xref: /linux/fs/pstore/ram_core.c (revision 0883c2c06fb5bcf5b9e008270827e63c09a88c1e)
1 /*
2  * Copyright (C) 2012 Google, Inc.
3  *
4  * This software is licensed under the terms of the GNU General Public
5  * License version 2, as published by the Free Software Foundation, and
6  * may be copied, distributed, and modified under those terms.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
11  * GNU General Public License for more details.
12  *
13  */
14 
15 #define pr_fmt(fmt) "persistent_ram: " fmt
16 
17 #include <linux/device.h>
18 #include <linux/err.h>
19 #include <linux/errno.h>
20 #include <linux/kernel.h>
21 #include <linux/init.h>
22 #include <linux/io.h>
23 #include <linux/list.h>
24 #include <linux/memblock.h>
25 #include <linux/rslib.h>
26 #include <linux/slab.h>
27 #include <linux/vmalloc.h>
28 #include <linux/pstore_ram.h>
29 #include <asm/page.h>
30 
31 struct persistent_ram_buffer {
32 	uint32_t    sig;
33 	atomic_t    start;
34 	atomic_t    size;
35 	uint8_t     data[0];
36 };
37 
38 #define PERSISTENT_RAM_SIG (0x43474244) /* DBGC */
39 
40 static inline size_t buffer_size(struct persistent_ram_zone *prz)
41 {
42 	return atomic_read(&prz->buffer->size);
43 }
44 
45 static inline size_t buffer_start(struct persistent_ram_zone *prz)
46 {
47 	return atomic_read(&prz->buffer->start);
48 }
49 
50 /* increase and wrap the start pointer, returning the old value */
51 static size_t buffer_start_add_atomic(struct persistent_ram_zone *prz, size_t a)
52 {
53 	int old;
54 	int new;
55 
56 	do {
57 		old = atomic_read(&prz->buffer->start);
58 		new = old + a;
59 		while (unlikely(new >= prz->buffer_size))
60 			new -= prz->buffer_size;
61 	} while (atomic_cmpxchg(&prz->buffer->start, old, new) != old);
62 
63 	return old;
64 }
65 
66 /* increase the size counter until it hits the max size */
67 static void buffer_size_add_atomic(struct persistent_ram_zone *prz, size_t a)
68 {
69 	size_t old;
70 	size_t new;
71 
72 	if (atomic_read(&prz->buffer->size) == prz->buffer_size)
73 		return;
74 
75 	do {
76 		old = atomic_read(&prz->buffer->size);
77 		new = old + a;
78 		if (new > prz->buffer_size)
79 			new = prz->buffer_size;
80 	} while (atomic_cmpxchg(&prz->buffer->size, old, new) != old);
81 }
82 
83 static DEFINE_RAW_SPINLOCK(buffer_lock);
84 
85 /* increase and wrap the start pointer, returning the old value */
86 static size_t buffer_start_add_locked(struct persistent_ram_zone *prz, size_t a)
87 {
88 	int old;
89 	int new;
90 	unsigned long flags;
91 
92 	raw_spin_lock_irqsave(&buffer_lock, flags);
93 
94 	old = atomic_read(&prz->buffer->start);
95 	new = old + a;
96 	while (unlikely(new >= prz->buffer_size))
97 		new -= prz->buffer_size;
98 	atomic_set(&prz->buffer->start, new);
99 
100 	raw_spin_unlock_irqrestore(&buffer_lock, flags);
101 
102 	return old;
103 }
104 
105 /* increase the size counter until it hits the max size */
106 static void buffer_size_add_locked(struct persistent_ram_zone *prz, size_t a)
107 {
108 	size_t old;
109 	size_t new;
110 	unsigned long flags;
111 
112 	raw_spin_lock_irqsave(&buffer_lock, flags);
113 
114 	old = atomic_read(&prz->buffer->size);
115 	if (old == prz->buffer_size)
116 		goto exit;
117 
118 	new = old + a;
119 	if (new > prz->buffer_size)
120 		new = prz->buffer_size;
121 	atomic_set(&prz->buffer->size, new);
122 
123 exit:
124 	raw_spin_unlock_irqrestore(&buffer_lock, flags);
125 }
126 
127 static size_t (*buffer_start_add)(struct persistent_ram_zone *, size_t) = buffer_start_add_atomic;
128 static void (*buffer_size_add)(struct persistent_ram_zone *, size_t) = buffer_size_add_atomic;
129 
130 static void notrace persistent_ram_encode_rs8(struct persistent_ram_zone *prz,
131 	uint8_t *data, size_t len, uint8_t *ecc)
132 {
133 	int i;
134 	uint16_t par[prz->ecc_info.ecc_size];
135 
136 	/* Initialize the parity buffer */
137 	memset(par, 0, sizeof(par));
138 	encode_rs8(prz->rs_decoder, data, len, par, 0);
139 	for (i = 0; i < prz->ecc_info.ecc_size; i++)
140 		ecc[i] = par[i];
141 }
142 
143 static int persistent_ram_decode_rs8(struct persistent_ram_zone *prz,
144 	void *data, size_t len, uint8_t *ecc)
145 {
146 	int i;
147 	uint16_t par[prz->ecc_info.ecc_size];
148 
149 	for (i = 0; i < prz->ecc_info.ecc_size; i++)
150 		par[i] = ecc[i];
151 	return decode_rs8(prz->rs_decoder, data, par, len,
152 				NULL, 0, NULL, 0, NULL);
153 }
154 
155 static void notrace persistent_ram_update_ecc(struct persistent_ram_zone *prz,
156 	unsigned int start, unsigned int count)
157 {
158 	struct persistent_ram_buffer *buffer = prz->buffer;
159 	uint8_t *buffer_end = buffer->data + prz->buffer_size;
160 	uint8_t *block;
161 	uint8_t *par;
162 	int ecc_block_size = prz->ecc_info.block_size;
163 	int ecc_size = prz->ecc_info.ecc_size;
164 	int size = ecc_block_size;
165 
166 	if (!ecc_size)
167 		return;
168 
169 	block = buffer->data + (start & ~(ecc_block_size - 1));
170 	par = prz->par_buffer + (start / ecc_block_size) * ecc_size;
171 
172 	do {
173 		if (block + ecc_block_size > buffer_end)
174 			size = buffer_end - block;
175 		persistent_ram_encode_rs8(prz, block, size, par);
176 		block += ecc_block_size;
177 		par += ecc_size;
178 	} while (block < buffer->data + start + count);
179 }
180 
181 static void persistent_ram_update_header_ecc(struct persistent_ram_zone *prz)
182 {
183 	struct persistent_ram_buffer *buffer = prz->buffer;
184 
185 	if (!prz->ecc_info.ecc_size)
186 		return;
187 
188 	persistent_ram_encode_rs8(prz, (uint8_t *)buffer, sizeof(*buffer),
189 				  prz->par_header);
190 }
191 
192 static void persistent_ram_ecc_old(struct persistent_ram_zone *prz)
193 {
194 	struct persistent_ram_buffer *buffer = prz->buffer;
195 	uint8_t *block;
196 	uint8_t *par;
197 
198 	if (!prz->ecc_info.ecc_size)
199 		return;
200 
201 	block = buffer->data;
202 	par = prz->par_buffer;
203 	while (block < buffer->data + buffer_size(prz)) {
204 		int numerr;
205 		int size = prz->ecc_info.block_size;
206 		if (block + size > buffer->data + prz->buffer_size)
207 			size = buffer->data + prz->buffer_size - block;
208 		numerr = persistent_ram_decode_rs8(prz, block, size, par);
209 		if (numerr > 0) {
210 			pr_devel("error in block %p, %d\n", block, numerr);
211 			prz->corrected_bytes += numerr;
212 		} else if (numerr < 0) {
213 			pr_devel("uncorrectable error in block %p\n", block);
214 			prz->bad_blocks++;
215 		}
216 		block += prz->ecc_info.block_size;
217 		par += prz->ecc_info.ecc_size;
218 	}
219 }
220 
221 static int persistent_ram_init_ecc(struct persistent_ram_zone *prz,
222 				   struct persistent_ram_ecc_info *ecc_info)
223 {
224 	int numerr;
225 	struct persistent_ram_buffer *buffer = prz->buffer;
226 	int ecc_blocks;
227 	size_t ecc_total;
228 
229 	if (!ecc_info || !ecc_info->ecc_size)
230 		return 0;
231 
232 	prz->ecc_info.block_size = ecc_info->block_size ?: 128;
233 	prz->ecc_info.ecc_size = ecc_info->ecc_size ?: 16;
234 	prz->ecc_info.symsize = ecc_info->symsize ?: 8;
235 	prz->ecc_info.poly = ecc_info->poly ?: 0x11d;
236 
237 	ecc_blocks = DIV_ROUND_UP(prz->buffer_size - prz->ecc_info.ecc_size,
238 				  prz->ecc_info.block_size +
239 				  prz->ecc_info.ecc_size);
240 	ecc_total = (ecc_blocks + 1) * prz->ecc_info.ecc_size;
241 	if (ecc_total >= prz->buffer_size) {
242 		pr_err("%s: invalid ecc_size %u (total %zu, buffer size %zu)\n",
243 		       __func__, prz->ecc_info.ecc_size,
244 		       ecc_total, prz->buffer_size);
245 		return -EINVAL;
246 	}
247 
248 	prz->buffer_size -= ecc_total;
249 	prz->par_buffer = buffer->data + prz->buffer_size;
250 	prz->par_header = prz->par_buffer +
251 			  ecc_blocks * prz->ecc_info.ecc_size;
252 
253 	/*
254 	 * first consecutive root is 0
255 	 * primitive element to generate roots = 1
256 	 */
257 	prz->rs_decoder = init_rs(prz->ecc_info.symsize, prz->ecc_info.poly,
258 				  0, 1, prz->ecc_info.ecc_size);
259 	if (prz->rs_decoder == NULL) {
260 		pr_info("init_rs failed\n");
261 		return -EINVAL;
262 	}
263 
264 	prz->corrected_bytes = 0;
265 	prz->bad_blocks = 0;
266 
267 	numerr = persistent_ram_decode_rs8(prz, buffer, sizeof(*buffer),
268 					   prz->par_header);
269 	if (numerr > 0) {
270 		pr_info("error in header, %d\n", numerr);
271 		prz->corrected_bytes += numerr;
272 	} else if (numerr < 0) {
273 		pr_info("uncorrectable error in header\n");
274 		prz->bad_blocks++;
275 	}
276 
277 	return 0;
278 }
279 
280 ssize_t persistent_ram_ecc_string(struct persistent_ram_zone *prz,
281 	char *str, size_t len)
282 {
283 	ssize_t ret;
284 
285 	if (!prz->ecc_info.ecc_size)
286 		return 0;
287 
288 	if (prz->corrected_bytes || prz->bad_blocks)
289 		ret = snprintf(str, len, ""
290 			"\n%d Corrected bytes, %d unrecoverable blocks\n",
291 			prz->corrected_bytes, prz->bad_blocks);
292 	else
293 		ret = snprintf(str, len, "\nNo errors detected\n");
294 
295 	return ret;
296 }
297 
298 static void notrace persistent_ram_update(struct persistent_ram_zone *prz,
299 	const void *s, unsigned int start, unsigned int count)
300 {
301 	struct persistent_ram_buffer *buffer = prz->buffer;
302 	memcpy(buffer->data + start, s, count);
303 	persistent_ram_update_ecc(prz, start, count);
304 }
305 
306 void persistent_ram_save_old(struct persistent_ram_zone *prz)
307 {
308 	struct persistent_ram_buffer *buffer = prz->buffer;
309 	size_t size = buffer_size(prz);
310 	size_t start = buffer_start(prz);
311 
312 	if (!size)
313 		return;
314 
315 	if (!prz->old_log) {
316 		persistent_ram_ecc_old(prz);
317 		prz->old_log = kmalloc(size, GFP_KERNEL);
318 	}
319 	if (!prz->old_log) {
320 		pr_err("failed to allocate buffer\n");
321 		return;
322 	}
323 
324 	prz->old_log_size = size;
325 	memcpy(prz->old_log, &buffer->data[start], size - start);
326 	memcpy(prz->old_log + size - start, &buffer->data[0], start);
327 }
328 
329 int notrace persistent_ram_write(struct persistent_ram_zone *prz,
330 	const void *s, unsigned int count)
331 {
332 	int rem;
333 	int c = count;
334 	size_t start;
335 
336 	if (unlikely(c > prz->buffer_size)) {
337 		s += c - prz->buffer_size;
338 		c = prz->buffer_size;
339 	}
340 
341 	buffer_size_add(prz, c);
342 
343 	start = buffer_start_add(prz, c);
344 
345 	rem = prz->buffer_size - start;
346 	if (unlikely(rem < c)) {
347 		persistent_ram_update(prz, s, start, rem);
348 		s += rem;
349 		c -= rem;
350 		start = 0;
351 	}
352 	persistent_ram_update(prz, s, start, c);
353 
354 	persistent_ram_update_header_ecc(prz);
355 
356 	return count;
357 }
358 
359 size_t persistent_ram_old_size(struct persistent_ram_zone *prz)
360 {
361 	return prz->old_log_size;
362 }
363 
364 void *persistent_ram_old(struct persistent_ram_zone *prz)
365 {
366 	return prz->old_log;
367 }
368 
369 void persistent_ram_free_old(struct persistent_ram_zone *prz)
370 {
371 	kfree(prz->old_log);
372 	prz->old_log = NULL;
373 	prz->old_log_size = 0;
374 }
375 
376 void persistent_ram_zap(struct persistent_ram_zone *prz)
377 {
378 	atomic_set(&prz->buffer->start, 0);
379 	atomic_set(&prz->buffer->size, 0);
380 	persistent_ram_update_header_ecc(prz);
381 }
382 
383 static void *persistent_ram_vmap(phys_addr_t start, size_t size,
384 		unsigned int memtype)
385 {
386 	struct page **pages;
387 	phys_addr_t page_start;
388 	unsigned int page_count;
389 	pgprot_t prot;
390 	unsigned int i;
391 	void *vaddr;
392 
393 	page_start = start - offset_in_page(start);
394 	page_count = DIV_ROUND_UP(size + offset_in_page(start), PAGE_SIZE);
395 
396 	if (memtype)
397 		prot = pgprot_noncached(PAGE_KERNEL);
398 	else
399 		prot = pgprot_writecombine(PAGE_KERNEL);
400 
401 	pages = kmalloc_array(page_count, sizeof(struct page *), GFP_KERNEL);
402 	if (!pages) {
403 		pr_err("%s: Failed to allocate array for %u pages\n",
404 		       __func__, page_count);
405 		return NULL;
406 	}
407 
408 	for (i = 0; i < page_count; i++) {
409 		phys_addr_t addr = page_start + i * PAGE_SIZE;
410 		pages[i] = pfn_to_page(addr >> PAGE_SHIFT);
411 	}
412 	vaddr = vmap(pages, page_count, VM_MAP, prot);
413 	kfree(pages);
414 
415 	return vaddr;
416 }
417 
418 static void *persistent_ram_iomap(phys_addr_t start, size_t size,
419 		unsigned int memtype)
420 {
421 	void *va;
422 
423 	if (!request_mem_region(start, size, "persistent_ram")) {
424 		pr_err("request mem region (0x%llx@0x%llx) failed\n",
425 			(unsigned long long)size, (unsigned long long)start);
426 		return NULL;
427 	}
428 
429 	buffer_start_add = buffer_start_add_locked;
430 	buffer_size_add = buffer_size_add_locked;
431 
432 	if (memtype)
433 		va = ioremap(start, size);
434 	else
435 		va = ioremap_wc(start, size);
436 
437 	return va;
438 }
439 
440 static int persistent_ram_buffer_map(phys_addr_t start, phys_addr_t size,
441 		struct persistent_ram_zone *prz, int memtype)
442 {
443 	prz->paddr = start;
444 	prz->size = size;
445 
446 	if (pfn_valid(start >> PAGE_SHIFT))
447 		prz->vaddr = persistent_ram_vmap(start, size, memtype);
448 	else
449 		prz->vaddr = persistent_ram_iomap(start, size, memtype);
450 
451 	if (!prz->vaddr) {
452 		pr_err("%s: Failed to map 0x%llx pages at 0x%llx\n", __func__,
453 			(unsigned long long)size, (unsigned long long)start);
454 		return -ENOMEM;
455 	}
456 
457 	prz->buffer = prz->vaddr + offset_in_page(start);
458 	prz->buffer_size = size - sizeof(struct persistent_ram_buffer);
459 
460 	return 0;
461 }
462 
463 static int persistent_ram_post_init(struct persistent_ram_zone *prz, u32 sig,
464 				    struct persistent_ram_ecc_info *ecc_info)
465 {
466 	int ret;
467 
468 	ret = persistent_ram_init_ecc(prz, ecc_info);
469 	if (ret)
470 		return ret;
471 
472 	sig ^= PERSISTENT_RAM_SIG;
473 
474 	if (prz->buffer->sig == sig) {
475 		if (buffer_size(prz) > prz->buffer_size ||
476 		    buffer_start(prz) > buffer_size(prz))
477 			pr_info("found existing invalid buffer, size %zu, start %zu\n",
478 				buffer_size(prz), buffer_start(prz));
479 		else {
480 			pr_debug("found existing buffer, size %zu, start %zu\n",
481 				 buffer_size(prz), buffer_start(prz));
482 			persistent_ram_save_old(prz);
483 			return 0;
484 		}
485 	} else {
486 		pr_debug("no valid data in buffer (sig = 0x%08x)\n",
487 			 prz->buffer->sig);
488 	}
489 
490 	prz->buffer->sig = sig;
491 	persistent_ram_zap(prz);
492 
493 	return 0;
494 }
495 
496 void persistent_ram_free(struct persistent_ram_zone *prz)
497 {
498 	if (!prz)
499 		return;
500 
501 	if (prz->vaddr) {
502 		if (pfn_valid(prz->paddr >> PAGE_SHIFT)) {
503 			vunmap(prz->vaddr);
504 		} else {
505 			iounmap(prz->vaddr);
506 			release_mem_region(prz->paddr, prz->size);
507 		}
508 		prz->vaddr = NULL;
509 	}
510 	persistent_ram_free_old(prz);
511 	kfree(prz);
512 }
513 
514 struct persistent_ram_zone *persistent_ram_new(phys_addr_t start, size_t size,
515 			u32 sig, struct persistent_ram_ecc_info *ecc_info,
516 			unsigned int memtype)
517 {
518 	struct persistent_ram_zone *prz;
519 	int ret = -ENOMEM;
520 
521 	prz = kzalloc(sizeof(struct persistent_ram_zone), GFP_KERNEL);
522 	if (!prz) {
523 		pr_err("failed to allocate persistent ram zone\n");
524 		goto err;
525 	}
526 
527 	ret = persistent_ram_buffer_map(start, size, prz, memtype);
528 	if (ret)
529 		goto err;
530 
531 	ret = persistent_ram_post_init(prz, sig, ecc_info);
532 	if (ret)
533 		goto err;
534 
535 	return prz;
536 err:
537 	persistent_ram_free(prz);
538 	return ERR_PTR(ret);
539 }
540