1 /* 2 * Copyright 2000 by Hans Reiser, licensing governed by reiserfs/README 3 */ 4 5 #include <linux/time.h> 6 #include <linux/fs.h> 7 #include <linux/reiserfs_fs.h> 8 #include <linux/reiserfs_acl.h> 9 #include <linux/reiserfs_xattr.h> 10 #include <linux/exportfs.h> 11 #include <linux/smp_lock.h> 12 #include <linux/pagemap.h> 13 #include <linux/highmem.h> 14 #include <asm/uaccess.h> 15 #include <asm/unaligned.h> 16 #include <linux/buffer_head.h> 17 #include <linux/mpage.h> 18 #include <linux/writeback.h> 19 #include <linux/quotaops.h> 20 #include <linux/swap.h> 21 22 int reiserfs_commit_write(struct file *f, struct page *page, 23 unsigned from, unsigned to); 24 int reiserfs_prepare_write(struct file *f, struct page *page, 25 unsigned from, unsigned to); 26 27 void reiserfs_delete_inode(struct inode *inode) 28 { 29 /* We need blocks for transaction + (user+group) quota update (possibly delete) */ 30 int jbegin_count = 31 JOURNAL_PER_BALANCE_CNT * 2 + 32 2 * REISERFS_QUOTA_INIT_BLOCKS(inode->i_sb); 33 struct reiserfs_transaction_handle th; 34 int err; 35 36 truncate_inode_pages(&inode->i_data, 0); 37 38 reiserfs_write_lock(inode->i_sb); 39 40 /* The = 0 happens when we abort creating a new inode for some reason like lack of space.. */ 41 if (!(inode->i_state & I_NEW) && INODE_PKEY(inode)->k_objectid != 0) { /* also handles bad_inode case */ 42 reiserfs_delete_xattrs(inode); 43 44 if (journal_begin(&th, inode->i_sb, jbegin_count)) 45 goto out; 46 reiserfs_update_inode_transaction(inode); 47 48 err = reiserfs_delete_object(&th, inode); 49 50 /* Do quota update inside a transaction for journaled quotas. We must do that 51 * after delete_object so that quota updates go into the same transaction as 52 * stat data deletion */ 53 if (!err) 54 DQUOT_FREE_INODE(inode); 55 56 if (journal_end(&th, inode->i_sb, jbegin_count)) 57 goto out; 58 59 /* check return value from reiserfs_delete_object after 60 * ending the transaction 61 */ 62 if (err) 63 goto out; 64 65 /* all items of file are deleted, so we can remove "save" link */ 66 remove_save_link(inode, 0 /* not truncate */ ); /* we can't do anything 67 * about an error here */ 68 } else { 69 /* no object items are in the tree */ 70 ; 71 } 72 out: 73 clear_inode(inode); /* note this must go after the journal_end to prevent deadlock */ 74 inode->i_blocks = 0; 75 reiserfs_write_unlock(inode->i_sb); 76 } 77 78 static void _make_cpu_key(struct cpu_key *key, int version, __u32 dirid, 79 __u32 objectid, loff_t offset, int type, int length) 80 { 81 key->version = version; 82 83 key->on_disk_key.k_dir_id = dirid; 84 key->on_disk_key.k_objectid = objectid; 85 set_cpu_key_k_offset(key, offset); 86 set_cpu_key_k_type(key, type); 87 key->key_length = length; 88 } 89 90 /* take base of inode_key (it comes from inode always) (dirid, objectid) and version from an inode, set 91 offset and type of key */ 92 void make_cpu_key(struct cpu_key *key, struct inode *inode, loff_t offset, 93 int type, int length) 94 { 95 _make_cpu_key(key, get_inode_item_key_version(inode), 96 le32_to_cpu(INODE_PKEY(inode)->k_dir_id), 97 le32_to_cpu(INODE_PKEY(inode)->k_objectid), offset, type, 98 length); 99 } 100 101 // 102 // when key is 0, do not set version and short key 103 // 104 inline void make_le_item_head(struct item_head *ih, const struct cpu_key *key, 105 int version, 106 loff_t offset, int type, int length, 107 int entry_count /*or ih_free_space */ ) 108 { 109 if (key) { 110 ih->ih_key.k_dir_id = cpu_to_le32(key->on_disk_key.k_dir_id); 111 ih->ih_key.k_objectid = 112 cpu_to_le32(key->on_disk_key.k_objectid); 113 } 114 put_ih_version(ih, version); 115 set_le_ih_k_offset(ih, offset); 116 set_le_ih_k_type(ih, type); 117 put_ih_item_len(ih, length); 118 /* set_ih_free_space (ih, 0); */ 119 // for directory items it is entry count, for directs and stat 120 // datas - 0xffff, for indirects - 0 121 put_ih_entry_count(ih, entry_count); 122 } 123 124 // 125 // FIXME: we might cache recently accessed indirect item 126 127 // Ugh. Not too eager for that.... 128 // I cut the code until such time as I see a convincing argument (benchmark). 129 // I don't want a bloated inode struct..., and I don't like code complexity.... 130 131 /* cutting the code is fine, since it really isn't in use yet and is easy 132 ** to add back in. But, Vladimir has a really good idea here. Think 133 ** about what happens for reading a file. For each page, 134 ** The VFS layer calls reiserfs_readpage, who searches the tree to find 135 ** an indirect item. This indirect item has X number of pointers, where 136 ** X is a big number if we've done the block allocation right. But, 137 ** we only use one or two of these pointers during each call to readpage, 138 ** needlessly researching again later on. 139 ** 140 ** The size of the cache could be dynamic based on the size of the file. 141 ** 142 ** I'd also like to see us cache the location the stat data item, since 143 ** we are needlessly researching for that frequently. 144 ** 145 ** --chris 146 */ 147 148 /* If this page has a file tail in it, and 149 ** it was read in by get_block_create_0, the page data is valid, 150 ** but tail is still sitting in a direct item, and we can't write to 151 ** it. So, look through this page, and check all the mapped buffers 152 ** to make sure they have valid block numbers. Any that don't need 153 ** to be unmapped, so that block_prepare_write will correctly call 154 ** reiserfs_get_block to convert the tail into an unformatted node 155 */ 156 static inline void fix_tail_page_for_writing(struct page *page) 157 { 158 struct buffer_head *head, *next, *bh; 159 160 if (page && page_has_buffers(page)) { 161 head = page_buffers(page); 162 bh = head; 163 do { 164 next = bh->b_this_page; 165 if (buffer_mapped(bh) && bh->b_blocknr == 0) { 166 reiserfs_unmap_buffer(bh); 167 } 168 bh = next; 169 } while (bh != head); 170 } 171 } 172 173 /* reiserfs_get_block does not need to allocate a block only if it has been 174 done already or non-hole position has been found in the indirect item */ 175 static inline int allocation_needed(int retval, b_blocknr_t allocated, 176 struct item_head *ih, 177 __le32 * item, int pos_in_item) 178 { 179 if (allocated) 180 return 0; 181 if (retval == POSITION_FOUND && is_indirect_le_ih(ih) && 182 get_block_num(item, pos_in_item)) 183 return 0; 184 return 1; 185 } 186 187 static inline int indirect_item_found(int retval, struct item_head *ih) 188 { 189 return (retval == POSITION_FOUND) && is_indirect_le_ih(ih); 190 } 191 192 static inline void set_block_dev_mapped(struct buffer_head *bh, 193 b_blocknr_t block, struct inode *inode) 194 { 195 map_bh(bh, inode->i_sb, block); 196 } 197 198 // 199 // files which were created in the earlier version can not be longer, 200 // than 2 gb 201 // 202 static int file_capable(struct inode *inode, sector_t block) 203 { 204 if (get_inode_item_key_version(inode) != KEY_FORMAT_3_5 || // it is new file. 205 block < (1 << (31 - inode->i_sb->s_blocksize_bits))) // old file, but 'block' is inside of 2gb 206 return 1; 207 208 return 0; 209 } 210 211 static int restart_transaction(struct reiserfs_transaction_handle *th, 212 struct inode *inode, struct treepath *path) 213 { 214 struct super_block *s = th->t_super; 215 int len = th->t_blocks_allocated; 216 int err; 217 218 BUG_ON(!th->t_trans_id); 219 BUG_ON(!th->t_refcount); 220 221 pathrelse(path); 222 223 /* we cannot restart while nested */ 224 if (th->t_refcount > 1) { 225 return 0; 226 } 227 reiserfs_update_sd(th, inode); 228 err = journal_end(th, s, len); 229 if (!err) { 230 err = journal_begin(th, s, JOURNAL_PER_BALANCE_CNT * 6); 231 if (!err) 232 reiserfs_update_inode_transaction(inode); 233 } 234 return err; 235 } 236 237 // it is called by get_block when create == 0. Returns block number 238 // for 'block'-th logical block of file. When it hits direct item it 239 // returns 0 (being called from bmap) or read direct item into piece 240 // of page (bh_result) 241 242 // Please improve the english/clarity in the comment above, as it is 243 // hard to understand. 244 245 static int _get_block_create_0(struct inode *inode, sector_t block, 246 struct buffer_head *bh_result, int args) 247 { 248 INITIALIZE_PATH(path); 249 struct cpu_key key; 250 struct buffer_head *bh; 251 struct item_head *ih, tmp_ih; 252 int fs_gen; 253 b_blocknr_t blocknr; 254 char *p = NULL; 255 int chars; 256 int ret; 257 int result; 258 int done = 0; 259 unsigned long offset; 260 261 // prepare the key to look for the 'block'-th block of file 262 make_cpu_key(&key, inode, 263 (loff_t) block * inode->i_sb->s_blocksize + 1, TYPE_ANY, 264 3); 265 266 research: 267 result = search_for_position_by_key(inode->i_sb, &key, &path); 268 if (result != POSITION_FOUND) { 269 pathrelse(&path); 270 if (p) 271 kunmap(bh_result->b_page); 272 if (result == IO_ERROR) 273 return -EIO; 274 // We do not return -ENOENT if there is a hole but page is uptodate, because it means 275 // That there is some MMAPED data associated with it that is yet to be written to disk. 276 if ((args & GET_BLOCK_NO_HOLE) 277 && !PageUptodate(bh_result->b_page)) { 278 return -ENOENT; 279 } 280 return 0; 281 } 282 // 283 bh = get_last_bh(&path); 284 ih = get_ih(&path); 285 if (is_indirect_le_ih(ih)) { 286 __le32 *ind_item = (__le32 *) B_I_PITEM(bh, ih); 287 288 /* FIXME: here we could cache indirect item or part of it in 289 the inode to avoid search_by_key in case of subsequent 290 access to file */ 291 blocknr = get_block_num(ind_item, path.pos_in_item); 292 ret = 0; 293 if (blocknr) { 294 map_bh(bh_result, inode->i_sb, blocknr); 295 if (path.pos_in_item == 296 ((ih_item_len(ih) / UNFM_P_SIZE) - 1)) { 297 set_buffer_boundary(bh_result); 298 } 299 } else 300 // We do not return -ENOENT if there is a hole but page is uptodate, because it means 301 // That there is some MMAPED data associated with it that is yet to be written to disk. 302 if ((args & GET_BLOCK_NO_HOLE) 303 && !PageUptodate(bh_result->b_page)) { 304 ret = -ENOENT; 305 } 306 307 pathrelse(&path); 308 if (p) 309 kunmap(bh_result->b_page); 310 return ret; 311 } 312 // requested data are in direct item(s) 313 if (!(args & GET_BLOCK_READ_DIRECT)) { 314 // we are called by bmap. FIXME: we can not map block of file 315 // when it is stored in direct item(s) 316 pathrelse(&path); 317 if (p) 318 kunmap(bh_result->b_page); 319 return -ENOENT; 320 } 321 322 /* if we've got a direct item, and the buffer or page was uptodate, 323 ** we don't want to pull data off disk again. skip to the 324 ** end, where we map the buffer and return 325 */ 326 if (buffer_uptodate(bh_result)) { 327 goto finished; 328 } else 329 /* 330 ** grab_tail_page can trigger calls to reiserfs_get_block on up to date 331 ** pages without any buffers. If the page is up to date, we don't want 332 ** read old data off disk. Set the up to date bit on the buffer instead 333 ** and jump to the end 334 */ 335 if (!bh_result->b_page || PageUptodate(bh_result->b_page)) { 336 set_buffer_uptodate(bh_result); 337 goto finished; 338 } 339 // read file tail into part of page 340 offset = (cpu_key_k_offset(&key) - 1) & (PAGE_CACHE_SIZE - 1); 341 fs_gen = get_generation(inode->i_sb); 342 copy_item_head(&tmp_ih, ih); 343 344 /* we only want to kmap if we are reading the tail into the page. 345 ** this is not the common case, so we don't kmap until we are 346 ** sure we need to. But, this means the item might move if 347 ** kmap schedules 348 */ 349 if (!p) { 350 p = (char *)kmap(bh_result->b_page); 351 if (fs_changed(fs_gen, inode->i_sb) 352 && item_moved(&tmp_ih, &path)) { 353 goto research; 354 } 355 } 356 p += offset; 357 memset(p, 0, inode->i_sb->s_blocksize); 358 do { 359 if (!is_direct_le_ih(ih)) { 360 BUG(); 361 } 362 /* make sure we don't read more bytes than actually exist in 363 ** the file. This can happen in odd cases where i_size isn't 364 ** correct, and when direct item padding results in a few 365 ** extra bytes at the end of the direct item 366 */ 367 if ((le_ih_k_offset(ih) + path.pos_in_item) > inode->i_size) 368 break; 369 if ((le_ih_k_offset(ih) - 1 + ih_item_len(ih)) > inode->i_size) { 370 chars = 371 inode->i_size - (le_ih_k_offset(ih) - 1) - 372 path.pos_in_item; 373 done = 1; 374 } else { 375 chars = ih_item_len(ih) - path.pos_in_item; 376 } 377 memcpy(p, B_I_PITEM(bh, ih) + path.pos_in_item, chars); 378 379 if (done) 380 break; 381 382 p += chars; 383 384 if (PATH_LAST_POSITION(&path) != (B_NR_ITEMS(bh) - 1)) 385 // we done, if read direct item is not the last item of 386 // node FIXME: we could try to check right delimiting key 387 // to see whether direct item continues in the right 388 // neighbor or rely on i_size 389 break; 390 391 // update key to look for the next piece 392 set_cpu_key_k_offset(&key, cpu_key_k_offset(&key) + chars); 393 result = search_for_position_by_key(inode->i_sb, &key, &path); 394 if (result != POSITION_FOUND) 395 // i/o error most likely 396 break; 397 bh = get_last_bh(&path); 398 ih = get_ih(&path); 399 } while (1); 400 401 flush_dcache_page(bh_result->b_page); 402 kunmap(bh_result->b_page); 403 404 finished: 405 pathrelse(&path); 406 407 if (result == IO_ERROR) 408 return -EIO; 409 410 /* this buffer has valid data, but isn't valid for io. mapping it to 411 * block #0 tells the rest of reiserfs it just has a tail in it 412 */ 413 map_bh(bh_result, inode->i_sb, 0); 414 set_buffer_uptodate(bh_result); 415 return 0; 416 } 417 418 // this is called to create file map. So, _get_block_create_0 will not 419 // read direct item 420 static int reiserfs_bmap(struct inode *inode, sector_t block, 421 struct buffer_head *bh_result, int create) 422 { 423 if (!file_capable(inode, block)) 424 return -EFBIG; 425 426 reiserfs_write_lock(inode->i_sb); 427 /* do not read the direct item */ 428 _get_block_create_0(inode, block, bh_result, 0); 429 reiserfs_write_unlock(inode->i_sb); 430 return 0; 431 } 432 433 /* special version of get_block that is only used by grab_tail_page right 434 ** now. It is sent to block_prepare_write, and when you try to get a 435 ** block past the end of the file (or a block from a hole) it returns 436 ** -ENOENT instead of a valid buffer. block_prepare_write expects to 437 ** be able to do i/o on the buffers returned, unless an error value 438 ** is also returned. 439 ** 440 ** So, this allows block_prepare_write to be used for reading a single block 441 ** in a page. Where it does not produce a valid page for holes, or past the 442 ** end of the file. This turns out to be exactly what we need for reading 443 ** tails for conversion. 444 ** 445 ** The point of the wrapper is forcing a certain value for create, even 446 ** though the VFS layer is calling this function with create==1. If you 447 ** don't want to send create == GET_BLOCK_NO_HOLE to reiserfs_get_block, 448 ** don't use this function. 449 */ 450 static int reiserfs_get_block_create_0(struct inode *inode, sector_t block, 451 struct buffer_head *bh_result, 452 int create) 453 { 454 return reiserfs_get_block(inode, block, bh_result, GET_BLOCK_NO_HOLE); 455 } 456 457 /* This is special helper for reiserfs_get_block in case we are executing 458 direct_IO request. */ 459 static int reiserfs_get_blocks_direct_io(struct inode *inode, 460 sector_t iblock, 461 struct buffer_head *bh_result, 462 int create) 463 { 464 int ret; 465 466 bh_result->b_page = NULL; 467 468 /* We set the b_size before reiserfs_get_block call since it is 469 referenced in convert_tail_for_hole() that may be called from 470 reiserfs_get_block() */ 471 bh_result->b_size = (1 << inode->i_blkbits); 472 473 ret = reiserfs_get_block(inode, iblock, bh_result, 474 create | GET_BLOCK_NO_DANGLE); 475 if (ret) 476 goto out; 477 478 /* don't allow direct io onto tail pages */ 479 if (buffer_mapped(bh_result) && bh_result->b_blocknr == 0) { 480 /* make sure future calls to the direct io funcs for this offset 481 ** in the file fail by unmapping the buffer 482 */ 483 clear_buffer_mapped(bh_result); 484 ret = -EINVAL; 485 } 486 /* Possible unpacked tail. Flush the data before pages have 487 disappeared */ 488 if (REISERFS_I(inode)->i_flags & i_pack_on_close_mask) { 489 int err; 490 lock_kernel(); 491 err = reiserfs_commit_for_inode(inode); 492 REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask; 493 unlock_kernel(); 494 if (err < 0) 495 ret = err; 496 } 497 out: 498 return ret; 499 } 500 501 /* 502 ** helper function for when reiserfs_get_block is called for a hole 503 ** but the file tail is still in a direct item 504 ** bh_result is the buffer head for the hole 505 ** tail_offset is the offset of the start of the tail in the file 506 ** 507 ** This calls prepare_write, which will start a new transaction 508 ** you should not be in a transaction, or have any paths held when you 509 ** call this. 510 */ 511 static int convert_tail_for_hole(struct inode *inode, 512 struct buffer_head *bh_result, 513 loff_t tail_offset) 514 { 515 unsigned long index; 516 unsigned long tail_end; 517 unsigned long tail_start; 518 struct page *tail_page; 519 struct page *hole_page = bh_result->b_page; 520 int retval = 0; 521 522 if ((tail_offset & (bh_result->b_size - 1)) != 1) 523 return -EIO; 524 525 /* always try to read until the end of the block */ 526 tail_start = tail_offset & (PAGE_CACHE_SIZE - 1); 527 tail_end = (tail_start | (bh_result->b_size - 1)) + 1; 528 529 index = tail_offset >> PAGE_CACHE_SHIFT; 530 /* hole_page can be zero in case of direct_io, we are sure 531 that we cannot get here if we write with O_DIRECT into 532 tail page */ 533 if (!hole_page || index != hole_page->index) { 534 tail_page = grab_cache_page(inode->i_mapping, index); 535 retval = -ENOMEM; 536 if (!tail_page) { 537 goto out; 538 } 539 } else { 540 tail_page = hole_page; 541 } 542 543 /* we don't have to make sure the conversion did not happen while 544 ** we were locking the page because anyone that could convert 545 ** must first take i_mutex. 546 ** 547 ** We must fix the tail page for writing because it might have buffers 548 ** that are mapped, but have a block number of 0. This indicates tail 549 ** data that has been read directly into the page, and block_prepare_write 550 ** won't trigger a get_block in this case. 551 */ 552 fix_tail_page_for_writing(tail_page); 553 retval = reiserfs_prepare_write(NULL, tail_page, tail_start, tail_end); 554 if (retval) 555 goto unlock; 556 557 /* tail conversion might change the data in the page */ 558 flush_dcache_page(tail_page); 559 560 retval = reiserfs_commit_write(NULL, tail_page, tail_start, tail_end); 561 562 unlock: 563 if (tail_page != hole_page) { 564 unlock_page(tail_page); 565 page_cache_release(tail_page); 566 } 567 out: 568 return retval; 569 } 570 571 static inline int _allocate_block(struct reiserfs_transaction_handle *th, 572 sector_t block, 573 struct inode *inode, 574 b_blocknr_t * allocated_block_nr, 575 struct treepath *path, int flags) 576 { 577 BUG_ON(!th->t_trans_id); 578 579 #ifdef REISERFS_PREALLOCATE 580 if (!(flags & GET_BLOCK_NO_IMUX)) { 581 return reiserfs_new_unf_blocknrs2(th, inode, allocated_block_nr, 582 path, block); 583 } 584 #endif 585 return reiserfs_new_unf_blocknrs(th, inode, allocated_block_nr, path, 586 block); 587 } 588 589 int reiserfs_get_block(struct inode *inode, sector_t block, 590 struct buffer_head *bh_result, int create) 591 { 592 int repeat, retval = 0; 593 b_blocknr_t allocated_block_nr = 0; // b_blocknr_t is (unsigned) 32 bit int 594 INITIALIZE_PATH(path); 595 int pos_in_item; 596 struct cpu_key key; 597 struct buffer_head *bh, *unbh = NULL; 598 struct item_head *ih, tmp_ih; 599 __le32 *item; 600 int done; 601 int fs_gen; 602 struct reiserfs_transaction_handle *th = NULL; 603 /* space reserved in transaction batch: 604 . 3 balancings in direct->indirect conversion 605 . 1 block involved into reiserfs_update_sd() 606 XXX in practically impossible worst case direct2indirect() 607 can incur (much) more than 3 balancings. 608 quota update for user, group */ 609 int jbegin_count = 610 JOURNAL_PER_BALANCE_CNT * 3 + 1 + 611 2 * REISERFS_QUOTA_TRANS_BLOCKS(inode->i_sb); 612 int version; 613 int dangle = 1; 614 loff_t new_offset = 615 (((loff_t) block) << inode->i_sb->s_blocksize_bits) + 1; 616 617 /* bad.... */ 618 reiserfs_write_lock(inode->i_sb); 619 version = get_inode_item_key_version(inode); 620 621 if (!file_capable(inode, block)) { 622 reiserfs_write_unlock(inode->i_sb); 623 return -EFBIG; 624 } 625 626 /* if !create, we aren't changing the FS, so we don't need to 627 ** log anything, so we don't need to start a transaction 628 */ 629 if (!(create & GET_BLOCK_CREATE)) { 630 int ret; 631 /* find number of block-th logical block of the file */ 632 ret = _get_block_create_0(inode, block, bh_result, 633 create | GET_BLOCK_READ_DIRECT); 634 reiserfs_write_unlock(inode->i_sb); 635 return ret; 636 } 637 /* 638 * if we're already in a transaction, make sure to close 639 * any new transactions we start in this func 640 */ 641 if ((create & GET_BLOCK_NO_DANGLE) || 642 reiserfs_transaction_running(inode->i_sb)) 643 dangle = 0; 644 645 /* If file is of such a size, that it might have a tail and tails are enabled 646 ** we should mark it as possibly needing tail packing on close 647 */ 648 if ((have_large_tails(inode->i_sb) 649 && inode->i_size < i_block_size(inode) * 4) 650 || (have_small_tails(inode->i_sb) 651 && inode->i_size < i_block_size(inode))) 652 REISERFS_I(inode)->i_flags |= i_pack_on_close_mask; 653 654 /* set the key of the first byte in the 'block'-th block of file */ 655 make_cpu_key(&key, inode, new_offset, TYPE_ANY, 3 /*key length */ ); 656 if ((new_offset + inode->i_sb->s_blocksize - 1) > inode->i_size) { 657 start_trans: 658 th = reiserfs_persistent_transaction(inode->i_sb, jbegin_count); 659 if (!th) { 660 retval = -ENOMEM; 661 goto failure; 662 } 663 reiserfs_update_inode_transaction(inode); 664 } 665 research: 666 667 retval = search_for_position_by_key(inode->i_sb, &key, &path); 668 if (retval == IO_ERROR) { 669 retval = -EIO; 670 goto failure; 671 } 672 673 bh = get_last_bh(&path); 674 ih = get_ih(&path); 675 item = get_item(&path); 676 pos_in_item = path.pos_in_item; 677 678 fs_gen = get_generation(inode->i_sb); 679 copy_item_head(&tmp_ih, ih); 680 681 if (allocation_needed 682 (retval, allocated_block_nr, ih, item, pos_in_item)) { 683 /* we have to allocate block for the unformatted node */ 684 if (!th) { 685 pathrelse(&path); 686 goto start_trans; 687 } 688 689 repeat = 690 _allocate_block(th, block, inode, &allocated_block_nr, 691 &path, create); 692 693 if (repeat == NO_DISK_SPACE || repeat == QUOTA_EXCEEDED) { 694 /* restart the transaction to give the journal a chance to free 695 ** some blocks. releases the path, so we have to go back to 696 ** research if we succeed on the second try 697 */ 698 SB_JOURNAL(inode->i_sb)->j_next_async_flush = 1; 699 retval = restart_transaction(th, inode, &path); 700 if (retval) 701 goto failure; 702 repeat = 703 _allocate_block(th, block, inode, 704 &allocated_block_nr, NULL, create); 705 706 if (repeat != NO_DISK_SPACE && repeat != QUOTA_EXCEEDED) { 707 goto research; 708 } 709 if (repeat == QUOTA_EXCEEDED) 710 retval = -EDQUOT; 711 else 712 retval = -ENOSPC; 713 goto failure; 714 } 715 716 if (fs_changed(fs_gen, inode->i_sb) 717 && item_moved(&tmp_ih, &path)) { 718 goto research; 719 } 720 } 721 722 if (indirect_item_found(retval, ih)) { 723 b_blocknr_t unfm_ptr; 724 /* 'block'-th block is in the file already (there is 725 corresponding cell in some indirect item). But it may be 726 zero unformatted node pointer (hole) */ 727 unfm_ptr = get_block_num(item, pos_in_item); 728 if (unfm_ptr == 0) { 729 /* use allocated block to plug the hole */ 730 reiserfs_prepare_for_journal(inode->i_sb, bh, 1); 731 if (fs_changed(fs_gen, inode->i_sb) 732 && item_moved(&tmp_ih, &path)) { 733 reiserfs_restore_prepared_buffer(inode->i_sb, 734 bh); 735 goto research; 736 } 737 set_buffer_new(bh_result); 738 if (buffer_dirty(bh_result) 739 && reiserfs_data_ordered(inode->i_sb)) 740 reiserfs_add_ordered_list(inode, bh_result); 741 put_block_num(item, pos_in_item, allocated_block_nr); 742 unfm_ptr = allocated_block_nr; 743 journal_mark_dirty(th, inode->i_sb, bh); 744 reiserfs_update_sd(th, inode); 745 } 746 set_block_dev_mapped(bh_result, unfm_ptr, inode); 747 pathrelse(&path); 748 retval = 0; 749 if (!dangle && th) 750 retval = reiserfs_end_persistent_transaction(th); 751 752 reiserfs_write_unlock(inode->i_sb); 753 754 /* the item was found, so new blocks were not added to the file 755 ** there is no need to make sure the inode is updated with this 756 ** transaction 757 */ 758 return retval; 759 } 760 761 if (!th) { 762 pathrelse(&path); 763 goto start_trans; 764 } 765 766 /* desired position is not found or is in the direct item. We have 767 to append file with holes up to 'block'-th block converting 768 direct items to indirect one if necessary */ 769 done = 0; 770 do { 771 if (is_statdata_le_ih(ih)) { 772 __le32 unp = 0; 773 struct cpu_key tmp_key; 774 775 /* indirect item has to be inserted */ 776 make_le_item_head(&tmp_ih, &key, version, 1, 777 TYPE_INDIRECT, UNFM_P_SIZE, 778 0 /* free_space */ ); 779 780 if (cpu_key_k_offset(&key) == 1) { 781 /* we are going to add 'block'-th block to the file. Use 782 allocated block for that */ 783 unp = cpu_to_le32(allocated_block_nr); 784 set_block_dev_mapped(bh_result, 785 allocated_block_nr, inode); 786 set_buffer_new(bh_result); 787 done = 1; 788 } 789 tmp_key = key; // ;) 790 set_cpu_key_k_offset(&tmp_key, 1); 791 PATH_LAST_POSITION(&path)++; 792 793 retval = 794 reiserfs_insert_item(th, &path, &tmp_key, &tmp_ih, 795 inode, (char *)&unp); 796 if (retval) { 797 reiserfs_free_block(th, inode, 798 allocated_block_nr, 1); 799 goto failure; // retval == -ENOSPC, -EDQUOT or -EIO or -EEXIST 800 } 801 //mark_tail_converted (inode); 802 } else if (is_direct_le_ih(ih)) { 803 /* direct item has to be converted */ 804 loff_t tail_offset; 805 806 tail_offset = 807 ((le_ih_k_offset(ih) - 808 1) & ~(inode->i_sb->s_blocksize - 1)) + 1; 809 if (tail_offset == cpu_key_k_offset(&key)) { 810 /* direct item we just found fits into block we have 811 to map. Convert it into unformatted node: use 812 bh_result for the conversion */ 813 set_block_dev_mapped(bh_result, 814 allocated_block_nr, inode); 815 unbh = bh_result; 816 done = 1; 817 } else { 818 /* we have to padd file tail stored in direct item(s) 819 up to block size and convert it to unformatted 820 node. FIXME: this should also get into page cache */ 821 822 pathrelse(&path); 823 /* 824 * ugly, but we can only end the transaction if 825 * we aren't nested 826 */ 827 BUG_ON(!th->t_refcount); 828 if (th->t_refcount == 1) { 829 retval = 830 reiserfs_end_persistent_transaction 831 (th); 832 th = NULL; 833 if (retval) 834 goto failure; 835 } 836 837 retval = 838 convert_tail_for_hole(inode, bh_result, 839 tail_offset); 840 if (retval) { 841 if (retval != -ENOSPC) 842 reiserfs_warning(inode->i_sb, 843 "clm-6004: convert tail failed inode %lu, error %d", 844 inode->i_ino, 845 retval); 846 if (allocated_block_nr) { 847 /* the bitmap, the super, and the stat data == 3 */ 848 if (!th) 849 th = reiserfs_persistent_transaction(inode->i_sb, 3); 850 if (th) 851 reiserfs_free_block(th, 852 inode, 853 allocated_block_nr, 854 1); 855 } 856 goto failure; 857 } 858 goto research; 859 } 860 retval = 861 direct2indirect(th, inode, &path, unbh, 862 tail_offset); 863 if (retval) { 864 reiserfs_unmap_buffer(unbh); 865 reiserfs_free_block(th, inode, 866 allocated_block_nr, 1); 867 goto failure; 868 } 869 /* it is important the set_buffer_uptodate is done after 870 ** the direct2indirect. The buffer might contain valid 871 ** data newer than the data on disk (read by readpage, changed, 872 ** and then sent here by writepage). direct2indirect needs 873 ** to know if unbh was already up to date, so it can decide 874 ** if the data in unbh needs to be replaced with data from 875 ** the disk 876 */ 877 set_buffer_uptodate(unbh); 878 879 /* unbh->b_page == NULL in case of DIRECT_IO request, this means 880 buffer will disappear shortly, so it should not be added to 881 */ 882 if (unbh->b_page) { 883 /* we've converted the tail, so we must 884 ** flush unbh before the transaction commits 885 */ 886 reiserfs_add_tail_list(inode, unbh); 887 888 /* mark it dirty now to prevent commit_write from adding 889 ** this buffer to the inode's dirty buffer list 890 */ 891 /* 892 * AKPM: changed __mark_buffer_dirty to mark_buffer_dirty(). 893 * It's still atomic, but it sets the page dirty too, 894 * which makes it eligible for writeback at any time by the 895 * VM (which was also the case with __mark_buffer_dirty()) 896 */ 897 mark_buffer_dirty(unbh); 898 } 899 } else { 900 /* append indirect item with holes if needed, when appending 901 pointer to 'block'-th block use block, which is already 902 allocated */ 903 struct cpu_key tmp_key; 904 unp_t unf_single = 0; // We use this in case we need to allocate only 905 // one block which is a fastpath 906 unp_t *un; 907 __u64 max_to_insert = 908 MAX_ITEM_LEN(inode->i_sb->s_blocksize) / 909 UNFM_P_SIZE; 910 __u64 blocks_needed; 911 912 RFALSE(pos_in_item != ih_item_len(ih) / UNFM_P_SIZE, 913 "vs-804: invalid position for append"); 914 /* indirect item has to be appended, set up key of that position */ 915 make_cpu_key(&tmp_key, inode, 916 le_key_k_offset(version, 917 &(ih->ih_key)) + 918 op_bytes_number(ih, 919 inode->i_sb->s_blocksize), 920 //pos_in_item * inode->i_sb->s_blocksize, 921 TYPE_INDIRECT, 3); // key type is unimportant 922 923 RFALSE(cpu_key_k_offset(&tmp_key) > cpu_key_k_offset(&key), 924 "green-805: invalid offset"); 925 blocks_needed = 926 1 + 927 ((cpu_key_k_offset(&key) - 928 cpu_key_k_offset(&tmp_key)) >> inode->i_sb-> 929 s_blocksize_bits); 930 931 if (blocks_needed == 1) { 932 un = &unf_single; 933 } else { 934 un = kzalloc(min(blocks_needed, max_to_insert) * UNFM_P_SIZE, GFP_ATOMIC); // We need to avoid scheduling. 935 if (!un) { 936 un = &unf_single; 937 blocks_needed = 1; 938 max_to_insert = 0; 939 } 940 } 941 if (blocks_needed <= max_to_insert) { 942 /* we are going to add target block to the file. Use allocated 943 block for that */ 944 un[blocks_needed - 1] = 945 cpu_to_le32(allocated_block_nr); 946 set_block_dev_mapped(bh_result, 947 allocated_block_nr, inode); 948 set_buffer_new(bh_result); 949 done = 1; 950 } else { 951 /* paste hole to the indirect item */ 952 /* If kmalloc failed, max_to_insert becomes zero and it means we 953 only have space for one block */ 954 blocks_needed = 955 max_to_insert ? max_to_insert : 1; 956 } 957 retval = 958 reiserfs_paste_into_item(th, &path, &tmp_key, inode, 959 (char *)un, 960 UNFM_P_SIZE * 961 blocks_needed); 962 963 if (blocks_needed != 1) 964 kfree(un); 965 966 if (retval) { 967 reiserfs_free_block(th, inode, 968 allocated_block_nr, 1); 969 goto failure; 970 } 971 if (!done) { 972 /* We need to mark new file size in case this function will be 973 interrupted/aborted later on. And we may do this only for 974 holes. */ 975 inode->i_size += 976 inode->i_sb->s_blocksize * blocks_needed; 977 } 978 } 979 980 if (done == 1) 981 break; 982 983 /* this loop could log more blocks than we had originally asked 984 ** for. So, we have to allow the transaction to end if it is 985 ** too big or too full. Update the inode so things are 986 ** consistent if we crash before the function returns 987 ** 988 ** release the path so that anybody waiting on the path before 989 ** ending their transaction will be able to continue. 990 */ 991 if (journal_transaction_should_end(th, th->t_blocks_allocated)) { 992 retval = restart_transaction(th, inode, &path); 993 if (retval) 994 goto failure; 995 } 996 /* inserting indirect pointers for a hole can take a 997 ** long time. reschedule if needed 998 */ 999 cond_resched(); 1000 1001 retval = search_for_position_by_key(inode->i_sb, &key, &path); 1002 if (retval == IO_ERROR) { 1003 retval = -EIO; 1004 goto failure; 1005 } 1006 if (retval == POSITION_FOUND) { 1007 reiserfs_warning(inode->i_sb, 1008 "vs-825: reiserfs_get_block: " 1009 "%K should not be found", &key); 1010 retval = -EEXIST; 1011 if (allocated_block_nr) 1012 reiserfs_free_block(th, inode, 1013 allocated_block_nr, 1); 1014 pathrelse(&path); 1015 goto failure; 1016 } 1017 bh = get_last_bh(&path); 1018 ih = get_ih(&path); 1019 item = get_item(&path); 1020 pos_in_item = path.pos_in_item; 1021 } while (1); 1022 1023 retval = 0; 1024 1025 failure: 1026 if (th && (!dangle || (retval && !th->t_trans_id))) { 1027 int err; 1028 if (th->t_trans_id) 1029 reiserfs_update_sd(th, inode); 1030 err = reiserfs_end_persistent_transaction(th); 1031 if (err) 1032 retval = err; 1033 } 1034 1035 reiserfs_write_unlock(inode->i_sb); 1036 reiserfs_check_path(&path); 1037 return retval; 1038 } 1039 1040 static int 1041 reiserfs_readpages(struct file *file, struct address_space *mapping, 1042 struct list_head *pages, unsigned nr_pages) 1043 { 1044 return mpage_readpages(mapping, pages, nr_pages, reiserfs_get_block); 1045 } 1046 1047 /* Compute real number of used bytes by file 1048 * Following three functions can go away when we'll have enough space in stat item 1049 */ 1050 static int real_space_diff(struct inode *inode, int sd_size) 1051 { 1052 int bytes; 1053 loff_t blocksize = inode->i_sb->s_blocksize; 1054 1055 if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode)) 1056 return sd_size; 1057 1058 /* End of file is also in full block with indirect reference, so round 1059 ** up to the next block. 1060 ** 1061 ** there is just no way to know if the tail is actually packed 1062 ** on the file, so we have to assume it isn't. When we pack the 1063 ** tail, we add 4 bytes to pretend there really is an unformatted 1064 ** node pointer 1065 */ 1066 bytes = 1067 ((inode->i_size + 1068 (blocksize - 1)) >> inode->i_sb->s_blocksize_bits) * UNFM_P_SIZE + 1069 sd_size; 1070 return bytes; 1071 } 1072 1073 static inline loff_t to_real_used_space(struct inode *inode, ulong blocks, 1074 int sd_size) 1075 { 1076 if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode)) { 1077 return inode->i_size + 1078 (loff_t) (real_space_diff(inode, sd_size)); 1079 } 1080 return ((loff_t) real_space_diff(inode, sd_size)) + 1081 (((loff_t) blocks) << 9); 1082 } 1083 1084 /* Compute number of blocks used by file in ReiserFS counting */ 1085 static inline ulong to_fake_used_blocks(struct inode *inode, int sd_size) 1086 { 1087 loff_t bytes = inode_get_bytes(inode); 1088 loff_t real_space = real_space_diff(inode, sd_size); 1089 1090 /* keeps fsck and non-quota versions of reiserfs happy */ 1091 if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode)) { 1092 bytes += (loff_t) 511; 1093 } 1094 1095 /* files from before the quota patch might i_blocks such that 1096 ** bytes < real_space. Deal with that here to prevent it from 1097 ** going negative. 1098 */ 1099 if (bytes < real_space) 1100 return 0; 1101 return (bytes - real_space) >> 9; 1102 } 1103 1104 // 1105 // BAD: new directories have stat data of new type and all other items 1106 // of old type. Version stored in the inode says about body items, so 1107 // in update_stat_data we can not rely on inode, but have to check 1108 // item version directly 1109 // 1110 1111 // called by read_locked_inode 1112 static void init_inode(struct inode *inode, struct treepath *path) 1113 { 1114 struct buffer_head *bh; 1115 struct item_head *ih; 1116 __u32 rdev; 1117 //int version = ITEM_VERSION_1; 1118 1119 bh = PATH_PLAST_BUFFER(path); 1120 ih = PATH_PITEM_HEAD(path); 1121 1122 copy_key(INODE_PKEY(inode), &(ih->ih_key)); 1123 1124 INIT_LIST_HEAD(&(REISERFS_I(inode)->i_prealloc_list)); 1125 REISERFS_I(inode)->i_flags = 0; 1126 REISERFS_I(inode)->i_prealloc_block = 0; 1127 REISERFS_I(inode)->i_prealloc_count = 0; 1128 REISERFS_I(inode)->i_trans_id = 0; 1129 REISERFS_I(inode)->i_jl = NULL; 1130 mutex_init(&(REISERFS_I(inode)->i_mmap)); 1131 reiserfs_init_acl_access(inode); 1132 reiserfs_init_acl_default(inode); 1133 reiserfs_init_xattr_rwsem(inode); 1134 1135 if (stat_data_v1(ih)) { 1136 struct stat_data_v1 *sd = 1137 (struct stat_data_v1 *)B_I_PITEM(bh, ih); 1138 unsigned long blocks; 1139 1140 set_inode_item_key_version(inode, KEY_FORMAT_3_5); 1141 set_inode_sd_version(inode, STAT_DATA_V1); 1142 inode->i_mode = sd_v1_mode(sd); 1143 inode->i_nlink = sd_v1_nlink(sd); 1144 inode->i_uid = sd_v1_uid(sd); 1145 inode->i_gid = sd_v1_gid(sd); 1146 inode->i_size = sd_v1_size(sd); 1147 inode->i_atime.tv_sec = sd_v1_atime(sd); 1148 inode->i_mtime.tv_sec = sd_v1_mtime(sd); 1149 inode->i_ctime.tv_sec = sd_v1_ctime(sd); 1150 inode->i_atime.tv_nsec = 0; 1151 inode->i_ctime.tv_nsec = 0; 1152 inode->i_mtime.tv_nsec = 0; 1153 1154 inode->i_blocks = sd_v1_blocks(sd); 1155 inode->i_generation = le32_to_cpu(INODE_PKEY(inode)->k_dir_id); 1156 blocks = (inode->i_size + 511) >> 9; 1157 blocks = _ROUND_UP(blocks, inode->i_sb->s_blocksize >> 9); 1158 if (inode->i_blocks > blocks) { 1159 // there was a bug in <=3.5.23 when i_blocks could take negative 1160 // values. Starting from 3.5.17 this value could even be stored in 1161 // stat data. For such files we set i_blocks based on file 1162 // size. Just 2 notes: this can be wrong for sparce files. On-disk value will be 1163 // only updated if file's inode will ever change 1164 inode->i_blocks = blocks; 1165 } 1166 1167 rdev = sd_v1_rdev(sd); 1168 REISERFS_I(inode)->i_first_direct_byte = 1169 sd_v1_first_direct_byte(sd); 1170 /* an early bug in the quota code can give us an odd number for the 1171 ** block count. This is incorrect, fix it here. 1172 */ 1173 if (inode->i_blocks & 1) { 1174 inode->i_blocks++; 1175 } 1176 inode_set_bytes(inode, 1177 to_real_used_space(inode, inode->i_blocks, 1178 SD_V1_SIZE)); 1179 /* nopack is initially zero for v1 objects. For v2 objects, 1180 nopack is initialised from sd_attrs */ 1181 REISERFS_I(inode)->i_flags &= ~i_nopack_mask; 1182 } else { 1183 // new stat data found, but object may have old items 1184 // (directories and symlinks) 1185 struct stat_data *sd = (struct stat_data *)B_I_PITEM(bh, ih); 1186 1187 inode->i_mode = sd_v2_mode(sd); 1188 inode->i_nlink = sd_v2_nlink(sd); 1189 inode->i_uid = sd_v2_uid(sd); 1190 inode->i_size = sd_v2_size(sd); 1191 inode->i_gid = sd_v2_gid(sd); 1192 inode->i_mtime.tv_sec = sd_v2_mtime(sd); 1193 inode->i_atime.tv_sec = sd_v2_atime(sd); 1194 inode->i_ctime.tv_sec = sd_v2_ctime(sd); 1195 inode->i_ctime.tv_nsec = 0; 1196 inode->i_mtime.tv_nsec = 0; 1197 inode->i_atime.tv_nsec = 0; 1198 inode->i_blocks = sd_v2_blocks(sd); 1199 rdev = sd_v2_rdev(sd); 1200 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) 1201 inode->i_generation = 1202 le32_to_cpu(INODE_PKEY(inode)->k_dir_id); 1203 else 1204 inode->i_generation = sd_v2_generation(sd); 1205 1206 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode)) 1207 set_inode_item_key_version(inode, KEY_FORMAT_3_5); 1208 else 1209 set_inode_item_key_version(inode, KEY_FORMAT_3_6); 1210 REISERFS_I(inode)->i_first_direct_byte = 0; 1211 set_inode_sd_version(inode, STAT_DATA_V2); 1212 inode_set_bytes(inode, 1213 to_real_used_space(inode, inode->i_blocks, 1214 SD_V2_SIZE)); 1215 /* read persistent inode attributes from sd and initalise 1216 generic inode flags from them */ 1217 REISERFS_I(inode)->i_attrs = sd_v2_attrs(sd); 1218 sd_attrs_to_i_attrs(sd_v2_attrs(sd), inode); 1219 } 1220 1221 pathrelse(path); 1222 if (S_ISREG(inode->i_mode)) { 1223 inode->i_op = &reiserfs_file_inode_operations; 1224 inode->i_fop = &reiserfs_file_operations; 1225 inode->i_mapping->a_ops = &reiserfs_address_space_operations; 1226 } else if (S_ISDIR(inode->i_mode)) { 1227 inode->i_op = &reiserfs_dir_inode_operations; 1228 inode->i_fop = &reiserfs_dir_operations; 1229 } else if (S_ISLNK(inode->i_mode)) { 1230 inode->i_op = &reiserfs_symlink_inode_operations; 1231 inode->i_mapping->a_ops = &reiserfs_address_space_operations; 1232 } else { 1233 inode->i_blocks = 0; 1234 inode->i_op = &reiserfs_special_inode_operations; 1235 init_special_inode(inode, inode->i_mode, new_decode_dev(rdev)); 1236 } 1237 } 1238 1239 // update new stat data with inode fields 1240 static void inode2sd(void *sd, struct inode *inode, loff_t size) 1241 { 1242 struct stat_data *sd_v2 = (struct stat_data *)sd; 1243 __u16 flags; 1244 1245 set_sd_v2_mode(sd_v2, inode->i_mode); 1246 set_sd_v2_nlink(sd_v2, inode->i_nlink); 1247 set_sd_v2_uid(sd_v2, inode->i_uid); 1248 set_sd_v2_size(sd_v2, size); 1249 set_sd_v2_gid(sd_v2, inode->i_gid); 1250 set_sd_v2_mtime(sd_v2, inode->i_mtime.tv_sec); 1251 set_sd_v2_atime(sd_v2, inode->i_atime.tv_sec); 1252 set_sd_v2_ctime(sd_v2, inode->i_ctime.tv_sec); 1253 set_sd_v2_blocks(sd_v2, to_fake_used_blocks(inode, SD_V2_SIZE)); 1254 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) 1255 set_sd_v2_rdev(sd_v2, new_encode_dev(inode->i_rdev)); 1256 else 1257 set_sd_v2_generation(sd_v2, inode->i_generation); 1258 flags = REISERFS_I(inode)->i_attrs; 1259 i_attrs_to_sd_attrs(inode, &flags); 1260 set_sd_v2_attrs(sd_v2, flags); 1261 } 1262 1263 // used to copy inode's fields to old stat data 1264 static void inode2sd_v1(void *sd, struct inode *inode, loff_t size) 1265 { 1266 struct stat_data_v1 *sd_v1 = (struct stat_data_v1 *)sd; 1267 1268 set_sd_v1_mode(sd_v1, inode->i_mode); 1269 set_sd_v1_uid(sd_v1, inode->i_uid); 1270 set_sd_v1_gid(sd_v1, inode->i_gid); 1271 set_sd_v1_nlink(sd_v1, inode->i_nlink); 1272 set_sd_v1_size(sd_v1, size); 1273 set_sd_v1_atime(sd_v1, inode->i_atime.tv_sec); 1274 set_sd_v1_ctime(sd_v1, inode->i_ctime.tv_sec); 1275 set_sd_v1_mtime(sd_v1, inode->i_mtime.tv_sec); 1276 1277 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) 1278 set_sd_v1_rdev(sd_v1, new_encode_dev(inode->i_rdev)); 1279 else 1280 set_sd_v1_blocks(sd_v1, to_fake_used_blocks(inode, SD_V1_SIZE)); 1281 1282 // Sigh. i_first_direct_byte is back 1283 set_sd_v1_first_direct_byte(sd_v1, 1284 REISERFS_I(inode)->i_first_direct_byte); 1285 } 1286 1287 /* NOTE, you must prepare the buffer head before sending it here, 1288 ** and then log it after the call 1289 */ 1290 static void update_stat_data(struct treepath *path, struct inode *inode, 1291 loff_t size) 1292 { 1293 struct buffer_head *bh; 1294 struct item_head *ih; 1295 1296 bh = PATH_PLAST_BUFFER(path); 1297 ih = PATH_PITEM_HEAD(path); 1298 1299 if (!is_statdata_le_ih(ih)) 1300 reiserfs_panic(inode->i_sb, 1301 "vs-13065: update_stat_data: key %k, found item %h", 1302 INODE_PKEY(inode), ih); 1303 1304 if (stat_data_v1(ih)) { 1305 // path points to old stat data 1306 inode2sd_v1(B_I_PITEM(bh, ih), inode, size); 1307 } else { 1308 inode2sd(B_I_PITEM(bh, ih), inode, size); 1309 } 1310 1311 return; 1312 } 1313 1314 void reiserfs_update_sd_size(struct reiserfs_transaction_handle *th, 1315 struct inode *inode, loff_t size) 1316 { 1317 struct cpu_key key; 1318 INITIALIZE_PATH(path); 1319 struct buffer_head *bh; 1320 int fs_gen; 1321 struct item_head *ih, tmp_ih; 1322 int retval; 1323 1324 BUG_ON(!th->t_trans_id); 1325 1326 make_cpu_key(&key, inode, SD_OFFSET, TYPE_STAT_DATA, 3); //key type is unimportant 1327 1328 for (;;) { 1329 int pos; 1330 /* look for the object's stat data */ 1331 retval = search_item(inode->i_sb, &key, &path); 1332 if (retval == IO_ERROR) { 1333 reiserfs_warning(inode->i_sb, 1334 "vs-13050: reiserfs_update_sd: " 1335 "i/o failure occurred trying to update %K stat data", 1336 &key); 1337 return; 1338 } 1339 if (retval == ITEM_NOT_FOUND) { 1340 pos = PATH_LAST_POSITION(&path); 1341 pathrelse(&path); 1342 if (inode->i_nlink == 0) { 1343 /*reiserfs_warning (inode->i_sb, "vs-13050: reiserfs_update_sd: i_nlink == 0, stat data not found"); */ 1344 return; 1345 } 1346 reiserfs_warning(inode->i_sb, 1347 "vs-13060: reiserfs_update_sd: " 1348 "stat data of object %k (nlink == %d) not found (pos %d)", 1349 INODE_PKEY(inode), inode->i_nlink, 1350 pos); 1351 reiserfs_check_path(&path); 1352 return; 1353 } 1354 1355 /* sigh, prepare_for_journal might schedule. When it schedules the 1356 ** FS might change. We have to detect that, and loop back to the 1357 ** search if the stat data item has moved 1358 */ 1359 bh = get_last_bh(&path); 1360 ih = get_ih(&path); 1361 copy_item_head(&tmp_ih, ih); 1362 fs_gen = get_generation(inode->i_sb); 1363 reiserfs_prepare_for_journal(inode->i_sb, bh, 1); 1364 if (fs_changed(fs_gen, inode->i_sb) 1365 && item_moved(&tmp_ih, &path)) { 1366 reiserfs_restore_prepared_buffer(inode->i_sb, bh); 1367 continue; /* Stat_data item has been moved after scheduling. */ 1368 } 1369 break; 1370 } 1371 update_stat_data(&path, inode, size); 1372 journal_mark_dirty(th, th->t_super, bh); 1373 pathrelse(&path); 1374 return; 1375 } 1376 1377 /* reiserfs_read_locked_inode is called to read the inode off disk, and it 1378 ** does a make_bad_inode when things go wrong. But, we need to make sure 1379 ** and clear the key in the private portion of the inode, otherwise a 1380 ** corresponding iput might try to delete whatever object the inode last 1381 ** represented. 1382 */ 1383 static void reiserfs_make_bad_inode(struct inode *inode) 1384 { 1385 memset(INODE_PKEY(inode), 0, KEY_SIZE); 1386 make_bad_inode(inode); 1387 } 1388 1389 // 1390 // initially this function was derived from minix or ext2's analog and 1391 // evolved as the prototype did 1392 // 1393 1394 int reiserfs_init_locked_inode(struct inode *inode, void *p) 1395 { 1396 struct reiserfs_iget_args *args = (struct reiserfs_iget_args *)p; 1397 inode->i_ino = args->objectid; 1398 INODE_PKEY(inode)->k_dir_id = cpu_to_le32(args->dirid); 1399 return 0; 1400 } 1401 1402 /* looks for stat data in the tree, and fills up the fields of in-core 1403 inode stat data fields */ 1404 void reiserfs_read_locked_inode(struct inode *inode, 1405 struct reiserfs_iget_args *args) 1406 { 1407 INITIALIZE_PATH(path_to_sd); 1408 struct cpu_key key; 1409 unsigned long dirino; 1410 int retval; 1411 1412 dirino = args->dirid; 1413 1414 /* set version 1, version 2 could be used too, because stat data 1415 key is the same in both versions */ 1416 key.version = KEY_FORMAT_3_5; 1417 key.on_disk_key.k_dir_id = dirino; 1418 key.on_disk_key.k_objectid = inode->i_ino; 1419 key.on_disk_key.k_offset = 0; 1420 key.on_disk_key.k_type = 0; 1421 1422 /* look for the object's stat data */ 1423 retval = search_item(inode->i_sb, &key, &path_to_sd); 1424 if (retval == IO_ERROR) { 1425 reiserfs_warning(inode->i_sb, 1426 "vs-13070: reiserfs_read_locked_inode: " 1427 "i/o failure occurred trying to find stat data of %K", 1428 &key); 1429 reiserfs_make_bad_inode(inode); 1430 return; 1431 } 1432 if (retval != ITEM_FOUND) { 1433 /* a stale NFS handle can trigger this without it being an error */ 1434 pathrelse(&path_to_sd); 1435 reiserfs_make_bad_inode(inode); 1436 inode->i_nlink = 0; 1437 return; 1438 } 1439 1440 init_inode(inode, &path_to_sd); 1441 1442 /* It is possible that knfsd is trying to access inode of a file 1443 that is being removed from the disk by some other thread. As we 1444 update sd on unlink all that is required is to check for nlink 1445 here. This bug was first found by Sizif when debugging 1446 SquidNG/Butterfly, forgotten, and found again after Philippe 1447 Gramoulle <philippe.gramoulle@mmania.com> reproduced it. 1448 1449 More logical fix would require changes in fs/inode.c:iput() to 1450 remove inode from hash-table _after_ fs cleaned disk stuff up and 1451 in iget() to return NULL if I_FREEING inode is found in 1452 hash-table. */ 1453 /* Currently there is one place where it's ok to meet inode with 1454 nlink==0: processing of open-unlinked and half-truncated files 1455 during mount (fs/reiserfs/super.c:finish_unfinished()). */ 1456 if ((inode->i_nlink == 0) && 1457 !REISERFS_SB(inode->i_sb)->s_is_unlinked_ok) { 1458 reiserfs_warning(inode->i_sb, 1459 "vs-13075: reiserfs_read_locked_inode: " 1460 "dead inode read from disk %K. " 1461 "This is likely to be race with knfsd. Ignore", 1462 &key); 1463 reiserfs_make_bad_inode(inode); 1464 } 1465 1466 reiserfs_check_path(&path_to_sd); /* init inode should be relsing */ 1467 1468 } 1469 1470 /** 1471 * reiserfs_find_actor() - "find actor" reiserfs supplies to iget5_locked(). 1472 * 1473 * @inode: inode from hash table to check 1474 * @opaque: "cookie" passed to iget5_locked(). This is &reiserfs_iget_args. 1475 * 1476 * This function is called by iget5_locked() to distinguish reiserfs inodes 1477 * having the same inode numbers. Such inodes can only exist due to some 1478 * error condition. One of them should be bad. Inodes with identical 1479 * inode numbers (objectids) are distinguished by parent directory ids. 1480 * 1481 */ 1482 int reiserfs_find_actor(struct inode *inode, void *opaque) 1483 { 1484 struct reiserfs_iget_args *args; 1485 1486 args = opaque; 1487 /* args is already in CPU order */ 1488 return (inode->i_ino == args->objectid) && 1489 (le32_to_cpu(INODE_PKEY(inode)->k_dir_id) == args->dirid); 1490 } 1491 1492 struct inode *reiserfs_iget(struct super_block *s, const struct cpu_key *key) 1493 { 1494 struct inode *inode; 1495 struct reiserfs_iget_args args; 1496 1497 args.objectid = key->on_disk_key.k_objectid; 1498 args.dirid = key->on_disk_key.k_dir_id; 1499 inode = iget5_locked(s, key->on_disk_key.k_objectid, 1500 reiserfs_find_actor, reiserfs_init_locked_inode, 1501 (void *)(&args)); 1502 if (!inode) 1503 return ERR_PTR(-ENOMEM); 1504 1505 if (inode->i_state & I_NEW) { 1506 reiserfs_read_locked_inode(inode, &args); 1507 unlock_new_inode(inode); 1508 } 1509 1510 if (comp_short_keys(INODE_PKEY(inode), key) || is_bad_inode(inode)) { 1511 /* either due to i/o error or a stale NFS handle */ 1512 iput(inode); 1513 inode = NULL; 1514 } 1515 return inode; 1516 } 1517 1518 struct dentry *reiserfs_get_dentry(struct super_block *sb, void *vobjp) 1519 { 1520 __u32 *data = vobjp; 1521 struct cpu_key key; 1522 struct dentry *result; 1523 struct inode *inode; 1524 1525 key.on_disk_key.k_objectid = data[0]; 1526 key.on_disk_key.k_dir_id = data[1]; 1527 reiserfs_write_lock(sb); 1528 inode = reiserfs_iget(sb, &key); 1529 if (inode && !IS_ERR(inode) && data[2] != 0 && 1530 data[2] != inode->i_generation) { 1531 iput(inode); 1532 inode = NULL; 1533 } 1534 reiserfs_write_unlock(sb); 1535 if (!inode) 1536 inode = ERR_PTR(-ESTALE); 1537 if (IS_ERR(inode)) 1538 return ERR_PTR(PTR_ERR(inode)); 1539 result = d_alloc_anon(inode); 1540 if (!result) { 1541 iput(inode); 1542 return ERR_PTR(-ENOMEM); 1543 } 1544 return result; 1545 } 1546 1547 struct dentry *reiserfs_decode_fh(struct super_block *sb, __u32 * data, 1548 int len, int fhtype, 1549 int (*acceptable) (void *contect, 1550 struct dentry * de), 1551 void *context) 1552 { 1553 __u32 obj[3], parent[3]; 1554 1555 /* fhtype happens to reflect the number of u32s encoded. 1556 * due to a bug in earlier code, fhtype might indicate there 1557 * are more u32s then actually fitted. 1558 * so if fhtype seems to be more than len, reduce fhtype. 1559 * Valid types are: 1560 * 2 - objectid + dir_id - legacy support 1561 * 3 - objectid + dir_id + generation 1562 * 4 - objectid + dir_id + objectid and dirid of parent - legacy 1563 * 5 - objectid + dir_id + generation + objectid and dirid of parent 1564 * 6 - as above plus generation of directory 1565 * 6 does not fit in NFSv2 handles 1566 */ 1567 if (fhtype > len) { 1568 if (fhtype != 6 || len != 5) 1569 reiserfs_warning(sb, 1570 "nfsd/reiserfs, fhtype=%d, len=%d - odd", 1571 fhtype, len); 1572 fhtype = 5; 1573 } 1574 1575 obj[0] = data[0]; 1576 obj[1] = data[1]; 1577 if (fhtype == 3 || fhtype >= 5) 1578 obj[2] = data[2]; 1579 else 1580 obj[2] = 0; /* generation number */ 1581 1582 if (fhtype >= 4) { 1583 parent[0] = data[fhtype >= 5 ? 3 : 2]; 1584 parent[1] = data[fhtype >= 5 ? 4 : 3]; 1585 if (fhtype == 6) 1586 parent[2] = data[5]; 1587 else 1588 parent[2] = 0; 1589 } 1590 return sb->s_export_op->find_exported_dentry(sb, obj, 1591 fhtype < 4 ? NULL : parent, 1592 acceptable, context); 1593 } 1594 1595 int reiserfs_encode_fh(struct dentry *dentry, __u32 * data, int *lenp, 1596 int need_parent) 1597 { 1598 struct inode *inode = dentry->d_inode; 1599 int maxlen = *lenp; 1600 1601 if (maxlen < 3) 1602 return 255; 1603 1604 data[0] = inode->i_ino; 1605 data[1] = le32_to_cpu(INODE_PKEY(inode)->k_dir_id); 1606 data[2] = inode->i_generation; 1607 *lenp = 3; 1608 /* no room for directory info? return what we've stored so far */ 1609 if (maxlen < 5 || !need_parent) 1610 return 3; 1611 1612 spin_lock(&dentry->d_lock); 1613 inode = dentry->d_parent->d_inode; 1614 data[3] = inode->i_ino; 1615 data[4] = le32_to_cpu(INODE_PKEY(inode)->k_dir_id); 1616 *lenp = 5; 1617 if (maxlen >= 6) { 1618 data[5] = inode->i_generation; 1619 *lenp = 6; 1620 } 1621 spin_unlock(&dentry->d_lock); 1622 return *lenp; 1623 } 1624 1625 /* looks for stat data, then copies fields to it, marks the buffer 1626 containing stat data as dirty */ 1627 /* reiserfs inodes are never really dirty, since the dirty inode call 1628 ** always logs them. This call allows the VFS inode marking routines 1629 ** to properly mark inodes for datasync and such, but only actually 1630 ** does something when called for a synchronous update. 1631 */ 1632 int reiserfs_write_inode(struct inode *inode, int do_sync) 1633 { 1634 struct reiserfs_transaction_handle th; 1635 int jbegin_count = 1; 1636 1637 if (inode->i_sb->s_flags & MS_RDONLY) 1638 return -EROFS; 1639 /* memory pressure can sometimes initiate write_inode calls with sync == 1, 1640 ** these cases are just when the system needs ram, not when the 1641 ** inode needs to reach disk for safety, and they can safely be 1642 ** ignored because the altered inode has already been logged. 1643 */ 1644 if (do_sync && !(current->flags & PF_MEMALLOC)) { 1645 reiserfs_write_lock(inode->i_sb); 1646 if (!journal_begin(&th, inode->i_sb, jbegin_count)) { 1647 reiserfs_update_sd(&th, inode); 1648 journal_end_sync(&th, inode->i_sb, jbegin_count); 1649 } 1650 reiserfs_write_unlock(inode->i_sb); 1651 } 1652 return 0; 1653 } 1654 1655 /* stat data of new object is inserted already, this inserts the item 1656 containing "." and ".." entries */ 1657 static int reiserfs_new_directory(struct reiserfs_transaction_handle *th, 1658 struct inode *inode, 1659 struct item_head *ih, struct treepath *path, 1660 struct inode *dir) 1661 { 1662 struct super_block *sb = th->t_super; 1663 char empty_dir[EMPTY_DIR_SIZE]; 1664 char *body = empty_dir; 1665 struct cpu_key key; 1666 int retval; 1667 1668 BUG_ON(!th->t_trans_id); 1669 1670 _make_cpu_key(&key, KEY_FORMAT_3_5, le32_to_cpu(ih->ih_key.k_dir_id), 1671 le32_to_cpu(ih->ih_key.k_objectid), DOT_OFFSET, 1672 TYPE_DIRENTRY, 3 /*key length */ ); 1673 1674 /* compose item head for new item. Directories consist of items of 1675 old type (ITEM_VERSION_1). Do not set key (second arg is 0), it 1676 is done by reiserfs_new_inode */ 1677 if (old_format_only(sb)) { 1678 make_le_item_head(ih, NULL, KEY_FORMAT_3_5, DOT_OFFSET, 1679 TYPE_DIRENTRY, EMPTY_DIR_SIZE_V1, 2); 1680 1681 make_empty_dir_item_v1(body, ih->ih_key.k_dir_id, 1682 ih->ih_key.k_objectid, 1683 INODE_PKEY(dir)->k_dir_id, 1684 INODE_PKEY(dir)->k_objectid); 1685 } else { 1686 make_le_item_head(ih, NULL, KEY_FORMAT_3_5, DOT_OFFSET, 1687 TYPE_DIRENTRY, EMPTY_DIR_SIZE, 2); 1688 1689 make_empty_dir_item(body, ih->ih_key.k_dir_id, 1690 ih->ih_key.k_objectid, 1691 INODE_PKEY(dir)->k_dir_id, 1692 INODE_PKEY(dir)->k_objectid); 1693 } 1694 1695 /* look for place in the tree for new item */ 1696 retval = search_item(sb, &key, path); 1697 if (retval == IO_ERROR) { 1698 reiserfs_warning(sb, "vs-13080: reiserfs_new_directory: " 1699 "i/o failure occurred creating new directory"); 1700 return -EIO; 1701 } 1702 if (retval == ITEM_FOUND) { 1703 pathrelse(path); 1704 reiserfs_warning(sb, "vs-13070: reiserfs_new_directory: " 1705 "object with this key exists (%k)", 1706 &(ih->ih_key)); 1707 return -EEXIST; 1708 } 1709 1710 /* insert item, that is empty directory item */ 1711 return reiserfs_insert_item(th, path, &key, ih, inode, body); 1712 } 1713 1714 /* stat data of object has been inserted, this inserts the item 1715 containing the body of symlink */ 1716 static int reiserfs_new_symlink(struct reiserfs_transaction_handle *th, struct inode *inode, /* Inode of symlink */ 1717 struct item_head *ih, 1718 struct treepath *path, const char *symname, 1719 int item_len) 1720 { 1721 struct super_block *sb = th->t_super; 1722 struct cpu_key key; 1723 int retval; 1724 1725 BUG_ON(!th->t_trans_id); 1726 1727 _make_cpu_key(&key, KEY_FORMAT_3_5, 1728 le32_to_cpu(ih->ih_key.k_dir_id), 1729 le32_to_cpu(ih->ih_key.k_objectid), 1730 1, TYPE_DIRECT, 3 /*key length */ ); 1731 1732 make_le_item_head(ih, NULL, KEY_FORMAT_3_5, 1, TYPE_DIRECT, item_len, 1733 0 /*free_space */ ); 1734 1735 /* look for place in the tree for new item */ 1736 retval = search_item(sb, &key, path); 1737 if (retval == IO_ERROR) { 1738 reiserfs_warning(sb, "vs-13080: reiserfs_new_symlinik: " 1739 "i/o failure occurred creating new symlink"); 1740 return -EIO; 1741 } 1742 if (retval == ITEM_FOUND) { 1743 pathrelse(path); 1744 reiserfs_warning(sb, "vs-13080: reiserfs_new_symlink: " 1745 "object with this key exists (%k)", 1746 &(ih->ih_key)); 1747 return -EEXIST; 1748 } 1749 1750 /* insert item, that is body of symlink */ 1751 return reiserfs_insert_item(th, path, &key, ih, inode, symname); 1752 } 1753 1754 /* inserts the stat data into the tree, and then calls 1755 reiserfs_new_directory (to insert ".", ".." item if new object is 1756 directory) or reiserfs_new_symlink (to insert symlink body if new 1757 object is symlink) or nothing (if new object is regular file) 1758 1759 NOTE! uid and gid must already be set in the inode. If we return 1760 non-zero due to an error, we have to drop the quota previously allocated 1761 for the fresh inode. This can only be done outside a transaction, so 1762 if we return non-zero, we also end the transaction. */ 1763 int reiserfs_new_inode(struct reiserfs_transaction_handle *th, 1764 struct inode *dir, int mode, const char *symname, 1765 /* 0 for regular, EMTRY_DIR_SIZE for dirs, 1766 strlen (symname) for symlinks) */ 1767 loff_t i_size, struct dentry *dentry, 1768 struct inode *inode) 1769 { 1770 struct super_block *sb; 1771 INITIALIZE_PATH(path_to_key); 1772 struct cpu_key key; 1773 struct item_head ih; 1774 struct stat_data sd; 1775 int retval; 1776 int err; 1777 1778 BUG_ON(!th->t_trans_id); 1779 1780 if (DQUOT_ALLOC_INODE(inode)) { 1781 err = -EDQUOT; 1782 goto out_end_trans; 1783 } 1784 if (!dir->i_nlink) { 1785 err = -EPERM; 1786 goto out_bad_inode; 1787 } 1788 1789 sb = dir->i_sb; 1790 1791 /* item head of new item */ 1792 ih.ih_key.k_dir_id = reiserfs_choose_packing(dir); 1793 ih.ih_key.k_objectid = cpu_to_le32(reiserfs_get_unused_objectid(th)); 1794 if (!ih.ih_key.k_objectid) { 1795 err = -ENOMEM; 1796 goto out_bad_inode; 1797 } 1798 if (old_format_only(sb)) 1799 /* not a perfect generation count, as object ids can be reused, but 1800 ** this is as good as reiserfs can do right now. 1801 ** note that the private part of inode isn't filled in yet, we have 1802 ** to use the directory. 1803 */ 1804 inode->i_generation = le32_to_cpu(INODE_PKEY(dir)->k_objectid); 1805 else 1806 #if defined( USE_INODE_GENERATION_COUNTER ) 1807 inode->i_generation = 1808 le32_to_cpu(REISERFS_SB(sb)->s_rs->s_inode_generation); 1809 #else 1810 inode->i_generation = ++event; 1811 #endif 1812 1813 /* fill stat data */ 1814 inode->i_nlink = (S_ISDIR(mode) ? 2 : 1); 1815 1816 /* uid and gid must already be set by the caller for quota init */ 1817 1818 /* symlink cannot be immutable or append only, right? */ 1819 if (S_ISLNK(inode->i_mode)) 1820 inode->i_flags &= ~(S_IMMUTABLE | S_APPEND); 1821 1822 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME_SEC; 1823 inode->i_size = i_size; 1824 inode->i_blocks = 0; 1825 inode->i_bytes = 0; 1826 REISERFS_I(inode)->i_first_direct_byte = S_ISLNK(mode) ? 1 : 1827 U32_MAX /*NO_BYTES_IN_DIRECT_ITEM */ ; 1828 1829 INIT_LIST_HEAD(&(REISERFS_I(inode)->i_prealloc_list)); 1830 REISERFS_I(inode)->i_flags = 0; 1831 REISERFS_I(inode)->i_prealloc_block = 0; 1832 REISERFS_I(inode)->i_prealloc_count = 0; 1833 REISERFS_I(inode)->i_trans_id = 0; 1834 REISERFS_I(inode)->i_jl = NULL; 1835 REISERFS_I(inode)->i_attrs = 1836 REISERFS_I(dir)->i_attrs & REISERFS_INHERIT_MASK; 1837 sd_attrs_to_i_attrs(REISERFS_I(inode)->i_attrs, inode); 1838 mutex_init(&(REISERFS_I(inode)->i_mmap)); 1839 reiserfs_init_acl_access(inode); 1840 reiserfs_init_acl_default(inode); 1841 reiserfs_init_xattr_rwsem(inode); 1842 1843 if (old_format_only(sb)) 1844 make_le_item_head(&ih, NULL, KEY_FORMAT_3_5, SD_OFFSET, 1845 TYPE_STAT_DATA, SD_V1_SIZE, MAX_US_INT); 1846 else 1847 make_le_item_head(&ih, NULL, KEY_FORMAT_3_6, SD_OFFSET, 1848 TYPE_STAT_DATA, SD_SIZE, MAX_US_INT); 1849 1850 /* key to search for correct place for new stat data */ 1851 _make_cpu_key(&key, KEY_FORMAT_3_6, le32_to_cpu(ih.ih_key.k_dir_id), 1852 le32_to_cpu(ih.ih_key.k_objectid), SD_OFFSET, 1853 TYPE_STAT_DATA, 3 /*key length */ ); 1854 1855 /* find proper place for inserting of stat data */ 1856 retval = search_item(sb, &key, &path_to_key); 1857 if (retval == IO_ERROR) { 1858 err = -EIO; 1859 goto out_bad_inode; 1860 } 1861 if (retval == ITEM_FOUND) { 1862 pathrelse(&path_to_key); 1863 err = -EEXIST; 1864 goto out_bad_inode; 1865 } 1866 if (old_format_only(sb)) { 1867 if (inode->i_uid & ~0xffff || inode->i_gid & ~0xffff) { 1868 pathrelse(&path_to_key); 1869 /* i_uid or i_gid is too big to be stored in stat data v3.5 */ 1870 err = -EINVAL; 1871 goto out_bad_inode; 1872 } 1873 inode2sd_v1(&sd, inode, inode->i_size); 1874 } else { 1875 inode2sd(&sd, inode, inode->i_size); 1876 } 1877 // these do not go to on-disk stat data 1878 inode->i_ino = le32_to_cpu(ih.ih_key.k_objectid); 1879 1880 // store in in-core inode the key of stat data and version all 1881 // object items will have (directory items will have old offset 1882 // format, other new objects will consist of new items) 1883 memcpy(INODE_PKEY(inode), &(ih.ih_key), KEY_SIZE); 1884 if (old_format_only(sb) || S_ISDIR(mode) || S_ISLNK(mode)) 1885 set_inode_item_key_version(inode, KEY_FORMAT_3_5); 1886 else 1887 set_inode_item_key_version(inode, KEY_FORMAT_3_6); 1888 if (old_format_only(sb)) 1889 set_inode_sd_version(inode, STAT_DATA_V1); 1890 else 1891 set_inode_sd_version(inode, STAT_DATA_V2); 1892 1893 /* insert the stat data into the tree */ 1894 #ifdef DISPLACE_NEW_PACKING_LOCALITIES 1895 if (REISERFS_I(dir)->new_packing_locality) 1896 th->displace_new_blocks = 1; 1897 #endif 1898 retval = 1899 reiserfs_insert_item(th, &path_to_key, &key, &ih, inode, 1900 (char *)(&sd)); 1901 if (retval) { 1902 err = retval; 1903 reiserfs_check_path(&path_to_key); 1904 goto out_bad_inode; 1905 } 1906 #ifdef DISPLACE_NEW_PACKING_LOCALITIES 1907 if (!th->displace_new_blocks) 1908 REISERFS_I(dir)->new_packing_locality = 0; 1909 #endif 1910 if (S_ISDIR(mode)) { 1911 /* insert item with "." and ".." */ 1912 retval = 1913 reiserfs_new_directory(th, inode, &ih, &path_to_key, dir); 1914 } 1915 1916 if (S_ISLNK(mode)) { 1917 /* insert body of symlink */ 1918 if (!old_format_only(sb)) 1919 i_size = ROUND_UP(i_size); 1920 retval = 1921 reiserfs_new_symlink(th, inode, &ih, &path_to_key, symname, 1922 i_size); 1923 } 1924 if (retval) { 1925 err = retval; 1926 reiserfs_check_path(&path_to_key); 1927 journal_end(th, th->t_super, th->t_blocks_allocated); 1928 goto out_inserted_sd; 1929 } 1930 1931 /* XXX CHECK THIS */ 1932 if (reiserfs_posixacl(inode->i_sb)) { 1933 retval = reiserfs_inherit_default_acl(dir, dentry, inode); 1934 if (retval) { 1935 err = retval; 1936 reiserfs_check_path(&path_to_key); 1937 journal_end(th, th->t_super, th->t_blocks_allocated); 1938 goto out_inserted_sd; 1939 } 1940 } else if (inode->i_sb->s_flags & MS_POSIXACL) { 1941 reiserfs_warning(inode->i_sb, "ACLs aren't enabled in the fs, " 1942 "but vfs thinks they are!"); 1943 } else if (is_reiserfs_priv_object(dir)) { 1944 reiserfs_mark_inode_private(inode); 1945 } 1946 1947 insert_inode_hash(inode); 1948 reiserfs_update_sd(th, inode); 1949 reiserfs_check_path(&path_to_key); 1950 1951 return 0; 1952 1953 /* it looks like you can easily compress these two goto targets into 1954 * one. Keeping it like this doesn't actually hurt anything, and they 1955 * are place holders for what the quota code actually needs. 1956 */ 1957 out_bad_inode: 1958 /* Invalidate the object, nothing was inserted yet */ 1959 INODE_PKEY(inode)->k_objectid = 0; 1960 1961 /* Quota change must be inside a transaction for journaling */ 1962 DQUOT_FREE_INODE(inode); 1963 1964 out_end_trans: 1965 journal_end(th, th->t_super, th->t_blocks_allocated); 1966 /* Drop can be outside and it needs more credits so it's better to have it outside */ 1967 DQUOT_DROP(inode); 1968 inode->i_flags |= S_NOQUOTA; 1969 make_bad_inode(inode); 1970 1971 out_inserted_sd: 1972 inode->i_nlink = 0; 1973 th->t_trans_id = 0; /* so the caller can't use this handle later */ 1974 1975 /* If we were inheriting an ACL, we need to release the lock so that 1976 * iput doesn't deadlock in reiserfs_delete_xattrs. The locking 1977 * code really needs to be reworked, but this will take care of it 1978 * for now. -jeffm */ 1979 #ifdef CONFIG_REISERFS_FS_POSIX_ACL 1980 if (REISERFS_I(dir)->i_acl_default && !IS_ERR(REISERFS_I(dir)->i_acl_default)) { 1981 reiserfs_write_unlock_xattrs(dir->i_sb); 1982 iput(inode); 1983 reiserfs_write_lock_xattrs(dir->i_sb); 1984 } else 1985 #endif 1986 iput(inode); 1987 return err; 1988 } 1989 1990 /* 1991 ** finds the tail page in the page cache, 1992 ** reads the last block in. 1993 ** 1994 ** On success, page_result is set to a locked, pinned page, and bh_result 1995 ** is set to an up to date buffer for the last block in the file. returns 0. 1996 ** 1997 ** tail conversion is not done, so bh_result might not be valid for writing 1998 ** check buffer_mapped(bh_result) and bh_result->b_blocknr != 0 before 1999 ** trying to write the block. 2000 ** 2001 ** on failure, nonzero is returned, page_result and bh_result are untouched. 2002 */ 2003 static int grab_tail_page(struct inode *p_s_inode, 2004 struct page **page_result, 2005 struct buffer_head **bh_result) 2006 { 2007 2008 /* we want the page with the last byte in the file, 2009 ** not the page that will hold the next byte for appending 2010 */ 2011 unsigned long index = (p_s_inode->i_size - 1) >> PAGE_CACHE_SHIFT; 2012 unsigned long pos = 0; 2013 unsigned long start = 0; 2014 unsigned long blocksize = p_s_inode->i_sb->s_blocksize; 2015 unsigned long offset = (p_s_inode->i_size) & (PAGE_CACHE_SIZE - 1); 2016 struct buffer_head *bh; 2017 struct buffer_head *head; 2018 struct page *page; 2019 int error; 2020 2021 /* we know that we are only called with inode->i_size > 0. 2022 ** we also know that a file tail can never be as big as a block 2023 ** If i_size % blocksize == 0, our file is currently block aligned 2024 ** and it won't need converting or zeroing after a truncate. 2025 */ 2026 if ((offset & (blocksize - 1)) == 0) { 2027 return -ENOENT; 2028 } 2029 page = grab_cache_page(p_s_inode->i_mapping, index); 2030 error = -ENOMEM; 2031 if (!page) { 2032 goto out; 2033 } 2034 /* start within the page of the last block in the file */ 2035 start = (offset / blocksize) * blocksize; 2036 2037 error = block_prepare_write(page, start, offset, 2038 reiserfs_get_block_create_0); 2039 if (error) 2040 goto unlock; 2041 2042 head = page_buffers(page); 2043 bh = head; 2044 do { 2045 if (pos >= start) { 2046 break; 2047 } 2048 bh = bh->b_this_page; 2049 pos += blocksize; 2050 } while (bh != head); 2051 2052 if (!buffer_uptodate(bh)) { 2053 /* note, this should never happen, prepare_write should 2054 ** be taking care of this for us. If the buffer isn't up to date, 2055 ** I've screwed up the code to find the buffer, or the code to 2056 ** call prepare_write 2057 */ 2058 reiserfs_warning(p_s_inode->i_sb, 2059 "clm-6000: error reading block %lu on dev %s", 2060 bh->b_blocknr, 2061 reiserfs_bdevname(p_s_inode->i_sb)); 2062 error = -EIO; 2063 goto unlock; 2064 } 2065 *bh_result = bh; 2066 *page_result = page; 2067 2068 out: 2069 return error; 2070 2071 unlock: 2072 unlock_page(page); 2073 page_cache_release(page); 2074 return error; 2075 } 2076 2077 /* 2078 ** vfs version of truncate file. Must NOT be called with 2079 ** a transaction already started. 2080 ** 2081 ** some code taken from block_truncate_page 2082 */ 2083 int reiserfs_truncate_file(struct inode *p_s_inode, int update_timestamps) 2084 { 2085 struct reiserfs_transaction_handle th; 2086 /* we want the offset for the first byte after the end of the file */ 2087 unsigned long offset = p_s_inode->i_size & (PAGE_CACHE_SIZE - 1); 2088 unsigned blocksize = p_s_inode->i_sb->s_blocksize; 2089 unsigned length; 2090 struct page *page = NULL; 2091 int error; 2092 struct buffer_head *bh = NULL; 2093 int err2; 2094 2095 reiserfs_write_lock(p_s_inode->i_sb); 2096 2097 if (p_s_inode->i_size > 0) { 2098 if ((error = grab_tail_page(p_s_inode, &page, &bh))) { 2099 // -ENOENT means we truncated past the end of the file, 2100 // and get_block_create_0 could not find a block to read in, 2101 // which is ok. 2102 if (error != -ENOENT) 2103 reiserfs_warning(p_s_inode->i_sb, 2104 "clm-6001: grab_tail_page failed %d", 2105 error); 2106 page = NULL; 2107 bh = NULL; 2108 } 2109 } 2110 2111 /* so, if page != NULL, we have a buffer head for the offset at 2112 ** the end of the file. if the bh is mapped, and bh->b_blocknr != 0, 2113 ** then we have an unformatted node. Otherwise, we have a direct item, 2114 ** and no zeroing is required on disk. We zero after the truncate, 2115 ** because the truncate might pack the item anyway 2116 ** (it will unmap bh if it packs). 2117 */ 2118 /* it is enough to reserve space in transaction for 2 balancings: 2119 one for "save" link adding and another for the first 2120 cut_from_item. 1 is for update_sd */ 2121 error = journal_begin(&th, p_s_inode->i_sb, 2122 JOURNAL_PER_BALANCE_CNT * 2 + 1); 2123 if (error) 2124 goto out; 2125 reiserfs_update_inode_transaction(p_s_inode); 2126 if (update_timestamps) 2127 /* we are doing real truncate: if the system crashes before the last 2128 transaction of truncating gets committed - on reboot the file 2129 either appears truncated properly or not truncated at all */ 2130 add_save_link(&th, p_s_inode, 1); 2131 err2 = reiserfs_do_truncate(&th, p_s_inode, page, update_timestamps); 2132 error = 2133 journal_end(&th, p_s_inode->i_sb, JOURNAL_PER_BALANCE_CNT * 2 + 1); 2134 if (error) 2135 goto out; 2136 2137 /* check reiserfs_do_truncate after ending the transaction */ 2138 if (err2) { 2139 error = err2; 2140 goto out; 2141 } 2142 2143 if (update_timestamps) { 2144 error = remove_save_link(p_s_inode, 1 /* truncate */ ); 2145 if (error) 2146 goto out; 2147 } 2148 2149 if (page) { 2150 length = offset & (blocksize - 1); 2151 /* if we are not on a block boundary */ 2152 if (length) { 2153 length = blocksize - length; 2154 zero_user_page(page, offset, length, KM_USER0); 2155 if (buffer_mapped(bh) && bh->b_blocknr != 0) { 2156 mark_buffer_dirty(bh); 2157 } 2158 } 2159 unlock_page(page); 2160 page_cache_release(page); 2161 } 2162 2163 reiserfs_write_unlock(p_s_inode->i_sb); 2164 return 0; 2165 out: 2166 if (page) { 2167 unlock_page(page); 2168 page_cache_release(page); 2169 } 2170 reiserfs_write_unlock(p_s_inode->i_sb); 2171 return error; 2172 } 2173 2174 static int map_block_for_writepage(struct inode *inode, 2175 struct buffer_head *bh_result, 2176 unsigned long block) 2177 { 2178 struct reiserfs_transaction_handle th; 2179 int fs_gen; 2180 struct item_head tmp_ih; 2181 struct item_head *ih; 2182 struct buffer_head *bh; 2183 __le32 *item; 2184 struct cpu_key key; 2185 INITIALIZE_PATH(path); 2186 int pos_in_item; 2187 int jbegin_count = JOURNAL_PER_BALANCE_CNT; 2188 loff_t byte_offset = ((loff_t)block << inode->i_sb->s_blocksize_bits)+1; 2189 int retval; 2190 int use_get_block = 0; 2191 int bytes_copied = 0; 2192 int copy_size; 2193 int trans_running = 0; 2194 2195 /* catch places below that try to log something without starting a trans */ 2196 th.t_trans_id = 0; 2197 2198 if (!buffer_uptodate(bh_result)) { 2199 return -EIO; 2200 } 2201 2202 kmap(bh_result->b_page); 2203 start_over: 2204 reiserfs_write_lock(inode->i_sb); 2205 make_cpu_key(&key, inode, byte_offset, TYPE_ANY, 3); 2206 2207 research: 2208 retval = search_for_position_by_key(inode->i_sb, &key, &path); 2209 if (retval != POSITION_FOUND) { 2210 use_get_block = 1; 2211 goto out; 2212 } 2213 2214 bh = get_last_bh(&path); 2215 ih = get_ih(&path); 2216 item = get_item(&path); 2217 pos_in_item = path.pos_in_item; 2218 2219 /* we've found an unformatted node */ 2220 if (indirect_item_found(retval, ih)) { 2221 if (bytes_copied > 0) { 2222 reiserfs_warning(inode->i_sb, 2223 "clm-6002: bytes_copied %d", 2224 bytes_copied); 2225 } 2226 if (!get_block_num(item, pos_in_item)) { 2227 /* crap, we are writing to a hole */ 2228 use_get_block = 1; 2229 goto out; 2230 } 2231 set_block_dev_mapped(bh_result, 2232 get_block_num(item, pos_in_item), inode); 2233 } else if (is_direct_le_ih(ih)) { 2234 char *p; 2235 p = page_address(bh_result->b_page); 2236 p += (byte_offset - 1) & (PAGE_CACHE_SIZE - 1); 2237 copy_size = ih_item_len(ih) - pos_in_item; 2238 2239 fs_gen = get_generation(inode->i_sb); 2240 copy_item_head(&tmp_ih, ih); 2241 2242 if (!trans_running) { 2243 /* vs-3050 is gone, no need to drop the path */ 2244 retval = journal_begin(&th, inode->i_sb, jbegin_count); 2245 if (retval) 2246 goto out; 2247 reiserfs_update_inode_transaction(inode); 2248 trans_running = 1; 2249 if (fs_changed(fs_gen, inode->i_sb) 2250 && item_moved(&tmp_ih, &path)) { 2251 reiserfs_restore_prepared_buffer(inode->i_sb, 2252 bh); 2253 goto research; 2254 } 2255 } 2256 2257 reiserfs_prepare_for_journal(inode->i_sb, bh, 1); 2258 2259 if (fs_changed(fs_gen, inode->i_sb) 2260 && item_moved(&tmp_ih, &path)) { 2261 reiserfs_restore_prepared_buffer(inode->i_sb, bh); 2262 goto research; 2263 } 2264 2265 memcpy(B_I_PITEM(bh, ih) + pos_in_item, p + bytes_copied, 2266 copy_size); 2267 2268 journal_mark_dirty(&th, inode->i_sb, bh); 2269 bytes_copied += copy_size; 2270 set_block_dev_mapped(bh_result, 0, inode); 2271 2272 /* are there still bytes left? */ 2273 if (bytes_copied < bh_result->b_size && 2274 (byte_offset + bytes_copied) < inode->i_size) { 2275 set_cpu_key_k_offset(&key, 2276 cpu_key_k_offset(&key) + 2277 copy_size); 2278 goto research; 2279 } 2280 } else { 2281 reiserfs_warning(inode->i_sb, 2282 "clm-6003: bad item inode %lu, device %s", 2283 inode->i_ino, reiserfs_bdevname(inode->i_sb)); 2284 retval = -EIO; 2285 goto out; 2286 } 2287 retval = 0; 2288 2289 out: 2290 pathrelse(&path); 2291 if (trans_running) { 2292 int err = journal_end(&th, inode->i_sb, jbegin_count); 2293 if (err) 2294 retval = err; 2295 trans_running = 0; 2296 } 2297 reiserfs_write_unlock(inode->i_sb); 2298 2299 /* this is where we fill in holes in the file. */ 2300 if (use_get_block) { 2301 retval = reiserfs_get_block(inode, block, bh_result, 2302 GET_BLOCK_CREATE | GET_BLOCK_NO_IMUX 2303 | GET_BLOCK_NO_DANGLE); 2304 if (!retval) { 2305 if (!buffer_mapped(bh_result) 2306 || bh_result->b_blocknr == 0) { 2307 /* get_block failed to find a mapped unformatted node. */ 2308 use_get_block = 0; 2309 goto start_over; 2310 } 2311 } 2312 } 2313 kunmap(bh_result->b_page); 2314 2315 if (!retval && buffer_mapped(bh_result) && bh_result->b_blocknr == 0) { 2316 /* we've copied data from the page into the direct item, so the 2317 * buffer in the page is now clean, mark it to reflect that. 2318 */ 2319 lock_buffer(bh_result); 2320 clear_buffer_dirty(bh_result); 2321 unlock_buffer(bh_result); 2322 } 2323 return retval; 2324 } 2325 2326 /* 2327 * mason@suse.com: updated in 2.5.54 to follow the same general io 2328 * start/recovery path as __block_write_full_page, along with special 2329 * code to handle reiserfs tails. 2330 */ 2331 static int reiserfs_write_full_page(struct page *page, 2332 struct writeback_control *wbc) 2333 { 2334 struct inode *inode = page->mapping->host; 2335 unsigned long end_index = inode->i_size >> PAGE_CACHE_SHIFT; 2336 int error = 0; 2337 unsigned long block; 2338 sector_t last_block; 2339 struct buffer_head *head, *bh; 2340 int partial = 0; 2341 int nr = 0; 2342 int checked = PageChecked(page); 2343 struct reiserfs_transaction_handle th; 2344 struct super_block *s = inode->i_sb; 2345 int bh_per_page = PAGE_CACHE_SIZE / s->s_blocksize; 2346 th.t_trans_id = 0; 2347 2348 /* no logging allowed when nonblocking or from PF_MEMALLOC */ 2349 if (checked && (current->flags & PF_MEMALLOC)) { 2350 redirty_page_for_writepage(wbc, page); 2351 unlock_page(page); 2352 return 0; 2353 } 2354 2355 /* The page dirty bit is cleared before writepage is called, which 2356 * means we have to tell create_empty_buffers to make dirty buffers 2357 * The page really should be up to date at this point, so tossing 2358 * in the BH_Uptodate is just a sanity check. 2359 */ 2360 if (!page_has_buffers(page)) { 2361 create_empty_buffers(page, s->s_blocksize, 2362 (1 << BH_Dirty) | (1 << BH_Uptodate)); 2363 } 2364 head = page_buffers(page); 2365 2366 /* last page in the file, zero out any contents past the 2367 ** last byte in the file 2368 */ 2369 if (page->index >= end_index) { 2370 unsigned last_offset; 2371 2372 last_offset = inode->i_size & (PAGE_CACHE_SIZE - 1); 2373 /* no file contents in this page */ 2374 if (page->index >= end_index + 1 || !last_offset) { 2375 unlock_page(page); 2376 return 0; 2377 } 2378 zero_user_page(page, last_offset, PAGE_CACHE_SIZE - last_offset, KM_USER0); 2379 } 2380 bh = head; 2381 block = page->index << (PAGE_CACHE_SHIFT - s->s_blocksize_bits); 2382 last_block = (i_size_read(inode) - 1) >> inode->i_blkbits; 2383 /* first map all the buffers, logging any direct items we find */ 2384 do { 2385 if (block > last_block) { 2386 /* 2387 * This can happen when the block size is less than 2388 * the page size. The corresponding bytes in the page 2389 * were zero filled above 2390 */ 2391 clear_buffer_dirty(bh); 2392 set_buffer_uptodate(bh); 2393 } else if ((checked || buffer_dirty(bh)) && 2394 (!buffer_mapped(bh) || (buffer_mapped(bh) 2395 && bh->b_blocknr == 2396 0))) { 2397 /* not mapped yet, or it points to a direct item, search 2398 * the btree for the mapping info, and log any direct 2399 * items found 2400 */ 2401 if ((error = map_block_for_writepage(inode, bh, block))) { 2402 goto fail; 2403 } 2404 } 2405 bh = bh->b_this_page; 2406 block++; 2407 } while (bh != head); 2408 2409 /* 2410 * we start the transaction after map_block_for_writepage, 2411 * because it can create holes in the file (an unbounded operation). 2412 * starting it here, we can make a reliable estimate for how many 2413 * blocks we're going to log 2414 */ 2415 if (checked) { 2416 ClearPageChecked(page); 2417 reiserfs_write_lock(s); 2418 error = journal_begin(&th, s, bh_per_page + 1); 2419 if (error) { 2420 reiserfs_write_unlock(s); 2421 goto fail; 2422 } 2423 reiserfs_update_inode_transaction(inode); 2424 } 2425 /* now go through and lock any dirty buffers on the page */ 2426 do { 2427 get_bh(bh); 2428 if (!buffer_mapped(bh)) 2429 continue; 2430 if (buffer_mapped(bh) && bh->b_blocknr == 0) 2431 continue; 2432 2433 if (checked) { 2434 reiserfs_prepare_for_journal(s, bh, 1); 2435 journal_mark_dirty(&th, s, bh); 2436 continue; 2437 } 2438 /* from this point on, we know the buffer is mapped to a 2439 * real block and not a direct item 2440 */ 2441 if (wbc->sync_mode != WB_SYNC_NONE || !wbc->nonblocking) { 2442 lock_buffer(bh); 2443 } else { 2444 if (test_set_buffer_locked(bh)) { 2445 redirty_page_for_writepage(wbc, page); 2446 continue; 2447 } 2448 } 2449 if (test_clear_buffer_dirty(bh)) { 2450 mark_buffer_async_write(bh); 2451 } else { 2452 unlock_buffer(bh); 2453 } 2454 } while ((bh = bh->b_this_page) != head); 2455 2456 if (checked) { 2457 error = journal_end(&th, s, bh_per_page + 1); 2458 reiserfs_write_unlock(s); 2459 if (error) 2460 goto fail; 2461 } 2462 BUG_ON(PageWriteback(page)); 2463 set_page_writeback(page); 2464 unlock_page(page); 2465 2466 /* 2467 * since any buffer might be the only dirty buffer on the page, 2468 * the first submit_bh can bring the page out of writeback. 2469 * be careful with the buffers. 2470 */ 2471 do { 2472 struct buffer_head *next = bh->b_this_page; 2473 if (buffer_async_write(bh)) { 2474 submit_bh(WRITE, bh); 2475 nr++; 2476 } 2477 put_bh(bh); 2478 bh = next; 2479 } while (bh != head); 2480 2481 error = 0; 2482 done: 2483 if (nr == 0) { 2484 /* 2485 * if this page only had a direct item, it is very possible for 2486 * no io to be required without there being an error. Or, 2487 * someone else could have locked them and sent them down the 2488 * pipe without locking the page 2489 */ 2490 bh = head; 2491 do { 2492 if (!buffer_uptodate(bh)) { 2493 partial = 1; 2494 break; 2495 } 2496 bh = bh->b_this_page; 2497 } while (bh != head); 2498 if (!partial) 2499 SetPageUptodate(page); 2500 end_page_writeback(page); 2501 } 2502 return error; 2503 2504 fail: 2505 /* catches various errors, we need to make sure any valid dirty blocks 2506 * get to the media. The page is currently locked and not marked for 2507 * writeback 2508 */ 2509 ClearPageUptodate(page); 2510 bh = head; 2511 do { 2512 get_bh(bh); 2513 if (buffer_mapped(bh) && buffer_dirty(bh) && bh->b_blocknr) { 2514 lock_buffer(bh); 2515 mark_buffer_async_write(bh); 2516 } else { 2517 /* 2518 * clear any dirty bits that might have come from getting 2519 * attached to a dirty page 2520 */ 2521 clear_buffer_dirty(bh); 2522 } 2523 bh = bh->b_this_page; 2524 } while (bh != head); 2525 SetPageError(page); 2526 BUG_ON(PageWriteback(page)); 2527 set_page_writeback(page); 2528 unlock_page(page); 2529 do { 2530 struct buffer_head *next = bh->b_this_page; 2531 if (buffer_async_write(bh)) { 2532 clear_buffer_dirty(bh); 2533 submit_bh(WRITE, bh); 2534 nr++; 2535 } 2536 put_bh(bh); 2537 bh = next; 2538 } while (bh != head); 2539 goto done; 2540 } 2541 2542 static int reiserfs_readpage(struct file *f, struct page *page) 2543 { 2544 return block_read_full_page(page, reiserfs_get_block); 2545 } 2546 2547 static int reiserfs_writepage(struct page *page, struct writeback_control *wbc) 2548 { 2549 struct inode *inode = page->mapping->host; 2550 reiserfs_wait_on_write_block(inode->i_sb); 2551 return reiserfs_write_full_page(page, wbc); 2552 } 2553 2554 static int reiserfs_write_begin(struct file *file, 2555 struct address_space *mapping, 2556 loff_t pos, unsigned len, unsigned flags, 2557 struct page **pagep, void **fsdata) 2558 { 2559 struct inode *inode; 2560 struct page *page; 2561 pgoff_t index; 2562 int ret; 2563 int old_ref = 0; 2564 2565 inode = mapping->host; 2566 *fsdata = 0; 2567 if (flags & AOP_FLAG_CONT_EXPAND && 2568 (pos & (inode->i_sb->s_blocksize - 1)) == 0) { 2569 pos ++; 2570 *fsdata = (void *)(unsigned long)flags; 2571 } 2572 2573 index = pos >> PAGE_CACHE_SHIFT; 2574 page = __grab_cache_page(mapping, index); 2575 if (!page) 2576 return -ENOMEM; 2577 *pagep = page; 2578 2579 reiserfs_wait_on_write_block(inode->i_sb); 2580 fix_tail_page_for_writing(page); 2581 if (reiserfs_transaction_running(inode->i_sb)) { 2582 struct reiserfs_transaction_handle *th; 2583 th = (struct reiserfs_transaction_handle *)current-> 2584 journal_info; 2585 BUG_ON(!th->t_refcount); 2586 BUG_ON(!th->t_trans_id); 2587 old_ref = th->t_refcount; 2588 th->t_refcount++; 2589 } 2590 ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata, 2591 reiserfs_get_block); 2592 if (ret && reiserfs_transaction_running(inode->i_sb)) { 2593 struct reiserfs_transaction_handle *th = current->journal_info; 2594 /* this gets a little ugly. If reiserfs_get_block returned an 2595 * error and left a transacstion running, we've got to close it, 2596 * and we've got to free handle if it was a persistent transaction. 2597 * 2598 * But, if we had nested into an existing transaction, we need 2599 * to just drop the ref count on the handle. 2600 * 2601 * If old_ref == 0, the transaction is from reiserfs_get_block, 2602 * and it was a persistent trans. Otherwise, it was nested above. 2603 */ 2604 if (th->t_refcount > old_ref) { 2605 if (old_ref) 2606 th->t_refcount--; 2607 else { 2608 int err; 2609 reiserfs_write_lock(inode->i_sb); 2610 err = reiserfs_end_persistent_transaction(th); 2611 reiserfs_write_unlock(inode->i_sb); 2612 if (err) 2613 ret = err; 2614 } 2615 } 2616 } 2617 if (ret) { 2618 unlock_page(page); 2619 page_cache_release(page); 2620 } 2621 return ret; 2622 } 2623 2624 int reiserfs_prepare_write(struct file *f, struct page *page, 2625 unsigned from, unsigned to) 2626 { 2627 struct inode *inode = page->mapping->host; 2628 int ret; 2629 int old_ref = 0; 2630 2631 reiserfs_wait_on_write_block(inode->i_sb); 2632 fix_tail_page_for_writing(page); 2633 if (reiserfs_transaction_running(inode->i_sb)) { 2634 struct reiserfs_transaction_handle *th; 2635 th = (struct reiserfs_transaction_handle *)current-> 2636 journal_info; 2637 BUG_ON(!th->t_refcount); 2638 BUG_ON(!th->t_trans_id); 2639 old_ref = th->t_refcount; 2640 th->t_refcount++; 2641 } 2642 2643 ret = block_prepare_write(page, from, to, reiserfs_get_block); 2644 if (ret && reiserfs_transaction_running(inode->i_sb)) { 2645 struct reiserfs_transaction_handle *th = current->journal_info; 2646 /* this gets a little ugly. If reiserfs_get_block returned an 2647 * error and left a transacstion running, we've got to close it, 2648 * and we've got to free handle if it was a persistent transaction. 2649 * 2650 * But, if we had nested into an existing transaction, we need 2651 * to just drop the ref count on the handle. 2652 * 2653 * If old_ref == 0, the transaction is from reiserfs_get_block, 2654 * and it was a persistent trans. Otherwise, it was nested above. 2655 */ 2656 if (th->t_refcount > old_ref) { 2657 if (old_ref) 2658 th->t_refcount--; 2659 else { 2660 int err; 2661 reiserfs_write_lock(inode->i_sb); 2662 err = reiserfs_end_persistent_transaction(th); 2663 reiserfs_write_unlock(inode->i_sb); 2664 if (err) 2665 ret = err; 2666 } 2667 } 2668 } 2669 return ret; 2670 2671 } 2672 2673 static sector_t reiserfs_aop_bmap(struct address_space *as, sector_t block) 2674 { 2675 return generic_block_bmap(as, block, reiserfs_bmap); 2676 } 2677 2678 static int reiserfs_write_end(struct file *file, struct address_space *mapping, 2679 loff_t pos, unsigned len, unsigned copied, 2680 struct page *page, void *fsdata) 2681 { 2682 struct inode *inode = page->mapping->host; 2683 int ret = 0; 2684 int update_sd = 0; 2685 struct reiserfs_transaction_handle *th; 2686 unsigned start; 2687 2688 if ((unsigned long)fsdata & AOP_FLAG_CONT_EXPAND) 2689 pos ++; 2690 2691 reiserfs_wait_on_write_block(inode->i_sb); 2692 if (reiserfs_transaction_running(inode->i_sb)) 2693 th = current->journal_info; 2694 else 2695 th = NULL; 2696 2697 start = pos & (PAGE_CACHE_SIZE - 1); 2698 if (unlikely(copied < len)) { 2699 if (!PageUptodate(page)) 2700 copied = 0; 2701 2702 page_zero_new_buffers(page, start + copied, start + len); 2703 } 2704 flush_dcache_page(page); 2705 2706 reiserfs_commit_page(inode, page, start, start + copied); 2707 2708 /* generic_commit_write does this for us, but does not update the 2709 ** transaction tracking stuff when the size changes. So, we have 2710 ** to do the i_size updates here. 2711 */ 2712 pos += copied; 2713 if (pos > inode->i_size) { 2714 struct reiserfs_transaction_handle myth; 2715 reiserfs_write_lock(inode->i_sb); 2716 /* If the file have grown beyond the border where it 2717 can have a tail, unmark it as needing a tail 2718 packing */ 2719 if ((have_large_tails(inode->i_sb) 2720 && inode->i_size > i_block_size(inode) * 4) 2721 || (have_small_tails(inode->i_sb) 2722 && inode->i_size > i_block_size(inode))) 2723 REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask; 2724 2725 ret = journal_begin(&myth, inode->i_sb, 1); 2726 if (ret) { 2727 reiserfs_write_unlock(inode->i_sb); 2728 goto journal_error; 2729 } 2730 reiserfs_update_inode_transaction(inode); 2731 inode->i_size = pos; 2732 /* 2733 * this will just nest into our transaction. It's important 2734 * to use mark_inode_dirty so the inode gets pushed around on the 2735 * dirty lists, and so that O_SYNC works as expected 2736 */ 2737 mark_inode_dirty(inode); 2738 reiserfs_update_sd(&myth, inode); 2739 update_sd = 1; 2740 ret = journal_end(&myth, inode->i_sb, 1); 2741 reiserfs_write_unlock(inode->i_sb); 2742 if (ret) 2743 goto journal_error; 2744 } 2745 if (th) { 2746 reiserfs_write_lock(inode->i_sb); 2747 if (!update_sd) 2748 mark_inode_dirty(inode); 2749 ret = reiserfs_end_persistent_transaction(th); 2750 reiserfs_write_unlock(inode->i_sb); 2751 if (ret) 2752 goto out; 2753 } 2754 2755 out: 2756 unlock_page(page); 2757 page_cache_release(page); 2758 return ret == 0 ? copied : ret; 2759 2760 journal_error: 2761 if (th) { 2762 reiserfs_write_lock(inode->i_sb); 2763 if (!update_sd) 2764 reiserfs_update_sd(th, inode); 2765 ret = reiserfs_end_persistent_transaction(th); 2766 reiserfs_write_unlock(inode->i_sb); 2767 } 2768 2769 goto out; 2770 } 2771 2772 int reiserfs_commit_write(struct file *f, struct page *page, 2773 unsigned from, unsigned to) 2774 { 2775 struct inode *inode = page->mapping->host; 2776 loff_t pos = ((loff_t) page->index << PAGE_CACHE_SHIFT) + to; 2777 int ret = 0; 2778 int update_sd = 0; 2779 struct reiserfs_transaction_handle *th = NULL; 2780 2781 reiserfs_wait_on_write_block(inode->i_sb); 2782 if (reiserfs_transaction_running(inode->i_sb)) { 2783 th = current->journal_info; 2784 } 2785 reiserfs_commit_page(inode, page, from, to); 2786 2787 /* generic_commit_write does this for us, but does not update the 2788 ** transaction tracking stuff when the size changes. So, we have 2789 ** to do the i_size updates here. 2790 */ 2791 if (pos > inode->i_size) { 2792 struct reiserfs_transaction_handle myth; 2793 reiserfs_write_lock(inode->i_sb); 2794 /* If the file have grown beyond the border where it 2795 can have a tail, unmark it as needing a tail 2796 packing */ 2797 if ((have_large_tails(inode->i_sb) 2798 && inode->i_size > i_block_size(inode) * 4) 2799 || (have_small_tails(inode->i_sb) 2800 && inode->i_size > i_block_size(inode))) 2801 REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask; 2802 2803 ret = journal_begin(&myth, inode->i_sb, 1); 2804 if (ret) { 2805 reiserfs_write_unlock(inode->i_sb); 2806 goto journal_error; 2807 } 2808 reiserfs_update_inode_transaction(inode); 2809 inode->i_size = pos; 2810 /* 2811 * this will just nest into our transaction. It's important 2812 * to use mark_inode_dirty so the inode gets pushed around on the 2813 * dirty lists, and so that O_SYNC works as expected 2814 */ 2815 mark_inode_dirty(inode); 2816 reiserfs_update_sd(&myth, inode); 2817 update_sd = 1; 2818 ret = journal_end(&myth, inode->i_sb, 1); 2819 reiserfs_write_unlock(inode->i_sb); 2820 if (ret) 2821 goto journal_error; 2822 } 2823 if (th) { 2824 reiserfs_write_lock(inode->i_sb); 2825 if (!update_sd) 2826 mark_inode_dirty(inode); 2827 ret = reiserfs_end_persistent_transaction(th); 2828 reiserfs_write_unlock(inode->i_sb); 2829 if (ret) 2830 goto out; 2831 } 2832 2833 out: 2834 return ret; 2835 2836 journal_error: 2837 if (th) { 2838 reiserfs_write_lock(inode->i_sb); 2839 if (!update_sd) 2840 reiserfs_update_sd(th, inode); 2841 ret = reiserfs_end_persistent_transaction(th); 2842 reiserfs_write_unlock(inode->i_sb); 2843 } 2844 2845 return ret; 2846 } 2847 2848 void sd_attrs_to_i_attrs(__u16 sd_attrs, struct inode *inode) 2849 { 2850 if (reiserfs_attrs(inode->i_sb)) { 2851 if (sd_attrs & REISERFS_SYNC_FL) 2852 inode->i_flags |= S_SYNC; 2853 else 2854 inode->i_flags &= ~S_SYNC; 2855 if (sd_attrs & REISERFS_IMMUTABLE_FL) 2856 inode->i_flags |= S_IMMUTABLE; 2857 else 2858 inode->i_flags &= ~S_IMMUTABLE; 2859 if (sd_attrs & REISERFS_APPEND_FL) 2860 inode->i_flags |= S_APPEND; 2861 else 2862 inode->i_flags &= ~S_APPEND; 2863 if (sd_attrs & REISERFS_NOATIME_FL) 2864 inode->i_flags |= S_NOATIME; 2865 else 2866 inode->i_flags &= ~S_NOATIME; 2867 if (sd_attrs & REISERFS_NOTAIL_FL) 2868 REISERFS_I(inode)->i_flags |= i_nopack_mask; 2869 else 2870 REISERFS_I(inode)->i_flags &= ~i_nopack_mask; 2871 } 2872 } 2873 2874 void i_attrs_to_sd_attrs(struct inode *inode, __u16 * sd_attrs) 2875 { 2876 if (reiserfs_attrs(inode->i_sb)) { 2877 if (inode->i_flags & S_IMMUTABLE) 2878 *sd_attrs |= REISERFS_IMMUTABLE_FL; 2879 else 2880 *sd_attrs &= ~REISERFS_IMMUTABLE_FL; 2881 if (inode->i_flags & S_SYNC) 2882 *sd_attrs |= REISERFS_SYNC_FL; 2883 else 2884 *sd_attrs &= ~REISERFS_SYNC_FL; 2885 if (inode->i_flags & S_NOATIME) 2886 *sd_attrs |= REISERFS_NOATIME_FL; 2887 else 2888 *sd_attrs &= ~REISERFS_NOATIME_FL; 2889 if (REISERFS_I(inode)->i_flags & i_nopack_mask) 2890 *sd_attrs |= REISERFS_NOTAIL_FL; 2891 else 2892 *sd_attrs &= ~REISERFS_NOTAIL_FL; 2893 } 2894 } 2895 2896 /* decide if this buffer needs to stay around for data logging or ordered 2897 ** write purposes 2898 */ 2899 static int invalidatepage_can_drop(struct inode *inode, struct buffer_head *bh) 2900 { 2901 int ret = 1; 2902 struct reiserfs_journal *j = SB_JOURNAL(inode->i_sb); 2903 2904 lock_buffer(bh); 2905 spin_lock(&j->j_dirty_buffers_lock); 2906 if (!buffer_mapped(bh)) { 2907 goto free_jh; 2908 } 2909 /* the page is locked, and the only places that log a data buffer 2910 * also lock the page. 2911 */ 2912 if (reiserfs_file_data_log(inode)) { 2913 /* 2914 * very conservative, leave the buffer pinned if 2915 * anyone might need it. 2916 */ 2917 if (buffer_journaled(bh) || buffer_journal_dirty(bh)) { 2918 ret = 0; 2919 } 2920 } else if (buffer_dirty(bh)) { 2921 struct reiserfs_journal_list *jl; 2922 struct reiserfs_jh *jh = bh->b_private; 2923 2924 /* why is this safe? 2925 * reiserfs_setattr updates i_size in the on disk 2926 * stat data before allowing vmtruncate to be called. 2927 * 2928 * If buffer was put onto the ordered list for this 2929 * transaction, we know for sure either this transaction 2930 * or an older one already has updated i_size on disk, 2931 * and this ordered data won't be referenced in the file 2932 * if we crash. 2933 * 2934 * if the buffer was put onto the ordered list for an older 2935 * transaction, we need to leave it around 2936 */ 2937 if (jh && (jl = jh->jl) 2938 && jl != SB_JOURNAL(inode->i_sb)->j_current_jl) 2939 ret = 0; 2940 } 2941 free_jh: 2942 if (ret && bh->b_private) { 2943 reiserfs_free_jh(bh); 2944 } 2945 spin_unlock(&j->j_dirty_buffers_lock); 2946 unlock_buffer(bh); 2947 return ret; 2948 } 2949 2950 /* clm -- taken from fs/buffer.c:block_invalidate_page */ 2951 static void reiserfs_invalidatepage(struct page *page, unsigned long offset) 2952 { 2953 struct buffer_head *head, *bh, *next; 2954 struct inode *inode = page->mapping->host; 2955 unsigned int curr_off = 0; 2956 int ret = 1; 2957 2958 BUG_ON(!PageLocked(page)); 2959 2960 if (offset == 0) 2961 ClearPageChecked(page); 2962 2963 if (!page_has_buffers(page)) 2964 goto out; 2965 2966 head = page_buffers(page); 2967 bh = head; 2968 do { 2969 unsigned int next_off = curr_off + bh->b_size; 2970 next = bh->b_this_page; 2971 2972 /* 2973 * is this block fully invalidated? 2974 */ 2975 if (offset <= curr_off) { 2976 if (invalidatepage_can_drop(inode, bh)) 2977 reiserfs_unmap_buffer(bh); 2978 else 2979 ret = 0; 2980 } 2981 curr_off = next_off; 2982 bh = next; 2983 } while (bh != head); 2984 2985 /* 2986 * We release buffers only if the entire page is being invalidated. 2987 * The get_block cached value has been unconditionally invalidated, 2988 * so real IO is not possible anymore. 2989 */ 2990 if (!offset && ret) { 2991 ret = try_to_release_page(page, 0); 2992 /* maybe should BUG_ON(!ret); - neilb */ 2993 } 2994 out: 2995 return; 2996 } 2997 2998 static int reiserfs_set_page_dirty(struct page *page) 2999 { 3000 struct inode *inode = page->mapping->host; 3001 if (reiserfs_file_data_log(inode)) { 3002 SetPageChecked(page); 3003 return __set_page_dirty_nobuffers(page); 3004 } 3005 return __set_page_dirty_buffers(page); 3006 } 3007 3008 /* 3009 * Returns 1 if the page's buffers were dropped. The page is locked. 3010 * 3011 * Takes j_dirty_buffers_lock to protect the b_assoc_buffers list_heads 3012 * in the buffers at page_buffers(page). 3013 * 3014 * even in -o notail mode, we can't be sure an old mount without -o notail 3015 * didn't create files with tails. 3016 */ 3017 static int reiserfs_releasepage(struct page *page, gfp_t unused_gfp_flags) 3018 { 3019 struct inode *inode = page->mapping->host; 3020 struct reiserfs_journal *j = SB_JOURNAL(inode->i_sb); 3021 struct buffer_head *head; 3022 struct buffer_head *bh; 3023 int ret = 1; 3024 3025 WARN_ON(PageChecked(page)); 3026 spin_lock(&j->j_dirty_buffers_lock); 3027 head = page_buffers(page); 3028 bh = head; 3029 do { 3030 if (bh->b_private) { 3031 if (!buffer_dirty(bh) && !buffer_locked(bh)) { 3032 reiserfs_free_jh(bh); 3033 } else { 3034 ret = 0; 3035 break; 3036 } 3037 } 3038 bh = bh->b_this_page; 3039 } while (bh != head); 3040 if (ret) 3041 ret = try_to_free_buffers(page); 3042 spin_unlock(&j->j_dirty_buffers_lock); 3043 return ret; 3044 } 3045 3046 /* We thank Mingming Cao for helping us understand in great detail what 3047 to do in this section of the code. */ 3048 static ssize_t reiserfs_direct_IO(int rw, struct kiocb *iocb, 3049 const struct iovec *iov, loff_t offset, 3050 unsigned long nr_segs) 3051 { 3052 struct file *file = iocb->ki_filp; 3053 struct inode *inode = file->f_mapping->host; 3054 3055 return blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov, 3056 offset, nr_segs, 3057 reiserfs_get_blocks_direct_io, NULL); 3058 } 3059 3060 int reiserfs_setattr(struct dentry *dentry, struct iattr *attr) 3061 { 3062 struct inode *inode = dentry->d_inode; 3063 int error; 3064 unsigned int ia_valid; 3065 3066 /* must be turned off for recursive notify_change calls */ 3067 ia_valid = attr->ia_valid &= ~(ATTR_KILL_SUID|ATTR_KILL_SGID); 3068 3069 reiserfs_write_lock(inode->i_sb); 3070 if (attr->ia_valid & ATTR_SIZE) { 3071 /* version 2 items will be caught by the s_maxbytes check 3072 ** done for us in vmtruncate 3073 */ 3074 if (get_inode_item_key_version(inode) == KEY_FORMAT_3_5 && 3075 attr->ia_size > MAX_NON_LFS) { 3076 error = -EFBIG; 3077 goto out; 3078 } 3079 /* fill in hole pointers in the expanding truncate case. */ 3080 if (attr->ia_size > inode->i_size) { 3081 error = generic_cont_expand_simple(inode, attr->ia_size); 3082 if (REISERFS_I(inode)->i_prealloc_count > 0) { 3083 int err; 3084 struct reiserfs_transaction_handle th; 3085 /* we're changing at most 2 bitmaps, inode + super */ 3086 err = journal_begin(&th, inode->i_sb, 4); 3087 if (!err) { 3088 reiserfs_discard_prealloc(&th, inode); 3089 err = journal_end(&th, inode->i_sb, 4); 3090 } 3091 if (err) 3092 error = err; 3093 } 3094 if (error) 3095 goto out; 3096 /* 3097 * file size is changed, ctime and mtime are 3098 * to be updated 3099 */ 3100 attr->ia_valid |= (ATTR_MTIME | ATTR_CTIME); 3101 } 3102 } 3103 3104 if ((((attr->ia_valid & ATTR_UID) && (attr->ia_uid & ~0xffff)) || 3105 ((attr->ia_valid & ATTR_GID) && (attr->ia_gid & ~0xffff))) && 3106 (get_inode_sd_version(inode) == STAT_DATA_V1)) { 3107 /* stat data of format v3.5 has 16 bit uid and gid */ 3108 error = -EINVAL; 3109 goto out; 3110 } 3111 3112 error = inode_change_ok(inode, attr); 3113 if (!error) { 3114 if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) || 3115 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) { 3116 error = reiserfs_chown_xattrs(inode, attr); 3117 3118 if (!error) { 3119 struct reiserfs_transaction_handle th; 3120 int jbegin_count = 3121 2 * 3122 (REISERFS_QUOTA_INIT_BLOCKS(inode->i_sb) + 3123 REISERFS_QUOTA_DEL_BLOCKS(inode->i_sb)) + 3124 2; 3125 3126 /* (user+group)*(old+new) structure - we count quota info and , inode write (sb, inode) */ 3127 error = 3128 journal_begin(&th, inode->i_sb, 3129 jbegin_count); 3130 if (error) 3131 goto out; 3132 error = 3133 DQUOT_TRANSFER(inode, attr) ? -EDQUOT : 0; 3134 if (error) { 3135 journal_end(&th, inode->i_sb, 3136 jbegin_count); 3137 goto out; 3138 } 3139 /* Update corresponding info in inode so that everything is in 3140 * one transaction */ 3141 if (attr->ia_valid & ATTR_UID) 3142 inode->i_uid = attr->ia_uid; 3143 if (attr->ia_valid & ATTR_GID) 3144 inode->i_gid = attr->ia_gid; 3145 mark_inode_dirty(inode); 3146 error = 3147 journal_end(&th, inode->i_sb, jbegin_count); 3148 } 3149 } 3150 if (!error) 3151 error = inode_setattr(inode, attr); 3152 } 3153 3154 if (!error && reiserfs_posixacl(inode->i_sb)) { 3155 if (attr->ia_valid & ATTR_MODE) 3156 error = reiserfs_acl_chmod(inode); 3157 } 3158 3159 out: 3160 reiserfs_write_unlock(inode->i_sb); 3161 return error; 3162 } 3163 3164 const struct address_space_operations reiserfs_address_space_operations = { 3165 .writepage = reiserfs_writepage, 3166 .readpage = reiserfs_readpage, 3167 .readpages = reiserfs_readpages, 3168 .releasepage = reiserfs_releasepage, 3169 .invalidatepage = reiserfs_invalidatepage, 3170 .sync_page = block_sync_page, 3171 .write_begin = reiserfs_write_begin, 3172 .write_end = reiserfs_write_end, 3173 .bmap = reiserfs_aop_bmap, 3174 .direct_IO = reiserfs_direct_IO, 3175 .set_page_dirty = reiserfs_set_page_dirty, 3176 }; 3177