xref: /linux/fs/pstore/ram_core.c (revision 905e46acd3272d04566fec49afbd7ad9e2ed9ae3)
1 /*
2  * Copyright (C) 2012 Google, Inc.
3  *
4  * This software is licensed under the terms of the GNU General Public
5  * License version 2, as published by the Free Software Foundation, and
6  * may be copied, distributed, and modified under those terms.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
11  * GNU General Public License for more details.
12  *
13  */
14 
15 #define pr_fmt(fmt) "persistent_ram: " fmt
16 
17 #include <linux/device.h>
18 #include <linux/err.h>
19 #include <linux/errno.h>
20 #include <linux/init.h>
21 #include <linux/io.h>
22 #include <linux/kernel.h>
23 #include <linux/list.h>
24 #include <linux/memblock.h>
25 #include <linux/pstore_ram.h>
26 #include <linux/rslib.h>
27 #include <linux/slab.h>
28 #include <linux/uaccess.h>
29 #include <linux/vmalloc.h>
30 #include <asm/page.h>
31 
32 struct persistent_ram_buffer {
33 	uint32_t    sig;
34 	atomic_t    start;
35 	atomic_t    size;
36 	uint8_t     data[0];
37 };
38 
39 #define PERSISTENT_RAM_SIG (0x43474244) /* DBGC */
40 
41 static inline size_t buffer_size(struct persistent_ram_zone *prz)
42 {
43 	return atomic_read(&prz->buffer->size);
44 }
45 
46 static inline size_t buffer_start(struct persistent_ram_zone *prz)
47 {
48 	return atomic_read(&prz->buffer->start);
49 }
50 
51 /* increase and wrap the start pointer, returning the old value */
52 static size_t buffer_start_add(struct persistent_ram_zone *prz, size_t a)
53 {
54 	int old;
55 	int new;
56 	unsigned long flags = 0;
57 
58 	if (!(prz->flags & PRZ_FLAG_NO_LOCK))
59 		raw_spin_lock_irqsave(&prz->buffer_lock, flags);
60 
61 	old = atomic_read(&prz->buffer->start);
62 	new = old + a;
63 	while (unlikely(new >= prz->buffer_size))
64 		new -= prz->buffer_size;
65 	atomic_set(&prz->buffer->start, new);
66 
67 	if (!(prz->flags & PRZ_FLAG_NO_LOCK))
68 		raw_spin_unlock_irqrestore(&prz->buffer_lock, flags);
69 
70 	return old;
71 }
72 
73 /* increase the size counter until it hits the max size */
74 static void buffer_size_add(struct persistent_ram_zone *prz, size_t a)
75 {
76 	size_t old;
77 	size_t new;
78 	unsigned long flags = 0;
79 
80 	if (!(prz->flags & PRZ_FLAG_NO_LOCK))
81 		raw_spin_lock_irqsave(&prz->buffer_lock, flags);
82 
83 	old = atomic_read(&prz->buffer->size);
84 	if (old == prz->buffer_size)
85 		goto exit;
86 
87 	new = old + a;
88 	if (new > prz->buffer_size)
89 		new = prz->buffer_size;
90 	atomic_set(&prz->buffer->size, new);
91 
92 exit:
93 	if (!(prz->flags & PRZ_FLAG_NO_LOCK))
94 		raw_spin_unlock_irqrestore(&prz->buffer_lock, flags);
95 }
96 
97 static void notrace persistent_ram_encode_rs8(struct persistent_ram_zone *prz,
98 	uint8_t *data, size_t len, uint8_t *ecc)
99 {
100 	int i;
101 	uint16_t par[prz->ecc_info.ecc_size];
102 
103 	/* Initialize the parity buffer */
104 	memset(par, 0, sizeof(par));
105 	encode_rs8(prz->rs_decoder, data, len, par, 0);
106 	for (i = 0; i < prz->ecc_info.ecc_size; i++)
107 		ecc[i] = par[i];
108 }
109 
110 static int persistent_ram_decode_rs8(struct persistent_ram_zone *prz,
111 	void *data, size_t len, uint8_t *ecc)
112 {
113 	int i;
114 	uint16_t par[prz->ecc_info.ecc_size];
115 
116 	for (i = 0; i < prz->ecc_info.ecc_size; i++)
117 		par[i] = ecc[i];
118 	return decode_rs8(prz->rs_decoder, data, par, len,
119 				NULL, 0, NULL, 0, NULL);
120 }
121 
122 static void notrace persistent_ram_update_ecc(struct persistent_ram_zone *prz,
123 	unsigned int start, unsigned int count)
124 {
125 	struct persistent_ram_buffer *buffer = prz->buffer;
126 	uint8_t *buffer_end = buffer->data + prz->buffer_size;
127 	uint8_t *block;
128 	uint8_t *par;
129 	int ecc_block_size = prz->ecc_info.block_size;
130 	int ecc_size = prz->ecc_info.ecc_size;
131 	int size = ecc_block_size;
132 
133 	if (!ecc_size)
134 		return;
135 
136 	block = buffer->data + (start & ~(ecc_block_size - 1));
137 	par = prz->par_buffer + (start / ecc_block_size) * ecc_size;
138 
139 	do {
140 		if (block + ecc_block_size > buffer_end)
141 			size = buffer_end - block;
142 		persistent_ram_encode_rs8(prz, block, size, par);
143 		block += ecc_block_size;
144 		par += ecc_size;
145 	} while (block < buffer->data + start + count);
146 }
147 
148 static void persistent_ram_update_header_ecc(struct persistent_ram_zone *prz)
149 {
150 	struct persistent_ram_buffer *buffer = prz->buffer;
151 
152 	if (!prz->ecc_info.ecc_size)
153 		return;
154 
155 	persistent_ram_encode_rs8(prz, (uint8_t *)buffer, sizeof(*buffer),
156 				  prz->par_header);
157 }
158 
159 static void persistent_ram_ecc_old(struct persistent_ram_zone *prz)
160 {
161 	struct persistent_ram_buffer *buffer = prz->buffer;
162 	uint8_t *block;
163 	uint8_t *par;
164 
165 	if (!prz->ecc_info.ecc_size)
166 		return;
167 
168 	block = buffer->data;
169 	par = prz->par_buffer;
170 	while (block < buffer->data + buffer_size(prz)) {
171 		int numerr;
172 		int size = prz->ecc_info.block_size;
173 		if (block + size > buffer->data + prz->buffer_size)
174 			size = buffer->data + prz->buffer_size - block;
175 		numerr = persistent_ram_decode_rs8(prz, block, size, par);
176 		if (numerr > 0) {
177 			pr_devel("error in block %p, %d\n", block, numerr);
178 			prz->corrected_bytes += numerr;
179 		} else if (numerr < 0) {
180 			pr_devel("uncorrectable error in block %p\n", block);
181 			prz->bad_blocks++;
182 		}
183 		block += prz->ecc_info.block_size;
184 		par += prz->ecc_info.ecc_size;
185 	}
186 }
187 
188 static int persistent_ram_init_ecc(struct persistent_ram_zone *prz,
189 				   struct persistent_ram_ecc_info *ecc_info)
190 {
191 	int numerr;
192 	struct persistent_ram_buffer *buffer = prz->buffer;
193 	int ecc_blocks;
194 	size_t ecc_total;
195 
196 	if (!ecc_info || !ecc_info->ecc_size)
197 		return 0;
198 
199 	prz->ecc_info.block_size = ecc_info->block_size ?: 128;
200 	prz->ecc_info.ecc_size = ecc_info->ecc_size ?: 16;
201 	prz->ecc_info.symsize = ecc_info->symsize ?: 8;
202 	prz->ecc_info.poly = ecc_info->poly ?: 0x11d;
203 
204 	ecc_blocks = DIV_ROUND_UP(prz->buffer_size - prz->ecc_info.ecc_size,
205 				  prz->ecc_info.block_size +
206 				  prz->ecc_info.ecc_size);
207 	ecc_total = (ecc_blocks + 1) * prz->ecc_info.ecc_size;
208 	if (ecc_total >= prz->buffer_size) {
209 		pr_err("%s: invalid ecc_size %u (total %zu, buffer size %zu)\n",
210 		       __func__, prz->ecc_info.ecc_size,
211 		       ecc_total, prz->buffer_size);
212 		return -EINVAL;
213 	}
214 
215 	prz->buffer_size -= ecc_total;
216 	prz->par_buffer = buffer->data + prz->buffer_size;
217 	prz->par_header = prz->par_buffer +
218 			  ecc_blocks * prz->ecc_info.ecc_size;
219 
220 	/*
221 	 * first consecutive root is 0
222 	 * primitive element to generate roots = 1
223 	 */
224 	prz->rs_decoder = init_rs(prz->ecc_info.symsize, prz->ecc_info.poly,
225 				  0, 1, prz->ecc_info.ecc_size);
226 	if (prz->rs_decoder == NULL) {
227 		pr_info("init_rs failed\n");
228 		return -EINVAL;
229 	}
230 
231 	prz->corrected_bytes = 0;
232 	prz->bad_blocks = 0;
233 
234 	numerr = persistent_ram_decode_rs8(prz, buffer, sizeof(*buffer),
235 					   prz->par_header);
236 	if (numerr > 0) {
237 		pr_info("error in header, %d\n", numerr);
238 		prz->corrected_bytes += numerr;
239 	} else if (numerr < 0) {
240 		pr_info("uncorrectable error in header\n");
241 		prz->bad_blocks++;
242 	}
243 
244 	return 0;
245 }
246 
247 ssize_t persistent_ram_ecc_string(struct persistent_ram_zone *prz,
248 	char *str, size_t len)
249 {
250 	ssize_t ret;
251 
252 	if (!prz->ecc_info.ecc_size)
253 		return 0;
254 
255 	if (prz->corrected_bytes || prz->bad_blocks)
256 		ret = snprintf(str, len, ""
257 			"\n%d Corrected bytes, %d unrecoverable blocks\n",
258 			prz->corrected_bytes, prz->bad_blocks);
259 	else
260 		ret = snprintf(str, len, "\nNo errors detected\n");
261 
262 	return ret;
263 }
264 
265 static void notrace persistent_ram_update(struct persistent_ram_zone *prz,
266 	const void *s, unsigned int start, unsigned int count)
267 {
268 	struct persistent_ram_buffer *buffer = prz->buffer;
269 	memcpy_toio(buffer->data + start, s, count);
270 	persistent_ram_update_ecc(prz, start, count);
271 }
272 
273 static int notrace persistent_ram_update_user(struct persistent_ram_zone *prz,
274 	const void __user *s, unsigned int start, unsigned int count)
275 {
276 	struct persistent_ram_buffer *buffer = prz->buffer;
277 	int ret = unlikely(__copy_from_user(buffer->data + start, s, count)) ?
278 		-EFAULT : 0;
279 	persistent_ram_update_ecc(prz, start, count);
280 	return ret;
281 }
282 
283 void persistent_ram_save_old(struct persistent_ram_zone *prz)
284 {
285 	struct persistent_ram_buffer *buffer = prz->buffer;
286 	size_t size = buffer_size(prz);
287 	size_t start = buffer_start(prz);
288 
289 	if (!size)
290 		return;
291 
292 	if (!prz->old_log) {
293 		persistent_ram_ecc_old(prz);
294 		prz->old_log = kmalloc(size, GFP_KERNEL);
295 	}
296 	if (!prz->old_log) {
297 		pr_err("failed to allocate buffer\n");
298 		return;
299 	}
300 
301 	prz->old_log_size = size;
302 	memcpy_fromio(prz->old_log, &buffer->data[start], size - start);
303 	memcpy_fromio(prz->old_log + size - start, &buffer->data[0], start);
304 }
305 
306 int notrace persistent_ram_write(struct persistent_ram_zone *prz,
307 	const void *s, unsigned int count)
308 {
309 	int rem;
310 	int c = count;
311 	size_t start;
312 
313 	if (unlikely(c > prz->buffer_size)) {
314 		s += c - prz->buffer_size;
315 		c = prz->buffer_size;
316 	}
317 
318 	buffer_size_add(prz, c);
319 
320 	start = buffer_start_add(prz, c);
321 
322 	rem = prz->buffer_size - start;
323 	if (unlikely(rem < c)) {
324 		persistent_ram_update(prz, s, start, rem);
325 		s += rem;
326 		c -= rem;
327 		start = 0;
328 	}
329 	persistent_ram_update(prz, s, start, c);
330 
331 	persistent_ram_update_header_ecc(prz);
332 
333 	return count;
334 }
335 
336 int notrace persistent_ram_write_user(struct persistent_ram_zone *prz,
337 	const void __user *s, unsigned int count)
338 {
339 	int rem, ret = 0, c = count;
340 	size_t start;
341 
342 	if (unlikely(!access_ok(VERIFY_READ, s, count)))
343 		return -EFAULT;
344 	if (unlikely(c > prz->buffer_size)) {
345 		s += c - prz->buffer_size;
346 		c = prz->buffer_size;
347 	}
348 
349 	buffer_size_add(prz, c);
350 
351 	start = buffer_start_add(prz, c);
352 
353 	rem = prz->buffer_size - start;
354 	if (unlikely(rem < c)) {
355 		ret = persistent_ram_update_user(prz, s, start, rem);
356 		s += rem;
357 		c -= rem;
358 		start = 0;
359 	}
360 	if (likely(!ret))
361 		ret = persistent_ram_update_user(prz, s, start, c);
362 
363 	persistent_ram_update_header_ecc(prz);
364 
365 	return unlikely(ret) ? ret : count;
366 }
367 
368 size_t persistent_ram_old_size(struct persistent_ram_zone *prz)
369 {
370 	return prz->old_log_size;
371 }
372 
373 void *persistent_ram_old(struct persistent_ram_zone *prz)
374 {
375 	return prz->old_log;
376 }
377 
378 void persistent_ram_free_old(struct persistent_ram_zone *prz)
379 {
380 	kfree(prz->old_log);
381 	prz->old_log = NULL;
382 	prz->old_log_size = 0;
383 }
384 
385 void persistent_ram_zap(struct persistent_ram_zone *prz)
386 {
387 	atomic_set(&prz->buffer->start, 0);
388 	atomic_set(&prz->buffer->size, 0);
389 	persistent_ram_update_header_ecc(prz);
390 }
391 
392 static void *persistent_ram_vmap(phys_addr_t start, size_t size,
393 		unsigned int memtype)
394 {
395 	struct page **pages;
396 	phys_addr_t page_start;
397 	unsigned int page_count;
398 	pgprot_t prot;
399 	unsigned int i;
400 	void *vaddr;
401 
402 	page_start = start - offset_in_page(start);
403 	page_count = DIV_ROUND_UP(size + offset_in_page(start), PAGE_SIZE);
404 
405 	if (memtype)
406 		prot = pgprot_noncached(PAGE_KERNEL);
407 	else
408 		prot = pgprot_writecombine(PAGE_KERNEL);
409 
410 	pages = kmalloc_array(page_count, sizeof(struct page *), GFP_KERNEL);
411 	if (!pages) {
412 		pr_err("%s: Failed to allocate array for %u pages\n",
413 		       __func__, page_count);
414 		return NULL;
415 	}
416 
417 	for (i = 0; i < page_count; i++) {
418 		phys_addr_t addr = page_start + i * PAGE_SIZE;
419 		pages[i] = pfn_to_page(addr >> PAGE_SHIFT);
420 	}
421 	vaddr = vmap(pages, page_count, VM_MAP, prot);
422 	kfree(pages);
423 
424 	return vaddr;
425 }
426 
427 static void *persistent_ram_iomap(phys_addr_t start, size_t size,
428 		unsigned int memtype)
429 {
430 	void *va;
431 
432 	if (!request_mem_region(start, size, "persistent_ram")) {
433 		pr_err("request mem region (0x%llx@0x%llx) failed\n",
434 			(unsigned long long)size, (unsigned long long)start);
435 		return NULL;
436 	}
437 
438 	if (memtype)
439 		va = ioremap(start, size);
440 	else
441 		va = ioremap_wc(start, size);
442 
443 	return va;
444 }
445 
446 static int persistent_ram_buffer_map(phys_addr_t start, phys_addr_t size,
447 		struct persistent_ram_zone *prz, int memtype)
448 {
449 	prz->paddr = start;
450 	prz->size = size;
451 
452 	if (pfn_valid(start >> PAGE_SHIFT))
453 		prz->vaddr = persistent_ram_vmap(start, size, memtype);
454 	else
455 		prz->vaddr = persistent_ram_iomap(start, size, memtype);
456 
457 	if (!prz->vaddr) {
458 		pr_err("%s: Failed to map 0x%llx pages at 0x%llx\n", __func__,
459 			(unsigned long long)size, (unsigned long long)start);
460 		return -ENOMEM;
461 	}
462 
463 	prz->buffer = prz->vaddr + offset_in_page(start);
464 	prz->buffer_size = size - sizeof(struct persistent_ram_buffer);
465 
466 	return 0;
467 }
468 
469 static int persistent_ram_post_init(struct persistent_ram_zone *prz, u32 sig,
470 				    struct persistent_ram_ecc_info *ecc_info)
471 {
472 	int ret;
473 
474 	ret = persistent_ram_init_ecc(prz, ecc_info);
475 	if (ret)
476 		return ret;
477 
478 	sig ^= PERSISTENT_RAM_SIG;
479 
480 	if (prz->buffer->sig == sig) {
481 		if (buffer_size(prz) > prz->buffer_size ||
482 		    buffer_start(prz) > buffer_size(prz))
483 			pr_info("found existing invalid buffer, size %zu, start %zu\n",
484 				buffer_size(prz), buffer_start(prz));
485 		else {
486 			pr_debug("found existing buffer, size %zu, start %zu\n",
487 				 buffer_size(prz), buffer_start(prz));
488 			persistent_ram_save_old(prz);
489 			return 0;
490 		}
491 	} else {
492 		pr_debug("no valid data in buffer (sig = 0x%08x)\n",
493 			 prz->buffer->sig);
494 	}
495 
496 	/* Rewind missing or invalid memory area. */
497 	prz->buffer->sig = sig;
498 	persistent_ram_zap(prz);
499 
500 	return 0;
501 }
502 
503 void persistent_ram_free(struct persistent_ram_zone *prz)
504 {
505 	if (!prz)
506 		return;
507 
508 	if (prz->vaddr) {
509 		if (pfn_valid(prz->paddr >> PAGE_SHIFT)) {
510 			vunmap(prz->vaddr);
511 		} else {
512 			iounmap(prz->vaddr);
513 			release_mem_region(prz->paddr, prz->size);
514 		}
515 		prz->vaddr = NULL;
516 	}
517 	persistent_ram_free_old(prz);
518 	kfree(prz);
519 }
520 
521 struct persistent_ram_zone *persistent_ram_new(phys_addr_t start, size_t size,
522 			u32 sig, struct persistent_ram_ecc_info *ecc_info,
523 			unsigned int memtype, u32 flags)
524 {
525 	struct persistent_ram_zone *prz;
526 	int ret = -ENOMEM;
527 
528 	prz = kzalloc(sizeof(struct persistent_ram_zone), GFP_KERNEL);
529 	if (!prz) {
530 		pr_err("failed to allocate persistent ram zone\n");
531 		goto err;
532 	}
533 
534 	/* Initialize general buffer state. */
535 	raw_spin_lock_init(&prz->buffer_lock);
536 	prz->flags = flags;
537 
538 	ret = persistent_ram_buffer_map(start, size, prz, memtype);
539 	if (ret)
540 		goto err;
541 
542 	ret = persistent_ram_post_init(prz, sig, ecc_info);
543 	if (ret)
544 		goto err;
545 
546 	return prz;
547 err:
548 	persistent_ram_free(prz);
549 	return ERR_PTR(ret);
550 }
551