xref: /linux/fs/pstore/ram_core.c (revision f3a8b6645dc2e60d11f20c1c23afd964ff4e55ae)
1 /*
2  * Copyright (C) 2012 Google, Inc.
3  *
4  * This software is licensed under the terms of the GNU General Public
5  * License version 2, as published by the Free Software Foundation, and
6  * may be copied, distributed, and modified under those terms.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
11  * GNU General Public License for more details.
12  *
13  */
14 
15 #define pr_fmt(fmt) "persistent_ram: " fmt
16 
17 #include <linux/device.h>
18 #include <linux/err.h>
19 #include <linux/errno.h>
20 #include <linux/init.h>
21 #include <linux/io.h>
22 #include <linux/kernel.h>
23 #include <linux/list.h>
24 #include <linux/memblock.h>
25 #include <linux/pstore_ram.h>
26 #include <linux/rslib.h>
27 #include <linux/slab.h>
28 #include <linux/uaccess.h>
29 #include <linux/vmalloc.h>
30 #include <asm/page.h>
31 
32 struct persistent_ram_buffer {
33 	uint32_t    sig;
34 	atomic_t    start;
35 	atomic_t    size;
36 	uint8_t     data[0];
37 };
38 
39 #define PERSISTENT_RAM_SIG (0x43474244) /* DBGC */
40 
41 static inline size_t buffer_size(struct persistent_ram_zone *prz)
42 {
43 	return atomic_read(&prz->buffer->size);
44 }
45 
46 static inline size_t buffer_start(struct persistent_ram_zone *prz)
47 {
48 	return atomic_read(&prz->buffer->start);
49 }
50 
51 static DEFINE_RAW_SPINLOCK(buffer_lock);
52 
53 /* increase and wrap the start pointer, returning the old value */
54 static size_t buffer_start_add(struct persistent_ram_zone *prz, size_t a)
55 {
56 	int old;
57 	int new;
58 	unsigned long flags;
59 
60 	raw_spin_lock_irqsave(&buffer_lock, flags);
61 
62 	old = atomic_read(&prz->buffer->start);
63 	new = old + a;
64 	while (unlikely(new >= prz->buffer_size))
65 		new -= prz->buffer_size;
66 	atomic_set(&prz->buffer->start, new);
67 
68 	raw_spin_unlock_irqrestore(&buffer_lock, flags);
69 
70 	return old;
71 }
72 
73 /* increase the size counter until it hits the max size */
74 static void buffer_size_add(struct persistent_ram_zone *prz, size_t a)
75 {
76 	size_t old;
77 	size_t new;
78 	unsigned long flags;
79 
80 	raw_spin_lock_irqsave(&buffer_lock, flags);
81 
82 	old = atomic_read(&prz->buffer->size);
83 	if (old == prz->buffer_size)
84 		goto exit;
85 
86 	new = old + a;
87 	if (new > prz->buffer_size)
88 		new = prz->buffer_size;
89 	atomic_set(&prz->buffer->size, new);
90 
91 exit:
92 	raw_spin_unlock_irqrestore(&buffer_lock, flags);
93 }
94 
95 static void notrace persistent_ram_encode_rs8(struct persistent_ram_zone *prz,
96 	uint8_t *data, size_t len, uint8_t *ecc)
97 {
98 	int i;
99 	uint16_t par[prz->ecc_info.ecc_size];
100 
101 	/* Initialize the parity buffer */
102 	memset(par, 0, sizeof(par));
103 	encode_rs8(prz->rs_decoder, data, len, par, 0);
104 	for (i = 0; i < prz->ecc_info.ecc_size; i++)
105 		ecc[i] = par[i];
106 }
107 
108 static int persistent_ram_decode_rs8(struct persistent_ram_zone *prz,
109 	void *data, size_t len, uint8_t *ecc)
110 {
111 	int i;
112 	uint16_t par[prz->ecc_info.ecc_size];
113 
114 	for (i = 0; i < prz->ecc_info.ecc_size; i++)
115 		par[i] = ecc[i];
116 	return decode_rs8(prz->rs_decoder, data, par, len,
117 				NULL, 0, NULL, 0, NULL);
118 }
119 
120 static void notrace persistent_ram_update_ecc(struct persistent_ram_zone *prz,
121 	unsigned int start, unsigned int count)
122 {
123 	struct persistent_ram_buffer *buffer = prz->buffer;
124 	uint8_t *buffer_end = buffer->data + prz->buffer_size;
125 	uint8_t *block;
126 	uint8_t *par;
127 	int ecc_block_size = prz->ecc_info.block_size;
128 	int ecc_size = prz->ecc_info.ecc_size;
129 	int size = ecc_block_size;
130 
131 	if (!ecc_size)
132 		return;
133 
134 	block = buffer->data + (start & ~(ecc_block_size - 1));
135 	par = prz->par_buffer + (start / ecc_block_size) * ecc_size;
136 
137 	do {
138 		if (block + ecc_block_size > buffer_end)
139 			size = buffer_end - block;
140 		persistent_ram_encode_rs8(prz, block, size, par);
141 		block += ecc_block_size;
142 		par += ecc_size;
143 	} while (block < buffer->data + start + count);
144 }
145 
146 static void persistent_ram_update_header_ecc(struct persistent_ram_zone *prz)
147 {
148 	struct persistent_ram_buffer *buffer = prz->buffer;
149 
150 	if (!prz->ecc_info.ecc_size)
151 		return;
152 
153 	persistent_ram_encode_rs8(prz, (uint8_t *)buffer, sizeof(*buffer),
154 				  prz->par_header);
155 }
156 
157 static void persistent_ram_ecc_old(struct persistent_ram_zone *prz)
158 {
159 	struct persistent_ram_buffer *buffer = prz->buffer;
160 	uint8_t *block;
161 	uint8_t *par;
162 
163 	if (!prz->ecc_info.ecc_size)
164 		return;
165 
166 	block = buffer->data;
167 	par = prz->par_buffer;
168 	while (block < buffer->data + buffer_size(prz)) {
169 		int numerr;
170 		int size = prz->ecc_info.block_size;
171 		if (block + size > buffer->data + prz->buffer_size)
172 			size = buffer->data + prz->buffer_size - block;
173 		numerr = persistent_ram_decode_rs8(prz, block, size, par);
174 		if (numerr > 0) {
175 			pr_devel("error in block %p, %d\n", block, numerr);
176 			prz->corrected_bytes += numerr;
177 		} else if (numerr < 0) {
178 			pr_devel("uncorrectable error in block %p\n", block);
179 			prz->bad_blocks++;
180 		}
181 		block += prz->ecc_info.block_size;
182 		par += prz->ecc_info.ecc_size;
183 	}
184 }
185 
186 static int persistent_ram_init_ecc(struct persistent_ram_zone *prz,
187 				   struct persistent_ram_ecc_info *ecc_info)
188 {
189 	int numerr;
190 	struct persistent_ram_buffer *buffer = prz->buffer;
191 	int ecc_blocks;
192 	size_t ecc_total;
193 
194 	if (!ecc_info || !ecc_info->ecc_size)
195 		return 0;
196 
197 	prz->ecc_info.block_size = ecc_info->block_size ?: 128;
198 	prz->ecc_info.ecc_size = ecc_info->ecc_size ?: 16;
199 	prz->ecc_info.symsize = ecc_info->symsize ?: 8;
200 	prz->ecc_info.poly = ecc_info->poly ?: 0x11d;
201 
202 	ecc_blocks = DIV_ROUND_UP(prz->buffer_size - prz->ecc_info.ecc_size,
203 				  prz->ecc_info.block_size +
204 				  prz->ecc_info.ecc_size);
205 	ecc_total = (ecc_blocks + 1) * prz->ecc_info.ecc_size;
206 	if (ecc_total >= prz->buffer_size) {
207 		pr_err("%s: invalid ecc_size %u (total %zu, buffer size %zu)\n",
208 		       __func__, prz->ecc_info.ecc_size,
209 		       ecc_total, prz->buffer_size);
210 		return -EINVAL;
211 	}
212 
213 	prz->buffer_size -= ecc_total;
214 	prz->par_buffer = buffer->data + prz->buffer_size;
215 	prz->par_header = prz->par_buffer +
216 			  ecc_blocks * prz->ecc_info.ecc_size;
217 
218 	/*
219 	 * first consecutive root is 0
220 	 * primitive element to generate roots = 1
221 	 */
222 	prz->rs_decoder = init_rs(prz->ecc_info.symsize, prz->ecc_info.poly,
223 				  0, 1, prz->ecc_info.ecc_size);
224 	if (prz->rs_decoder == NULL) {
225 		pr_info("init_rs failed\n");
226 		return -EINVAL;
227 	}
228 
229 	prz->corrected_bytes = 0;
230 	prz->bad_blocks = 0;
231 
232 	numerr = persistent_ram_decode_rs8(prz, buffer, sizeof(*buffer),
233 					   prz->par_header);
234 	if (numerr > 0) {
235 		pr_info("error in header, %d\n", numerr);
236 		prz->corrected_bytes += numerr;
237 	} else if (numerr < 0) {
238 		pr_info("uncorrectable error in header\n");
239 		prz->bad_blocks++;
240 	}
241 
242 	return 0;
243 }
244 
245 ssize_t persistent_ram_ecc_string(struct persistent_ram_zone *prz,
246 	char *str, size_t len)
247 {
248 	ssize_t ret;
249 
250 	if (!prz->ecc_info.ecc_size)
251 		return 0;
252 
253 	if (prz->corrected_bytes || prz->bad_blocks)
254 		ret = snprintf(str, len, ""
255 			"\n%d Corrected bytes, %d unrecoverable blocks\n",
256 			prz->corrected_bytes, prz->bad_blocks);
257 	else
258 		ret = snprintf(str, len, "\nNo errors detected\n");
259 
260 	return ret;
261 }
262 
263 static void notrace persistent_ram_update(struct persistent_ram_zone *prz,
264 	const void *s, unsigned int start, unsigned int count)
265 {
266 	struct persistent_ram_buffer *buffer = prz->buffer;
267 	memcpy_toio(buffer->data + start, s, count);
268 	persistent_ram_update_ecc(prz, start, count);
269 }
270 
271 static int notrace persistent_ram_update_user(struct persistent_ram_zone *prz,
272 	const void __user *s, unsigned int start, unsigned int count)
273 {
274 	struct persistent_ram_buffer *buffer = prz->buffer;
275 	int ret = unlikely(__copy_from_user(buffer->data + start, s, count)) ?
276 		-EFAULT : 0;
277 	persistent_ram_update_ecc(prz, start, count);
278 	return ret;
279 }
280 
281 void persistent_ram_save_old(struct persistent_ram_zone *prz)
282 {
283 	struct persistent_ram_buffer *buffer = prz->buffer;
284 	size_t size = buffer_size(prz);
285 	size_t start = buffer_start(prz);
286 
287 	if (!size)
288 		return;
289 
290 	if (!prz->old_log) {
291 		persistent_ram_ecc_old(prz);
292 		prz->old_log = kmalloc(size, GFP_KERNEL);
293 	}
294 	if (!prz->old_log) {
295 		pr_err("failed to allocate buffer\n");
296 		return;
297 	}
298 
299 	prz->old_log_size = size;
300 	memcpy_fromio(prz->old_log, &buffer->data[start], size - start);
301 	memcpy_fromio(prz->old_log + size - start, &buffer->data[0], start);
302 }
303 
304 int notrace persistent_ram_write(struct persistent_ram_zone *prz,
305 	const void *s, unsigned int count)
306 {
307 	int rem;
308 	int c = count;
309 	size_t start;
310 
311 	if (unlikely(c > prz->buffer_size)) {
312 		s += c - prz->buffer_size;
313 		c = prz->buffer_size;
314 	}
315 
316 	buffer_size_add(prz, c);
317 
318 	start = buffer_start_add(prz, c);
319 
320 	rem = prz->buffer_size - start;
321 	if (unlikely(rem < c)) {
322 		persistent_ram_update(prz, s, start, rem);
323 		s += rem;
324 		c -= rem;
325 		start = 0;
326 	}
327 	persistent_ram_update(prz, s, start, c);
328 
329 	persistent_ram_update_header_ecc(prz);
330 
331 	return count;
332 }
333 
334 int notrace persistent_ram_write_user(struct persistent_ram_zone *prz,
335 	const void __user *s, unsigned int count)
336 {
337 	int rem, ret = 0, c = count;
338 	size_t start;
339 
340 	if (unlikely(!access_ok(VERIFY_READ, s, count)))
341 		return -EFAULT;
342 	if (unlikely(c > prz->buffer_size)) {
343 		s += c - prz->buffer_size;
344 		c = prz->buffer_size;
345 	}
346 
347 	buffer_size_add(prz, c);
348 
349 	start = buffer_start_add(prz, c);
350 
351 	rem = prz->buffer_size - start;
352 	if (unlikely(rem < c)) {
353 		ret = persistent_ram_update_user(prz, s, start, rem);
354 		s += rem;
355 		c -= rem;
356 		start = 0;
357 	}
358 	if (likely(!ret))
359 		ret = persistent_ram_update_user(prz, s, start, c);
360 
361 	persistent_ram_update_header_ecc(prz);
362 
363 	return unlikely(ret) ? ret : count;
364 }
365 
366 size_t persistent_ram_old_size(struct persistent_ram_zone *prz)
367 {
368 	return prz->old_log_size;
369 }
370 
371 void *persistent_ram_old(struct persistent_ram_zone *prz)
372 {
373 	return prz->old_log;
374 }
375 
376 void persistent_ram_free_old(struct persistent_ram_zone *prz)
377 {
378 	kfree(prz->old_log);
379 	prz->old_log = NULL;
380 	prz->old_log_size = 0;
381 }
382 
383 void persistent_ram_zap(struct persistent_ram_zone *prz)
384 {
385 	atomic_set(&prz->buffer->start, 0);
386 	atomic_set(&prz->buffer->size, 0);
387 	persistent_ram_update_header_ecc(prz);
388 }
389 
390 static void *persistent_ram_vmap(phys_addr_t start, size_t size,
391 		unsigned int memtype)
392 {
393 	struct page **pages;
394 	phys_addr_t page_start;
395 	unsigned int page_count;
396 	pgprot_t prot;
397 	unsigned int i;
398 	void *vaddr;
399 
400 	page_start = start - offset_in_page(start);
401 	page_count = DIV_ROUND_UP(size + offset_in_page(start), PAGE_SIZE);
402 
403 	if (memtype)
404 		prot = pgprot_noncached(PAGE_KERNEL);
405 	else
406 		prot = pgprot_writecombine(PAGE_KERNEL);
407 
408 	pages = kmalloc_array(page_count, sizeof(struct page *), GFP_KERNEL);
409 	if (!pages) {
410 		pr_err("%s: Failed to allocate array for %u pages\n",
411 		       __func__, page_count);
412 		return NULL;
413 	}
414 
415 	for (i = 0; i < page_count; i++) {
416 		phys_addr_t addr = page_start + i * PAGE_SIZE;
417 		pages[i] = pfn_to_page(addr >> PAGE_SHIFT);
418 	}
419 	vaddr = vmap(pages, page_count, VM_MAP, prot);
420 	kfree(pages);
421 
422 	return vaddr;
423 }
424 
425 static void *persistent_ram_iomap(phys_addr_t start, size_t size,
426 		unsigned int memtype)
427 {
428 	void *va;
429 
430 	if (!request_mem_region(start, size, "persistent_ram")) {
431 		pr_err("request mem region (0x%llx@0x%llx) failed\n",
432 			(unsigned long long)size, (unsigned long long)start);
433 		return NULL;
434 	}
435 
436 	if (memtype)
437 		va = ioremap(start, size);
438 	else
439 		va = ioremap_wc(start, size);
440 
441 	return va;
442 }
443 
444 static int persistent_ram_buffer_map(phys_addr_t start, phys_addr_t size,
445 		struct persistent_ram_zone *prz, int memtype)
446 {
447 	prz->paddr = start;
448 	prz->size = size;
449 
450 	if (pfn_valid(start >> PAGE_SHIFT))
451 		prz->vaddr = persistent_ram_vmap(start, size, memtype);
452 	else
453 		prz->vaddr = persistent_ram_iomap(start, size, memtype);
454 
455 	if (!prz->vaddr) {
456 		pr_err("%s: Failed to map 0x%llx pages at 0x%llx\n", __func__,
457 			(unsigned long long)size, (unsigned long long)start);
458 		return -ENOMEM;
459 	}
460 
461 	prz->buffer = prz->vaddr + offset_in_page(start);
462 	prz->buffer_size = size - sizeof(struct persistent_ram_buffer);
463 
464 	return 0;
465 }
466 
467 static int persistent_ram_post_init(struct persistent_ram_zone *prz, u32 sig,
468 				    struct persistent_ram_ecc_info *ecc_info)
469 {
470 	int ret;
471 
472 	ret = persistent_ram_init_ecc(prz, ecc_info);
473 	if (ret)
474 		return ret;
475 
476 	sig ^= PERSISTENT_RAM_SIG;
477 
478 	if (prz->buffer->sig == sig) {
479 		if (buffer_size(prz) > prz->buffer_size ||
480 		    buffer_start(prz) > buffer_size(prz))
481 			pr_info("found existing invalid buffer, size %zu, start %zu\n",
482 				buffer_size(prz), buffer_start(prz));
483 		else {
484 			pr_debug("found existing buffer, size %zu, start %zu\n",
485 				 buffer_size(prz), buffer_start(prz));
486 			persistent_ram_save_old(prz);
487 			return 0;
488 		}
489 	} else {
490 		pr_debug("no valid data in buffer (sig = 0x%08x)\n",
491 			 prz->buffer->sig);
492 	}
493 
494 	prz->buffer->sig = sig;
495 	persistent_ram_zap(prz);
496 
497 	return 0;
498 }
499 
500 void persistent_ram_free(struct persistent_ram_zone *prz)
501 {
502 	if (!prz)
503 		return;
504 
505 	if (prz->vaddr) {
506 		if (pfn_valid(prz->paddr >> PAGE_SHIFT)) {
507 			vunmap(prz->vaddr);
508 		} else {
509 			iounmap(prz->vaddr);
510 			release_mem_region(prz->paddr, prz->size);
511 		}
512 		prz->vaddr = NULL;
513 	}
514 	persistent_ram_free_old(prz);
515 	kfree(prz);
516 }
517 
518 struct persistent_ram_zone *persistent_ram_new(phys_addr_t start, size_t size,
519 			u32 sig, struct persistent_ram_ecc_info *ecc_info,
520 			unsigned int memtype)
521 {
522 	struct persistent_ram_zone *prz;
523 	int ret = -ENOMEM;
524 
525 	prz = kzalloc(sizeof(struct persistent_ram_zone), GFP_KERNEL);
526 	if (!prz) {
527 		pr_err("failed to allocate persistent ram zone\n");
528 		goto err;
529 	}
530 
531 	ret = persistent_ram_buffer_map(start, size, prz, memtype);
532 	if (ret)
533 		goto err;
534 
535 	ret = persistent_ram_post_init(prz, sig, ecc_info);
536 	if (ret)
537 		goto err;
538 
539 	return prz;
540 err:
541 	persistent_ram_free(prz);
542 	return ERR_PTR(ret);
543 }
544