xref: /linux/fs/proc/task_mmu.c (revision fbc90c042cd1dc7258ebfebe6d226017e5b5ac8c)
1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/pagewalk.h>
3 #include <linux/mm_inline.h>
4 #include <linux/hugetlb.h>
5 #include <linux/huge_mm.h>
6 #include <linux/mount.h>
7 #include <linux/ksm.h>
8 #include <linux/seq_file.h>
9 #include <linux/highmem.h>
10 #include <linux/ptrace.h>
11 #include <linux/slab.h>
12 #include <linux/pagemap.h>
13 #include <linux/mempolicy.h>
14 #include <linux/rmap.h>
15 #include <linux/swap.h>
16 #include <linux/sched/mm.h>
17 #include <linux/swapops.h>
18 #include <linux/mmu_notifier.h>
19 #include <linux/page_idle.h>
20 #include <linux/shmem_fs.h>
21 #include <linux/uaccess.h>
22 #include <linux/pkeys.h>
23 #include <linux/minmax.h>
24 #include <linux/overflow.h>
25 #include <linux/buildid.h>
26 
27 #include <asm/elf.h>
28 #include <asm/tlb.h>
29 #include <asm/tlbflush.h>
30 #include "internal.h"
31 
32 #define SEQ_PUT_DEC(str, val) \
33 		seq_put_decimal_ull_width(m, str, (val) << (PAGE_SHIFT-10), 8)
34 void task_mem(struct seq_file *m, struct mm_struct *mm)
35 {
36 	unsigned long text, lib, swap, anon, file, shmem;
37 	unsigned long hiwater_vm, total_vm, hiwater_rss, total_rss;
38 
39 	anon = get_mm_counter(mm, MM_ANONPAGES);
40 	file = get_mm_counter(mm, MM_FILEPAGES);
41 	shmem = get_mm_counter(mm, MM_SHMEMPAGES);
42 
43 	/*
44 	 * Note: to minimize their overhead, mm maintains hiwater_vm and
45 	 * hiwater_rss only when about to *lower* total_vm or rss.  Any
46 	 * collector of these hiwater stats must therefore get total_vm
47 	 * and rss too, which will usually be the higher.  Barriers? not
48 	 * worth the effort, such snapshots can always be inconsistent.
49 	 */
50 	hiwater_vm = total_vm = mm->total_vm;
51 	if (hiwater_vm < mm->hiwater_vm)
52 		hiwater_vm = mm->hiwater_vm;
53 	hiwater_rss = total_rss = anon + file + shmem;
54 	if (hiwater_rss < mm->hiwater_rss)
55 		hiwater_rss = mm->hiwater_rss;
56 
57 	/* split executable areas between text and lib */
58 	text = PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK);
59 	text = min(text, mm->exec_vm << PAGE_SHIFT);
60 	lib = (mm->exec_vm << PAGE_SHIFT) - text;
61 
62 	swap = get_mm_counter(mm, MM_SWAPENTS);
63 	SEQ_PUT_DEC("VmPeak:\t", hiwater_vm);
64 	SEQ_PUT_DEC(" kB\nVmSize:\t", total_vm);
65 	SEQ_PUT_DEC(" kB\nVmLck:\t", mm->locked_vm);
66 	SEQ_PUT_DEC(" kB\nVmPin:\t", atomic64_read(&mm->pinned_vm));
67 	SEQ_PUT_DEC(" kB\nVmHWM:\t", hiwater_rss);
68 	SEQ_PUT_DEC(" kB\nVmRSS:\t", total_rss);
69 	SEQ_PUT_DEC(" kB\nRssAnon:\t", anon);
70 	SEQ_PUT_DEC(" kB\nRssFile:\t", file);
71 	SEQ_PUT_DEC(" kB\nRssShmem:\t", shmem);
72 	SEQ_PUT_DEC(" kB\nVmData:\t", mm->data_vm);
73 	SEQ_PUT_DEC(" kB\nVmStk:\t", mm->stack_vm);
74 	seq_put_decimal_ull_width(m,
75 		    " kB\nVmExe:\t", text >> 10, 8);
76 	seq_put_decimal_ull_width(m,
77 		    " kB\nVmLib:\t", lib >> 10, 8);
78 	seq_put_decimal_ull_width(m,
79 		    " kB\nVmPTE:\t", mm_pgtables_bytes(mm) >> 10, 8);
80 	SEQ_PUT_DEC(" kB\nVmSwap:\t", swap);
81 	seq_puts(m, " kB\n");
82 	hugetlb_report_usage(m, mm);
83 }
84 #undef SEQ_PUT_DEC
85 
86 unsigned long task_vsize(struct mm_struct *mm)
87 {
88 	return PAGE_SIZE * mm->total_vm;
89 }
90 
91 unsigned long task_statm(struct mm_struct *mm,
92 			 unsigned long *shared, unsigned long *text,
93 			 unsigned long *data, unsigned long *resident)
94 {
95 	*shared = get_mm_counter(mm, MM_FILEPAGES) +
96 			get_mm_counter(mm, MM_SHMEMPAGES);
97 	*text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK))
98 								>> PAGE_SHIFT;
99 	*data = mm->data_vm + mm->stack_vm;
100 	*resident = *shared + get_mm_counter(mm, MM_ANONPAGES);
101 	return mm->total_vm;
102 }
103 
104 #ifdef CONFIG_NUMA
105 /*
106  * Save get_task_policy() for show_numa_map().
107  */
108 static void hold_task_mempolicy(struct proc_maps_private *priv)
109 {
110 	struct task_struct *task = priv->task;
111 
112 	task_lock(task);
113 	priv->task_mempolicy = get_task_policy(task);
114 	mpol_get(priv->task_mempolicy);
115 	task_unlock(task);
116 }
117 static void release_task_mempolicy(struct proc_maps_private *priv)
118 {
119 	mpol_put(priv->task_mempolicy);
120 }
121 #else
122 static void hold_task_mempolicy(struct proc_maps_private *priv)
123 {
124 }
125 static void release_task_mempolicy(struct proc_maps_private *priv)
126 {
127 }
128 #endif
129 
130 static struct vm_area_struct *proc_get_vma(struct proc_maps_private *priv,
131 						loff_t *ppos)
132 {
133 	struct vm_area_struct *vma = vma_next(&priv->iter);
134 
135 	if (vma) {
136 		*ppos = vma->vm_start;
137 	} else {
138 		*ppos = -2UL;
139 		vma = get_gate_vma(priv->mm);
140 	}
141 
142 	return vma;
143 }
144 
145 static void *m_start(struct seq_file *m, loff_t *ppos)
146 {
147 	struct proc_maps_private *priv = m->private;
148 	unsigned long last_addr = *ppos;
149 	struct mm_struct *mm;
150 
151 	/* See m_next(). Zero at the start or after lseek. */
152 	if (last_addr == -1UL)
153 		return NULL;
154 
155 	priv->task = get_proc_task(priv->inode);
156 	if (!priv->task)
157 		return ERR_PTR(-ESRCH);
158 
159 	mm = priv->mm;
160 	if (!mm || !mmget_not_zero(mm)) {
161 		put_task_struct(priv->task);
162 		priv->task = NULL;
163 		return NULL;
164 	}
165 
166 	if (mmap_read_lock_killable(mm)) {
167 		mmput(mm);
168 		put_task_struct(priv->task);
169 		priv->task = NULL;
170 		return ERR_PTR(-EINTR);
171 	}
172 
173 	vma_iter_init(&priv->iter, mm, last_addr);
174 	hold_task_mempolicy(priv);
175 	if (last_addr == -2UL)
176 		return get_gate_vma(mm);
177 
178 	return proc_get_vma(priv, ppos);
179 }
180 
181 static void *m_next(struct seq_file *m, void *v, loff_t *ppos)
182 {
183 	if (*ppos == -2UL) {
184 		*ppos = -1UL;
185 		return NULL;
186 	}
187 	return proc_get_vma(m->private, ppos);
188 }
189 
190 static void m_stop(struct seq_file *m, void *v)
191 {
192 	struct proc_maps_private *priv = m->private;
193 	struct mm_struct *mm = priv->mm;
194 
195 	if (!priv->task)
196 		return;
197 
198 	release_task_mempolicy(priv);
199 	mmap_read_unlock(mm);
200 	mmput(mm);
201 	put_task_struct(priv->task);
202 	priv->task = NULL;
203 }
204 
205 static int proc_maps_open(struct inode *inode, struct file *file,
206 			const struct seq_operations *ops, int psize)
207 {
208 	struct proc_maps_private *priv = __seq_open_private(file, ops, psize);
209 
210 	if (!priv)
211 		return -ENOMEM;
212 
213 	priv->inode = inode;
214 	priv->mm = proc_mem_open(inode, PTRACE_MODE_READ);
215 	if (IS_ERR(priv->mm)) {
216 		int err = PTR_ERR(priv->mm);
217 
218 		seq_release_private(inode, file);
219 		return err;
220 	}
221 
222 	return 0;
223 }
224 
225 static int proc_map_release(struct inode *inode, struct file *file)
226 {
227 	struct seq_file *seq = file->private_data;
228 	struct proc_maps_private *priv = seq->private;
229 
230 	if (priv->mm)
231 		mmdrop(priv->mm);
232 
233 	return seq_release_private(inode, file);
234 }
235 
236 static int do_maps_open(struct inode *inode, struct file *file,
237 			const struct seq_operations *ops)
238 {
239 	return proc_maps_open(inode, file, ops,
240 				sizeof(struct proc_maps_private));
241 }
242 
243 static void get_vma_name(struct vm_area_struct *vma,
244 			 const struct path **path,
245 			 const char **name,
246 			 const char **name_fmt)
247 {
248 	struct anon_vma_name *anon_name = vma->vm_mm ? anon_vma_name(vma) : NULL;
249 
250 	*name = NULL;
251 	*path = NULL;
252 	*name_fmt = NULL;
253 
254 	/*
255 	 * Print the dentry name for named mappings, and a
256 	 * special [heap] marker for the heap:
257 	 */
258 	if (vma->vm_file) {
259 		/*
260 		 * If user named this anon shared memory via
261 		 * prctl(PR_SET_VMA ..., use the provided name.
262 		 */
263 		if (anon_name) {
264 			*name_fmt = "[anon_shmem:%s]";
265 			*name = anon_name->name;
266 		} else {
267 			*path = file_user_path(vma->vm_file);
268 		}
269 		return;
270 	}
271 
272 	if (vma->vm_ops && vma->vm_ops->name) {
273 		*name = vma->vm_ops->name(vma);
274 		if (*name)
275 			return;
276 	}
277 
278 	*name = arch_vma_name(vma);
279 	if (*name)
280 		return;
281 
282 	if (!vma->vm_mm) {
283 		*name = "[vdso]";
284 		return;
285 	}
286 
287 	if (vma_is_initial_heap(vma)) {
288 		*name = "[heap]";
289 		return;
290 	}
291 
292 	if (vma_is_initial_stack(vma)) {
293 		*name = "[stack]";
294 		return;
295 	}
296 
297 	if (anon_name) {
298 		*name_fmt = "[anon:%s]";
299 		*name = anon_name->name;
300 		return;
301 	}
302 }
303 
304 static void show_vma_header_prefix(struct seq_file *m,
305 				   unsigned long start, unsigned long end,
306 				   vm_flags_t flags, unsigned long long pgoff,
307 				   dev_t dev, unsigned long ino)
308 {
309 	seq_setwidth(m, 25 + sizeof(void *) * 6 - 1);
310 	seq_put_hex_ll(m, NULL, start, 8);
311 	seq_put_hex_ll(m, "-", end, 8);
312 	seq_putc(m, ' ');
313 	seq_putc(m, flags & VM_READ ? 'r' : '-');
314 	seq_putc(m, flags & VM_WRITE ? 'w' : '-');
315 	seq_putc(m, flags & VM_EXEC ? 'x' : '-');
316 	seq_putc(m, flags & VM_MAYSHARE ? 's' : 'p');
317 	seq_put_hex_ll(m, " ", pgoff, 8);
318 	seq_put_hex_ll(m, " ", MAJOR(dev), 2);
319 	seq_put_hex_ll(m, ":", MINOR(dev), 2);
320 	seq_put_decimal_ull(m, " ", ino);
321 	seq_putc(m, ' ');
322 }
323 
324 static void
325 show_map_vma(struct seq_file *m, struct vm_area_struct *vma)
326 {
327 	const struct path *path;
328 	const char *name_fmt, *name;
329 	vm_flags_t flags = vma->vm_flags;
330 	unsigned long ino = 0;
331 	unsigned long long pgoff = 0;
332 	unsigned long start, end;
333 	dev_t dev = 0;
334 
335 	if (vma->vm_file) {
336 		const struct inode *inode = file_user_inode(vma->vm_file);
337 
338 		dev = inode->i_sb->s_dev;
339 		ino = inode->i_ino;
340 		pgoff = ((loff_t)vma->vm_pgoff) << PAGE_SHIFT;
341 	}
342 
343 	start = vma->vm_start;
344 	end = vma->vm_end;
345 	show_vma_header_prefix(m, start, end, flags, pgoff, dev, ino);
346 
347 	get_vma_name(vma, &path, &name, &name_fmt);
348 	if (path) {
349 		seq_pad(m, ' ');
350 		seq_path(m, path, "\n");
351 	} else if (name_fmt) {
352 		seq_pad(m, ' ');
353 		seq_printf(m, name_fmt, name);
354 	} else if (name) {
355 		seq_pad(m, ' ');
356 		seq_puts(m, name);
357 	}
358 	seq_putc(m, '\n');
359 }
360 
361 static int show_map(struct seq_file *m, void *v)
362 {
363 	show_map_vma(m, v);
364 	return 0;
365 }
366 
367 static const struct seq_operations proc_pid_maps_op = {
368 	.start	= m_start,
369 	.next	= m_next,
370 	.stop	= m_stop,
371 	.show	= show_map
372 };
373 
374 static int pid_maps_open(struct inode *inode, struct file *file)
375 {
376 	return do_maps_open(inode, file, &proc_pid_maps_op);
377 }
378 
379 #define PROCMAP_QUERY_VMA_FLAGS (				\
380 		PROCMAP_QUERY_VMA_READABLE |			\
381 		PROCMAP_QUERY_VMA_WRITABLE |			\
382 		PROCMAP_QUERY_VMA_EXECUTABLE |			\
383 		PROCMAP_QUERY_VMA_SHARED			\
384 )
385 
386 #define PROCMAP_QUERY_VALID_FLAGS_MASK (			\
387 		PROCMAP_QUERY_COVERING_OR_NEXT_VMA |		\
388 		PROCMAP_QUERY_FILE_BACKED_VMA |			\
389 		PROCMAP_QUERY_VMA_FLAGS				\
390 )
391 
392 static int query_vma_setup(struct mm_struct *mm)
393 {
394 	return mmap_read_lock_killable(mm);
395 }
396 
397 static void query_vma_teardown(struct mm_struct *mm, struct vm_area_struct *vma)
398 {
399 	mmap_read_unlock(mm);
400 }
401 
402 static struct vm_area_struct *query_vma_find_by_addr(struct mm_struct *mm, unsigned long addr)
403 {
404 	return find_vma(mm, addr);
405 }
406 
407 static struct vm_area_struct *query_matching_vma(struct mm_struct *mm,
408 						 unsigned long addr, u32 flags)
409 {
410 	struct vm_area_struct *vma;
411 
412 next_vma:
413 	vma = query_vma_find_by_addr(mm, addr);
414 	if (!vma)
415 		goto no_vma;
416 
417 	/* user requested only file-backed VMA, keep iterating */
418 	if ((flags & PROCMAP_QUERY_FILE_BACKED_VMA) && !vma->vm_file)
419 		goto skip_vma;
420 
421 	/* VMA permissions should satisfy query flags */
422 	if (flags & PROCMAP_QUERY_VMA_FLAGS) {
423 		u32 perm = 0;
424 
425 		if (flags & PROCMAP_QUERY_VMA_READABLE)
426 			perm |= VM_READ;
427 		if (flags & PROCMAP_QUERY_VMA_WRITABLE)
428 			perm |= VM_WRITE;
429 		if (flags & PROCMAP_QUERY_VMA_EXECUTABLE)
430 			perm |= VM_EXEC;
431 		if (flags & PROCMAP_QUERY_VMA_SHARED)
432 			perm |= VM_MAYSHARE;
433 
434 		if ((vma->vm_flags & perm) != perm)
435 			goto skip_vma;
436 	}
437 
438 	/* found covering VMA or user is OK with the matching next VMA */
439 	if ((flags & PROCMAP_QUERY_COVERING_OR_NEXT_VMA) || vma->vm_start <= addr)
440 		return vma;
441 
442 skip_vma:
443 	/*
444 	 * If the user needs closest matching VMA, keep iterating.
445 	 */
446 	addr = vma->vm_end;
447 	if (flags & PROCMAP_QUERY_COVERING_OR_NEXT_VMA)
448 		goto next_vma;
449 
450 no_vma:
451 	return ERR_PTR(-ENOENT);
452 }
453 
454 static int do_procmap_query(struct proc_maps_private *priv, void __user *uarg)
455 {
456 	struct procmap_query karg;
457 	struct vm_area_struct *vma;
458 	struct mm_struct *mm;
459 	const char *name = NULL;
460 	char build_id_buf[BUILD_ID_SIZE_MAX], *name_buf = NULL;
461 	__u64 usize;
462 	int err;
463 
464 	if (copy_from_user(&usize, (void __user *)uarg, sizeof(usize)))
465 		return -EFAULT;
466 	/* argument struct can never be that large, reject abuse */
467 	if (usize > PAGE_SIZE)
468 		return -E2BIG;
469 	/* argument struct should have at least query_flags and query_addr fields */
470 	if (usize < offsetofend(struct procmap_query, query_addr))
471 		return -EINVAL;
472 	err = copy_struct_from_user(&karg, sizeof(karg), uarg, usize);
473 	if (err)
474 		return err;
475 
476 	/* reject unknown flags */
477 	if (karg.query_flags & ~PROCMAP_QUERY_VALID_FLAGS_MASK)
478 		return -EINVAL;
479 	/* either both buffer address and size are set, or both should be zero */
480 	if (!!karg.vma_name_size != !!karg.vma_name_addr)
481 		return -EINVAL;
482 	if (!!karg.build_id_size != !!karg.build_id_addr)
483 		return -EINVAL;
484 
485 	mm = priv->mm;
486 	if (!mm || !mmget_not_zero(mm))
487 		return -ESRCH;
488 
489 	err = query_vma_setup(mm);
490 	if (err) {
491 		mmput(mm);
492 		return err;
493 	}
494 
495 	vma = query_matching_vma(mm, karg.query_addr, karg.query_flags);
496 	if (IS_ERR(vma)) {
497 		err = PTR_ERR(vma);
498 		vma = NULL;
499 		goto out;
500 	}
501 
502 	karg.vma_start = vma->vm_start;
503 	karg.vma_end = vma->vm_end;
504 
505 	karg.vma_flags = 0;
506 	if (vma->vm_flags & VM_READ)
507 		karg.vma_flags |= PROCMAP_QUERY_VMA_READABLE;
508 	if (vma->vm_flags & VM_WRITE)
509 		karg.vma_flags |= PROCMAP_QUERY_VMA_WRITABLE;
510 	if (vma->vm_flags & VM_EXEC)
511 		karg.vma_flags |= PROCMAP_QUERY_VMA_EXECUTABLE;
512 	if (vma->vm_flags & VM_MAYSHARE)
513 		karg.vma_flags |= PROCMAP_QUERY_VMA_SHARED;
514 
515 	karg.vma_page_size = vma_kernel_pagesize(vma);
516 
517 	if (vma->vm_file) {
518 		const struct inode *inode = file_user_inode(vma->vm_file);
519 
520 		karg.vma_offset = ((__u64)vma->vm_pgoff) << PAGE_SHIFT;
521 		karg.dev_major = MAJOR(inode->i_sb->s_dev);
522 		karg.dev_minor = MINOR(inode->i_sb->s_dev);
523 		karg.inode = inode->i_ino;
524 	} else {
525 		karg.vma_offset = 0;
526 		karg.dev_major = 0;
527 		karg.dev_minor = 0;
528 		karg.inode = 0;
529 	}
530 
531 	if (karg.build_id_size) {
532 		__u32 build_id_sz;
533 
534 		err = build_id_parse(vma, build_id_buf, &build_id_sz);
535 		if (err) {
536 			karg.build_id_size = 0;
537 		} else {
538 			if (karg.build_id_size < build_id_sz) {
539 				err = -ENAMETOOLONG;
540 				goto out;
541 			}
542 			karg.build_id_size = build_id_sz;
543 		}
544 	}
545 
546 	if (karg.build_id_size) {
547 		__u32 build_id_sz;
548 
549 		err = build_id_parse(vma, build_id_buf, &build_id_sz);
550 		if (err) {
551 			karg.build_id_size = 0;
552 		} else {
553 			if (karg.build_id_size < build_id_sz) {
554 				err = -ENAMETOOLONG;
555 				goto out;
556 			}
557 			karg.build_id_size = build_id_sz;
558 		}
559 	}
560 
561 	if (karg.vma_name_size) {
562 		size_t name_buf_sz = min_t(size_t, PATH_MAX, karg.vma_name_size);
563 		const struct path *path;
564 		const char *name_fmt;
565 		size_t name_sz = 0;
566 
567 		get_vma_name(vma, &path, &name, &name_fmt);
568 
569 		if (path || name_fmt || name) {
570 			name_buf = kmalloc(name_buf_sz, GFP_KERNEL);
571 			if (!name_buf) {
572 				err = -ENOMEM;
573 				goto out;
574 			}
575 		}
576 		if (path) {
577 			name = d_path(path, name_buf, name_buf_sz);
578 			if (IS_ERR(name)) {
579 				err = PTR_ERR(name);
580 				goto out;
581 			}
582 			name_sz = name_buf + name_buf_sz - name;
583 		} else if (name || name_fmt) {
584 			name_sz = 1 + snprintf(name_buf, name_buf_sz, name_fmt ?: "%s", name);
585 			name = name_buf;
586 		}
587 		if (name_sz > name_buf_sz) {
588 			err = -ENAMETOOLONG;
589 			goto out;
590 		}
591 		karg.vma_name_size = name_sz;
592 	}
593 
594 	/* unlock vma or mmap_lock, and put mm_struct before copying data to user */
595 	query_vma_teardown(mm, vma);
596 	mmput(mm);
597 
598 	if (karg.vma_name_size && copy_to_user(u64_to_user_ptr(karg.vma_name_addr),
599 					       name, karg.vma_name_size)) {
600 		kfree(name_buf);
601 		return -EFAULT;
602 	}
603 	kfree(name_buf);
604 
605 	if (karg.build_id_size && copy_to_user(u64_to_user_ptr(karg.build_id_addr),
606 					       build_id_buf, karg.build_id_size))
607 		return -EFAULT;
608 
609 	if (copy_to_user(uarg, &karg, min_t(size_t, sizeof(karg), usize)))
610 		return -EFAULT;
611 
612 	return 0;
613 
614 out:
615 	query_vma_teardown(mm, vma);
616 	mmput(mm);
617 	kfree(name_buf);
618 	return err;
619 }
620 
621 static long procfs_procmap_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
622 {
623 	struct seq_file *seq = file->private_data;
624 	struct proc_maps_private *priv = seq->private;
625 
626 	switch (cmd) {
627 	case PROCMAP_QUERY:
628 		return do_procmap_query(priv, (void __user *)arg);
629 	default:
630 		return -ENOIOCTLCMD;
631 	}
632 }
633 
634 const struct file_operations proc_pid_maps_operations = {
635 	.open		= pid_maps_open,
636 	.read		= seq_read,
637 	.llseek		= seq_lseek,
638 	.release	= proc_map_release,
639 	.unlocked_ioctl = procfs_procmap_ioctl,
640 	.compat_ioctl	= compat_ptr_ioctl,
641 };
642 
643 /*
644  * Proportional Set Size(PSS): my share of RSS.
645  *
646  * PSS of a process is the count of pages it has in memory, where each
647  * page is divided by the number of processes sharing it.  So if a
648  * process has 1000 pages all to itself, and 1000 shared with one other
649  * process, its PSS will be 1500.
650  *
651  * To keep (accumulated) division errors low, we adopt a 64bit
652  * fixed-point pss counter to minimize division errors. So (pss >>
653  * PSS_SHIFT) would be the real byte count.
654  *
655  * A shift of 12 before division means (assuming 4K page size):
656  * 	- 1M 3-user-pages add up to 8KB errors;
657  * 	- supports mapcount up to 2^24, or 16M;
658  * 	- supports PSS up to 2^52 bytes, or 4PB.
659  */
660 #define PSS_SHIFT 12
661 
662 #ifdef CONFIG_PROC_PAGE_MONITOR
663 struct mem_size_stats {
664 	unsigned long resident;
665 	unsigned long shared_clean;
666 	unsigned long shared_dirty;
667 	unsigned long private_clean;
668 	unsigned long private_dirty;
669 	unsigned long referenced;
670 	unsigned long anonymous;
671 	unsigned long lazyfree;
672 	unsigned long anonymous_thp;
673 	unsigned long shmem_thp;
674 	unsigned long file_thp;
675 	unsigned long swap;
676 	unsigned long shared_hugetlb;
677 	unsigned long private_hugetlb;
678 	unsigned long ksm;
679 	u64 pss;
680 	u64 pss_anon;
681 	u64 pss_file;
682 	u64 pss_shmem;
683 	u64 pss_dirty;
684 	u64 pss_locked;
685 	u64 swap_pss;
686 };
687 
688 static void smaps_page_accumulate(struct mem_size_stats *mss,
689 		struct folio *folio, unsigned long size, unsigned long pss,
690 		bool dirty, bool locked, bool private)
691 {
692 	mss->pss += pss;
693 
694 	if (folio_test_anon(folio))
695 		mss->pss_anon += pss;
696 	else if (folio_test_swapbacked(folio))
697 		mss->pss_shmem += pss;
698 	else
699 		mss->pss_file += pss;
700 
701 	if (locked)
702 		mss->pss_locked += pss;
703 
704 	if (dirty || folio_test_dirty(folio)) {
705 		mss->pss_dirty += pss;
706 		if (private)
707 			mss->private_dirty += size;
708 		else
709 			mss->shared_dirty += size;
710 	} else {
711 		if (private)
712 			mss->private_clean += size;
713 		else
714 			mss->shared_clean += size;
715 	}
716 }
717 
718 static void smaps_account(struct mem_size_stats *mss, struct page *page,
719 		bool compound, bool young, bool dirty, bool locked,
720 		bool present)
721 {
722 	struct folio *folio = page_folio(page);
723 	int i, nr = compound ? compound_nr(page) : 1;
724 	unsigned long size = nr * PAGE_SIZE;
725 
726 	/*
727 	 * First accumulate quantities that depend only on |size| and the type
728 	 * of the compound page.
729 	 */
730 	if (folio_test_anon(folio)) {
731 		mss->anonymous += size;
732 		if (!folio_test_swapbacked(folio) && !dirty &&
733 		    !folio_test_dirty(folio))
734 			mss->lazyfree += size;
735 	}
736 
737 	if (folio_test_ksm(folio))
738 		mss->ksm += size;
739 
740 	mss->resident += size;
741 	/* Accumulate the size in pages that have been accessed. */
742 	if (young || folio_test_young(folio) || folio_test_referenced(folio))
743 		mss->referenced += size;
744 
745 	/*
746 	 * Then accumulate quantities that may depend on sharing, or that may
747 	 * differ page-by-page.
748 	 *
749 	 * refcount == 1 for present entries guarantees that the folio is mapped
750 	 * exactly once. For large folios this implies that exactly one
751 	 * PTE/PMD/... maps (a part of) this folio.
752 	 *
753 	 * Treat all non-present entries (where relying on the mapcount and
754 	 * refcount doesn't make sense) as "maybe shared, but not sure how
755 	 * often". We treat device private entries as being fake-present.
756 	 *
757 	 * Note that it would not be safe to read the mapcount especially for
758 	 * pages referenced by migration entries, even with the PTL held.
759 	 */
760 	if (folio_ref_count(folio) == 1 || !present) {
761 		smaps_page_accumulate(mss, folio, size, size << PSS_SHIFT,
762 				      dirty, locked, present);
763 		return;
764 	}
765 	/*
766 	 * We obtain a snapshot of the mapcount. Without holding the folio lock
767 	 * this snapshot can be slightly wrong as we cannot always read the
768 	 * mapcount atomically.
769 	 */
770 	for (i = 0; i < nr; i++, page++) {
771 		int mapcount = folio_precise_page_mapcount(folio, page);
772 		unsigned long pss = PAGE_SIZE << PSS_SHIFT;
773 		if (mapcount >= 2)
774 			pss /= mapcount;
775 		smaps_page_accumulate(mss, folio, PAGE_SIZE, pss,
776 				dirty, locked, mapcount < 2);
777 	}
778 }
779 
780 #ifdef CONFIG_SHMEM
781 static int smaps_pte_hole(unsigned long addr, unsigned long end,
782 			  __always_unused int depth, struct mm_walk *walk)
783 {
784 	struct mem_size_stats *mss = walk->private;
785 	struct vm_area_struct *vma = walk->vma;
786 
787 	mss->swap += shmem_partial_swap_usage(walk->vma->vm_file->f_mapping,
788 					      linear_page_index(vma, addr),
789 					      linear_page_index(vma, end));
790 
791 	return 0;
792 }
793 #else
794 #define smaps_pte_hole		NULL
795 #endif /* CONFIG_SHMEM */
796 
797 static void smaps_pte_hole_lookup(unsigned long addr, struct mm_walk *walk)
798 {
799 #ifdef CONFIG_SHMEM
800 	if (walk->ops->pte_hole) {
801 		/* depth is not used */
802 		smaps_pte_hole(addr, addr + PAGE_SIZE, 0, walk);
803 	}
804 #endif
805 }
806 
807 static void smaps_pte_entry(pte_t *pte, unsigned long addr,
808 		struct mm_walk *walk)
809 {
810 	struct mem_size_stats *mss = walk->private;
811 	struct vm_area_struct *vma = walk->vma;
812 	bool locked = !!(vma->vm_flags & VM_LOCKED);
813 	struct page *page = NULL;
814 	bool present = false, young = false, dirty = false;
815 	pte_t ptent = ptep_get(pte);
816 
817 	if (pte_present(ptent)) {
818 		page = vm_normal_page(vma, addr, ptent);
819 		young = pte_young(ptent);
820 		dirty = pte_dirty(ptent);
821 		present = true;
822 	} else if (is_swap_pte(ptent)) {
823 		swp_entry_t swpent = pte_to_swp_entry(ptent);
824 
825 		if (!non_swap_entry(swpent)) {
826 			int mapcount;
827 
828 			mss->swap += PAGE_SIZE;
829 			mapcount = swp_swapcount(swpent);
830 			if (mapcount >= 2) {
831 				u64 pss_delta = (u64)PAGE_SIZE << PSS_SHIFT;
832 
833 				do_div(pss_delta, mapcount);
834 				mss->swap_pss += pss_delta;
835 			} else {
836 				mss->swap_pss += (u64)PAGE_SIZE << PSS_SHIFT;
837 			}
838 		} else if (is_pfn_swap_entry(swpent)) {
839 			if (is_device_private_entry(swpent))
840 				present = true;
841 			page = pfn_swap_entry_to_page(swpent);
842 		}
843 	} else {
844 		smaps_pte_hole_lookup(addr, walk);
845 		return;
846 	}
847 
848 	if (!page)
849 		return;
850 
851 	smaps_account(mss, page, false, young, dirty, locked, present);
852 }
853 
854 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
855 static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
856 		struct mm_walk *walk)
857 {
858 	struct mem_size_stats *mss = walk->private;
859 	struct vm_area_struct *vma = walk->vma;
860 	bool locked = !!(vma->vm_flags & VM_LOCKED);
861 	struct page *page = NULL;
862 	bool present = false;
863 	struct folio *folio;
864 
865 	if (pmd_present(*pmd)) {
866 		page = vm_normal_page_pmd(vma, addr, *pmd);
867 		present = true;
868 	} else if (unlikely(thp_migration_supported() && is_swap_pmd(*pmd))) {
869 		swp_entry_t entry = pmd_to_swp_entry(*pmd);
870 
871 		if (is_pfn_swap_entry(entry))
872 			page = pfn_swap_entry_to_page(entry);
873 	}
874 	if (IS_ERR_OR_NULL(page))
875 		return;
876 	folio = page_folio(page);
877 	if (folio_test_anon(folio))
878 		mss->anonymous_thp += HPAGE_PMD_SIZE;
879 	else if (folio_test_swapbacked(folio))
880 		mss->shmem_thp += HPAGE_PMD_SIZE;
881 	else if (folio_is_zone_device(folio))
882 		/* pass */;
883 	else
884 		mss->file_thp += HPAGE_PMD_SIZE;
885 
886 	smaps_account(mss, page, true, pmd_young(*pmd), pmd_dirty(*pmd),
887 		      locked, present);
888 }
889 #else
890 static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
891 		struct mm_walk *walk)
892 {
893 }
894 #endif
895 
896 static int smaps_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
897 			   struct mm_walk *walk)
898 {
899 	struct vm_area_struct *vma = walk->vma;
900 	pte_t *pte;
901 	spinlock_t *ptl;
902 
903 	ptl = pmd_trans_huge_lock(pmd, vma);
904 	if (ptl) {
905 		smaps_pmd_entry(pmd, addr, walk);
906 		spin_unlock(ptl);
907 		goto out;
908 	}
909 
910 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
911 	if (!pte) {
912 		walk->action = ACTION_AGAIN;
913 		return 0;
914 	}
915 	for (; addr != end; pte++, addr += PAGE_SIZE)
916 		smaps_pte_entry(pte, addr, walk);
917 	pte_unmap_unlock(pte - 1, ptl);
918 out:
919 	cond_resched();
920 	return 0;
921 }
922 
923 static void show_smap_vma_flags(struct seq_file *m, struct vm_area_struct *vma)
924 {
925 	/*
926 	 * Don't forget to update Documentation/ on changes.
927 	 */
928 	static const char mnemonics[BITS_PER_LONG][2] = {
929 		/*
930 		 * In case if we meet a flag we don't know about.
931 		 */
932 		[0 ... (BITS_PER_LONG-1)] = "??",
933 
934 		[ilog2(VM_READ)]	= "rd",
935 		[ilog2(VM_WRITE)]	= "wr",
936 		[ilog2(VM_EXEC)]	= "ex",
937 		[ilog2(VM_SHARED)]	= "sh",
938 		[ilog2(VM_MAYREAD)]	= "mr",
939 		[ilog2(VM_MAYWRITE)]	= "mw",
940 		[ilog2(VM_MAYEXEC)]	= "me",
941 		[ilog2(VM_MAYSHARE)]	= "ms",
942 		[ilog2(VM_GROWSDOWN)]	= "gd",
943 		[ilog2(VM_PFNMAP)]	= "pf",
944 		[ilog2(VM_LOCKED)]	= "lo",
945 		[ilog2(VM_IO)]		= "io",
946 		[ilog2(VM_SEQ_READ)]	= "sr",
947 		[ilog2(VM_RAND_READ)]	= "rr",
948 		[ilog2(VM_DONTCOPY)]	= "dc",
949 		[ilog2(VM_DONTEXPAND)]	= "de",
950 		[ilog2(VM_LOCKONFAULT)]	= "lf",
951 		[ilog2(VM_ACCOUNT)]	= "ac",
952 		[ilog2(VM_NORESERVE)]	= "nr",
953 		[ilog2(VM_HUGETLB)]	= "ht",
954 		[ilog2(VM_SYNC)]	= "sf",
955 		[ilog2(VM_ARCH_1)]	= "ar",
956 		[ilog2(VM_WIPEONFORK)]	= "wf",
957 		[ilog2(VM_DONTDUMP)]	= "dd",
958 #ifdef CONFIG_ARM64_BTI
959 		[ilog2(VM_ARM64_BTI)]	= "bt",
960 #endif
961 #ifdef CONFIG_MEM_SOFT_DIRTY
962 		[ilog2(VM_SOFTDIRTY)]	= "sd",
963 #endif
964 		[ilog2(VM_MIXEDMAP)]	= "mm",
965 		[ilog2(VM_HUGEPAGE)]	= "hg",
966 		[ilog2(VM_NOHUGEPAGE)]	= "nh",
967 		[ilog2(VM_MERGEABLE)]	= "mg",
968 		[ilog2(VM_UFFD_MISSING)]= "um",
969 		[ilog2(VM_UFFD_WP)]	= "uw",
970 #ifdef CONFIG_ARM64_MTE
971 		[ilog2(VM_MTE)]		= "mt",
972 		[ilog2(VM_MTE_ALLOWED)]	= "",
973 #endif
974 #ifdef CONFIG_ARCH_HAS_PKEYS
975 		/* These come out via ProtectionKey: */
976 		[ilog2(VM_PKEY_BIT0)]	= "",
977 		[ilog2(VM_PKEY_BIT1)]	= "",
978 		[ilog2(VM_PKEY_BIT2)]	= "",
979 		[ilog2(VM_PKEY_BIT3)]	= "",
980 #if VM_PKEY_BIT4
981 		[ilog2(VM_PKEY_BIT4)]	= "",
982 #endif
983 #endif /* CONFIG_ARCH_HAS_PKEYS */
984 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
985 		[ilog2(VM_UFFD_MINOR)]	= "ui",
986 #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
987 #ifdef CONFIG_X86_USER_SHADOW_STACK
988 		[ilog2(VM_SHADOW_STACK)] = "ss",
989 #endif
990 #ifdef CONFIG_64BIT
991 		[ilog2(VM_SEALED)] = "sl",
992 #endif
993 	};
994 	size_t i;
995 
996 	seq_puts(m, "VmFlags: ");
997 	for (i = 0; i < BITS_PER_LONG; i++) {
998 		if (!mnemonics[i][0])
999 			continue;
1000 		if (vma->vm_flags & (1UL << i)) {
1001 			seq_putc(m, mnemonics[i][0]);
1002 			seq_putc(m, mnemonics[i][1]);
1003 			seq_putc(m, ' ');
1004 		}
1005 	}
1006 	seq_putc(m, '\n');
1007 }
1008 
1009 #ifdef CONFIG_HUGETLB_PAGE
1010 static int smaps_hugetlb_range(pte_t *pte, unsigned long hmask,
1011 				 unsigned long addr, unsigned long end,
1012 				 struct mm_walk *walk)
1013 {
1014 	struct mem_size_stats *mss = walk->private;
1015 	struct vm_area_struct *vma = walk->vma;
1016 	pte_t ptent = huge_ptep_get(walk->mm, addr, pte);
1017 	struct folio *folio = NULL;
1018 	bool present = false;
1019 
1020 	if (pte_present(ptent)) {
1021 		folio = page_folio(pte_page(ptent));
1022 		present = true;
1023 	} else if (is_swap_pte(ptent)) {
1024 		swp_entry_t swpent = pte_to_swp_entry(ptent);
1025 
1026 		if (is_pfn_swap_entry(swpent))
1027 			folio = pfn_swap_entry_folio(swpent);
1028 	}
1029 
1030 	if (folio) {
1031 		/* We treat non-present entries as "maybe shared". */
1032 		if (!present || folio_likely_mapped_shared(folio) ||
1033 		    hugetlb_pmd_shared(pte))
1034 			mss->shared_hugetlb += huge_page_size(hstate_vma(vma));
1035 		else
1036 			mss->private_hugetlb += huge_page_size(hstate_vma(vma));
1037 	}
1038 	return 0;
1039 }
1040 #else
1041 #define smaps_hugetlb_range	NULL
1042 #endif /* HUGETLB_PAGE */
1043 
1044 static const struct mm_walk_ops smaps_walk_ops = {
1045 	.pmd_entry		= smaps_pte_range,
1046 	.hugetlb_entry		= smaps_hugetlb_range,
1047 	.walk_lock		= PGWALK_RDLOCK,
1048 };
1049 
1050 static const struct mm_walk_ops smaps_shmem_walk_ops = {
1051 	.pmd_entry		= smaps_pte_range,
1052 	.hugetlb_entry		= smaps_hugetlb_range,
1053 	.pte_hole		= smaps_pte_hole,
1054 	.walk_lock		= PGWALK_RDLOCK,
1055 };
1056 
1057 /*
1058  * Gather mem stats from @vma with the indicated beginning
1059  * address @start, and keep them in @mss.
1060  *
1061  * Use vm_start of @vma as the beginning address if @start is 0.
1062  */
1063 static void smap_gather_stats(struct vm_area_struct *vma,
1064 		struct mem_size_stats *mss, unsigned long start)
1065 {
1066 	const struct mm_walk_ops *ops = &smaps_walk_ops;
1067 
1068 	/* Invalid start */
1069 	if (start >= vma->vm_end)
1070 		return;
1071 
1072 	if (vma->vm_file && shmem_mapping(vma->vm_file->f_mapping)) {
1073 		/*
1074 		 * For shared or readonly shmem mappings we know that all
1075 		 * swapped out pages belong to the shmem object, and we can
1076 		 * obtain the swap value much more efficiently. For private
1077 		 * writable mappings, we might have COW pages that are
1078 		 * not affected by the parent swapped out pages of the shmem
1079 		 * object, so we have to distinguish them during the page walk.
1080 		 * Unless we know that the shmem object (or the part mapped by
1081 		 * our VMA) has no swapped out pages at all.
1082 		 */
1083 		unsigned long shmem_swapped = shmem_swap_usage(vma);
1084 
1085 		if (!start && (!shmem_swapped || (vma->vm_flags & VM_SHARED) ||
1086 					!(vma->vm_flags & VM_WRITE))) {
1087 			mss->swap += shmem_swapped;
1088 		} else {
1089 			ops = &smaps_shmem_walk_ops;
1090 		}
1091 	}
1092 
1093 	/* mmap_lock is held in m_start */
1094 	if (!start)
1095 		walk_page_vma(vma, ops, mss);
1096 	else
1097 		walk_page_range(vma->vm_mm, start, vma->vm_end, ops, mss);
1098 }
1099 
1100 #define SEQ_PUT_DEC(str, val) \
1101 		seq_put_decimal_ull_width(m, str, (val) >> 10, 8)
1102 
1103 /* Show the contents common for smaps and smaps_rollup */
1104 static void __show_smap(struct seq_file *m, const struct mem_size_stats *mss,
1105 	bool rollup_mode)
1106 {
1107 	SEQ_PUT_DEC("Rss:            ", mss->resident);
1108 	SEQ_PUT_DEC(" kB\nPss:            ", mss->pss >> PSS_SHIFT);
1109 	SEQ_PUT_DEC(" kB\nPss_Dirty:      ", mss->pss_dirty >> PSS_SHIFT);
1110 	if (rollup_mode) {
1111 		/*
1112 		 * These are meaningful only for smaps_rollup, otherwise two of
1113 		 * them are zero, and the other one is the same as Pss.
1114 		 */
1115 		SEQ_PUT_DEC(" kB\nPss_Anon:       ",
1116 			mss->pss_anon >> PSS_SHIFT);
1117 		SEQ_PUT_DEC(" kB\nPss_File:       ",
1118 			mss->pss_file >> PSS_SHIFT);
1119 		SEQ_PUT_DEC(" kB\nPss_Shmem:      ",
1120 			mss->pss_shmem >> PSS_SHIFT);
1121 	}
1122 	SEQ_PUT_DEC(" kB\nShared_Clean:   ", mss->shared_clean);
1123 	SEQ_PUT_DEC(" kB\nShared_Dirty:   ", mss->shared_dirty);
1124 	SEQ_PUT_DEC(" kB\nPrivate_Clean:  ", mss->private_clean);
1125 	SEQ_PUT_DEC(" kB\nPrivate_Dirty:  ", mss->private_dirty);
1126 	SEQ_PUT_DEC(" kB\nReferenced:     ", mss->referenced);
1127 	SEQ_PUT_DEC(" kB\nAnonymous:      ", mss->anonymous);
1128 	SEQ_PUT_DEC(" kB\nKSM:            ", mss->ksm);
1129 	SEQ_PUT_DEC(" kB\nLazyFree:       ", mss->lazyfree);
1130 	SEQ_PUT_DEC(" kB\nAnonHugePages:  ", mss->anonymous_thp);
1131 	SEQ_PUT_DEC(" kB\nShmemPmdMapped: ", mss->shmem_thp);
1132 	SEQ_PUT_DEC(" kB\nFilePmdMapped:  ", mss->file_thp);
1133 	SEQ_PUT_DEC(" kB\nShared_Hugetlb: ", mss->shared_hugetlb);
1134 	seq_put_decimal_ull_width(m, " kB\nPrivate_Hugetlb: ",
1135 				  mss->private_hugetlb >> 10, 7);
1136 	SEQ_PUT_DEC(" kB\nSwap:           ", mss->swap);
1137 	SEQ_PUT_DEC(" kB\nSwapPss:        ",
1138 					mss->swap_pss >> PSS_SHIFT);
1139 	SEQ_PUT_DEC(" kB\nLocked:         ",
1140 					mss->pss_locked >> PSS_SHIFT);
1141 	seq_puts(m, " kB\n");
1142 }
1143 
1144 static int show_smap(struct seq_file *m, void *v)
1145 {
1146 	struct vm_area_struct *vma = v;
1147 	struct mem_size_stats mss = {};
1148 
1149 	smap_gather_stats(vma, &mss, 0);
1150 
1151 	show_map_vma(m, vma);
1152 
1153 	SEQ_PUT_DEC("Size:           ", vma->vm_end - vma->vm_start);
1154 	SEQ_PUT_DEC(" kB\nKernelPageSize: ", vma_kernel_pagesize(vma));
1155 	SEQ_PUT_DEC(" kB\nMMUPageSize:    ", vma_mmu_pagesize(vma));
1156 	seq_puts(m, " kB\n");
1157 
1158 	__show_smap(m, &mss, false);
1159 
1160 	seq_printf(m, "THPeligible:    %8u\n",
1161 		   !!thp_vma_allowable_orders(vma, vma->vm_flags,
1162 			   TVA_SMAPS | TVA_ENFORCE_SYSFS, THP_ORDERS_ALL));
1163 
1164 	if (arch_pkeys_enabled())
1165 		seq_printf(m, "ProtectionKey:  %8u\n", vma_pkey(vma));
1166 	show_smap_vma_flags(m, vma);
1167 
1168 	return 0;
1169 }
1170 
1171 static int show_smaps_rollup(struct seq_file *m, void *v)
1172 {
1173 	struct proc_maps_private *priv = m->private;
1174 	struct mem_size_stats mss = {};
1175 	struct mm_struct *mm = priv->mm;
1176 	struct vm_area_struct *vma;
1177 	unsigned long vma_start = 0, last_vma_end = 0;
1178 	int ret = 0;
1179 	VMA_ITERATOR(vmi, mm, 0);
1180 
1181 	priv->task = get_proc_task(priv->inode);
1182 	if (!priv->task)
1183 		return -ESRCH;
1184 
1185 	if (!mm || !mmget_not_zero(mm)) {
1186 		ret = -ESRCH;
1187 		goto out_put_task;
1188 	}
1189 
1190 	ret = mmap_read_lock_killable(mm);
1191 	if (ret)
1192 		goto out_put_mm;
1193 
1194 	hold_task_mempolicy(priv);
1195 	vma = vma_next(&vmi);
1196 
1197 	if (unlikely(!vma))
1198 		goto empty_set;
1199 
1200 	vma_start = vma->vm_start;
1201 	do {
1202 		smap_gather_stats(vma, &mss, 0);
1203 		last_vma_end = vma->vm_end;
1204 
1205 		/*
1206 		 * Release mmap_lock temporarily if someone wants to
1207 		 * access it for write request.
1208 		 */
1209 		if (mmap_lock_is_contended(mm)) {
1210 			vma_iter_invalidate(&vmi);
1211 			mmap_read_unlock(mm);
1212 			ret = mmap_read_lock_killable(mm);
1213 			if (ret) {
1214 				release_task_mempolicy(priv);
1215 				goto out_put_mm;
1216 			}
1217 
1218 			/*
1219 			 * After dropping the lock, there are four cases to
1220 			 * consider. See the following example for explanation.
1221 			 *
1222 			 *   +------+------+-----------+
1223 			 *   | VMA1 | VMA2 | VMA3      |
1224 			 *   +------+------+-----------+
1225 			 *   |      |      |           |
1226 			 *  4k     8k     16k         400k
1227 			 *
1228 			 * Suppose we drop the lock after reading VMA2 due to
1229 			 * contention, then we get:
1230 			 *
1231 			 *	last_vma_end = 16k
1232 			 *
1233 			 * 1) VMA2 is freed, but VMA3 exists:
1234 			 *
1235 			 *    vma_next(vmi) will return VMA3.
1236 			 *    In this case, just continue from VMA3.
1237 			 *
1238 			 * 2) VMA2 still exists:
1239 			 *
1240 			 *    vma_next(vmi) will return VMA3.
1241 			 *    In this case, just continue from VMA3.
1242 			 *
1243 			 * 3) No more VMAs can be found:
1244 			 *
1245 			 *    vma_next(vmi) will return NULL.
1246 			 *    No more things to do, just break.
1247 			 *
1248 			 * 4) (last_vma_end - 1) is the middle of a vma (VMA'):
1249 			 *
1250 			 *    vma_next(vmi) will return VMA' whose range
1251 			 *    contains last_vma_end.
1252 			 *    Iterate VMA' from last_vma_end.
1253 			 */
1254 			vma = vma_next(&vmi);
1255 			/* Case 3 above */
1256 			if (!vma)
1257 				break;
1258 
1259 			/* Case 1 and 2 above */
1260 			if (vma->vm_start >= last_vma_end) {
1261 				smap_gather_stats(vma, &mss, 0);
1262 				last_vma_end = vma->vm_end;
1263 				continue;
1264 			}
1265 
1266 			/* Case 4 above */
1267 			if (vma->vm_end > last_vma_end) {
1268 				smap_gather_stats(vma, &mss, last_vma_end);
1269 				last_vma_end = vma->vm_end;
1270 			}
1271 		}
1272 	} for_each_vma(vmi, vma);
1273 
1274 empty_set:
1275 	show_vma_header_prefix(m, vma_start, last_vma_end, 0, 0, 0, 0);
1276 	seq_pad(m, ' ');
1277 	seq_puts(m, "[rollup]\n");
1278 
1279 	__show_smap(m, &mss, true);
1280 
1281 	release_task_mempolicy(priv);
1282 	mmap_read_unlock(mm);
1283 
1284 out_put_mm:
1285 	mmput(mm);
1286 out_put_task:
1287 	put_task_struct(priv->task);
1288 	priv->task = NULL;
1289 
1290 	return ret;
1291 }
1292 #undef SEQ_PUT_DEC
1293 
1294 static const struct seq_operations proc_pid_smaps_op = {
1295 	.start	= m_start,
1296 	.next	= m_next,
1297 	.stop	= m_stop,
1298 	.show	= show_smap
1299 };
1300 
1301 static int pid_smaps_open(struct inode *inode, struct file *file)
1302 {
1303 	return do_maps_open(inode, file, &proc_pid_smaps_op);
1304 }
1305 
1306 static int smaps_rollup_open(struct inode *inode, struct file *file)
1307 {
1308 	int ret;
1309 	struct proc_maps_private *priv;
1310 
1311 	priv = kzalloc(sizeof(*priv), GFP_KERNEL_ACCOUNT);
1312 	if (!priv)
1313 		return -ENOMEM;
1314 
1315 	ret = single_open(file, show_smaps_rollup, priv);
1316 	if (ret)
1317 		goto out_free;
1318 
1319 	priv->inode = inode;
1320 	priv->mm = proc_mem_open(inode, PTRACE_MODE_READ);
1321 	if (IS_ERR(priv->mm)) {
1322 		ret = PTR_ERR(priv->mm);
1323 
1324 		single_release(inode, file);
1325 		goto out_free;
1326 	}
1327 
1328 	return 0;
1329 
1330 out_free:
1331 	kfree(priv);
1332 	return ret;
1333 }
1334 
1335 static int smaps_rollup_release(struct inode *inode, struct file *file)
1336 {
1337 	struct seq_file *seq = file->private_data;
1338 	struct proc_maps_private *priv = seq->private;
1339 
1340 	if (priv->mm)
1341 		mmdrop(priv->mm);
1342 
1343 	kfree(priv);
1344 	return single_release(inode, file);
1345 }
1346 
1347 const struct file_operations proc_pid_smaps_operations = {
1348 	.open		= pid_smaps_open,
1349 	.read		= seq_read,
1350 	.llseek		= seq_lseek,
1351 	.release	= proc_map_release,
1352 };
1353 
1354 const struct file_operations proc_pid_smaps_rollup_operations = {
1355 	.open		= smaps_rollup_open,
1356 	.read		= seq_read,
1357 	.llseek		= seq_lseek,
1358 	.release	= smaps_rollup_release,
1359 };
1360 
1361 enum clear_refs_types {
1362 	CLEAR_REFS_ALL = 1,
1363 	CLEAR_REFS_ANON,
1364 	CLEAR_REFS_MAPPED,
1365 	CLEAR_REFS_SOFT_DIRTY,
1366 	CLEAR_REFS_MM_HIWATER_RSS,
1367 	CLEAR_REFS_LAST,
1368 };
1369 
1370 struct clear_refs_private {
1371 	enum clear_refs_types type;
1372 };
1373 
1374 #ifdef CONFIG_MEM_SOFT_DIRTY
1375 
1376 static inline bool pte_is_pinned(struct vm_area_struct *vma, unsigned long addr, pte_t pte)
1377 {
1378 	struct folio *folio;
1379 
1380 	if (!pte_write(pte))
1381 		return false;
1382 	if (!is_cow_mapping(vma->vm_flags))
1383 		return false;
1384 	if (likely(!test_bit(MMF_HAS_PINNED, &vma->vm_mm->flags)))
1385 		return false;
1386 	folio = vm_normal_folio(vma, addr, pte);
1387 	if (!folio)
1388 		return false;
1389 	return folio_maybe_dma_pinned(folio);
1390 }
1391 
1392 static inline void clear_soft_dirty(struct vm_area_struct *vma,
1393 		unsigned long addr, pte_t *pte)
1394 {
1395 	/*
1396 	 * The soft-dirty tracker uses #PF-s to catch writes
1397 	 * to pages, so write-protect the pte as well. See the
1398 	 * Documentation/admin-guide/mm/soft-dirty.rst for full description
1399 	 * of how soft-dirty works.
1400 	 */
1401 	pte_t ptent = ptep_get(pte);
1402 
1403 	if (pte_present(ptent)) {
1404 		pte_t old_pte;
1405 
1406 		if (pte_is_pinned(vma, addr, ptent))
1407 			return;
1408 		old_pte = ptep_modify_prot_start(vma, addr, pte);
1409 		ptent = pte_wrprotect(old_pte);
1410 		ptent = pte_clear_soft_dirty(ptent);
1411 		ptep_modify_prot_commit(vma, addr, pte, old_pte, ptent);
1412 	} else if (is_swap_pte(ptent)) {
1413 		ptent = pte_swp_clear_soft_dirty(ptent);
1414 		set_pte_at(vma->vm_mm, addr, pte, ptent);
1415 	}
1416 }
1417 #else
1418 static inline void clear_soft_dirty(struct vm_area_struct *vma,
1419 		unsigned long addr, pte_t *pte)
1420 {
1421 }
1422 #endif
1423 
1424 #if defined(CONFIG_MEM_SOFT_DIRTY) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
1425 static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
1426 		unsigned long addr, pmd_t *pmdp)
1427 {
1428 	pmd_t old, pmd = *pmdp;
1429 
1430 	if (pmd_present(pmd)) {
1431 		/* See comment in change_huge_pmd() */
1432 		old = pmdp_invalidate(vma, addr, pmdp);
1433 		if (pmd_dirty(old))
1434 			pmd = pmd_mkdirty(pmd);
1435 		if (pmd_young(old))
1436 			pmd = pmd_mkyoung(pmd);
1437 
1438 		pmd = pmd_wrprotect(pmd);
1439 		pmd = pmd_clear_soft_dirty(pmd);
1440 
1441 		set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
1442 	} else if (is_migration_entry(pmd_to_swp_entry(pmd))) {
1443 		pmd = pmd_swp_clear_soft_dirty(pmd);
1444 		set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
1445 	}
1446 }
1447 #else
1448 static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
1449 		unsigned long addr, pmd_t *pmdp)
1450 {
1451 }
1452 #endif
1453 
1454 static int clear_refs_pte_range(pmd_t *pmd, unsigned long addr,
1455 				unsigned long end, struct mm_walk *walk)
1456 {
1457 	struct clear_refs_private *cp = walk->private;
1458 	struct vm_area_struct *vma = walk->vma;
1459 	pte_t *pte, ptent;
1460 	spinlock_t *ptl;
1461 	struct folio *folio;
1462 
1463 	ptl = pmd_trans_huge_lock(pmd, vma);
1464 	if (ptl) {
1465 		if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
1466 			clear_soft_dirty_pmd(vma, addr, pmd);
1467 			goto out;
1468 		}
1469 
1470 		if (!pmd_present(*pmd))
1471 			goto out;
1472 
1473 		folio = pmd_folio(*pmd);
1474 
1475 		/* Clear accessed and referenced bits. */
1476 		pmdp_test_and_clear_young(vma, addr, pmd);
1477 		folio_test_clear_young(folio);
1478 		folio_clear_referenced(folio);
1479 out:
1480 		spin_unlock(ptl);
1481 		return 0;
1482 	}
1483 
1484 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1485 	if (!pte) {
1486 		walk->action = ACTION_AGAIN;
1487 		return 0;
1488 	}
1489 	for (; addr != end; pte++, addr += PAGE_SIZE) {
1490 		ptent = ptep_get(pte);
1491 
1492 		if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
1493 			clear_soft_dirty(vma, addr, pte);
1494 			continue;
1495 		}
1496 
1497 		if (!pte_present(ptent))
1498 			continue;
1499 
1500 		folio = vm_normal_folio(vma, addr, ptent);
1501 		if (!folio)
1502 			continue;
1503 
1504 		/* Clear accessed and referenced bits. */
1505 		ptep_test_and_clear_young(vma, addr, pte);
1506 		folio_test_clear_young(folio);
1507 		folio_clear_referenced(folio);
1508 	}
1509 	pte_unmap_unlock(pte - 1, ptl);
1510 	cond_resched();
1511 	return 0;
1512 }
1513 
1514 static int clear_refs_test_walk(unsigned long start, unsigned long end,
1515 				struct mm_walk *walk)
1516 {
1517 	struct clear_refs_private *cp = walk->private;
1518 	struct vm_area_struct *vma = walk->vma;
1519 
1520 	if (vma->vm_flags & VM_PFNMAP)
1521 		return 1;
1522 
1523 	/*
1524 	 * Writing 1 to /proc/pid/clear_refs affects all pages.
1525 	 * Writing 2 to /proc/pid/clear_refs only affects anonymous pages.
1526 	 * Writing 3 to /proc/pid/clear_refs only affects file mapped pages.
1527 	 * Writing 4 to /proc/pid/clear_refs affects all pages.
1528 	 */
1529 	if (cp->type == CLEAR_REFS_ANON && vma->vm_file)
1530 		return 1;
1531 	if (cp->type == CLEAR_REFS_MAPPED && !vma->vm_file)
1532 		return 1;
1533 	return 0;
1534 }
1535 
1536 static const struct mm_walk_ops clear_refs_walk_ops = {
1537 	.pmd_entry		= clear_refs_pte_range,
1538 	.test_walk		= clear_refs_test_walk,
1539 	.walk_lock		= PGWALK_WRLOCK,
1540 };
1541 
1542 static ssize_t clear_refs_write(struct file *file, const char __user *buf,
1543 				size_t count, loff_t *ppos)
1544 {
1545 	struct task_struct *task;
1546 	char buffer[PROC_NUMBUF] = {};
1547 	struct mm_struct *mm;
1548 	struct vm_area_struct *vma;
1549 	enum clear_refs_types type;
1550 	int itype;
1551 	int rv;
1552 
1553 	if (count > sizeof(buffer) - 1)
1554 		count = sizeof(buffer) - 1;
1555 	if (copy_from_user(buffer, buf, count))
1556 		return -EFAULT;
1557 	rv = kstrtoint(strstrip(buffer), 10, &itype);
1558 	if (rv < 0)
1559 		return rv;
1560 	type = (enum clear_refs_types)itype;
1561 	if (type < CLEAR_REFS_ALL || type >= CLEAR_REFS_LAST)
1562 		return -EINVAL;
1563 
1564 	task = get_proc_task(file_inode(file));
1565 	if (!task)
1566 		return -ESRCH;
1567 	mm = get_task_mm(task);
1568 	if (mm) {
1569 		VMA_ITERATOR(vmi, mm, 0);
1570 		struct mmu_notifier_range range;
1571 		struct clear_refs_private cp = {
1572 			.type = type,
1573 		};
1574 
1575 		if (mmap_write_lock_killable(mm)) {
1576 			count = -EINTR;
1577 			goto out_mm;
1578 		}
1579 		if (type == CLEAR_REFS_MM_HIWATER_RSS) {
1580 			/*
1581 			 * Writing 5 to /proc/pid/clear_refs resets the peak
1582 			 * resident set size to this mm's current rss value.
1583 			 */
1584 			reset_mm_hiwater_rss(mm);
1585 			goto out_unlock;
1586 		}
1587 
1588 		if (type == CLEAR_REFS_SOFT_DIRTY) {
1589 			for_each_vma(vmi, vma) {
1590 				if (!(vma->vm_flags & VM_SOFTDIRTY))
1591 					continue;
1592 				vm_flags_clear(vma, VM_SOFTDIRTY);
1593 				vma_set_page_prot(vma);
1594 			}
1595 
1596 			inc_tlb_flush_pending(mm);
1597 			mmu_notifier_range_init(&range, MMU_NOTIFY_SOFT_DIRTY,
1598 						0, mm, 0, -1UL);
1599 			mmu_notifier_invalidate_range_start(&range);
1600 		}
1601 		walk_page_range(mm, 0, -1, &clear_refs_walk_ops, &cp);
1602 		if (type == CLEAR_REFS_SOFT_DIRTY) {
1603 			mmu_notifier_invalidate_range_end(&range);
1604 			flush_tlb_mm(mm);
1605 			dec_tlb_flush_pending(mm);
1606 		}
1607 out_unlock:
1608 		mmap_write_unlock(mm);
1609 out_mm:
1610 		mmput(mm);
1611 	}
1612 	put_task_struct(task);
1613 
1614 	return count;
1615 }
1616 
1617 const struct file_operations proc_clear_refs_operations = {
1618 	.write		= clear_refs_write,
1619 	.llseek		= noop_llseek,
1620 };
1621 
1622 typedef struct {
1623 	u64 pme;
1624 } pagemap_entry_t;
1625 
1626 struct pagemapread {
1627 	int pos, len;		/* units: PM_ENTRY_BYTES, not bytes */
1628 	pagemap_entry_t *buffer;
1629 	bool show_pfn;
1630 };
1631 
1632 #define PAGEMAP_WALK_SIZE	(PMD_SIZE)
1633 #define PAGEMAP_WALK_MASK	(PMD_MASK)
1634 
1635 #define PM_ENTRY_BYTES		sizeof(pagemap_entry_t)
1636 #define PM_PFRAME_BITS		55
1637 #define PM_PFRAME_MASK		GENMASK_ULL(PM_PFRAME_BITS - 1, 0)
1638 #define PM_SOFT_DIRTY		BIT_ULL(55)
1639 #define PM_MMAP_EXCLUSIVE	BIT_ULL(56)
1640 #define PM_UFFD_WP		BIT_ULL(57)
1641 #define PM_FILE			BIT_ULL(61)
1642 #define PM_SWAP			BIT_ULL(62)
1643 #define PM_PRESENT		BIT_ULL(63)
1644 
1645 #define PM_END_OF_BUFFER    1
1646 
1647 static inline pagemap_entry_t make_pme(u64 frame, u64 flags)
1648 {
1649 	return (pagemap_entry_t) { .pme = (frame & PM_PFRAME_MASK) | flags };
1650 }
1651 
1652 static int add_to_pagemap(pagemap_entry_t *pme, struct pagemapread *pm)
1653 {
1654 	pm->buffer[pm->pos++] = *pme;
1655 	if (pm->pos >= pm->len)
1656 		return PM_END_OF_BUFFER;
1657 	return 0;
1658 }
1659 
1660 static int pagemap_pte_hole(unsigned long start, unsigned long end,
1661 			    __always_unused int depth, struct mm_walk *walk)
1662 {
1663 	struct pagemapread *pm = walk->private;
1664 	unsigned long addr = start;
1665 	int err = 0;
1666 
1667 	while (addr < end) {
1668 		struct vm_area_struct *vma = find_vma(walk->mm, addr);
1669 		pagemap_entry_t pme = make_pme(0, 0);
1670 		/* End of address space hole, which we mark as non-present. */
1671 		unsigned long hole_end;
1672 
1673 		if (vma)
1674 			hole_end = min(end, vma->vm_start);
1675 		else
1676 			hole_end = end;
1677 
1678 		for (; addr < hole_end; addr += PAGE_SIZE) {
1679 			err = add_to_pagemap(&pme, pm);
1680 			if (err)
1681 				goto out;
1682 		}
1683 
1684 		if (!vma)
1685 			break;
1686 
1687 		/* Addresses in the VMA. */
1688 		if (vma->vm_flags & VM_SOFTDIRTY)
1689 			pme = make_pme(0, PM_SOFT_DIRTY);
1690 		for (; addr < min(end, vma->vm_end); addr += PAGE_SIZE) {
1691 			err = add_to_pagemap(&pme, pm);
1692 			if (err)
1693 				goto out;
1694 		}
1695 	}
1696 out:
1697 	return err;
1698 }
1699 
1700 static pagemap_entry_t pte_to_pagemap_entry(struct pagemapread *pm,
1701 		struct vm_area_struct *vma, unsigned long addr, pte_t pte)
1702 {
1703 	u64 frame = 0, flags = 0;
1704 	struct page *page = NULL;
1705 	struct folio *folio;
1706 
1707 	if (pte_present(pte)) {
1708 		if (pm->show_pfn)
1709 			frame = pte_pfn(pte);
1710 		flags |= PM_PRESENT;
1711 		page = vm_normal_page(vma, addr, pte);
1712 		if (pte_soft_dirty(pte))
1713 			flags |= PM_SOFT_DIRTY;
1714 		if (pte_uffd_wp(pte))
1715 			flags |= PM_UFFD_WP;
1716 	} else if (is_swap_pte(pte)) {
1717 		swp_entry_t entry;
1718 		if (pte_swp_soft_dirty(pte))
1719 			flags |= PM_SOFT_DIRTY;
1720 		if (pte_swp_uffd_wp(pte))
1721 			flags |= PM_UFFD_WP;
1722 		entry = pte_to_swp_entry(pte);
1723 		if (pm->show_pfn) {
1724 			pgoff_t offset;
1725 			/*
1726 			 * For PFN swap offsets, keeping the offset field
1727 			 * to be PFN only to be compatible with old smaps.
1728 			 */
1729 			if (is_pfn_swap_entry(entry))
1730 				offset = swp_offset_pfn(entry);
1731 			else
1732 				offset = swp_offset(entry);
1733 			frame = swp_type(entry) |
1734 			    (offset << MAX_SWAPFILES_SHIFT);
1735 		}
1736 		flags |= PM_SWAP;
1737 		if (is_pfn_swap_entry(entry))
1738 			page = pfn_swap_entry_to_page(entry);
1739 		if (pte_marker_entry_uffd_wp(entry))
1740 			flags |= PM_UFFD_WP;
1741 	}
1742 
1743 	if (page) {
1744 		folio = page_folio(page);
1745 		if (!folio_test_anon(folio))
1746 			flags |= PM_FILE;
1747 		if ((flags & PM_PRESENT) &&
1748 		    folio_precise_page_mapcount(folio, page) == 1)
1749 			flags |= PM_MMAP_EXCLUSIVE;
1750 	}
1751 	if (vma->vm_flags & VM_SOFTDIRTY)
1752 		flags |= PM_SOFT_DIRTY;
1753 
1754 	return make_pme(frame, flags);
1755 }
1756 
1757 static int pagemap_pmd_range(pmd_t *pmdp, unsigned long addr, unsigned long end,
1758 			     struct mm_walk *walk)
1759 {
1760 	struct vm_area_struct *vma = walk->vma;
1761 	struct pagemapread *pm = walk->private;
1762 	spinlock_t *ptl;
1763 	pte_t *pte, *orig_pte;
1764 	int err = 0;
1765 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1766 
1767 	ptl = pmd_trans_huge_lock(pmdp, vma);
1768 	if (ptl) {
1769 		unsigned int idx = (addr & ~PMD_MASK) >> PAGE_SHIFT;
1770 		u64 flags = 0, frame = 0;
1771 		pmd_t pmd = *pmdp;
1772 		struct page *page = NULL;
1773 		struct folio *folio = NULL;
1774 
1775 		if (vma->vm_flags & VM_SOFTDIRTY)
1776 			flags |= PM_SOFT_DIRTY;
1777 
1778 		if (pmd_present(pmd)) {
1779 			page = pmd_page(pmd);
1780 
1781 			flags |= PM_PRESENT;
1782 			if (pmd_soft_dirty(pmd))
1783 				flags |= PM_SOFT_DIRTY;
1784 			if (pmd_uffd_wp(pmd))
1785 				flags |= PM_UFFD_WP;
1786 			if (pm->show_pfn)
1787 				frame = pmd_pfn(pmd) + idx;
1788 		}
1789 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1790 		else if (is_swap_pmd(pmd)) {
1791 			swp_entry_t entry = pmd_to_swp_entry(pmd);
1792 			unsigned long offset;
1793 
1794 			if (pm->show_pfn) {
1795 				if (is_pfn_swap_entry(entry))
1796 					offset = swp_offset_pfn(entry) + idx;
1797 				else
1798 					offset = swp_offset(entry) + idx;
1799 				frame = swp_type(entry) |
1800 					(offset << MAX_SWAPFILES_SHIFT);
1801 			}
1802 			flags |= PM_SWAP;
1803 			if (pmd_swp_soft_dirty(pmd))
1804 				flags |= PM_SOFT_DIRTY;
1805 			if (pmd_swp_uffd_wp(pmd))
1806 				flags |= PM_UFFD_WP;
1807 			VM_BUG_ON(!is_pmd_migration_entry(pmd));
1808 			page = pfn_swap_entry_to_page(entry);
1809 		}
1810 #endif
1811 
1812 		if (page) {
1813 			folio = page_folio(page);
1814 			if (!folio_test_anon(folio))
1815 				flags |= PM_FILE;
1816 		}
1817 
1818 		for (; addr != end; addr += PAGE_SIZE, idx++) {
1819 			unsigned long cur_flags = flags;
1820 			pagemap_entry_t pme;
1821 
1822 			if (folio && (flags & PM_PRESENT) &&
1823 			    folio_precise_page_mapcount(folio, page + idx) == 1)
1824 				cur_flags |= PM_MMAP_EXCLUSIVE;
1825 
1826 			pme = make_pme(frame, cur_flags);
1827 			err = add_to_pagemap(&pme, pm);
1828 			if (err)
1829 				break;
1830 			if (pm->show_pfn) {
1831 				if (flags & PM_PRESENT)
1832 					frame++;
1833 				else if (flags & PM_SWAP)
1834 					frame += (1 << MAX_SWAPFILES_SHIFT);
1835 			}
1836 		}
1837 		spin_unlock(ptl);
1838 		return err;
1839 	}
1840 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1841 
1842 	/*
1843 	 * We can assume that @vma always points to a valid one and @end never
1844 	 * goes beyond vma->vm_end.
1845 	 */
1846 	orig_pte = pte = pte_offset_map_lock(walk->mm, pmdp, addr, &ptl);
1847 	if (!pte) {
1848 		walk->action = ACTION_AGAIN;
1849 		return err;
1850 	}
1851 	for (; addr < end; pte++, addr += PAGE_SIZE) {
1852 		pagemap_entry_t pme;
1853 
1854 		pme = pte_to_pagemap_entry(pm, vma, addr, ptep_get(pte));
1855 		err = add_to_pagemap(&pme, pm);
1856 		if (err)
1857 			break;
1858 	}
1859 	pte_unmap_unlock(orig_pte, ptl);
1860 
1861 	cond_resched();
1862 
1863 	return err;
1864 }
1865 
1866 #ifdef CONFIG_HUGETLB_PAGE
1867 /* This function walks within one hugetlb entry in the single call */
1868 static int pagemap_hugetlb_range(pte_t *ptep, unsigned long hmask,
1869 				 unsigned long addr, unsigned long end,
1870 				 struct mm_walk *walk)
1871 {
1872 	struct pagemapread *pm = walk->private;
1873 	struct vm_area_struct *vma = walk->vma;
1874 	u64 flags = 0, frame = 0;
1875 	int err = 0;
1876 	pte_t pte;
1877 
1878 	if (vma->vm_flags & VM_SOFTDIRTY)
1879 		flags |= PM_SOFT_DIRTY;
1880 
1881 	pte = huge_ptep_get(walk->mm, addr, ptep);
1882 	if (pte_present(pte)) {
1883 		struct folio *folio = page_folio(pte_page(pte));
1884 
1885 		if (!folio_test_anon(folio))
1886 			flags |= PM_FILE;
1887 
1888 		if (!folio_likely_mapped_shared(folio) &&
1889 		    !hugetlb_pmd_shared(ptep))
1890 			flags |= PM_MMAP_EXCLUSIVE;
1891 
1892 		if (huge_pte_uffd_wp(pte))
1893 			flags |= PM_UFFD_WP;
1894 
1895 		flags |= PM_PRESENT;
1896 		if (pm->show_pfn)
1897 			frame = pte_pfn(pte) +
1898 				((addr & ~hmask) >> PAGE_SHIFT);
1899 	} else if (pte_swp_uffd_wp_any(pte)) {
1900 		flags |= PM_UFFD_WP;
1901 	}
1902 
1903 	for (; addr != end; addr += PAGE_SIZE) {
1904 		pagemap_entry_t pme = make_pme(frame, flags);
1905 
1906 		err = add_to_pagemap(&pme, pm);
1907 		if (err)
1908 			return err;
1909 		if (pm->show_pfn && (flags & PM_PRESENT))
1910 			frame++;
1911 	}
1912 
1913 	cond_resched();
1914 
1915 	return err;
1916 }
1917 #else
1918 #define pagemap_hugetlb_range	NULL
1919 #endif /* HUGETLB_PAGE */
1920 
1921 static const struct mm_walk_ops pagemap_ops = {
1922 	.pmd_entry	= pagemap_pmd_range,
1923 	.pte_hole	= pagemap_pte_hole,
1924 	.hugetlb_entry	= pagemap_hugetlb_range,
1925 	.walk_lock	= PGWALK_RDLOCK,
1926 };
1927 
1928 /*
1929  * /proc/pid/pagemap - an array mapping virtual pages to pfns
1930  *
1931  * For each page in the address space, this file contains one 64-bit entry
1932  * consisting of the following:
1933  *
1934  * Bits 0-54  page frame number (PFN) if present
1935  * Bits 0-4   swap type if swapped
1936  * Bits 5-54  swap offset if swapped
1937  * Bit  55    pte is soft-dirty (see Documentation/admin-guide/mm/soft-dirty.rst)
1938  * Bit  56    page exclusively mapped
1939  * Bit  57    pte is uffd-wp write-protected
1940  * Bits 58-60 zero
1941  * Bit  61    page is file-page or shared-anon
1942  * Bit  62    page swapped
1943  * Bit  63    page present
1944  *
1945  * If the page is not present but in swap, then the PFN contains an
1946  * encoding of the swap file number and the page's offset into the
1947  * swap. Unmapped pages return a null PFN. This allows determining
1948  * precisely which pages are mapped (or in swap) and comparing mapped
1949  * pages between processes.
1950  *
1951  * Efficient users of this interface will use /proc/pid/maps to
1952  * determine which areas of memory are actually mapped and llseek to
1953  * skip over unmapped regions.
1954  */
1955 static ssize_t pagemap_read(struct file *file, char __user *buf,
1956 			    size_t count, loff_t *ppos)
1957 {
1958 	struct mm_struct *mm = file->private_data;
1959 	struct pagemapread pm;
1960 	unsigned long src;
1961 	unsigned long svpfn;
1962 	unsigned long start_vaddr;
1963 	unsigned long end_vaddr;
1964 	int ret = 0, copied = 0;
1965 
1966 	if (!mm || !mmget_not_zero(mm))
1967 		goto out;
1968 
1969 	ret = -EINVAL;
1970 	/* file position must be aligned */
1971 	if ((*ppos % PM_ENTRY_BYTES) || (count % PM_ENTRY_BYTES))
1972 		goto out_mm;
1973 
1974 	ret = 0;
1975 	if (!count)
1976 		goto out_mm;
1977 
1978 	/* do not disclose physical addresses: attack vector */
1979 	pm.show_pfn = file_ns_capable(file, &init_user_ns, CAP_SYS_ADMIN);
1980 
1981 	pm.len = (PAGEMAP_WALK_SIZE >> PAGE_SHIFT);
1982 	pm.buffer = kmalloc_array(pm.len, PM_ENTRY_BYTES, GFP_KERNEL);
1983 	ret = -ENOMEM;
1984 	if (!pm.buffer)
1985 		goto out_mm;
1986 
1987 	src = *ppos;
1988 	svpfn = src / PM_ENTRY_BYTES;
1989 	end_vaddr = mm->task_size;
1990 
1991 	/* watch out for wraparound */
1992 	start_vaddr = end_vaddr;
1993 	if (svpfn <= (ULONG_MAX >> PAGE_SHIFT)) {
1994 		unsigned long end;
1995 
1996 		ret = mmap_read_lock_killable(mm);
1997 		if (ret)
1998 			goto out_free;
1999 		start_vaddr = untagged_addr_remote(mm, svpfn << PAGE_SHIFT);
2000 		mmap_read_unlock(mm);
2001 
2002 		end = start_vaddr + ((count / PM_ENTRY_BYTES) << PAGE_SHIFT);
2003 		if (end >= start_vaddr && end < mm->task_size)
2004 			end_vaddr = end;
2005 	}
2006 
2007 	/* Ensure the address is inside the task */
2008 	if (start_vaddr > mm->task_size)
2009 		start_vaddr = end_vaddr;
2010 
2011 	ret = 0;
2012 	while (count && (start_vaddr < end_vaddr)) {
2013 		int len;
2014 		unsigned long end;
2015 
2016 		pm.pos = 0;
2017 		end = (start_vaddr + PAGEMAP_WALK_SIZE) & PAGEMAP_WALK_MASK;
2018 		/* overflow ? */
2019 		if (end < start_vaddr || end > end_vaddr)
2020 			end = end_vaddr;
2021 		ret = mmap_read_lock_killable(mm);
2022 		if (ret)
2023 			goto out_free;
2024 		ret = walk_page_range(mm, start_vaddr, end, &pagemap_ops, &pm);
2025 		mmap_read_unlock(mm);
2026 		start_vaddr = end;
2027 
2028 		len = min(count, PM_ENTRY_BYTES * pm.pos);
2029 		if (copy_to_user(buf, pm.buffer, len)) {
2030 			ret = -EFAULT;
2031 			goto out_free;
2032 		}
2033 		copied += len;
2034 		buf += len;
2035 		count -= len;
2036 	}
2037 	*ppos += copied;
2038 	if (!ret || ret == PM_END_OF_BUFFER)
2039 		ret = copied;
2040 
2041 out_free:
2042 	kfree(pm.buffer);
2043 out_mm:
2044 	mmput(mm);
2045 out:
2046 	return ret;
2047 }
2048 
2049 static int pagemap_open(struct inode *inode, struct file *file)
2050 {
2051 	struct mm_struct *mm;
2052 
2053 	mm = proc_mem_open(inode, PTRACE_MODE_READ);
2054 	if (IS_ERR(mm))
2055 		return PTR_ERR(mm);
2056 	file->private_data = mm;
2057 	return 0;
2058 }
2059 
2060 static int pagemap_release(struct inode *inode, struct file *file)
2061 {
2062 	struct mm_struct *mm = file->private_data;
2063 
2064 	if (mm)
2065 		mmdrop(mm);
2066 	return 0;
2067 }
2068 
2069 #define PM_SCAN_CATEGORIES	(PAGE_IS_WPALLOWED | PAGE_IS_WRITTEN |	\
2070 				 PAGE_IS_FILE |	PAGE_IS_PRESENT |	\
2071 				 PAGE_IS_SWAPPED | PAGE_IS_PFNZERO |	\
2072 				 PAGE_IS_HUGE | PAGE_IS_SOFT_DIRTY)
2073 #define PM_SCAN_FLAGS		(PM_SCAN_WP_MATCHING | PM_SCAN_CHECK_WPASYNC)
2074 
2075 struct pagemap_scan_private {
2076 	struct pm_scan_arg arg;
2077 	unsigned long masks_of_interest, cur_vma_category;
2078 	struct page_region *vec_buf;
2079 	unsigned long vec_buf_len, vec_buf_index, found_pages;
2080 	struct page_region __user *vec_out;
2081 };
2082 
2083 static unsigned long pagemap_page_category(struct pagemap_scan_private *p,
2084 					   struct vm_area_struct *vma,
2085 					   unsigned long addr, pte_t pte)
2086 {
2087 	unsigned long categories = 0;
2088 
2089 	if (pte_present(pte)) {
2090 		struct page *page;
2091 
2092 		categories |= PAGE_IS_PRESENT;
2093 		if (!pte_uffd_wp(pte))
2094 			categories |= PAGE_IS_WRITTEN;
2095 
2096 		if (p->masks_of_interest & PAGE_IS_FILE) {
2097 			page = vm_normal_page(vma, addr, pte);
2098 			if (page && !PageAnon(page))
2099 				categories |= PAGE_IS_FILE;
2100 		}
2101 
2102 		if (is_zero_pfn(pte_pfn(pte)))
2103 			categories |= PAGE_IS_PFNZERO;
2104 		if (pte_soft_dirty(pte))
2105 			categories |= PAGE_IS_SOFT_DIRTY;
2106 	} else if (is_swap_pte(pte)) {
2107 		swp_entry_t swp;
2108 
2109 		categories |= PAGE_IS_SWAPPED;
2110 		if (!pte_swp_uffd_wp_any(pte))
2111 			categories |= PAGE_IS_WRITTEN;
2112 
2113 		if (p->masks_of_interest & PAGE_IS_FILE) {
2114 			swp = pte_to_swp_entry(pte);
2115 			if (is_pfn_swap_entry(swp) &&
2116 			    !folio_test_anon(pfn_swap_entry_folio(swp)))
2117 				categories |= PAGE_IS_FILE;
2118 		}
2119 		if (pte_swp_soft_dirty(pte))
2120 			categories |= PAGE_IS_SOFT_DIRTY;
2121 	}
2122 
2123 	return categories;
2124 }
2125 
2126 static void make_uffd_wp_pte(struct vm_area_struct *vma,
2127 			     unsigned long addr, pte_t *pte, pte_t ptent)
2128 {
2129 	if (pte_present(ptent)) {
2130 		pte_t old_pte;
2131 
2132 		old_pte = ptep_modify_prot_start(vma, addr, pte);
2133 		ptent = pte_mkuffd_wp(old_pte);
2134 		ptep_modify_prot_commit(vma, addr, pte, old_pte, ptent);
2135 	} else if (is_swap_pte(ptent)) {
2136 		ptent = pte_swp_mkuffd_wp(ptent);
2137 		set_pte_at(vma->vm_mm, addr, pte, ptent);
2138 	} else {
2139 		set_pte_at(vma->vm_mm, addr, pte,
2140 			   make_pte_marker(PTE_MARKER_UFFD_WP));
2141 	}
2142 }
2143 
2144 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2145 static unsigned long pagemap_thp_category(struct pagemap_scan_private *p,
2146 					  struct vm_area_struct *vma,
2147 					  unsigned long addr, pmd_t pmd)
2148 {
2149 	unsigned long categories = PAGE_IS_HUGE;
2150 
2151 	if (pmd_present(pmd)) {
2152 		struct page *page;
2153 
2154 		categories |= PAGE_IS_PRESENT;
2155 		if (!pmd_uffd_wp(pmd))
2156 			categories |= PAGE_IS_WRITTEN;
2157 
2158 		if (p->masks_of_interest & PAGE_IS_FILE) {
2159 			page = vm_normal_page_pmd(vma, addr, pmd);
2160 			if (page && !PageAnon(page))
2161 				categories |= PAGE_IS_FILE;
2162 		}
2163 
2164 		if (is_zero_pfn(pmd_pfn(pmd)))
2165 			categories |= PAGE_IS_PFNZERO;
2166 		if (pmd_soft_dirty(pmd))
2167 			categories |= PAGE_IS_SOFT_DIRTY;
2168 	} else if (is_swap_pmd(pmd)) {
2169 		swp_entry_t swp;
2170 
2171 		categories |= PAGE_IS_SWAPPED;
2172 		if (!pmd_swp_uffd_wp(pmd))
2173 			categories |= PAGE_IS_WRITTEN;
2174 		if (pmd_swp_soft_dirty(pmd))
2175 			categories |= PAGE_IS_SOFT_DIRTY;
2176 
2177 		if (p->masks_of_interest & PAGE_IS_FILE) {
2178 			swp = pmd_to_swp_entry(pmd);
2179 			if (is_pfn_swap_entry(swp) &&
2180 			    !folio_test_anon(pfn_swap_entry_folio(swp)))
2181 				categories |= PAGE_IS_FILE;
2182 		}
2183 	}
2184 
2185 	return categories;
2186 }
2187 
2188 static void make_uffd_wp_pmd(struct vm_area_struct *vma,
2189 			     unsigned long addr, pmd_t *pmdp)
2190 {
2191 	pmd_t old, pmd = *pmdp;
2192 
2193 	if (pmd_present(pmd)) {
2194 		old = pmdp_invalidate_ad(vma, addr, pmdp);
2195 		pmd = pmd_mkuffd_wp(old);
2196 		set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
2197 	} else if (is_migration_entry(pmd_to_swp_entry(pmd))) {
2198 		pmd = pmd_swp_mkuffd_wp(pmd);
2199 		set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
2200 	}
2201 }
2202 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2203 
2204 #ifdef CONFIG_HUGETLB_PAGE
2205 static unsigned long pagemap_hugetlb_category(pte_t pte)
2206 {
2207 	unsigned long categories = PAGE_IS_HUGE;
2208 
2209 	/*
2210 	 * According to pagemap_hugetlb_range(), file-backed HugeTLB
2211 	 * page cannot be swapped. So PAGE_IS_FILE is not checked for
2212 	 * swapped pages.
2213 	 */
2214 	if (pte_present(pte)) {
2215 		categories |= PAGE_IS_PRESENT;
2216 		if (!huge_pte_uffd_wp(pte))
2217 			categories |= PAGE_IS_WRITTEN;
2218 		if (!PageAnon(pte_page(pte)))
2219 			categories |= PAGE_IS_FILE;
2220 		if (is_zero_pfn(pte_pfn(pte)))
2221 			categories |= PAGE_IS_PFNZERO;
2222 		if (pte_soft_dirty(pte))
2223 			categories |= PAGE_IS_SOFT_DIRTY;
2224 	} else if (is_swap_pte(pte)) {
2225 		categories |= PAGE_IS_SWAPPED;
2226 		if (!pte_swp_uffd_wp_any(pte))
2227 			categories |= PAGE_IS_WRITTEN;
2228 		if (pte_swp_soft_dirty(pte))
2229 			categories |= PAGE_IS_SOFT_DIRTY;
2230 	}
2231 
2232 	return categories;
2233 }
2234 
2235 static void make_uffd_wp_huge_pte(struct vm_area_struct *vma,
2236 				  unsigned long addr, pte_t *ptep,
2237 				  pte_t ptent)
2238 {
2239 	unsigned long psize;
2240 
2241 	if (is_hugetlb_entry_hwpoisoned(ptent) || is_pte_marker(ptent))
2242 		return;
2243 
2244 	psize = huge_page_size(hstate_vma(vma));
2245 
2246 	if (is_hugetlb_entry_migration(ptent))
2247 		set_huge_pte_at(vma->vm_mm, addr, ptep,
2248 				pte_swp_mkuffd_wp(ptent), psize);
2249 	else if (!huge_pte_none(ptent))
2250 		huge_ptep_modify_prot_commit(vma, addr, ptep, ptent,
2251 					     huge_pte_mkuffd_wp(ptent));
2252 	else
2253 		set_huge_pte_at(vma->vm_mm, addr, ptep,
2254 				make_pte_marker(PTE_MARKER_UFFD_WP), psize);
2255 }
2256 #endif /* CONFIG_HUGETLB_PAGE */
2257 
2258 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLB_PAGE)
2259 static void pagemap_scan_backout_range(struct pagemap_scan_private *p,
2260 				       unsigned long addr, unsigned long end)
2261 {
2262 	struct page_region *cur_buf = &p->vec_buf[p->vec_buf_index];
2263 
2264 	if (cur_buf->start != addr)
2265 		cur_buf->end = addr;
2266 	else
2267 		cur_buf->start = cur_buf->end = 0;
2268 
2269 	p->found_pages -= (end - addr) / PAGE_SIZE;
2270 }
2271 #endif
2272 
2273 static bool pagemap_scan_is_interesting_page(unsigned long categories,
2274 					     const struct pagemap_scan_private *p)
2275 {
2276 	categories ^= p->arg.category_inverted;
2277 	if ((categories & p->arg.category_mask) != p->arg.category_mask)
2278 		return false;
2279 	if (p->arg.category_anyof_mask && !(categories & p->arg.category_anyof_mask))
2280 		return false;
2281 
2282 	return true;
2283 }
2284 
2285 static bool pagemap_scan_is_interesting_vma(unsigned long categories,
2286 					    const struct pagemap_scan_private *p)
2287 {
2288 	unsigned long required = p->arg.category_mask & PAGE_IS_WPALLOWED;
2289 
2290 	categories ^= p->arg.category_inverted;
2291 	if ((categories & required) != required)
2292 		return false;
2293 
2294 	return true;
2295 }
2296 
2297 static int pagemap_scan_test_walk(unsigned long start, unsigned long end,
2298 				  struct mm_walk *walk)
2299 {
2300 	struct pagemap_scan_private *p = walk->private;
2301 	struct vm_area_struct *vma = walk->vma;
2302 	unsigned long vma_category = 0;
2303 	bool wp_allowed = userfaultfd_wp_async(vma) &&
2304 	    userfaultfd_wp_use_markers(vma);
2305 
2306 	if (!wp_allowed) {
2307 		/* User requested explicit failure over wp-async capability */
2308 		if (p->arg.flags & PM_SCAN_CHECK_WPASYNC)
2309 			return -EPERM;
2310 		/*
2311 		 * User requires wr-protect, and allows silently skipping
2312 		 * unsupported vmas.
2313 		 */
2314 		if (p->arg.flags & PM_SCAN_WP_MATCHING)
2315 			return 1;
2316 		/*
2317 		 * Then the request doesn't involve wr-protects at all,
2318 		 * fall through to the rest checks, and allow vma walk.
2319 		 */
2320 	}
2321 
2322 	if (vma->vm_flags & VM_PFNMAP)
2323 		return 1;
2324 
2325 	if (wp_allowed)
2326 		vma_category |= PAGE_IS_WPALLOWED;
2327 
2328 	if (vma->vm_flags & VM_SOFTDIRTY)
2329 		vma_category |= PAGE_IS_SOFT_DIRTY;
2330 
2331 	if (!pagemap_scan_is_interesting_vma(vma_category, p))
2332 		return 1;
2333 
2334 	p->cur_vma_category = vma_category;
2335 
2336 	return 0;
2337 }
2338 
2339 static bool pagemap_scan_push_range(unsigned long categories,
2340 				    struct pagemap_scan_private *p,
2341 				    unsigned long addr, unsigned long end)
2342 {
2343 	struct page_region *cur_buf = &p->vec_buf[p->vec_buf_index];
2344 
2345 	/*
2346 	 * When there is no output buffer provided at all, the sentinel values
2347 	 * won't match here. There is no other way for `cur_buf->end` to be
2348 	 * non-zero other than it being non-empty.
2349 	 */
2350 	if (addr == cur_buf->end && categories == cur_buf->categories) {
2351 		cur_buf->end = end;
2352 		return true;
2353 	}
2354 
2355 	if (cur_buf->end) {
2356 		if (p->vec_buf_index >= p->vec_buf_len - 1)
2357 			return false;
2358 
2359 		cur_buf = &p->vec_buf[++p->vec_buf_index];
2360 	}
2361 
2362 	cur_buf->start = addr;
2363 	cur_buf->end = end;
2364 	cur_buf->categories = categories;
2365 
2366 	return true;
2367 }
2368 
2369 static int pagemap_scan_output(unsigned long categories,
2370 			       struct pagemap_scan_private *p,
2371 			       unsigned long addr, unsigned long *end)
2372 {
2373 	unsigned long n_pages, total_pages;
2374 	int ret = 0;
2375 
2376 	if (!p->vec_buf)
2377 		return 0;
2378 
2379 	categories &= p->arg.return_mask;
2380 
2381 	n_pages = (*end - addr) / PAGE_SIZE;
2382 	if (check_add_overflow(p->found_pages, n_pages, &total_pages) ||
2383 	    total_pages > p->arg.max_pages) {
2384 		size_t n_too_much = total_pages - p->arg.max_pages;
2385 		*end -= n_too_much * PAGE_SIZE;
2386 		n_pages -= n_too_much;
2387 		ret = -ENOSPC;
2388 	}
2389 
2390 	if (!pagemap_scan_push_range(categories, p, addr, *end)) {
2391 		*end = addr;
2392 		n_pages = 0;
2393 		ret = -ENOSPC;
2394 	}
2395 
2396 	p->found_pages += n_pages;
2397 	if (ret)
2398 		p->arg.walk_end = *end;
2399 
2400 	return ret;
2401 }
2402 
2403 static int pagemap_scan_thp_entry(pmd_t *pmd, unsigned long start,
2404 				  unsigned long end, struct mm_walk *walk)
2405 {
2406 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2407 	struct pagemap_scan_private *p = walk->private;
2408 	struct vm_area_struct *vma = walk->vma;
2409 	unsigned long categories;
2410 	spinlock_t *ptl;
2411 	int ret = 0;
2412 
2413 	ptl = pmd_trans_huge_lock(pmd, vma);
2414 	if (!ptl)
2415 		return -ENOENT;
2416 
2417 	categories = p->cur_vma_category |
2418 		     pagemap_thp_category(p, vma, start, *pmd);
2419 
2420 	if (!pagemap_scan_is_interesting_page(categories, p))
2421 		goto out_unlock;
2422 
2423 	ret = pagemap_scan_output(categories, p, start, &end);
2424 	if (start == end)
2425 		goto out_unlock;
2426 
2427 	if (~p->arg.flags & PM_SCAN_WP_MATCHING)
2428 		goto out_unlock;
2429 	if (~categories & PAGE_IS_WRITTEN)
2430 		goto out_unlock;
2431 
2432 	/*
2433 	 * Break huge page into small pages if the WP operation
2434 	 * needs to be performed on a portion of the huge page.
2435 	 */
2436 	if (end != start + HPAGE_SIZE) {
2437 		spin_unlock(ptl);
2438 		split_huge_pmd(vma, pmd, start);
2439 		pagemap_scan_backout_range(p, start, end);
2440 		/* Report as if there was no THP */
2441 		return -ENOENT;
2442 	}
2443 
2444 	make_uffd_wp_pmd(vma, start, pmd);
2445 	flush_tlb_range(vma, start, end);
2446 out_unlock:
2447 	spin_unlock(ptl);
2448 	return ret;
2449 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */
2450 	return -ENOENT;
2451 #endif
2452 }
2453 
2454 static int pagemap_scan_pmd_entry(pmd_t *pmd, unsigned long start,
2455 				  unsigned long end, struct mm_walk *walk)
2456 {
2457 	struct pagemap_scan_private *p = walk->private;
2458 	struct vm_area_struct *vma = walk->vma;
2459 	unsigned long addr, flush_end = 0;
2460 	pte_t *pte, *start_pte;
2461 	spinlock_t *ptl;
2462 	int ret;
2463 
2464 	arch_enter_lazy_mmu_mode();
2465 
2466 	ret = pagemap_scan_thp_entry(pmd, start, end, walk);
2467 	if (ret != -ENOENT) {
2468 		arch_leave_lazy_mmu_mode();
2469 		return ret;
2470 	}
2471 
2472 	ret = 0;
2473 	start_pte = pte = pte_offset_map_lock(vma->vm_mm, pmd, start, &ptl);
2474 	if (!pte) {
2475 		arch_leave_lazy_mmu_mode();
2476 		walk->action = ACTION_AGAIN;
2477 		return 0;
2478 	}
2479 
2480 	if ((p->arg.flags & PM_SCAN_WP_MATCHING) && !p->vec_out) {
2481 		/* Fast path for performing exclusive WP */
2482 		for (addr = start; addr != end; pte++, addr += PAGE_SIZE) {
2483 			pte_t ptent = ptep_get(pte);
2484 
2485 			if ((pte_present(ptent) && pte_uffd_wp(ptent)) ||
2486 			    pte_swp_uffd_wp_any(ptent))
2487 				continue;
2488 			make_uffd_wp_pte(vma, addr, pte, ptent);
2489 			if (!flush_end)
2490 				start = addr;
2491 			flush_end = addr + PAGE_SIZE;
2492 		}
2493 		goto flush_and_return;
2494 	}
2495 
2496 	if (!p->arg.category_anyof_mask && !p->arg.category_inverted &&
2497 	    p->arg.category_mask == PAGE_IS_WRITTEN &&
2498 	    p->arg.return_mask == PAGE_IS_WRITTEN) {
2499 		for (addr = start; addr < end; pte++, addr += PAGE_SIZE) {
2500 			unsigned long next = addr + PAGE_SIZE;
2501 			pte_t ptent = ptep_get(pte);
2502 
2503 			if ((pte_present(ptent) && pte_uffd_wp(ptent)) ||
2504 			    pte_swp_uffd_wp_any(ptent))
2505 				continue;
2506 			ret = pagemap_scan_output(p->cur_vma_category | PAGE_IS_WRITTEN,
2507 						  p, addr, &next);
2508 			if (next == addr)
2509 				break;
2510 			if (~p->arg.flags & PM_SCAN_WP_MATCHING)
2511 				continue;
2512 			make_uffd_wp_pte(vma, addr, pte, ptent);
2513 			if (!flush_end)
2514 				start = addr;
2515 			flush_end = next;
2516 		}
2517 		goto flush_and_return;
2518 	}
2519 
2520 	for (addr = start; addr != end; pte++, addr += PAGE_SIZE) {
2521 		pte_t ptent = ptep_get(pte);
2522 		unsigned long categories = p->cur_vma_category |
2523 					   pagemap_page_category(p, vma, addr, ptent);
2524 		unsigned long next = addr + PAGE_SIZE;
2525 
2526 		if (!pagemap_scan_is_interesting_page(categories, p))
2527 			continue;
2528 
2529 		ret = pagemap_scan_output(categories, p, addr, &next);
2530 		if (next == addr)
2531 			break;
2532 
2533 		if (~p->arg.flags & PM_SCAN_WP_MATCHING)
2534 			continue;
2535 		if (~categories & PAGE_IS_WRITTEN)
2536 			continue;
2537 
2538 		make_uffd_wp_pte(vma, addr, pte, ptent);
2539 		if (!flush_end)
2540 			start = addr;
2541 		flush_end = next;
2542 	}
2543 
2544 flush_and_return:
2545 	if (flush_end)
2546 		flush_tlb_range(vma, start, addr);
2547 
2548 	pte_unmap_unlock(start_pte, ptl);
2549 	arch_leave_lazy_mmu_mode();
2550 
2551 	cond_resched();
2552 	return ret;
2553 }
2554 
2555 #ifdef CONFIG_HUGETLB_PAGE
2556 static int pagemap_scan_hugetlb_entry(pte_t *ptep, unsigned long hmask,
2557 				      unsigned long start, unsigned long end,
2558 				      struct mm_walk *walk)
2559 {
2560 	struct pagemap_scan_private *p = walk->private;
2561 	struct vm_area_struct *vma = walk->vma;
2562 	unsigned long categories;
2563 	spinlock_t *ptl;
2564 	int ret = 0;
2565 	pte_t pte;
2566 
2567 	if (~p->arg.flags & PM_SCAN_WP_MATCHING) {
2568 		/* Go the short route when not write-protecting pages. */
2569 
2570 		pte = huge_ptep_get(walk->mm, start, ptep);
2571 		categories = p->cur_vma_category | pagemap_hugetlb_category(pte);
2572 
2573 		if (!pagemap_scan_is_interesting_page(categories, p))
2574 			return 0;
2575 
2576 		return pagemap_scan_output(categories, p, start, &end);
2577 	}
2578 
2579 	i_mmap_lock_write(vma->vm_file->f_mapping);
2580 	ptl = huge_pte_lock(hstate_vma(vma), vma->vm_mm, ptep);
2581 
2582 	pte = huge_ptep_get(walk->mm, start, ptep);
2583 	categories = p->cur_vma_category | pagemap_hugetlb_category(pte);
2584 
2585 	if (!pagemap_scan_is_interesting_page(categories, p))
2586 		goto out_unlock;
2587 
2588 	ret = pagemap_scan_output(categories, p, start, &end);
2589 	if (start == end)
2590 		goto out_unlock;
2591 
2592 	if (~categories & PAGE_IS_WRITTEN)
2593 		goto out_unlock;
2594 
2595 	if (end != start + HPAGE_SIZE) {
2596 		/* Partial HugeTLB page WP isn't possible. */
2597 		pagemap_scan_backout_range(p, start, end);
2598 		p->arg.walk_end = start;
2599 		ret = 0;
2600 		goto out_unlock;
2601 	}
2602 
2603 	make_uffd_wp_huge_pte(vma, start, ptep, pte);
2604 	flush_hugetlb_tlb_range(vma, start, end);
2605 
2606 out_unlock:
2607 	spin_unlock(ptl);
2608 	i_mmap_unlock_write(vma->vm_file->f_mapping);
2609 
2610 	return ret;
2611 }
2612 #else
2613 #define pagemap_scan_hugetlb_entry NULL
2614 #endif
2615 
2616 static int pagemap_scan_pte_hole(unsigned long addr, unsigned long end,
2617 				 int depth, struct mm_walk *walk)
2618 {
2619 	struct pagemap_scan_private *p = walk->private;
2620 	struct vm_area_struct *vma = walk->vma;
2621 	int ret, err;
2622 
2623 	if (!vma || !pagemap_scan_is_interesting_page(p->cur_vma_category, p))
2624 		return 0;
2625 
2626 	ret = pagemap_scan_output(p->cur_vma_category, p, addr, &end);
2627 	if (addr == end)
2628 		return ret;
2629 
2630 	if (~p->arg.flags & PM_SCAN_WP_MATCHING)
2631 		return ret;
2632 
2633 	err = uffd_wp_range(vma, addr, end - addr, true);
2634 	if (err < 0)
2635 		ret = err;
2636 
2637 	return ret;
2638 }
2639 
2640 static const struct mm_walk_ops pagemap_scan_ops = {
2641 	.test_walk = pagemap_scan_test_walk,
2642 	.pmd_entry = pagemap_scan_pmd_entry,
2643 	.pte_hole = pagemap_scan_pte_hole,
2644 	.hugetlb_entry = pagemap_scan_hugetlb_entry,
2645 };
2646 
2647 static int pagemap_scan_get_args(struct pm_scan_arg *arg,
2648 				 unsigned long uarg)
2649 {
2650 	if (copy_from_user(arg, (void __user *)uarg, sizeof(*arg)))
2651 		return -EFAULT;
2652 
2653 	if (arg->size != sizeof(struct pm_scan_arg))
2654 		return -EINVAL;
2655 
2656 	/* Validate requested features */
2657 	if (arg->flags & ~PM_SCAN_FLAGS)
2658 		return -EINVAL;
2659 	if ((arg->category_inverted | arg->category_mask |
2660 	     arg->category_anyof_mask | arg->return_mask) & ~PM_SCAN_CATEGORIES)
2661 		return -EINVAL;
2662 
2663 	arg->start = untagged_addr((unsigned long)arg->start);
2664 	arg->end = untagged_addr((unsigned long)arg->end);
2665 	arg->vec = untagged_addr((unsigned long)arg->vec);
2666 
2667 	/* Validate memory pointers */
2668 	if (!IS_ALIGNED(arg->start, PAGE_SIZE))
2669 		return -EINVAL;
2670 	if (!access_ok((void __user *)(long)arg->start, arg->end - arg->start))
2671 		return -EFAULT;
2672 	if (!arg->vec && arg->vec_len)
2673 		return -EINVAL;
2674 	if (arg->vec && !access_ok((void __user *)(long)arg->vec,
2675 			      arg->vec_len * sizeof(struct page_region)))
2676 		return -EFAULT;
2677 
2678 	/* Fixup default values */
2679 	arg->end = ALIGN(arg->end, PAGE_SIZE);
2680 	arg->walk_end = 0;
2681 	if (!arg->max_pages)
2682 		arg->max_pages = ULONG_MAX;
2683 
2684 	return 0;
2685 }
2686 
2687 static int pagemap_scan_writeback_args(struct pm_scan_arg *arg,
2688 				       unsigned long uargl)
2689 {
2690 	struct pm_scan_arg __user *uarg	= (void __user *)uargl;
2691 
2692 	if (copy_to_user(&uarg->walk_end, &arg->walk_end, sizeof(arg->walk_end)))
2693 		return -EFAULT;
2694 
2695 	return 0;
2696 }
2697 
2698 static int pagemap_scan_init_bounce_buffer(struct pagemap_scan_private *p)
2699 {
2700 	if (!p->arg.vec_len)
2701 		return 0;
2702 
2703 	p->vec_buf_len = min_t(size_t, PAGEMAP_WALK_SIZE >> PAGE_SHIFT,
2704 			       p->arg.vec_len);
2705 	p->vec_buf = kmalloc_array(p->vec_buf_len, sizeof(*p->vec_buf),
2706 				   GFP_KERNEL);
2707 	if (!p->vec_buf)
2708 		return -ENOMEM;
2709 
2710 	p->vec_buf->start = p->vec_buf->end = 0;
2711 	p->vec_out = (struct page_region __user *)(long)p->arg.vec;
2712 
2713 	return 0;
2714 }
2715 
2716 static long pagemap_scan_flush_buffer(struct pagemap_scan_private *p)
2717 {
2718 	const struct page_region *buf = p->vec_buf;
2719 	long n = p->vec_buf_index;
2720 
2721 	if (!p->vec_buf)
2722 		return 0;
2723 
2724 	if (buf[n].end != buf[n].start)
2725 		n++;
2726 
2727 	if (!n)
2728 		return 0;
2729 
2730 	if (copy_to_user(p->vec_out, buf, n * sizeof(*buf)))
2731 		return -EFAULT;
2732 
2733 	p->arg.vec_len -= n;
2734 	p->vec_out += n;
2735 
2736 	p->vec_buf_index = 0;
2737 	p->vec_buf_len = min_t(size_t, p->vec_buf_len, p->arg.vec_len);
2738 	p->vec_buf->start = p->vec_buf->end = 0;
2739 
2740 	return n;
2741 }
2742 
2743 static long do_pagemap_scan(struct mm_struct *mm, unsigned long uarg)
2744 {
2745 	struct pagemap_scan_private p = {0};
2746 	unsigned long walk_start;
2747 	size_t n_ranges_out = 0;
2748 	int ret;
2749 
2750 	ret = pagemap_scan_get_args(&p.arg, uarg);
2751 	if (ret)
2752 		return ret;
2753 
2754 	p.masks_of_interest = p.arg.category_mask | p.arg.category_anyof_mask |
2755 			      p.arg.return_mask;
2756 	ret = pagemap_scan_init_bounce_buffer(&p);
2757 	if (ret)
2758 		return ret;
2759 
2760 	for (walk_start = p.arg.start; walk_start < p.arg.end;
2761 			walk_start = p.arg.walk_end) {
2762 		struct mmu_notifier_range range;
2763 		long n_out;
2764 
2765 		if (fatal_signal_pending(current)) {
2766 			ret = -EINTR;
2767 			break;
2768 		}
2769 
2770 		ret = mmap_read_lock_killable(mm);
2771 		if (ret)
2772 			break;
2773 
2774 		/* Protection change for the range is going to happen. */
2775 		if (p.arg.flags & PM_SCAN_WP_MATCHING) {
2776 			mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA, 0,
2777 						mm, walk_start, p.arg.end);
2778 			mmu_notifier_invalidate_range_start(&range);
2779 		}
2780 
2781 		ret = walk_page_range(mm, walk_start, p.arg.end,
2782 				      &pagemap_scan_ops, &p);
2783 
2784 		if (p.arg.flags & PM_SCAN_WP_MATCHING)
2785 			mmu_notifier_invalidate_range_end(&range);
2786 
2787 		mmap_read_unlock(mm);
2788 
2789 		n_out = pagemap_scan_flush_buffer(&p);
2790 		if (n_out < 0)
2791 			ret = n_out;
2792 		else
2793 			n_ranges_out += n_out;
2794 
2795 		if (ret != -ENOSPC)
2796 			break;
2797 
2798 		if (p.arg.vec_len == 0 || p.found_pages == p.arg.max_pages)
2799 			break;
2800 	}
2801 
2802 	/* ENOSPC signifies early stop (buffer full) from the walk. */
2803 	if (!ret || ret == -ENOSPC)
2804 		ret = n_ranges_out;
2805 
2806 	/* The walk_end isn't set when ret is zero */
2807 	if (!p.arg.walk_end)
2808 		p.arg.walk_end = p.arg.end;
2809 	if (pagemap_scan_writeback_args(&p.arg, uarg))
2810 		ret = -EFAULT;
2811 
2812 	kfree(p.vec_buf);
2813 	return ret;
2814 }
2815 
2816 static long do_pagemap_cmd(struct file *file, unsigned int cmd,
2817 			   unsigned long arg)
2818 {
2819 	struct mm_struct *mm = file->private_data;
2820 
2821 	switch (cmd) {
2822 	case PAGEMAP_SCAN:
2823 		return do_pagemap_scan(mm, arg);
2824 
2825 	default:
2826 		return -EINVAL;
2827 	}
2828 }
2829 
2830 const struct file_operations proc_pagemap_operations = {
2831 	.llseek		= mem_lseek, /* borrow this */
2832 	.read		= pagemap_read,
2833 	.open		= pagemap_open,
2834 	.release	= pagemap_release,
2835 	.unlocked_ioctl = do_pagemap_cmd,
2836 	.compat_ioctl	= do_pagemap_cmd,
2837 };
2838 #endif /* CONFIG_PROC_PAGE_MONITOR */
2839 
2840 #ifdef CONFIG_NUMA
2841 
2842 struct numa_maps {
2843 	unsigned long pages;
2844 	unsigned long anon;
2845 	unsigned long active;
2846 	unsigned long writeback;
2847 	unsigned long mapcount_max;
2848 	unsigned long dirty;
2849 	unsigned long swapcache;
2850 	unsigned long node[MAX_NUMNODES];
2851 };
2852 
2853 struct numa_maps_private {
2854 	struct proc_maps_private proc_maps;
2855 	struct numa_maps md;
2856 };
2857 
2858 static void gather_stats(struct page *page, struct numa_maps *md, int pte_dirty,
2859 			unsigned long nr_pages)
2860 {
2861 	struct folio *folio = page_folio(page);
2862 	int count = folio_precise_page_mapcount(folio, page);
2863 
2864 	md->pages += nr_pages;
2865 	if (pte_dirty || folio_test_dirty(folio))
2866 		md->dirty += nr_pages;
2867 
2868 	if (folio_test_swapcache(folio))
2869 		md->swapcache += nr_pages;
2870 
2871 	if (folio_test_active(folio) || folio_test_unevictable(folio))
2872 		md->active += nr_pages;
2873 
2874 	if (folio_test_writeback(folio))
2875 		md->writeback += nr_pages;
2876 
2877 	if (folio_test_anon(folio))
2878 		md->anon += nr_pages;
2879 
2880 	if (count > md->mapcount_max)
2881 		md->mapcount_max = count;
2882 
2883 	md->node[folio_nid(folio)] += nr_pages;
2884 }
2885 
2886 static struct page *can_gather_numa_stats(pte_t pte, struct vm_area_struct *vma,
2887 		unsigned long addr)
2888 {
2889 	struct page *page;
2890 	int nid;
2891 
2892 	if (!pte_present(pte))
2893 		return NULL;
2894 
2895 	page = vm_normal_page(vma, addr, pte);
2896 	if (!page || is_zone_device_page(page))
2897 		return NULL;
2898 
2899 	if (PageReserved(page))
2900 		return NULL;
2901 
2902 	nid = page_to_nid(page);
2903 	if (!node_isset(nid, node_states[N_MEMORY]))
2904 		return NULL;
2905 
2906 	return page;
2907 }
2908 
2909 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2910 static struct page *can_gather_numa_stats_pmd(pmd_t pmd,
2911 					      struct vm_area_struct *vma,
2912 					      unsigned long addr)
2913 {
2914 	struct page *page;
2915 	int nid;
2916 
2917 	if (!pmd_present(pmd))
2918 		return NULL;
2919 
2920 	page = vm_normal_page_pmd(vma, addr, pmd);
2921 	if (!page)
2922 		return NULL;
2923 
2924 	if (PageReserved(page))
2925 		return NULL;
2926 
2927 	nid = page_to_nid(page);
2928 	if (!node_isset(nid, node_states[N_MEMORY]))
2929 		return NULL;
2930 
2931 	return page;
2932 }
2933 #endif
2934 
2935 static int gather_pte_stats(pmd_t *pmd, unsigned long addr,
2936 		unsigned long end, struct mm_walk *walk)
2937 {
2938 	struct numa_maps *md = walk->private;
2939 	struct vm_area_struct *vma = walk->vma;
2940 	spinlock_t *ptl;
2941 	pte_t *orig_pte;
2942 	pte_t *pte;
2943 
2944 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2945 	ptl = pmd_trans_huge_lock(pmd, vma);
2946 	if (ptl) {
2947 		struct page *page;
2948 
2949 		page = can_gather_numa_stats_pmd(*pmd, vma, addr);
2950 		if (page)
2951 			gather_stats(page, md, pmd_dirty(*pmd),
2952 				     HPAGE_PMD_SIZE/PAGE_SIZE);
2953 		spin_unlock(ptl);
2954 		return 0;
2955 	}
2956 #endif
2957 	orig_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
2958 	if (!pte) {
2959 		walk->action = ACTION_AGAIN;
2960 		return 0;
2961 	}
2962 	do {
2963 		pte_t ptent = ptep_get(pte);
2964 		struct page *page = can_gather_numa_stats(ptent, vma, addr);
2965 		if (!page)
2966 			continue;
2967 		gather_stats(page, md, pte_dirty(ptent), 1);
2968 
2969 	} while (pte++, addr += PAGE_SIZE, addr != end);
2970 	pte_unmap_unlock(orig_pte, ptl);
2971 	cond_resched();
2972 	return 0;
2973 }
2974 #ifdef CONFIG_HUGETLB_PAGE
2975 static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
2976 		unsigned long addr, unsigned long end, struct mm_walk *walk)
2977 {
2978 	pte_t huge_pte = huge_ptep_get(walk->mm, addr, pte);
2979 	struct numa_maps *md;
2980 	struct page *page;
2981 
2982 	if (!pte_present(huge_pte))
2983 		return 0;
2984 
2985 	page = pte_page(huge_pte);
2986 
2987 	md = walk->private;
2988 	gather_stats(page, md, pte_dirty(huge_pte), 1);
2989 	return 0;
2990 }
2991 
2992 #else
2993 static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
2994 		unsigned long addr, unsigned long end, struct mm_walk *walk)
2995 {
2996 	return 0;
2997 }
2998 #endif
2999 
3000 static const struct mm_walk_ops show_numa_ops = {
3001 	.hugetlb_entry = gather_hugetlb_stats,
3002 	.pmd_entry = gather_pte_stats,
3003 	.walk_lock = PGWALK_RDLOCK,
3004 };
3005 
3006 /*
3007  * Display pages allocated per node and memory policy via /proc.
3008  */
3009 static int show_numa_map(struct seq_file *m, void *v)
3010 {
3011 	struct numa_maps_private *numa_priv = m->private;
3012 	struct proc_maps_private *proc_priv = &numa_priv->proc_maps;
3013 	struct vm_area_struct *vma = v;
3014 	struct numa_maps *md = &numa_priv->md;
3015 	struct file *file = vma->vm_file;
3016 	struct mm_struct *mm = vma->vm_mm;
3017 	char buffer[64];
3018 	struct mempolicy *pol;
3019 	pgoff_t ilx;
3020 	int nid;
3021 
3022 	if (!mm)
3023 		return 0;
3024 
3025 	/* Ensure we start with an empty set of numa_maps statistics. */
3026 	memset(md, 0, sizeof(*md));
3027 
3028 	pol = __get_vma_policy(vma, vma->vm_start, &ilx);
3029 	if (pol) {
3030 		mpol_to_str(buffer, sizeof(buffer), pol);
3031 		mpol_cond_put(pol);
3032 	} else {
3033 		mpol_to_str(buffer, sizeof(buffer), proc_priv->task_mempolicy);
3034 	}
3035 
3036 	seq_printf(m, "%08lx %s", vma->vm_start, buffer);
3037 
3038 	if (file) {
3039 		seq_puts(m, " file=");
3040 		seq_path(m, file_user_path(file), "\n\t= ");
3041 	} else if (vma_is_initial_heap(vma)) {
3042 		seq_puts(m, " heap");
3043 	} else if (vma_is_initial_stack(vma)) {
3044 		seq_puts(m, " stack");
3045 	}
3046 
3047 	if (is_vm_hugetlb_page(vma))
3048 		seq_puts(m, " huge");
3049 
3050 	/* mmap_lock is held by m_start */
3051 	walk_page_vma(vma, &show_numa_ops, md);
3052 
3053 	if (!md->pages)
3054 		goto out;
3055 
3056 	if (md->anon)
3057 		seq_printf(m, " anon=%lu", md->anon);
3058 
3059 	if (md->dirty)
3060 		seq_printf(m, " dirty=%lu", md->dirty);
3061 
3062 	if (md->pages != md->anon && md->pages != md->dirty)
3063 		seq_printf(m, " mapped=%lu", md->pages);
3064 
3065 	if (md->mapcount_max > 1)
3066 		seq_printf(m, " mapmax=%lu", md->mapcount_max);
3067 
3068 	if (md->swapcache)
3069 		seq_printf(m, " swapcache=%lu", md->swapcache);
3070 
3071 	if (md->active < md->pages && !is_vm_hugetlb_page(vma))
3072 		seq_printf(m, " active=%lu", md->active);
3073 
3074 	if (md->writeback)
3075 		seq_printf(m, " writeback=%lu", md->writeback);
3076 
3077 	for_each_node_state(nid, N_MEMORY)
3078 		if (md->node[nid])
3079 			seq_printf(m, " N%d=%lu", nid, md->node[nid]);
3080 
3081 	seq_printf(m, " kernelpagesize_kB=%lu", vma_kernel_pagesize(vma) >> 10);
3082 out:
3083 	seq_putc(m, '\n');
3084 	return 0;
3085 }
3086 
3087 static const struct seq_operations proc_pid_numa_maps_op = {
3088 	.start  = m_start,
3089 	.next   = m_next,
3090 	.stop   = m_stop,
3091 	.show   = show_numa_map,
3092 };
3093 
3094 static int pid_numa_maps_open(struct inode *inode, struct file *file)
3095 {
3096 	return proc_maps_open(inode, file, &proc_pid_numa_maps_op,
3097 				sizeof(struct numa_maps_private));
3098 }
3099 
3100 const struct file_operations proc_pid_numa_maps_operations = {
3101 	.open		= pid_numa_maps_open,
3102 	.read		= seq_read,
3103 	.llseek		= seq_lseek,
3104 	.release	= proc_map_release,
3105 };
3106 
3107 #endif /* CONFIG_NUMA */
3108