap(bh_result->b_page);
405 
406       finished:
407 	pathrelse(&path);
408 
409 	if (result == IO_ERROR)
410 		return -EIO;
411 
412 	/* this buffer has valid data, but isn't valid for io.  mapping it to
413 	 * block #0 tells the rest of reiserfs it just has a tail in it
414 	 */
415 	map_bh(bh_result, inode->i_sb, 0);
416 	set_buffer_uptodate(bh_result);
417 	return 0;
418 }
419 
420 // this is called to create file map. So, _get_block_create_0 will not
421 // read direct item
422 static int reiserfs_bmap(struct inode *inode, sector_t block,
423 			 struct buffer_head *bh_result, int create)
424 {
425 	if (!file_capable(inode, block))
426 		return -EFBIG;
427 
428 	reiserfs_write_lock(inode->i_sb);
429 	/* do not read the direct item */
430 	_get_block_create_0(inode, block, bh_result, 0);
431 	reiserfs_write_unlock(inode->i_sb);
432 	return 0;
433 }
434 
435 /* special version of get_block that is only used by grab_tail_page right
436 ** now.  It is sent to block_prepare_write, and when you try to get a
437 ** block past the end of the file (or a block from a hole) it returns
438 ** -ENOENT instead of a valid buffer.  block_prepare_write expects to
439 ** be able to do i/o on the buffers returned, unless an error value
440 ** is also returned.
441 **
442 ** So, this allows block_prepare_write to be used for reading a single block
443 ** in a page.  Where it does not produce a valid page for holes, or past the
444 ** end of the file.  This turns out to be exactly what we need for reading
445 ** tails for conversion.
446 **
447 ** The point of the wrapper is forcing a certain value for create, even
448 ** though the VFS layer is calling this function with create==1.  If you
449 ** don't want to send create == GET_BLOCK_NO_HOLE to reiserfs_get_block,
450 ** don't use this function.
451 */
452 static int reiserfs_get_block_create_0(struct inode *inode, sector_t block,
453 				       struct buffer_head *bh_result,
454 				       int create)
455 {
456 	return reiserfs_get_block(inode, block, bh_result, GET_BLOCK_NO_HOLE);
457 }
458 
459 /* This is special helper for reiserfs_get_block in case we are executing
460    direct_IO request. */
461 static int reiserfs_get_blocks_direct_io(struct inode *inode,
462 					 sector_t iblock,
463 					 struct buffer_head *bh_result,
464 					 int create)
465 {
466 	int ret;
467 
468 	bh_result->b_page = NULL;
469 
470 	/* We set the b_size before reiserfs_get_block call since it is
471 	   referenced in convert_tail_for_hole() that may be called from
472 	   reiserfs_get_block() */
473 	bh_result->b_size = (1 << inode->i_blkbits);
474 
475 	ret = reiserfs_get_block(inode, iblock, bh_result,
476 				 create | GET_BLOCK_NO_DANGLE);
477 	if (ret)
478 		goto out;
479 
480 	/* don't allow direct io onto tail pages */
481 	if (buffer_mapped(bh_result) && bh_result->b_blocknr == 0) {
482 		/* make sure future calls to the direct io funcs for this offset
483 		 ** in the file fail by unmapping the buffer
484 		 */
485 		clear_buffer_mapped(bh_result);
486 		ret = -EINVAL;
487 	}
488 	/* Possible unpacked tail. Flush the data before pages have
489 	   disappeared */
490 	if (REISERFS_I(inode)->i_flags & i_pack_on_close_mask) {
491 		int err;
492 		lock_kernel();
493 		err = reiserfs_commit_for_inode(inode);
494 		REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask;
495 		unlock_kernel();
496 		if (err < 0)
497 			ret = err;
498 	}
499       out:
500 	return ret;
501 }
502 
503 /*
504 ** helper function for when reiserfs_get_block is called for a hole
505 ** but the file tail is still in a direct item
506 ** bh_result is the buffer head for the hole
507 ** tail_offset is the offset of the start of the tail in the file
508 **
509 ** This calls prepare_write, which will start a new transaction
510 ** you should not be in a transaction, or have any paths held when you
511 ** call this.
512 */
513 static int convert_tail_for_hole(struct inode *inode,
514 				 struct buffer_head *bh_result,
515 				 loff_t tail_offset)
516 {
517 	unsigned long index;
518 	unsigned long tail_end;
519 	unsigned long tail_start;
520 	struct page *tail_page;
521 	struct page *hole_page = bh_result->b_page;
522 	int retval = 0;
523 
524 	if ((tail_offset & (bh_result->b_size - 1)) != 1)
525 		return -EIO;
526 
527 	/* always try to read until the end of the block */
528 	tail_start = tail_offset & (PAGE_CACHE_SIZE - 1);
529 	tail_end = (tail_start | (bh_result->b_size - 1)) + 1;
530 
531 	index = tail_offset >> PAGE_CACHE_SHIFT;
532 	/* hole_page can be zero in case of direct_io, we are sure
533 	   that we cannot get here if we write with O_DIRECT into
534 	   tail page */
535 	if (!hole_page || index != hole_page->index) {
536 		tail_page = grab_cache_page(inode->i_mapping, index);
537 		retval = -ENOMEM;
538 		if (!tail_page) {
539 			goto out;
540 		}
541 	} else {
542 		tail_page = hole_page;
543 	}
544 
545 	/* we don't have to make sure the conversion did not happen while
546 	 ** we were locking the page because anyone that could convert
547 	 ** must first take i_mutex.
548 	 **
549 	 ** We must fix the tail page for writing because it might have buffers
550 	 ** that are mapped, but have a block number of 0.  This indicates tail
551 	 ** data that has been read directly into the page, and block_prepare_write
552 	 ** won't trigger a get_block in this case.
553 	 */
554 	fix_tail_page_for_writing(tail_page);
555 	retval = reiserfs_prepare_write(NULL, tail_page, tail_start, tail_end);
556 	if (retval)
557 		goto unlock;
558 
559 	/* tail conversion might change the data in the page */
560 	flush_dcache_page(tail_page);
561 
562 	retval = reiserfs_commit_write(NULL, tail_page, tail_start, tail_end);
563 
564       unlock:
565 	if (tail_page != hole_page) {
566 		unlock_page(tail_page);
567 		page_cache_release(tail_page);
568 	}
569       out:
570 	return retval;
571 }
572 
573 static inline int _allocate_block(struct reiserfs_transaction_handle *th,
574 				  sector_t block,
575 				  struct inode *inode,
576 				  b_blocknr_t * allocated_block_nr,
577 				  struct treepath *path, int flags)
578 {
579 	BUG_ON(!th->t_trans_id);
580 
581 #ifdef REISERFS_PREALLOCATE
582 	if (!(flags & GET_BLOCK_NO_IMUX)) {
583 		return reiserfs_new_unf_blocknrs2(th, inode, allocated_block_nr,
584 						  path, block);
585 	}
586 #endif
587 	return reiserfs_new_unf_blocknrs(th, inode, allocated_block_nr, path,
588 					 block);
589 }
590 
591 int reiserfs_get_block(struct inode *inode, sector_t block,
592 		       struct buffer_head *bh_result, int create)
593 {
594 	int repeat, retval = 0;
595 	b_blocknr_t allocated_block_nr = 0;	// b_blocknr_t is (unsigned) 32 bit int
596 	INITIALIZE_PATH(path);
597 	int pos_in_item;
598 	struct cpu_key key;
599 	struct buffer_head *bh, *unbh = NULL;
600 	struct item_head *ih, tmp_ih;
601 	__le32 *item;
602 	int done;
603 	int fs_gen;
604 	struct reiserfs_transaction_handle *th = NULL;
605 	/* space reserved in transaction batch:
606 	   . 3 balancings in direct->indirect conversion
607 	   . 1 block involved into reiserfs_update_sd()
608 	   XXX in practically impossible worst case direct2indirect()
609 	   can incur (much) more than 3 balancings.
610 	   quota update for user, group */
611 	int jbegin_count =
612 	    JOURNAL_PER_BALANCE_CNT * 3 + 1 +
613 	    2 * REISERFS_QUOTA_TRANS_BLOCKS(inode->i_sb);
614 	int version;
615 	int dangle = 1;
616 	loff_t new_offset =
617 	    (((loff_t) block) << inode->i_sb->s_blocksize_bits) + 1;
618 
619 	/* bad.... */
620 	reiserfs_write_lock(inode->i_sb);
621 	version = get_inode_item_key_version(inode);
622 
623 	if (!file_capable(inode, block)) {
624 		reiserfs_write_unlock(inode->i_sb);
625 		return -EFBIG;
626 	}
627 
628 	/* if !create, we aren't changing the FS, so we don't need to
629 	 ** log anything, so we don't need to start a transaction
630 	 */
631 	if (!(create & GET_BLOCK_CREATE)) {
632 		int ret;
633 		/* find number of block-th logical block of the file */
634 		ret = _get_block_create_0(inode, block, bh_result,
635 					  create | GET_BLOCK_READ_DIRECT);
636 		reiserfs_write_unlock(inode->i_sb);
637 		return ret;
638 	}
639 	/*
640 	 * if we're already in a transaction, make sure to close
641 	 * any new transactions we start in this func
642 	 */
643 	if ((create & GET_BLOCK_NO_DANGLE) ||
644 	    reiserfs_transaction_running(inode->i_sb))
645 		dangle = 0;
646 
647 	/* If file is of such a size, that it might have a tail and tails are enabled
648 	 ** we should mark it as possibly needing tail packing on close
649 	 */
650 	if ((have_large_tails(inode->i_sb)
651 	     && inode->i_size < i_block_size(inode) * 4)
652 	    || (have_small_tails(inode->i_sb)
653 		&& inode->i_size < i_block_size(inode)))
654 		REISERFS_I(inode)->i_flags |= i_pack_on_close_mask;
655 
656 	/* set the key of the first byte in the 'block'-th block of file */
657 	make_cpu_key(&key, inode, new_offset, TYPE_ANY, 3 /*key length */ );
658 	if ((new_offset + inode->i_sb->s_blocksize - 1) > inode->i_size) {
659 	      start_trans:
660 		th = reiserfs_persistent_transaction(inode->i_sb, jbegin_count);
661 		if (!th) {
662 			retval = -ENOMEM;
663 			goto failure;
664 		}
665 		reiserfs_update_inode_transaction(inode);
666 	}
667       research:
668 
669 	retval = search_for_position_by_key(inode->i_sb, &key, &path);
670 	if (retval == IO_ERROR) {
671 		retval = -EIO;
672 		goto failure;
673 	}
674 
675 	bh = get_last_bh(&path);
676 	ih = get_ih(&path);
677 	item = get_item(&path);
678 	pos_in_item = path.pos_in_item;
679 
680 	fs_gen = get_generation(inode->i_sb);
681 	copy_item_head(&tmp_ih, ih);
682 
683 	if (allocation_needed
684 	    (retval, allocated_block_nr, ih, item, pos_in_item)) {
685 		/* we have to allocate block for the unformatted node */
686 		if (!th) {
687 			pathrelse(&path);
688 			goto start_trans;
689 		}
690 
691 		repeat =
692 		    _allocate_block(th, block, inode, &allocated_block_nr,
693 				    &path, create);
694 
695 		if (repeat == NO_DISK_SPACE || repeat == QUOTA_EXCEEDED) {
696 			/* restart the transaction to give the journal a chance to free
697 			 ** some blocks.  releases the path, so we have to go back to
698 			 ** research if we succeed on the second try
699 			 */
700 			SB_JOURNAL(inode->i_sb)->j_next_async_flush = 1;
701 			retval = restart_transaction(th, inode, &path);
702 			if (retval)
703 				goto failure;
704 			repeat =
705 			    _allocate_block(th, block, inode,
706 					    &allocated_block_nr, NULL, create);
707 
708 			if (repeat != NO_DISK_SPACE && repeat != QUOTA_EXCEEDED) {
709 				goto research;
710 			}
711 			if (repeat == QUOTA_EXCEEDED)
712 				retval = -EDQUOT;
713 			else
714 				retval = -ENOSPC;
715 			goto failure;
716 		}
717 
718 		if (fs_changed(fs_gen, inode->i_sb)
719 		    && item_moved(&tmp_ih, &path)) {
720 			goto research;
721 		}
722 	}
723 
724 	if (indirect_item_found(retval, ih)) {
725 		b_blocknr_t unfm_ptr;
726 		/* 'block'-th block is in the file already (there is
727 		   corresponding cell in some indirect item). But it may be
728 		   zero unformatted node pointer (hole) */
729 		unfm_ptr = get_block_num(item, pos_in_item);
730 		if (unfm_ptr == 0) {
731 			/* use allocated block to plug the hole */
732 			reiserfs_prepare_for_journal(inode->i_sb, bh, 1);
733 			if (fs_changed(fs_gen, inode->i_sb)
734 			    && item_moved(&tmp_ih, &path)) {
735 				reiserfs_restore_prepared_buffer(inode->i_sb,
736 								 bh);
737 				goto research;
738 			}
739 			set_buffer_new(bh_result);
740 			if (buffer_dirty(bh_result)
741 			    && reiserfs_data_ordered(inode->i_sb))
742 				reiserfs_add_ordered_list(inode, bh_result);
743 			put_block_num(item, pos_in_item, allocated_block_nr);
744 			unfm_ptr = allocated_block_nr;
745 			journal_mark_dirty(th, inode->i_sb, bh);
746 			reiserfs_update_sd(th, inode);
747 		}
748 		set_block_dev_mapped(bh_result, unfm_ptr, inode);
749 		pathrelse(&path);
750 		retval = 0;
751 		if (!dangle && th)
752 			retval = reiserfs_end_persistent_transaction(th);
753 
754 		reiserfs_write_unlock(inode->i_sb);
755 
756 		/* the item was found, so new blocks were not added to the file
757 		 ** there is no need to make sure the inode is updated with this
758 		 ** transaction
759 		 */
760 		return retval;
761 	}
762 
763 	if (!th) {
764 		pathrelse(&path);
765 		goto start_trans;
766 	}
767 
768 	/* desired position is not found or is in the direct item. We have
769 	   to append file with holes up to 'block'-th block converting
770 	   direct items to indirect one if necessary */
771 	done = 0;
772 	do {
773 		if (is_statdata_le_ih(ih)) {
774 			__le32 unp = 0;
775 			struct cpu_key tmp_key;
776 
777 			/* indirect item has to be inserted */
778 			make_le_item_head(&tmp_ih, &key, version, 1,
779 					  TYPE_INDIRECT, UNFM_P_SIZE,
780 					  0 /* free_space */ );
781 
782 			if (cpu_key_k_offset(&key) == 1) {
783 				/* we are going to add 'block'-th block to the file. Use
784 				   allocated block for that */
785 				unp = cpu_to_le32(allocated_block_nr);
786 				set_block_dev_mapped(bh_result,
787 						     allocated_block_nr, inode);
788 				set_buffer_new(bh_result);
789 				done = 1;
790 			}
791 			tmp_key = key;	// ;)
792 			set_cpu_key_k_offset(&tmp_key, 1);
793 			PATH_LAST_POSITION(&path)++;
794 
795 			retval =
796 			    reiserfs_insert_item(th, &path, &tmp_key, &tmp_ih,
797 						 inode, (char *)&unp);
798 			if (retval) {
799 				reiserfs_free_block(th, inode,
800 						    allocated_block_nr, 1);
801 				goto failure;	// retval == -ENOSPC, -EDQUOT or -EIO or -EEXIST
802 			}
803 			//mark_tail_converted (inode);
804 		} else if (is_direct_le_ih(ih)) {
805 			/* direct item has to be converted */
806 			loff_t tail_offset;
807 
808 			tail_offset =
809 			    ((le_ih_k_offset(ih) -
810 			      1) & ~(inode->i_sb->s_blocksize - 1)) + 1;
811 			if (tail_offset == cpu_key_k_offset(&key)) {
812 				/* direct item we just found fits into block we have
813 				   to map. Convert it into unformatted node: use
814 				   bh_result for the conversion */
815 				set_block_dev_mapped(bh_result,
816 						     allocated_block_nr, inode);
817 				unbh = bh_result;
818 				done = 1;
819 			} else {
820 				/* we have to padd file tail stored in direct item(s)
821 				   up to block size and convert it to unformatted
822 				   node. FIXME: this should also get into page cache */
823 
824 				pathrelse(&path);
825 				/*
826 				 * ugly, but we can only end the transaction if
827 				 * we aren't nested
828 				 */
829 				BUG_ON(!th->t_refcount);
830 				if (th->t_refcount == 1) {
831 					retval =
832 					    reiserfs_end_persistent_transaction
833 					    (th);
834 					th = NULL;
835 					if (retval)
836 						goto failure;
837 				}
838 
839 				retval =
840 				    convert_tail_for_hole(inode, bh_result,
841 							  tail_offset);
842 				if (retval) {
843 					if (retval != -ENOSPC)
844 						reiserfs_error(inode->i_sb,
845 							"clm-6004",
846 							"convert tail failed "
847 							"inode %lu, error %d",
848 							inode->i_ino,
849 							retval);
850 					if (allocated_block_nr) {
851 						/* the bitmap, the super, and the stat data == 3 */
852 						if (!th)
853 							th = reiserfs_persistent_transaction(inode->i_sb, 3);
854 						if (th)
855 							reiserfs_free_block(th,
856 									    inode,
857 									    allocated_block_nr,
858 									    1);
859 					}
860 					goto failure;
861 				}
862 				goto research;
863 			}
864 			retval =
865 			    direct2indirect(th, inode, &path, unbh,
866 					    tail_offset);
867 			if (retval) {
868 				reiserfs_unmap_buffer(unbh);
869 				reiserfs_free_block(th, inode,
870 						    allocated_block_nr, 1);
871 				goto failure;
872 			}
873 			/* it is important the set_buffer_uptodate is done after
874 			 ** the direct2indirect.  The buffer might contain valid
875 			 ** data newer than the data on disk (read by readpage, changed,
876 			 ** and then sent here by writepage).  direct2indirect needs
877 			 ** to know if unbh was already up to date, so it can decide
878 			 ** if the data in unbh needs to be replaced with data from
879 			 ** the disk
880 			 */
881 			set_buffer_uptodate(unbh);
882 
883 			/* unbh->b_page == NULL in case of DIRECT_IO request, this means
884 			   buffer will disappear shortly, so it should not be added to
885 			 */
886 			if (unbh->b_page) {
887 				/* we've converted the tail, so we must
888 				 ** flush unbh before the transaction commits
889 				 */
890 				reiserfs_add_tail_list(inode, unbh);
891 
892 				/* mark it dirty now to prevent commit_write from adding
893 				 ** this buffer to the inode's dirty buffer list
894 				 */
895 				/*
896 				 * AKPM: changed __mark_buffer_dirty to mark_buffer_dirty().
897 				 * It's still atomic, but it sets the page dirty too,
898 				 * which makes it eligible for writeback at any time by the
899 				 * VM (which was also the case with __mark_buffer_dirty())
900 				 */
901 				mark_buffer_dirty(unbh);
902 			}
903 		} else {
904 			/* append indirect item with holes if needed, when appending
905 			   pointer to 'block'-th block use block, which is already
906 			   allocated */
907 			struct cpu_key tmp_key;
908 			unp_t unf_single = 0;	// We use this in case we need to allocate only
909 			// one block which is a fastpath
910 			unp_t *un;
911 			__u64 max_to_insert =
912 			    MAX_ITEM_LEN(inode->i_sb->s_blocksize) /
913 			    UNFM_P_SIZE;
914 			__u64 blocks_needed;
915 
916 			RFALSE(pos_in_item != ih_item_len(ih) / UNFM_P_SIZE,
917 			       "vs-804: invalid position for append");
918 			/* indirect item has to be appended, set up key of that position */
919 			make_cpu_key(&tmp_key, inode,
920 				     le_key_k_offset(version,
921 						     &(ih->ih_key)) +
922 				     op_bytes_number(ih,
923 						     inode->i_sb->s_blocksize),
924 				     //pos_in_item * inode->i_sb->s_blocksize,
925 				     TYPE_INDIRECT, 3);	// key type is unimportant
926 
927 			RFALSE(cpu_key_k_offset(&tmp_key) > cpu_key_k_offset(&key),
928 			       "green-805: invalid offset");
929 			blocks_needed =
930 			    1 +
931 			    ((cpu_key_k_offset(&key) -
932 			      cpu_key_k_offset(&tmp_key)) >> inode->i_sb->
933 			     s_blocksize_bits);
934 
935 			if (blocks_needed == 1) {
936 				un = &unf_single;
937 			} else {
938 				un = kzalloc(min(blocks_needed, max_to_insert) * UNFM_P_SIZE, GFP_ATOMIC);	// We need to avoid scheduling.
939 				if (!un) {
940 					un = &unf_single;
941 					blocks_needed = 1;
942 					max_to_insert = 0;
943 				}
944 			}
945 			if (blocks_needed <= max_to_insert) {
946 				/* we are going to add target block to the file. Use allocated
947 				   block for that */
948 				un[blocks_needed - 1] =
949 				    cpu_to_le32(allocated_block_nr);
950 				set_block_dev_mapped(bh_result,
951 						     allocated_block_nr, inode);
952 				set_buffer_new(bh_result);
953 				done = 1;
954 			} else {
955 				/* paste hole to the indirect item */
956 				/* If kmalloc failed, max_to_insert becomes zero and it means we
957 				   only have space for one block */
958 				blocks_needed =
959 				    max_to_insert ? max_to_insert : 1;
960 			}
961 			retval =
962 			    reiserfs_paste_into_item(th, &path, &tmp_key, inode,
963 						     (char *)un,
964 						     UNFM_P_SIZE *
965 						     blocks_needed);
966 
967 			if (blocks_needed != 1)
968 				kfree(un);
969 
970 			if (retval) {
971 				reiserfs_free_block(th, inode,
972 						    allocated_block_nr, 1);
973 				goto failure;
974 			}
975 			if (!done) {
976 				/* We need to mark new file size in case this function will be
977 				   interrupted/aborted later on. And we may do this only for
978 				   holes. */
979 				inode->i_size +=
980 				    inode->i_sb->s_blocksize * blocks_needed;
981 			}
982 		}
983 
984 		if (done == 1)
985 			break;
986 
987 		/* this loop could log more blocks than we had originally asked
988 		 ** for.  So, we have to allow the transaction to end if it is
989 		 ** too big or too full.  Update the inode so things are
990 		 ** consistent if we crash before the function returns
991 		 **
992 		 ** release the path so that anybody waiting on the path before
993 		 ** ending their transaction will be able to continue.
994 		 */
995 		if (journal_transaction_should_end(th, th->t_blocks_allocated)) {
996 			retval = restart_transaction(th, inode, &path);
997 			if (retval)
998 				goto failure;
999 		}
1000 		/* inserting indirect pointers for a hole can take a
1001 		 ** long time.  reschedule if needed
1002 		 */
1003 		cond_resched();
1004 
1005 		retval = search_for_position_by_key(inode->i_sb, &key, &path);
1006 		if (retval == IO_ERROR) {
1007 			retval = -EIO;
1008 			goto failure;
1009 		}
1010 		if (retval == POSITION_FOUND) {
1011 			reiserfs_warning(inode->i_sb, "vs-825",
1012 					 "%K should not be found", &key);
1013 			retval = -EEXIST;
1014 			if (allocated_block_nr)
1015 				reiserfs_free_block(th, inode,
1016 						    allocated_block_nr, 1);
1017 			pathrelse(&path);
1018 			goto failure;
1019 		}
1020 		bh = get_last_bh(&path);
1021 		ih = get_ih(&path);
1022 		item = get_item(&path);
1023 		pos_in_item = path.pos_in_item;
1024 	} while (1);
1025 
1026 	retval = 0;
1027 
1028       failure:
1029 	if (th && (!dangle || (retval && !th->t_trans_id))) {
1030 		int err;
1031 		if (th->t_trans_id)
1032 			reiserfs_update_sd(th, inode);
1033 		err = reiserfs_end_persistent_transaction(th);
1034 		if (err)
1035 			retval = err;
1036 	}
1037 
1038 	reiserfs_write_unlock(inode->i_sb);
1039 	reiserfs_check_path(&path);
1040 	return retval;
1041 }
1042 
1043 static int
1044 reiserfs_readpages(struct file *file, struct address_space *mapping,
1045 		   struct list_head *pages, unsigned nr_pages)
1046 {
1047 	return mpage_readpages(mapping, pages, nr_pages, reiserfs_get_block);
1048 }
1049 
1050 /* Compute real number of used bytes by file
1051  * Following three functions can go away when we'll have enough space in stat item
1052  */
1053 static int real_space_diff(struct inode *inode, int sd_size)
1054 {
1055 	int bytes;
1056 	loff_t blocksize = inode->i_sb->s_blocksize;
1057 
1058 	if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode))
1059 		return sd_size;
1060 
1061 	/* End of file is also in full block with indirect reference, so round
1062 	 ** up to the next block.
1063 	 **
1064 	 ** there is just no way to know if the tail is actually packed
1065 	 ** on the file, so we have to assume it isn't.  When we pack the
1066 	 ** tail, we add 4 bytes to pretend there really is an unformatted
1067 	 ** node pointer
1068 	 */
1069 	bytes =
1070 	    ((inode->i_size +
1071 	      (blocksize - 1)) >> inode->i_sb->s_blocksize_bits) * UNFM_P_SIZE +
1072 	    sd_size;
1073 	return bytes;
1074 }
1075 
1076 static inline loff_t to_real_used_space(struct inode *inode, ulong blocks,
1077 					int sd_size)
1078 {
1079 	if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode)) {
1080 		return inode->i_size +
1081 		    (loff_t) (real_space_diff(inode, sd_size));
1082 	}
1083 	return ((loff_t) real_space_diff(inode, sd_size)) +
1084 	    (((loff_t) blocks) << 9);
1085 }
1086 
1087 /* Compute number of blocks used by file in ReiserFS counting */
1088 static inline ulong to_fake_used_blocks(struct inode *inode, int sd_size)
1089 {
1090 	loff_t bytes = inode_get_bytes(inode);
1091 	loff_t real_space = real_space_diff(inode, sd_size);
1092 
1093 	/* keeps fsck and non-quota versions of reiserfs happy */
1094 	if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode)) {
1095 		bytes += (loff_t) 511;
1096 	}
1097 
1098 	/* files from before the quota patch might i_blocks such that
1099 	 ** bytes < real_space.  Deal with that here to prevent it from
1100 	 ** going negative.
1101 	 */
1102 	if (bytes < real_space)
1103 		return 0;
1104 	return (bytes - real_space) >> 9;
1105 }
1106 
1107 //
1108 // BAD: new directories have stat data of new type and all other items
1109 // of old type. Version stored in the inode says about body items, so
1110 // in update_stat_data we can not rely on inode, but have to check
1111 // item version directly
1112 //
1113 
1114 // called by read_locked_inode
1115 static void init_inode(struct inode *inode, struct treepath *path)
1116 {
1117 	struct buffer_head *bh;
1118 	struct item_head *ih;
1119 	__u32 rdev;
1120 	//int version = ITEM_VERSION_1;
1121 
1122 	bh = PATH_PLAST_BUFFER(path);
1123 	ih = PATH_PITEM_HEAD(path);
1124 
1125 	copy_key(INODE_PKEY(inode), &(ih->ih_key));
1126 
1127 	INIT_LIST_HEAD(&(REISERFS_I(inode)->i_prealloc_list));
1128 	REISERFS_I(inode)->i_flags = 0;
1129 	REISERFS_I(inode)->i_prealloc_block = 0;
1130 	REISERFS_I(inode)->i_prealloc_count = 0;
1131 	REISERFS_I(inode)->i_trans_id = 0;
1132 	REISERFS_I(inode)->i_jl = NULL;
1133 	mutex_init(&(REISERFS_I(inode)->i_mmap));
1134 	reiserfs_init_xattr_rwsem(inode);
1135 
1136 	if (stat_data_v1(ih)) {
1137 		struct stat_data_v1 *sd =
1138 		    (struct stat_data_v1 *)B_I_PITEM(bh, ih);
1139 		unsigned long blocks;
1140 
1141 		set_inode_item_key_version(inode, KEY_FORMAT_3_5);
1142 		set_inode_sd_version(inode, STAT_DATA_V1);
1143 		inode->i_mode = sd_v1_mode(sd);
1144 		inode->i_nlink = sd_v1_nlink(sd);
1145 		inode->i_uid = sd_v1_uid(sd);
1146 		inode->i_gid = sd_v1_gid(sd);
1147 		inode->i_size = sd_v1_size(sd);
1148 		inode->i_atime.tv_sec = sd_v1_atime(sd);
1149 		inode->i_mtime.tv_sec = sd_v1_mtime(sd);
1150 		inode->i_ctime.tv_sec = sd_v1_ctime(sd);
1151 		inode->i_atime.tv_nsec = 0;
1152 		inode->i_ctime.tv_nsec = 0;
1153 		inode->i_mtime.tv_nsec = 0;
1154 
1155 		inode->i_blocks = sd_v1_blocks(sd);
1156 		inode->i_generation = le32_to_cpu(INODE_PKEY(inode)->k_dir_id);
1157 		blocks = (inode->i_size + 511) >> 9;
1158 		blocks = _ROUND_UP(blocks, inode->i_sb->s_blocksize >> 9);
1159 		if (inode->i_blocks > blocks) {
1160 			// there was a bug in <=3.5.23 when i_blocks could take negative
1161 			// values. Starting from 3.5.17 this value could even be stored in
1162 			// stat data. For such files we set i_blocks based on file
1163 			// size. Just 2 notes: this can be wrong for sparce files. On-disk value will be
1164 			// only updated if file's inode will ever change
1165 			inode->i_blocks = blocks;
1166 		}
1167 
1168 		rdev = sd_v1_rdev(sd);
1169 		REISERFS_I(inode)->i_first_direct_byte =
1170 		    sd_v1_first_direct_byte(sd);
1171 		/* an early bug in the quota code can give us an odd number for the
1172 		 ** block count.  This is incorrect, fix it here.
1173 		 */
1174 		if (inode->i_blocks & 1) {
1175 			inode->i_blocks++;
1176 		}
1177 		inode_set_bytes(inode,
1178 				to_real_used_space(inode, inode->i_blocks,
1179 						   SD_V1_SIZE));
1180 		/* nopack is initially zero for v1 objects. For v2 objects,
1181 		   nopack is initialised from sd_attrs */
1182 		REISERFS_I(inode)->i_flags &= ~i_nopack_mask;
1183 	} else {
1184 		// new stat data found, but object may have old items
1185 		// (directories and symlinks)
1186 		struct stat_data *sd = (struct stat_data *)B_I_PITEM(bh, ih);
1187 
1188 		inode->i_mode = sd_v2_mode(sd);
1189 		inode->i_nlink = sd_v2_nlink(sd);
1190 		inode->i_uid = sd_v2_uid(sd);
1191 		inode->i_size = sd_v2_size(sd);
1192 		inode->i_gid = sd_v2_gid(sd);
1193 		inode->i_mtime.tv_sec = sd_v2_mtime(sd);
1194 		inode->i_atime.tv_sec = sd_v2_atime(sd);
1195 		inode->i_ctime.tv_sec = sd_v2_ctime(sd);
1196 		inode->i_ctime.tv_nsec = 0;
1197 		inode->i_mtime.tv_nsec = 0;
1198 		inode->i_atime.tv_nsec = 0;
1199 		inode->i_blocks = sd_v2_blocks(sd);
1200 		rdev = sd_v2_rdev(sd);
1201 		if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode))
1202 			inode->i_generation =
1203 			    le32_to_cpu(INODE_PKEY(inode)->k_dir_id);
1204 		else
1205 			inode->i_generation = sd_v2_generation(sd);
1206 
1207 		if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
1208 			set_inode_item_key_version(inode, KEY_FORMAT_3_5);
1209 		else
1210 			set_inode_item_key_version(inode, KEY_FORMAT_3_6);
1211 		REISERFS_I(inode)->i_first_direct_byte = 0;
1212 		set_inode_sd_version(inode, STAT_DATA_V2);
1213 		inode_set_bytes(inode,
1214 				to_real_used_space(inode, inode->i_blocks,
1215 						   SD_V2_SIZE));
1216 		/* read persistent inode attributes from sd and initalise
1217 		   generic inode flags from them */
1218 		REISERFS_I(inode)->i_attrs = sd_v2_attrs(sd);
1219 		sd_attrs_to_i_attrs(sd_v2_attrs(sd), inode);
1220 	}
1221 
1222 	pathrelse(path);
1223 	if (S_ISREG(inode->i_mode)) {
1224 		inode->i_op = &reiserfs_file_inode_operations;
1225 		inode->i_fop = &reiserfs_file_operations;
1226 		inode->i_mapping->a_ops = &reiserfs_address_space_operations;
1227 	} else if (S_ISDIR(inode->i_mode)) {
1228 		inode->i_op = &reiserfs_dir_inode_operations;
1229 		inode->i_fop = &reiserfs_dir_operations;
1230 	} else if (S_ISLNK(inode->i_mode)) {
1231 		inode->i_op = &reiserfs_symlink_inode_operations;
1232 		inode->i_mapping->a_ops = &reiserfs_address_space_operations;
1233 	} else {
1234 		inode->i_blocks = 0;
1235 		inode->i_op = &reiserfs_special_inode_operations;
1236 		init_special_inode(inode, inode->i_mode, new_decode_dev(rdev));
1237 	}
1238 }
1239 
1240 // update new stat data with inode fields
1241 static void inode2sd(void *sd, struct inode *inode, loff_t size)
1242 {
1243 	struct stat_data *sd_v2 = (struct stat_data *)sd;
1244 	__u16 flags;
1245 
1246 	set_sd_v2_mode(sd_v2, inode->i_mode);
1247 	set_sd_v2_nlink(sd_v2, inode->i_nlink);
1248 	set_sd_v2_uid(sd_v2, inode->i_uid);
1249 	set_sd_v2_size(sd_v2, size);
1250 	set_sd_v2_gid(sd_v2, inode->i_gid);
1251 	set_sd_v2_mtime(sd_v2, inode->i_mtime.tv_sec);
1252 	set_sd_v2_atime(sd_v2, inode->i_atime.tv_sec);
1253 	set_sd_v2_ctime(sd_v2, inode->i_ctime.tv_sec);
1254 	set_sd_v2_blocks(sd_v2, to_fake_used_blocks(inode, SD_V2_SIZE));
1255 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode))
1256 		set_sd_v2_rdev(sd_v2, new_encode_dev(inode->i_rdev));
1257 	else
1258 		set_sd_v2_generation(sd_v2, inode->i_generation);
1259 	flags = REISERFS_I(inode)->i_attrs;
1260 	i_attrs_to_sd_attrs(inode, &flags);
1261 	set_sd_v2_attrs(sd_v2, flags);
1262 }
1263 
1264 // used to copy inode's fields to old stat data
1265 static void inode2sd_v1(void *sd, struct inode *inode, loff_t size)
1266 {
1267 	struct stat_data_v1 *sd_v1 = (struct stat_data_v1 *)sd;
1268 
1269 	set_sd_v1_mode(sd_v1, inode->i_mode);
1270 	set_sd_v1_uid(sd_v1, inode->i_uid);
1271 	set_sd_v1_gid(sd_v1, inode->i_gid);
1272 	set_sd_v1_nlink(sd_v1, inode->i_nlink);
1273 	set_sd_v1_size(sd_v1, size);
1274 	set_sd_v1_atime(sd_v1, inode->i_atime.tv_sec);
1275 	set_sd_v1_ctime(sd_v1, inode->i_ctime.tv_sec);
1276 	set_sd_v1_mtime(sd_v1, inode->i_mtime.tv_sec);
1277 
1278 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode))
1279 		set_sd_v1_rdev(sd_v1, new_encode_dev(inode->i_rdev));
1280 	else
1281 		set_sd_v1_blocks(sd_v1, to_fake_used_blocks(inode, SD_V1_SIZE));
1282 
1283 	// Sigh. i_first_direct_byte is back
1284 	set_sd_v1_first_direct_byte(sd_v1,
1285 				    REISERFS_I(inode)->i_first_direct_byte);
1286 }
1287 
1288 /* NOTE, you must prepare the buffer head before sending it here,
1289 ** and then log it after the call
1290 */
1291 static void update_stat_data(struct treepath *path, struct inode *inode,
1292 			     loff_t size)
1293 {
1294 	struct buffer_head *bh;
1295 	struct item_head *ih;
1296 
1297 	bh = PATH_PLAST_BUFFER(path);
1298 	ih = PATH_PITEM_HEAD(path);
1299 
1300 	if (!is_statdata_le_ih(ih))
1301 		reiserfs_panic(inode->i_sb, "vs-13065", "key %k, found item %h",
1302 			       INODE_PKEY(inode), ih);
1303 
1304 	if (stat_data_v1(ih)) {
1305 		// path points to old stat data
1306 		inode2sd_v1(B_I_PITEM(bh, ih), inode, size);
1307 	} else {
1308 		inode2sd(B_I_PITEM(bh, ih), inode, size);
1309 	}
1310 
1311 	return;
1312 }
1313 
1314 void reiserfs_update_sd_size(struct reiserfs_transaction_handle *th,
1315 			     struct inode *inode, loff_t size)
1316 {
1317 	struct cpu_key key;
1318 	INITIALIZE_PATH(path);
1319 	struct buffer_head *bh;
1320 	int fs_gen;
1321 	struct item_head *ih, tmp_ih;
1322 	int retval;
1323 
1324 	BUG_ON(!th->t_trans_id);
1325 
1326 	make_cpu_key(&key, inode, SD_OFFSET, TYPE_STAT_DATA, 3);	//key type is unimportant
1327 
1328 	for (;;) {
1329 		int pos;
1330 		/* look for the object's stat data */
1331 		retval = search_item(inode->i_sb, &key, &path);
1332 		if (retval == IO_ERROR) {
1333 			reiserfs_error(inode->i_sb, "vs-13050",
1334 				       "i/o failure occurred trying to "
1335 				       "update %K stat data", &key);
1336 			return;
1337 		}
1338 		if (retval == ITEM_NOT_FOUND) {
1339 			pos = PATH_LAST_POSITION(&path);
1340 			pathrelse(&path);
1341 			if (inode->i_nlink == 0) {
1342 				/*reiserfs_warning (inode->i_sb, "vs-13050: reiserfs_update_sd: i_nlink == 0, stat data not found"); */
1343 				return;
1344 			}
1345 			reiserfs_warning(inode->i_sb, "vs-13060",
1346 					 "stat data of object %k (nlink == %d) "
1347 					 "not found (pos %d)",
1348 					 INODE_PKEY(inode), inode->i_nlink,
1349 					 pos);
1350 			reiserfs_check_path(&path);
1351 			return;
1352 		}
1353 
1354 		/* sigh, prepare_for_journal might schedule.  When it schedules the
1355 		 ** FS might change.  We have to detect that, and loop back to the
1356 		 ** search if the stat data item has moved
1357 		 */
1358 		bh = get_last_bh(&path);
1359 		ih = get_ih(&path);
1360 		copy_item_head(&tmp_ih, ih);
1361 		fs_gen = get_generation(inode->i_sb);
1362 		reiserfs_prepare_for_journal(inode->i_sb, bh, 1);
1363 		if (fs_changed(fs_gen, inode->i_sb)
1364 		    && item_moved(&tmp_ih, &path)) {
1365 			reiserfs_restore_prepared_buffer(inode->i_sb, bh);
1366 			continue;	/* Stat_data item has been moved after scheduling. */
1367 		}
1368 		break;
1369 	}
1370 	update_stat_data(&path, inode, size);
1371 	journal_mark_dirty(th, th->t_super, bh);
1372 	pathrelse(&path);
1373 	return;
1374 }
1375 
1376 /* reiserfs_read_locked_inode is called to read the inode off disk, and it
1377 ** does a make_bad_inode when things go wrong.  But, we need to make sure
1378 ** and clear the key in the private portion of the inode, otherwise a
1379 ** corresponding iput might try to delete whatever object the inode last
1380 ** represented.
1381 */
1382 static void reiserfs_make_bad_inode(struct inode *inode)
1383 {
1384 	memset(INODE_PKEY(inode), 0, KEY_SIZE);
1385 	make_bad_inode(inode);
1386 }
1387 
1388 //
1389 // initially this function was derived from minix or ext2's analog and
1390 // evolved as the prototype did
1391 //
1392 
1393 int reiserfs_init_locked_inode(struct inode *inode, void *p)
1394 {
1395 	struct reiserfs_iget_args *args = (struct reiserfs_iget_args *)p;
1396 	inode->i_ino = args->objectid;
1397 	INODE_PKEY(inode)->k_dir_id = cpu_to_le32(args->dirid);
1398 	return 0;
1399 }
1400 
1401 /* looks for stat data in the tree, and fills up the fields of in-core
1402    inode stat data fields */
1403 void reiserfs_read_locked_inode(struct inode *inode,
1404 				struct reiserfs_iget_args *args)
1405 {
1406 	INITIALIZE_PATH(path_to_sd);
1407 	struct cpu_key key;
1408 	unsigned long dirino;
1409 	int retval;
1410 
1411 	dirino = args->dirid;
1412 
1413 	/* set version 1, version 2 could be used too, because stat data
1414 	   key is the same in both versions */
1415 	key.version = KEY_FORMAT_3_5;
1416 	key.on_disk_key.k_dir_id = dirino;
1417 	key.on_disk_key.k_objectid = inode->i_ino;
1418 	key.on_disk_key.k_offset = 0;
1419 	key.on_disk_key.k_type = 0;
1420 
1421 	/* look for the object's stat data */
1422 	retval = search_item(inode->i_sb, &key, &path_to_sd);
1423 	if (retval == IO_ERROR) {
1424 		reiserfs_error(inode->i_sb, "vs-13070",
1425 			       "i/o failure occurred trying to find "
1426 			       "stat data of %K", &key);
1427 		reiserfs_make_bad_inode(inode);
1428 		return;
1429 	}
1430 	if (retval != ITEM_FOUND) {
1431 		/* a stale NFS handle can trigger this without it being an error */
1432 		pathrelse(&path_to_sd);
1433 		reiserfs_make_bad_inode(inode);
1434 		inode->i_nlink = 0;
1435 		return;
1436 	}
1437 
1438 	init_inode(inode, &path_to_sd);
1439 
1440 	/* It is possible that knfsd is trying to access inode of a file
1441 	   that is being removed from the disk by some other thread. As we
1442 	   update sd on unlink all that is required is to check for nlink
1443 	   here. This bug was first found by Sizif when debugging
1444 	   SquidNG/Butterfly, forgotten, and found again after Philippe
1445 	   Gramoulle <philippe.gramoulle@mmania.com> reproduced it.
1446 
1447 	   More logical fix would require changes in fs/inode.c:iput() to
1448 	   remove inode from hash-table _after_ fs cleaned disk stuff up and
1449 	   in iget() to return NULL if I_FREEING inode is found in
1450 	   hash-table. */
1451 	/* Currently there is one place where it's ok to meet inode with
1452 	   nlink==0: processing of open-unlinked and half-truncated files
1453 	   during mount (fs/reiserfs/super.c:finish_unfinished()). */
1454 	if ((inode->i_nlink == 0) &&
1455 	    !REISERFS_SB(inode->i_sb)->s_is_unlinked_ok) {
1456 		reiserfs_warning(inode->i_sb, "vs-13075",
1457 				 "dead inode read from disk %K. "
1458 				 "This is likely to be race with knfsd. Ignore",
1459 				 &key);
1460 		reiserfs_make_bad_inode(inode);
1461 	}
1462 
1463 	reiserfs_check_path(&path_to_sd);	/* init inode should be relsing */
1464 
1465 }
1466 
1467 /**
1468  * reiserfs_find_actor() - "find actor" reiserfs supplies to iget5_locked().
1469  *
1470  * @inode:    inode from hash table to check
1471  * @opaque:   "cookie" passed to iget5_locked(). This is &reiserfs_iget_args.
1472  *
1473  * This function is called by iget5_locked() to distinguish reiserfs inodes
1474  * having the same inode numbers. Such inodes can only exist due to some
1475  * error condition. One of them should be bad. Inodes with identical
1476  * inode numbers (objectids) are distinguished by parent directory ids.
1477  *
1478  */
1479 int reiserfs_find_actor(struct inode *inode, void *opaque)
1480 {
1481 	struct reiserfs_iget_args *args;
1482 
1483 	args = opaque;
1484 	/* args is already in CPU order */
1485 	return (inode->i_ino == args->objectid) &&
1486 	    (le32_to_cpu(INODE_PKEY(inode)->k_dir_id) == args->dirid);
1487 }
1488 
1489 struct inode *reiserfs_iget(struct super_block *s, const struct cpu_key *key)
1490 {
1491 	struct inode *inode;
1492 	struct reiserfs_iget_args args;
1493 
1494 	args.objectid = key->on_disk_key.k_objectid;
1495 	args.dirid = key->on_disk_key.k_dir_id;
1496 	inode = iget5_locked(s, key->on_disk_key.k_objectid,
1497 			     reiserfs_find_actor, reiserfs_init_locked_inode,
1498 			     (void *)(&args));
1499 	if (!inode)
1500 		return ERR_PTR(-ENOMEM);
1501 
1502 	if (inode->i_state & I_NEW) {
1503 		reiserfs_read_locked_inode(inode, &args);
1504 		unlock_new_inode(inode);
1505 	}
1506 
1507 	if (comp_short_keys(INODE_PKEY(inode), key) || is_bad_inode(inode)) {
1508 		/* either due to i/o error or a stale NFS handle */
1509 		iput(inode);
1510 		inode = NULL;
1511 	}
1512 	return inode;
1513 }
1514 
1515 static struct dentry *reiserfs_get_dentry(struct super_block *sb,
1516 	u32 objectid, u32 dir_id, u32 generation)
1517 
1518 {
1519 	struct cpu_key key;
1520 	struct inode *inode;
1521 
1522 	key.on_disk_key.k_objectid = objectid;
1523 	key.on_disk_key.k_dir_id = dir_id;
1524 	reiserfs_write_lock(sb);
1525 	inode = reiserfs_iget(sb, &key);
1526 	if (inode && !IS_ERR(inode) && generation != 0 &&
1527 	    generation != inode->i_generation) {
1528 		iput(inode);
1529 		inode = NULL;
1530 	}
1531 	reiserfs_write_unlock(sb);
1532 
1533 	return d_obtain_alias(inode);
1534 }
1535 
1536 struct dentry *reiserfs_fh_to_dentry(struct super_block *sb, struct fid *fid,
1537 		int fh_len, int fh_type)
1538 {
1539 	/* fhtype happens to reflect the number of u32s encoded.
1540 	 * due to a bug in earlier code, fhtype might indicate there
1541 	 * are more u32s then actually fitted.
1542 	 * so if fhtype seems to be more than len, reduce fhtype.
1543 	 * Valid types are:
1544 	 *   2 - objectid + dir_id - legacy support
1545 	 *   3 - objectid + dir_id + generation
1546 	 *   4 - objectid + dir_id + objectid and dirid of parent - legacy
1547 	 *   5 - objectid + dir_id + generation + objectid and dirid of parent
1548 	 *   6 - as above plus generation of directory
1549 	 * 6 does not fit in NFSv2 handles
1550 	 */
1551 	if (fh_type > fh_len) {
1552 		if (fh_type != 6 || fh_len != 5)
1553 			reiserfs_warning(sb, "reiserfs-13077",
1554 				"nfsd/reiserfs, fhtype=%d, len=%d - odd",
1555 				fh_type, fh_len);
1556 		fh_type = 5;
1557 	}
1558 
1559 	return reiserfs_get_dentry(sb, fid->raw[0], fid->raw[1],
1560 		(fh_type == 3 || fh_type >= 5) ? fid->raw[2] : 0);
1561 }
1562 
1563 struct dentry *reiserfs_fh_to_parent(struct super_block *sb, struct fid *fid,
1564 		int fh_len, int fh_type)
1565 {
1566 	if (fh_type < 4)
1567 		return NULL;
1568 
1569 	return reiserfs_get_dentry(sb,
1570 		(fh_type >= 5) ? fid->raw[3] : fid->raw[2],
1571 		(fh_type >= 5) ? fid->raw[4] : fid->raw[3],
1572 		(fh_type == 6) ? fid->raw[5] : 0);
1573 }
1574 
1575 int reiserfs_encode_fh(struct dentry *dentry, __u32 * data, int *lenp,
1576 		       int need_parent)
1577 {
1578 	struct inode *inode = dentry->d_inode;
1579 	int maxlen = *lenp;
1580 
1581 	if (maxlen < 3)
1582 		return 255;
1583 
1584 	data[0] = inode->i_ino;
1585 	data[1] = le32_to_cpu(INODE_PKEY(inode)->k_dir_id);
1586 	data[2] = inode->i_generation;
1587 	*lenp = 3;
1588 	/* no room for directory info? return what we've stored so far */
1589 	if (maxlen < 5 || !need_parent)
1590 		return 3;
1591 
1592 	spin_lock(&dentry->d_lock);
1593 	inode = dentry->d_parent->d_inode;
1594 	data[3] = inode->i_ino;
1595 	data[4] = le32_to_cpu(INODE_PKEY(inode)->k_dir_id);
1596 	*lenp = 5;
1597 	if (maxlen >= 6) {
1598 		data[5] = inode->i_generation;
1599 		*lenp = 6;
1600 	}
1601 	spin_unlock(&dentry->d_lock);
1602 	return *lenp;
1603 }
1604 
1605 /* looks for stat data, then copies fields to it, marks the buffer
1606    containing stat data as dirty */
1607 /* reiserfs inodes are never really dirty, since the dirty inode call
1608 ** always logs them.  This call allows the VFS inode marking routines
1609 ** to properly mark inodes for datasync and such, but only actually
1610 ** does something when called for a synchronous update.
1611 */
1612 int reiserfs_write_inode(struct inode *inode, int do_sync)
1613 {
1614 	struct reiserfs_transaction_handle th;
1615 	int jbegin_count = 1;
1616 
1617 	if (inode->i_sb->s_flags & MS_RDONLY)
1618 		return -EROFS;
1619 	/* memory pressure can sometimes initiate write_inode calls with sync == 1,
1620 	 ** these cases are just when the system needs ram, not when the
1621 	 ** inode needs to reach disk for safety, and they can safely be
1622 	 ** ignored because the altered inode has already been logged.
1623 	 */
1624 	if (do_sync && !(current->flags & PF_MEMALLOC)) {
1625 		reiserfs_write_lock(inode->i_sb);
1626 		if (!journal_begin(&th, inode->i_sb, jbegin_count)) {
1627 			reiserfs_update_sd(&th, inode);
1628 			journal_end_sync(&th, inode->i_sb, jbegin_count);
1629 		}
1630 		reiserfs_write_unlock(inode->i_sb);
1631 	}
1632 	return 0;
1633 }
1634 
1635 /* stat data of new object is inserted already, this inserts the item
1636    containing "." and ".." entries */
1637 static int reiserfs_new_directory(struct reiserfs_transaction_handle *th,
1638 				  struct inode *inode,
1639 				  struct item_head *ih, struct treepath *path,
1640 				  struct inode *dir)
1641 {
1642 	struct super_block *sb = th->t_super;
1643 	char empty_dir[EMPTY_DIR_SIZE];
1644 	char *body = empty_dir;
1645 	struct cpu_key key;
1646 	int retval;
1647 
1648 	BUG_ON(!th->t_trans_id);
1649 
1650 	_make_cpu_key(&key, KEY_FORMAT_3_5, le32_to_cpu(ih->ih_key.k_dir_id),
1651 		      le32_to_cpu(ih->ih_key.k_objectid), DOT_OFFSET,
1652 		      TYPE_DIRENTRY, 3 /*key length */ );
1653 
1654 	/* compose item head for new item. Directories consist of items of
1655 	   old type (ITEM_VERSION_1). Do not set key (second arg is 0), it
1656 	   is done by reiserfs_new_inode */
1657 	if (old_format_only(sb)) {
1658 		make_le_item_head(ih, NULL, KEY_FORMAT_3_5, DOT_OFFSET,
1659 				  TYPE_DIRENTRY, EMPTY_DIR_SIZE_V1, 2);
1660 
1661 		make_empty_dir_item_v1(body, ih->ih_key.k_dir_id,
1662 				       ih->ih_key.k_objectid,
1663 				       INODE_PKEY(dir)->k_dir_id,
1664 				       INODE_PKEY(dir)->k_objectid);
1665 	} else {
1666 		make_le_item_head(ih, NULL, KEY_FORMAT_3_5, DOT_OFFSET,
1667 				  TYPE_DIRENTRY, EMPTY_DIR_SIZE, 2);
1668 
1669 		make_empty_dir_item(body, ih->ih_key.k_dir_id,
1670 				    ih->ih_key.k_objectid,
1671 				    INODE_PKEY(dir)->k_dir_id,
1672 				    INODE_PKEY(dir)->k_objectid);
1673 	}
1674 
1675 	/* look for place in the tree for new item */
1676 	retval = search_item(sb, &key, path);
1677 	if (retval == IO_ERROR) {
1678 		reiserfs_error(sb, "vs-13080",
1679 			       "i/o failure occurred creating new directory");
1680 		return -EIO;
1681 	}
1682 	if (retval == ITEM_FOUND) {
1683 		pathrelse(path);
1684 		reiserfs_warning(sb, "vs-13070",
1685 				 "object with this key exists (%k)",
1686 				 &(ih->ih_key));
1687 		return -EEXIST;
1688 	}
1689 
1690 	/* insert item, that is empty directory item */
1691 	return reiserfs_insert_item(th, path, &key, ih, inode, body);
1692 }
1693 
1694 /* stat data of object has been inserted, this inserts the item
1695    containing the body of symlink */
1696 static int reiserfs_new_symlink(struct reiserfs_transaction_handle *th, struct inode *inode,	/* Inode of symlink */
1697 				struct item_head *ih,
1698 				struct treepath *path, const char *symname,
1699 				int item_len)
1700 {
1701 	struct super_block *sb = th->t_super;
1702 	struct cpu_key key;
1703 	int retval;
1704 
1705 	BUG_ON(!th->t_trans_id);
1706 
1707 	_make_cpu_key(&key, KEY_FORMAT_3_5,
1708 		      le32_to_cpu(ih->ih_key.k_dir_id),
1709 		      le32_to_cpu(ih->ih_key.k_objectid),
1710 		      1, TYPE_DIRECT, 3 /*key length */ );
1711 
1712 	make_le_item_head(ih, NULL, KEY_FORMAT_3_5, 1, TYPE_DIRECT, item_len,
1713 			  0 /*free_space */ );
1714 
1715 	/* look for place in the tree for new item */
1716 	retval = search_item(sb, &key, path);
1717 	if (retval == IO_ERROR) {
1718 		reiserfs_error(sb, "vs-13080",
1719 			       "i/o failure occurred creating new symlink");
1720 		return -EIO;
1721 	}
1722 	if (retval == ITEM_FOUND) {
1723 		pathrelse(path);
1724 		reiserfs_warning(sb, "vs-13080",
1725 				 "object with this key exists (%k)",
1726 				 &(ih->ih_key));
1727 		return -EEXIST;
1728 	}
1729 
1730 	/* insert item, that is body of symlink */
1731 	return reiserfs_insert_item(th, path, &key, ih, inode, symname);
1732 }
1733 
1734 /* inserts the stat data into the tree, and then calls
1735    reiserfs_new_directory (to insert ".", ".." item if new object is
1736    directory) or reiserfs_new_symlink (to insert symlink body if new
1737    object is symlink) or nothing (if new object is regular file)
1738 
1739    NOTE! uid and gid must already be set in the inode.  If we return
1740    non-zero due to an error, we have to drop the quota previously allocated
1741    for the fresh inode.  This can only be done outside a transaction, so
1742    if we return non-zero, we also end the transaction.  */
1743 int reiserfs_new_inode(struct reiserfs_transaction_handle *th,
1744 		       struct inode *dir, int mode, const char *symname,
1745 		       /* 0 for regular, EMTRY_DIR_SIZE for dirs,
1746 		          strlen (symname) for symlinks) */
1747 		       loff_t i_size, struct dentry *dentry,
1748 		       struct inode *inode,
1749 		       struct reiserfs_security_handle *security)
1750 {
1751 	struct super_block *sb;
1752 	struct reiserfs_iget_args args;
1753 	INITIALIZE_PATH(path_to_key);
1754 	struct cpu_key key;
1755 	struct item_head ih;
1756 	struct stat_data sd;
1757 	int retval;
1758 	int err;
1759 
1760 	BUG_ON(!th->t_trans_id);
1761 
1762 	if (vfs_dq_alloc_inode(inode)) {
1763 		err = -EDQUOT;
1764 		goto out_end_trans;
1765 	}
1766 	if (!dir->i_nlink) {
1767 		err = -EPERM;
1768 		goto out_bad_inode;
1769 	}
1770 
1771 	sb = dir->i_sb;
1772 
1773 	/* item head of new item */
1774 	ih.ih_key.k_dir_id = reiserfs_choose_packing(dir);
1775 	ih.ih_key.k_objectid = cpu_to_le32(reiserfs_get_unused_objectid(th));
1776 	if (!ih.ih_key.k_objectid) {
1777 		err = -ENOMEM;
1778 		goto out_bad_inode;
1779 	}
1780 	args.objectid = inode->i_ino = le32_to_cpu(ih.ih_key.k_objectid);
1781 	if (old_format_only(sb))
1782 		make_le_item_head(&ih, NULL, KEY_FORMAT_3_5, SD_OFFSET,
1783 				  TYPE_STAT_DATA, SD_V1_SIZE, MAX_US_INT);
1784 	else
1785 		make_le_item_head(&ih, NULL, KEY_FORMAT_3_6, SD_OFFSET,
1786 				  TYPE_STAT_DATA, SD_SIZE, MAX_US_INT);
1787 	memcpy(INODE_PKEY(inode), &(ih.ih_key), KEY_SIZE);
1788 	args.dirid = le32_to_cpu(ih.ih_key.k_dir_id);
1789 	if (insert_inode_locked4(inode, args.objectid,
1790 			     reiserfs_find_actor, &args) < 0) {
1791 		err = -EINVAL;
1792 		goto out_bad_inode;
1793 	}
1794 	if (old_format_only(sb))
1795 		/* not a perfect generation count, as object ids can be reused, but
1796 		 ** this is as good as reiserfs can do right now.
1797 		 ** note that the private part of inode isn't filled in yet, we have
1798 		 ** to use the directory.
1799 		 */
1800 		inode->i_generation = le32_to_cpu(INODE_PKEY(dir)->k_objectid);
1801 	else
1802 #if defined( USE_INODE_GENERATION_COUNTER )
1803 		inode->i_generation =
1804 		    le32_to_cpu(REISERFS_SB(sb)->s_rs->s_inode_generation);
1805 #else
1806 		inode->i_generation = ++event;
1807 #endif
1808 
1809 	/* fill stat data */
1810 	inode->i_nlink = (S_ISDIR(mode) ? 2 : 1);
1811 
1812 	/* uid and gid must already be set by the caller for quota init */
1813 
1814 	/* symlink cannot be immutable or append only, right? */
1815 	if (S_ISLNK(inode->i_mode))
1816 		inode->i_flags &= ~(S_IMMUTABLE | S_APPEND);
1817 
1818 	inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME_SEC;
1819 	inode->i_size = i_size;
1820 	inode->i_blocks = 0;
1821 	inode->i_bytes = 0;
1822 	REISERFS_I(inode)->i_first_direct_byte = S_ISLNK(mode) ? 1 :
1823 	    U32_MAX /*NO_BYTES_IN_DIRECT_ITEM */ ;
1824 
1825 	INIT_LIST_HEAD(&(REISERFS_I(inode)->i_prealloc_list));
1826 	REISERFS_I(inode)->i_flags = 0;
1827 	REISERFS_I(inode)->i_prealloc_block = 0;
1828 	REISERFS_I(inode)->i_prealloc_count = 0;
1829 	REISERFS_I(inode)->i_trans_id = 0;
1830 	REISERFS_I(inode)->i_jl = NULL;
1831 	REISERFS_I(inode)->i_attrs =
1832 	    REISERFS_I(dir)->i_attrs & REISERFS_INHERIT_MASK;
1833 	sd_attrs_to_i_attrs(REISERFS_I(inode)->i_attrs, inode);
1834 	mutex_init(&(REISERFS_I(inode)->i_mmap));
1835 	reiserfs_init_xattr_rwsem(inode);
1836 
1837 	/* key to search for correct place for new stat data */
1838 	_make_cpu_key(&key, KEY_FORMAT_3_6, le32_to_cpu(ih.ih_key.k_dir_id),
1839 		      le32_to_cpu(ih.ih_key.k_objectid), SD_OFFSET,
1840 		      TYPE_STAT_DATA, 3 /*key length */ );
1841 
1842 	/* find proper place for inserting of stat data */
1843 	retval = search_item(sb, &key, &path_to_key);
1844 	if (retval == IO_ERROR) {
1845 		err = -EIO;
1846 		goto out_bad_inode;
1847 	}
1848 	if (retval == ITEM_FOUND) {
1849 		pathrelse(&path_to_key);
1850 		err = -EEXIST;
1851 		goto out_bad_inode;
1852 	}
1853 	if (old_format_only(sb)) {
1854 		if (inode->i_uid & ~0xffff || inode->i_gid & ~0xffff) {
1855 			pathrelse(&path_to_key);
1856 			/* i_uid or i_gid is too big to be stored in stat data v3.5 */
1857 			err = -EINVAL;
1858 			goto out_bad_inode;
1859 		}
1860 		inode2sd_v1(&sd, inode, inode->i_size);
1861 	} else {
1862 		inode2sd(&sd, inode, inode->i_size);
1863 	}
1864 	// store in in-core inode the key of stat data and version all
1865 	// object items will have (directory items will have old offset
1866 	// format, other new objects will consist of new items)
1867 	if (old_format_only(sb) || S_ISDIR(mode) || S_ISLNK(mode))
1868 		set_inode_item_key_version(inode, KEY_FORMAT_3_5);
1869 	else
1870 		set_inode_item_key_version(inode, KEY_FORMAT_3_6);
1871 	if (old_format_only(sb))
1872 		set_inode_sd_version(inode, STAT_DATA_V1);
1873 	else
1874 		set_inode_sd_version(inode, STAT_DATA_V2);
1875 
1876 	/* insert the stat data into the tree */
1877 #ifdef DISPLACE_NEW_PACKING_LOCALITIES
1878 	if (REISERFS_I(dir)->new_packing_locality)
1879 		th->displace_new_blocks = 1;
1880 #endif
1881 	retval =
1882 	    reiserfs_insert_item(th, &path_to_key, &key, &ih, inode,
1883 				 (char *)(&sd));
1884 	if (retval) {
1885 		err = retval;
1886 		reiserfs_check_path(&path_to_key);
1887 		goto out_bad_inode;
1888 	}
1889 #ifdef DISPLACE_NEW_PACKING_LOCALITIES
1890 	if (!th->displace_new_blocks)
1891 		REISERFS_I(dir)->new_packing_locality = 0;
1892 #endif
1893 	if (S_ISDIR(mode)) {
1894 		/* insert item with "." and ".." */
1895 		retval =
1896 		    reiserfs_new_directory(th, inode, &ih, &path_to_key, dir);
1897 	}
1898 
1899 	if (S_ISLNK(mode)) {
1900 		/* insert body of symlink */
1901 		if (!old_format_only(sb))
1902 			i_size = ROUND_UP(i_size);
1903 		retval =
1904 		    reiserfs_new_symlink(th, inode, &ih, &path_to_key, symname,
1905 					 i_size);
1906 	}
1907 	if (retval) {
1908 		err = retval;
1909 		reiserfs_check_path(&path_to_key);
1910 		journal_end(th, th->t_super, th->t_blocks_allocated);
1911 		goto out_inserted_sd;
1912 	}
1913 
1914 	if (reiserfs_posixacl(inode->i_sb)) {
1915 		retval = reiserfs_inherit_default_acl(th, dir, dentry, inode);
1916 		if (retval) {
1917 			err = retval;
1918 			reiserfs_check_path(&path_to_key);
1919 			journal_end(th, th->t_super, th->t_blocks_allocated);
1920 			goto out_inserted_sd;
1921 		}
1922 	} else if (inode->i_sb->s_flags & MS_POSIXACL) {
1923 		reiserfs_warning(inode->i_sb, "jdm-13090",
1924 				 "ACLs aren't enabled in the fs, "
1925 				 "but vfs thinks they are!");
1926 	} else if (IS_PRIVATE(dir))
1927 		inode->i_flags |= S_PRIVATE;
1928 
1929 	if (security->name) {
1930 		retval = reiserfs_security_write(th, inode, security);
1931 		if (retval) {
1932 			err = retval;
1933 			reiserfs_check_path(&path_to_key);
1934 			retval = journal_end(th, th->t_super,
1935 					     th->t_blocks_allocated);
1936 			if (retval)
1937 				err = retval;
1938 			goto out_inserted_sd;
1939 		}
1940 	}
1941 
1942 	reiserfs_update_sd(th, inode);
1943 	reiserfs_check_path(&path_to_key);
1944 
1945 	return 0;
1946 
1947 /* it looks like you can easily compress these two goto targets into
1948  * one.  Keeping it like this doesn't actually hurt anything, and they
1949  * are place holders for what the quota code actually needs.
1950  */
1951       out_bad_inode:
1952 	/* Invalidate the object, nothing was inserted yet */
1953 	INODE_PKEY(inode)->k_objectid = 0;
1954 
1955 	/* Quota change must be inside a transaction for journaling */
1956 	vfs_dq_free_inode(inode);
1957 
1958       out_end_trans:
1959 	journal_end(th, th->t_super, th->t_blocks_allocated);
1960 	/* Drop can be outside and it needs more credits so it's better to have it outside */
1961 	vfs_dq_drop(inode);
1962 	inode->i_flags |= S_NOQUOTA;
1963 	make_bad_inode(inode);
1964 
1965       out_inserted_sd:
1966 	inode->i_nlink = 0;
1967 	th->t_trans_id = 0;	/* so the caller can't use this handle later */
1968 	unlock_new_inode(inode); /* OK to do even if we hadn't locked it */
1969 	iput(inode);
1970 	return err;
1971 }
1972 
1973 /*
1974 ** finds the tail page in the page cache,
1975 ** reads the last block in.
1976 **
1977 ** On success, page_result is set to a locked, pinned page, and bh_result
1978 ** is set to an up to date buffer for the last block in the file.  returns 0.
1979 **
1980 ** tail conversion is not done, so bh_result might not be valid for writing
1981 ** check buffer_mapped(bh_result) and bh_result->b_blocknr != 0 before
1982 ** trying to write the block.
1983 **
1984 ** on failure, nonzero is returned, page_result and bh_result are untouched.
1985 */
1986 static int grab_tail_page(struct inode *inode,
1987 			  struct page **page_result,
1988 			  struct buffer_head **bh_result)
1989 {
1990 
1991 	/* we want the page with the last byte in the file,
1992 	 ** not the page that will hold the next byte for appending
1993 	 */
1994 	unsigned long index = (inode->i_size - 1) >> PAGE_CACHE_SHIFT;
1995 	unsigned long pos = 0;
1996 	unsigned long start = 0;
1997 	unsigned long blocksize = inode->i_sb->s_blocksize;
1998 	unsigned long offset = (inode->i_size) & (PAGE_CACHE_SIZE - 1);
1999 	struct buffer_head *bh;
2000 	struct buffer_head *head;
2001 	struct page *page;
2002 	int error;
2003 
2004 	/* we know that we are only called with inode->i_size > 0.
2005 	 ** we also know that a file tail can never be as big as a block
2006 	 ** If i_size % blocksize == 0, our file is currently block aligned
2007 	 ** and it won't need converting or zeroing after a truncate.
2008 	 */
2009 	if ((offset & (blocksize - 1)) == 0) {
2010 		return -ENOENT;
2011 	}
2012 	page = grab_cache_page(inode->i_mapping, index);
2013 	error = -ENOMEM;
2014 	if (!page) {
2015 		goto out;
2016 	}
2017 	/* start within the page of the last block in the file */
2018 	start = (offset / blocksize) * blocksize;
2019 
2020 	error = block_prepare_write(page, start, offset,
2021 				    reiserfs_get_block_create_0);
2022 	if (error)
2023 		goto unlock;
2024 
2025 	head = page_buffers(page);
2026 	bh = head;
2027 	do {
2028 		if (pos >= start) {
2029 			break;
2030 		}
2031 		bh = bh->b_this_page;
2032 		pos += blocksize;
2033 	} while (bh != head);
2034 
2035 	if (!buffer_uptodate(bh)) {
2036 		/* note, this should never happen, prepare_write should
2037 		 ** be taking care of this for us.  If the buffer isn't up to date,
2038 		 ** I've screwed up the code to find the buffer, or the code to
2039 		 ** call prepare_write
2040 		 */
2041 		reiserfs_error(inode->i_sb, "clm-6000",
2042 			       "error reading block %lu", bh->b_blocknr);
2043 		error = -EIO;
2044 		goto unlock;
2045 	}
2046 	*bh_result = bh;
2047 	*page_result = page;
2048 
2049       out:
2050 	return error;
2051 
2052       unlock:
2053 	unlock_page(page);
2054 	page_cache_release(page);
2055 	return error;
2056 }
2057 
2058 /*
2059 ** vfs version of truncate file.  Must NOT be called with
2060 ** a transaction already started.
2061 **
2062 ** some code taken from block_truncate_page
2063 */
2064 int reiserfs_truncate_file(struct inode *inode, int update_timestamps)
2065 {
2066 	struct reiserfs_transaction_handle th;
2067 	/* we want the offset for the first byte after the end of the file */
2068 	unsigned long offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
2069 	unsigned blocksize = inode->i_sb->s_blocksize;
2070 	unsigned length;
2071 	struct page *page = NULL;
2072 	int error;
2073 	struct buffer_head *bh = NULL;
2074 	int err2;
2075 
2076 	reiserfs_write_lock(inode->i_sb);
2077 
2078 	if (inode->i_size > 0) {
2079 		error = grab_tail_page(inode, &page, &bh);
2080 		if (error) {
2081 			// -ENOENT means we truncated past the end of the file,
2082 			// and get_block_create_0 could not find a block to read in,
2083 			// which is ok.
2084 			if (error != -ENOENT)
2085 				reiserfs_error(inode->i_sb, "clm-6001",
2086 					       "grab_tail_page failed %d",
2087 					       error);
2088 			page = NULL;
2089 			bh = NULL;
2090 		}
2091 	}
2092 
2093 	/* so, if page != NULL, we have a buffer head for the offset at
2094 	 ** the end of the file. if the bh is mapped, and bh->b_blocknr != 0,
2095 	 ** then we have an unformatted node.  Otherwise, we have a direct item,
2096 	 ** and no zeroing is required on disk.  We zero after the truncate,
2097 	 ** because the truncate might pack the item anyway
2098 	 ** (it will unmap bh if it packs).
2099 	 */
2100 	/* it is enough to reserve space in transaction for 2 balancings:
2101 	   one for "save" link adding and another for the first
2102 	   cut_from_item. 1 is for update_sd */
2103 	error = journal_begin(&th, inode->i_sb,
2104 			      JOURNAL_PER_BALANCE_CNT * 2 + 1);
2105 	if (error)
2106 		goto out;
2107 	reiserfs_update_inode_transaction(inode);
2108 	if (update_timestamps)
2109 		/* we are doing real truncate: if the system crashes before the last
2110 		   transaction of truncating gets committed - on reboot the file
2111 		   either appears truncated properly or not truncated at all */
2112 		add_save_link(&th, inode, 1);
2113 	err2 = reiserfs_do_truncate(&th, inode, page, update_timestamps);
2114 	error =
2115 	    journal_end(&th, inode->i_sb, JOURNAL_PER_BALANCE_CNT * 2 + 1);
2116 	if (error)
2117 		goto out;
2118 
2119 	/* check reiserfs_do_truncate after ending the transaction */
2120 	if (err2) {
2121 		error = err2;
2122   		goto out;
2123 	}
2124 
2125 	if (update_timestamps) {
2126 		error = remove_save_link(inode, 1 /* truncate */);
2127 		if (error)
2128 			goto out;
2129 	}
2130 
2131 	if (page) {
2132 		length = offset & (blocksize - 1);
2133 		/* if we are not on a block boundary */
2134 		if (length) {
2135 			length = blocksize - length;
2136 			zero_user(page, offset, length);
2137 			if (buffer_mapped(bh) && bh->b_blocknr != 0) {
2138 				mark_buffer_dirty(bh);
2139 			}
2140 		}
2141 		unlock_page(page);
2142 		page_cache_release(page);
2143 	}
2144 
2145 	reiserfs_write_unlock(inode->i_sb);
2146 	return 0;
2147       out:
2148 	if (page) {
2149 		unlock_page(page);
2150 		page_cache_release(page);
2151 	}
2152 	reiserfs_write_unlock(inode->i_sb);
2153 	return error;
2154 }
2155 
2156 static int map_block_for_writepage(struct inode *inode,
2157 				   struct buffer_head *bh_result,
2158 				   unsigned long block)
2159 {
2160 	struct reiserfs_transaction_handle th;
2161 	int fs_gen;
2162 	struct item_head tmp_ih;
2163 	struct item_head *ih;
2164 	struct buffer_head *bh;
2165 	__le32 *item;
2166 	struct cpu_key key;
2167 	INITIALIZE_PATH(path);
2168 	int pos_in_item;
2169 	int jbegin_count = JOURNAL_PER_BALANCE_CNT;
2170 	loff_t byte_offset = ((loff_t)block << inode->i_sb->s_blocksize_bits)+1;
2171 	int retval;
2172 	int use_get_block = 0;
2173 	int bytes_copied = 0;
2174 	int copy_size;
2175 	int trans_running = 0;
2176 
2177 	/* catch places below that try to log something without starting a trans */
2178 	th.t_trans_id = 0;
2179 
2180 	if (!buffer_uptodate(bh_result)) {
2181 		return -EIO;
2182 	}
2183 
2184 	kmap(bh_result->b_page);
2185       start_over:
2186 	reiserfs_write_lock(inode->i_sb);
2187 	make_cpu_key(&key, inode, byte_offset, TYPE_ANY, 3);
2188 
2189       research:
2190 	retval = search_for_position_by_key(inode->i_sb, &key, &path);
2191 	if (retval != POSITION_FOUND) {
2192 		use_get_block = 1;
2193 		goto out;
2194 	}
2195 
2196 	bh = get_last_bh(&path);
2197 	ih = get_ih(&path);
2198 	item = get_item(&path);
2199 	pos_in_item = path.pos_in_item;
2200 
2201 	/* we've found an unformatted node */
2202 	if (indirect_item_found(retval, ih)) {
2203 		if (bytes_copied > 0) {
2204 			reiserfs_warning(inode->i_sb, "clm-6002",
2205 					 "bytes_copied %d", bytes_copied);
2206 		}
2207 		if (!get_block_num(item, pos_in_item)) {
2208 			/* crap, we are writing to a hole */
2209 			use_get_block = 1;
2210 			goto out;
2211 		}
2212 		set_block_dev_mapped(bh_result,
2213 				     get_block_num(item, pos_in_item), inode);
2214 	} else if (is_direct_le_ih(ih)) {
2215 		char *p;
2216 		p = page_address(bh_result->b_page);
2217 		p += (byte_offset - 1) & (PAGE_CACHE_SIZE - 1);
2218 		copy_size = ih_item_len(ih) - pos_in_item;
2219 
2220 		fs_gen = get_generation(inode->i_sb);
2221 		copy_item_head(&tmp_ih, ih);
2222 
2223 		if (!trans_running) {
2224 			/* vs-3050 is gone, no need to drop the path */
2225 			retval = journal_begin(&th, inode->i_sb, jbegin_count);
2226 			if (retval)
2227 				goto out;
2228 			reiserfs_update_inode_transaction(inode);
2229 			trans_running = 1;
2230 			if (fs_changed(fs_gen, inode->i_sb)
2231 			    && item_moved(&tmp_ih, &path)) {
2232 				reiserfs_restore_prepared_buffer(inode->i_sb,
2233 								 bh);
2234 				goto research;
2235 			}
2236 		}
2237 
2238 		reiserfs_prepare_for_journal(inode->i_sb, bh, 1);
2239 
2240 		if (fs_changed(fs_gen, inode->i_sb)
2241 		    && item_moved(&tmp_ih, &path)) {
2242 			reiserfs_restore_prepared_buffer(inode->i_sb, bh);
2243 			goto research;
2244 		}
2245 
2246 		memcpy(B_I_PITEM(bh, ih) + pos_in_item, p + bytes_copied,
2247 		       copy_size);
2248 
2249 		journal_mark_dirty(&th, inode->i_sb, bh);
2250 		bytes_copied += copy_size;
2251 		set_block_dev_mapped(bh_result, 0, inode);
2252 
2253 		/* are there still bytes left? */
2254 		if (bytes_copied < bh_result->b_size &&
2255 		    (byte_offset + bytes_copied) < inode->i_size) {
2256 			set_cpu_key_k_offset(&key,
2257 					     cpu_key_k_offset(&key) +
2258 					     copy_size);
2259 			goto research;
2260 		}
2261 	} else {
2262 		reiserfs_warning(inode->i_sb, "clm-6003",
2263 				 "bad item inode %lu", inode->i_ino);
2264 		retval = -EIO;
2265 		goto out;
2266 	}
2267 	retval = 0;
2268 
2269       out:
2270 	pathrelse(&path);
2271 	if (trans_running) {
2272 		int err = journal_end(&th, inode->i_sb, jbegin_count);
2273 		if (err)
2274 			retval = err;
2275 		trans_running = 0;
2276 	}
2277 	reiserfs_write_unlock(inode->i_sb);
2278 
2279 	/* this is where we fill in holes in the file. */
2280 	if (use_get_block) {
2281 		retval = reiserfs_get_block(inode, block, bh_result,
2282 					    GET_BLOCK_CREATE | GET_BLOCK_NO_IMUX
2283 					    | GET_BLOCK_NO_DANGLE);
2284 		if (!retval) {
2285 			if (!buffer_mapped(bh_result)
2286 			    || bh_result->b_blocknr == 0) {
2287 				/* get_block failed to find a mapped unformatted node. */
2288 				use_get_block = 0;
2289 				goto start_over;
2290 			}
2291 		}
2292 	}
2293 	kunmap(bh_result->b_page);
2294 
2295 	if (!retval && buffer_mapped(bh_result) && bh_result->b_blocknr == 0) {
2296 		/* we've copied data from the page into the direct item, so the
2297 		 * buffer in the page is now clean, mark it to reflect that.
2298 		 */
2299 		lock_buffer(bh_result);
2300 		clear_buffer_dirty(bh_result);
2301 		unlock_buffer(bh_result);
2302 	}
2303 	return retval;
2304 }
2305 
2306 /*
2307  * mason@suse.com: updated in 2.5.54 to follow the same general io
2308  * start/recovery path as __block_write_full_page, along with special
2309  * code to handle reiserfs tails.
2310  */
2311 static int reiserfs_write_full_page(struct page *page,
2312 				    struct writeback_control *wbc)
2313 {
2314 	struct inode *inode = page->mapping->host;
2315 	unsigned long end_index = inode->i_size >> PAGE_CACHE_SHIFT;
2316 	int error = 0;
2317 	unsigned long block;
2318 	sector_t last_block;
2319 	struct buffer_head *head, *bh;
2320 	int partial = 0;
2321 	int nr = 0;
2322 	int checked = PageChecked(page);
2323 	struct reiserfs_transaction_handle th;
2324 	struct super_block *s = inode->i_sb;
2325 	int bh_per_page = PAGE_CACHE_SIZE / s->s_blocksize;
2326 	th.t_trans_id = 0;
2327 
2328 	/* no logging allowed when nonblocking or from PF_MEMALLOC */
2329 	if (checked && (current->flags & PF_MEMALLOC)) {
2330 		redirty_page_for_writepage(wbc, page);
2331 		unlock_page(page);
2332 		return 0;
2333 	}
2334 
2335 	/* The page dirty bit is cleared before writepage is called, which
2336 	 * means we have to tell create_empty_buffers to make dirty buffers
2337 	 * The page really should be up to date at this point, so tossing
2338 	 * in the BH_Uptodate is just a sanity check.
2339 	 */
2340 	if (!page_has_buffers(page)) {
2341 		create_empty_buffers(page, s->s_blocksize,
2342 				     (1 << BH_Dirty) | (1 << BH_Uptodate));
2343 	}
2344 	head = page_buffers(page);
2345 
2346 	/* last page in the file, zero out any contents past the
2347 	 ** last byte in the file
2348 	 */
2349 	if (page->index >= end_index) {
2350 		unsigned last_offset;
2351 
2352 		last_offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
2353 		/* no file contents in this page */
2354 		if (page->index >= end_index + 1 || !last_offset) {
2355 			unlock_page(page);
2356 			return 0;
2357 		}
2358 		zero_user_segment(page, last_offset, PAGE_CACHE_SIZE);
2359 	}
2360 	bh = head;
2361 	block = page->index << (PAGE_CACHE_SHIFT - s->s_blocksize_bits);
2362 	last_block = (i_size_read(inode) - 1) >> inode->i_blkbits;
2363 	/* first map all the buffers, logging any direct items we find */
2364 	do {
2365 		if (block > last_block) {
2366 			/*
2367 			 * This can happen when the block size is less than
2368 			 * the page size.  The corresponding bytes in the page
2369 			 * were zero filled above
2370 			 */
2371 			clear_buffer_dirty(bh);
2372 			set_buffer_uptodate(bh);
2373 		} else if ((checked || buffer_dirty(bh)) &&
2374 		           (!buffer_mapped(bh) || (buffer_mapped(bh)
2375 						       && bh->b_blocknr ==
2376 						       0))) {
2377 			/* not mapped yet, or it points to a direct item, search
2378 			 * the btree for the mapping info, and log any direct
2379 			 * items found
2380 			 */
2381 			if ((error = map_block_for_writepage(inode, bh, block))) {
2382 				goto fail;
2383 			}
2384 		}
2385 		bh = bh->b_this_page;
2386 		block++;
2387 	} while (bh != head);
2388 
2389 	/*
2390 	 * we start the transaction after map_block_for_writepage,
2391 	 * because it can create holes in the file (an unbounded operation).
2392 	 * starting it here, we can make a reliable estimate for how many
2393 	 * blocks we're going to log
2394 	 */
2395 	if (checked) {
2396 		ClearPageChecked(page);
2397 		reiserfs_write_lock(s);
2398 		error = journal_begin(&th, s, bh_per_page + 1);
2399 		if (error) {
2400 			reiserfs_write_unlock(s);
2401 			goto fail;
2402 		}
2403 		reiserfs_update_inode_transaction(inode);
2404 	}
2405 	/* now go through and lock any dirty buffers on the page */
2406 	do {
2407 		get_bh(bh);
2408 		if (!buffer_mapped(bh))
2409 			continue;
2410 		if (buffer_mapped(bh) && bh->b_blocknr == 0)
2411 			continue;
2412 
2413 		if (checked) {
2414 			reiserfs_prepare_for_journal(s, bh, 1);
2415 			journal_mark_dirty(&th, s, bh);
2416 			continue;
2417 		}
2418 		/* from this point on, we know the buffer is mapped to a
2419 		 * real block and not a direct item
2420 		 */
2421 		if (wbc->sync_mode != WB_SYNC_NONE || !wbc->nonblocking) {
2422 			lock_buffer(bh);
2423 		} else {
2424 			if (!trylock_buffer(bh)) {
2425 				redirty_page_for_writepage(wbc, page);
2426 				continue;
2427 			}
2428 		}
2429 		if (test_clear_buffer_dirty(bh)) {
2430 			mark_buffer_async_write(bh);
2431 		} else {
2432 			unlock_buffer(bh);
2433 		}
2434 	} while ((bh = bh->b_this_page) != head);
2435 
2436 	if (checked) {
2437 		error = journal_end(&th, s, bh_per_page + 1);
2438 		reiserfs_write_unlock(s);
2439 		if (error)
2440 			goto fail;
2441 	}
2442 	BUG_ON(PageWriteback(page));
2443 	set_page_writeback(page);
2444 	unlock_page(page);
2445 
2446 	/*
2447 	 * since any buffer might be the only dirty buffer on the page,
2448 	 * the first submit_bh can bring the page out of writeback.
2449 	 * be careful with the buffers.
2450 	 */
2451 	do {
2452 		struct buffer_head *next = bh->b_this_page;
2453 		if (buffer_async_write(bh)) {
2454 			submit_bh(WRITE, bh);
2455 			nr++;
2456 		}
2457 		put_bh(bh);
2458 		bh = next;
2459 	} while (bh != head);
2460 
2461 	error = 0;
2462       done:
2463 	if (nr == 0) {
2464 		/*
2465 		 * if this page only had a direct item, it is very possible for
2466 		 * no io to be required without there being an error.  Or,
2467 		 * someone else could have locked them and sent them down the
2468 		 * pipe without locking the page
2469 		 */
2470 		bh = head;
2471 		do {
2472 			if (!buffer_uptodate(bh)) {
2473 				partial = 1;
2474 				break;
2475 			}
2476 			bh = bh->b_this_page;
2477 		} while (bh != head);
2478 		if (!partial)
2479 			SetPageUptodate(page);
2480 		end_page_writeback(page);
2481 	}
2482 	return error;
2483 
2484       fail:
2485 	/* catches various errors, we need to make sure any valid dirty blocks
2486 	 * get to the media.  The page is currently locked and not marked for
2487 	 * writeback
2488 	 */
2489 	ClearPageUptodate(page);
2490 	bh = head;
2491 	do {
2492 		get_bh(bh);
2493 		if (buffer_mapped(bh) && buffer_dirty(bh) && bh->b_blocknr) {
2494 			lock_buffer(bh);
2495 			mark_buffer_async_write(bh);
2496 		} else {
2497 			/*
2498 			 * clear any dirty bits that might have come from getting
2499 			 * attached to a dirty page
2500 			 */
2501 			clear_buffer_dirty(bh);
2502 		}
2503 		bh = bh->b_this_page;
2504 	} while (bh != head);
2505 	SetPageError(page);
2506 	BUG_ON(PageWriteback(page));
2507 	set_page_writeback(page);
2508 	unlock_page(page);
2509 	do {
2510 		struct buffer_head *next = bh->b_this_page;
2511 		if (buffer_async_write(bh)) {
2512 			clear_buffer_dirty(bh);
2513 			submit_bh(WRITE, bh);
2514 			nr++;
2515 		}
2516 		put_bh(bh);
2517 		bh = next;
2518 	} while (bh != head);
2519 	goto done;
2520 }
2521 
2522 static int reiserfs_readpage(struct file *f, struct page *page)
2523 {
2524 	return block_read_full_page(page, reiserfs_get_block);
2525 }
2526 
2527 static int reiserfs_writepage(struct page *page, struct writeback_control *wbc)
2528 {
2529 	struct inode *inode = page->mapping->host;
2530 	reiserfs_wait_on_write_block(inode->i_sb);
2531 	return reiserfs_write_full_page(page, wbc);
2532 }
2533 
2534 static int reiserfs_write_begin(struct file *file,
2535 				struct address_space *mapping,
2536 				loff_t pos, unsigned len, unsigned flags,
2537 				struct page **pagep, void **fsdata)
2538 {
2539 	struct inode *inode;
2540 	struct page *page;
2541 	pgoff_t index;
2542 	int ret;
2543 	int old_ref = 0;
2544 
2545  	inode = mapping->host;
2546 	*fsdata = 0;
2547  	if (flags & AOP_FLAG_CONT_EXPAND &&
2548  	    (pos & (inode->i_sb->s_blocksize - 1)) == 0) {
2549  		pos ++;
2550 		*fsdata = (void *)(unsigned long)flags;
2551 	}
2552 
2553 	index = pos >> PAGE_CACHE_SHIFT;
2554 	page = grab_cache_page_write_begin(mapping, index, flags);
2555 	if (!page)
2556 		return -ENOMEM;
2557 	*pagep = page;
2558 
2559 	reiserfs_wait_on_write_block(inode->i_sb);
2560 	fix_tail_page_for_writing(page);
2561 	if (reiserfs_transaction_running(inode->i_sb)) {
2562 		struct reiserfs_transaction_handle *th;
2563 		th = (struct reiserfs_transaction_handle *)current->
2564 		    journal_info;
2565 		BUG_ON(!th->t_refcount);
2566 		BUG_ON(!th->t_trans_id);
2567 		old_ref = th->t_refcount;
2568 		th->t_refcount++;
2569 	}
2570 	ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
2571 				reiserfs_get_block);
2572 	if (ret && reiserfs_transaction_running(inode->i_sb)) {
2573 		struct reiserfs_transaction_handle *th = current->journal_info;
2574 		/* this gets a little ugly.  If reiserfs_get_block returned an
2575 		 * error and left a transacstion running, we've got to close it,
2576 		 * and we've got to free handle if it was a persistent transaction.
2577 		 *
2578 		 * But, if we had nested into an existing transaction, we need
2579 		 * to just drop the ref count on the handle.
2580 		 *
2581 		 * If old_ref == 0, the transaction is from reiserfs_get_block,
2582 		 * and it was a persistent trans.  Otherwise, it was nested above.
2583 		 */
2584 		if (th->t_refcount > old_ref) {
2585 			if (old_ref)
2586 				th->t_refcount--;
2587 			else {
2588 				int err;
2589 				reiserfs_write_lock(inode->i_sb);
2590 				err = reiserfs_end_persistent_transaction(th);
2591 				reiserfs_write_unlock(inode->i_sb);
2592 				if (err)
2593 					ret = err;
2594 			}
2595 		}
2596 	}
2597 	if (ret) {
2598 		unlock_page(page);
2599 		page_cache_release(page);
2600 	}
2601 	return ret;
2602 }
2603 
2604 int reiserfs_prepare_write(struct file *f, struct page *page,
2605 			   unsigned from, unsigned to)
2606 {
2607 	struct inode *inode = page->mapping->host;
2608 	int ret;
2609 	int old_ref = 0;
2610 
2611 	reiserfs_wait_on_write_block(inode->i_sb);
2612 	fix_tail_page_for_writing(page);
2613 	if (reiserfs_transaction_running(inode->i_sb)) {
2614 		struct reiserfs_transaction_handle *th;
2615 		th = (struct reiserfs_transaction_handle *)current->
2616 		    journal_info;
2617 		BUG_ON(!th->t_refcount);
2618 		BUG_ON(!th->t_trans_id);
2619 		old_ref = th->t_refcount;
2620 		th->t_refcount++;
2621 	}
2622 
2623 	ret = block_prepare_write(page, from, to, reiserfs_get_block);
2624 	if (ret && reiserfs_transaction_running(inode->i_sb)) {
2625 		struct reiserfs_transaction_handle *th = current->journal_info;
2626 		/* this gets a little ugly.  If reiserfs_get_block returned an
2627 		 * error and left a transacstion running, we've got to close it,
2628 		 * and we've got to free handle if it was a persistent transaction.
2629 		 *
2630 		 * But, if we had nested into an existing transaction, we need
2631 		 * to just drop the ref count on the handle.
2632 		 *
2633 		 * If old_ref == 0, the transaction is from reiserfs_get_block,
2634 		 * and it was a persistent trans.  Otherwise, it was nested above.
2635 		 */
2636 		if (th->t_refcount > old_ref) {
2637 			if (old_ref)
2638 				th->t_refcount--;
2639 			else {
2640 				int err;
2641 				reiserfs_write_lock(inode->i_sb);
2642 				err = reiserfs_end_persistent_transaction(th);
2643 				reiserfs_write_unlock(inode->i_sb);
2644 				if (err)
2645 					ret = err;
2646 			}
2647 		}
2648 	}
2649 	return ret;
2650 
2651 }
2652 
2653 static sector_t reiserfs_aop_bmap(struct address_space *as, sector_t block)
2654 {
2655 	return generic_block_bmap(as, block, reiserfs_bmap);
2656 }
2657 
2658 static int reiserfs_write_end(struct file *file, struct address_space *mapping,
2659 			      loff_t pos, unsigned len, unsigned copied,
2660 			      struct page *page, void *fsdata)
2661 {
2662 	struct inode *inode = page->mapping->host;
2663 	int ret = 0;
2664 	int update_sd = 0;
2665 	struct reiserfs_transaction_handle *th;
2666 	unsigned start;
2667 
2668 	if ((unsigned long)fsdata & AOP_FLAG_CONT_EXPAND)
2669 		pos ++;
2670 
2671 	reiserfs_wait_on_write_block(inode->i_sb);
2672 	if (reiserfs_transaction_running(inode->i_sb))
2673 		th = current->journal_info;
2674 	else
2675 		th = NULL;
2676 
2677 	start = pos & (PAGE_CACHE_SIZE - 1);
2678 	if (unlikely(copied < len)) {
2679 		if (!PageUptodate(page))
2680 			copied = 0;
2681 
2682 		page_zero_new_buffers(page, start + copied, start + len);
2683 	}
2684 	flush_dcache_page(page);
2685 
2686 	reiserfs_commit_page(inode, page, start, start + copied);
2687 
2688 	/* generic_commit_write does this for us, but does not update the
2689 	 ** transaction tracking stuff when the size changes.  So, we have
2690 	 ** to do the i_size updates here.
2691 	 */
2692 	pos += copied;
2693 	if (pos > inode->i_size) {
2694 		struct reiserfs_transaction_handle myth;
2695 		reiserfs_write_lock(inode->i_sb);
2696 		/* If the file have grown beyond the border where it
2697 		   can have a tail, unmark it as needing a tail
2698 		   packing */
2699 		if ((have_large_tails(inode->i_sb)
2700 		     && inode->i_size > i_block_size(inode) * 4)
2701 		    || (have_small_tails(inode->i_sb)
2702 			&& inode->i_size > i_block_size(inode)))
2703 			REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask;
2704 
2705 		ret = journal_begin(&myth, inode->i_sb, 1);
2706 		if (ret) {
2707 			reiserfs_write_unlock(inode->i_sb);
2708 			goto journal_error;
2709 		}
2710 		reiserfs_update_inode_transaction(inode);
2711 		inode->i_size = pos;
2712 		/*
2713 		 * this will just nest into our transaction.  It's important
2714 		 * to use mark_inode_dirty so the inode gets pushed around on the
2715 		 * dirty lists, and so that O_SYNC works as expected
2716 		 */
2717 		mark_inode_dirty(inode);
2718 		reiserfs_update_sd(&myth, inode);
2719 		update_sd = 1;
2720 		ret = journal_end(&myth, inode->i_sb, 1);
2721 		reiserfs_write_unlock(inode->i_sb);
2722 		if (ret)
2723 			goto journal_error;
2724 	}
2725 	if (th) {
2726 		reiserfs_write_lock(inode->i_sb);
2727 		if (!update_sd)
2728 			mark_inode_dirty(inode);
2729 		ret = reiserfs_end_persistent_transaction(th);
2730 		reiserfs_write_unlock(inode->i_sb);
2731 		if (ret)
2732 			goto out;
2733 	}
2734 
2735       out:
2736 	unlock_page(page);
2737 	page_cache_release(page);
2738 	return ret == 0 ? copied : ret;
2739 
2740       journal_error:
2741 	if (th) {
2742 		reiserfs_write_lock(inode->i_sb);
2743 		if (!update_sd)
2744 			reiserfs_update_sd(th, inode);
2745 		ret = reiserfs_end_persistent_transaction(th);
2746 		reiserfs_write_unlock(inode->i_sb);
2747 	}
2748 
2749 	goto out;
2750 }
2751 
2752 int reiserfs_commit_write(struct file *f, struct page *page,
2753 			  unsigned from, unsigned to)
2754 {
2755 	struct inode *inode = page->mapping->host;
2756 	loff_t pos = ((loff_t) page->index << PAGE_CACHE_SHIFT) + to;
2757 	int ret = 0;
2758 	int update_sd = 0;
2759 	struct reiserfs_transaction_handle *th = NULL;
2760 
2761 	reiserfs_wait_on_write_block(inode->i_sb);
2762 	if (reiserfs_transaction_running(inode->i_sb)) {
2763 		th = current->journal_info;
2764 	}
2765 	reiserfs_commit_page(inode, page, from, to);
2766 
2767 	/* generic_commit_write does this for us, but does not update the
2768 	 ** transaction tracking stuff when the size changes.  So, we have
2769 	 ** to do the i_size updates here.
2770 	 */
2771 	if (pos > inode->i_size) {
2772 		struct reiserfs_transaction_handle myth;
2773 		reiserfs_write_lock(inode->i_sb);
2774 		/* If the file have grown beyond the border where it
2775 		   can have a tail, unmark it as needing a tail
2776 		   packing */
2777 		if ((have_large_tails(inode->i_sb)
2778 		     && inode->i_size > i_block_size(inode) * 4)
2779 		    || (have_small_tails(inode->i_sb)
2780 			&& inode->i_size > i_block_size(inode)))
2781 			REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask;
2782 
2783 		ret = journal_begin(&myth, inode->i_sb, 1);
2784 		if (ret) {
2785 			reiserfs_write_unlock(inode->i_sb);
2786 			goto journal_error;
2787 		}
2788 		reiserfs_update_inode_transaction(inode);
2789 		inode->i_size = pos;
2790 		/*
2791 		 * this will just nest into our transaction.  It's important
2792 		 * to use mark_inode_dirty so the inode gets pushed around on the
2793 		 * dirty lists, and so that O_SYNC works as expected
2794 		 */
2795 		mark_inode_dirty(inode);
2796 		reiserfs_update_sd(&myth, inode);
2797 		update_sd = 1;
2798 		ret = journal_end(&myth, inode->i_sb, 1);
2799 		reiserfs_write_unlock(inode->i_sb);
2800 		if (ret)
2801 			goto journal_error;
2802 	}
2803 	if (th) {
2804 		reiserfs_write_lock(inode->i_sb);
2805 		if (!update_sd)
2806 			mark_inode_dirty(inode);
2807 		ret = reiserfs_end_persistent_transaction(th);
2808 		reiserfs_write_unlock(inode->i_sb);
2809 		if (ret)
2810 			goto out;
2811 	}
2812 
2813       out:
2814 	return ret;
2815 
2816       journal_error:
2817 	if (th) {
2818 		reiserfs_write_lock(inode->i_sb);
2819 		if (!update_sd)
2820 			reiserfs_update_sd(th, inode);
2821 		ret = reiserfs_end_persistent_transaction(th);
2822 		reiserfs_write_unlock(inode->i_sb);
2823 	}
2824 
2825 	return ret;
2826 }
2827 
2828 void sd_attrs_to_i_attrs(__u16 sd_attrs, struct inode *inode)
2829 {
2830 	if (reiserfs_attrs(inode->i_sb)) {
2831 		if (sd_attrs & REISERFS_SYNC_FL)
2832 			inode->i_flags |= S_SYNC;
2833 		else
2834 			inode->i_flags &= ~S_SYNC;
2835 		if (sd_attrs & REISERFS_IMMUTABLE_FL)
2836 			inode->i_flags |= S_IMMUTABLE;
2837 		else
2838 			inode->i_flags &= ~S_IMMUTABLE;
2839 		if (sd_attrs & REISERFS_APPEND_FL)
2840 			inode->i_flags |= S_APPEND;
2841 		else
2842 			inode->i_flags &= ~S_APPEND;
2843 		if (sd_attrs & REISERFS_NOATIME_FL)
2844 			inode->i_flags |= S_NOATIME;
2845 		else
2846 			inode->i_flags &= ~S_NOATIME;
2847 		if (sd_attrs & REISERFS_NOTAIL_FL)
2848 			REISERFS_I(inode)->i_flags |= i_nopack_mask;
2849 		else
2850 			REISERFS_I(inode)->i_flags &= ~i_nopack_mask;
2851 	}
2852 }
2853 
2854 void i_attrs_to_sd_attrs(struct inode *inode, __u16 * sd_attrs)
2855 {
2856 	if (reiserfs_attrs(inode->i_sb)) {
2857 		if (inode->i_flags & S_IMMUTABLE)
2858 			*sd_attrs |= REISERFS_IMMUTABLE_FL;
2859 		else
2860 			*sd_attrs &= ~REISERFS_IMMUTABLE_FL;
2861 		if (inode->i_flags & S_SYNC)
2862 			*sd_attrs |= REISERFS_SYNC_FL;
2863 		else
2864 			*sd_attrs &= ~REISERFS_SYNC_FL;
2865 		if (inode->i_flags & S_NOATIME)
2866 			*sd_attrs |= REISERFS_NOATIME_FL;
2867 		else
2868 			*sd_attrs &= ~REISERFS_NOATIME_FL;
2869 		if (REISERFS_I(inode)->i_flags & i_nopack_mask)
2870 			*sd_attrs |= REISERFS_NOTAIL_FL;
2871 		else
2872 			*sd_attrs &= ~REISERFS_NOTAIL_FL;
2873 	}
2874 }
2875 
2876 /* decide if this buffer needs to stay around for data logging or ordered
2877 ** write purposes
2878 */
2879 static int invalidatepage_can_drop(struct inode *inode, struct buffer_head *bh)
2880 {
2881 	int ret = 1;
2882 	struct reiserfs_journal *j = SB_JOURNAL(inode->i_sb);
2883 
2884 	lock_buffer(bh);
2885 	spin_lock(&j->j_dirty_buffers_lock);
2886 	if (!buffer_mapped(bh)) {
2887 		goto free_jh;
2888 	}
2889 	/* the page is locked, and the only places that log a data buffer
2890 	 * also lock the page.
2891 	 */
2892 	if (reiserfs_file_data_log(inode)) {
2893 		/*
2894 		 * very conservative, leave the buffer pinned if
2895 		 * anyone might need it.
2896 		 */
2897 		if (buffer_journaled(bh) || buffer_journal_dirty(bh)) {
2898 			ret = 0;
2899 		}
2900 	} else  if (buffer_dirty(bh)) {
2901 		struct reiserfs_journal_list *jl;
2902 		struct reiserfs_jh *jh = bh->b_private;
2903 
2904 		/* why is this safe?
2905 		 * reiserfs_setattr updates i_size in the on disk
2906 		 * stat data before allowing vmtruncate to be called.
2907 		 *
2908 		 * If buffer was put onto the ordered list for this
2909 		 * transaction, we know for sure either this transaction
2910 		 * or an older one already has updated i_size on disk,
2911 		 * and this ordered data won't be referenced in the file
2912 		 * if we crash.
2913 		 *
2914 		 * if the buffer was put onto the ordered list for an older
2915 		 * transaction, we need to leave it around
2916 		 */
2917 		if (jh && (jl = jh->jl)
2918 		    && jl != SB_JOURNAL(inode->i_sb)->j_current_jl)
2919 			ret = 0;
2920 	}
2921       free_jh:
2922 	if (ret && bh->b_private) {
2923 		reiserfs_free_jh(bh);
2924 	}
2925 	spin_unlock(&j->j_dirty_buffers_lock);
2926 	unlock_buffer(bh);
2927 	return ret;
2928 }
2929 
2930 /* clm -- taken from fs/buffer.c:block_invalidate_page */
2931 static void reiserfs_invalidatepage(struct page *page, unsigned long offset)
2932 {
2933 	struct buffer_head *head, *bh, *next;
2934 	struct inode *inode = page->mapping->host;
2935 	unsigned int curr_off = 0;
2936 	int ret = 1;
2937 
2938 	BUG_ON(!PageLocked(page));
2939 
2940 	if (offset == 0)
2941 		ClearPageChecked(page);
2942 
2943 	if (!page_has_buffers(page))
2944 		goto out;
2945 
2946 	head = page_buffers(page);
2947 	bh = head;
2948 	do {
2949 		unsigned int next_off = curr_off + bh->b_size;
2950 		next = bh->b_this_page;
2951 
2952 		/*
2953 		 * is this block fully invalidated?
2954 		 */
2955 		if (offset <= curr_off) {
2956 			if (invalidatepage_can_drop(inode, bh))
2957 				reiserfs_unmap_buffer(bh);
2958 			else
2959 				ret = 0;
2960 		}
2961 		curr_off = next_off;
2962 		bh = next;
2963 	} while (bh != head);
2964 
2965 	/*
2966 	 * We release buffers only if the entire page is being invalidated.
2967 	 * The get_block cached value has been unconditionally invalidated,
2968 	 * so real IO is not possible anymore.
2969 	 */
2970 	if (!offset && ret) {
2971 		ret = try_to_release_page(page, 0);
2972 		/* maybe should BUG_ON(!ret); - neilb */
2973 	}
2974       out:
2975 	return;
2976 }
2977 
2978 static int reiserfs_set_page_dirty(struct page *page)
2979 {
2980 	struct inode *inode = page->mapping->host;
2981 	if (reiserfs_file_data_log(inode)) {
2982 		SetPageChecked(page);
2983 		return __set_page_dirty_nobuffers(page);
2984 	}
2985 	return __set_page_dirty_buffers(page);
2986 }
2987 
2988 /*
2989  * Returns 1 if the page's buffers were dropped.  The page is locked.
2990  *
2991  * Takes j_dirty_buffers_lock to protect the b_assoc_buffers list_heads
2992  * in the buffers at page_buffers(page).
2993  *
2994  * even in -o notail mode, we can't be sure an old mount without -o notail
2995  * didn't create files with tails.
2996  */
2997 static int reiserfs_releasepage(struct page *page, gfp_t unused_gfp_flags)
2998 {
2999 	struct inode *inode = page->mapping->host;
3000 	struct reiserfs_journal *j = SB_JOURNAL(inode->i_sb);
3001 	struct buffer_head *head;
3002 	struct buffer_head *bh;
3003 	int ret = 1;
3004 
3005 	WARN_ON(PageChecked(page));
3006 	spin_lock(&j->j_dirty_buffers_lock);
3007 	head = page_buffers(page);
3008 	bh = head;
3009 	do {
3010 		if (bh->b_private) {
3011 			if (!buffer_dirty(bh) && !buffer_locked(bh)) {
3012 				reiserfs_free_jh(bh);
3013 			} else {
3014 				ret = 0;
3015 				break;
3016 			}
3017 		}
3018 		bh = bh->b_this_page;
3019 	} while (bh != head);
3020 	if (ret)
3021 		ret = try_to_free_buffers(page);
3022 	spin_unlock(&j->j_dirty_buffers_lock);
3023 	return ret;
3024 }
3025 
3026 /* We thank Mingming Cao for helping us understand in great detail what
3027    to do in this section of the code. */
3028 static ssize_t reiserfs_direct_IO(int rw, struct kiocb *iocb,
3029 				  const struct iovec *iov, loff_t offset,
3030 				  unsigned long nr_segs)
3031 {
3032 	struct file *file = iocb->ki_filp;
3033 	struct inode *inode = file->f_mapping->host;
3034 
3035 	return blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
3036 				  offset, nr_segs,
3037 				  reiserfs_get_blocks_direct_io, NULL);
3038 }
3039 
3040 int reiserfs_setattr(struct dentry *dentry, struct iattr *attr)
3041 {
3042 	struct inode *inode = dentry->d_inode;
3043 	int error;
3044 	unsigned int ia_valid;
3045 
3046 	/* must be turned off for recursive notify_change calls */
3047 	ia_valid = attr->ia_valid &= ~(ATTR_KILL_SUID|ATTR_KILL_SGID);
3048 
3049 	reiserfs_write_lock(inode->i_sb);
3050 	if (attr->ia_valid & ATTR_SIZE) {
3051 		/* version 2 items will be caught by the s_maxbytes check
3052 		 ** done for us in vmtruncate
3053 		 */
3054 		if (get_inode_item_key_version(inode) == KEY_FORMAT_3_5 &&
3055 		    attr->ia_size > MAX_NON_LFS) {
3056 			error = -EFBIG;
3057 			goto out;
3058 		}
3059 		/* fill in hole pointers in the expanding truncate case. */
3060 		if (attr->ia_size > inode->i_size) {
3061 			error = generic_cont_expand_simple(inode, attr->ia_size);
3062 			if (REISERFS_I(inode)->i_prealloc_count > 0) {
3063 				int err;
3064 				struct reiserfs_transaction_handle th;
3065 				/* we're changing at most 2 bitmaps, inode + super */
3066 				err = journal_begin(&th, inode->i_sb, 4);
3067 				if (!err) {
3068 					reiserfs_discard_prealloc(&th, inode);
3069 					err = journal_end(&th, inode->i_sb, 4);
3070 				}
3071 				if (err)
3072 					error = err;
3073 			}
3074 			if (error)
3075 				goto out;
3076 			/*
3077 			 * file size is changed, ctime and mtime are
3078 			 * to be updated
3079 			 */
3080 			attr->ia_valid |= (ATTR_MTIME | ATTR_CTIME);
3081 		}
3082 	}
3083 
3084 	if ((((attr->ia_valid & ATTR_UID) && (attr->ia_uid & ~0xffff)) ||
3085 	     ((attr->ia_valid & ATTR_GID) && (attr->ia_gid & ~0xffff))) &&
3086 	    (get_inode_sd_version(inode) == STAT_DATA_V1)) {
3087 		/* stat data of format v3.5 has 16 bit uid and gid */
3088 		error = -EINVAL;
3089 		goto out;
3090 	}
3091 
3092 	error = inode_change_ok(inode, attr);
3093 	if (!error) {
3094 		if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
3095 		    (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
3096 			error = reiserfs_chown_xattrs(inode, attr);
3097 
3098 			if (!error) {
3099 				struct reiserfs_transaction_handle th;
3100 				int jbegin_count =
3101 				    2 *
3102 				    (REISERFS_QUOTA_INIT_BLOCKS(inode->i_sb) +
3103 				     REISERFS_QUOTA_DEL_BLOCKS(inode->i_sb)) +
3104 				    2;
3105 
3106 				/* (user+group)*(old+new) structure - we count quota info and , inode write (sb, inode) */
3107 				error =
3108 				    journal_begin(&th, inode->i_sb,
3109 						  jbegin_count);
3110 				if (error)
3111 					goto out;
3112 				error =
3113 				    vfs_dq_transfer(inode, attr) ? -EDQUOT : 0;
3114 				if (error) {
3115 					journal_end(&th, inode->i_sb,
3116 						    jbegin_count);
3117 					goto out;
3118 				}
3119 				/* Update corresponding info in inode so that everything is in
3120 				 * one transaction */
3121 				if (attr->ia_valid & ATTR_UID)
3122 					inode->i_uid = attr->ia_uid;
3123 				if (attr->ia_valid & ATTR_GID)
3124 					inode->i_gid = attr->ia_gid;
3125 				mark_inode_dirty(inode);
3126 				error =
3127 				    journal_end(&th, inode->i_sb, jbegin_count);
3128 			}
3129 		}
3130 		if (!error)
3131 			error = inode_setattr(inode, attr);
3132 	}
3133 
3134 	if (!error && reiserfs_posixacl(inode->i_sb)) {
3135 		if (attr->ia_valid & ATTR_MODE)
3136 			error = reiserfs_acl_chmod(inode);
3137 	}
3138 
3139       out:
3140 	reiserfs_write_unlock(inode->i_sb);
3141 	return error;
3142 }
3143 
3144 const struct address_space_operations reiserfs_address_space_operations = {
3145 	.writepage = reiserfs_writepage,
3146 	.readpage = reiserfs_readpage,
3147 	.readpages = reiserfs_readpages,
3148 	.releasepage = reiserfs_releasepage,
3149 	.invalidatepage = reiserfs_invalidatepage,
3150 	.sync_page = block_sync_page,
3151 	.write_begin = reiserfs_write_begin,
3152 	.write_end = reiserfs_write_end,
3153 	.bmap = reiserfs_aop_bmap,
3154 	.direct_IO = reiserfs_direct_IO,
3155 	.set_page_dirty = reiserfs_set_page_dirty,
3156 };
3157