xref: /linux/fs/reiserfs/inode.c (revision 96de0e252cedffad61b3cb5e05662c591898e69a)
1 /*
2  * Copyright 2000 by Hans Reiser, licensing governed by reiserfs/README
3  */
4 
5 #include <linux/time.h>
6 #include <linux/fs.h>
7 #include <linux/reiserfs_fs.h>
8 #include <linux/reiserfs_acl.h>
9 #include <linux/reiserfs_xattr.h>
10 #include <linux/exportfs.h>
11 #include <linux/smp_lock.h>
12 #include <linux/pagemap.h>
13 #include <linux/highmem.h>
14 #include <asm/uaccess.h>
15 #include <asm/unaligned.h>
16 #include <linux/buffer_head.h>
17 #include <linux/mpage.h>
18 #include <linux/writeback.h>
19 #include <linux/quotaops.h>
20 #include <linux/swap.h>
21 
22 int reiserfs_commit_write(struct file *f, struct page *page,
23 			  unsigned from, unsigned to);
24 int reiserfs_prepare_write(struct file *f, struct page *page,
25 			   unsigned from, unsigned to);
26 
27 void reiserfs_delete_inode(struct inode *inode)
28 {
29 	/* We need blocks for transaction + (user+group) quota update (possibly delete) */
30 	int jbegin_count =
31 	    JOURNAL_PER_BALANCE_CNT * 2 +
32 	    2 * REISERFS_QUOTA_INIT_BLOCKS(inode->i_sb);
33 	struct reiserfs_transaction_handle th;
34 	int err;
35 
36 	truncate_inode_pages(&inode->i_data, 0);
37 
38 	reiserfs_write_lock(inode->i_sb);
39 
40 	/* The = 0 happens when we abort creating a new inode for some reason like lack of space.. */
41 	if (!(inode->i_state & I_NEW) && INODE_PKEY(inode)->k_objectid != 0) {	/* also handles bad_inode case */
42 		reiserfs_delete_xattrs(inode);
43 
44 		if (journal_begin(&th, inode->i_sb, jbegin_count))
45 			goto out;
46 		reiserfs_update_inode_transaction(inode);
47 
48 		err = reiserfs_delete_object(&th, inode);
49 
50 		/* Do quota update inside a transaction for journaled quotas. We must do that
51 		 * after delete_object so that quota updates go into the same transaction as
52 		 * stat data deletion */
53 		if (!err)
54 			DQUOT_FREE_INODE(inode);
55 
56 		if (journal_end(&th, inode->i_sb, jbegin_count))
57 			goto out;
58 
59 		/* check return value from reiserfs_delete_object after
60 		 * ending the transaction
61 		 */
62 		if (err)
63 		    goto out;
64 
65 		/* all items of file are deleted, so we can remove "save" link */
66 		remove_save_link(inode, 0 /* not truncate */ );	/* we can't do anything
67 								 * about an error here */
68 	} else {
69 		/* no object items are in the tree */
70 		;
71 	}
72       out:
73 	clear_inode(inode);	/* note this must go after the journal_end to prevent deadlock */
74 	inode->i_blocks = 0;
75 	reiserfs_write_unlock(inode->i_sb);
76 }
77 
78 static void _make_cpu_key(struct cpu_key *key, int version, __u32 dirid,
79 			  __u32 objectid, loff_t offset, int type, int length)
80 {
81 	key->version = version;
82 
83 	key->on_disk_key.k_dir_id = dirid;
84 	key->on_disk_key.k_objectid = objectid;
85 	set_cpu_key_k_offset(key, offset);
86 	set_cpu_key_k_type(key, type);
87 	key->key_length = length;
88 }
89 
90 /* take base of inode_key (it comes from inode always) (dirid, objectid) and version from an inode, set
91    offset and type of key */
92 void make_cpu_key(struct cpu_key *key, struct inode *inode, loff_t offset,
93 		  int type, int length)
94 {
95 	_make_cpu_key(key, get_inode_item_key_version(inode),
96 		      le32_to_cpu(INODE_PKEY(inode)->k_dir_id),
97 		      le32_to_cpu(INODE_PKEY(inode)->k_objectid), offset, type,
98 		      length);
99 }
100 
101 //
102 // when key is 0, do not set version and short key
103 //
104 inline void make_le_item_head(struct item_head *ih, const struct cpu_key *key,
105 			      int version,
106 			      loff_t offset, int type, int length,
107 			      int entry_count /*or ih_free_space */ )
108 {
109 	if (key) {
110 		ih->ih_key.k_dir_id = cpu_to_le32(key->on_disk_key.k_dir_id);
111 		ih->ih_key.k_objectid =
112 		    cpu_to_le32(key->on_disk_key.k_objectid);
113 	}
114 	put_ih_version(ih, version);
115 	set_le_ih_k_offset(ih, offset);
116 	set_le_ih_k_type(ih, type);
117 	put_ih_item_len(ih, length);
118 	/*    set_ih_free_space (ih, 0); */
119 	// for directory items it is entry count, for directs and stat
120 	// datas - 0xffff, for indirects - 0
121 	put_ih_entry_count(ih, entry_count);
122 }
123 
124 //
125 // FIXME: we might cache recently accessed indirect item
126 
127 // Ugh.  Not too eager for that....
128 //  I cut the code until such time as I see a convincing argument (benchmark).
129 // I don't want a bloated inode struct..., and I don't like code complexity....
130 
131 /* cutting the code is fine, since it really isn't in use yet and is easy
132 ** to add back in.  But, Vladimir has a really good idea here.  Think
133 ** about what happens for reading a file.  For each page,
134 ** The VFS layer calls reiserfs_readpage, who searches the tree to find
135 ** an indirect item.  This indirect item has X number of pointers, where
136 ** X is a big number if we've done the block allocation right.  But,
137 ** we only use one or two of these pointers during each call to readpage,
138 ** needlessly researching again later on.
139 **
140 ** The size of the cache could be dynamic based on the size of the file.
141 **
142 ** I'd also like to see us cache the location the stat data item, since
143 ** we are needlessly researching for that frequently.
144 **
145 ** --chris
146 */
147 
148 /* If this page has a file tail in it, and
149 ** it was read in by get_block_create_0, the page data is valid,
150 ** but tail is still sitting in a direct item, and we can't write to
151 ** it.  So, look through this page, and check all the mapped buffers
152 ** to make sure they have valid block numbers.  Any that don't need
153 ** to be unmapped, so that block_prepare_write will correctly call
154 ** reiserfs_get_block to convert the tail into an unformatted node
155 */
156 static inline void fix_tail_page_for_writing(struct page *page)
157 {
158 	struct buffer_head *head, *next, *bh;
159 
160 	if (page && page_has_buffers(page)) {
161 		head = page_buffers(page);
162 		bh = head;
163 		do {
164 			next = bh->b_this_page;
165 			if (buffer_mapped(bh) && bh->b_blocknr == 0) {
166 				reiserfs_unmap_buffer(bh);
167 			}
168 			bh = next;
169 		} while (bh != head);
170 	}
171 }
172 
173 /* reiserfs_get_block does not need to allocate a block only if it has been
174    done already or non-hole position has been found in the indirect item */
175 static inline int allocation_needed(int retval, b_blocknr_t allocated,
176 				    struct item_head *ih,
177 				    __le32 * item, int pos_in_item)
178 {
179 	if (allocated)
180 		return 0;
181 	if (retval == POSITION_FOUND && is_indirect_le_ih(ih) &&
182 	    get_block_num(item, pos_in_item))
183 		return 0;
184 	return 1;
185 }
186 
187 static inline int indirect_item_found(int retval, struct item_head *ih)
188 {
189 	return (retval == POSITION_FOUND) && is_indirect_le_ih(ih);
190 }
191 
192 static inline void set_block_dev_mapped(struct buffer_head *bh,
193 					b_blocknr_t block, struct inode *inode)
194 {
195 	map_bh(bh, inode->i_sb, block);
196 }
197 
198 //
199 // files which were created in the earlier version can not be longer,
200 // than 2 gb
201 //
202 static int file_capable(struct inode *inode, sector_t block)
203 {
204 	if (get_inode_item_key_version(inode) != KEY_FORMAT_3_5 ||	// it is new file.
205 	    block < (1 << (31 - inode->i_sb->s_blocksize_bits)))	// old file, but 'block' is inside of 2gb
206 		return 1;
207 
208 	return 0;
209 }
210 
211 static int restart_transaction(struct reiserfs_transaction_handle *th,
212 			       struct inode *inode, struct treepath *path)
213 {
214 	struct super_block *s = th->t_super;
215 	int len = th->t_blocks_allocated;
216 	int err;
217 
218 	BUG_ON(!th->t_trans_id);
219 	BUG_ON(!th->t_refcount);
220 
221 	pathrelse(path);
222 
223 	/* we cannot restart while nested */
224 	if (th->t_refcount > 1) {
225 		return 0;
226 	}
227 	reiserfs_update_sd(th, inode);
228 	err = journal_end(th, s, len);
229 	if (!err) {
230 		err = journal_begin(th, s, JOURNAL_PER_BALANCE_CNT * 6);
231 		if (!err)
232 			reiserfs_update_inode_transaction(inode);
233 	}
234 	return err;
235 }
236 
237 // it is called by get_block when create == 0. Returns block number
238 // for 'block'-th logical block of file. When it hits direct item it
239 // returns 0 (being called from bmap) or read direct item into piece
240 // of page (bh_result)
241 
242 // Please improve the english/clarity in the comment above, as it is
243 // hard to understand.
244 
245 static int _get_block_create_0(struct inode *inode, sector_t block,
246 			       struct buffer_head *bh_result, int args)
247 {
248 	INITIALIZE_PATH(path);
249 	struct cpu_key key;
250 	struct buffer_head *bh;
251 	struct item_head *ih, tmp_ih;
252 	int fs_gen;
253 	b_blocknr_t blocknr;
254 	char *p = NULL;
255 	int chars;
256 	int ret;
257 	int result;
258 	int done = 0;
259 	unsigned long offset;
260 
261 	// prepare the key to look for the 'block'-th block of file
262 	make_cpu_key(&key, inode,
263 		     (loff_t) block * inode->i_sb->s_blocksize + 1, TYPE_ANY,
264 		     3);
265 
266       research:
267 	result = search_for_position_by_key(inode->i_sb, &key, &path);
268 	if (result != POSITION_FOUND) {
269 		pathrelse(&path);
270 		if (p)
271 			kunmap(bh_result->b_page);
272 		if (result == IO_ERROR)
273 			return -EIO;
274 		// We do not return -ENOENT if there is a hole but page is uptodate, because it means
275 		// That there is some MMAPED data associated with it that is yet to be written to disk.
276 		if ((args & GET_BLOCK_NO_HOLE)
277 		    && !PageUptodate(bh_result->b_page)) {
278 			return -ENOENT;
279 		}
280 		return 0;
281 	}
282 	//
283 	bh = get_last_bh(&path);
284 	ih = get_ih(&path);
285 	if (is_indirect_le_ih(ih)) {
286 		__le32 *ind_item = (__le32 *) B_I_PITEM(bh, ih);
287 
288 		/* FIXME: here we could cache indirect item or part of it in
289 		   the inode to avoid search_by_key in case of subsequent
290 		   access to file */
291 		blocknr = get_block_num(ind_item, path.pos_in_item);
292 		ret = 0;
293 		if (blocknr) {
294 			map_bh(bh_result, inode->i_sb, blocknr);
295 			if (path.pos_in_item ==
296 			    ((ih_item_len(ih) / UNFM_P_SIZE) - 1)) {
297 				set_buffer_boundary(bh_result);
298 			}
299 		} else
300 			// We do not return -ENOENT if there is a hole but page is uptodate, because it means
301 			// That there is some MMAPED data associated with it that is yet to  be written to disk.
302 		if ((args & GET_BLOCK_NO_HOLE)
303 			    && !PageUptodate(bh_result->b_page)) {
304 			ret = -ENOENT;
305 		}
306 
307 		pathrelse(&path);
308 		if (p)
309 			kunmap(bh_result->b_page);
310 		return ret;
311 	}
312 	// requested data are in direct item(s)
313 	if (!(args & GET_BLOCK_READ_DIRECT)) {
314 		// we are called by bmap. FIXME: we can not map block of file
315 		// when it is stored in direct item(s)
316 		pathrelse(&path);
317 		if (p)
318 			kunmap(bh_result->b_page);
319 		return -ENOENT;
320 	}
321 
322 	/* if we've got a direct item, and the buffer or page was uptodate,
323 	 ** we don't want to pull data off disk again.  skip to the
324 	 ** end, where we map the buffer and return
325 	 */
326 	if (buffer_uptodate(bh_result)) {
327 		goto finished;
328 	} else
329 		/*
330 		 ** grab_tail_page can trigger calls to reiserfs_get_block on up to date
331 		 ** pages without any buffers.  If the page is up to date, we don't want
332 		 ** read old data off disk.  Set the up to date bit on the buffer instead
333 		 ** and jump to the end
334 		 */
335 	if (!bh_result->b_page || PageUptodate(bh_result->b_page)) {
336 		set_buffer_uptodate(bh_result);
337 		goto finished;
338 	}
339 	// read file tail into part of page
340 	offset = (cpu_key_k_offset(&key) - 1) & (PAGE_CACHE_SIZE - 1);
341 	fs_gen = get_generation(inode->i_sb);
342 	copy_item_head(&tmp_ih, ih);
343 
344 	/* we only want to kmap if we are reading the tail into the page.
345 	 ** this is not the common case, so we don't kmap until we are
346 	 ** sure we need to.  But, this means the item might move if
347 	 ** kmap schedules
348 	 */
349 	if (!p) {
350 		p = (char *)kmap(bh_result->b_page);
351 		if (fs_changed(fs_gen, inode->i_sb)
352 		    && item_moved(&tmp_ih, &path)) {
353 			goto research;
354 		}
355 	}
356 	p += offset;
357 	memset(p, 0, inode->i_sb->s_blocksize);
358 	do {
359 		if (!is_direct_le_ih(ih)) {
360 			BUG();
361 		}
362 		/* make sure we don't read more bytes than actually exist in
363 		 ** the file.  This can happen in odd cases where i_size isn't
364 		 ** correct, and when direct item padding results in a few
365 		 ** extra bytes at the end of the direct item
366 		 */
367 		if ((le_ih_k_offset(ih) + path.pos_in_item) > inode->i_size)
368 			break;
369 		if ((le_ih_k_offset(ih) - 1 + ih_item_len(ih)) > inode->i_size) {
370 			chars =
371 			    inode->i_size - (le_ih_k_offset(ih) - 1) -
372 			    path.pos_in_item;
373 			done = 1;
374 		} else {
375 			chars = ih_item_len(ih) - path.pos_in_item;
376 		}
377 		memcpy(p, B_I_PITEM(bh, ih) + path.pos_in_item, chars);
378 
379 		if (done)
380 			break;
381 
382 		p += chars;
383 
384 		if (PATH_LAST_POSITION(&path) != (B_NR_ITEMS(bh) - 1))
385 			// we done, if read direct item is not the last item of
386 			// node FIXME: we could try to check right delimiting key
387 			// to see whether direct item continues in the right
388 			// neighbor or rely on i_size
389 			break;
390 
391 		// update key to look for the next piece
392 		set_cpu_key_k_offset(&key, cpu_key_k_offset(&key) + chars);
393 		result = search_for_position_by_key(inode->i_sb, &key, &path);
394 		if (result != POSITION_FOUND)
395 			// i/o error most likely
396 			break;
397 		bh = get_last_bh(&path);
398 		ih = get_ih(&path);
399 	} while (1);
400 
401 	flush_dcache_page(bh_result->b_page);
402 	kunmap(bh_result->b_page);
403 
404       finished:
405 	pathrelse(&path);
406 
407 	if (result == IO_ERROR)
408 		return -EIO;
409 
410 	/* this buffer has valid data, but isn't valid for io.  mapping it to
411 	 * block #0 tells the rest of reiserfs it just has a tail in it
412 	 */
413 	map_bh(bh_result, inode->i_sb, 0);
414 	set_buffer_uptodate(bh_result);
415 	return 0;
416 }
417 
418 // this is called to create file map. So, _get_block_create_0 will not
419 // read direct item
420 static int reiserfs_bmap(struct inode *inode, sector_t block,
421 			 struct buffer_head *bh_result, int create)
422 {
423 	if (!file_capable(inode, block))
424 		return -EFBIG;
425 
426 	reiserfs_write_lock(inode->i_sb);
427 	/* do not read the direct item */
428 	_get_block_create_0(inode, block, bh_result, 0);
429 	reiserfs_write_unlock(inode->i_sb);
430 	return 0;
431 }
432 
433 /* special version of get_block that is only used by grab_tail_page right
434 ** now.  It is sent to block_prepare_write, and when you try to get a
435 ** block past the end of the file (or a block from a hole) it returns
436 ** -ENOENT instead of a valid buffer.  block_prepare_write expects to
437 ** be able to do i/o on the buffers returned, unless an error value
438 ** is also returned.
439 **
440 ** So, this allows block_prepare_write to be used for reading a single block
441 ** in a page.  Where it does not produce a valid page for holes, or past the
442 ** end of the file.  This turns out to be exactly what we need for reading
443 ** tails for conversion.
444 **
445 ** The point of the wrapper is forcing a certain value for create, even
446 ** though the VFS layer is calling this function with create==1.  If you
447 ** don't want to send create == GET_BLOCK_NO_HOLE to reiserfs_get_block,
448 ** don't use this function.
449 */
450 static int reiserfs_get_block_create_0(struct inode *inode, sector_t block,
451 				       struct buffer_head *bh_result,
452 				       int create)
453 {
454 	return reiserfs_get_block(inode, block, bh_result, GET_BLOCK_NO_HOLE);
455 }
456 
457 /* This is special helper for reiserfs_get_block in case we are executing
458    direct_IO request. */
459 static int reiserfs_get_blocks_direct_io(struct inode *inode,
460 					 sector_t iblock,
461 					 struct buffer_head *bh_result,
462 					 int create)
463 {
464 	int ret;
465 
466 	bh_result->b_page = NULL;
467 
468 	/* We set the b_size before reiserfs_get_block call since it is
469 	   referenced in convert_tail_for_hole() that may be called from
470 	   reiserfs_get_block() */
471 	bh_result->b_size = (1 << inode->i_blkbits);
472 
473 	ret = reiserfs_get_block(inode, iblock, bh_result,
474 				 create | GET_BLOCK_NO_DANGLE);
475 	if (ret)
476 		goto out;
477 
478 	/* don't allow direct io onto tail pages */
479 	if (buffer_mapped(bh_result) && bh_result->b_blocknr == 0) {
480 		/* make sure future calls to the direct io funcs for this offset
481 		 ** in the file fail by unmapping the buffer
482 		 */
483 		clear_buffer_mapped(bh_result);
484 		ret = -EINVAL;
485 	}
486 	/* Possible unpacked tail. Flush the data before pages have
487 	   disappeared */
488 	if (REISERFS_I(inode)->i_flags & i_pack_on_close_mask) {
489 		int err;
490 		lock_kernel();
491 		err = reiserfs_commit_for_inode(inode);
492 		REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask;
493 		unlock_kernel();
494 		if (err < 0)
495 			ret = err;
496 	}
497       out:
498 	return ret;
499 }
500 
501 /*
502 ** helper function for when reiserfs_get_block is called for a hole
503 ** but the file tail is still in a direct item
504 ** bh_result is the buffer head for the hole
505 ** tail_offset is the offset of the start of the tail in the file
506 **
507 ** This calls prepare_write, which will start a new transaction
508 ** you should not be in a transaction, or have any paths held when you
509 ** call this.
510 */
511 static int convert_tail_for_hole(struct inode *inode,
512 				 struct buffer_head *bh_result,
513 				 loff_t tail_offset)
514 {
515 	unsigned long index;
516 	unsigned long tail_end;
517 	unsigned long tail_start;
518 	struct page *tail_page;
519 	struct page *hole_page = bh_result->b_page;
520 	int retval = 0;
521 
522 	if ((tail_offset & (bh_result->b_size - 1)) != 1)
523 		return -EIO;
524 
525 	/* always try to read until the end of the block */
526 	tail_start = tail_offset & (PAGE_CACHE_SIZE - 1);
527 	tail_end = (tail_start | (bh_result->b_size - 1)) + 1;
528 
529 	index = tail_offset >> PAGE_CACHE_SHIFT;
530 	/* hole_page can be zero in case of direct_io, we are sure
531 	   that we cannot get here if we write with O_DIRECT into
532 	   tail page */
533 	if (!hole_page || index != hole_page->index) {
534 		tail_page = grab_cache_page(inode->i_mapping, index);
535 		retval = -ENOMEM;
536 		if (!tail_page) {
537 			goto out;
538 		}
539 	} else {
540 		tail_page = hole_page;
541 	}
542 
543 	/* we don't have to make sure the conversion did not happen while
544 	 ** we were locking the page because anyone that could convert
545 	 ** must first take i_mutex.
546 	 **
547 	 ** We must fix the tail page for writing because it might have buffers
548 	 ** that are mapped, but have a block number of 0.  This indicates tail
549 	 ** data that has been read directly into the page, and block_prepare_write
550 	 ** won't trigger a get_block in this case.
551 	 */
552 	fix_tail_page_for_writing(tail_page);
553 	retval = reiserfs_prepare_write(NULL, tail_page, tail_start, tail_end);
554 	if (retval)
555 		goto unlock;
556 
557 	/* tail conversion might change the data in the page */
558 	flush_dcache_page(tail_page);
559 
560 	retval = reiserfs_commit_write(NULL, tail_page, tail_start, tail_end);
561 
562       unlock:
563 	if (tail_page != hole_page) {
564 		unlock_page(tail_page);
565 		page_cache_release(tail_page);
566 	}
567       out:
568 	return retval;
569 }
570 
571 static inline int _allocate_block(struct reiserfs_transaction_handle *th,
572 				  sector_t block,
573 				  struct inode *inode,
574 				  b_blocknr_t * allocated_block_nr,
575 				  struct treepath *path, int flags)
576 {
577 	BUG_ON(!th->t_trans_id);
578 
579 #ifdef REISERFS_PREALLOCATE
580 	if (!(flags & GET_BLOCK_NO_IMUX)) {
581 		return reiserfs_new_unf_blocknrs2(th, inode, allocated_block_nr,
582 						  path, block);
583 	}
584 #endif
585 	return reiserfs_new_unf_blocknrs(th, inode, allocated_block_nr, path,
586 					 block);
587 }
588 
589 int reiserfs_get_block(struct inode *inode, sector_t block,
590 		       struct buffer_head *bh_result, int create)
591 {
592 	int repeat, retval = 0;
593 	b_blocknr_t allocated_block_nr = 0;	// b_blocknr_t is (unsigned) 32 bit int
594 	INITIALIZE_PATH(path);
595 	int pos_in_item;
596 	struct cpu_key key;
597 	struct buffer_head *bh, *unbh = NULL;
598 	struct item_head *ih, tmp_ih;
599 	__le32 *item;
600 	int done;
601 	int fs_gen;
602 	struct reiserfs_transaction_handle *th = NULL;
603 	/* space reserved in transaction batch:
604 	   . 3 balancings in direct->indirect conversion
605 	   . 1 block involved into reiserfs_update_sd()
606 	   XXX in practically impossible worst case direct2indirect()
607 	   can incur (much) more than 3 balancings.
608 	   quota update for user, group */
609 	int jbegin_count =
610 	    JOURNAL_PER_BALANCE_CNT * 3 + 1 +
611 	    2 * REISERFS_QUOTA_TRANS_BLOCKS(inode->i_sb);
612 	int version;
613 	int dangle = 1;
614 	loff_t new_offset =
615 	    (((loff_t) block) << inode->i_sb->s_blocksize_bits) + 1;
616 
617 	/* bad.... */
618 	reiserfs_write_lock(inode->i_sb);
619 	version = get_inode_item_key_version(inode);
620 
621 	if (!file_capable(inode, block)) {
622 		reiserfs_write_unlock(inode->i_sb);
623 		return -EFBIG;
624 	}
625 
626 	/* if !create, we aren't changing the FS, so we don't need to
627 	 ** log anything, so we don't need to start a transaction
628 	 */
629 	if (!(create & GET_BLOCK_CREATE)) {
630 		int ret;
631 		/* find number of block-th logical block of the file */
632 		ret = _get_block_create_0(inode, block, bh_result,
633 					  create | GET_BLOCK_READ_DIRECT);
634 		reiserfs_write_unlock(inode->i_sb);
635 		return ret;
636 	}
637 	/*
638 	 * if we're already in a transaction, make sure to close
639 	 * any new transactions we start in this func
640 	 */
641 	if ((create & GET_BLOCK_NO_DANGLE) ||
642 	    reiserfs_transaction_running(inode->i_sb))
643 		dangle = 0;
644 
645 	/* If file is of such a size, that it might have a tail and tails are enabled
646 	 ** we should mark it as possibly needing tail packing on close
647 	 */
648 	if ((have_large_tails(inode->i_sb)
649 	     && inode->i_size < i_block_size(inode) * 4)
650 	    || (have_small_tails(inode->i_sb)
651 		&& inode->i_size < i_block_size(inode)))
652 		REISERFS_I(inode)->i_flags |= i_pack_on_close_mask;
653 
654 	/* set the key of the first byte in the 'block'-th block of file */
655 	make_cpu_key(&key, inode, new_offset, TYPE_ANY, 3 /*key length */ );
656 	if ((new_offset + inode->i_sb->s_blocksize - 1) > inode->i_size) {
657 	      start_trans:
658 		th = reiserfs_persistent_transaction(inode->i_sb, jbegin_count);
659 		if (!th) {
660 			retval = -ENOMEM;
661 			goto failure;
662 		}
663 		reiserfs_update_inode_transaction(inode);
664 	}
665       research:
666 
667 	retval = search_for_position_by_key(inode->i_sb, &key, &path);
668 	if (retval == IO_ERROR) {
669 		retval = -EIO;
670 		goto failure;
671 	}
672 
673 	bh = get_last_bh(&path);
674 	ih = get_ih(&path);
675 	item = get_item(&path);
676 	pos_in_item = path.pos_in_item;
677 
678 	fs_gen = get_generation(inode->i_sb);
679 	copy_item_head(&tmp_ih, ih);
680 
681 	if (allocation_needed
682 	    (retval, allocated_block_nr, ih, item, pos_in_item)) {
683 		/* we have to allocate block for the unformatted node */
684 		if (!th) {
685 			pathrelse(&path);
686 			goto start_trans;
687 		}
688 
689 		repeat =
690 		    _allocate_block(th, block, inode, &allocated_block_nr,
691 				    &path, create);
692 
693 		if (repeat == NO_DISK_SPACE || repeat == QUOTA_EXCEEDED) {
694 			/* restart the transaction to give the journal a chance to free
695 			 ** some blocks.  releases the path, so we have to go back to
696 			 ** research if we succeed on the second try
697 			 */
698 			SB_JOURNAL(inode->i_sb)->j_next_async_flush = 1;
699 			retval = restart_transaction(th, inode, &path);
700 			if (retval)
701 				goto failure;
702 			repeat =
703 			    _allocate_block(th, block, inode,
704 					    &allocated_block_nr, NULL, create);
705 
706 			if (repeat != NO_DISK_SPACE && repeat != QUOTA_EXCEEDED) {
707 				goto research;
708 			}
709 			if (repeat == QUOTA_EXCEEDED)
710 				retval = -EDQUOT;
711 			else
712 				retval = -ENOSPC;
713 			goto failure;
714 		}
715 
716 		if (fs_changed(fs_gen, inode->i_sb)
717 		    && item_moved(&tmp_ih, &path)) {
718 			goto research;
719 		}
720 	}
721 
722 	if (indirect_item_found(retval, ih)) {
723 		b_blocknr_t unfm_ptr;
724 		/* 'block'-th block is in the file already (there is
725 		   corresponding cell in some indirect item). But it may be
726 		   zero unformatted node pointer (hole) */
727 		unfm_ptr = get_block_num(item, pos_in_item);
728 		if (unfm_ptr == 0) {
729 			/* use allocated block to plug the hole */
730 			reiserfs_prepare_for_journal(inode->i_sb, bh, 1);
731 			if (fs_changed(fs_gen, inode->i_sb)
732 			    && item_moved(&tmp_ih, &path)) {
733 				reiserfs_restore_prepared_buffer(inode->i_sb,
734 								 bh);
735 				goto research;
736 			}
737 			set_buffer_new(bh_result);
738 			if (buffer_dirty(bh_result)
739 			    && reiserfs_data_ordered(inode->i_sb))
740 				reiserfs_add_ordered_list(inode, bh_result);
741 			put_block_num(item, pos_in_item, allocated_block_nr);
742 			unfm_ptr = allocated_block_nr;
743 			journal_mark_dirty(th, inode->i_sb, bh);
744 			reiserfs_update_sd(th, inode);
745 		}
746 		set_block_dev_mapped(bh_result, unfm_ptr, inode);
747 		pathrelse(&path);
748 		retval = 0;
749 		if (!dangle && th)
750 			retval = reiserfs_end_persistent_transaction(th);
751 
752 		reiserfs_write_unlock(inode->i_sb);
753 
754 		/* the item was found, so new blocks were not added to the file
755 		 ** there is no need to make sure the inode is updated with this
756 		 ** transaction
757 		 */
758 		return retval;
759 	}
760 
761 	if (!th) {
762 		pathrelse(&path);
763 		goto start_trans;
764 	}
765 
766 	/* desired position is not found or is in the direct item. We have
767 	   to append file with holes up to 'block'-th block converting
768 	   direct items to indirect one if necessary */
769 	done = 0;
770 	do {
771 		if (is_statdata_le_ih(ih)) {
772 			__le32 unp = 0;
773 			struct cpu_key tmp_key;
774 
775 			/* indirect item has to be inserted */
776 			make_le_item_head(&tmp_ih, &key, version, 1,
777 					  TYPE_INDIRECT, UNFM_P_SIZE,
778 					  0 /* free_space */ );
779 
780 			if (cpu_key_k_offset(&key) == 1) {
781 				/* we are going to add 'block'-th block to the file. Use
782 				   allocated block for that */
783 				unp = cpu_to_le32(allocated_block_nr);
784 				set_block_dev_mapped(bh_result,
785 						     allocated_block_nr, inode);
786 				set_buffer_new(bh_result);
787 				done = 1;
788 			}
789 			tmp_key = key;	// ;)
790 			set_cpu_key_k_offset(&tmp_key, 1);
791 			PATH_LAST_POSITION(&path)++;
792 
793 			retval =
794 			    reiserfs_insert_item(th, &path, &tmp_key, &tmp_ih,
795 						 inode, (char *)&unp);
796 			if (retval) {
797 				reiserfs_free_block(th, inode,
798 						    allocated_block_nr, 1);
799 				goto failure;	// retval == -ENOSPC, -EDQUOT or -EIO or -EEXIST
800 			}
801 			//mark_tail_converted (inode);
802 		} else if (is_direct_le_ih(ih)) {
803 			/* direct item has to be converted */
804 			loff_t tail_offset;
805 
806 			tail_offset =
807 			    ((le_ih_k_offset(ih) -
808 			      1) & ~(inode->i_sb->s_blocksize - 1)) + 1;
809 			if (tail_offset == cpu_key_k_offset(&key)) {
810 				/* direct item we just found fits into block we have
811 				   to map. Convert it into unformatted node: use
812 				   bh_result for the conversion */
813 				set_block_dev_mapped(bh_result,
814 						     allocated_block_nr, inode);
815 				unbh = bh_result;
816 				done = 1;
817 			} else {
818 				/* we have to padd file tail stored in direct item(s)
819 				   up to block size and convert it to unformatted
820 				   node. FIXME: this should also get into page cache */
821 
822 				pathrelse(&path);
823 				/*
824 				 * ugly, but we can only end the transaction if
825 				 * we aren't nested
826 				 */
827 				BUG_ON(!th->t_refcount);
828 				if (th->t_refcount == 1) {
829 					retval =
830 					    reiserfs_end_persistent_transaction
831 					    (th);
832 					th = NULL;
833 					if (retval)
834 						goto failure;
835 				}
836 
837 				retval =
838 				    convert_tail_for_hole(inode, bh_result,
839 							  tail_offset);
840 				if (retval) {
841 					if (retval != -ENOSPC)
842 						reiserfs_warning(inode->i_sb,
843 								 "clm-6004: convert tail failed inode %lu, error %d",
844 								 inode->i_ino,
845 								 retval);
846 					if (allocated_block_nr) {
847 						/* the bitmap, the super, and the stat data == 3 */
848 						if (!th)
849 							th = reiserfs_persistent_transaction(inode->i_sb, 3);
850 						if (th)
851 							reiserfs_free_block(th,
852 									    inode,
853 									    allocated_block_nr,
854 									    1);
855 					}
856 					goto failure;
857 				}
858 				goto research;
859 			}
860 			retval =
861 			    direct2indirect(th, inode, &path, unbh,
862 					    tail_offset);
863 			if (retval) {
864 				reiserfs_unmap_buffer(unbh);
865 				reiserfs_free_block(th, inode,
866 						    allocated_block_nr, 1);
867 				goto failure;
868 			}
869 			/* it is important the set_buffer_uptodate is done after
870 			 ** the direct2indirect.  The buffer might contain valid
871 			 ** data newer than the data on disk (read by readpage, changed,
872 			 ** and then sent here by writepage).  direct2indirect needs
873 			 ** to know if unbh was already up to date, so it can decide
874 			 ** if the data in unbh needs to be replaced with data from
875 			 ** the disk
876 			 */
877 			set_buffer_uptodate(unbh);
878 
879 			/* unbh->b_page == NULL in case of DIRECT_IO request, this means
880 			   buffer will disappear shortly, so it should not be added to
881 			 */
882 			if (unbh->b_page) {
883 				/* we've converted the tail, so we must
884 				 ** flush unbh before the transaction commits
885 				 */
886 				reiserfs_add_tail_list(inode, unbh);
887 
888 				/* mark it dirty now to prevent commit_write from adding
889 				 ** this buffer to the inode's dirty buffer list
890 				 */
891 				/*
892 				 * AKPM: changed __mark_buffer_dirty to mark_buffer_dirty().
893 				 * It's still atomic, but it sets the page dirty too,
894 				 * which makes it eligible for writeback at any time by the
895 				 * VM (which was also the case with __mark_buffer_dirty())
896 				 */
897 				mark_buffer_dirty(unbh);
898 			}
899 		} else {
900 			/* append indirect item with holes if needed, when appending
901 			   pointer to 'block'-th block use block, which is already
902 			   allocated */
903 			struct cpu_key tmp_key;
904 			unp_t unf_single = 0;	// We use this in case we need to allocate only
905 			// one block which is a fastpath
906 			unp_t *un;
907 			__u64 max_to_insert =
908 			    MAX_ITEM_LEN(inode->i_sb->s_blocksize) /
909 			    UNFM_P_SIZE;
910 			__u64 blocks_needed;
911 
912 			RFALSE(pos_in_item != ih_item_len(ih) / UNFM_P_SIZE,
913 			       "vs-804: invalid position for append");
914 			/* indirect item has to be appended, set up key of that position */
915 			make_cpu_key(&tmp_key, inode,
916 				     le_key_k_offset(version,
917 						     &(ih->ih_key)) +
918 				     op_bytes_number(ih,
919 						     inode->i_sb->s_blocksize),
920 				     //pos_in_item * inode->i_sb->s_blocksize,
921 				     TYPE_INDIRECT, 3);	// key type is unimportant
922 
923 			RFALSE(cpu_key_k_offset(&tmp_key) > cpu_key_k_offset(&key),
924 			       "green-805: invalid offset");
925 			blocks_needed =
926 			    1 +
927 			    ((cpu_key_k_offset(&key) -
928 			      cpu_key_k_offset(&tmp_key)) >> inode->i_sb->
929 			     s_blocksize_bits);
930 
931 			if (blocks_needed == 1) {
932 				un = &unf_single;
933 			} else {
934 				un = kzalloc(min(blocks_needed, max_to_insert) * UNFM_P_SIZE, GFP_ATOMIC);	// We need to avoid scheduling.
935 				if (!un) {
936 					un = &unf_single;
937 					blocks_needed = 1;
938 					max_to_insert = 0;
939 				}
940 			}
941 			if (blocks_needed <= max_to_insert) {
942 				/* we are going to add target block to the file. Use allocated
943 				   block for that */
944 				un[blocks_needed - 1] =
945 				    cpu_to_le32(allocated_block_nr);
946 				set_block_dev_mapped(bh_result,
947 						     allocated_block_nr, inode);
948 				set_buffer_new(bh_result);
949 				done = 1;
950 			} else {
951 				/* paste hole to the indirect item */
952 				/* If kmalloc failed, max_to_insert becomes zero and it means we
953 				   only have space for one block */
954 				blocks_needed =
955 				    max_to_insert ? max_to_insert : 1;
956 			}
957 			retval =
958 			    reiserfs_paste_into_item(th, &path, &tmp_key, inode,
959 						     (char *)un,
960 						     UNFM_P_SIZE *
961 						     blocks_needed);
962 
963 			if (blocks_needed != 1)
964 				kfree(un);
965 
966 			if (retval) {
967 				reiserfs_free_block(th, inode,
968 						    allocated_block_nr, 1);
969 				goto failure;
970 			}
971 			if (!done) {
972 				/* We need to mark new file size in case this function will be
973 				   interrupted/aborted later on. And we may do this only for
974 				   holes. */
975 				inode->i_size +=
976 				    inode->i_sb->s_blocksize * blocks_needed;
977 			}
978 		}
979 
980 		if (done == 1)
981 			break;
982 
983 		/* this loop could log more blocks than we had originally asked
984 		 ** for.  So, we have to allow the transaction to end if it is
985 		 ** too big or too full.  Update the inode so things are
986 		 ** consistent if we crash before the function returns
987 		 **
988 		 ** release the path so that anybody waiting on the path before
989 		 ** ending their transaction will be able to continue.
990 		 */
991 		if (journal_transaction_should_end(th, th->t_blocks_allocated)) {
992 			retval = restart_transaction(th, inode, &path);
993 			if (retval)
994 				goto failure;
995 		}
996 		/* inserting indirect pointers for a hole can take a
997 		 ** long time.  reschedule if needed
998 		 */
999 		cond_resched();
1000 
1001 		retval = search_for_position_by_key(inode->i_sb, &key, &path);
1002 		if (retval == IO_ERROR) {
1003 			retval = -EIO;
1004 			goto failure;
1005 		}
1006 		if (retval == POSITION_FOUND) {
1007 			reiserfs_warning(inode->i_sb,
1008 					 "vs-825: reiserfs_get_block: "
1009 					 "%K should not be found", &key);
1010 			retval = -EEXIST;
1011 			if (allocated_block_nr)
1012 				reiserfs_free_block(th, inode,
1013 						    allocated_block_nr, 1);
1014 			pathrelse(&path);
1015 			goto failure;
1016 		}
1017 		bh = get_last_bh(&path);
1018 		ih = get_ih(&path);
1019 		item = get_item(&path);
1020 		pos_in_item = path.pos_in_item;
1021 	} while (1);
1022 
1023 	retval = 0;
1024 
1025       failure:
1026 	if (th && (!dangle || (retval && !th->t_trans_id))) {
1027 		int err;
1028 		if (th->t_trans_id)
1029 			reiserfs_update_sd(th, inode);
1030 		err = reiserfs_end_persistent_transaction(th);
1031 		if (err)
1032 			retval = err;
1033 	}
1034 
1035 	reiserfs_write_unlock(inode->i_sb);
1036 	reiserfs_check_path(&path);
1037 	return retval;
1038 }
1039 
1040 static int
1041 reiserfs_readpages(struct file *file, struct address_space *mapping,
1042 		   struct list_head *pages, unsigned nr_pages)
1043 {
1044 	return mpage_readpages(mapping, pages, nr_pages, reiserfs_get_block);
1045 }
1046 
1047 /* Compute real number of used bytes by file
1048  * Following three functions can go away when we'll have enough space in stat item
1049  */
1050 static int real_space_diff(struct inode *inode, int sd_size)
1051 {
1052 	int bytes;
1053 	loff_t blocksize = inode->i_sb->s_blocksize;
1054 
1055 	if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode))
1056 		return sd_size;
1057 
1058 	/* End of file is also in full block with indirect reference, so round
1059 	 ** up to the next block.
1060 	 **
1061 	 ** there is just no way to know if the tail is actually packed
1062 	 ** on the file, so we have to assume it isn't.  When we pack the
1063 	 ** tail, we add 4 bytes to pretend there really is an unformatted
1064 	 ** node pointer
1065 	 */
1066 	bytes =
1067 	    ((inode->i_size +
1068 	      (blocksize - 1)) >> inode->i_sb->s_blocksize_bits) * UNFM_P_SIZE +
1069 	    sd_size;
1070 	return bytes;
1071 }
1072 
1073 static inline loff_t to_real_used_space(struct inode *inode, ulong blocks,
1074 					int sd_size)
1075 {
1076 	if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode)) {
1077 		return inode->i_size +
1078 		    (loff_t) (real_space_diff(inode, sd_size));
1079 	}
1080 	return ((loff_t) real_space_diff(inode, sd_size)) +
1081 	    (((loff_t) blocks) << 9);
1082 }
1083 
1084 /* Compute number of blocks used by file in ReiserFS counting */
1085 static inline ulong to_fake_used_blocks(struct inode *inode, int sd_size)
1086 {
1087 	loff_t bytes = inode_get_bytes(inode);
1088 	loff_t real_space = real_space_diff(inode, sd_size);
1089 
1090 	/* keeps fsck and non-quota versions of reiserfs happy */
1091 	if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode)) {
1092 		bytes += (loff_t) 511;
1093 	}
1094 
1095 	/* files from before the quota patch might i_blocks such that
1096 	 ** bytes < real_space.  Deal with that here to prevent it from
1097 	 ** going negative.
1098 	 */
1099 	if (bytes < real_space)
1100 		return 0;
1101 	return (bytes - real_space) >> 9;
1102 }
1103 
1104 //
1105 // BAD: new directories have stat data of new type and all other items
1106 // of old type. Version stored in the inode says about body items, so
1107 // in update_stat_data we can not rely on inode, but have to check
1108 // item version directly
1109 //
1110 
1111 // called by read_locked_inode
1112 static void init_inode(struct inode *inode, struct treepath *path)
1113 {
1114 	struct buffer_head *bh;
1115 	struct item_head *ih;
1116 	__u32 rdev;
1117 	//int version = ITEM_VERSION_1;
1118 
1119 	bh = PATH_PLAST_BUFFER(path);
1120 	ih = PATH_PITEM_HEAD(path);
1121 
1122 	copy_key(INODE_PKEY(inode), &(ih->ih_key));
1123 
1124 	INIT_LIST_HEAD(&(REISERFS_I(inode)->i_prealloc_list));
1125 	REISERFS_I(inode)->i_flags = 0;
1126 	REISERFS_I(inode)->i_prealloc_block = 0;
1127 	REISERFS_I(inode)->i_prealloc_count = 0;
1128 	REISERFS_I(inode)->i_trans_id = 0;
1129 	REISERFS_I(inode)->i_jl = NULL;
1130 	mutex_init(&(REISERFS_I(inode)->i_mmap));
1131 	reiserfs_init_acl_access(inode);
1132 	reiserfs_init_acl_default(inode);
1133 	reiserfs_init_xattr_rwsem(inode);
1134 
1135 	if (stat_data_v1(ih)) {
1136 		struct stat_data_v1 *sd =
1137 		    (struct stat_data_v1 *)B_I_PITEM(bh, ih);
1138 		unsigned long blocks;
1139 
1140 		set_inode_item_key_version(inode, KEY_FORMAT_3_5);
1141 		set_inode_sd_version(inode, STAT_DATA_V1);
1142 		inode->i_mode = sd_v1_mode(sd);
1143 		inode->i_nlink = sd_v1_nlink(sd);
1144 		inode->i_uid = sd_v1_uid(sd);
1145 		inode->i_gid = sd_v1_gid(sd);
1146 		inode->i_size = sd_v1_size(sd);
1147 		inode->i_atime.tv_sec = sd_v1_atime(sd);
1148 		inode->i_mtime.tv_sec = sd_v1_mtime(sd);
1149 		inode->i_ctime.tv_sec = sd_v1_ctime(sd);
1150 		inode->i_atime.tv_nsec = 0;
1151 		inode->i_ctime.tv_nsec = 0;
1152 		inode->i_mtime.tv_nsec = 0;
1153 
1154 		inode->i_blocks = sd_v1_blocks(sd);
1155 		inode->i_generation = le32_to_cpu(INODE_PKEY(inode)->k_dir_id);
1156 		blocks = (inode->i_size + 511) >> 9;
1157 		blocks = _ROUND_UP(blocks, inode->i_sb->s_blocksize >> 9);
1158 		if (inode->i_blocks > blocks) {
1159 			// there was a bug in <=3.5.23 when i_blocks could take negative
1160 			// values. Starting from 3.5.17 this value could even be stored in
1161 			// stat data. For such files we set i_blocks based on file
1162 			// size. Just 2 notes: this can be wrong for sparce files. On-disk value will be
1163 			// only updated if file's inode will ever change
1164 			inode->i_blocks = blocks;
1165 		}
1166 
1167 		rdev = sd_v1_rdev(sd);
1168 		REISERFS_I(inode)->i_first_direct_byte =
1169 		    sd_v1_first_direct_byte(sd);
1170 		/* an early bug in the quota code can give us an odd number for the
1171 		 ** block count.  This is incorrect, fix it here.
1172 		 */
1173 		if (inode->i_blocks & 1) {
1174 			inode->i_blocks++;
1175 		}
1176 		inode_set_bytes(inode,
1177 				to_real_used_space(inode, inode->i_blocks,
1178 						   SD_V1_SIZE));
1179 		/* nopack is initially zero for v1 objects. For v2 objects,
1180 		   nopack is initialised from sd_attrs */
1181 		REISERFS_I(inode)->i_flags &= ~i_nopack_mask;
1182 	} else {
1183 		// new stat data found, but object may have old items
1184 		// (directories and symlinks)
1185 		struct stat_data *sd = (struct stat_data *)B_I_PITEM(bh, ih);
1186 
1187 		inode->i_mode = sd_v2_mode(sd);
1188 		inode->i_nlink = sd_v2_nlink(sd);
1189 		inode->i_uid = sd_v2_uid(sd);
1190 		inode->i_size = sd_v2_size(sd);
1191 		inode->i_gid = sd_v2_gid(sd);
1192 		inode->i_mtime.tv_sec = sd_v2_mtime(sd);
1193 		inode->i_atime.tv_sec = sd_v2_atime(sd);
1194 		inode->i_ctime.tv_sec = sd_v2_ctime(sd);
1195 		inode->i_ctime.tv_nsec = 0;
1196 		inode->i_mtime.tv_nsec = 0;
1197 		inode->i_atime.tv_nsec = 0;
1198 		inode->i_blocks = sd_v2_blocks(sd);
1199 		rdev = sd_v2_rdev(sd);
1200 		if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode))
1201 			inode->i_generation =
1202 			    le32_to_cpu(INODE_PKEY(inode)->k_dir_id);
1203 		else
1204 			inode->i_generation = sd_v2_generation(sd);
1205 
1206 		if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
1207 			set_inode_item_key_version(inode, KEY_FORMAT_3_5);
1208 		else
1209 			set_inode_item_key_version(inode, KEY_FORMAT_3_6);
1210 		REISERFS_I(inode)->i_first_direct_byte = 0;
1211 		set_inode_sd_version(inode, STAT_DATA_V2);
1212 		inode_set_bytes(inode,
1213 				to_real_used_space(inode, inode->i_blocks,
1214 						   SD_V2_SIZE));
1215 		/* read persistent inode attributes from sd and initalise
1216 		   generic inode flags from them */
1217 		REISERFS_I(inode)->i_attrs = sd_v2_attrs(sd);
1218 		sd_attrs_to_i_attrs(sd_v2_attrs(sd), inode);
1219 	}
1220 
1221 	pathrelse(path);
1222 	if (S_ISREG(inode->i_mode)) {
1223 		inode->i_op = &reiserfs_file_inode_operations;
1224 		inode->i_fop = &reiserfs_file_operations;
1225 		inode->i_mapping->a_ops = &reiserfs_address_space_operations;
1226 	} else if (S_ISDIR(inode->i_mode)) {
1227 		inode->i_op = &reiserfs_dir_inode_operations;
1228 		inode->i_fop = &reiserfs_dir_operations;
1229 	} else if (S_ISLNK(inode->i_mode)) {
1230 		inode->i_op = &reiserfs_symlink_inode_operations;
1231 		inode->i_mapping->a_ops = &reiserfs_address_space_operations;
1232 	} else {
1233 		inode->i_blocks = 0;
1234 		inode->i_op = &reiserfs_special_inode_operations;
1235 		init_special_inode(inode, inode->i_mode, new_decode_dev(rdev));
1236 	}
1237 }
1238 
1239 // update new stat data with inode fields
1240 static void inode2sd(void *sd, struct inode *inode, loff_t size)
1241 {
1242 	struct stat_data *sd_v2 = (struct stat_data *)sd;
1243 	__u16 flags;
1244 
1245 	set_sd_v2_mode(sd_v2, inode->i_mode);
1246 	set_sd_v2_nlink(sd_v2, inode->i_nlink);
1247 	set_sd_v2_uid(sd_v2, inode->i_uid);
1248 	set_sd_v2_size(sd_v2, size);
1249 	set_sd_v2_gid(sd_v2, inode->i_gid);
1250 	set_sd_v2_mtime(sd_v2, inode->i_mtime.tv_sec);
1251 	set_sd_v2_atime(sd_v2, inode->i_atime.tv_sec);
1252 	set_sd_v2_ctime(sd_v2, inode->i_ctime.tv_sec);
1253 	set_sd_v2_blocks(sd_v2, to_fake_used_blocks(inode, SD_V2_SIZE));
1254 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode))
1255 		set_sd_v2_rdev(sd_v2, new_encode_dev(inode->i_rdev));
1256 	else
1257 		set_sd_v2_generation(sd_v2, inode->i_generation);
1258 	flags = REISERFS_I(inode)->i_attrs;
1259 	i_attrs_to_sd_attrs(inode, &flags);
1260 	set_sd_v2_attrs(sd_v2, flags);
1261 }
1262 
1263 // used to copy inode's fields to old stat data
1264 static void inode2sd_v1(void *sd, struct inode *inode, loff_t size)
1265 {
1266 	struct stat_data_v1 *sd_v1 = (struct stat_data_v1 *)sd;
1267 
1268 	set_sd_v1_mode(sd_v1, inode->i_mode);
1269 	set_sd_v1_uid(sd_v1, inode->i_uid);
1270 	set_sd_v1_gid(sd_v1, inode->i_gid);
1271 	set_sd_v1_nlink(sd_v1, inode->i_nlink);
1272 	set_sd_v1_size(sd_v1, size);
1273 	set_sd_v1_atime(sd_v1, inode->i_atime.tv_sec);
1274 	set_sd_v1_ctime(sd_v1, inode->i_ctime.tv_sec);
1275 	set_sd_v1_mtime(sd_v1, inode->i_mtime.tv_sec);
1276 
1277 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode))
1278 		set_sd_v1_rdev(sd_v1, new_encode_dev(inode->i_rdev));
1279 	else
1280 		set_sd_v1_blocks(sd_v1, to_fake_used_blocks(inode, SD_V1_SIZE));
1281 
1282 	// Sigh. i_first_direct_byte is back
1283 	set_sd_v1_first_direct_byte(sd_v1,
1284 				    REISERFS_I(inode)->i_first_direct_byte);
1285 }
1286 
1287 /* NOTE, you must prepare the buffer head before sending it here,
1288 ** and then log it after the call
1289 */
1290 static void update_stat_data(struct treepath *path, struct inode *inode,
1291 			     loff_t size)
1292 {
1293 	struct buffer_head *bh;
1294 	struct item_head *ih;
1295 
1296 	bh = PATH_PLAST_BUFFER(path);
1297 	ih = PATH_PITEM_HEAD(path);
1298 
1299 	if (!is_statdata_le_ih(ih))
1300 		reiserfs_panic(inode->i_sb,
1301 			       "vs-13065: update_stat_data: key %k, found item %h",
1302 			       INODE_PKEY(inode), ih);
1303 
1304 	if (stat_data_v1(ih)) {
1305 		// path points to old stat data
1306 		inode2sd_v1(B_I_PITEM(bh, ih), inode, size);
1307 	} else {
1308 		inode2sd(B_I_PITEM(bh, ih), inode, size);
1309 	}
1310 
1311 	return;
1312 }
1313 
1314 void reiserfs_update_sd_size(struct reiserfs_transaction_handle *th,
1315 			     struct inode *inode, loff_t size)
1316 {
1317 	struct cpu_key key;
1318 	INITIALIZE_PATH(path);
1319 	struct buffer_head *bh;
1320 	int fs_gen;
1321 	struct item_head *ih, tmp_ih;
1322 	int retval;
1323 
1324 	BUG_ON(!th->t_trans_id);
1325 
1326 	make_cpu_key(&key, inode, SD_OFFSET, TYPE_STAT_DATA, 3);	//key type is unimportant
1327 
1328 	for (;;) {
1329 		int pos;
1330 		/* look for the object's stat data */
1331 		retval = search_item(inode->i_sb, &key, &path);
1332 		if (retval == IO_ERROR) {
1333 			reiserfs_warning(inode->i_sb,
1334 					 "vs-13050: reiserfs_update_sd: "
1335 					 "i/o failure occurred trying to update %K stat data",
1336 					 &key);
1337 			return;
1338 		}
1339 		if (retval == ITEM_NOT_FOUND) {
1340 			pos = PATH_LAST_POSITION(&path);
1341 			pathrelse(&path);
1342 			if (inode->i_nlink == 0) {
1343 				/*reiserfs_warning (inode->i_sb, "vs-13050: reiserfs_update_sd: i_nlink == 0, stat data not found"); */
1344 				return;
1345 			}
1346 			reiserfs_warning(inode->i_sb,
1347 					 "vs-13060: reiserfs_update_sd: "
1348 					 "stat data of object %k (nlink == %d) not found (pos %d)",
1349 					 INODE_PKEY(inode), inode->i_nlink,
1350 					 pos);
1351 			reiserfs_check_path(&path);
1352 			return;
1353 		}
1354 
1355 		/* sigh, prepare_for_journal might schedule.  When it schedules the
1356 		 ** FS might change.  We have to detect that, and loop back to the
1357 		 ** search if the stat data item has moved
1358 		 */
1359 		bh = get_last_bh(&path);
1360 		ih = get_ih(&path);
1361 		copy_item_head(&tmp_ih, ih);
1362 		fs_gen = get_generation(inode->i_sb);
1363 		reiserfs_prepare_for_journal(inode->i_sb, bh, 1);
1364 		if (fs_changed(fs_gen, inode->i_sb)
1365 		    && item_moved(&tmp_ih, &path)) {
1366 			reiserfs_restore_prepared_buffer(inode->i_sb, bh);
1367 			continue;	/* Stat_data item has been moved after scheduling. */
1368 		}
1369 		break;
1370 	}
1371 	update_stat_data(&path, inode, size);
1372 	journal_mark_dirty(th, th->t_super, bh);
1373 	pathrelse(&path);
1374 	return;
1375 }
1376 
1377 /* reiserfs_read_locked_inode is called to read the inode off disk, and it
1378 ** does a make_bad_inode when things go wrong.  But, we need to make sure
1379 ** and clear the key in the private portion of the inode, otherwise a
1380 ** corresponding iput might try to delete whatever object the inode last
1381 ** represented.
1382 */
1383 static void reiserfs_make_bad_inode(struct inode *inode)
1384 {
1385 	memset(INODE_PKEY(inode), 0, KEY_SIZE);
1386 	make_bad_inode(inode);
1387 }
1388 
1389 //
1390 // initially this function was derived from minix or ext2's analog and
1391 // evolved as the prototype did
1392 //
1393 
1394 int reiserfs_init_locked_inode(struct inode *inode, void *p)
1395 {
1396 	struct reiserfs_iget_args *args = (struct reiserfs_iget_args *)p;
1397 	inode->i_ino = args->objectid;
1398 	INODE_PKEY(inode)->k_dir_id = cpu_to_le32(args->dirid);
1399 	return 0;
1400 }
1401 
1402 /* looks for stat data in the tree, and fills up the fields of in-core
1403    inode stat data fields */
1404 void reiserfs_read_locked_inode(struct inode *inode,
1405 				struct reiserfs_iget_args *args)
1406 {
1407 	INITIALIZE_PATH(path_to_sd);
1408 	struct cpu_key key;
1409 	unsigned long dirino;
1410 	int retval;
1411 
1412 	dirino = args->dirid;
1413 
1414 	/* set version 1, version 2 could be used too, because stat data
1415 	   key is the same in both versions */
1416 	key.version = KEY_FORMAT_3_5;
1417 	key.on_disk_key.k_dir_id = dirino;
1418 	key.on_disk_key.k_objectid = inode->i_ino;
1419 	key.on_disk_key.k_offset = 0;
1420 	key.on_disk_key.k_type = 0;
1421 
1422 	/* look for the object's stat data */
1423 	retval = search_item(inode->i_sb, &key, &path_to_sd);
1424 	if (retval == IO_ERROR) {
1425 		reiserfs_warning(inode->i_sb,
1426 				 "vs-13070: reiserfs_read_locked_inode: "
1427 				 "i/o failure occurred trying to find stat data of %K",
1428 				 &key);
1429 		reiserfs_make_bad_inode(inode);
1430 		return;
1431 	}
1432 	if (retval != ITEM_FOUND) {
1433 		/* a stale NFS handle can trigger this without it being an error */
1434 		pathrelse(&path_to_sd);
1435 		reiserfs_make_bad_inode(inode);
1436 		inode->i_nlink = 0;
1437 		return;
1438 	}
1439 
1440 	init_inode(inode, &path_to_sd);
1441 
1442 	/* It is possible that knfsd is trying to access inode of a file
1443 	   that is being removed from the disk by some other thread. As we
1444 	   update sd on unlink all that is required is to check for nlink
1445 	   here. This bug was first found by Sizif when debugging
1446 	   SquidNG/Butterfly, forgotten, and found again after Philippe
1447 	   Gramoulle <philippe.gramoulle@mmania.com> reproduced it.
1448 
1449 	   More logical fix would require changes in fs/inode.c:iput() to
1450 	   remove inode from hash-table _after_ fs cleaned disk stuff up and
1451 	   in iget() to return NULL if I_FREEING inode is found in
1452 	   hash-table. */
1453 	/* Currently there is one place where it's ok to meet inode with
1454 	   nlink==0: processing of open-unlinked and half-truncated files
1455 	   during mount (fs/reiserfs/super.c:finish_unfinished()). */
1456 	if ((inode->i_nlink == 0) &&
1457 	    !REISERFS_SB(inode->i_sb)->s_is_unlinked_ok) {
1458 		reiserfs_warning(inode->i_sb,
1459 				 "vs-13075: reiserfs_read_locked_inode: "
1460 				 "dead inode read from disk %K. "
1461 				 "This is likely to be race with knfsd. Ignore",
1462 				 &key);
1463 		reiserfs_make_bad_inode(inode);
1464 	}
1465 
1466 	reiserfs_check_path(&path_to_sd);	/* init inode should be relsing */
1467 
1468 }
1469 
1470 /**
1471  * reiserfs_find_actor() - "find actor" reiserfs supplies to iget5_locked().
1472  *
1473  * @inode:    inode from hash table to check
1474  * @opaque:   "cookie" passed to iget5_locked(). This is &reiserfs_iget_args.
1475  *
1476  * This function is called by iget5_locked() to distinguish reiserfs inodes
1477  * having the same inode numbers. Such inodes can only exist due to some
1478  * error condition. One of them should be bad. Inodes with identical
1479  * inode numbers (objectids) are distinguished by parent directory ids.
1480  *
1481  */
1482 int reiserfs_find_actor(struct inode *inode, void *opaque)
1483 {
1484 	struct reiserfs_iget_args *args;
1485 
1486 	args = opaque;
1487 	/* args is already in CPU order */
1488 	return (inode->i_ino == args->objectid) &&
1489 	    (le32_to_cpu(INODE_PKEY(inode)->k_dir_id) == args->dirid);
1490 }
1491 
1492 struct inode *reiserfs_iget(struct super_block *s, const struct cpu_key *key)
1493 {
1494 	struct inode *inode;
1495 	struct reiserfs_iget_args args;
1496 
1497 	args.objectid = key->on_disk_key.k_objectid;
1498 	args.dirid = key->on_disk_key.k_dir_id;
1499 	inode = iget5_locked(s, key->on_disk_key.k_objectid,
1500 			     reiserfs_find_actor, reiserfs_init_locked_inode,
1501 			     (void *)(&args));
1502 	if (!inode)
1503 		return ERR_PTR(-ENOMEM);
1504 
1505 	if (inode->i_state & I_NEW) {
1506 		reiserfs_read_locked_inode(inode, &args);
1507 		unlock_new_inode(inode);
1508 	}
1509 
1510 	if (comp_short_keys(INODE_PKEY(inode), key) || is_bad_inode(inode)) {
1511 		/* either due to i/o error or a stale NFS handle */
1512 		iput(inode);
1513 		inode = NULL;
1514 	}
1515 	return inode;
1516 }
1517 
1518 struct dentry *reiserfs_get_dentry(struct super_block *sb, void *vobjp)
1519 {
1520 	__u32 *data = vobjp;
1521 	struct cpu_key key;
1522 	struct dentry *result;
1523 	struct inode *inode;
1524 
1525 	key.on_disk_key.k_objectid = data[0];
1526 	key.on_disk_key.k_dir_id = data[1];
1527 	reiserfs_write_lock(sb);
1528 	inode = reiserfs_iget(sb, &key);
1529 	if (inode && !IS_ERR(inode) && data[2] != 0 &&
1530 	    data[2] != inode->i_generation) {
1531 		iput(inode);
1532 		inode = NULL;
1533 	}
1534 	reiserfs_write_unlock(sb);
1535 	if (!inode)
1536 		inode = ERR_PTR(-ESTALE);
1537 	if (IS_ERR(inode))
1538 		return ERR_PTR(PTR_ERR(inode));
1539 	result = d_alloc_anon(inode);
1540 	if (!result) {
1541 		iput(inode);
1542 		return ERR_PTR(-ENOMEM);
1543 	}
1544 	return result;
1545 }
1546 
1547 struct dentry *reiserfs_decode_fh(struct super_block *sb, __u32 * data,
1548 				  int len, int fhtype,
1549 				  int (*acceptable) (void *contect,
1550 						     struct dentry * de),
1551 				  void *context)
1552 {
1553 	__u32 obj[3], parent[3];
1554 
1555 	/* fhtype happens to reflect the number of u32s encoded.
1556 	 * due to a bug in earlier code, fhtype might indicate there
1557 	 * are more u32s then actually fitted.
1558 	 * so if fhtype seems to be more than len, reduce fhtype.
1559 	 * Valid types are:
1560 	 *   2 - objectid + dir_id - legacy support
1561 	 *   3 - objectid + dir_id + generation
1562 	 *   4 - objectid + dir_id + objectid and dirid of parent - legacy
1563 	 *   5 - objectid + dir_id + generation + objectid and dirid of parent
1564 	 *   6 - as above plus generation of directory
1565 	 * 6 does not fit in NFSv2 handles
1566 	 */
1567 	if (fhtype > len) {
1568 		if (fhtype != 6 || len != 5)
1569 			reiserfs_warning(sb,
1570 					 "nfsd/reiserfs, fhtype=%d, len=%d - odd",
1571 					 fhtype, len);
1572 		fhtype = 5;
1573 	}
1574 
1575 	obj[0] = data[0];
1576 	obj[1] = data[1];
1577 	if (fhtype == 3 || fhtype >= 5)
1578 		obj[2] = data[2];
1579 	else
1580 		obj[2] = 0;	/* generation number */
1581 
1582 	if (fhtype >= 4) {
1583 		parent[0] = data[fhtype >= 5 ? 3 : 2];
1584 		parent[1] = data[fhtype >= 5 ? 4 : 3];
1585 		if (fhtype == 6)
1586 			parent[2] = data[5];
1587 		else
1588 			parent[2] = 0;
1589 	}
1590 	return sb->s_export_op->find_exported_dentry(sb, obj,
1591 						     fhtype < 4 ? NULL : parent,
1592 						     acceptable, context);
1593 }
1594 
1595 int reiserfs_encode_fh(struct dentry *dentry, __u32 * data, int *lenp,
1596 		       int need_parent)
1597 {
1598 	struct inode *inode = dentry->d_inode;
1599 	int maxlen = *lenp;
1600 
1601 	if (maxlen < 3)
1602 		return 255;
1603 
1604 	data[0] = inode->i_ino;
1605 	data[1] = le32_to_cpu(INODE_PKEY(inode)->k_dir_id);
1606 	data[2] = inode->i_generation;
1607 	*lenp = 3;
1608 	/* no room for directory info? return what we've stored so far */
1609 	if (maxlen < 5 || !need_parent)
1610 		return 3;
1611 
1612 	spin_lock(&dentry->d_lock);
1613 	inode = dentry->d_parent->d_inode;
1614 	data[3] = inode->i_ino;
1615 	data[4] = le32_to_cpu(INODE_PKEY(inode)->k_dir_id);
1616 	*lenp = 5;
1617 	if (maxlen >= 6) {
1618 		data[5] = inode->i_generation;
1619 		*lenp = 6;
1620 	}
1621 	spin_unlock(&dentry->d_lock);
1622 	return *lenp;
1623 }
1624 
1625 /* looks for stat data, then copies fields to it, marks the buffer
1626    containing stat data as dirty */
1627 /* reiserfs inodes are never really dirty, since the dirty inode call
1628 ** always logs them.  This call allows the VFS inode marking routines
1629 ** to properly mark inodes for datasync and such, but only actually
1630 ** does something when called for a synchronous update.
1631 */
1632 int reiserfs_write_inode(struct inode *inode, int do_sync)
1633 {
1634 	struct reiserfs_transaction_handle th;
1635 	int jbegin_count = 1;
1636 
1637 	if (inode->i_sb->s_flags & MS_RDONLY)
1638 		return -EROFS;
1639 	/* memory pressure can sometimes initiate write_inode calls with sync == 1,
1640 	 ** these cases are just when the system needs ram, not when the
1641 	 ** inode needs to reach disk for safety, and they can safely be
1642 	 ** ignored because the altered inode has already been logged.
1643 	 */
1644 	if (do_sync && !(current->flags & PF_MEMALLOC)) {
1645 		reiserfs_write_lock(inode->i_sb);
1646 		if (!journal_begin(&th, inode->i_sb, jbegin_count)) {
1647 			reiserfs_update_sd(&th, inode);
1648 			journal_end_sync(&th, inode->i_sb, jbegin_count);
1649 		}
1650 		reiserfs_write_unlock(inode->i_sb);
1651 	}
1652 	return 0;
1653 }
1654 
1655 /* stat data of new object is inserted already, this inserts the item
1656    containing "." and ".." entries */
1657 static int reiserfs_new_directory(struct reiserfs_transaction_handle *th,
1658 				  struct inode *inode,
1659 				  struct item_head *ih, struct treepath *path,
1660 				  struct inode *dir)
1661 {
1662 	struct super_block *sb = th->t_super;
1663 	char empty_dir[EMPTY_DIR_SIZE];
1664 	char *body = empty_dir;
1665 	struct cpu_key key;
1666 	int retval;
1667 
1668 	BUG_ON(!th->t_trans_id);
1669 
1670 	_make_cpu_key(&key, KEY_FORMAT_3_5, le32_to_cpu(ih->ih_key.k_dir_id),
1671 		      le32_to_cpu(ih->ih_key.k_objectid), DOT_OFFSET,
1672 		      TYPE_DIRENTRY, 3 /*key length */ );
1673 
1674 	/* compose item head for new item. Directories consist of items of
1675 	   old type (ITEM_VERSION_1). Do not set key (second arg is 0), it
1676 	   is done by reiserfs_new_inode */
1677 	if (old_format_only(sb)) {
1678 		make_le_item_head(ih, NULL, KEY_FORMAT_3_5, DOT_OFFSET,
1679 				  TYPE_DIRENTRY, EMPTY_DIR_SIZE_V1, 2);
1680 
1681 		make_empty_dir_item_v1(body, ih->ih_key.k_dir_id,
1682 				       ih->ih_key.k_objectid,
1683 				       INODE_PKEY(dir)->k_dir_id,
1684 				       INODE_PKEY(dir)->k_objectid);
1685 	} else {
1686 		make_le_item_head(ih, NULL, KEY_FORMAT_3_5, DOT_OFFSET,
1687 				  TYPE_DIRENTRY, EMPTY_DIR_SIZE, 2);
1688 
1689 		make_empty_dir_item(body, ih->ih_key.k_dir_id,
1690 				    ih->ih_key.k_objectid,
1691 				    INODE_PKEY(dir)->k_dir_id,
1692 				    INODE_PKEY(dir)->k_objectid);
1693 	}
1694 
1695 	/* look for place in the tree for new item */
1696 	retval = search_item(sb, &key, path);
1697 	if (retval == IO_ERROR) {
1698 		reiserfs_warning(sb, "vs-13080: reiserfs_new_directory: "
1699 				 "i/o failure occurred creating new directory");
1700 		return -EIO;
1701 	}
1702 	if (retval == ITEM_FOUND) {
1703 		pathrelse(path);
1704 		reiserfs_warning(sb, "vs-13070: reiserfs_new_directory: "
1705 				 "object with this key exists (%k)",
1706 				 &(ih->ih_key));
1707 		return -EEXIST;
1708 	}
1709 
1710 	/* insert item, that is empty directory item */
1711 	return reiserfs_insert_item(th, path, &key, ih, inode, body);
1712 }
1713 
1714 /* stat data of object has been inserted, this inserts the item
1715    containing the body of symlink */
1716 static int reiserfs_new_symlink(struct reiserfs_transaction_handle *th, struct inode *inode,	/* Inode of symlink */
1717 				struct item_head *ih,
1718 				struct treepath *path, const char *symname,
1719 				int item_len)
1720 {
1721 	struct super_block *sb = th->t_super;
1722 	struct cpu_key key;
1723 	int retval;
1724 
1725 	BUG_ON(!th->t_trans_id);
1726 
1727 	_make_cpu_key(&key, KEY_FORMAT_3_5,
1728 		      le32_to_cpu(ih->ih_key.k_dir_id),
1729 		      le32_to_cpu(ih->ih_key.k_objectid),
1730 		      1, TYPE_DIRECT, 3 /*key length */ );
1731 
1732 	make_le_item_head(ih, NULL, KEY_FORMAT_3_5, 1, TYPE_DIRECT, item_len,
1733 			  0 /*free_space */ );
1734 
1735 	/* look for place in the tree for new item */
1736 	retval = search_item(sb, &key, path);
1737 	if (retval == IO_ERROR) {
1738 		reiserfs_warning(sb, "vs-13080: reiserfs_new_symlinik: "
1739 				 "i/o failure occurred creating new symlink");
1740 		return -EIO;
1741 	}
1742 	if (retval == ITEM_FOUND) {
1743 		pathrelse(path);
1744 		reiserfs_warning(sb, "vs-13080: reiserfs_new_symlink: "
1745 				 "object with this key exists (%k)",
1746 				 &(ih->ih_key));
1747 		return -EEXIST;
1748 	}
1749 
1750 	/* insert item, that is body of symlink */
1751 	return reiserfs_insert_item(th, path, &key, ih, inode, symname);
1752 }
1753 
1754 /* inserts the stat data into the tree, and then calls
1755    reiserfs_new_directory (to insert ".", ".." item if new object is
1756    directory) or reiserfs_new_symlink (to insert symlink body if new
1757    object is symlink) or nothing (if new object is regular file)
1758 
1759    NOTE! uid and gid must already be set in the inode.  If we return
1760    non-zero due to an error, we have to drop the quota previously allocated
1761    for the fresh inode.  This can only be done outside a transaction, so
1762    if we return non-zero, we also end the transaction.  */
1763 int reiserfs_new_inode(struct reiserfs_transaction_handle *th,
1764 		       struct inode *dir, int mode, const char *symname,
1765 		       /* 0 for regular, EMTRY_DIR_SIZE for dirs,
1766 		          strlen (symname) for symlinks) */
1767 		       loff_t i_size, struct dentry *dentry,
1768 		       struct inode *inode)
1769 {
1770 	struct super_block *sb;
1771 	INITIALIZE_PATH(path_to_key);
1772 	struct cpu_key key;
1773 	struct item_head ih;
1774 	struct stat_data sd;
1775 	int retval;
1776 	int err;
1777 
1778 	BUG_ON(!th->t_trans_id);
1779 
1780 	if (DQUOT_ALLOC_INODE(inode)) {
1781 		err = -EDQUOT;
1782 		goto out_end_trans;
1783 	}
1784 	if (!dir->i_nlink) {
1785 		err = -EPERM;
1786 		goto out_bad_inode;
1787 	}
1788 
1789 	sb = dir->i_sb;
1790 
1791 	/* item head of new item */
1792 	ih.ih_key.k_dir_id = reiserfs_choose_packing(dir);
1793 	ih.ih_key.k_objectid = cpu_to_le32(reiserfs_get_unused_objectid(th));
1794 	if (!ih.ih_key.k_objectid) {
1795 		err = -ENOMEM;
1796 		goto out_bad_inode;
1797 	}
1798 	if (old_format_only(sb))
1799 		/* not a perfect generation count, as object ids can be reused, but
1800 		 ** this is as good as reiserfs can do right now.
1801 		 ** note that the private part of inode isn't filled in yet, we have
1802 		 ** to use the directory.
1803 		 */
1804 		inode->i_generation = le32_to_cpu(INODE_PKEY(dir)->k_objectid);
1805 	else
1806 #if defined( USE_INODE_GENERATION_COUNTER )
1807 		inode->i_generation =
1808 		    le32_to_cpu(REISERFS_SB(sb)->s_rs->s_inode_generation);
1809 #else
1810 		inode->i_generation = ++event;
1811 #endif
1812 
1813 	/* fill stat data */
1814 	inode->i_nlink = (S_ISDIR(mode) ? 2 : 1);
1815 
1816 	/* uid and gid must already be set by the caller for quota init */
1817 
1818 	/* symlink cannot be immutable or append only, right? */
1819 	if (S_ISLNK(inode->i_mode))
1820 		inode->i_flags &= ~(S_IMMUTABLE | S_APPEND);
1821 
1822 	inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME_SEC;
1823 	inode->i_size = i_size;
1824 	inode->i_blocks = 0;
1825 	inode->i_bytes = 0;
1826 	REISERFS_I(inode)->i_first_direct_byte = S_ISLNK(mode) ? 1 :
1827 	    U32_MAX /*NO_BYTES_IN_DIRECT_ITEM */ ;
1828 
1829 	INIT_LIST_HEAD(&(REISERFS_I(inode)->i_prealloc_list));
1830 	REISERFS_I(inode)->i_flags = 0;
1831 	REISERFS_I(inode)->i_prealloc_block = 0;
1832 	REISERFS_I(inode)->i_prealloc_count = 0;
1833 	REISERFS_I(inode)->i_trans_id = 0;
1834 	REISERFS_I(inode)->i_jl = NULL;
1835 	REISERFS_I(inode)->i_attrs =
1836 	    REISERFS_I(dir)->i_attrs & REISERFS_INHERIT_MASK;
1837 	sd_attrs_to_i_attrs(REISERFS_I(inode)->i_attrs, inode);
1838 	mutex_init(&(REISERFS_I(inode)->i_mmap));
1839 	reiserfs_init_acl_access(inode);
1840 	reiserfs_init_acl_default(inode);
1841 	reiserfs_init_xattr_rwsem(inode);
1842 
1843 	if (old_format_only(sb))
1844 		make_le_item_head(&ih, NULL, KEY_FORMAT_3_5, SD_OFFSET,
1845 				  TYPE_STAT_DATA, SD_V1_SIZE, MAX_US_INT);
1846 	else
1847 		make_le_item_head(&ih, NULL, KEY_FORMAT_3_6, SD_OFFSET,
1848 				  TYPE_STAT_DATA, SD_SIZE, MAX_US_INT);
1849 
1850 	/* key to search for correct place for new stat data */
1851 	_make_cpu_key(&key, KEY_FORMAT_3_6, le32_to_cpu(ih.ih_key.k_dir_id),
1852 		      le32_to_cpu(ih.ih_key.k_objectid), SD_OFFSET,
1853 		      TYPE_STAT_DATA, 3 /*key length */ );
1854 
1855 	/* find proper place for inserting of stat data */
1856 	retval = search_item(sb, &key, &path_to_key);
1857 	if (retval == IO_ERROR) {
1858 		err = -EIO;
1859 		goto out_bad_inode;
1860 	}
1861 	if (retval == ITEM_FOUND) {
1862 		pathrelse(&path_to_key);
1863 		err = -EEXIST;
1864 		goto out_bad_inode;
1865 	}
1866 	if (old_format_only(sb)) {
1867 		if (inode->i_uid & ~0xffff || inode->i_gid & ~0xffff) {
1868 			pathrelse(&path_to_key);
1869 			/* i_uid or i_gid is too big to be stored in stat data v3.5 */
1870 			err = -EINVAL;
1871 			goto out_bad_inode;
1872 		}
1873 		inode2sd_v1(&sd, inode, inode->i_size);
1874 	} else {
1875 		inode2sd(&sd, inode, inode->i_size);
1876 	}
1877 	// these do not go to on-disk stat data
1878 	inode->i_ino = le32_to_cpu(ih.ih_key.k_objectid);
1879 
1880 	// store in in-core inode the key of stat data and version all
1881 	// object items will have (directory items will have old offset
1882 	// format, other new objects will consist of new items)
1883 	memcpy(INODE_PKEY(inode), &(ih.ih_key), KEY_SIZE);
1884 	if (old_format_only(sb) || S_ISDIR(mode) || S_ISLNK(mode))
1885 		set_inode_item_key_version(inode, KEY_FORMAT_3_5);
1886 	else
1887 		set_inode_item_key_version(inode, KEY_FORMAT_3_6);
1888 	if (old_format_only(sb))
1889 		set_inode_sd_version(inode, STAT_DATA_V1);
1890 	else
1891 		set_inode_sd_version(inode, STAT_DATA_V2);
1892 
1893 	/* insert the stat data into the tree */
1894 #ifdef DISPLACE_NEW_PACKING_LOCALITIES
1895 	if (REISERFS_I(dir)->new_packing_locality)
1896 		th->displace_new_blocks = 1;
1897 #endif
1898 	retval =
1899 	    reiserfs_insert_item(th, &path_to_key, &key, &ih, inode,
1900 				 (char *)(&sd));
1901 	if (retval) {
1902 		err = retval;
1903 		reiserfs_check_path(&path_to_key);
1904 		goto out_bad_inode;
1905 	}
1906 #ifdef DISPLACE_NEW_PACKING_LOCALITIES
1907 	if (!th->displace_new_blocks)
1908 		REISERFS_I(dir)->new_packing_locality = 0;
1909 #endif
1910 	if (S_ISDIR(mode)) {
1911 		/* insert item with "." and ".." */
1912 		retval =
1913 		    reiserfs_new_directory(th, inode, &ih, &path_to_key, dir);
1914 	}
1915 
1916 	if (S_ISLNK(mode)) {
1917 		/* insert body of symlink */
1918 		if (!old_format_only(sb))
1919 			i_size = ROUND_UP(i_size);
1920 		retval =
1921 		    reiserfs_new_symlink(th, inode, &ih, &path_to_key, symname,
1922 					 i_size);
1923 	}
1924 	if (retval) {
1925 		err = retval;
1926 		reiserfs_check_path(&path_to_key);
1927 		journal_end(th, th->t_super, th->t_blocks_allocated);
1928 		goto out_inserted_sd;
1929 	}
1930 
1931 	/* XXX CHECK THIS */
1932 	if (reiserfs_posixacl(inode->i_sb)) {
1933 		retval = reiserfs_inherit_default_acl(dir, dentry, inode);
1934 		if (retval) {
1935 			err = retval;
1936 			reiserfs_check_path(&path_to_key);
1937 			journal_end(th, th->t_super, th->t_blocks_allocated);
1938 			goto out_inserted_sd;
1939 		}
1940 	} else if (inode->i_sb->s_flags & MS_POSIXACL) {
1941 		reiserfs_warning(inode->i_sb, "ACLs aren't enabled in the fs, "
1942 				 "but vfs thinks they are!");
1943 	} else if (is_reiserfs_priv_object(dir)) {
1944 		reiserfs_mark_inode_private(inode);
1945 	}
1946 
1947 	insert_inode_hash(inode);
1948 	reiserfs_update_sd(th, inode);
1949 	reiserfs_check_path(&path_to_key);
1950 
1951 	return 0;
1952 
1953 /* it looks like you can easily compress these two goto targets into
1954  * one.  Keeping it like this doesn't actually hurt anything, and they
1955  * are place holders for what the quota code actually needs.
1956  */
1957       out_bad_inode:
1958 	/* Invalidate the object, nothing was inserted yet */
1959 	INODE_PKEY(inode)->k_objectid = 0;
1960 
1961 	/* Quota change must be inside a transaction for journaling */
1962 	DQUOT_FREE_INODE(inode);
1963 
1964       out_end_trans:
1965 	journal_end(th, th->t_super, th->t_blocks_allocated);
1966 	/* Drop can be outside and it needs more credits so it's better to have it outside */
1967 	DQUOT_DROP(inode);
1968 	inode->i_flags |= S_NOQUOTA;
1969 	make_bad_inode(inode);
1970 
1971       out_inserted_sd:
1972 	inode->i_nlink = 0;
1973 	th->t_trans_id = 0;	/* so the caller can't use this handle later */
1974 
1975 	/* If we were inheriting an ACL, we need to release the lock so that
1976 	 * iput doesn't deadlock in reiserfs_delete_xattrs. The locking
1977 	 * code really needs to be reworked, but this will take care of it
1978 	 * for now. -jeffm */
1979 #ifdef CONFIG_REISERFS_FS_POSIX_ACL
1980 	if (REISERFS_I(dir)->i_acl_default && !IS_ERR(REISERFS_I(dir)->i_acl_default)) {
1981 		reiserfs_write_unlock_xattrs(dir->i_sb);
1982 		iput(inode);
1983 		reiserfs_write_lock_xattrs(dir->i_sb);
1984 	} else
1985 #endif
1986 		iput(inode);
1987 	return err;
1988 }
1989 
1990 /*
1991 ** finds the tail page in the page cache,
1992 ** reads the last block in.
1993 **
1994 ** On success, page_result is set to a locked, pinned page, and bh_result
1995 ** is set to an up to date buffer for the last block in the file.  returns 0.
1996 **
1997 ** tail conversion is not done, so bh_result might not be valid for writing
1998 ** check buffer_mapped(bh_result) and bh_result->b_blocknr != 0 before
1999 ** trying to write the block.
2000 **
2001 ** on failure, nonzero is returned, page_result and bh_result are untouched.
2002 */
2003 static int grab_tail_page(struct inode *p_s_inode,
2004 			  struct page **page_result,
2005 			  struct buffer_head **bh_result)
2006 {
2007 
2008 	/* we want the page with the last byte in the file,
2009 	 ** not the page that will hold the next byte for appending
2010 	 */
2011 	unsigned long index = (p_s_inode->i_size - 1) >> PAGE_CACHE_SHIFT;
2012 	unsigned long pos = 0;
2013 	unsigned long start = 0;
2014 	unsigned long blocksize = p_s_inode->i_sb->s_blocksize;
2015 	unsigned long offset = (p_s_inode->i_size) & (PAGE_CACHE_SIZE - 1);
2016 	struct buffer_head *bh;
2017 	struct buffer_head *head;
2018 	struct page *page;
2019 	int error;
2020 
2021 	/* we know that we are only called with inode->i_size > 0.
2022 	 ** we also know that a file tail can never be as big as a block
2023 	 ** If i_size % blocksize == 0, our file is currently block aligned
2024 	 ** and it won't need converting or zeroing after a truncate.
2025 	 */
2026 	if ((offset & (blocksize - 1)) == 0) {
2027 		return -ENOENT;
2028 	}
2029 	page = grab_cache_page(p_s_inode->i_mapping, index);
2030 	error = -ENOMEM;
2031 	if (!page) {
2032 		goto out;
2033 	}
2034 	/* start within the page of the last block in the file */
2035 	start = (offset / blocksize) * blocksize;
2036 
2037 	error = block_prepare_write(page, start, offset,
2038 				    reiserfs_get_block_create_0);
2039 	if (error)
2040 		goto unlock;
2041 
2042 	head = page_buffers(page);
2043 	bh = head;
2044 	do {
2045 		if (pos >= start) {
2046 			break;
2047 		}
2048 		bh = bh->b_this_page;
2049 		pos += blocksize;
2050 	} while (bh != head);
2051 
2052 	if (!buffer_uptodate(bh)) {
2053 		/* note, this should never happen, prepare_write should
2054 		 ** be taking care of this for us.  If the buffer isn't up to date,
2055 		 ** I've screwed up the code to find the buffer, or the code to
2056 		 ** call prepare_write
2057 		 */
2058 		reiserfs_warning(p_s_inode->i_sb,
2059 				 "clm-6000: error reading block %lu on dev %s",
2060 				 bh->b_blocknr,
2061 				 reiserfs_bdevname(p_s_inode->i_sb));
2062 		error = -EIO;
2063 		goto unlock;
2064 	}
2065 	*bh_result = bh;
2066 	*page_result = page;
2067 
2068       out:
2069 	return error;
2070 
2071       unlock:
2072 	unlock_page(page);
2073 	page_cache_release(page);
2074 	return error;
2075 }
2076 
2077 /*
2078 ** vfs version of truncate file.  Must NOT be called with
2079 ** a transaction already started.
2080 **
2081 ** some code taken from block_truncate_page
2082 */
2083 int reiserfs_truncate_file(struct inode *p_s_inode, int update_timestamps)
2084 {
2085 	struct reiserfs_transaction_handle th;
2086 	/* we want the offset for the first byte after the end of the file */
2087 	unsigned long offset = p_s_inode->i_size & (PAGE_CACHE_SIZE - 1);
2088 	unsigned blocksize = p_s_inode->i_sb->s_blocksize;
2089 	unsigned length;
2090 	struct page *page = NULL;
2091 	int error;
2092 	struct buffer_head *bh = NULL;
2093 	int err2;
2094 
2095 	reiserfs_write_lock(p_s_inode->i_sb);
2096 
2097 	if (p_s_inode->i_size > 0) {
2098 		if ((error = grab_tail_page(p_s_inode, &page, &bh))) {
2099 			// -ENOENT means we truncated past the end of the file,
2100 			// and get_block_create_0 could not find a block to read in,
2101 			// which is ok.
2102 			if (error != -ENOENT)
2103 				reiserfs_warning(p_s_inode->i_sb,
2104 						 "clm-6001: grab_tail_page failed %d",
2105 						 error);
2106 			page = NULL;
2107 			bh = NULL;
2108 		}
2109 	}
2110 
2111 	/* so, if page != NULL, we have a buffer head for the offset at
2112 	 ** the end of the file. if the bh is mapped, and bh->b_blocknr != 0,
2113 	 ** then we have an unformatted node.  Otherwise, we have a direct item,
2114 	 ** and no zeroing is required on disk.  We zero after the truncate,
2115 	 ** because the truncate might pack the item anyway
2116 	 ** (it will unmap bh if it packs).
2117 	 */
2118 	/* it is enough to reserve space in transaction for 2 balancings:
2119 	   one for "save" link adding and another for the first
2120 	   cut_from_item. 1 is for update_sd */
2121 	error = journal_begin(&th, p_s_inode->i_sb,
2122 			      JOURNAL_PER_BALANCE_CNT * 2 + 1);
2123 	if (error)
2124 		goto out;
2125 	reiserfs_update_inode_transaction(p_s_inode);
2126 	if (update_timestamps)
2127 		/* we are doing real truncate: if the system crashes before the last
2128 		   transaction of truncating gets committed - on reboot the file
2129 		   either appears truncated properly or not truncated at all */
2130 		add_save_link(&th, p_s_inode, 1);
2131 	err2 = reiserfs_do_truncate(&th, p_s_inode, page, update_timestamps);
2132 	error =
2133 	    journal_end(&th, p_s_inode->i_sb, JOURNAL_PER_BALANCE_CNT * 2 + 1);
2134 	if (error)
2135 		goto out;
2136 
2137 	/* check reiserfs_do_truncate after ending the transaction */
2138 	if (err2) {
2139 		error = err2;
2140   		goto out;
2141 	}
2142 
2143 	if (update_timestamps) {
2144 		error = remove_save_link(p_s_inode, 1 /* truncate */ );
2145 		if (error)
2146 			goto out;
2147 	}
2148 
2149 	if (page) {
2150 		length = offset & (blocksize - 1);
2151 		/* if we are not on a block boundary */
2152 		if (length) {
2153 			length = blocksize - length;
2154 			zero_user_page(page, offset, length, KM_USER0);
2155 			if (buffer_mapped(bh) && bh->b_blocknr != 0) {
2156 				mark_buffer_dirty(bh);
2157 			}
2158 		}
2159 		unlock_page(page);
2160 		page_cache_release(page);
2161 	}
2162 
2163 	reiserfs_write_unlock(p_s_inode->i_sb);
2164 	return 0;
2165       out:
2166 	if (page) {
2167 		unlock_page(page);
2168 		page_cache_release(page);
2169 	}
2170 	reiserfs_write_unlock(p_s_inode->i_sb);
2171 	return error;
2172 }
2173 
2174 static int map_block_for_writepage(struct inode *inode,
2175 				   struct buffer_head *bh_result,
2176 				   unsigned long block)
2177 {
2178 	struct reiserfs_transaction_handle th;
2179 	int fs_gen;
2180 	struct item_head tmp_ih;
2181 	struct item_head *ih;
2182 	struct buffer_head *bh;
2183 	__le32 *item;
2184 	struct cpu_key key;
2185 	INITIALIZE_PATH(path);
2186 	int pos_in_item;
2187 	int jbegin_count = JOURNAL_PER_BALANCE_CNT;
2188 	loff_t byte_offset = ((loff_t)block << inode->i_sb->s_blocksize_bits)+1;
2189 	int retval;
2190 	int use_get_block = 0;
2191 	int bytes_copied = 0;
2192 	int copy_size;
2193 	int trans_running = 0;
2194 
2195 	/* catch places below that try to log something without starting a trans */
2196 	th.t_trans_id = 0;
2197 
2198 	if (!buffer_uptodate(bh_result)) {
2199 		return -EIO;
2200 	}
2201 
2202 	kmap(bh_result->b_page);
2203       start_over:
2204 	reiserfs_write_lock(inode->i_sb);
2205 	make_cpu_key(&key, inode, byte_offset, TYPE_ANY, 3);
2206 
2207       research:
2208 	retval = search_for_position_by_key(inode->i_sb, &key, &path);
2209 	if (retval != POSITION_FOUND) {
2210 		use_get_block = 1;
2211 		goto out;
2212 	}
2213 
2214 	bh = get_last_bh(&path);
2215 	ih = get_ih(&path);
2216 	item = get_item(&path);
2217 	pos_in_item = path.pos_in_item;
2218 
2219 	/* we've found an unformatted node */
2220 	if (indirect_item_found(retval, ih)) {
2221 		if (bytes_copied > 0) {
2222 			reiserfs_warning(inode->i_sb,
2223 					 "clm-6002: bytes_copied %d",
2224 					 bytes_copied);
2225 		}
2226 		if (!get_block_num(item, pos_in_item)) {
2227 			/* crap, we are writing to a hole */
2228 			use_get_block = 1;
2229 			goto out;
2230 		}
2231 		set_block_dev_mapped(bh_result,
2232 				     get_block_num(item, pos_in_item), inode);
2233 	} else if (is_direct_le_ih(ih)) {
2234 		char *p;
2235 		p = page_address(bh_result->b_page);
2236 		p += (byte_offset - 1) & (PAGE_CACHE_SIZE - 1);
2237 		copy_size = ih_item_len(ih) - pos_in_item;
2238 
2239 		fs_gen = get_generation(inode->i_sb);
2240 		copy_item_head(&tmp_ih, ih);
2241 
2242 		if (!trans_running) {
2243 			/* vs-3050 is gone, no need to drop the path */
2244 			retval = journal_begin(&th, inode->i_sb, jbegin_count);
2245 			if (retval)
2246 				goto out;
2247 			reiserfs_update_inode_transaction(inode);
2248 			trans_running = 1;
2249 			if (fs_changed(fs_gen, inode->i_sb)
2250 			    && item_moved(&tmp_ih, &path)) {
2251 				reiserfs_restore_prepared_buffer(inode->i_sb,
2252 								 bh);
2253 				goto research;
2254 			}
2255 		}
2256 
2257 		reiserfs_prepare_for_journal(inode->i_sb, bh, 1);
2258 
2259 		if (fs_changed(fs_gen, inode->i_sb)
2260 		    && item_moved(&tmp_ih, &path)) {
2261 			reiserfs_restore_prepared_buffer(inode->i_sb, bh);
2262 			goto research;
2263 		}
2264 
2265 		memcpy(B_I_PITEM(bh, ih) + pos_in_item, p + bytes_copied,
2266 		       copy_size);
2267 
2268 		journal_mark_dirty(&th, inode->i_sb, bh);
2269 		bytes_copied += copy_size;
2270 		set_block_dev_mapped(bh_result, 0, inode);
2271 
2272 		/* are there still bytes left? */
2273 		if (bytes_copied < bh_result->b_size &&
2274 		    (byte_offset + bytes_copied) < inode->i_size) {
2275 			set_cpu_key_k_offset(&key,
2276 					     cpu_key_k_offset(&key) +
2277 					     copy_size);
2278 			goto research;
2279 		}
2280 	} else {
2281 		reiserfs_warning(inode->i_sb,
2282 				 "clm-6003: bad item inode %lu, device %s",
2283 				 inode->i_ino, reiserfs_bdevname(inode->i_sb));
2284 		retval = -EIO;
2285 		goto out;
2286 	}
2287 	retval = 0;
2288 
2289       out:
2290 	pathrelse(&path);
2291 	if (trans_running) {
2292 		int err = journal_end(&th, inode->i_sb, jbegin_count);
2293 		if (err)
2294 			retval = err;
2295 		trans_running = 0;
2296 	}
2297 	reiserfs_write_unlock(inode->i_sb);
2298 
2299 	/* this is where we fill in holes in the file. */
2300 	if (use_get_block) {
2301 		retval = reiserfs_get_block(inode, block, bh_result,
2302 					    GET_BLOCK_CREATE | GET_BLOCK_NO_IMUX
2303 					    | GET_BLOCK_NO_DANGLE);
2304 		if (!retval) {
2305 			if (!buffer_mapped(bh_result)
2306 			    || bh_result->b_blocknr == 0) {
2307 				/* get_block failed to find a mapped unformatted node. */
2308 				use_get_block = 0;
2309 				goto start_over;
2310 			}
2311 		}
2312 	}
2313 	kunmap(bh_result->b_page);
2314 
2315 	if (!retval && buffer_mapped(bh_result) && bh_result->b_blocknr == 0) {
2316 		/* we've copied data from the page into the direct item, so the
2317 		 * buffer in the page is now clean, mark it to reflect that.
2318 		 */
2319 		lock_buffer(bh_result);
2320 		clear_buffer_dirty(bh_result);
2321 		unlock_buffer(bh_result);
2322 	}
2323 	return retval;
2324 }
2325 
2326 /*
2327  * mason@suse.com: updated in 2.5.54 to follow the same general io
2328  * start/recovery path as __block_write_full_page, along with special
2329  * code to handle reiserfs tails.
2330  */
2331 static int reiserfs_write_full_page(struct page *page,
2332 				    struct writeback_control *wbc)
2333 {
2334 	struct inode *inode = page->mapping->host;
2335 	unsigned long end_index = inode->i_size >> PAGE_CACHE_SHIFT;
2336 	int error = 0;
2337 	unsigned long block;
2338 	sector_t last_block;
2339 	struct buffer_head *head, *bh;
2340 	int partial = 0;
2341 	int nr = 0;
2342 	int checked = PageChecked(page);
2343 	struct reiserfs_transaction_handle th;
2344 	struct super_block *s = inode->i_sb;
2345 	int bh_per_page = PAGE_CACHE_SIZE / s->s_blocksize;
2346 	th.t_trans_id = 0;
2347 
2348 	/* no logging allowed when nonblocking or from PF_MEMALLOC */
2349 	if (checked && (current->flags & PF_MEMALLOC)) {
2350 		redirty_page_for_writepage(wbc, page);
2351 		unlock_page(page);
2352 		return 0;
2353 	}
2354 
2355 	/* The page dirty bit is cleared before writepage is called, which
2356 	 * means we have to tell create_empty_buffers to make dirty buffers
2357 	 * The page really should be up to date at this point, so tossing
2358 	 * in the BH_Uptodate is just a sanity check.
2359 	 */
2360 	if (!page_has_buffers(page)) {
2361 		create_empty_buffers(page, s->s_blocksize,
2362 				     (1 << BH_Dirty) | (1 << BH_Uptodate));
2363 	}
2364 	head = page_buffers(page);
2365 
2366 	/* last page in the file, zero out any contents past the
2367 	 ** last byte in the file
2368 	 */
2369 	if (page->index >= end_index) {
2370 		unsigned last_offset;
2371 
2372 		last_offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
2373 		/* no file contents in this page */
2374 		if (page->index >= end_index + 1 || !last_offset) {
2375 			unlock_page(page);
2376 			return 0;
2377 		}
2378 		zero_user_page(page, last_offset, PAGE_CACHE_SIZE - last_offset, KM_USER0);
2379 	}
2380 	bh = head;
2381 	block = page->index << (PAGE_CACHE_SHIFT - s->s_blocksize_bits);
2382 	last_block = (i_size_read(inode) - 1) >> inode->i_blkbits;
2383 	/* first map all the buffers, logging any direct items we find */
2384 	do {
2385 		if (block > last_block) {
2386 			/*
2387 			 * This can happen when the block size is less than
2388 			 * the page size.  The corresponding bytes in the page
2389 			 * were zero filled above
2390 			 */
2391 			clear_buffer_dirty(bh);
2392 			set_buffer_uptodate(bh);
2393 		} else if ((checked || buffer_dirty(bh)) &&
2394 		           (!buffer_mapped(bh) || (buffer_mapped(bh)
2395 						       && bh->b_blocknr ==
2396 						       0))) {
2397 			/* not mapped yet, or it points to a direct item, search
2398 			 * the btree for the mapping info, and log any direct
2399 			 * items found
2400 			 */
2401 			if ((error = map_block_for_writepage(inode, bh, block))) {
2402 				goto fail;
2403 			}
2404 		}
2405 		bh = bh->b_this_page;
2406 		block++;
2407 	} while (bh != head);
2408 
2409 	/*
2410 	 * we start the transaction after map_block_for_writepage,
2411 	 * because it can create holes in the file (an unbounded operation).
2412 	 * starting it here, we can make a reliable estimate for how many
2413 	 * blocks we're going to log
2414 	 */
2415 	if (checked) {
2416 		ClearPageChecked(page);
2417 		reiserfs_write_lock(s);
2418 		error = journal_begin(&th, s, bh_per_page + 1);
2419 		if (error) {
2420 			reiserfs_write_unlock(s);
2421 			goto fail;
2422 		}
2423 		reiserfs_update_inode_transaction(inode);
2424 	}
2425 	/* now go through and lock any dirty buffers on the page */
2426 	do {
2427 		get_bh(bh);
2428 		if (!buffer_mapped(bh))
2429 			continue;
2430 		if (buffer_mapped(bh) && bh->b_blocknr == 0)
2431 			continue;
2432 
2433 		if (checked) {
2434 			reiserfs_prepare_for_journal(s, bh, 1);
2435 			journal_mark_dirty(&th, s, bh);
2436 			continue;
2437 		}
2438 		/* from this point on, we know the buffer is mapped to a
2439 		 * real block and not a direct item
2440 		 */
2441 		if (wbc->sync_mode != WB_SYNC_NONE || !wbc->nonblocking) {
2442 			lock_buffer(bh);
2443 		} else {
2444 			if (test_set_buffer_locked(bh)) {
2445 				redirty_page_for_writepage(wbc, page);
2446 				continue;
2447 			}
2448 		}
2449 		if (test_clear_buffer_dirty(bh)) {
2450 			mark_buffer_async_write(bh);
2451 		} else {
2452 			unlock_buffer(bh);
2453 		}
2454 	} while ((bh = bh->b_this_page) != head);
2455 
2456 	if (checked) {
2457 		error = journal_end(&th, s, bh_per_page + 1);
2458 		reiserfs_write_unlock(s);
2459 		if (error)
2460 			goto fail;
2461 	}
2462 	BUG_ON(PageWriteback(page));
2463 	set_page_writeback(page);
2464 	unlock_page(page);
2465 
2466 	/*
2467 	 * since any buffer might be the only dirty buffer on the page,
2468 	 * the first submit_bh can bring the page out of writeback.
2469 	 * be careful with the buffers.
2470 	 */
2471 	do {
2472 		struct buffer_head *next = bh->b_this_page;
2473 		if (buffer_async_write(bh)) {
2474 			submit_bh(WRITE, bh);
2475 			nr++;
2476 		}
2477 		put_bh(bh);
2478 		bh = next;
2479 	} while (bh != head);
2480 
2481 	error = 0;
2482       done:
2483 	if (nr == 0) {
2484 		/*
2485 		 * if this page only had a direct item, it is very possible for
2486 		 * no io to be required without there being an error.  Or,
2487 		 * someone else could have locked them and sent them down the
2488 		 * pipe without locking the page
2489 		 */
2490 		bh = head;
2491 		do {
2492 			if (!buffer_uptodate(bh)) {
2493 				partial = 1;
2494 				break;
2495 			}
2496 			bh = bh->b_this_page;
2497 		} while (bh != head);
2498 		if (!partial)
2499 			SetPageUptodate(page);
2500 		end_page_writeback(page);
2501 	}
2502 	return error;
2503 
2504       fail:
2505 	/* catches various errors, we need to make sure any valid dirty blocks
2506 	 * get to the media.  The page is currently locked and not marked for
2507 	 * writeback
2508 	 */
2509 	ClearPageUptodate(page);
2510 	bh = head;
2511 	do {
2512 		get_bh(bh);
2513 		if (buffer_mapped(bh) && buffer_dirty(bh) && bh->b_blocknr) {
2514 			lock_buffer(bh);
2515 			mark_buffer_async_write(bh);
2516 		} else {
2517 			/*
2518 			 * clear any dirty bits that might have come from getting
2519 			 * attached to a dirty page
2520 			 */
2521 			clear_buffer_dirty(bh);
2522 		}
2523 		bh = bh->b_this_page;
2524 	} while (bh != head);
2525 	SetPageError(page);
2526 	BUG_ON(PageWriteback(page));
2527 	set_page_writeback(page);
2528 	unlock_page(page);
2529 	do {
2530 		struct buffer_head *next = bh->b_this_page;
2531 		if (buffer_async_write(bh)) {
2532 			clear_buffer_dirty(bh);
2533 			submit_bh(WRITE, bh);
2534 			nr++;
2535 		}
2536 		put_bh(bh);
2537 		bh = next;
2538 	} while (bh != head);
2539 	goto done;
2540 }
2541 
2542 static int reiserfs_readpage(struct file *f, struct page *page)
2543 {
2544 	return block_read_full_page(page, reiserfs_get_block);
2545 }
2546 
2547 static int reiserfs_writepage(struct page *page, struct writeback_control *wbc)
2548 {
2549 	struct inode *inode = page->mapping->host;
2550 	reiserfs_wait_on_write_block(inode->i_sb);
2551 	return reiserfs_write_full_page(page, wbc);
2552 }
2553 
2554 static int reiserfs_write_begin(struct file *file,
2555 				struct address_space *mapping,
2556 				loff_t pos, unsigned len, unsigned flags,
2557 				struct page **pagep, void **fsdata)
2558 {
2559 	struct inode *inode;
2560 	struct page *page;
2561 	pgoff_t index;
2562 	int ret;
2563 	int old_ref = 0;
2564 
2565  	inode = mapping->host;
2566 	*fsdata = 0;
2567  	if (flags & AOP_FLAG_CONT_EXPAND &&
2568  	    (pos & (inode->i_sb->s_blocksize - 1)) == 0) {
2569  		pos ++;
2570 		*fsdata = (void *)(unsigned long)flags;
2571 	}
2572 
2573 	index = pos >> PAGE_CACHE_SHIFT;
2574 	page = __grab_cache_page(mapping, index);
2575 	if (!page)
2576 		return -ENOMEM;
2577 	*pagep = page;
2578 
2579 	reiserfs_wait_on_write_block(inode->i_sb);
2580 	fix_tail_page_for_writing(page);
2581 	if (reiserfs_transaction_running(inode->i_sb)) {
2582 		struct reiserfs_transaction_handle *th;
2583 		th = (struct reiserfs_transaction_handle *)current->
2584 		    journal_info;
2585 		BUG_ON(!th->t_refcount);
2586 		BUG_ON(!th->t_trans_id);
2587 		old_ref = th->t_refcount;
2588 		th->t_refcount++;
2589 	}
2590 	ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
2591 				reiserfs_get_block);
2592 	if (ret && reiserfs_transaction_running(inode->i_sb)) {
2593 		struct reiserfs_transaction_handle *th = current->journal_info;
2594 		/* this gets a little ugly.  If reiserfs_get_block returned an
2595 		 * error and left a transacstion running, we've got to close it,
2596 		 * and we've got to free handle if it was a persistent transaction.
2597 		 *
2598 		 * But, if we had nested into an existing transaction, we need
2599 		 * to just drop the ref count on the handle.
2600 		 *
2601 		 * If old_ref == 0, the transaction is from reiserfs_get_block,
2602 		 * and it was a persistent trans.  Otherwise, it was nested above.
2603 		 */
2604 		if (th->t_refcount > old_ref) {
2605 			if (old_ref)
2606 				th->t_refcount--;
2607 			else {
2608 				int err;
2609 				reiserfs_write_lock(inode->i_sb);
2610 				err = reiserfs_end_persistent_transaction(th);
2611 				reiserfs_write_unlock(inode->i_sb);
2612 				if (err)
2613 					ret = err;
2614 			}
2615 		}
2616 	}
2617 	if (ret) {
2618 		unlock_page(page);
2619 		page_cache_release(page);
2620 	}
2621 	return ret;
2622 }
2623 
2624 int reiserfs_prepare_write(struct file *f, struct page *page,
2625 			   unsigned from, unsigned to)
2626 {
2627 	struct inode *inode = page->mapping->host;
2628 	int ret;
2629 	int old_ref = 0;
2630 
2631 	reiserfs_wait_on_write_block(inode->i_sb);
2632 	fix_tail_page_for_writing(page);
2633 	if (reiserfs_transaction_running(inode->i_sb)) {
2634 		struct reiserfs_transaction_handle *th;
2635 		th = (struct reiserfs_transaction_handle *)current->
2636 		    journal_info;
2637 		BUG_ON(!th->t_refcount);
2638 		BUG_ON(!th->t_trans_id);
2639 		old_ref = th->t_refcount;
2640 		th->t_refcount++;
2641 	}
2642 
2643 	ret = block_prepare_write(page, from, to, reiserfs_get_block);
2644 	if (ret && reiserfs_transaction_running(inode->i_sb)) {
2645 		struct reiserfs_transaction_handle *th = current->journal_info;
2646 		/* this gets a little ugly.  If reiserfs_get_block returned an
2647 		 * error and left a transacstion running, we've got to close it,
2648 		 * and we've got to free handle if it was a persistent transaction.
2649 		 *
2650 		 * But, if we had nested into an existing transaction, we need
2651 		 * to just drop the ref count on the handle.
2652 		 *
2653 		 * If old_ref == 0, the transaction is from reiserfs_get_block,
2654 		 * and it was a persistent trans.  Otherwise, it was nested above.
2655 		 */
2656 		if (th->t_refcount > old_ref) {
2657 			if (old_ref)
2658 				th->t_refcount--;
2659 			else {
2660 				int err;
2661 				reiserfs_write_lock(inode->i_sb);
2662 				err = reiserfs_end_persistent_transaction(th);
2663 				reiserfs_write_unlock(inode->i_sb);
2664 				if (err)
2665 					ret = err;
2666 			}
2667 		}
2668 	}
2669 	return ret;
2670 
2671 }
2672 
2673 static sector_t reiserfs_aop_bmap(struct address_space *as, sector_t block)
2674 {
2675 	return generic_block_bmap(as, block, reiserfs_bmap);
2676 }
2677 
2678 static int reiserfs_write_end(struct file *file, struct address_space *mapping,
2679 			      loff_t pos, unsigned len, unsigned copied,
2680 			      struct page *page, void *fsdata)
2681 {
2682 	struct inode *inode = page->mapping->host;
2683 	int ret = 0;
2684 	int update_sd = 0;
2685 	struct reiserfs_transaction_handle *th;
2686 	unsigned start;
2687 
2688 	if ((unsigned long)fsdata & AOP_FLAG_CONT_EXPAND)
2689 		pos ++;
2690 
2691 	reiserfs_wait_on_write_block(inode->i_sb);
2692 	if (reiserfs_transaction_running(inode->i_sb))
2693 		th = current->journal_info;
2694 	else
2695 		th = NULL;
2696 
2697 	start = pos & (PAGE_CACHE_SIZE - 1);
2698 	if (unlikely(copied < len)) {
2699 		if (!PageUptodate(page))
2700 			copied = 0;
2701 
2702 		page_zero_new_buffers(page, start + copied, start + len);
2703 	}
2704 	flush_dcache_page(page);
2705 
2706 	reiserfs_commit_page(inode, page, start, start + copied);
2707 
2708 	/* generic_commit_write does this for us, but does not update the
2709 	 ** transaction tracking stuff when the size changes.  So, we have
2710 	 ** to do the i_size updates here.
2711 	 */
2712 	pos += copied;
2713 	if (pos > inode->i_size) {
2714 		struct reiserfs_transaction_handle myth;
2715 		reiserfs_write_lock(inode->i_sb);
2716 		/* If the file have grown beyond the border where it
2717 		   can have a tail, unmark it as needing a tail
2718 		   packing */
2719 		if ((have_large_tails(inode->i_sb)
2720 		     && inode->i_size > i_block_size(inode) * 4)
2721 		    || (have_small_tails(inode->i_sb)
2722 			&& inode->i_size > i_block_size(inode)))
2723 			REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask;
2724 
2725 		ret = journal_begin(&myth, inode->i_sb, 1);
2726 		if (ret) {
2727 			reiserfs_write_unlock(inode->i_sb);
2728 			goto journal_error;
2729 		}
2730 		reiserfs_update_inode_transaction(inode);
2731 		inode->i_size = pos;
2732 		/*
2733 		 * this will just nest into our transaction.  It's important
2734 		 * to use mark_inode_dirty so the inode gets pushed around on the
2735 		 * dirty lists, and so that O_SYNC works as expected
2736 		 */
2737 		mark_inode_dirty(inode);
2738 		reiserfs_update_sd(&myth, inode);
2739 		update_sd = 1;
2740 		ret = journal_end(&myth, inode->i_sb, 1);
2741 		reiserfs_write_unlock(inode->i_sb);
2742 		if (ret)
2743 			goto journal_error;
2744 	}
2745 	if (th) {
2746 		reiserfs_write_lock(inode->i_sb);
2747 		if (!update_sd)
2748 			mark_inode_dirty(inode);
2749 		ret = reiserfs_end_persistent_transaction(th);
2750 		reiserfs_write_unlock(inode->i_sb);
2751 		if (ret)
2752 			goto out;
2753 	}
2754 
2755       out:
2756 	unlock_page(page);
2757 	page_cache_release(page);
2758 	return ret == 0 ? copied : ret;
2759 
2760       journal_error:
2761 	if (th) {
2762 		reiserfs_write_lock(inode->i_sb);
2763 		if (!update_sd)
2764 			reiserfs_update_sd(th, inode);
2765 		ret = reiserfs_end_persistent_transaction(th);
2766 		reiserfs_write_unlock(inode->i_sb);
2767 	}
2768 
2769 	goto out;
2770 }
2771 
2772 int reiserfs_commit_write(struct file *f, struct page *page,
2773 			  unsigned from, unsigned to)
2774 {
2775 	struct inode *inode = page->mapping->host;
2776 	loff_t pos = ((loff_t) page->index << PAGE_CACHE_SHIFT) + to;
2777 	int ret = 0;
2778 	int update_sd = 0;
2779 	struct reiserfs_transaction_handle *th = NULL;
2780 
2781 	reiserfs_wait_on_write_block(inode->i_sb);
2782 	if (reiserfs_transaction_running(inode->i_sb)) {
2783 		th = current->journal_info;
2784 	}
2785 	reiserfs_commit_page(inode, page, from, to);
2786 
2787 	/* generic_commit_write does this for us, but does not update the
2788 	 ** transaction tracking stuff when the size changes.  So, we have
2789 	 ** to do the i_size updates here.
2790 	 */
2791 	if (pos > inode->i_size) {
2792 		struct reiserfs_transaction_handle myth;
2793 		reiserfs_write_lock(inode->i_sb);
2794 		/* If the file have grown beyond the border where it
2795 		   can have a tail, unmark it as needing a tail
2796 		   packing */
2797 		if ((have_large_tails(inode->i_sb)
2798 		     && inode->i_size > i_block_size(inode) * 4)
2799 		    || (have_small_tails(inode->i_sb)
2800 			&& inode->i_size > i_block_size(inode)))
2801 			REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask;
2802 
2803 		ret = journal_begin(&myth, inode->i_sb, 1);
2804 		if (ret) {
2805 			reiserfs_write_unlock(inode->i_sb);
2806 			goto journal_error;
2807 		}
2808 		reiserfs_update_inode_transaction(inode);
2809 		inode->i_size = pos;
2810 		/*
2811 		 * this will just nest into our transaction.  It's important
2812 		 * to use mark_inode_dirty so the inode gets pushed around on the
2813 		 * dirty lists, and so that O_SYNC works as expected
2814 		 */
2815 		mark_inode_dirty(inode);
2816 		reiserfs_update_sd(&myth, inode);
2817 		update_sd = 1;
2818 		ret = journal_end(&myth, inode->i_sb, 1);
2819 		reiserfs_write_unlock(inode->i_sb);
2820 		if (ret)
2821 			goto journal_error;
2822 	}
2823 	if (th) {
2824 		reiserfs_write_lock(inode->i_sb);
2825 		if (!update_sd)
2826 			mark_inode_dirty(inode);
2827 		ret = reiserfs_end_persistent_transaction(th);
2828 		reiserfs_write_unlock(inode->i_sb);
2829 		if (ret)
2830 			goto out;
2831 	}
2832 
2833       out:
2834 	return ret;
2835 
2836       journal_error:
2837 	if (th) {
2838 		reiserfs_write_lock(inode->i_sb);
2839 		if (!update_sd)
2840 			reiserfs_update_sd(th, inode);
2841 		ret = reiserfs_end_persistent_transaction(th);
2842 		reiserfs_write_unlock(inode->i_sb);
2843 	}
2844 
2845 	return ret;
2846 }
2847 
2848 void sd_attrs_to_i_attrs(__u16 sd_attrs, struct inode *inode)
2849 {
2850 	if (reiserfs_attrs(inode->i_sb)) {
2851 		if (sd_attrs & REISERFS_SYNC_FL)
2852 			inode->i_flags |= S_SYNC;
2853 		else
2854 			inode->i_flags &= ~S_SYNC;
2855 		if (sd_attrs & REISERFS_IMMUTABLE_FL)
2856 			inode->i_flags |= S_IMMUTABLE;
2857 		else
2858 			inode->i_flags &= ~S_IMMUTABLE;
2859 		if (sd_attrs & REISERFS_APPEND_FL)
2860 			inode->i_flags |= S_APPEND;
2861 		else
2862 			inode->i_flags &= ~S_APPEND;
2863 		if (sd_attrs & REISERFS_NOATIME_FL)
2864 			inode->i_flags |= S_NOATIME;
2865 		else
2866 			inode->i_flags &= ~S_NOATIME;
2867 		if (sd_attrs & REISERFS_NOTAIL_FL)
2868 			REISERFS_I(inode)->i_flags |= i_nopack_mask;
2869 		else
2870 			REISERFS_I(inode)->i_flags &= ~i_nopack_mask;
2871 	}
2872 }
2873 
2874 void i_attrs_to_sd_attrs(struct inode *inode, __u16 * sd_attrs)
2875 {
2876 	if (reiserfs_attrs(inode->i_sb)) {
2877 		if (inode->i_flags & S_IMMUTABLE)
2878 			*sd_attrs |= REISERFS_IMMUTABLE_FL;
2879 		else
2880 			*sd_attrs &= ~REISERFS_IMMUTABLE_FL;
2881 		if (inode->i_flags & S_SYNC)
2882 			*sd_attrs |= REISERFS_SYNC_FL;
2883 		else
2884 			*sd_attrs &= ~REISERFS_SYNC_FL;
2885 		if (inode->i_flags & S_NOATIME)
2886 			*sd_attrs |= REISERFS_NOATIME_FL;
2887 		else
2888 			*sd_attrs &= ~REISERFS_NOATIME_FL;
2889 		if (REISERFS_I(inode)->i_flags & i_nopack_mask)
2890 			*sd_attrs |= REISERFS_NOTAIL_FL;
2891 		else
2892 			*sd_attrs &= ~REISERFS_NOTAIL_FL;
2893 	}
2894 }
2895 
2896 /* decide if this buffer needs to stay around for data logging or ordered
2897 ** write purposes
2898 */
2899 static int invalidatepage_can_drop(struct inode *inode, struct buffer_head *bh)
2900 {
2901 	int ret = 1;
2902 	struct reiserfs_journal *j = SB_JOURNAL(inode->i_sb);
2903 
2904 	lock_buffer(bh);
2905 	spin_lock(&j->j_dirty_buffers_lock);
2906 	if (!buffer_mapped(bh)) {
2907 		goto free_jh;
2908 	}
2909 	/* the page is locked, and the only places that log a data buffer
2910 	 * also lock the page.
2911 	 */
2912 	if (reiserfs_file_data_log(inode)) {
2913 		/*
2914 		 * very conservative, leave the buffer pinned if
2915 		 * anyone might need it.
2916 		 */
2917 		if (buffer_journaled(bh) || buffer_journal_dirty(bh)) {
2918 			ret = 0;
2919 		}
2920 	} else  if (buffer_dirty(bh)) {
2921 		struct reiserfs_journal_list *jl;
2922 		struct reiserfs_jh *jh = bh->b_private;
2923 
2924 		/* why is this safe?
2925 		 * reiserfs_setattr updates i_size in the on disk
2926 		 * stat data before allowing vmtruncate to be called.
2927 		 *
2928 		 * If buffer was put onto the ordered list for this
2929 		 * transaction, we know for sure either this transaction
2930 		 * or an older one already has updated i_size on disk,
2931 		 * and this ordered data won't be referenced in the file
2932 		 * if we crash.
2933 		 *
2934 		 * if the buffer was put onto the ordered list for an older
2935 		 * transaction, we need to leave it around
2936 		 */
2937 		if (jh && (jl = jh->jl)
2938 		    && jl != SB_JOURNAL(inode->i_sb)->j_current_jl)
2939 			ret = 0;
2940 	}
2941       free_jh:
2942 	if (ret && bh->b_private) {
2943 		reiserfs_free_jh(bh);
2944 	}
2945 	spin_unlock(&j->j_dirty_buffers_lock);
2946 	unlock_buffer(bh);
2947 	return ret;
2948 }
2949 
2950 /* clm -- taken from fs/buffer.c:block_invalidate_page */
2951 static void reiserfs_invalidatepage(struct page *page, unsigned long offset)
2952 {
2953 	struct buffer_head *head, *bh, *next;
2954 	struct inode *inode = page->mapping->host;
2955 	unsigned int curr_off = 0;
2956 	int ret = 1;
2957 
2958 	BUG_ON(!PageLocked(page));
2959 
2960 	if (offset == 0)
2961 		ClearPageChecked(page);
2962 
2963 	if (!page_has_buffers(page))
2964 		goto out;
2965 
2966 	head = page_buffers(page);
2967 	bh = head;
2968 	do {
2969 		unsigned int next_off = curr_off + bh->b_size;
2970 		next = bh->b_this_page;
2971 
2972 		/*
2973 		 * is this block fully invalidated?
2974 		 */
2975 		if (offset <= curr_off) {
2976 			if (invalidatepage_can_drop(inode, bh))
2977 				reiserfs_unmap_buffer(bh);
2978 			else
2979 				ret = 0;
2980 		}
2981 		curr_off = next_off;
2982 		bh = next;
2983 	} while (bh != head);
2984 
2985 	/*
2986 	 * We release buffers only if the entire page is being invalidated.
2987 	 * The get_block cached value has been unconditionally invalidated,
2988 	 * so real IO is not possible anymore.
2989 	 */
2990 	if (!offset && ret) {
2991 		ret = try_to_release_page(page, 0);
2992 		/* maybe should BUG_ON(!ret); - neilb */
2993 	}
2994       out:
2995 	return;
2996 }
2997 
2998 static int reiserfs_set_page_dirty(struct page *page)
2999 {
3000 	struct inode *inode = page->mapping->host;
3001 	if (reiserfs_file_data_log(inode)) {
3002 		SetPageChecked(page);
3003 		return __set_page_dirty_nobuffers(page);
3004 	}
3005 	return __set_page_dirty_buffers(page);
3006 }
3007 
3008 /*
3009  * Returns 1 if the page's buffers were dropped.  The page is locked.
3010  *
3011  * Takes j_dirty_buffers_lock to protect the b_assoc_buffers list_heads
3012  * in the buffers at page_buffers(page).
3013  *
3014  * even in -o notail mode, we can't be sure an old mount without -o notail
3015  * didn't create files with tails.
3016  */
3017 static int reiserfs_releasepage(struct page *page, gfp_t unused_gfp_flags)
3018 {
3019 	struct inode *inode = page->mapping->host;
3020 	struct reiserfs_journal *j = SB_JOURNAL(inode->i_sb);
3021 	struct buffer_head *head;
3022 	struct buffer_head *bh;
3023 	int ret = 1;
3024 
3025 	WARN_ON(PageChecked(page));
3026 	spin_lock(&j->j_dirty_buffers_lock);
3027 	head = page_buffers(page);
3028 	bh = head;
3029 	do {
3030 		if (bh->b_private) {
3031 			if (!buffer_dirty(bh) && !buffer_locked(bh)) {
3032 				reiserfs_free_jh(bh);
3033 			} else {
3034 				ret = 0;
3035 				break;
3036 			}
3037 		}
3038 		bh = bh->b_this_page;
3039 	} while (bh != head);
3040 	if (ret)
3041 		ret = try_to_free_buffers(page);
3042 	spin_unlock(&j->j_dirty_buffers_lock);
3043 	return ret;
3044 }
3045 
3046 /* We thank Mingming Cao for helping us understand in great detail what
3047    to do in this section of the code. */
3048 static ssize_t reiserfs_direct_IO(int rw, struct kiocb *iocb,
3049 				  const struct iovec *iov, loff_t offset,
3050 				  unsigned long nr_segs)
3051 {
3052 	struct file *file = iocb->ki_filp;
3053 	struct inode *inode = file->f_mapping->host;
3054 
3055 	return blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
3056 				  offset, nr_segs,
3057 				  reiserfs_get_blocks_direct_io, NULL);
3058 }
3059 
3060 int reiserfs_setattr(struct dentry *dentry, struct iattr *attr)
3061 {
3062 	struct inode *inode = dentry->d_inode;
3063 	int error;
3064 	unsigned int ia_valid;
3065 
3066 	/* must be turned off for recursive notify_change calls */
3067 	ia_valid = attr->ia_valid &= ~(ATTR_KILL_SUID|ATTR_KILL_SGID);
3068 
3069 	reiserfs_write_lock(inode->i_sb);
3070 	if (attr->ia_valid & ATTR_SIZE) {
3071 		/* version 2 items will be caught by the s_maxbytes check
3072 		 ** done for us in vmtruncate
3073 		 */
3074 		if (get_inode_item_key_version(inode) == KEY_FORMAT_3_5 &&
3075 		    attr->ia_size > MAX_NON_LFS) {
3076 			error = -EFBIG;
3077 			goto out;
3078 		}
3079 		/* fill in hole pointers in the expanding truncate case. */
3080 		if (attr->ia_size > inode->i_size) {
3081 			error = generic_cont_expand_simple(inode, attr->ia_size);
3082 			if (REISERFS_I(inode)->i_prealloc_count > 0) {
3083 				int err;
3084 				struct reiserfs_transaction_handle th;
3085 				/* we're changing at most 2 bitmaps, inode + super */
3086 				err = journal_begin(&th, inode->i_sb, 4);
3087 				if (!err) {
3088 					reiserfs_discard_prealloc(&th, inode);
3089 					err = journal_end(&th, inode->i_sb, 4);
3090 				}
3091 				if (err)
3092 					error = err;
3093 			}
3094 			if (error)
3095 				goto out;
3096 			/*
3097 			 * file size is changed, ctime and mtime are
3098 			 * to be updated
3099 			 */
3100 			attr->ia_valid |= (ATTR_MTIME | ATTR_CTIME);
3101 		}
3102 	}
3103 
3104 	if ((((attr->ia_valid & ATTR_UID) && (attr->ia_uid & ~0xffff)) ||
3105 	     ((attr->ia_valid & ATTR_GID) && (attr->ia_gid & ~0xffff))) &&
3106 	    (get_inode_sd_version(inode) == STAT_DATA_V1)) {
3107 		/* stat data of format v3.5 has 16 bit uid and gid */
3108 		error = -EINVAL;
3109 		goto out;
3110 	}
3111 
3112 	error = inode_change_ok(inode, attr);
3113 	if (!error) {
3114 		if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
3115 		    (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
3116 			error = reiserfs_chown_xattrs(inode, attr);
3117 
3118 			if (!error) {
3119 				struct reiserfs_transaction_handle th;
3120 				int jbegin_count =
3121 				    2 *
3122 				    (REISERFS_QUOTA_INIT_BLOCKS(inode->i_sb) +
3123 				     REISERFS_QUOTA_DEL_BLOCKS(inode->i_sb)) +
3124 				    2;
3125 
3126 				/* (user+group)*(old+new) structure - we count quota info and , inode write (sb, inode) */
3127 				error =
3128 				    journal_begin(&th, inode->i_sb,
3129 						  jbegin_count);
3130 				if (error)
3131 					goto out;
3132 				error =
3133 				    DQUOT_TRANSFER(inode, attr) ? -EDQUOT : 0;
3134 				if (error) {
3135 					journal_end(&th, inode->i_sb,
3136 						    jbegin_count);
3137 					goto out;
3138 				}
3139 				/* Update corresponding info in inode so that everything is in
3140 				 * one transaction */
3141 				if (attr->ia_valid & ATTR_UID)
3142 					inode->i_uid = attr->ia_uid;
3143 				if (attr->ia_valid & ATTR_GID)
3144 					inode->i_gid = attr->ia_gid;
3145 				mark_inode_dirty(inode);
3146 				error =
3147 				    journal_end(&th, inode->i_sb, jbegin_count);
3148 			}
3149 		}
3150 		if (!error)
3151 			error = inode_setattr(inode, attr);
3152 	}
3153 
3154 	if (!error && reiserfs_posixacl(inode->i_sb)) {
3155 		if (attr->ia_valid & ATTR_MODE)
3156 			error = reiserfs_acl_chmod(inode);
3157 	}
3158 
3159       out:
3160 	reiserfs_write_unlock(inode->i_sb);
3161 	return error;
3162 }
3163 
3164 const struct address_space_operations reiserfs_address_space_operations = {
3165 	.writepage = reiserfs_writepage,
3166 	.readpage = reiserfs_readpage,
3167 	.readpages = reiserfs_readpages,
3168 	.releasepage = reiserfs_releasepage,
3169 	.invalidatepage = reiserfs_invalidatepage,
3170 	.sync_page = block_sync_page,
3171 	.write_begin = reiserfs_write_begin,
3172 	.write_end = reiserfs_write_end,
3173 	.bmap = reiserfs_aop_bmap,
3174 	.direct_IO = reiserfs_direct_IO,
3175 	.set_page_dirty = reiserfs_set_page_dirty,
3176 };
3177