1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * fs/proc/vmcore.c Interface for accessing the crash 4 * dump from the system's previous life. 5 * Heavily borrowed from fs/proc/kcore.c 6 * Created by: Hariprasad Nellitheertha (hari@in.ibm.com) 7 * Copyright (C) IBM Corporation, 2004. All rights reserved 8 * 9 */ 10 11 #include <linux/mm.h> 12 #include <linux/kcore.h> 13 #include <linux/user.h> 14 #include <linux/elf.h> 15 #include <linux/elfcore.h> 16 #include <linux/export.h> 17 #include <linux/slab.h> 18 #include <linux/highmem.h> 19 #include <linux/printk.h> 20 #include <linux/memblock.h> 21 #include <linux/init.h> 22 #include <linux/crash_dump.h> 23 #include <linux/list.h> 24 #include <linux/moduleparam.h> 25 #include <linux/mutex.h> 26 #include <linux/vmalloc.h> 27 #include <linux/pagemap.h> 28 #include <linux/uio.h> 29 #include <linux/cc_platform.h> 30 #include <asm/io.h> 31 #include "internal.h" 32 33 /* List representing chunks of contiguous memory areas and their offsets in 34 * vmcore file. 35 */ 36 static LIST_HEAD(vmcore_list); 37 38 /* Stores the pointer to the buffer containing kernel elf core headers. */ 39 static char *elfcorebuf; 40 static size_t elfcorebuf_sz; 41 static size_t elfcorebuf_sz_orig; 42 43 static char *elfnotes_buf; 44 static size_t elfnotes_sz; 45 /* Size of all notes minus the device dump notes */ 46 static size_t elfnotes_orig_sz; 47 48 /* Total size of vmcore file. */ 49 static u64 vmcore_size; 50 51 static struct proc_dir_entry *proc_vmcore; 52 53 #ifdef CONFIG_PROC_VMCORE_DEVICE_DUMP 54 /* Device Dump list and mutex to synchronize access to list */ 55 static LIST_HEAD(vmcoredd_list); 56 static DEFINE_MUTEX(vmcoredd_mutex); 57 58 static bool vmcoredd_disabled; 59 core_param(novmcoredd, vmcoredd_disabled, bool, 0); 60 #endif /* CONFIG_PROC_VMCORE_DEVICE_DUMP */ 61 62 /* Device Dump Size */ 63 static size_t vmcoredd_orig_sz; 64 65 static DEFINE_SPINLOCK(vmcore_cb_lock); 66 DEFINE_STATIC_SRCU(vmcore_cb_srcu); 67 /* List of registered vmcore callbacks. */ 68 static LIST_HEAD(vmcore_cb_list); 69 /* Whether the vmcore has been opened once. */ 70 static bool vmcore_opened; 71 72 void register_vmcore_cb(struct vmcore_cb *cb) 73 { 74 INIT_LIST_HEAD(&cb->next); 75 spin_lock(&vmcore_cb_lock); 76 list_add_tail(&cb->next, &vmcore_cb_list); 77 /* 78 * Registering a vmcore callback after the vmcore was opened is 79 * very unusual (e.g., manual driver loading). 80 */ 81 if (vmcore_opened) 82 pr_warn_once("Unexpected vmcore callback registration\n"); 83 spin_unlock(&vmcore_cb_lock); 84 } 85 EXPORT_SYMBOL_GPL(register_vmcore_cb); 86 87 void unregister_vmcore_cb(struct vmcore_cb *cb) 88 { 89 spin_lock(&vmcore_cb_lock); 90 list_del_rcu(&cb->next); 91 /* 92 * Unregistering a vmcore callback after the vmcore was opened is 93 * very unusual (e.g., forced driver removal), but we cannot stop 94 * unregistering. 95 */ 96 if (vmcore_opened) 97 pr_warn_once("Unexpected vmcore callback unregistration\n"); 98 spin_unlock(&vmcore_cb_lock); 99 100 synchronize_srcu(&vmcore_cb_srcu); 101 } 102 EXPORT_SYMBOL_GPL(unregister_vmcore_cb); 103 104 static bool pfn_is_ram(unsigned long pfn) 105 { 106 struct vmcore_cb *cb; 107 bool ret = true; 108 109 list_for_each_entry_srcu(cb, &vmcore_cb_list, next, 110 srcu_read_lock_held(&vmcore_cb_srcu)) { 111 if (unlikely(!cb->pfn_is_ram)) 112 continue; 113 ret = cb->pfn_is_ram(cb, pfn); 114 if (!ret) 115 break; 116 } 117 118 return ret; 119 } 120 121 static int open_vmcore(struct inode *inode, struct file *file) 122 { 123 spin_lock(&vmcore_cb_lock); 124 vmcore_opened = true; 125 spin_unlock(&vmcore_cb_lock); 126 127 return 0; 128 } 129 130 /* Reads a page from the oldmem device from given offset. */ 131 ssize_t read_from_oldmem(struct iov_iter *iter, size_t count, 132 u64 *ppos, bool encrypted) 133 { 134 unsigned long pfn, offset; 135 ssize_t nr_bytes; 136 ssize_t read = 0, tmp; 137 int idx; 138 139 if (!count) 140 return 0; 141 142 offset = (unsigned long)(*ppos % PAGE_SIZE); 143 pfn = (unsigned long)(*ppos / PAGE_SIZE); 144 145 idx = srcu_read_lock(&vmcore_cb_srcu); 146 do { 147 if (count > (PAGE_SIZE - offset)) 148 nr_bytes = PAGE_SIZE - offset; 149 else 150 nr_bytes = count; 151 152 /* If pfn is not ram, return zeros for sparse dump files */ 153 if (!pfn_is_ram(pfn)) { 154 tmp = iov_iter_zero(nr_bytes, iter); 155 } else { 156 if (encrypted) 157 tmp = copy_oldmem_page_encrypted(iter, pfn, 158 nr_bytes, 159 offset); 160 else 161 tmp = copy_oldmem_page(iter, pfn, nr_bytes, 162 offset); 163 } 164 if (tmp < nr_bytes) { 165 srcu_read_unlock(&vmcore_cb_srcu, idx); 166 return -EFAULT; 167 } 168 169 *ppos += nr_bytes; 170 count -= nr_bytes; 171 read += nr_bytes; 172 ++pfn; 173 offset = 0; 174 } while (count); 175 srcu_read_unlock(&vmcore_cb_srcu, idx); 176 177 return read; 178 } 179 180 /* 181 * Architectures may override this function to allocate ELF header in 2nd kernel 182 */ 183 int __weak elfcorehdr_alloc(unsigned long long *addr, unsigned long long *size) 184 { 185 return 0; 186 } 187 188 /* 189 * Architectures may override this function to free header 190 */ 191 void __weak elfcorehdr_free(unsigned long long addr) 192 {} 193 194 /* 195 * Architectures may override this function to read from ELF header 196 */ 197 ssize_t __weak elfcorehdr_read(char *buf, size_t count, u64 *ppos) 198 { 199 struct kvec kvec = { .iov_base = buf, .iov_len = count }; 200 struct iov_iter iter; 201 202 iov_iter_kvec(&iter, ITER_DEST, &kvec, 1, count); 203 204 return read_from_oldmem(&iter, count, ppos, false); 205 } 206 207 /* 208 * Architectures may override this function to read from notes sections 209 */ 210 ssize_t __weak elfcorehdr_read_notes(char *buf, size_t count, u64 *ppos) 211 { 212 struct kvec kvec = { .iov_base = buf, .iov_len = count }; 213 struct iov_iter iter; 214 215 iov_iter_kvec(&iter, ITER_DEST, &kvec, 1, count); 216 217 return read_from_oldmem(&iter, count, ppos, 218 cc_platform_has(CC_ATTR_MEM_ENCRYPT)); 219 } 220 221 /* 222 * Architectures may override this function to map oldmem 223 */ 224 int __weak remap_oldmem_pfn_range(struct vm_area_struct *vma, 225 unsigned long from, unsigned long pfn, 226 unsigned long size, pgprot_t prot) 227 { 228 prot = pgprot_encrypted(prot); 229 return remap_pfn_range(vma, from, pfn, size, prot); 230 } 231 232 /* 233 * Architectures which support memory encryption override this. 234 */ 235 ssize_t __weak copy_oldmem_page_encrypted(struct iov_iter *iter, 236 unsigned long pfn, size_t csize, unsigned long offset) 237 { 238 return copy_oldmem_page(iter, pfn, csize, offset); 239 } 240 241 #ifdef CONFIG_PROC_VMCORE_DEVICE_DUMP 242 static int vmcoredd_copy_dumps(struct iov_iter *iter, u64 start, size_t size) 243 { 244 struct vmcoredd_node *dump; 245 u64 offset = 0; 246 int ret = 0; 247 size_t tsz; 248 char *buf; 249 250 mutex_lock(&vmcoredd_mutex); 251 list_for_each_entry(dump, &vmcoredd_list, list) { 252 if (start < offset + dump->size) { 253 tsz = min(offset + (u64)dump->size - start, (u64)size); 254 buf = dump->buf + start - offset; 255 if (copy_to_iter(buf, tsz, iter) < tsz) { 256 ret = -EFAULT; 257 goto out_unlock; 258 } 259 260 size -= tsz; 261 start += tsz; 262 263 /* Leave now if buffer filled already */ 264 if (!size) 265 goto out_unlock; 266 } 267 offset += dump->size; 268 } 269 270 out_unlock: 271 mutex_unlock(&vmcoredd_mutex); 272 return ret; 273 } 274 275 #ifdef CONFIG_MMU 276 static int vmcoredd_mmap_dumps(struct vm_area_struct *vma, unsigned long dst, 277 u64 start, size_t size) 278 { 279 struct vmcoredd_node *dump; 280 u64 offset = 0; 281 int ret = 0; 282 size_t tsz; 283 char *buf; 284 285 mutex_lock(&vmcoredd_mutex); 286 list_for_each_entry(dump, &vmcoredd_list, list) { 287 if (start < offset + dump->size) { 288 tsz = min(offset + (u64)dump->size - start, (u64)size); 289 buf = dump->buf + start - offset; 290 if (remap_vmalloc_range_partial(vma, dst, buf, 0, 291 tsz)) { 292 ret = -EFAULT; 293 goto out_unlock; 294 } 295 296 size -= tsz; 297 start += tsz; 298 dst += tsz; 299 300 /* Leave now if buffer filled already */ 301 if (!size) 302 goto out_unlock; 303 } 304 offset += dump->size; 305 } 306 307 out_unlock: 308 mutex_unlock(&vmcoredd_mutex); 309 return ret; 310 } 311 #endif /* CONFIG_MMU */ 312 #endif /* CONFIG_PROC_VMCORE_DEVICE_DUMP */ 313 314 /* Read from the ELF header and then the crash dump. On error, negative value is 315 * returned otherwise number of bytes read are returned. 316 */ 317 static ssize_t __read_vmcore(struct iov_iter *iter, loff_t *fpos) 318 { 319 ssize_t acc = 0, tmp; 320 size_t tsz; 321 u64 start; 322 struct vmcore *m = NULL; 323 324 if (!iov_iter_count(iter) || *fpos >= vmcore_size) 325 return 0; 326 327 iov_iter_truncate(iter, vmcore_size - *fpos); 328 329 /* Read ELF core header */ 330 if (*fpos < elfcorebuf_sz) { 331 tsz = min(elfcorebuf_sz - (size_t)*fpos, iov_iter_count(iter)); 332 if (copy_to_iter(elfcorebuf + *fpos, tsz, iter) < tsz) 333 return -EFAULT; 334 *fpos += tsz; 335 acc += tsz; 336 337 /* leave now if filled buffer already */ 338 if (!iov_iter_count(iter)) 339 return acc; 340 } 341 342 /* Read ELF note segment */ 343 if (*fpos < elfcorebuf_sz + elfnotes_sz) { 344 void *kaddr; 345 346 /* We add device dumps before other elf notes because the 347 * other elf notes may not fill the elf notes buffer 348 * completely and we will end up with zero-filled data 349 * between the elf notes and the device dumps. Tools will 350 * then try to decode this zero-filled data as valid notes 351 * and we don't want that. Hence, adding device dumps before 352 * the other elf notes ensure that zero-filled data can be 353 * avoided. 354 */ 355 #ifdef CONFIG_PROC_VMCORE_DEVICE_DUMP 356 /* Read device dumps */ 357 if (*fpos < elfcorebuf_sz + vmcoredd_orig_sz) { 358 tsz = min(elfcorebuf_sz + vmcoredd_orig_sz - 359 (size_t)*fpos, iov_iter_count(iter)); 360 start = *fpos - elfcorebuf_sz; 361 if (vmcoredd_copy_dumps(iter, start, tsz)) 362 return -EFAULT; 363 364 *fpos += tsz; 365 acc += tsz; 366 367 /* leave now if filled buffer already */ 368 if (!iov_iter_count(iter)) 369 return acc; 370 } 371 #endif /* CONFIG_PROC_VMCORE_DEVICE_DUMP */ 372 373 /* Read remaining elf notes */ 374 tsz = min(elfcorebuf_sz + elfnotes_sz - (size_t)*fpos, 375 iov_iter_count(iter)); 376 kaddr = elfnotes_buf + *fpos - elfcorebuf_sz - vmcoredd_orig_sz; 377 if (copy_to_iter(kaddr, tsz, iter) < tsz) 378 return -EFAULT; 379 380 *fpos += tsz; 381 acc += tsz; 382 383 /* leave now if filled buffer already */ 384 if (!iov_iter_count(iter)) 385 return acc; 386 387 cond_resched(); 388 } 389 390 list_for_each_entry(m, &vmcore_list, list) { 391 if (*fpos < m->offset + m->size) { 392 tsz = (size_t)min_t(unsigned long long, 393 m->offset + m->size - *fpos, 394 iov_iter_count(iter)); 395 start = m->paddr + *fpos - m->offset; 396 tmp = read_from_oldmem(iter, tsz, &start, 397 cc_platform_has(CC_ATTR_MEM_ENCRYPT)); 398 if (tmp < 0) 399 return tmp; 400 *fpos += tsz; 401 acc += tsz; 402 403 /* leave now if filled buffer already */ 404 if (!iov_iter_count(iter)) 405 return acc; 406 } 407 408 cond_resched(); 409 } 410 411 return acc; 412 } 413 414 static ssize_t read_vmcore(struct kiocb *iocb, struct iov_iter *iter) 415 { 416 return __read_vmcore(iter, &iocb->ki_pos); 417 } 418 419 /** 420 * vmcore_alloc_buf - allocate buffer in vmalloc memory 421 * @size: size of buffer 422 * 423 * If CONFIG_MMU is defined, use vmalloc_user() to allow users to mmap 424 * the buffer to user-space by means of remap_vmalloc_range(). 425 * 426 * If CONFIG_MMU is not defined, use vzalloc() since mmap_vmcore() is 427 * disabled and there's no need to allow users to mmap the buffer. 428 */ 429 static inline char *vmcore_alloc_buf(size_t size) 430 { 431 #ifdef CONFIG_MMU 432 return vmalloc_user(size); 433 #else 434 return vzalloc(size); 435 #endif 436 } 437 438 /* 439 * Disable mmap_vmcore() if CONFIG_MMU is not defined. MMU is 440 * essential for mmap_vmcore() in order to map physically 441 * non-contiguous objects (ELF header, ELF note segment and memory 442 * regions in the 1st kernel pointed to by PT_LOAD entries) into 443 * virtually contiguous user-space in ELF layout. 444 */ 445 #ifdef CONFIG_MMU 446 447 /* 448 * The vmcore fault handler uses the page cache and fills data using the 449 * standard __read_vmcore() function. 450 * 451 * On s390 the fault handler is used for memory regions that can't be mapped 452 * directly with remap_pfn_range(). 453 */ 454 static vm_fault_t mmap_vmcore_fault(struct vm_fault *vmf) 455 { 456 #ifdef CONFIG_S390 457 struct address_space *mapping = vmf->vma->vm_file->f_mapping; 458 pgoff_t index = vmf->pgoff; 459 struct iov_iter iter; 460 struct kvec kvec; 461 struct page *page; 462 loff_t offset; 463 int rc; 464 465 page = find_or_create_page(mapping, index, GFP_KERNEL); 466 if (!page) 467 return VM_FAULT_OOM; 468 if (!PageUptodate(page)) { 469 offset = (loff_t) index << PAGE_SHIFT; 470 kvec.iov_base = page_address(page); 471 kvec.iov_len = PAGE_SIZE; 472 iov_iter_kvec(&iter, ITER_DEST, &kvec, 1, PAGE_SIZE); 473 474 rc = __read_vmcore(&iter, &offset); 475 if (rc < 0) { 476 unlock_page(page); 477 put_page(page); 478 return vmf_error(rc); 479 } 480 SetPageUptodate(page); 481 } 482 unlock_page(page); 483 vmf->page = page; 484 return 0; 485 #else 486 return VM_FAULT_SIGBUS; 487 #endif 488 } 489 490 static const struct vm_operations_struct vmcore_mmap_ops = { 491 .fault = mmap_vmcore_fault, 492 }; 493 494 /* 495 * remap_oldmem_pfn_checked - do remap_oldmem_pfn_range replacing all pages 496 * reported as not being ram with the zero page. 497 * 498 * @vma: vm_area_struct describing requested mapping 499 * @from: start remapping from 500 * @pfn: page frame number to start remapping to 501 * @size: remapping size 502 * @prot: protection bits 503 * 504 * Returns zero on success, -EAGAIN on failure. 505 */ 506 static int remap_oldmem_pfn_checked(struct vm_area_struct *vma, 507 unsigned long from, unsigned long pfn, 508 unsigned long size, pgprot_t prot) 509 { 510 unsigned long map_size; 511 unsigned long pos_start, pos_end, pos; 512 unsigned long zeropage_pfn = my_zero_pfn(0); 513 size_t len = 0; 514 515 pos_start = pfn; 516 pos_end = pfn + (size >> PAGE_SHIFT); 517 518 for (pos = pos_start; pos < pos_end; ++pos) { 519 if (!pfn_is_ram(pos)) { 520 /* 521 * We hit a page which is not ram. Remap the continuous 522 * region between pos_start and pos-1 and replace 523 * the non-ram page at pos with the zero page. 524 */ 525 if (pos > pos_start) { 526 /* Remap continuous region */ 527 map_size = (pos - pos_start) << PAGE_SHIFT; 528 if (remap_oldmem_pfn_range(vma, from + len, 529 pos_start, map_size, 530 prot)) 531 goto fail; 532 len += map_size; 533 } 534 /* Remap the zero page */ 535 if (remap_oldmem_pfn_range(vma, from + len, 536 zeropage_pfn, 537 PAGE_SIZE, prot)) 538 goto fail; 539 len += PAGE_SIZE; 540 pos_start = pos + 1; 541 } 542 } 543 if (pos > pos_start) { 544 /* Remap the rest */ 545 map_size = (pos - pos_start) << PAGE_SHIFT; 546 if (remap_oldmem_pfn_range(vma, from + len, pos_start, 547 map_size, prot)) 548 goto fail; 549 } 550 return 0; 551 fail: 552 do_munmap(vma->vm_mm, from, len, NULL); 553 return -EAGAIN; 554 } 555 556 static int vmcore_remap_oldmem_pfn(struct vm_area_struct *vma, 557 unsigned long from, unsigned long pfn, 558 unsigned long size, pgprot_t prot) 559 { 560 int ret, idx; 561 562 /* 563 * Check if a callback was registered to avoid looping over all 564 * pages without a reason. 565 */ 566 idx = srcu_read_lock(&vmcore_cb_srcu); 567 if (!list_empty(&vmcore_cb_list)) 568 ret = remap_oldmem_pfn_checked(vma, from, pfn, size, prot); 569 else 570 ret = remap_oldmem_pfn_range(vma, from, pfn, size, prot); 571 srcu_read_unlock(&vmcore_cb_srcu, idx); 572 return ret; 573 } 574 575 static int mmap_vmcore(struct file *file, struct vm_area_struct *vma) 576 { 577 size_t size = vma->vm_end - vma->vm_start; 578 u64 start, end, len, tsz; 579 struct vmcore *m; 580 581 start = (u64)vma->vm_pgoff << PAGE_SHIFT; 582 end = start + size; 583 584 if (size > vmcore_size || end > vmcore_size) 585 return -EINVAL; 586 587 if (vma->vm_flags & (VM_WRITE | VM_EXEC)) 588 return -EPERM; 589 590 vm_flags_mod(vma, VM_MIXEDMAP, VM_MAYWRITE | VM_MAYEXEC); 591 vma->vm_ops = &vmcore_mmap_ops; 592 593 len = 0; 594 595 if (start < elfcorebuf_sz) { 596 u64 pfn; 597 598 tsz = min(elfcorebuf_sz - (size_t)start, size); 599 pfn = __pa(elfcorebuf + start) >> PAGE_SHIFT; 600 if (remap_pfn_range(vma, vma->vm_start, pfn, tsz, 601 vma->vm_page_prot)) 602 return -EAGAIN; 603 size -= tsz; 604 start += tsz; 605 len += tsz; 606 607 if (size == 0) 608 return 0; 609 } 610 611 if (start < elfcorebuf_sz + elfnotes_sz) { 612 void *kaddr; 613 614 /* We add device dumps before other elf notes because the 615 * other elf notes may not fill the elf notes buffer 616 * completely and we will end up with zero-filled data 617 * between the elf notes and the device dumps. Tools will 618 * then try to decode this zero-filled data as valid notes 619 * and we don't want that. Hence, adding device dumps before 620 * the other elf notes ensure that zero-filled data can be 621 * avoided. This also ensures that the device dumps and 622 * other elf notes can be properly mmaped at page aligned 623 * address. 624 */ 625 #ifdef CONFIG_PROC_VMCORE_DEVICE_DUMP 626 /* Read device dumps */ 627 if (start < elfcorebuf_sz + vmcoredd_orig_sz) { 628 u64 start_off; 629 630 tsz = min(elfcorebuf_sz + vmcoredd_orig_sz - 631 (size_t)start, size); 632 start_off = start - elfcorebuf_sz; 633 if (vmcoredd_mmap_dumps(vma, vma->vm_start + len, 634 start_off, tsz)) 635 goto fail; 636 637 size -= tsz; 638 start += tsz; 639 len += tsz; 640 641 /* leave now if filled buffer already */ 642 if (!size) 643 return 0; 644 } 645 #endif /* CONFIG_PROC_VMCORE_DEVICE_DUMP */ 646 647 /* Read remaining elf notes */ 648 tsz = min(elfcorebuf_sz + elfnotes_sz - (size_t)start, size); 649 kaddr = elfnotes_buf + start - elfcorebuf_sz - vmcoredd_orig_sz; 650 if (remap_vmalloc_range_partial(vma, vma->vm_start + len, 651 kaddr, 0, tsz)) 652 goto fail; 653 654 size -= tsz; 655 start += tsz; 656 len += tsz; 657 658 if (size == 0) 659 return 0; 660 } 661 662 list_for_each_entry(m, &vmcore_list, list) { 663 if (start < m->offset + m->size) { 664 u64 paddr = 0; 665 666 tsz = (size_t)min_t(unsigned long long, 667 m->offset + m->size - start, size); 668 paddr = m->paddr + start - m->offset; 669 if (vmcore_remap_oldmem_pfn(vma, vma->vm_start + len, 670 paddr >> PAGE_SHIFT, tsz, 671 vma->vm_page_prot)) 672 goto fail; 673 size -= tsz; 674 start += tsz; 675 len += tsz; 676 677 if (size == 0) 678 return 0; 679 } 680 } 681 682 return 0; 683 fail: 684 do_munmap(vma->vm_mm, vma->vm_start, len, NULL); 685 return -EAGAIN; 686 } 687 #else 688 static int mmap_vmcore(struct file *file, struct vm_area_struct *vma) 689 { 690 return -ENOSYS; 691 } 692 #endif 693 694 static const struct proc_ops vmcore_proc_ops = { 695 .proc_open = open_vmcore, 696 .proc_read_iter = read_vmcore, 697 .proc_lseek = default_llseek, 698 .proc_mmap = mmap_vmcore, 699 }; 700 701 static struct vmcore* __init get_new_element(void) 702 { 703 return kzalloc(sizeof(struct vmcore), GFP_KERNEL); 704 } 705 706 static u64 get_vmcore_size(size_t elfsz, size_t elfnotesegsz, 707 struct list_head *vc_list) 708 { 709 u64 size; 710 struct vmcore *m; 711 712 size = elfsz + elfnotesegsz; 713 list_for_each_entry(m, vc_list, list) { 714 size += m->size; 715 } 716 return size; 717 } 718 719 /** 720 * update_note_header_size_elf64 - update p_memsz member of each PT_NOTE entry 721 * 722 * @ehdr_ptr: ELF header 723 * 724 * This function updates p_memsz member of each PT_NOTE entry in the 725 * program header table pointed to by @ehdr_ptr to real size of ELF 726 * note segment. 727 */ 728 static int __init update_note_header_size_elf64(const Elf64_Ehdr *ehdr_ptr) 729 { 730 int i, rc=0; 731 Elf64_Phdr *phdr_ptr; 732 Elf64_Nhdr *nhdr_ptr; 733 734 phdr_ptr = (Elf64_Phdr *)(ehdr_ptr + 1); 735 for (i = 0; i < ehdr_ptr->e_phnum; i++, phdr_ptr++) { 736 void *notes_section; 737 u64 offset, max_sz, sz, real_sz = 0; 738 if (phdr_ptr->p_type != PT_NOTE) 739 continue; 740 max_sz = phdr_ptr->p_memsz; 741 offset = phdr_ptr->p_offset; 742 notes_section = kmalloc(max_sz, GFP_KERNEL); 743 if (!notes_section) 744 return -ENOMEM; 745 rc = elfcorehdr_read_notes(notes_section, max_sz, &offset); 746 if (rc < 0) { 747 kfree(notes_section); 748 return rc; 749 } 750 nhdr_ptr = notes_section; 751 while (nhdr_ptr->n_namesz != 0) { 752 sz = sizeof(Elf64_Nhdr) + 753 (((u64)nhdr_ptr->n_namesz + 3) & ~3) + 754 (((u64)nhdr_ptr->n_descsz + 3) & ~3); 755 if ((real_sz + sz) > max_sz) { 756 pr_warn("Warning: Exceeded p_memsz, dropping PT_NOTE entry n_namesz=0x%x, n_descsz=0x%x\n", 757 nhdr_ptr->n_namesz, nhdr_ptr->n_descsz); 758 break; 759 } 760 real_sz += sz; 761 nhdr_ptr = (Elf64_Nhdr*)((char*)nhdr_ptr + sz); 762 } 763 kfree(notes_section); 764 phdr_ptr->p_memsz = real_sz; 765 if (real_sz == 0) { 766 pr_warn("Warning: Zero PT_NOTE entries found\n"); 767 } 768 } 769 770 return 0; 771 } 772 773 /** 774 * get_note_number_and_size_elf64 - get the number of PT_NOTE program 775 * headers and sum of real size of their ELF note segment headers and 776 * data. 777 * 778 * @ehdr_ptr: ELF header 779 * @nr_ptnote: buffer for the number of PT_NOTE program headers 780 * @sz_ptnote: buffer for size of unique PT_NOTE program header 781 * 782 * This function is used to merge multiple PT_NOTE program headers 783 * into a unique single one. The resulting unique entry will have 784 * @sz_ptnote in its phdr->p_mem. 785 * 786 * It is assumed that program headers with PT_NOTE type pointed to by 787 * @ehdr_ptr has already been updated by update_note_header_size_elf64 788 * and each of PT_NOTE program headers has actual ELF note segment 789 * size in its p_memsz member. 790 */ 791 static int __init get_note_number_and_size_elf64(const Elf64_Ehdr *ehdr_ptr, 792 int *nr_ptnote, u64 *sz_ptnote) 793 { 794 int i; 795 Elf64_Phdr *phdr_ptr; 796 797 *nr_ptnote = *sz_ptnote = 0; 798 799 phdr_ptr = (Elf64_Phdr *)(ehdr_ptr + 1); 800 for (i = 0; i < ehdr_ptr->e_phnum; i++, phdr_ptr++) { 801 if (phdr_ptr->p_type != PT_NOTE) 802 continue; 803 *nr_ptnote += 1; 804 *sz_ptnote += phdr_ptr->p_memsz; 805 } 806 807 return 0; 808 } 809 810 /** 811 * copy_notes_elf64 - copy ELF note segments in a given buffer 812 * 813 * @ehdr_ptr: ELF header 814 * @notes_buf: buffer into which ELF note segments are copied 815 * 816 * This function is used to copy ELF note segment in the 1st kernel 817 * into the buffer @notes_buf in the 2nd kernel. It is assumed that 818 * size of the buffer @notes_buf is equal to or larger than sum of the 819 * real ELF note segment headers and data. 820 * 821 * It is assumed that program headers with PT_NOTE type pointed to by 822 * @ehdr_ptr has already been updated by update_note_header_size_elf64 823 * and each of PT_NOTE program headers has actual ELF note segment 824 * size in its p_memsz member. 825 */ 826 static int __init copy_notes_elf64(const Elf64_Ehdr *ehdr_ptr, char *notes_buf) 827 { 828 int i, rc=0; 829 Elf64_Phdr *phdr_ptr; 830 831 phdr_ptr = (Elf64_Phdr*)(ehdr_ptr + 1); 832 833 for (i = 0; i < ehdr_ptr->e_phnum; i++, phdr_ptr++) { 834 u64 offset; 835 if (phdr_ptr->p_type != PT_NOTE) 836 continue; 837 offset = phdr_ptr->p_offset; 838 rc = elfcorehdr_read_notes(notes_buf, phdr_ptr->p_memsz, 839 &offset); 840 if (rc < 0) 841 return rc; 842 notes_buf += phdr_ptr->p_memsz; 843 } 844 845 return 0; 846 } 847 848 /* Merges all the PT_NOTE headers into one. */ 849 static int __init merge_note_headers_elf64(char *elfptr, size_t *elfsz, 850 char **notes_buf, size_t *notes_sz) 851 { 852 int i, nr_ptnote=0, rc=0; 853 char *tmp; 854 Elf64_Ehdr *ehdr_ptr; 855 Elf64_Phdr phdr; 856 u64 phdr_sz = 0, note_off; 857 858 ehdr_ptr = (Elf64_Ehdr *)elfptr; 859 860 rc = update_note_header_size_elf64(ehdr_ptr); 861 if (rc < 0) 862 return rc; 863 864 rc = get_note_number_and_size_elf64(ehdr_ptr, &nr_ptnote, &phdr_sz); 865 if (rc < 0) 866 return rc; 867 868 *notes_sz = roundup(phdr_sz, PAGE_SIZE); 869 *notes_buf = vmcore_alloc_buf(*notes_sz); 870 if (!*notes_buf) 871 return -ENOMEM; 872 873 rc = copy_notes_elf64(ehdr_ptr, *notes_buf); 874 if (rc < 0) 875 return rc; 876 877 /* Prepare merged PT_NOTE program header. */ 878 phdr.p_type = PT_NOTE; 879 phdr.p_flags = 0; 880 note_off = sizeof(Elf64_Ehdr) + 881 (ehdr_ptr->e_phnum - nr_ptnote +1) * sizeof(Elf64_Phdr); 882 phdr.p_offset = roundup(note_off, PAGE_SIZE); 883 phdr.p_vaddr = phdr.p_paddr = 0; 884 phdr.p_filesz = phdr.p_memsz = phdr_sz; 885 phdr.p_align = 4; 886 887 /* Add merged PT_NOTE program header*/ 888 tmp = elfptr + sizeof(Elf64_Ehdr); 889 memcpy(tmp, &phdr, sizeof(phdr)); 890 tmp += sizeof(phdr); 891 892 /* Remove unwanted PT_NOTE program headers. */ 893 i = (nr_ptnote - 1) * sizeof(Elf64_Phdr); 894 *elfsz = *elfsz - i; 895 memmove(tmp, tmp+i, ((*elfsz)-sizeof(Elf64_Ehdr)-sizeof(Elf64_Phdr))); 896 memset(elfptr + *elfsz, 0, i); 897 *elfsz = roundup(*elfsz, PAGE_SIZE); 898 899 /* Modify e_phnum to reflect merged headers. */ 900 ehdr_ptr->e_phnum = ehdr_ptr->e_phnum - nr_ptnote + 1; 901 902 /* Store the size of all notes. We need this to update the note 903 * header when the device dumps will be added. 904 */ 905 elfnotes_orig_sz = phdr.p_memsz; 906 907 return 0; 908 } 909 910 /** 911 * update_note_header_size_elf32 - update p_memsz member of each PT_NOTE entry 912 * 913 * @ehdr_ptr: ELF header 914 * 915 * This function updates p_memsz member of each PT_NOTE entry in the 916 * program header table pointed to by @ehdr_ptr to real size of ELF 917 * note segment. 918 */ 919 static int __init update_note_header_size_elf32(const Elf32_Ehdr *ehdr_ptr) 920 { 921 int i, rc=0; 922 Elf32_Phdr *phdr_ptr; 923 Elf32_Nhdr *nhdr_ptr; 924 925 phdr_ptr = (Elf32_Phdr *)(ehdr_ptr + 1); 926 for (i = 0; i < ehdr_ptr->e_phnum; i++, phdr_ptr++) { 927 void *notes_section; 928 u64 offset, max_sz, sz, real_sz = 0; 929 if (phdr_ptr->p_type != PT_NOTE) 930 continue; 931 max_sz = phdr_ptr->p_memsz; 932 offset = phdr_ptr->p_offset; 933 notes_section = kmalloc(max_sz, GFP_KERNEL); 934 if (!notes_section) 935 return -ENOMEM; 936 rc = elfcorehdr_read_notes(notes_section, max_sz, &offset); 937 if (rc < 0) { 938 kfree(notes_section); 939 return rc; 940 } 941 nhdr_ptr = notes_section; 942 while (nhdr_ptr->n_namesz != 0) { 943 sz = sizeof(Elf32_Nhdr) + 944 (((u64)nhdr_ptr->n_namesz + 3) & ~3) + 945 (((u64)nhdr_ptr->n_descsz + 3) & ~3); 946 if ((real_sz + sz) > max_sz) { 947 pr_warn("Warning: Exceeded p_memsz, dropping PT_NOTE entry n_namesz=0x%x, n_descsz=0x%x\n", 948 nhdr_ptr->n_namesz, nhdr_ptr->n_descsz); 949 break; 950 } 951 real_sz += sz; 952 nhdr_ptr = (Elf32_Nhdr*)((char*)nhdr_ptr + sz); 953 } 954 kfree(notes_section); 955 phdr_ptr->p_memsz = real_sz; 956 if (real_sz == 0) { 957 pr_warn("Warning: Zero PT_NOTE entries found\n"); 958 } 959 } 960 961 return 0; 962 } 963 964 /** 965 * get_note_number_and_size_elf32 - get the number of PT_NOTE program 966 * headers and sum of real size of their ELF note segment headers and 967 * data. 968 * 969 * @ehdr_ptr: ELF header 970 * @nr_ptnote: buffer for the number of PT_NOTE program headers 971 * @sz_ptnote: buffer for size of unique PT_NOTE program header 972 * 973 * This function is used to merge multiple PT_NOTE program headers 974 * into a unique single one. The resulting unique entry will have 975 * @sz_ptnote in its phdr->p_mem. 976 * 977 * It is assumed that program headers with PT_NOTE type pointed to by 978 * @ehdr_ptr has already been updated by update_note_header_size_elf32 979 * and each of PT_NOTE program headers has actual ELF note segment 980 * size in its p_memsz member. 981 */ 982 static int __init get_note_number_and_size_elf32(const Elf32_Ehdr *ehdr_ptr, 983 int *nr_ptnote, u64 *sz_ptnote) 984 { 985 int i; 986 Elf32_Phdr *phdr_ptr; 987 988 *nr_ptnote = *sz_ptnote = 0; 989 990 phdr_ptr = (Elf32_Phdr *)(ehdr_ptr + 1); 991 for (i = 0; i < ehdr_ptr->e_phnum; i++, phdr_ptr++) { 992 if (phdr_ptr->p_type != PT_NOTE) 993 continue; 994 *nr_ptnote += 1; 995 *sz_ptnote += phdr_ptr->p_memsz; 996 } 997 998 return 0; 999 } 1000 1001 /** 1002 * copy_notes_elf32 - copy ELF note segments in a given buffer 1003 * 1004 * @ehdr_ptr: ELF header 1005 * @notes_buf: buffer into which ELF note segments are copied 1006 * 1007 * This function is used to copy ELF note segment in the 1st kernel 1008 * into the buffer @notes_buf in the 2nd kernel. It is assumed that 1009 * size of the buffer @notes_buf is equal to or larger than sum of the 1010 * real ELF note segment headers and data. 1011 * 1012 * It is assumed that program headers with PT_NOTE type pointed to by 1013 * @ehdr_ptr has already been updated by update_note_header_size_elf32 1014 * and each of PT_NOTE program headers has actual ELF note segment 1015 * size in its p_memsz member. 1016 */ 1017 static int __init copy_notes_elf32(const Elf32_Ehdr *ehdr_ptr, char *notes_buf) 1018 { 1019 int i, rc=0; 1020 Elf32_Phdr *phdr_ptr; 1021 1022 phdr_ptr = (Elf32_Phdr*)(ehdr_ptr + 1); 1023 1024 for (i = 0; i < ehdr_ptr->e_phnum; i++, phdr_ptr++) { 1025 u64 offset; 1026 if (phdr_ptr->p_type != PT_NOTE) 1027 continue; 1028 offset = phdr_ptr->p_offset; 1029 rc = elfcorehdr_read_notes(notes_buf, phdr_ptr->p_memsz, 1030 &offset); 1031 if (rc < 0) 1032 return rc; 1033 notes_buf += phdr_ptr->p_memsz; 1034 } 1035 1036 return 0; 1037 } 1038 1039 /* Merges all the PT_NOTE headers into one. */ 1040 static int __init merge_note_headers_elf32(char *elfptr, size_t *elfsz, 1041 char **notes_buf, size_t *notes_sz) 1042 { 1043 int i, nr_ptnote=0, rc=0; 1044 char *tmp; 1045 Elf32_Ehdr *ehdr_ptr; 1046 Elf32_Phdr phdr; 1047 u64 phdr_sz = 0, note_off; 1048 1049 ehdr_ptr = (Elf32_Ehdr *)elfptr; 1050 1051 rc = update_note_header_size_elf32(ehdr_ptr); 1052 if (rc < 0) 1053 return rc; 1054 1055 rc = get_note_number_and_size_elf32(ehdr_ptr, &nr_ptnote, &phdr_sz); 1056 if (rc < 0) 1057 return rc; 1058 1059 *notes_sz = roundup(phdr_sz, PAGE_SIZE); 1060 *notes_buf = vmcore_alloc_buf(*notes_sz); 1061 if (!*notes_buf) 1062 return -ENOMEM; 1063 1064 rc = copy_notes_elf32(ehdr_ptr, *notes_buf); 1065 if (rc < 0) 1066 return rc; 1067 1068 /* Prepare merged PT_NOTE program header. */ 1069 phdr.p_type = PT_NOTE; 1070 phdr.p_flags = 0; 1071 note_off = sizeof(Elf32_Ehdr) + 1072 (ehdr_ptr->e_phnum - nr_ptnote +1) * sizeof(Elf32_Phdr); 1073 phdr.p_offset = roundup(note_off, PAGE_SIZE); 1074 phdr.p_vaddr = phdr.p_paddr = 0; 1075 phdr.p_filesz = phdr.p_memsz = phdr_sz; 1076 phdr.p_align = 4; 1077 1078 /* Add merged PT_NOTE program header*/ 1079 tmp = elfptr + sizeof(Elf32_Ehdr); 1080 memcpy(tmp, &phdr, sizeof(phdr)); 1081 tmp += sizeof(phdr); 1082 1083 /* Remove unwanted PT_NOTE program headers. */ 1084 i = (nr_ptnote - 1) * sizeof(Elf32_Phdr); 1085 *elfsz = *elfsz - i; 1086 memmove(tmp, tmp+i, ((*elfsz)-sizeof(Elf32_Ehdr)-sizeof(Elf32_Phdr))); 1087 memset(elfptr + *elfsz, 0, i); 1088 *elfsz = roundup(*elfsz, PAGE_SIZE); 1089 1090 /* Modify e_phnum to reflect merged headers. */ 1091 ehdr_ptr->e_phnum = ehdr_ptr->e_phnum - nr_ptnote + 1; 1092 1093 /* Store the size of all notes. We need this to update the note 1094 * header when the device dumps will be added. 1095 */ 1096 elfnotes_orig_sz = phdr.p_memsz; 1097 1098 return 0; 1099 } 1100 1101 /* Add memory chunks represented by program headers to vmcore list. Also update 1102 * the new offset fields of exported program headers. */ 1103 static int __init process_ptload_program_headers_elf64(char *elfptr, 1104 size_t elfsz, 1105 size_t elfnotes_sz, 1106 struct list_head *vc_list) 1107 { 1108 int i; 1109 Elf64_Ehdr *ehdr_ptr; 1110 Elf64_Phdr *phdr_ptr; 1111 loff_t vmcore_off; 1112 struct vmcore *new; 1113 1114 ehdr_ptr = (Elf64_Ehdr *)elfptr; 1115 phdr_ptr = (Elf64_Phdr*)(elfptr + sizeof(Elf64_Ehdr)); /* PT_NOTE hdr */ 1116 1117 /* Skip ELF header, program headers and ELF note segment. */ 1118 vmcore_off = elfsz + elfnotes_sz; 1119 1120 for (i = 0; i < ehdr_ptr->e_phnum; i++, phdr_ptr++) { 1121 u64 paddr, start, end, size; 1122 1123 if (phdr_ptr->p_type != PT_LOAD) 1124 continue; 1125 1126 paddr = phdr_ptr->p_offset; 1127 start = rounddown(paddr, PAGE_SIZE); 1128 end = roundup(paddr + phdr_ptr->p_memsz, PAGE_SIZE); 1129 size = end - start; 1130 1131 /* Add this contiguous chunk of memory to vmcore list.*/ 1132 new = get_new_element(); 1133 if (!new) 1134 return -ENOMEM; 1135 new->paddr = start; 1136 new->size = size; 1137 list_add_tail(&new->list, vc_list); 1138 1139 /* Update the program header offset. */ 1140 phdr_ptr->p_offset = vmcore_off + (paddr - start); 1141 vmcore_off = vmcore_off + size; 1142 } 1143 return 0; 1144 } 1145 1146 static int __init process_ptload_program_headers_elf32(char *elfptr, 1147 size_t elfsz, 1148 size_t elfnotes_sz, 1149 struct list_head *vc_list) 1150 { 1151 int i; 1152 Elf32_Ehdr *ehdr_ptr; 1153 Elf32_Phdr *phdr_ptr; 1154 loff_t vmcore_off; 1155 struct vmcore *new; 1156 1157 ehdr_ptr = (Elf32_Ehdr *)elfptr; 1158 phdr_ptr = (Elf32_Phdr*)(elfptr + sizeof(Elf32_Ehdr)); /* PT_NOTE hdr */ 1159 1160 /* Skip ELF header, program headers and ELF note segment. */ 1161 vmcore_off = elfsz + elfnotes_sz; 1162 1163 for (i = 0; i < ehdr_ptr->e_phnum; i++, phdr_ptr++) { 1164 u64 paddr, start, end, size; 1165 1166 if (phdr_ptr->p_type != PT_LOAD) 1167 continue; 1168 1169 paddr = phdr_ptr->p_offset; 1170 start = rounddown(paddr, PAGE_SIZE); 1171 end = roundup(paddr + phdr_ptr->p_memsz, PAGE_SIZE); 1172 size = end - start; 1173 1174 /* Add this contiguous chunk of memory to vmcore list.*/ 1175 new = get_new_element(); 1176 if (!new) 1177 return -ENOMEM; 1178 new->paddr = start; 1179 new->size = size; 1180 list_add_tail(&new->list, vc_list); 1181 1182 /* Update the program header offset */ 1183 phdr_ptr->p_offset = vmcore_off + (paddr - start); 1184 vmcore_off = vmcore_off + size; 1185 } 1186 return 0; 1187 } 1188 1189 /* Sets offset fields of vmcore elements. */ 1190 static void set_vmcore_list_offsets(size_t elfsz, size_t elfnotes_sz, 1191 struct list_head *vc_list) 1192 { 1193 loff_t vmcore_off; 1194 struct vmcore *m; 1195 1196 /* Skip ELF header, program headers and ELF note segment. */ 1197 vmcore_off = elfsz + elfnotes_sz; 1198 1199 list_for_each_entry(m, vc_list, list) { 1200 m->offset = vmcore_off; 1201 vmcore_off += m->size; 1202 } 1203 } 1204 1205 static void free_elfcorebuf(void) 1206 { 1207 free_pages((unsigned long)elfcorebuf, get_order(elfcorebuf_sz_orig)); 1208 elfcorebuf = NULL; 1209 vfree(elfnotes_buf); 1210 elfnotes_buf = NULL; 1211 } 1212 1213 static int __init parse_crash_elf64_headers(void) 1214 { 1215 int rc=0; 1216 Elf64_Ehdr ehdr; 1217 u64 addr; 1218 1219 addr = elfcorehdr_addr; 1220 1221 /* Read ELF header */ 1222 rc = elfcorehdr_read((char *)&ehdr, sizeof(Elf64_Ehdr), &addr); 1223 if (rc < 0) 1224 return rc; 1225 1226 /* Do some basic Verification. */ 1227 if (memcmp(ehdr.e_ident, ELFMAG, SELFMAG) != 0 || 1228 (ehdr.e_type != ET_CORE) || 1229 !vmcore_elf64_check_arch(&ehdr) || 1230 ehdr.e_ident[EI_CLASS] != ELFCLASS64 || 1231 ehdr.e_ident[EI_VERSION] != EV_CURRENT || 1232 ehdr.e_version != EV_CURRENT || 1233 ehdr.e_ehsize != sizeof(Elf64_Ehdr) || 1234 ehdr.e_phentsize != sizeof(Elf64_Phdr) || 1235 ehdr.e_phnum == 0) { 1236 pr_warn("Warning: Core image elf header is not sane\n"); 1237 return -EINVAL; 1238 } 1239 1240 /* Read in all elf headers. */ 1241 elfcorebuf_sz_orig = sizeof(Elf64_Ehdr) + 1242 ehdr.e_phnum * sizeof(Elf64_Phdr); 1243 elfcorebuf_sz = elfcorebuf_sz_orig; 1244 elfcorebuf = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, 1245 get_order(elfcorebuf_sz_orig)); 1246 if (!elfcorebuf) 1247 return -ENOMEM; 1248 addr = elfcorehdr_addr; 1249 rc = elfcorehdr_read(elfcorebuf, elfcorebuf_sz_orig, &addr); 1250 if (rc < 0) 1251 goto fail; 1252 1253 /* Merge all PT_NOTE headers into one. */ 1254 rc = merge_note_headers_elf64(elfcorebuf, &elfcorebuf_sz, 1255 &elfnotes_buf, &elfnotes_sz); 1256 if (rc) 1257 goto fail; 1258 rc = process_ptload_program_headers_elf64(elfcorebuf, elfcorebuf_sz, 1259 elfnotes_sz, &vmcore_list); 1260 if (rc) 1261 goto fail; 1262 set_vmcore_list_offsets(elfcorebuf_sz, elfnotes_sz, &vmcore_list); 1263 return 0; 1264 fail: 1265 free_elfcorebuf(); 1266 return rc; 1267 } 1268 1269 static int __init parse_crash_elf32_headers(void) 1270 { 1271 int rc=0; 1272 Elf32_Ehdr ehdr; 1273 u64 addr; 1274 1275 addr = elfcorehdr_addr; 1276 1277 /* Read ELF header */ 1278 rc = elfcorehdr_read((char *)&ehdr, sizeof(Elf32_Ehdr), &addr); 1279 if (rc < 0) 1280 return rc; 1281 1282 /* Do some basic Verification. */ 1283 if (memcmp(ehdr.e_ident, ELFMAG, SELFMAG) != 0 || 1284 (ehdr.e_type != ET_CORE) || 1285 !vmcore_elf32_check_arch(&ehdr) || 1286 ehdr.e_ident[EI_CLASS] != ELFCLASS32|| 1287 ehdr.e_ident[EI_VERSION] != EV_CURRENT || 1288 ehdr.e_version != EV_CURRENT || 1289 ehdr.e_ehsize != sizeof(Elf32_Ehdr) || 1290 ehdr.e_phentsize != sizeof(Elf32_Phdr) || 1291 ehdr.e_phnum == 0) { 1292 pr_warn("Warning: Core image elf header is not sane\n"); 1293 return -EINVAL; 1294 } 1295 1296 /* Read in all elf headers. */ 1297 elfcorebuf_sz_orig = sizeof(Elf32_Ehdr) + ehdr.e_phnum * sizeof(Elf32_Phdr); 1298 elfcorebuf_sz = elfcorebuf_sz_orig; 1299 elfcorebuf = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, 1300 get_order(elfcorebuf_sz_orig)); 1301 if (!elfcorebuf) 1302 return -ENOMEM; 1303 addr = elfcorehdr_addr; 1304 rc = elfcorehdr_read(elfcorebuf, elfcorebuf_sz_orig, &addr); 1305 if (rc < 0) 1306 goto fail; 1307 1308 /* Merge all PT_NOTE headers into one. */ 1309 rc = merge_note_headers_elf32(elfcorebuf, &elfcorebuf_sz, 1310 &elfnotes_buf, &elfnotes_sz); 1311 if (rc) 1312 goto fail; 1313 rc = process_ptload_program_headers_elf32(elfcorebuf, elfcorebuf_sz, 1314 elfnotes_sz, &vmcore_list); 1315 if (rc) 1316 goto fail; 1317 set_vmcore_list_offsets(elfcorebuf_sz, elfnotes_sz, &vmcore_list); 1318 return 0; 1319 fail: 1320 free_elfcorebuf(); 1321 return rc; 1322 } 1323 1324 static int __init parse_crash_elf_headers(void) 1325 { 1326 unsigned char e_ident[EI_NIDENT]; 1327 u64 addr; 1328 int rc=0; 1329 1330 addr = elfcorehdr_addr; 1331 rc = elfcorehdr_read(e_ident, EI_NIDENT, &addr); 1332 if (rc < 0) 1333 return rc; 1334 if (memcmp(e_ident, ELFMAG, SELFMAG) != 0) { 1335 pr_warn("Warning: Core image elf header not found\n"); 1336 return -EINVAL; 1337 } 1338 1339 if (e_ident[EI_CLASS] == ELFCLASS64) { 1340 rc = parse_crash_elf64_headers(); 1341 if (rc) 1342 return rc; 1343 } else if (e_ident[EI_CLASS] == ELFCLASS32) { 1344 rc = parse_crash_elf32_headers(); 1345 if (rc) 1346 return rc; 1347 } else { 1348 pr_warn("Warning: Core image elf header is not sane\n"); 1349 return -EINVAL; 1350 } 1351 1352 /* Determine vmcore size. */ 1353 vmcore_size = get_vmcore_size(elfcorebuf_sz, elfnotes_sz, 1354 &vmcore_list); 1355 1356 return 0; 1357 } 1358 1359 #ifdef CONFIG_PROC_VMCORE_DEVICE_DUMP 1360 /** 1361 * vmcoredd_write_header - Write vmcore device dump header at the 1362 * beginning of the dump's buffer. 1363 * @buf: Output buffer where the note is written 1364 * @data: Dump info 1365 * @size: Size of the dump 1366 * 1367 * Fills beginning of the dump's buffer with vmcore device dump header. 1368 */ 1369 static void vmcoredd_write_header(void *buf, struct vmcoredd_data *data, 1370 u32 size) 1371 { 1372 struct vmcoredd_header *vdd_hdr = (struct vmcoredd_header *)buf; 1373 1374 vdd_hdr->n_namesz = sizeof(vdd_hdr->name); 1375 vdd_hdr->n_descsz = size + sizeof(vdd_hdr->dump_name); 1376 vdd_hdr->n_type = NT_VMCOREDD; 1377 1378 strscpy_pad(vdd_hdr->name, VMCOREDD_NOTE_NAME); 1379 strscpy_pad(vdd_hdr->dump_name, data->dump_name); 1380 } 1381 1382 /** 1383 * vmcoredd_update_program_headers - Update all ELF program headers 1384 * @elfptr: Pointer to elf header 1385 * @elfnotesz: Size of elf notes aligned to page size 1386 * @vmcoreddsz: Size of device dumps to be added to elf note header 1387 * 1388 * Determine type of ELF header (Elf64 or Elf32) and update the elf note size. 1389 * Also update the offsets of all the program headers after the elf note header. 1390 */ 1391 static void vmcoredd_update_program_headers(char *elfptr, size_t elfnotesz, 1392 size_t vmcoreddsz) 1393 { 1394 unsigned char *e_ident = (unsigned char *)elfptr; 1395 u64 start, end, size; 1396 loff_t vmcore_off; 1397 u32 i; 1398 1399 vmcore_off = elfcorebuf_sz + elfnotesz; 1400 1401 if (e_ident[EI_CLASS] == ELFCLASS64) { 1402 Elf64_Ehdr *ehdr = (Elf64_Ehdr *)elfptr; 1403 Elf64_Phdr *phdr = (Elf64_Phdr *)(elfptr + sizeof(Elf64_Ehdr)); 1404 1405 /* Update all program headers */ 1406 for (i = 0; i < ehdr->e_phnum; i++, phdr++) { 1407 if (phdr->p_type == PT_NOTE) { 1408 /* Update note size */ 1409 phdr->p_memsz = elfnotes_orig_sz + vmcoreddsz; 1410 phdr->p_filesz = phdr->p_memsz; 1411 continue; 1412 } 1413 1414 start = rounddown(phdr->p_offset, PAGE_SIZE); 1415 end = roundup(phdr->p_offset + phdr->p_memsz, 1416 PAGE_SIZE); 1417 size = end - start; 1418 phdr->p_offset = vmcore_off + (phdr->p_offset - start); 1419 vmcore_off += size; 1420 } 1421 } else { 1422 Elf32_Ehdr *ehdr = (Elf32_Ehdr *)elfptr; 1423 Elf32_Phdr *phdr = (Elf32_Phdr *)(elfptr + sizeof(Elf32_Ehdr)); 1424 1425 /* Update all program headers */ 1426 for (i = 0; i < ehdr->e_phnum; i++, phdr++) { 1427 if (phdr->p_type == PT_NOTE) { 1428 /* Update note size */ 1429 phdr->p_memsz = elfnotes_orig_sz + vmcoreddsz; 1430 phdr->p_filesz = phdr->p_memsz; 1431 continue; 1432 } 1433 1434 start = rounddown(phdr->p_offset, PAGE_SIZE); 1435 end = roundup(phdr->p_offset + phdr->p_memsz, 1436 PAGE_SIZE); 1437 size = end - start; 1438 phdr->p_offset = vmcore_off + (phdr->p_offset - start); 1439 vmcore_off += size; 1440 } 1441 } 1442 } 1443 1444 /** 1445 * vmcoredd_update_size - Update the total size of the device dumps and update 1446 * ELF header 1447 * @dump_size: Size of the current device dump to be added to total size 1448 * 1449 * Update the total size of all the device dumps and update the ELF program 1450 * headers. Calculate the new offsets for the vmcore list and update the 1451 * total vmcore size. 1452 */ 1453 static void vmcoredd_update_size(size_t dump_size) 1454 { 1455 vmcoredd_orig_sz += dump_size; 1456 elfnotes_sz = roundup(elfnotes_orig_sz, PAGE_SIZE) + vmcoredd_orig_sz; 1457 vmcoredd_update_program_headers(elfcorebuf, elfnotes_sz, 1458 vmcoredd_orig_sz); 1459 1460 /* Update vmcore list offsets */ 1461 set_vmcore_list_offsets(elfcorebuf_sz, elfnotes_sz, &vmcore_list); 1462 1463 vmcore_size = get_vmcore_size(elfcorebuf_sz, elfnotes_sz, 1464 &vmcore_list); 1465 proc_vmcore->size = vmcore_size; 1466 } 1467 1468 /** 1469 * vmcore_add_device_dump - Add a buffer containing device dump to vmcore 1470 * @data: dump info. 1471 * 1472 * Allocate a buffer and invoke the calling driver's dump collect routine. 1473 * Write ELF note at the beginning of the buffer to indicate vmcore device 1474 * dump and add the dump to global list. 1475 */ 1476 int vmcore_add_device_dump(struct vmcoredd_data *data) 1477 { 1478 struct vmcoredd_node *dump; 1479 void *buf = NULL; 1480 size_t data_size; 1481 int ret; 1482 1483 if (vmcoredd_disabled) { 1484 pr_err_once("Device dump is disabled\n"); 1485 return -EINVAL; 1486 } 1487 1488 if (!data || !strlen(data->dump_name) || 1489 !data->vmcoredd_callback || !data->size) 1490 return -EINVAL; 1491 1492 dump = vzalloc(sizeof(*dump)); 1493 if (!dump) { 1494 ret = -ENOMEM; 1495 goto out_err; 1496 } 1497 1498 /* Keep size of the buffer page aligned so that it can be mmaped */ 1499 data_size = roundup(sizeof(struct vmcoredd_header) + data->size, 1500 PAGE_SIZE); 1501 1502 /* Allocate buffer for driver's to write their dumps */ 1503 buf = vmcore_alloc_buf(data_size); 1504 if (!buf) { 1505 ret = -ENOMEM; 1506 goto out_err; 1507 } 1508 1509 vmcoredd_write_header(buf, data, data_size - 1510 sizeof(struct vmcoredd_header)); 1511 1512 /* Invoke the driver's dump collection routing */ 1513 ret = data->vmcoredd_callback(data, buf + 1514 sizeof(struct vmcoredd_header)); 1515 if (ret) 1516 goto out_err; 1517 1518 dump->buf = buf; 1519 dump->size = data_size; 1520 1521 /* Add the dump to driver sysfs list */ 1522 mutex_lock(&vmcoredd_mutex); 1523 list_add_tail(&dump->list, &vmcoredd_list); 1524 mutex_unlock(&vmcoredd_mutex); 1525 1526 vmcoredd_update_size(data_size); 1527 return 0; 1528 1529 out_err: 1530 vfree(buf); 1531 vfree(dump); 1532 1533 return ret; 1534 } 1535 EXPORT_SYMBOL(vmcore_add_device_dump); 1536 #endif /* CONFIG_PROC_VMCORE_DEVICE_DUMP */ 1537 1538 /* Free all dumps in vmcore device dump list */ 1539 static void vmcore_free_device_dumps(void) 1540 { 1541 #ifdef CONFIG_PROC_VMCORE_DEVICE_DUMP 1542 mutex_lock(&vmcoredd_mutex); 1543 while (!list_empty(&vmcoredd_list)) { 1544 struct vmcoredd_node *dump; 1545 1546 dump = list_first_entry(&vmcoredd_list, struct vmcoredd_node, 1547 list); 1548 list_del(&dump->list); 1549 vfree(dump->buf); 1550 vfree(dump); 1551 } 1552 mutex_unlock(&vmcoredd_mutex); 1553 #endif /* CONFIG_PROC_VMCORE_DEVICE_DUMP */ 1554 } 1555 1556 /* Init function for vmcore module. */ 1557 static int __init vmcore_init(void) 1558 { 1559 int rc = 0; 1560 1561 /* Allow architectures to allocate ELF header in 2nd kernel */ 1562 rc = elfcorehdr_alloc(&elfcorehdr_addr, &elfcorehdr_size); 1563 if (rc) 1564 return rc; 1565 /* 1566 * If elfcorehdr= has been passed in cmdline or created in 2nd kernel, 1567 * then capture the dump. 1568 */ 1569 if (!(is_vmcore_usable())) 1570 return rc; 1571 rc = parse_crash_elf_headers(); 1572 if (rc) { 1573 elfcorehdr_free(elfcorehdr_addr); 1574 pr_warn("Kdump: vmcore not initialized\n"); 1575 return rc; 1576 } 1577 elfcorehdr_free(elfcorehdr_addr); 1578 elfcorehdr_addr = ELFCORE_ADDR_ERR; 1579 1580 proc_vmcore = proc_create("vmcore", S_IRUSR, NULL, &vmcore_proc_ops); 1581 if (proc_vmcore) 1582 proc_vmcore->size = vmcore_size; 1583 return 0; 1584 } 1585 fs_initcall(vmcore_init); 1586 1587 /* Cleanup function for vmcore module. */ 1588 void vmcore_cleanup(void) 1589 { 1590 if (proc_vmcore) { 1591 proc_remove(proc_vmcore); 1592 proc_vmcore = NULL; 1593 } 1594 1595 /* clear the vmcore list. */ 1596 while (!list_empty(&vmcore_list)) { 1597 struct vmcore *m; 1598 1599 m = list_first_entry(&vmcore_list, struct vmcore, list); 1600 list_del(&m->list); 1601 kfree(m); 1602 } 1603 free_elfcorebuf(); 1604 1605 /* clear vmcore device dump list */ 1606 vmcore_free_device_dumps(); 1607 } 1608