xref: /linux/fs/proc/task_mmu.c (revision fb54ea1ee84534cab6a15515c73a0811bdcbc973)
1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/pagewalk.h>
3 #include <linux/mm_inline.h>
4 #include <linux/hugetlb.h>
5 #include <linux/huge_mm.h>
6 #include <linux/mount.h>
7 #include <linux/ksm.h>
8 #include <linux/seq_file.h>
9 #include <linux/highmem.h>
10 #include <linux/ptrace.h>
11 #include <linux/slab.h>
12 #include <linux/pagemap.h>
13 #include <linux/mempolicy.h>
14 #include <linux/rmap.h>
15 #include <linux/swap.h>
16 #include <linux/sched/mm.h>
17 #include <linux/swapops.h>
18 #include <linux/mmu_notifier.h>
19 #include <linux/page_idle.h>
20 #include <linux/shmem_fs.h>
21 #include <linux/uaccess.h>
22 #include <linux/pkeys.h>
23 #include <linux/minmax.h>
24 #include <linux/overflow.h>
25 #include <linux/buildid.h>
26 
27 #include <asm/elf.h>
28 #include <asm/tlb.h>
29 #include <asm/tlbflush.h>
30 #include "internal.h"
31 
32 #define SEQ_PUT_DEC(str, val) \
33 		seq_put_decimal_ull_width(m, str, (val) << (PAGE_SHIFT-10), 8)
34 void task_mem(struct seq_file *m, struct mm_struct *mm)
35 {
36 	unsigned long text, lib, swap, anon, file, shmem;
37 	unsigned long hiwater_vm, total_vm, hiwater_rss, total_rss;
38 
39 	anon = get_mm_counter(mm, MM_ANONPAGES);
40 	file = get_mm_counter(mm, MM_FILEPAGES);
41 	shmem = get_mm_counter(mm, MM_SHMEMPAGES);
42 
43 	/*
44 	 * Note: to minimize their overhead, mm maintains hiwater_vm and
45 	 * hiwater_rss only when about to *lower* total_vm or rss.  Any
46 	 * collector of these hiwater stats must therefore get total_vm
47 	 * and rss too, which will usually be the higher.  Barriers? not
48 	 * worth the effort, such snapshots can always be inconsistent.
49 	 */
50 	hiwater_vm = total_vm = mm->total_vm;
51 	if (hiwater_vm < mm->hiwater_vm)
52 		hiwater_vm = mm->hiwater_vm;
53 	hiwater_rss = total_rss = anon + file + shmem;
54 	if (hiwater_rss < mm->hiwater_rss)
55 		hiwater_rss = mm->hiwater_rss;
56 
57 	/* split executable areas between text and lib */
58 	text = PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK);
59 	text = min(text, mm->exec_vm << PAGE_SHIFT);
60 	lib = (mm->exec_vm << PAGE_SHIFT) - text;
61 
62 	swap = get_mm_counter(mm, MM_SWAPENTS);
63 	SEQ_PUT_DEC("VmPeak:\t", hiwater_vm);
64 	SEQ_PUT_DEC(" kB\nVmSize:\t", total_vm);
65 	SEQ_PUT_DEC(" kB\nVmLck:\t", mm->locked_vm);
66 	SEQ_PUT_DEC(" kB\nVmPin:\t", atomic64_read(&mm->pinned_vm));
67 	SEQ_PUT_DEC(" kB\nVmHWM:\t", hiwater_rss);
68 	SEQ_PUT_DEC(" kB\nVmRSS:\t", total_rss);
69 	SEQ_PUT_DEC(" kB\nRssAnon:\t", anon);
70 	SEQ_PUT_DEC(" kB\nRssFile:\t", file);
71 	SEQ_PUT_DEC(" kB\nRssShmem:\t", shmem);
72 	SEQ_PUT_DEC(" kB\nVmData:\t", mm->data_vm);
73 	SEQ_PUT_DEC(" kB\nVmStk:\t", mm->stack_vm);
74 	seq_put_decimal_ull_width(m,
75 		    " kB\nVmExe:\t", text >> 10, 8);
76 	seq_put_decimal_ull_width(m,
77 		    " kB\nVmLib:\t", lib >> 10, 8);
78 	seq_put_decimal_ull_width(m,
79 		    " kB\nVmPTE:\t", mm_pgtables_bytes(mm) >> 10, 8);
80 	SEQ_PUT_DEC(" kB\nVmSwap:\t", swap);
81 	seq_puts(m, " kB\n");
82 	hugetlb_report_usage(m, mm);
83 }
84 #undef SEQ_PUT_DEC
85 
86 unsigned long task_vsize(struct mm_struct *mm)
87 {
88 	return PAGE_SIZE * mm->total_vm;
89 }
90 
91 unsigned long task_statm(struct mm_struct *mm,
92 			 unsigned long *shared, unsigned long *text,
93 			 unsigned long *data, unsigned long *resident)
94 {
95 	*shared = get_mm_counter(mm, MM_FILEPAGES) +
96 			get_mm_counter(mm, MM_SHMEMPAGES);
97 	*text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK))
98 								>> PAGE_SHIFT;
99 	*data = mm->data_vm + mm->stack_vm;
100 	*resident = *shared + get_mm_counter(mm, MM_ANONPAGES);
101 	return mm->total_vm;
102 }
103 
104 #ifdef CONFIG_NUMA
105 /*
106  * Save get_task_policy() for show_numa_map().
107  */
108 static void hold_task_mempolicy(struct proc_maps_private *priv)
109 {
110 	struct task_struct *task = priv->task;
111 
112 	task_lock(task);
113 	priv->task_mempolicy = get_task_policy(task);
114 	mpol_get(priv->task_mempolicy);
115 	task_unlock(task);
116 }
117 static void release_task_mempolicy(struct proc_maps_private *priv)
118 {
119 	mpol_put(priv->task_mempolicy);
120 }
121 #else
122 static void hold_task_mempolicy(struct proc_maps_private *priv)
123 {
124 }
125 static void release_task_mempolicy(struct proc_maps_private *priv)
126 {
127 }
128 #endif
129 
130 static struct vm_area_struct *proc_get_vma(struct proc_maps_private *priv,
131 						loff_t *ppos)
132 {
133 	struct vm_area_struct *vma = vma_next(&priv->iter);
134 
135 	if (vma) {
136 		*ppos = vma->vm_start;
137 	} else {
138 		*ppos = -2UL;
139 		vma = get_gate_vma(priv->mm);
140 	}
141 
142 	return vma;
143 }
144 
145 static void *m_start(struct seq_file *m, loff_t *ppos)
146 {
147 	struct proc_maps_private *priv = m->private;
148 	unsigned long last_addr = *ppos;
149 	struct mm_struct *mm;
150 
151 	/* See m_next(). Zero at the start or after lseek. */
152 	if (last_addr == -1UL)
153 		return NULL;
154 
155 	priv->task = get_proc_task(priv->inode);
156 	if (!priv->task)
157 		return ERR_PTR(-ESRCH);
158 
159 	mm = priv->mm;
160 	if (!mm || !mmget_not_zero(mm)) {
161 		put_task_struct(priv->task);
162 		priv->task = NULL;
163 		return NULL;
164 	}
165 
166 	if (mmap_read_lock_killable(mm)) {
167 		mmput(mm);
168 		put_task_struct(priv->task);
169 		priv->task = NULL;
170 		return ERR_PTR(-EINTR);
171 	}
172 
173 	vma_iter_init(&priv->iter, mm, last_addr);
174 	hold_task_mempolicy(priv);
175 	if (last_addr == -2UL)
176 		return get_gate_vma(mm);
177 
178 	return proc_get_vma(priv, ppos);
179 }
180 
181 static void *m_next(struct seq_file *m, void *v, loff_t *ppos)
182 {
183 	if (*ppos == -2UL) {
184 		*ppos = -1UL;
185 		return NULL;
186 	}
187 	return proc_get_vma(m->private, ppos);
188 }
189 
190 static void m_stop(struct seq_file *m, void *v)
191 {
192 	struct proc_maps_private *priv = m->private;
193 	struct mm_struct *mm = priv->mm;
194 
195 	if (!priv->task)
196 		return;
197 
198 	release_task_mempolicy(priv);
199 	mmap_read_unlock(mm);
200 	mmput(mm);
201 	put_task_struct(priv->task);
202 	priv->task = NULL;
203 }
204 
205 static int proc_maps_open(struct inode *inode, struct file *file,
206 			const struct seq_operations *ops, int psize)
207 {
208 	struct proc_maps_private *priv = __seq_open_private(file, ops, psize);
209 
210 	if (!priv)
211 		return -ENOMEM;
212 
213 	priv->inode = inode;
214 	priv->mm = proc_mem_open(inode, PTRACE_MODE_READ);
215 	if (IS_ERR(priv->mm)) {
216 		int err = PTR_ERR(priv->mm);
217 
218 		seq_release_private(inode, file);
219 		return err;
220 	}
221 
222 	return 0;
223 }
224 
225 static int proc_map_release(struct inode *inode, struct file *file)
226 {
227 	struct seq_file *seq = file->private_data;
228 	struct proc_maps_private *priv = seq->private;
229 
230 	if (priv->mm)
231 		mmdrop(priv->mm);
232 
233 	return seq_release_private(inode, file);
234 }
235 
236 static int do_maps_open(struct inode *inode, struct file *file,
237 			const struct seq_operations *ops)
238 {
239 	return proc_maps_open(inode, file, ops,
240 				sizeof(struct proc_maps_private));
241 }
242 
243 static void get_vma_name(struct vm_area_struct *vma,
244 			 const struct path **path,
245 			 const char **name,
246 			 const char **name_fmt)
247 {
248 	struct anon_vma_name *anon_name = vma->vm_mm ? anon_vma_name(vma) : NULL;
249 
250 	*name = NULL;
251 	*path = NULL;
252 	*name_fmt = NULL;
253 
254 	/*
255 	 * Print the dentry name for named mappings, and a
256 	 * special [heap] marker for the heap:
257 	 */
258 	if (vma->vm_file) {
259 		/*
260 		 * If user named this anon shared memory via
261 		 * prctl(PR_SET_VMA ..., use the provided name.
262 		 */
263 		if (anon_name) {
264 			*name_fmt = "[anon_shmem:%s]";
265 			*name = anon_name->name;
266 		} else {
267 			*path = file_user_path(vma->vm_file);
268 		}
269 		return;
270 	}
271 
272 	if (vma->vm_ops && vma->vm_ops->name) {
273 		*name = vma->vm_ops->name(vma);
274 		if (*name)
275 			return;
276 	}
277 
278 	*name = arch_vma_name(vma);
279 	if (*name)
280 		return;
281 
282 	if (!vma->vm_mm) {
283 		*name = "[vdso]";
284 		return;
285 	}
286 
287 	if (vma_is_initial_heap(vma)) {
288 		*name = "[heap]";
289 		return;
290 	}
291 
292 	if (vma_is_initial_stack(vma)) {
293 		*name = "[stack]";
294 		return;
295 	}
296 
297 	if (anon_name) {
298 		*name_fmt = "[anon:%s]";
299 		*name = anon_name->name;
300 		return;
301 	}
302 }
303 
304 static void show_vma_header_prefix(struct seq_file *m,
305 				   unsigned long start, unsigned long end,
306 				   vm_flags_t flags, unsigned long long pgoff,
307 				   dev_t dev, unsigned long ino)
308 {
309 	seq_setwidth(m, 25 + sizeof(void *) * 6 - 1);
310 	seq_put_hex_ll(m, NULL, start, 8);
311 	seq_put_hex_ll(m, "-", end, 8);
312 	seq_putc(m, ' ');
313 	seq_putc(m, flags & VM_READ ? 'r' : '-');
314 	seq_putc(m, flags & VM_WRITE ? 'w' : '-');
315 	seq_putc(m, flags & VM_EXEC ? 'x' : '-');
316 	seq_putc(m, flags & VM_MAYSHARE ? 's' : 'p');
317 	seq_put_hex_ll(m, " ", pgoff, 8);
318 	seq_put_hex_ll(m, " ", MAJOR(dev), 2);
319 	seq_put_hex_ll(m, ":", MINOR(dev), 2);
320 	seq_put_decimal_ull(m, " ", ino);
321 	seq_putc(m, ' ');
322 }
323 
324 static void
325 show_map_vma(struct seq_file *m, struct vm_area_struct *vma)
326 {
327 	const struct path *path;
328 	const char *name_fmt, *name;
329 	vm_flags_t flags = vma->vm_flags;
330 	unsigned long ino = 0;
331 	unsigned long long pgoff = 0;
332 	unsigned long start, end;
333 	dev_t dev = 0;
334 
335 	if (vma->vm_file) {
336 		const struct inode *inode = file_user_inode(vma->vm_file);
337 
338 		dev = inode->i_sb->s_dev;
339 		ino = inode->i_ino;
340 		pgoff = ((loff_t)vma->vm_pgoff) << PAGE_SHIFT;
341 	}
342 
343 	start = vma->vm_start;
344 	end = vma->vm_end;
345 	show_vma_header_prefix(m, start, end, flags, pgoff, dev, ino);
346 
347 	get_vma_name(vma, &path, &name, &name_fmt);
348 	if (path) {
349 		seq_pad(m, ' ');
350 		seq_path(m, path, "\n");
351 	} else if (name_fmt) {
352 		seq_pad(m, ' ');
353 		seq_printf(m, name_fmt, name);
354 	} else if (name) {
355 		seq_pad(m, ' ');
356 		seq_puts(m, name);
357 	}
358 	seq_putc(m, '\n');
359 }
360 
361 static int show_map(struct seq_file *m, void *v)
362 {
363 	show_map_vma(m, v);
364 	return 0;
365 }
366 
367 static const struct seq_operations proc_pid_maps_op = {
368 	.start	= m_start,
369 	.next	= m_next,
370 	.stop	= m_stop,
371 	.show	= show_map
372 };
373 
374 static int pid_maps_open(struct inode *inode, struct file *file)
375 {
376 	return do_maps_open(inode, file, &proc_pid_maps_op);
377 }
378 
379 #define PROCMAP_QUERY_VMA_FLAGS (				\
380 		PROCMAP_QUERY_VMA_READABLE |			\
381 		PROCMAP_QUERY_VMA_WRITABLE |			\
382 		PROCMAP_QUERY_VMA_EXECUTABLE |			\
383 		PROCMAP_QUERY_VMA_SHARED			\
384 )
385 
386 #define PROCMAP_QUERY_VALID_FLAGS_MASK (			\
387 		PROCMAP_QUERY_COVERING_OR_NEXT_VMA |		\
388 		PROCMAP_QUERY_FILE_BACKED_VMA |			\
389 		PROCMAP_QUERY_VMA_FLAGS				\
390 )
391 
392 static int query_vma_setup(struct mm_struct *mm)
393 {
394 	return mmap_read_lock_killable(mm);
395 }
396 
397 static void query_vma_teardown(struct mm_struct *mm, struct vm_area_struct *vma)
398 {
399 	mmap_read_unlock(mm);
400 }
401 
402 static struct vm_area_struct *query_vma_find_by_addr(struct mm_struct *mm, unsigned long addr)
403 {
404 	return find_vma(mm, addr);
405 }
406 
407 static struct vm_area_struct *query_matching_vma(struct mm_struct *mm,
408 						 unsigned long addr, u32 flags)
409 {
410 	struct vm_area_struct *vma;
411 
412 next_vma:
413 	vma = query_vma_find_by_addr(mm, addr);
414 	if (!vma)
415 		goto no_vma;
416 
417 	/* user requested only file-backed VMA, keep iterating */
418 	if ((flags & PROCMAP_QUERY_FILE_BACKED_VMA) && !vma->vm_file)
419 		goto skip_vma;
420 
421 	/* VMA permissions should satisfy query flags */
422 	if (flags & PROCMAP_QUERY_VMA_FLAGS) {
423 		u32 perm = 0;
424 
425 		if (flags & PROCMAP_QUERY_VMA_READABLE)
426 			perm |= VM_READ;
427 		if (flags & PROCMAP_QUERY_VMA_WRITABLE)
428 			perm |= VM_WRITE;
429 		if (flags & PROCMAP_QUERY_VMA_EXECUTABLE)
430 			perm |= VM_EXEC;
431 		if (flags & PROCMAP_QUERY_VMA_SHARED)
432 			perm |= VM_MAYSHARE;
433 
434 		if ((vma->vm_flags & perm) != perm)
435 			goto skip_vma;
436 	}
437 
438 	/* found covering VMA or user is OK with the matching next VMA */
439 	if ((flags & PROCMAP_QUERY_COVERING_OR_NEXT_VMA) || vma->vm_start <= addr)
440 		return vma;
441 
442 skip_vma:
443 	/*
444 	 * If the user needs closest matching VMA, keep iterating.
445 	 */
446 	addr = vma->vm_end;
447 	if (flags & PROCMAP_QUERY_COVERING_OR_NEXT_VMA)
448 		goto next_vma;
449 
450 no_vma:
451 	return ERR_PTR(-ENOENT);
452 }
453 
454 static int do_procmap_query(struct proc_maps_private *priv, void __user *uarg)
455 {
456 	struct procmap_query karg;
457 	struct vm_area_struct *vma;
458 	struct mm_struct *mm;
459 	const char *name = NULL;
460 	char build_id_buf[BUILD_ID_SIZE_MAX], *name_buf = NULL;
461 	__u64 usize;
462 	int err;
463 
464 	if (copy_from_user(&usize, (void __user *)uarg, sizeof(usize)))
465 		return -EFAULT;
466 	/* argument struct can never be that large, reject abuse */
467 	if (usize > PAGE_SIZE)
468 		return -E2BIG;
469 	/* argument struct should have at least query_flags and query_addr fields */
470 	if (usize < offsetofend(struct procmap_query, query_addr))
471 		return -EINVAL;
472 	err = copy_struct_from_user(&karg, sizeof(karg), uarg, usize);
473 	if (err)
474 		return err;
475 
476 	/* reject unknown flags */
477 	if (karg.query_flags & ~PROCMAP_QUERY_VALID_FLAGS_MASK)
478 		return -EINVAL;
479 	/* either both buffer address and size are set, or both should be zero */
480 	if (!!karg.vma_name_size != !!karg.vma_name_addr)
481 		return -EINVAL;
482 	if (!!karg.build_id_size != !!karg.build_id_addr)
483 		return -EINVAL;
484 
485 	mm = priv->mm;
486 	if (!mm || !mmget_not_zero(mm))
487 		return -ESRCH;
488 
489 	err = query_vma_setup(mm);
490 	if (err) {
491 		mmput(mm);
492 		return err;
493 	}
494 
495 	vma = query_matching_vma(mm, karg.query_addr, karg.query_flags);
496 	if (IS_ERR(vma)) {
497 		err = PTR_ERR(vma);
498 		vma = NULL;
499 		goto out;
500 	}
501 
502 	karg.vma_start = vma->vm_start;
503 	karg.vma_end = vma->vm_end;
504 
505 	karg.vma_flags = 0;
506 	if (vma->vm_flags & VM_READ)
507 		karg.vma_flags |= PROCMAP_QUERY_VMA_READABLE;
508 	if (vma->vm_flags & VM_WRITE)
509 		karg.vma_flags |= PROCMAP_QUERY_VMA_WRITABLE;
510 	if (vma->vm_flags & VM_EXEC)
511 		karg.vma_flags |= PROCMAP_QUERY_VMA_EXECUTABLE;
512 	if (vma->vm_flags & VM_MAYSHARE)
513 		karg.vma_flags |= PROCMAP_QUERY_VMA_SHARED;
514 
515 	karg.vma_page_size = vma_kernel_pagesize(vma);
516 
517 	if (vma->vm_file) {
518 		const struct inode *inode = file_user_inode(vma->vm_file);
519 
520 		karg.vma_offset = ((__u64)vma->vm_pgoff) << PAGE_SHIFT;
521 		karg.dev_major = MAJOR(inode->i_sb->s_dev);
522 		karg.dev_minor = MINOR(inode->i_sb->s_dev);
523 		karg.inode = inode->i_ino;
524 	} else {
525 		karg.vma_offset = 0;
526 		karg.dev_major = 0;
527 		karg.dev_minor = 0;
528 		karg.inode = 0;
529 	}
530 
531 	if (karg.build_id_size) {
532 		__u32 build_id_sz;
533 
534 		err = build_id_parse(vma, build_id_buf, &build_id_sz);
535 		if (err) {
536 			karg.build_id_size = 0;
537 		} else {
538 			if (karg.build_id_size < build_id_sz) {
539 				err = -ENAMETOOLONG;
540 				goto out;
541 			}
542 			karg.build_id_size = build_id_sz;
543 		}
544 	}
545 
546 	if (karg.vma_name_size) {
547 		size_t name_buf_sz = min_t(size_t, PATH_MAX, karg.vma_name_size);
548 		const struct path *path;
549 		const char *name_fmt;
550 		size_t name_sz = 0;
551 
552 		get_vma_name(vma, &path, &name, &name_fmt);
553 
554 		if (path || name_fmt || name) {
555 			name_buf = kmalloc(name_buf_sz, GFP_KERNEL);
556 			if (!name_buf) {
557 				err = -ENOMEM;
558 				goto out;
559 			}
560 		}
561 		if (path) {
562 			name = d_path(path, name_buf, name_buf_sz);
563 			if (IS_ERR(name)) {
564 				err = PTR_ERR(name);
565 				goto out;
566 			}
567 			name_sz = name_buf + name_buf_sz - name;
568 		} else if (name || name_fmt) {
569 			name_sz = 1 + snprintf(name_buf, name_buf_sz, name_fmt ?: "%s", name);
570 			name = name_buf;
571 		}
572 		if (name_sz > name_buf_sz) {
573 			err = -ENAMETOOLONG;
574 			goto out;
575 		}
576 		karg.vma_name_size = name_sz;
577 	}
578 
579 	/* unlock vma or mmap_lock, and put mm_struct before copying data to user */
580 	query_vma_teardown(mm, vma);
581 	mmput(mm);
582 
583 	if (karg.vma_name_size && copy_to_user(u64_to_user_ptr(karg.vma_name_addr),
584 					       name, karg.vma_name_size)) {
585 		kfree(name_buf);
586 		return -EFAULT;
587 	}
588 	kfree(name_buf);
589 
590 	if (karg.build_id_size && copy_to_user(u64_to_user_ptr(karg.build_id_addr),
591 					       build_id_buf, karg.build_id_size))
592 		return -EFAULT;
593 
594 	if (copy_to_user(uarg, &karg, min_t(size_t, sizeof(karg), usize)))
595 		return -EFAULT;
596 
597 	return 0;
598 
599 out:
600 	query_vma_teardown(mm, vma);
601 	mmput(mm);
602 	kfree(name_buf);
603 	return err;
604 }
605 
606 static long procfs_procmap_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
607 {
608 	struct seq_file *seq = file->private_data;
609 	struct proc_maps_private *priv = seq->private;
610 
611 	switch (cmd) {
612 	case PROCMAP_QUERY:
613 		return do_procmap_query(priv, (void __user *)arg);
614 	default:
615 		return -ENOIOCTLCMD;
616 	}
617 }
618 
619 const struct file_operations proc_pid_maps_operations = {
620 	.open		= pid_maps_open,
621 	.read		= seq_read,
622 	.llseek		= seq_lseek,
623 	.release	= proc_map_release,
624 	.unlocked_ioctl = procfs_procmap_ioctl,
625 	.compat_ioctl	= compat_ptr_ioctl,
626 };
627 
628 /*
629  * Proportional Set Size(PSS): my share of RSS.
630  *
631  * PSS of a process is the count of pages it has in memory, where each
632  * page is divided by the number of processes sharing it.  So if a
633  * process has 1000 pages all to itself, and 1000 shared with one other
634  * process, its PSS will be 1500.
635  *
636  * To keep (accumulated) division errors low, we adopt a 64bit
637  * fixed-point pss counter to minimize division errors. So (pss >>
638  * PSS_SHIFT) would be the real byte count.
639  *
640  * A shift of 12 before division means (assuming 4K page size):
641  * 	- 1M 3-user-pages add up to 8KB errors;
642  * 	- supports mapcount up to 2^24, or 16M;
643  * 	- supports PSS up to 2^52 bytes, or 4PB.
644  */
645 #define PSS_SHIFT 12
646 
647 #ifdef CONFIG_PROC_PAGE_MONITOR
648 struct mem_size_stats {
649 	unsigned long resident;
650 	unsigned long shared_clean;
651 	unsigned long shared_dirty;
652 	unsigned long private_clean;
653 	unsigned long private_dirty;
654 	unsigned long referenced;
655 	unsigned long anonymous;
656 	unsigned long lazyfree;
657 	unsigned long anonymous_thp;
658 	unsigned long shmem_thp;
659 	unsigned long file_thp;
660 	unsigned long swap;
661 	unsigned long shared_hugetlb;
662 	unsigned long private_hugetlb;
663 	unsigned long ksm;
664 	u64 pss;
665 	u64 pss_anon;
666 	u64 pss_file;
667 	u64 pss_shmem;
668 	u64 pss_dirty;
669 	u64 pss_locked;
670 	u64 swap_pss;
671 };
672 
673 static void smaps_page_accumulate(struct mem_size_stats *mss,
674 		struct folio *folio, unsigned long size, unsigned long pss,
675 		bool dirty, bool locked, bool private)
676 {
677 	mss->pss += pss;
678 
679 	if (folio_test_anon(folio))
680 		mss->pss_anon += pss;
681 	else if (folio_test_swapbacked(folio))
682 		mss->pss_shmem += pss;
683 	else
684 		mss->pss_file += pss;
685 
686 	if (locked)
687 		mss->pss_locked += pss;
688 
689 	if (dirty || folio_test_dirty(folio)) {
690 		mss->pss_dirty += pss;
691 		if (private)
692 			mss->private_dirty += size;
693 		else
694 			mss->shared_dirty += size;
695 	} else {
696 		if (private)
697 			mss->private_clean += size;
698 		else
699 			mss->shared_clean += size;
700 	}
701 }
702 
703 static void smaps_account(struct mem_size_stats *mss, struct page *page,
704 		bool compound, bool young, bool dirty, bool locked,
705 		bool present)
706 {
707 	struct folio *folio = page_folio(page);
708 	int i, nr = compound ? compound_nr(page) : 1;
709 	unsigned long size = nr * PAGE_SIZE;
710 
711 	/*
712 	 * First accumulate quantities that depend only on |size| and the type
713 	 * of the compound page.
714 	 */
715 	if (folio_test_anon(folio)) {
716 		mss->anonymous += size;
717 		if (!folio_test_swapbacked(folio) && !dirty &&
718 		    !folio_test_dirty(folio))
719 			mss->lazyfree += size;
720 	}
721 
722 	if (folio_test_ksm(folio))
723 		mss->ksm += size;
724 
725 	mss->resident += size;
726 	/* Accumulate the size in pages that have been accessed. */
727 	if (young || folio_test_young(folio) || folio_test_referenced(folio))
728 		mss->referenced += size;
729 
730 	/*
731 	 * Then accumulate quantities that may depend on sharing, or that may
732 	 * differ page-by-page.
733 	 *
734 	 * refcount == 1 for present entries guarantees that the folio is mapped
735 	 * exactly once. For large folios this implies that exactly one
736 	 * PTE/PMD/... maps (a part of) this folio.
737 	 *
738 	 * Treat all non-present entries (where relying on the mapcount and
739 	 * refcount doesn't make sense) as "maybe shared, but not sure how
740 	 * often". We treat device private entries as being fake-present.
741 	 *
742 	 * Note that it would not be safe to read the mapcount especially for
743 	 * pages referenced by migration entries, even with the PTL held.
744 	 */
745 	if (folio_ref_count(folio) == 1 || !present) {
746 		smaps_page_accumulate(mss, folio, size, size << PSS_SHIFT,
747 				      dirty, locked, present);
748 		return;
749 	}
750 	/*
751 	 * We obtain a snapshot of the mapcount. Without holding the folio lock
752 	 * this snapshot can be slightly wrong as we cannot always read the
753 	 * mapcount atomically.
754 	 */
755 	for (i = 0; i < nr; i++, page++) {
756 		int mapcount = folio_precise_page_mapcount(folio, page);
757 		unsigned long pss = PAGE_SIZE << PSS_SHIFT;
758 		if (mapcount >= 2)
759 			pss /= mapcount;
760 		smaps_page_accumulate(mss, folio, PAGE_SIZE, pss,
761 				dirty, locked, mapcount < 2);
762 	}
763 }
764 
765 #ifdef CONFIG_SHMEM
766 static int smaps_pte_hole(unsigned long addr, unsigned long end,
767 			  __always_unused int depth, struct mm_walk *walk)
768 {
769 	struct mem_size_stats *mss = walk->private;
770 	struct vm_area_struct *vma = walk->vma;
771 
772 	mss->swap += shmem_partial_swap_usage(walk->vma->vm_file->f_mapping,
773 					      linear_page_index(vma, addr),
774 					      linear_page_index(vma, end));
775 
776 	return 0;
777 }
778 #else
779 #define smaps_pte_hole		NULL
780 #endif /* CONFIG_SHMEM */
781 
782 static void smaps_pte_hole_lookup(unsigned long addr, struct mm_walk *walk)
783 {
784 #ifdef CONFIG_SHMEM
785 	if (walk->ops->pte_hole) {
786 		/* depth is not used */
787 		smaps_pte_hole(addr, addr + PAGE_SIZE, 0, walk);
788 	}
789 #endif
790 }
791 
792 static void smaps_pte_entry(pte_t *pte, unsigned long addr,
793 		struct mm_walk *walk)
794 {
795 	struct mem_size_stats *mss = walk->private;
796 	struct vm_area_struct *vma = walk->vma;
797 	bool locked = !!(vma->vm_flags & VM_LOCKED);
798 	struct page *page = NULL;
799 	bool present = false, young = false, dirty = false;
800 	pte_t ptent = ptep_get(pte);
801 
802 	if (pte_present(ptent)) {
803 		page = vm_normal_page(vma, addr, ptent);
804 		young = pte_young(ptent);
805 		dirty = pte_dirty(ptent);
806 		present = true;
807 	} else if (is_swap_pte(ptent)) {
808 		swp_entry_t swpent = pte_to_swp_entry(ptent);
809 
810 		if (!non_swap_entry(swpent)) {
811 			int mapcount;
812 
813 			mss->swap += PAGE_SIZE;
814 			mapcount = swp_swapcount(swpent);
815 			if (mapcount >= 2) {
816 				u64 pss_delta = (u64)PAGE_SIZE << PSS_SHIFT;
817 
818 				do_div(pss_delta, mapcount);
819 				mss->swap_pss += pss_delta;
820 			} else {
821 				mss->swap_pss += (u64)PAGE_SIZE << PSS_SHIFT;
822 			}
823 		} else if (is_pfn_swap_entry(swpent)) {
824 			if (is_device_private_entry(swpent))
825 				present = true;
826 			page = pfn_swap_entry_to_page(swpent);
827 		}
828 	} else {
829 		smaps_pte_hole_lookup(addr, walk);
830 		return;
831 	}
832 
833 	if (!page)
834 		return;
835 
836 	smaps_account(mss, page, false, young, dirty, locked, present);
837 }
838 
839 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
840 static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
841 		struct mm_walk *walk)
842 {
843 	struct mem_size_stats *mss = walk->private;
844 	struct vm_area_struct *vma = walk->vma;
845 	bool locked = !!(vma->vm_flags & VM_LOCKED);
846 	struct page *page = NULL;
847 	bool present = false;
848 	struct folio *folio;
849 
850 	if (pmd_present(*pmd)) {
851 		page = vm_normal_page_pmd(vma, addr, *pmd);
852 		present = true;
853 	} else if (unlikely(thp_migration_supported() && is_swap_pmd(*pmd))) {
854 		swp_entry_t entry = pmd_to_swp_entry(*pmd);
855 
856 		if (is_pfn_swap_entry(entry))
857 			page = pfn_swap_entry_to_page(entry);
858 	}
859 	if (IS_ERR_OR_NULL(page))
860 		return;
861 	folio = page_folio(page);
862 	if (folio_test_anon(folio))
863 		mss->anonymous_thp += HPAGE_PMD_SIZE;
864 	else if (folio_test_swapbacked(folio))
865 		mss->shmem_thp += HPAGE_PMD_SIZE;
866 	else if (folio_is_zone_device(folio))
867 		/* pass */;
868 	else
869 		mss->file_thp += HPAGE_PMD_SIZE;
870 
871 	smaps_account(mss, page, true, pmd_young(*pmd), pmd_dirty(*pmd),
872 		      locked, present);
873 }
874 #else
875 static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
876 		struct mm_walk *walk)
877 {
878 }
879 #endif
880 
881 static int smaps_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
882 			   struct mm_walk *walk)
883 {
884 	struct vm_area_struct *vma = walk->vma;
885 	pte_t *pte;
886 	spinlock_t *ptl;
887 
888 	ptl = pmd_trans_huge_lock(pmd, vma);
889 	if (ptl) {
890 		smaps_pmd_entry(pmd, addr, walk);
891 		spin_unlock(ptl);
892 		goto out;
893 	}
894 
895 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
896 	if (!pte) {
897 		walk->action = ACTION_AGAIN;
898 		return 0;
899 	}
900 	for (; addr != end; pte++, addr += PAGE_SIZE)
901 		smaps_pte_entry(pte, addr, walk);
902 	pte_unmap_unlock(pte - 1, ptl);
903 out:
904 	cond_resched();
905 	return 0;
906 }
907 
908 static void show_smap_vma_flags(struct seq_file *m, struct vm_area_struct *vma)
909 {
910 	/*
911 	 * Don't forget to update Documentation/ on changes.
912 	 */
913 	static const char mnemonics[BITS_PER_LONG][2] = {
914 		/*
915 		 * In case if we meet a flag we don't know about.
916 		 */
917 		[0 ... (BITS_PER_LONG-1)] = "??",
918 
919 		[ilog2(VM_READ)]	= "rd",
920 		[ilog2(VM_WRITE)]	= "wr",
921 		[ilog2(VM_EXEC)]	= "ex",
922 		[ilog2(VM_SHARED)]	= "sh",
923 		[ilog2(VM_MAYREAD)]	= "mr",
924 		[ilog2(VM_MAYWRITE)]	= "mw",
925 		[ilog2(VM_MAYEXEC)]	= "me",
926 		[ilog2(VM_MAYSHARE)]	= "ms",
927 		[ilog2(VM_GROWSDOWN)]	= "gd",
928 		[ilog2(VM_PFNMAP)]	= "pf",
929 		[ilog2(VM_LOCKED)]	= "lo",
930 		[ilog2(VM_IO)]		= "io",
931 		[ilog2(VM_SEQ_READ)]	= "sr",
932 		[ilog2(VM_RAND_READ)]	= "rr",
933 		[ilog2(VM_DONTCOPY)]	= "dc",
934 		[ilog2(VM_DONTEXPAND)]	= "de",
935 		[ilog2(VM_LOCKONFAULT)]	= "lf",
936 		[ilog2(VM_ACCOUNT)]	= "ac",
937 		[ilog2(VM_NORESERVE)]	= "nr",
938 		[ilog2(VM_HUGETLB)]	= "ht",
939 		[ilog2(VM_SYNC)]	= "sf",
940 		[ilog2(VM_ARCH_1)]	= "ar",
941 		[ilog2(VM_WIPEONFORK)]	= "wf",
942 		[ilog2(VM_DONTDUMP)]	= "dd",
943 #ifdef CONFIG_ARM64_BTI
944 		[ilog2(VM_ARM64_BTI)]	= "bt",
945 #endif
946 #ifdef CONFIG_MEM_SOFT_DIRTY
947 		[ilog2(VM_SOFTDIRTY)]	= "sd",
948 #endif
949 		[ilog2(VM_MIXEDMAP)]	= "mm",
950 		[ilog2(VM_HUGEPAGE)]	= "hg",
951 		[ilog2(VM_NOHUGEPAGE)]	= "nh",
952 		[ilog2(VM_MERGEABLE)]	= "mg",
953 		[ilog2(VM_UFFD_MISSING)]= "um",
954 		[ilog2(VM_UFFD_WP)]	= "uw",
955 #ifdef CONFIG_ARM64_MTE
956 		[ilog2(VM_MTE)]		= "mt",
957 		[ilog2(VM_MTE_ALLOWED)]	= "",
958 #endif
959 #ifdef CONFIG_ARCH_HAS_PKEYS
960 		/* These come out via ProtectionKey: */
961 		[ilog2(VM_PKEY_BIT0)]	= "",
962 		[ilog2(VM_PKEY_BIT1)]	= "",
963 		[ilog2(VM_PKEY_BIT2)]	= "",
964 		[ilog2(VM_PKEY_BIT3)]	= "",
965 #if VM_PKEY_BIT4
966 		[ilog2(VM_PKEY_BIT4)]	= "",
967 #endif
968 #endif /* CONFIG_ARCH_HAS_PKEYS */
969 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
970 		[ilog2(VM_UFFD_MINOR)]	= "ui",
971 #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
972 #ifdef CONFIG_X86_USER_SHADOW_STACK
973 		[ilog2(VM_SHADOW_STACK)] = "ss",
974 #endif
975 #ifdef CONFIG_64BIT
976 		[ilog2(VM_DROPPABLE)] = "dp",
977 		[ilog2(VM_SEALED)] = "sl",
978 #endif
979 	};
980 	size_t i;
981 
982 	seq_puts(m, "VmFlags: ");
983 	for (i = 0; i < BITS_PER_LONG; i++) {
984 		if (!mnemonics[i][0])
985 			continue;
986 		if (vma->vm_flags & (1UL << i)) {
987 			seq_putc(m, mnemonics[i][0]);
988 			seq_putc(m, mnemonics[i][1]);
989 			seq_putc(m, ' ');
990 		}
991 	}
992 	seq_putc(m, '\n');
993 }
994 
995 #ifdef CONFIG_HUGETLB_PAGE
996 static int smaps_hugetlb_range(pte_t *pte, unsigned long hmask,
997 				 unsigned long addr, unsigned long end,
998 				 struct mm_walk *walk)
999 {
1000 	struct mem_size_stats *mss = walk->private;
1001 	struct vm_area_struct *vma = walk->vma;
1002 	pte_t ptent = huge_ptep_get(walk->mm, addr, pte);
1003 	struct folio *folio = NULL;
1004 	bool present = false;
1005 
1006 	if (pte_present(ptent)) {
1007 		folio = page_folio(pte_page(ptent));
1008 		present = true;
1009 	} else if (is_swap_pte(ptent)) {
1010 		swp_entry_t swpent = pte_to_swp_entry(ptent);
1011 
1012 		if (is_pfn_swap_entry(swpent))
1013 			folio = pfn_swap_entry_folio(swpent);
1014 	}
1015 
1016 	if (folio) {
1017 		/* We treat non-present entries as "maybe shared". */
1018 		if (!present || folio_likely_mapped_shared(folio) ||
1019 		    hugetlb_pmd_shared(pte))
1020 			mss->shared_hugetlb += huge_page_size(hstate_vma(vma));
1021 		else
1022 			mss->private_hugetlb += huge_page_size(hstate_vma(vma));
1023 	}
1024 	return 0;
1025 }
1026 #else
1027 #define smaps_hugetlb_range	NULL
1028 #endif /* HUGETLB_PAGE */
1029 
1030 static const struct mm_walk_ops smaps_walk_ops = {
1031 	.pmd_entry		= smaps_pte_range,
1032 	.hugetlb_entry		= smaps_hugetlb_range,
1033 	.walk_lock		= PGWALK_RDLOCK,
1034 };
1035 
1036 static const struct mm_walk_ops smaps_shmem_walk_ops = {
1037 	.pmd_entry		= smaps_pte_range,
1038 	.hugetlb_entry		= smaps_hugetlb_range,
1039 	.pte_hole		= smaps_pte_hole,
1040 	.walk_lock		= PGWALK_RDLOCK,
1041 };
1042 
1043 /*
1044  * Gather mem stats from @vma with the indicated beginning
1045  * address @start, and keep them in @mss.
1046  *
1047  * Use vm_start of @vma as the beginning address if @start is 0.
1048  */
1049 static void smap_gather_stats(struct vm_area_struct *vma,
1050 		struct mem_size_stats *mss, unsigned long start)
1051 {
1052 	const struct mm_walk_ops *ops = &smaps_walk_ops;
1053 
1054 	/* Invalid start */
1055 	if (start >= vma->vm_end)
1056 		return;
1057 
1058 	if (vma->vm_file && shmem_mapping(vma->vm_file->f_mapping)) {
1059 		/*
1060 		 * For shared or readonly shmem mappings we know that all
1061 		 * swapped out pages belong to the shmem object, and we can
1062 		 * obtain the swap value much more efficiently. For private
1063 		 * writable mappings, we might have COW pages that are
1064 		 * not affected by the parent swapped out pages of the shmem
1065 		 * object, so we have to distinguish them during the page walk.
1066 		 * Unless we know that the shmem object (or the part mapped by
1067 		 * our VMA) has no swapped out pages at all.
1068 		 */
1069 		unsigned long shmem_swapped = shmem_swap_usage(vma);
1070 
1071 		if (!start && (!shmem_swapped || (vma->vm_flags & VM_SHARED) ||
1072 					!(vma->vm_flags & VM_WRITE))) {
1073 			mss->swap += shmem_swapped;
1074 		} else {
1075 			ops = &smaps_shmem_walk_ops;
1076 		}
1077 	}
1078 
1079 	/* mmap_lock is held in m_start */
1080 	if (!start)
1081 		walk_page_vma(vma, ops, mss);
1082 	else
1083 		walk_page_range(vma->vm_mm, start, vma->vm_end, ops, mss);
1084 }
1085 
1086 #define SEQ_PUT_DEC(str, val) \
1087 		seq_put_decimal_ull_width(m, str, (val) >> 10, 8)
1088 
1089 /* Show the contents common for smaps and smaps_rollup */
1090 static void __show_smap(struct seq_file *m, const struct mem_size_stats *mss,
1091 	bool rollup_mode)
1092 {
1093 	SEQ_PUT_DEC("Rss:            ", mss->resident);
1094 	SEQ_PUT_DEC(" kB\nPss:            ", mss->pss >> PSS_SHIFT);
1095 	SEQ_PUT_DEC(" kB\nPss_Dirty:      ", mss->pss_dirty >> PSS_SHIFT);
1096 	if (rollup_mode) {
1097 		/*
1098 		 * These are meaningful only for smaps_rollup, otherwise two of
1099 		 * them are zero, and the other one is the same as Pss.
1100 		 */
1101 		SEQ_PUT_DEC(" kB\nPss_Anon:       ",
1102 			mss->pss_anon >> PSS_SHIFT);
1103 		SEQ_PUT_DEC(" kB\nPss_File:       ",
1104 			mss->pss_file >> PSS_SHIFT);
1105 		SEQ_PUT_DEC(" kB\nPss_Shmem:      ",
1106 			mss->pss_shmem >> PSS_SHIFT);
1107 	}
1108 	SEQ_PUT_DEC(" kB\nShared_Clean:   ", mss->shared_clean);
1109 	SEQ_PUT_DEC(" kB\nShared_Dirty:   ", mss->shared_dirty);
1110 	SEQ_PUT_DEC(" kB\nPrivate_Clean:  ", mss->private_clean);
1111 	SEQ_PUT_DEC(" kB\nPrivate_Dirty:  ", mss->private_dirty);
1112 	SEQ_PUT_DEC(" kB\nReferenced:     ", mss->referenced);
1113 	SEQ_PUT_DEC(" kB\nAnonymous:      ", mss->anonymous);
1114 	SEQ_PUT_DEC(" kB\nKSM:            ", mss->ksm);
1115 	SEQ_PUT_DEC(" kB\nLazyFree:       ", mss->lazyfree);
1116 	SEQ_PUT_DEC(" kB\nAnonHugePages:  ", mss->anonymous_thp);
1117 	SEQ_PUT_DEC(" kB\nShmemPmdMapped: ", mss->shmem_thp);
1118 	SEQ_PUT_DEC(" kB\nFilePmdMapped:  ", mss->file_thp);
1119 	SEQ_PUT_DEC(" kB\nShared_Hugetlb: ", mss->shared_hugetlb);
1120 	seq_put_decimal_ull_width(m, " kB\nPrivate_Hugetlb: ",
1121 				  mss->private_hugetlb >> 10, 7);
1122 	SEQ_PUT_DEC(" kB\nSwap:           ", mss->swap);
1123 	SEQ_PUT_DEC(" kB\nSwapPss:        ",
1124 					mss->swap_pss >> PSS_SHIFT);
1125 	SEQ_PUT_DEC(" kB\nLocked:         ",
1126 					mss->pss_locked >> PSS_SHIFT);
1127 	seq_puts(m, " kB\n");
1128 }
1129 
1130 static int show_smap(struct seq_file *m, void *v)
1131 {
1132 	struct vm_area_struct *vma = v;
1133 	struct mem_size_stats mss = {};
1134 
1135 	smap_gather_stats(vma, &mss, 0);
1136 
1137 	show_map_vma(m, vma);
1138 
1139 	SEQ_PUT_DEC("Size:           ", vma->vm_end - vma->vm_start);
1140 	SEQ_PUT_DEC(" kB\nKernelPageSize: ", vma_kernel_pagesize(vma));
1141 	SEQ_PUT_DEC(" kB\nMMUPageSize:    ", vma_mmu_pagesize(vma));
1142 	seq_puts(m, " kB\n");
1143 
1144 	__show_smap(m, &mss, false);
1145 
1146 	seq_printf(m, "THPeligible:    %8u\n",
1147 		   !!thp_vma_allowable_orders(vma, vma->vm_flags,
1148 			   TVA_SMAPS | TVA_ENFORCE_SYSFS, THP_ORDERS_ALL));
1149 
1150 	if (arch_pkeys_enabled())
1151 		seq_printf(m, "ProtectionKey:  %8u\n", vma_pkey(vma));
1152 	show_smap_vma_flags(m, vma);
1153 
1154 	return 0;
1155 }
1156 
1157 static int show_smaps_rollup(struct seq_file *m, void *v)
1158 {
1159 	struct proc_maps_private *priv = m->private;
1160 	struct mem_size_stats mss = {};
1161 	struct mm_struct *mm = priv->mm;
1162 	struct vm_area_struct *vma;
1163 	unsigned long vma_start = 0, last_vma_end = 0;
1164 	int ret = 0;
1165 	VMA_ITERATOR(vmi, mm, 0);
1166 
1167 	priv->task = get_proc_task(priv->inode);
1168 	if (!priv->task)
1169 		return -ESRCH;
1170 
1171 	if (!mm || !mmget_not_zero(mm)) {
1172 		ret = -ESRCH;
1173 		goto out_put_task;
1174 	}
1175 
1176 	ret = mmap_read_lock_killable(mm);
1177 	if (ret)
1178 		goto out_put_mm;
1179 
1180 	hold_task_mempolicy(priv);
1181 	vma = vma_next(&vmi);
1182 
1183 	if (unlikely(!vma))
1184 		goto empty_set;
1185 
1186 	vma_start = vma->vm_start;
1187 	do {
1188 		smap_gather_stats(vma, &mss, 0);
1189 		last_vma_end = vma->vm_end;
1190 
1191 		/*
1192 		 * Release mmap_lock temporarily if someone wants to
1193 		 * access it for write request.
1194 		 */
1195 		if (mmap_lock_is_contended(mm)) {
1196 			vma_iter_invalidate(&vmi);
1197 			mmap_read_unlock(mm);
1198 			ret = mmap_read_lock_killable(mm);
1199 			if (ret) {
1200 				release_task_mempolicy(priv);
1201 				goto out_put_mm;
1202 			}
1203 
1204 			/*
1205 			 * After dropping the lock, there are four cases to
1206 			 * consider. See the following example for explanation.
1207 			 *
1208 			 *   +------+------+-----------+
1209 			 *   | VMA1 | VMA2 | VMA3      |
1210 			 *   +------+------+-----------+
1211 			 *   |      |      |           |
1212 			 *  4k     8k     16k         400k
1213 			 *
1214 			 * Suppose we drop the lock after reading VMA2 due to
1215 			 * contention, then we get:
1216 			 *
1217 			 *	last_vma_end = 16k
1218 			 *
1219 			 * 1) VMA2 is freed, but VMA3 exists:
1220 			 *
1221 			 *    vma_next(vmi) will return VMA3.
1222 			 *    In this case, just continue from VMA3.
1223 			 *
1224 			 * 2) VMA2 still exists:
1225 			 *
1226 			 *    vma_next(vmi) will return VMA3.
1227 			 *    In this case, just continue from VMA3.
1228 			 *
1229 			 * 3) No more VMAs can be found:
1230 			 *
1231 			 *    vma_next(vmi) will return NULL.
1232 			 *    No more things to do, just break.
1233 			 *
1234 			 * 4) (last_vma_end - 1) is the middle of a vma (VMA'):
1235 			 *
1236 			 *    vma_next(vmi) will return VMA' whose range
1237 			 *    contains last_vma_end.
1238 			 *    Iterate VMA' from last_vma_end.
1239 			 */
1240 			vma = vma_next(&vmi);
1241 			/* Case 3 above */
1242 			if (!vma)
1243 				break;
1244 
1245 			/* Case 1 and 2 above */
1246 			if (vma->vm_start >= last_vma_end) {
1247 				smap_gather_stats(vma, &mss, 0);
1248 				last_vma_end = vma->vm_end;
1249 				continue;
1250 			}
1251 
1252 			/* Case 4 above */
1253 			if (vma->vm_end > last_vma_end) {
1254 				smap_gather_stats(vma, &mss, last_vma_end);
1255 				last_vma_end = vma->vm_end;
1256 			}
1257 		}
1258 	} for_each_vma(vmi, vma);
1259 
1260 empty_set:
1261 	show_vma_header_prefix(m, vma_start, last_vma_end, 0, 0, 0, 0);
1262 	seq_pad(m, ' ');
1263 	seq_puts(m, "[rollup]\n");
1264 
1265 	__show_smap(m, &mss, true);
1266 
1267 	release_task_mempolicy(priv);
1268 	mmap_read_unlock(mm);
1269 
1270 out_put_mm:
1271 	mmput(mm);
1272 out_put_task:
1273 	put_task_struct(priv->task);
1274 	priv->task = NULL;
1275 
1276 	return ret;
1277 }
1278 #undef SEQ_PUT_DEC
1279 
1280 static const struct seq_operations proc_pid_smaps_op = {
1281 	.start	= m_start,
1282 	.next	= m_next,
1283 	.stop	= m_stop,
1284 	.show	= show_smap
1285 };
1286 
1287 static int pid_smaps_open(struct inode *inode, struct file *file)
1288 {
1289 	return do_maps_open(inode, file, &proc_pid_smaps_op);
1290 }
1291 
1292 static int smaps_rollup_open(struct inode *inode, struct file *file)
1293 {
1294 	int ret;
1295 	struct proc_maps_private *priv;
1296 
1297 	priv = kzalloc(sizeof(*priv), GFP_KERNEL_ACCOUNT);
1298 	if (!priv)
1299 		return -ENOMEM;
1300 
1301 	ret = single_open(file, show_smaps_rollup, priv);
1302 	if (ret)
1303 		goto out_free;
1304 
1305 	priv->inode = inode;
1306 	priv->mm = proc_mem_open(inode, PTRACE_MODE_READ);
1307 	if (IS_ERR(priv->mm)) {
1308 		ret = PTR_ERR(priv->mm);
1309 
1310 		single_release(inode, file);
1311 		goto out_free;
1312 	}
1313 
1314 	return 0;
1315 
1316 out_free:
1317 	kfree(priv);
1318 	return ret;
1319 }
1320 
1321 static int smaps_rollup_release(struct inode *inode, struct file *file)
1322 {
1323 	struct seq_file *seq = file->private_data;
1324 	struct proc_maps_private *priv = seq->private;
1325 
1326 	if (priv->mm)
1327 		mmdrop(priv->mm);
1328 
1329 	kfree(priv);
1330 	return single_release(inode, file);
1331 }
1332 
1333 const struct file_operations proc_pid_smaps_operations = {
1334 	.open		= pid_smaps_open,
1335 	.read		= seq_read,
1336 	.llseek		= seq_lseek,
1337 	.release	= proc_map_release,
1338 };
1339 
1340 const struct file_operations proc_pid_smaps_rollup_operations = {
1341 	.open		= smaps_rollup_open,
1342 	.read		= seq_read,
1343 	.llseek		= seq_lseek,
1344 	.release	= smaps_rollup_release,
1345 };
1346 
1347 enum clear_refs_types {
1348 	CLEAR_REFS_ALL = 1,
1349 	CLEAR_REFS_ANON,
1350 	CLEAR_REFS_MAPPED,
1351 	CLEAR_REFS_SOFT_DIRTY,
1352 	CLEAR_REFS_MM_HIWATER_RSS,
1353 	CLEAR_REFS_LAST,
1354 };
1355 
1356 struct clear_refs_private {
1357 	enum clear_refs_types type;
1358 };
1359 
1360 #ifdef CONFIG_MEM_SOFT_DIRTY
1361 
1362 static inline bool pte_is_pinned(struct vm_area_struct *vma, unsigned long addr, pte_t pte)
1363 {
1364 	struct folio *folio;
1365 
1366 	if (!pte_write(pte))
1367 		return false;
1368 	if (!is_cow_mapping(vma->vm_flags))
1369 		return false;
1370 	if (likely(!test_bit(MMF_HAS_PINNED, &vma->vm_mm->flags)))
1371 		return false;
1372 	folio = vm_normal_folio(vma, addr, pte);
1373 	if (!folio)
1374 		return false;
1375 	return folio_maybe_dma_pinned(folio);
1376 }
1377 
1378 static inline void clear_soft_dirty(struct vm_area_struct *vma,
1379 		unsigned long addr, pte_t *pte)
1380 {
1381 	/*
1382 	 * The soft-dirty tracker uses #PF-s to catch writes
1383 	 * to pages, so write-protect the pte as well. See the
1384 	 * Documentation/admin-guide/mm/soft-dirty.rst for full description
1385 	 * of how soft-dirty works.
1386 	 */
1387 	pte_t ptent = ptep_get(pte);
1388 
1389 	if (pte_present(ptent)) {
1390 		pte_t old_pte;
1391 
1392 		if (pte_is_pinned(vma, addr, ptent))
1393 			return;
1394 		old_pte = ptep_modify_prot_start(vma, addr, pte);
1395 		ptent = pte_wrprotect(old_pte);
1396 		ptent = pte_clear_soft_dirty(ptent);
1397 		ptep_modify_prot_commit(vma, addr, pte, old_pte, ptent);
1398 	} else if (is_swap_pte(ptent)) {
1399 		ptent = pte_swp_clear_soft_dirty(ptent);
1400 		set_pte_at(vma->vm_mm, addr, pte, ptent);
1401 	}
1402 }
1403 #else
1404 static inline void clear_soft_dirty(struct vm_area_struct *vma,
1405 		unsigned long addr, pte_t *pte)
1406 {
1407 }
1408 #endif
1409 
1410 #if defined(CONFIG_MEM_SOFT_DIRTY) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
1411 static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
1412 		unsigned long addr, pmd_t *pmdp)
1413 {
1414 	pmd_t old, pmd = *pmdp;
1415 
1416 	if (pmd_present(pmd)) {
1417 		/* See comment in change_huge_pmd() */
1418 		old = pmdp_invalidate(vma, addr, pmdp);
1419 		if (pmd_dirty(old))
1420 			pmd = pmd_mkdirty(pmd);
1421 		if (pmd_young(old))
1422 			pmd = pmd_mkyoung(pmd);
1423 
1424 		pmd = pmd_wrprotect(pmd);
1425 		pmd = pmd_clear_soft_dirty(pmd);
1426 
1427 		set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
1428 	} else if (is_migration_entry(pmd_to_swp_entry(pmd))) {
1429 		pmd = pmd_swp_clear_soft_dirty(pmd);
1430 		set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
1431 	}
1432 }
1433 #else
1434 static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
1435 		unsigned long addr, pmd_t *pmdp)
1436 {
1437 }
1438 #endif
1439 
1440 static int clear_refs_pte_range(pmd_t *pmd, unsigned long addr,
1441 				unsigned long end, struct mm_walk *walk)
1442 {
1443 	struct clear_refs_private *cp = walk->private;
1444 	struct vm_area_struct *vma = walk->vma;
1445 	pte_t *pte, ptent;
1446 	spinlock_t *ptl;
1447 	struct folio *folio;
1448 
1449 	ptl = pmd_trans_huge_lock(pmd, vma);
1450 	if (ptl) {
1451 		if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
1452 			clear_soft_dirty_pmd(vma, addr, pmd);
1453 			goto out;
1454 		}
1455 
1456 		if (!pmd_present(*pmd))
1457 			goto out;
1458 
1459 		folio = pmd_folio(*pmd);
1460 
1461 		/* Clear accessed and referenced bits. */
1462 		pmdp_test_and_clear_young(vma, addr, pmd);
1463 		folio_test_clear_young(folio);
1464 		folio_clear_referenced(folio);
1465 out:
1466 		spin_unlock(ptl);
1467 		return 0;
1468 	}
1469 
1470 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1471 	if (!pte) {
1472 		walk->action = ACTION_AGAIN;
1473 		return 0;
1474 	}
1475 	for (; addr != end; pte++, addr += PAGE_SIZE) {
1476 		ptent = ptep_get(pte);
1477 
1478 		if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
1479 			clear_soft_dirty(vma, addr, pte);
1480 			continue;
1481 		}
1482 
1483 		if (!pte_present(ptent))
1484 			continue;
1485 
1486 		folio = vm_normal_folio(vma, addr, ptent);
1487 		if (!folio)
1488 			continue;
1489 
1490 		/* Clear accessed and referenced bits. */
1491 		ptep_test_and_clear_young(vma, addr, pte);
1492 		folio_test_clear_young(folio);
1493 		folio_clear_referenced(folio);
1494 	}
1495 	pte_unmap_unlock(pte - 1, ptl);
1496 	cond_resched();
1497 	return 0;
1498 }
1499 
1500 static int clear_refs_test_walk(unsigned long start, unsigned long end,
1501 				struct mm_walk *walk)
1502 {
1503 	struct clear_refs_private *cp = walk->private;
1504 	struct vm_area_struct *vma = walk->vma;
1505 
1506 	if (vma->vm_flags & VM_PFNMAP)
1507 		return 1;
1508 
1509 	/*
1510 	 * Writing 1 to /proc/pid/clear_refs affects all pages.
1511 	 * Writing 2 to /proc/pid/clear_refs only affects anonymous pages.
1512 	 * Writing 3 to /proc/pid/clear_refs only affects file mapped pages.
1513 	 * Writing 4 to /proc/pid/clear_refs affects all pages.
1514 	 */
1515 	if (cp->type == CLEAR_REFS_ANON && vma->vm_file)
1516 		return 1;
1517 	if (cp->type == CLEAR_REFS_MAPPED && !vma->vm_file)
1518 		return 1;
1519 	return 0;
1520 }
1521 
1522 static const struct mm_walk_ops clear_refs_walk_ops = {
1523 	.pmd_entry		= clear_refs_pte_range,
1524 	.test_walk		= clear_refs_test_walk,
1525 	.walk_lock		= PGWALK_WRLOCK,
1526 };
1527 
1528 static ssize_t clear_refs_write(struct file *file, const char __user *buf,
1529 				size_t count, loff_t *ppos)
1530 {
1531 	struct task_struct *task;
1532 	char buffer[PROC_NUMBUF] = {};
1533 	struct mm_struct *mm;
1534 	struct vm_area_struct *vma;
1535 	enum clear_refs_types type;
1536 	int itype;
1537 	int rv;
1538 
1539 	if (count > sizeof(buffer) - 1)
1540 		count = sizeof(buffer) - 1;
1541 	if (copy_from_user(buffer, buf, count))
1542 		return -EFAULT;
1543 	rv = kstrtoint(strstrip(buffer), 10, &itype);
1544 	if (rv < 0)
1545 		return rv;
1546 	type = (enum clear_refs_types)itype;
1547 	if (type < CLEAR_REFS_ALL || type >= CLEAR_REFS_LAST)
1548 		return -EINVAL;
1549 
1550 	task = get_proc_task(file_inode(file));
1551 	if (!task)
1552 		return -ESRCH;
1553 	mm = get_task_mm(task);
1554 	if (mm) {
1555 		VMA_ITERATOR(vmi, mm, 0);
1556 		struct mmu_notifier_range range;
1557 		struct clear_refs_private cp = {
1558 			.type = type,
1559 		};
1560 
1561 		if (mmap_write_lock_killable(mm)) {
1562 			count = -EINTR;
1563 			goto out_mm;
1564 		}
1565 		if (type == CLEAR_REFS_MM_HIWATER_RSS) {
1566 			/*
1567 			 * Writing 5 to /proc/pid/clear_refs resets the peak
1568 			 * resident set size to this mm's current rss value.
1569 			 */
1570 			reset_mm_hiwater_rss(mm);
1571 			goto out_unlock;
1572 		}
1573 
1574 		if (type == CLEAR_REFS_SOFT_DIRTY) {
1575 			for_each_vma(vmi, vma) {
1576 				if (!(vma->vm_flags & VM_SOFTDIRTY))
1577 					continue;
1578 				vm_flags_clear(vma, VM_SOFTDIRTY);
1579 				vma_set_page_prot(vma);
1580 			}
1581 
1582 			inc_tlb_flush_pending(mm);
1583 			mmu_notifier_range_init(&range, MMU_NOTIFY_SOFT_DIRTY,
1584 						0, mm, 0, -1UL);
1585 			mmu_notifier_invalidate_range_start(&range);
1586 		}
1587 		walk_page_range(mm, 0, -1, &clear_refs_walk_ops, &cp);
1588 		if (type == CLEAR_REFS_SOFT_DIRTY) {
1589 			mmu_notifier_invalidate_range_end(&range);
1590 			flush_tlb_mm(mm);
1591 			dec_tlb_flush_pending(mm);
1592 		}
1593 out_unlock:
1594 		mmap_write_unlock(mm);
1595 out_mm:
1596 		mmput(mm);
1597 	}
1598 	put_task_struct(task);
1599 
1600 	return count;
1601 }
1602 
1603 const struct file_operations proc_clear_refs_operations = {
1604 	.write		= clear_refs_write,
1605 	.llseek		= noop_llseek,
1606 };
1607 
1608 typedef struct {
1609 	u64 pme;
1610 } pagemap_entry_t;
1611 
1612 struct pagemapread {
1613 	int pos, len;		/* units: PM_ENTRY_BYTES, not bytes */
1614 	pagemap_entry_t *buffer;
1615 	bool show_pfn;
1616 };
1617 
1618 #define PAGEMAP_WALK_SIZE	(PMD_SIZE)
1619 #define PAGEMAP_WALK_MASK	(PMD_MASK)
1620 
1621 #define PM_ENTRY_BYTES		sizeof(pagemap_entry_t)
1622 #define PM_PFRAME_BITS		55
1623 #define PM_PFRAME_MASK		GENMASK_ULL(PM_PFRAME_BITS - 1, 0)
1624 #define PM_SOFT_DIRTY		BIT_ULL(55)
1625 #define PM_MMAP_EXCLUSIVE	BIT_ULL(56)
1626 #define PM_UFFD_WP		BIT_ULL(57)
1627 #define PM_FILE			BIT_ULL(61)
1628 #define PM_SWAP			BIT_ULL(62)
1629 #define PM_PRESENT		BIT_ULL(63)
1630 
1631 #define PM_END_OF_BUFFER    1
1632 
1633 static inline pagemap_entry_t make_pme(u64 frame, u64 flags)
1634 {
1635 	return (pagemap_entry_t) { .pme = (frame & PM_PFRAME_MASK) | flags };
1636 }
1637 
1638 static int add_to_pagemap(pagemap_entry_t *pme, struct pagemapread *pm)
1639 {
1640 	pm->buffer[pm->pos++] = *pme;
1641 	if (pm->pos >= pm->len)
1642 		return PM_END_OF_BUFFER;
1643 	return 0;
1644 }
1645 
1646 static int pagemap_pte_hole(unsigned long start, unsigned long end,
1647 			    __always_unused int depth, struct mm_walk *walk)
1648 {
1649 	struct pagemapread *pm = walk->private;
1650 	unsigned long addr = start;
1651 	int err = 0;
1652 
1653 	while (addr < end) {
1654 		struct vm_area_struct *vma = find_vma(walk->mm, addr);
1655 		pagemap_entry_t pme = make_pme(0, 0);
1656 		/* End of address space hole, which we mark as non-present. */
1657 		unsigned long hole_end;
1658 
1659 		if (vma)
1660 			hole_end = min(end, vma->vm_start);
1661 		else
1662 			hole_end = end;
1663 
1664 		for (; addr < hole_end; addr += PAGE_SIZE) {
1665 			err = add_to_pagemap(&pme, pm);
1666 			if (err)
1667 				goto out;
1668 		}
1669 
1670 		if (!vma)
1671 			break;
1672 
1673 		/* Addresses in the VMA. */
1674 		if (vma->vm_flags & VM_SOFTDIRTY)
1675 			pme = make_pme(0, PM_SOFT_DIRTY);
1676 		for (; addr < min(end, vma->vm_end); addr += PAGE_SIZE) {
1677 			err = add_to_pagemap(&pme, pm);
1678 			if (err)
1679 				goto out;
1680 		}
1681 	}
1682 out:
1683 	return err;
1684 }
1685 
1686 static pagemap_entry_t pte_to_pagemap_entry(struct pagemapread *pm,
1687 		struct vm_area_struct *vma, unsigned long addr, pte_t pte)
1688 {
1689 	u64 frame = 0, flags = 0;
1690 	struct page *page = NULL;
1691 	struct folio *folio;
1692 
1693 	if (pte_present(pte)) {
1694 		if (pm->show_pfn)
1695 			frame = pte_pfn(pte);
1696 		flags |= PM_PRESENT;
1697 		page = vm_normal_page(vma, addr, pte);
1698 		if (pte_soft_dirty(pte))
1699 			flags |= PM_SOFT_DIRTY;
1700 		if (pte_uffd_wp(pte))
1701 			flags |= PM_UFFD_WP;
1702 	} else if (is_swap_pte(pte)) {
1703 		swp_entry_t entry;
1704 		if (pte_swp_soft_dirty(pte))
1705 			flags |= PM_SOFT_DIRTY;
1706 		if (pte_swp_uffd_wp(pte))
1707 			flags |= PM_UFFD_WP;
1708 		entry = pte_to_swp_entry(pte);
1709 		if (pm->show_pfn) {
1710 			pgoff_t offset;
1711 			/*
1712 			 * For PFN swap offsets, keeping the offset field
1713 			 * to be PFN only to be compatible with old smaps.
1714 			 */
1715 			if (is_pfn_swap_entry(entry))
1716 				offset = swp_offset_pfn(entry);
1717 			else
1718 				offset = swp_offset(entry);
1719 			frame = swp_type(entry) |
1720 			    (offset << MAX_SWAPFILES_SHIFT);
1721 		}
1722 		flags |= PM_SWAP;
1723 		if (is_pfn_swap_entry(entry))
1724 			page = pfn_swap_entry_to_page(entry);
1725 		if (pte_marker_entry_uffd_wp(entry))
1726 			flags |= PM_UFFD_WP;
1727 	}
1728 
1729 	if (page) {
1730 		folio = page_folio(page);
1731 		if (!folio_test_anon(folio))
1732 			flags |= PM_FILE;
1733 		if ((flags & PM_PRESENT) &&
1734 		    folio_precise_page_mapcount(folio, page) == 1)
1735 			flags |= PM_MMAP_EXCLUSIVE;
1736 	}
1737 	if (vma->vm_flags & VM_SOFTDIRTY)
1738 		flags |= PM_SOFT_DIRTY;
1739 
1740 	return make_pme(frame, flags);
1741 }
1742 
1743 static int pagemap_pmd_range(pmd_t *pmdp, unsigned long addr, unsigned long end,
1744 			     struct mm_walk *walk)
1745 {
1746 	struct vm_area_struct *vma = walk->vma;
1747 	struct pagemapread *pm = walk->private;
1748 	spinlock_t *ptl;
1749 	pte_t *pte, *orig_pte;
1750 	int err = 0;
1751 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1752 
1753 	ptl = pmd_trans_huge_lock(pmdp, vma);
1754 	if (ptl) {
1755 		unsigned int idx = (addr & ~PMD_MASK) >> PAGE_SHIFT;
1756 		u64 flags = 0, frame = 0;
1757 		pmd_t pmd = *pmdp;
1758 		struct page *page = NULL;
1759 		struct folio *folio = NULL;
1760 
1761 		if (vma->vm_flags & VM_SOFTDIRTY)
1762 			flags |= PM_SOFT_DIRTY;
1763 
1764 		if (pmd_present(pmd)) {
1765 			page = pmd_page(pmd);
1766 
1767 			flags |= PM_PRESENT;
1768 			if (pmd_soft_dirty(pmd))
1769 				flags |= PM_SOFT_DIRTY;
1770 			if (pmd_uffd_wp(pmd))
1771 				flags |= PM_UFFD_WP;
1772 			if (pm->show_pfn)
1773 				frame = pmd_pfn(pmd) + idx;
1774 		}
1775 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1776 		else if (is_swap_pmd(pmd)) {
1777 			swp_entry_t entry = pmd_to_swp_entry(pmd);
1778 			unsigned long offset;
1779 
1780 			if (pm->show_pfn) {
1781 				if (is_pfn_swap_entry(entry))
1782 					offset = swp_offset_pfn(entry) + idx;
1783 				else
1784 					offset = swp_offset(entry) + idx;
1785 				frame = swp_type(entry) |
1786 					(offset << MAX_SWAPFILES_SHIFT);
1787 			}
1788 			flags |= PM_SWAP;
1789 			if (pmd_swp_soft_dirty(pmd))
1790 				flags |= PM_SOFT_DIRTY;
1791 			if (pmd_swp_uffd_wp(pmd))
1792 				flags |= PM_UFFD_WP;
1793 			VM_BUG_ON(!is_pmd_migration_entry(pmd));
1794 			page = pfn_swap_entry_to_page(entry);
1795 		}
1796 #endif
1797 
1798 		if (page) {
1799 			folio = page_folio(page);
1800 			if (!folio_test_anon(folio))
1801 				flags |= PM_FILE;
1802 		}
1803 
1804 		for (; addr != end; addr += PAGE_SIZE, idx++) {
1805 			unsigned long cur_flags = flags;
1806 			pagemap_entry_t pme;
1807 
1808 			if (folio && (flags & PM_PRESENT) &&
1809 			    folio_precise_page_mapcount(folio, page + idx) == 1)
1810 				cur_flags |= PM_MMAP_EXCLUSIVE;
1811 
1812 			pme = make_pme(frame, cur_flags);
1813 			err = add_to_pagemap(&pme, pm);
1814 			if (err)
1815 				break;
1816 			if (pm->show_pfn) {
1817 				if (flags & PM_PRESENT)
1818 					frame++;
1819 				else if (flags & PM_SWAP)
1820 					frame += (1 << MAX_SWAPFILES_SHIFT);
1821 			}
1822 		}
1823 		spin_unlock(ptl);
1824 		return err;
1825 	}
1826 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1827 
1828 	/*
1829 	 * We can assume that @vma always points to a valid one and @end never
1830 	 * goes beyond vma->vm_end.
1831 	 */
1832 	orig_pte = pte = pte_offset_map_lock(walk->mm, pmdp, addr, &ptl);
1833 	if (!pte) {
1834 		walk->action = ACTION_AGAIN;
1835 		return err;
1836 	}
1837 	for (; addr < end; pte++, addr += PAGE_SIZE) {
1838 		pagemap_entry_t pme;
1839 
1840 		pme = pte_to_pagemap_entry(pm, vma, addr, ptep_get(pte));
1841 		err = add_to_pagemap(&pme, pm);
1842 		if (err)
1843 			break;
1844 	}
1845 	pte_unmap_unlock(orig_pte, ptl);
1846 
1847 	cond_resched();
1848 
1849 	return err;
1850 }
1851 
1852 #ifdef CONFIG_HUGETLB_PAGE
1853 /* This function walks within one hugetlb entry in the single call */
1854 static int pagemap_hugetlb_range(pte_t *ptep, unsigned long hmask,
1855 				 unsigned long addr, unsigned long end,
1856 				 struct mm_walk *walk)
1857 {
1858 	struct pagemapread *pm = walk->private;
1859 	struct vm_area_struct *vma = walk->vma;
1860 	u64 flags = 0, frame = 0;
1861 	int err = 0;
1862 	pte_t pte;
1863 
1864 	if (vma->vm_flags & VM_SOFTDIRTY)
1865 		flags |= PM_SOFT_DIRTY;
1866 
1867 	pte = huge_ptep_get(walk->mm, addr, ptep);
1868 	if (pte_present(pte)) {
1869 		struct folio *folio = page_folio(pte_page(pte));
1870 
1871 		if (!folio_test_anon(folio))
1872 			flags |= PM_FILE;
1873 
1874 		if (!folio_likely_mapped_shared(folio) &&
1875 		    !hugetlb_pmd_shared(ptep))
1876 			flags |= PM_MMAP_EXCLUSIVE;
1877 
1878 		if (huge_pte_uffd_wp(pte))
1879 			flags |= PM_UFFD_WP;
1880 
1881 		flags |= PM_PRESENT;
1882 		if (pm->show_pfn)
1883 			frame = pte_pfn(pte) +
1884 				((addr & ~hmask) >> PAGE_SHIFT);
1885 	} else if (pte_swp_uffd_wp_any(pte)) {
1886 		flags |= PM_UFFD_WP;
1887 	}
1888 
1889 	for (; addr != end; addr += PAGE_SIZE) {
1890 		pagemap_entry_t pme = make_pme(frame, flags);
1891 
1892 		err = add_to_pagemap(&pme, pm);
1893 		if (err)
1894 			return err;
1895 		if (pm->show_pfn && (flags & PM_PRESENT))
1896 			frame++;
1897 	}
1898 
1899 	cond_resched();
1900 
1901 	return err;
1902 }
1903 #else
1904 #define pagemap_hugetlb_range	NULL
1905 #endif /* HUGETLB_PAGE */
1906 
1907 static const struct mm_walk_ops pagemap_ops = {
1908 	.pmd_entry	= pagemap_pmd_range,
1909 	.pte_hole	= pagemap_pte_hole,
1910 	.hugetlb_entry	= pagemap_hugetlb_range,
1911 	.walk_lock	= PGWALK_RDLOCK,
1912 };
1913 
1914 /*
1915  * /proc/pid/pagemap - an array mapping virtual pages to pfns
1916  *
1917  * For each page in the address space, this file contains one 64-bit entry
1918  * consisting of the following:
1919  *
1920  * Bits 0-54  page frame number (PFN) if present
1921  * Bits 0-4   swap type if swapped
1922  * Bits 5-54  swap offset if swapped
1923  * Bit  55    pte is soft-dirty (see Documentation/admin-guide/mm/soft-dirty.rst)
1924  * Bit  56    page exclusively mapped
1925  * Bit  57    pte is uffd-wp write-protected
1926  * Bits 58-60 zero
1927  * Bit  61    page is file-page or shared-anon
1928  * Bit  62    page swapped
1929  * Bit  63    page present
1930  *
1931  * If the page is not present but in swap, then the PFN contains an
1932  * encoding of the swap file number and the page's offset into the
1933  * swap. Unmapped pages return a null PFN. This allows determining
1934  * precisely which pages are mapped (or in swap) and comparing mapped
1935  * pages between processes.
1936  *
1937  * Efficient users of this interface will use /proc/pid/maps to
1938  * determine which areas of memory are actually mapped and llseek to
1939  * skip over unmapped regions.
1940  */
1941 static ssize_t pagemap_read(struct file *file, char __user *buf,
1942 			    size_t count, loff_t *ppos)
1943 {
1944 	struct mm_struct *mm = file->private_data;
1945 	struct pagemapread pm;
1946 	unsigned long src;
1947 	unsigned long svpfn;
1948 	unsigned long start_vaddr;
1949 	unsigned long end_vaddr;
1950 	int ret = 0, copied = 0;
1951 
1952 	if (!mm || !mmget_not_zero(mm))
1953 		goto out;
1954 
1955 	ret = -EINVAL;
1956 	/* file position must be aligned */
1957 	if ((*ppos % PM_ENTRY_BYTES) || (count % PM_ENTRY_BYTES))
1958 		goto out_mm;
1959 
1960 	ret = 0;
1961 	if (!count)
1962 		goto out_mm;
1963 
1964 	/* do not disclose physical addresses: attack vector */
1965 	pm.show_pfn = file_ns_capable(file, &init_user_ns, CAP_SYS_ADMIN);
1966 
1967 	pm.len = (PAGEMAP_WALK_SIZE >> PAGE_SHIFT);
1968 	pm.buffer = kmalloc_array(pm.len, PM_ENTRY_BYTES, GFP_KERNEL);
1969 	ret = -ENOMEM;
1970 	if (!pm.buffer)
1971 		goto out_mm;
1972 
1973 	src = *ppos;
1974 	svpfn = src / PM_ENTRY_BYTES;
1975 	end_vaddr = mm->task_size;
1976 
1977 	/* watch out for wraparound */
1978 	start_vaddr = end_vaddr;
1979 	if (svpfn <= (ULONG_MAX >> PAGE_SHIFT)) {
1980 		unsigned long end;
1981 
1982 		ret = mmap_read_lock_killable(mm);
1983 		if (ret)
1984 			goto out_free;
1985 		start_vaddr = untagged_addr_remote(mm, svpfn << PAGE_SHIFT);
1986 		mmap_read_unlock(mm);
1987 
1988 		end = start_vaddr + ((count / PM_ENTRY_BYTES) << PAGE_SHIFT);
1989 		if (end >= start_vaddr && end < mm->task_size)
1990 			end_vaddr = end;
1991 	}
1992 
1993 	/* Ensure the address is inside the task */
1994 	if (start_vaddr > mm->task_size)
1995 		start_vaddr = end_vaddr;
1996 
1997 	ret = 0;
1998 	while (count && (start_vaddr < end_vaddr)) {
1999 		int len;
2000 		unsigned long end;
2001 
2002 		pm.pos = 0;
2003 		end = (start_vaddr + PAGEMAP_WALK_SIZE) & PAGEMAP_WALK_MASK;
2004 		/* overflow ? */
2005 		if (end < start_vaddr || end > end_vaddr)
2006 			end = end_vaddr;
2007 		ret = mmap_read_lock_killable(mm);
2008 		if (ret)
2009 			goto out_free;
2010 		ret = walk_page_range(mm, start_vaddr, end, &pagemap_ops, &pm);
2011 		mmap_read_unlock(mm);
2012 		start_vaddr = end;
2013 
2014 		len = min(count, PM_ENTRY_BYTES * pm.pos);
2015 		if (copy_to_user(buf, pm.buffer, len)) {
2016 			ret = -EFAULT;
2017 			goto out_free;
2018 		}
2019 		copied += len;
2020 		buf += len;
2021 		count -= len;
2022 	}
2023 	*ppos += copied;
2024 	if (!ret || ret == PM_END_OF_BUFFER)
2025 		ret = copied;
2026 
2027 out_free:
2028 	kfree(pm.buffer);
2029 out_mm:
2030 	mmput(mm);
2031 out:
2032 	return ret;
2033 }
2034 
2035 static int pagemap_open(struct inode *inode, struct file *file)
2036 {
2037 	struct mm_struct *mm;
2038 
2039 	mm = proc_mem_open(inode, PTRACE_MODE_READ);
2040 	if (IS_ERR(mm))
2041 		return PTR_ERR(mm);
2042 	file->private_data = mm;
2043 	return 0;
2044 }
2045 
2046 static int pagemap_release(struct inode *inode, struct file *file)
2047 {
2048 	struct mm_struct *mm = file->private_data;
2049 
2050 	if (mm)
2051 		mmdrop(mm);
2052 	return 0;
2053 }
2054 
2055 #define PM_SCAN_CATEGORIES	(PAGE_IS_WPALLOWED | PAGE_IS_WRITTEN |	\
2056 				 PAGE_IS_FILE |	PAGE_IS_PRESENT |	\
2057 				 PAGE_IS_SWAPPED | PAGE_IS_PFNZERO |	\
2058 				 PAGE_IS_HUGE | PAGE_IS_SOFT_DIRTY)
2059 #define PM_SCAN_FLAGS		(PM_SCAN_WP_MATCHING | PM_SCAN_CHECK_WPASYNC)
2060 
2061 struct pagemap_scan_private {
2062 	struct pm_scan_arg arg;
2063 	unsigned long masks_of_interest, cur_vma_category;
2064 	struct page_region *vec_buf;
2065 	unsigned long vec_buf_len, vec_buf_index, found_pages;
2066 	struct page_region __user *vec_out;
2067 };
2068 
2069 static unsigned long pagemap_page_category(struct pagemap_scan_private *p,
2070 					   struct vm_area_struct *vma,
2071 					   unsigned long addr, pte_t pte)
2072 {
2073 	unsigned long categories = 0;
2074 
2075 	if (pte_present(pte)) {
2076 		struct page *page;
2077 
2078 		categories |= PAGE_IS_PRESENT;
2079 		if (!pte_uffd_wp(pte))
2080 			categories |= PAGE_IS_WRITTEN;
2081 
2082 		if (p->masks_of_interest & PAGE_IS_FILE) {
2083 			page = vm_normal_page(vma, addr, pte);
2084 			if (page && !PageAnon(page))
2085 				categories |= PAGE_IS_FILE;
2086 		}
2087 
2088 		if (is_zero_pfn(pte_pfn(pte)))
2089 			categories |= PAGE_IS_PFNZERO;
2090 		if (pte_soft_dirty(pte))
2091 			categories |= PAGE_IS_SOFT_DIRTY;
2092 	} else if (is_swap_pte(pte)) {
2093 		swp_entry_t swp;
2094 
2095 		categories |= PAGE_IS_SWAPPED;
2096 		if (!pte_swp_uffd_wp_any(pte))
2097 			categories |= PAGE_IS_WRITTEN;
2098 
2099 		if (p->masks_of_interest & PAGE_IS_FILE) {
2100 			swp = pte_to_swp_entry(pte);
2101 			if (is_pfn_swap_entry(swp) &&
2102 			    !folio_test_anon(pfn_swap_entry_folio(swp)))
2103 				categories |= PAGE_IS_FILE;
2104 		}
2105 		if (pte_swp_soft_dirty(pte))
2106 			categories |= PAGE_IS_SOFT_DIRTY;
2107 	}
2108 
2109 	return categories;
2110 }
2111 
2112 static void make_uffd_wp_pte(struct vm_area_struct *vma,
2113 			     unsigned long addr, pte_t *pte, pte_t ptent)
2114 {
2115 	if (pte_present(ptent)) {
2116 		pte_t old_pte;
2117 
2118 		old_pte = ptep_modify_prot_start(vma, addr, pte);
2119 		ptent = pte_mkuffd_wp(old_pte);
2120 		ptep_modify_prot_commit(vma, addr, pte, old_pte, ptent);
2121 	} else if (is_swap_pte(ptent)) {
2122 		ptent = pte_swp_mkuffd_wp(ptent);
2123 		set_pte_at(vma->vm_mm, addr, pte, ptent);
2124 	} else {
2125 		set_pte_at(vma->vm_mm, addr, pte,
2126 			   make_pte_marker(PTE_MARKER_UFFD_WP));
2127 	}
2128 }
2129 
2130 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2131 static unsigned long pagemap_thp_category(struct pagemap_scan_private *p,
2132 					  struct vm_area_struct *vma,
2133 					  unsigned long addr, pmd_t pmd)
2134 {
2135 	unsigned long categories = PAGE_IS_HUGE;
2136 
2137 	if (pmd_present(pmd)) {
2138 		struct page *page;
2139 
2140 		categories |= PAGE_IS_PRESENT;
2141 		if (!pmd_uffd_wp(pmd))
2142 			categories |= PAGE_IS_WRITTEN;
2143 
2144 		if (p->masks_of_interest & PAGE_IS_FILE) {
2145 			page = vm_normal_page_pmd(vma, addr, pmd);
2146 			if (page && !PageAnon(page))
2147 				categories |= PAGE_IS_FILE;
2148 		}
2149 
2150 		if (is_zero_pfn(pmd_pfn(pmd)))
2151 			categories |= PAGE_IS_PFNZERO;
2152 		if (pmd_soft_dirty(pmd))
2153 			categories |= PAGE_IS_SOFT_DIRTY;
2154 	} else if (is_swap_pmd(pmd)) {
2155 		swp_entry_t swp;
2156 
2157 		categories |= PAGE_IS_SWAPPED;
2158 		if (!pmd_swp_uffd_wp(pmd))
2159 			categories |= PAGE_IS_WRITTEN;
2160 		if (pmd_swp_soft_dirty(pmd))
2161 			categories |= PAGE_IS_SOFT_DIRTY;
2162 
2163 		if (p->masks_of_interest & PAGE_IS_FILE) {
2164 			swp = pmd_to_swp_entry(pmd);
2165 			if (is_pfn_swap_entry(swp) &&
2166 			    !folio_test_anon(pfn_swap_entry_folio(swp)))
2167 				categories |= PAGE_IS_FILE;
2168 		}
2169 	}
2170 
2171 	return categories;
2172 }
2173 
2174 static void make_uffd_wp_pmd(struct vm_area_struct *vma,
2175 			     unsigned long addr, pmd_t *pmdp)
2176 {
2177 	pmd_t old, pmd = *pmdp;
2178 
2179 	if (pmd_present(pmd)) {
2180 		old = pmdp_invalidate_ad(vma, addr, pmdp);
2181 		pmd = pmd_mkuffd_wp(old);
2182 		set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
2183 	} else if (is_migration_entry(pmd_to_swp_entry(pmd))) {
2184 		pmd = pmd_swp_mkuffd_wp(pmd);
2185 		set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
2186 	}
2187 }
2188 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2189 
2190 #ifdef CONFIG_HUGETLB_PAGE
2191 static unsigned long pagemap_hugetlb_category(pte_t pte)
2192 {
2193 	unsigned long categories = PAGE_IS_HUGE;
2194 
2195 	/*
2196 	 * According to pagemap_hugetlb_range(), file-backed HugeTLB
2197 	 * page cannot be swapped. So PAGE_IS_FILE is not checked for
2198 	 * swapped pages.
2199 	 */
2200 	if (pte_present(pte)) {
2201 		categories |= PAGE_IS_PRESENT;
2202 		if (!huge_pte_uffd_wp(pte))
2203 			categories |= PAGE_IS_WRITTEN;
2204 		if (!PageAnon(pte_page(pte)))
2205 			categories |= PAGE_IS_FILE;
2206 		if (is_zero_pfn(pte_pfn(pte)))
2207 			categories |= PAGE_IS_PFNZERO;
2208 		if (pte_soft_dirty(pte))
2209 			categories |= PAGE_IS_SOFT_DIRTY;
2210 	} else if (is_swap_pte(pte)) {
2211 		categories |= PAGE_IS_SWAPPED;
2212 		if (!pte_swp_uffd_wp_any(pte))
2213 			categories |= PAGE_IS_WRITTEN;
2214 		if (pte_swp_soft_dirty(pte))
2215 			categories |= PAGE_IS_SOFT_DIRTY;
2216 	}
2217 
2218 	return categories;
2219 }
2220 
2221 static void make_uffd_wp_huge_pte(struct vm_area_struct *vma,
2222 				  unsigned long addr, pte_t *ptep,
2223 				  pte_t ptent)
2224 {
2225 	unsigned long psize;
2226 
2227 	if (is_hugetlb_entry_hwpoisoned(ptent) || is_pte_marker(ptent))
2228 		return;
2229 
2230 	psize = huge_page_size(hstate_vma(vma));
2231 
2232 	if (is_hugetlb_entry_migration(ptent))
2233 		set_huge_pte_at(vma->vm_mm, addr, ptep,
2234 				pte_swp_mkuffd_wp(ptent), psize);
2235 	else if (!huge_pte_none(ptent))
2236 		huge_ptep_modify_prot_commit(vma, addr, ptep, ptent,
2237 					     huge_pte_mkuffd_wp(ptent));
2238 	else
2239 		set_huge_pte_at(vma->vm_mm, addr, ptep,
2240 				make_pte_marker(PTE_MARKER_UFFD_WP), psize);
2241 }
2242 #endif /* CONFIG_HUGETLB_PAGE */
2243 
2244 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLB_PAGE)
2245 static void pagemap_scan_backout_range(struct pagemap_scan_private *p,
2246 				       unsigned long addr, unsigned long end)
2247 {
2248 	struct page_region *cur_buf = &p->vec_buf[p->vec_buf_index];
2249 
2250 	if (cur_buf->start != addr)
2251 		cur_buf->end = addr;
2252 	else
2253 		cur_buf->start = cur_buf->end = 0;
2254 
2255 	p->found_pages -= (end - addr) / PAGE_SIZE;
2256 }
2257 #endif
2258 
2259 static bool pagemap_scan_is_interesting_page(unsigned long categories,
2260 					     const struct pagemap_scan_private *p)
2261 {
2262 	categories ^= p->arg.category_inverted;
2263 	if ((categories & p->arg.category_mask) != p->arg.category_mask)
2264 		return false;
2265 	if (p->arg.category_anyof_mask && !(categories & p->arg.category_anyof_mask))
2266 		return false;
2267 
2268 	return true;
2269 }
2270 
2271 static bool pagemap_scan_is_interesting_vma(unsigned long categories,
2272 					    const struct pagemap_scan_private *p)
2273 {
2274 	unsigned long required = p->arg.category_mask & PAGE_IS_WPALLOWED;
2275 
2276 	categories ^= p->arg.category_inverted;
2277 	if ((categories & required) != required)
2278 		return false;
2279 
2280 	return true;
2281 }
2282 
2283 static int pagemap_scan_test_walk(unsigned long start, unsigned long end,
2284 				  struct mm_walk *walk)
2285 {
2286 	struct pagemap_scan_private *p = walk->private;
2287 	struct vm_area_struct *vma = walk->vma;
2288 	unsigned long vma_category = 0;
2289 	bool wp_allowed = userfaultfd_wp_async(vma) &&
2290 	    userfaultfd_wp_use_markers(vma);
2291 
2292 	if (!wp_allowed) {
2293 		/* User requested explicit failure over wp-async capability */
2294 		if (p->arg.flags & PM_SCAN_CHECK_WPASYNC)
2295 			return -EPERM;
2296 		/*
2297 		 * User requires wr-protect, and allows silently skipping
2298 		 * unsupported vmas.
2299 		 */
2300 		if (p->arg.flags & PM_SCAN_WP_MATCHING)
2301 			return 1;
2302 		/*
2303 		 * Then the request doesn't involve wr-protects at all,
2304 		 * fall through to the rest checks, and allow vma walk.
2305 		 */
2306 	}
2307 
2308 	if (vma->vm_flags & VM_PFNMAP)
2309 		return 1;
2310 
2311 	if (wp_allowed)
2312 		vma_category |= PAGE_IS_WPALLOWED;
2313 
2314 	if (vma->vm_flags & VM_SOFTDIRTY)
2315 		vma_category |= PAGE_IS_SOFT_DIRTY;
2316 
2317 	if (!pagemap_scan_is_interesting_vma(vma_category, p))
2318 		return 1;
2319 
2320 	p->cur_vma_category = vma_category;
2321 
2322 	return 0;
2323 }
2324 
2325 static bool pagemap_scan_push_range(unsigned long categories,
2326 				    struct pagemap_scan_private *p,
2327 				    unsigned long addr, unsigned long end)
2328 {
2329 	struct page_region *cur_buf = &p->vec_buf[p->vec_buf_index];
2330 
2331 	/*
2332 	 * When there is no output buffer provided at all, the sentinel values
2333 	 * won't match here. There is no other way for `cur_buf->end` to be
2334 	 * non-zero other than it being non-empty.
2335 	 */
2336 	if (addr == cur_buf->end && categories == cur_buf->categories) {
2337 		cur_buf->end = end;
2338 		return true;
2339 	}
2340 
2341 	if (cur_buf->end) {
2342 		if (p->vec_buf_index >= p->vec_buf_len - 1)
2343 			return false;
2344 
2345 		cur_buf = &p->vec_buf[++p->vec_buf_index];
2346 	}
2347 
2348 	cur_buf->start = addr;
2349 	cur_buf->end = end;
2350 	cur_buf->categories = categories;
2351 
2352 	return true;
2353 }
2354 
2355 static int pagemap_scan_output(unsigned long categories,
2356 			       struct pagemap_scan_private *p,
2357 			       unsigned long addr, unsigned long *end)
2358 {
2359 	unsigned long n_pages, total_pages;
2360 	int ret = 0;
2361 
2362 	if (!p->vec_buf)
2363 		return 0;
2364 
2365 	categories &= p->arg.return_mask;
2366 
2367 	n_pages = (*end - addr) / PAGE_SIZE;
2368 	if (check_add_overflow(p->found_pages, n_pages, &total_pages) ||
2369 	    total_pages > p->arg.max_pages) {
2370 		size_t n_too_much = total_pages - p->arg.max_pages;
2371 		*end -= n_too_much * PAGE_SIZE;
2372 		n_pages -= n_too_much;
2373 		ret = -ENOSPC;
2374 	}
2375 
2376 	if (!pagemap_scan_push_range(categories, p, addr, *end)) {
2377 		*end = addr;
2378 		n_pages = 0;
2379 		ret = -ENOSPC;
2380 	}
2381 
2382 	p->found_pages += n_pages;
2383 	if (ret)
2384 		p->arg.walk_end = *end;
2385 
2386 	return ret;
2387 }
2388 
2389 static int pagemap_scan_thp_entry(pmd_t *pmd, unsigned long start,
2390 				  unsigned long end, struct mm_walk *walk)
2391 {
2392 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2393 	struct pagemap_scan_private *p = walk->private;
2394 	struct vm_area_struct *vma = walk->vma;
2395 	unsigned long categories;
2396 	spinlock_t *ptl;
2397 	int ret = 0;
2398 
2399 	ptl = pmd_trans_huge_lock(pmd, vma);
2400 	if (!ptl)
2401 		return -ENOENT;
2402 
2403 	categories = p->cur_vma_category |
2404 		     pagemap_thp_category(p, vma, start, *pmd);
2405 
2406 	if (!pagemap_scan_is_interesting_page(categories, p))
2407 		goto out_unlock;
2408 
2409 	ret = pagemap_scan_output(categories, p, start, &end);
2410 	if (start == end)
2411 		goto out_unlock;
2412 
2413 	if (~p->arg.flags & PM_SCAN_WP_MATCHING)
2414 		goto out_unlock;
2415 	if (~categories & PAGE_IS_WRITTEN)
2416 		goto out_unlock;
2417 
2418 	/*
2419 	 * Break huge page into small pages if the WP operation
2420 	 * needs to be performed on a portion of the huge page.
2421 	 */
2422 	if (end != start + HPAGE_SIZE) {
2423 		spin_unlock(ptl);
2424 		split_huge_pmd(vma, pmd, start);
2425 		pagemap_scan_backout_range(p, start, end);
2426 		/* Report as if there was no THP */
2427 		return -ENOENT;
2428 	}
2429 
2430 	make_uffd_wp_pmd(vma, start, pmd);
2431 	flush_tlb_range(vma, start, end);
2432 out_unlock:
2433 	spin_unlock(ptl);
2434 	return ret;
2435 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */
2436 	return -ENOENT;
2437 #endif
2438 }
2439 
2440 static int pagemap_scan_pmd_entry(pmd_t *pmd, unsigned long start,
2441 				  unsigned long end, struct mm_walk *walk)
2442 {
2443 	struct pagemap_scan_private *p = walk->private;
2444 	struct vm_area_struct *vma = walk->vma;
2445 	unsigned long addr, flush_end = 0;
2446 	pte_t *pte, *start_pte;
2447 	spinlock_t *ptl;
2448 	int ret;
2449 
2450 	arch_enter_lazy_mmu_mode();
2451 
2452 	ret = pagemap_scan_thp_entry(pmd, start, end, walk);
2453 	if (ret != -ENOENT) {
2454 		arch_leave_lazy_mmu_mode();
2455 		return ret;
2456 	}
2457 
2458 	ret = 0;
2459 	start_pte = pte = pte_offset_map_lock(vma->vm_mm, pmd, start, &ptl);
2460 	if (!pte) {
2461 		arch_leave_lazy_mmu_mode();
2462 		walk->action = ACTION_AGAIN;
2463 		return 0;
2464 	}
2465 
2466 	if ((p->arg.flags & PM_SCAN_WP_MATCHING) && !p->vec_out) {
2467 		/* Fast path for performing exclusive WP */
2468 		for (addr = start; addr != end; pte++, addr += PAGE_SIZE) {
2469 			pte_t ptent = ptep_get(pte);
2470 
2471 			if ((pte_present(ptent) && pte_uffd_wp(ptent)) ||
2472 			    pte_swp_uffd_wp_any(ptent))
2473 				continue;
2474 			make_uffd_wp_pte(vma, addr, pte, ptent);
2475 			if (!flush_end)
2476 				start = addr;
2477 			flush_end = addr + PAGE_SIZE;
2478 		}
2479 		goto flush_and_return;
2480 	}
2481 
2482 	if (!p->arg.category_anyof_mask && !p->arg.category_inverted &&
2483 	    p->arg.category_mask == PAGE_IS_WRITTEN &&
2484 	    p->arg.return_mask == PAGE_IS_WRITTEN) {
2485 		for (addr = start; addr < end; pte++, addr += PAGE_SIZE) {
2486 			unsigned long next = addr + PAGE_SIZE;
2487 			pte_t ptent = ptep_get(pte);
2488 
2489 			if ((pte_present(ptent) && pte_uffd_wp(ptent)) ||
2490 			    pte_swp_uffd_wp_any(ptent))
2491 				continue;
2492 			ret = pagemap_scan_output(p->cur_vma_category | PAGE_IS_WRITTEN,
2493 						  p, addr, &next);
2494 			if (next == addr)
2495 				break;
2496 			if (~p->arg.flags & PM_SCAN_WP_MATCHING)
2497 				continue;
2498 			make_uffd_wp_pte(vma, addr, pte, ptent);
2499 			if (!flush_end)
2500 				start = addr;
2501 			flush_end = next;
2502 		}
2503 		goto flush_and_return;
2504 	}
2505 
2506 	for (addr = start; addr != end; pte++, addr += PAGE_SIZE) {
2507 		pte_t ptent = ptep_get(pte);
2508 		unsigned long categories = p->cur_vma_category |
2509 					   pagemap_page_category(p, vma, addr, ptent);
2510 		unsigned long next = addr + PAGE_SIZE;
2511 
2512 		if (!pagemap_scan_is_interesting_page(categories, p))
2513 			continue;
2514 
2515 		ret = pagemap_scan_output(categories, p, addr, &next);
2516 		if (next == addr)
2517 			break;
2518 
2519 		if (~p->arg.flags & PM_SCAN_WP_MATCHING)
2520 			continue;
2521 		if (~categories & PAGE_IS_WRITTEN)
2522 			continue;
2523 
2524 		make_uffd_wp_pte(vma, addr, pte, ptent);
2525 		if (!flush_end)
2526 			start = addr;
2527 		flush_end = next;
2528 	}
2529 
2530 flush_and_return:
2531 	if (flush_end)
2532 		flush_tlb_range(vma, start, addr);
2533 
2534 	pte_unmap_unlock(start_pte, ptl);
2535 	arch_leave_lazy_mmu_mode();
2536 
2537 	cond_resched();
2538 	return ret;
2539 }
2540 
2541 #ifdef CONFIG_HUGETLB_PAGE
2542 static int pagemap_scan_hugetlb_entry(pte_t *ptep, unsigned long hmask,
2543 				      unsigned long start, unsigned long end,
2544 				      struct mm_walk *walk)
2545 {
2546 	struct pagemap_scan_private *p = walk->private;
2547 	struct vm_area_struct *vma = walk->vma;
2548 	unsigned long categories;
2549 	spinlock_t *ptl;
2550 	int ret = 0;
2551 	pte_t pte;
2552 
2553 	if (~p->arg.flags & PM_SCAN_WP_MATCHING) {
2554 		/* Go the short route when not write-protecting pages. */
2555 
2556 		pte = huge_ptep_get(walk->mm, start, ptep);
2557 		categories = p->cur_vma_category | pagemap_hugetlb_category(pte);
2558 
2559 		if (!pagemap_scan_is_interesting_page(categories, p))
2560 			return 0;
2561 
2562 		return pagemap_scan_output(categories, p, start, &end);
2563 	}
2564 
2565 	i_mmap_lock_write(vma->vm_file->f_mapping);
2566 	ptl = huge_pte_lock(hstate_vma(vma), vma->vm_mm, ptep);
2567 
2568 	pte = huge_ptep_get(walk->mm, start, ptep);
2569 	categories = p->cur_vma_category | pagemap_hugetlb_category(pte);
2570 
2571 	if (!pagemap_scan_is_interesting_page(categories, p))
2572 		goto out_unlock;
2573 
2574 	ret = pagemap_scan_output(categories, p, start, &end);
2575 	if (start == end)
2576 		goto out_unlock;
2577 
2578 	if (~categories & PAGE_IS_WRITTEN)
2579 		goto out_unlock;
2580 
2581 	if (end != start + HPAGE_SIZE) {
2582 		/* Partial HugeTLB page WP isn't possible. */
2583 		pagemap_scan_backout_range(p, start, end);
2584 		p->arg.walk_end = start;
2585 		ret = 0;
2586 		goto out_unlock;
2587 	}
2588 
2589 	make_uffd_wp_huge_pte(vma, start, ptep, pte);
2590 	flush_hugetlb_tlb_range(vma, start, end);
2591 
2592 out_unlock:
2593 	spin_unlock(ptl);
2594 	i_mmap_unlock_write(vma->vm_file->f_mapping);
2595 
2596 	return ret;
2597 }
2598 #else
2599 #define pagemap_scan_hugetlb_entry NULL
2600 #endif
2601 
2602 static int pagemap_scan_pte_hole(unsigned long addr, unsigned long end,
2603 				 int depth, struct mm_walk *walk)
2604 {
2605 	struct pagemap_scan_private *p = walk->private;
2606 	struct vm_area_struct *vma = walk->vma;
2607 	int ret, err;
2608 
2609 	if (!vma || !pagemap_scan_is_interesting_page(p->cur_vma_category, p))
2610 		return 0;
2611 
2612 	ret = pagemap_scan_output(p->cur_vma_category, p, addr, &end);
2613 	if (addr == end)
2614 		return ret;
2615 
2616 	if (~p->arg.flags & PM_SCAN_WP_MATCHING)
2617 		return ret;
2618 
2619 	err = uffd_wp_range(vma, addr, end - addr, true);
2620 	if (err < 0)
2621 		ret = err;
2622 
2623 	return ret;
2624 }
2625 
2626 static const struct mm_walk_ops pagemap_scan_ops = {
2627 	.test_walk = pagemap_scan_test_walk,
2628 	.pmd_entry = pagemap_scan_pmd_entry,
2629 	.pte_hole = pagemap_scan_pte_hole,
2630 	.hugetlb_entry = pagemap_scan_hugetlb_entry,
2631 };
2632 
2633 static int pagemap_scan_get_args(struct pm_scan_arg *arg,
2634 				 unsigned long uarg)
2635 {
2636 	if (copy_from_user(arg, (void __user *)uarg, sizeof(*arg)))
2637 		return -EFAULT;
2638 
2639 	if (arg->size != sizeof(struct pm_scan_arg))
2640 		return -EINVAL;
2641 
2642 	/* Validate requested features */
2643 	if (arg->flags & ~PM_SCAN_FLAGS)
2644 		return -EINVAL;
2645 	if ((arg->category_inverted | arg->category_mask |
2646 	     arg->category_anyof_mask | arg->return_mask) & ~PM_SCAN_CATEGORIES)
2647 		return -EINVAL;
2648 
2649 	arg->start = untagged_addr((unsigned long)arg->start);
2650 	arg->end = untagged_addr((unsigned long)arg->end);
2651 	arg->vec = untagged_addr((unsigned long)arg->vec);
2652 
2653 	/* Validate memory pointers */
2654 	if (!IS_ALIGNED(arg->start, PAGE_SIZE))
2655 		return -EINVAL;
2656 	if (!access_ok((void __user *)(long)arg->start, arg->end - arg->start))
2657 		return -EFAULT;
2658 	if (!arg->vec && arg->vec_len)
2659 		return -EINVAL;
2660 	if (arg->vec && !access_ok((void __user *)(long)arg->vec,
2661 			      arg->vec_len * sizeof(struct page_region)))
2662 		return -EFAULT;
2663 
2664 	/* Fixup default values */
2665 	arg->end = ALIGN(arg->end, PAGE_SIZE);
2666 	arg->walk_end = 0;
2667 	if (!arg->max_pages)
2668 		arg->max_pages = ULONG_MAX;
2669 
2670 	return 0;
2671 }
2672 
2673 static int pagemap_scan_writeback_args(struct pm_scan_arg *arg,
2674 				       unsigned long uargl)
2675 {
2676 	struct pm_scan_arg __user *uarg	= (void __user *)uargl;
2677 
2678 	if (copy_to_user(&uarg->walk_end, &arg->walk_end, sizeof(arg->walk_end)))
2679 		return -EFAULT;
2680 
2681 	return 0;
2682 }
2683 
2684 static int pagemap_scan_init_bounce_buffer(struct pagemap_scan_private *p)
2685 {
2686 	if (!p->arg.vec_len)
2687 		return 0;
2688 
2689 	p->vec_buf_len = min_t(size_t, PAGEMAP_WALK_SIZE >> PAGE_SHIFT,
2690 			       p->arg.vec_len);
2691 	p->vec_buf = kmalloc_array(p->vec_buf_len, sizeof(*p->vec_buf),
2692 				   GFP_KERNEL);
2693 	if (!p->vec_buf)
2694 		return -ENOMEM;
2695 
2696 	p->vec_buf->start = p->vec_buf->end = 0;
2697 	p->vec_out = (struct page_region __user *)(long)p->arg.vec;
2698 
2699 	return 0;
2700 }
2701 
2702 static long pagemap_scan_flush_buffer(struct pagemap_scan_private *p)
2703 {
2704 	const struct page_region *buf = p->vec_buf;
2705 	long n = p->vec_buf_index;
2706 
2707 	if (!p->vec_buf)
2708 		return 0;
2709 
2710 	if (buf[n].end != buf[n].start)
2711 		n++;
2712 
2713 	if (!n)
2714 		return 0;
2715 
2716 	if (copy_to_user(p->vec_out, buf, n * sizeof(*buf)))
2717 		return -EFAULT;
2718 
2719 	p->arg.vec_len -= n;
2720 	p->vec_out += n;
2721 
2722 	p->vec_buf_index = 0;
2723 	p->vec_buf_len = min_t(size_t, p->vec_buf_len, p->arg.vec_len);
2724 	p->vec_buf->start = p->vec_buf->end = 0;
2725 
2726 	return n;
2727 }
2728 
2729 static long do_pagemap_scan(struct mm_struct *mm, unsigned long uarg)
2730 {
2731 	struct pagemap_scan_private p = {0};
2732 	unsigned long walk_start;
2733 	size_t n_ranges_out = 0;
2734 	int ret;
2735 
2736 	ret = pagemap_scan_get_args(&p.arg, uarg);
2737 	if (ret)
2738 		return ret;
2739 
2740 	p.masks_of_interest = p.arg.category_mask | p.arg.category_anyof_mask |
2741 			      p.arg.return_mask;
2742 	ret = pagemap_scan_init_bounce_buffer(&p);
2743 	if (ret)
2744 		return ret;
2745 
2746 	for (walk_start = p.arg.start; walk_start < p.arg.end;
2747 			walk_start = p.arg.walk_end) {
2748 		struct mmu_notifier_range range;
2749 		long n_out;
2750 
2751 		if (fatal_signal_pending(current)) {
2752 			ret = -EINTR;
2753 			break;
2754 		}
2755 
2756 		ret = mmap_read_lock_killable(mm);
2757 		if (ret)
2758 			break;
2759 
2760 		/* Protection change for the range is going to happen. */
2761 		if (p.arg.flags & PM_SCAN_WP_MATCHING) {
2762 			mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA, 0,
2763 						mm, walk_start, p.arg.end);
2764 			mmu_notifier_invalidate_range_start(&range);
2765 		}
2766 
2767 		ret = walk_page_range(mm, walk_start, p.arg.end,
2768 				      &pagemap_scan_ops, &p);
2769 
2770 		if (p.arg.flags & PM_SCAN_WP_MATCHING)
2771 			mmu_notifier_invalidate_range_end(&range);
2772 
2773 		mmap_read_unlock(mm);
2774 
2775 		n_out = pagemap_scan_flush_buffer(&p);
2776 		if (n_out < 0)
2777 			ret = n_out;
2778 		else
2779 			n_ranges_out += n_out;
2780 
2781 		if (ret != -ENOSPC)
2782 			break;
2783 
2784 		if (p.arg.vec_len == 0 || p.found_pages == p.arg.max_pages)
2785 			break;
2786 	}
2787 
2788 	/* ENOSPC signifies early stop (buffer full) from the walk. */
2789 	if (!ret || ret == -ENOSPC)
2790 		ret = n_ranges_out;
2791 
2792 	/* The walk_end isn't set when ret is zero */
2793 	if (!p.arg.walk_end)
2794 		p.arg.walk_end = p.arg.end;
2795 	if (pagemap_scan_writeback_args(&p.arg, uarg))
2796 		ret = -EFAULT;
2797 
2798 	kfree(p.vec_buf);
2799 	return ret;
2800 }
2801 
2802 static long do_pagemap_cmd(struct file *file, unsigned int cmd,
2803 			   unsigned long arg)
2804 {
2805 	struct mm_struct *mm = file->private_data;
2806 
2807 	switch (cmd) {
2808 	case PAGEMAP_SCAN:
2809 		return do_pagemap_scan(mm, arg);
2810 
2811 	default:
2812 		return -EINVAL;
2813 	}
2814 }
2815 
2816 const struct file_operations proc_pagemap_operations = {
2817 	.llseek		= mem_lseek, /* borrow this */
2818 	.read		= pagemap_read,
2819 	.open		= pagemap_open,
2820 	.release	= pagemap_release,
2821 	.unlocked_ioctl = do_pagemap_cmd,
2822 	.compat_ioctl	= do_pagemap_cmd,
2823 };
2824 #endif /* CONFIG_PROC_PAGE_MONITOR */
2825 
2826 #ifdef CONFIG_NUMA
2827 
2828 struct numa_maps {
2829 	unsigned long pages;
2830 	unsigned long anon;
2831 	unsigned long active;
2832 	unsigned long writeback;
2833 	unsigned long mapcount_max;
2834 	unsigned long dirty;
2835 	unsigned long swapcache;
2836 	unsigned long node[MAX_NUMNODES];
2837 };
2838 
2839 struct numa_maps_private {
2840 	struct proc_maps_private proc_maps;
2841 	struct numa_maps md;
2842 };
2843 
2844 static void gather_stats(struct page *page, struct numa_maps *md, int pte_dirty,
2845 			unsigned long nr_pages)
2846 {
2847 	struct folio *folio = page_folio(page);
2848 	int count = folio_precise_page_mapcount(folio, page);
2849 
2850 	md->pages += nr_pages;
2851 	if (pte_dirty || folio_test_dirty(folio))
2852 		md->dirty += nr_pages;
2853 
2854 	if (folio_test_swapcache(folio))
2855 		md->swapcache += nr_pages;
2856 
2857 	if (folio_test_active(folio) || folio_test_unevictable(folio))
2858 		md->active += nr_pages;
2859 
2860 	if (folio_test_writeback(folio))
2861 		md->writeback += nr_pages;
2862 
2863 	if (folio_test_anon(folio))
2864 		md->anon += nr_pages;
2865 
2866 	if (count > md->mapcount_max)
2867 		md->mapcount_max = count;
2868 
2869 	md->node[folio_nid(folio)] += nr_pages;
2870 }
2871 
2872 static struct page *can_gather_numa_stats(pte_t pte, struct vm_area_struct *vma,
2873 		unsigned long addr)
2874 {
2875 	struct page *page;
2876 	int nid;
2877 
2878 	if (!pte_present(pte))
2879 		return NULL;
2880 
2881 	page = vm_normal_page(vma, addr, pte);
2882 	if (!page || is_zone_device_page(page))
2883 		return NULL;
2884 
2885 	if (PageReserved(page))
2886 		return NULL;
2887 
2888 	nid = page_to_nid(page);
2889 	if (!node_isset(nid, node_states[N_MEMORY]))
2890 		return NULL;
2891 
2892 	return page;
2893 }
2894 
2895 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2896 static struct page *can_gather_numa_stats_pmd(pmd_t pmd,
2897 					      struct vm_area_struct *vma,
2898 					      unsigned long addr)
2899 {
2900 	struct page *page;
2901 	int nid;
2902 
2903 	if (!pmd_present(pmd))
2904 		return NULL;
2905 
2906 	page = vm_normal_page_pmd(vma, addr, pmd);
2907 	if (!page)
2908 		return NULL;
2909 
2910 	if (PageReserved(page))
2911 		return NULL;
2912 
2913 	nid = page_to_nid(page);
2914 	if (!node_isset(nid, node_states[N_MEMORY]))
2915 		return NULL;
2916 
2917 	return page;
2918 }
2919 #endif
2920 
2921 static int gather_pte_stats(pmd_t *pmd, unsigned long addr,
2922 		unsigned long end, struct mm_walk *walk)
2923 {
2924 	struct numa_maps *md = walk->private;
2925 	struct vm_area_struct *vma = walk->vma;
2926 	spinlock_t *ptl;
2927 	pte_t *orig_pte;
2928 	pte_t *pte;
2929 
2930 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2931 	ptl = pmd_trans_huge_lock(pmd, vma);
2932 	if (ptl) {
2933 		struct page *page;
2934 
2935 		page = can_gather_numa_stats_pmd(*pmd, vma, addr);
2936 		if (page)
2937 			gather_stats(page, md, pmd_dirty(*pmd),
2938 				     HPAGE_PMD_SIZE/PAGE_SIZE);
2939 		spin_unlock(ptl);
2940 		return 0;
2941 	}
2942 #endif
2943 	orig_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
2944 	if (!pte) {
2945 		walk->action = ACTION_AGAIN;
2946 		return 0;
2947 	}
2948 	do {
2949 		pte_t ptent = ptep_get(pte);
2950 		struct page *page = can_gather_numa_stats(ptent, vma, addr);
2951 		if (!page)
2952 			continue;
2953 		gather_stats(page, md, pte_dirty(ptent), 1);
2954 
2955 	} while (pte++, addr += PAGE_SIZE, addr != end);
2956 	pte_unmap_unlock(orig_pte, ptl);
2957 	cond_resched();
2958 	return 0;
2959 }
2960 #ifdef CONFIG_HUGETLB_PAGE
2961 static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
2962 		unsigned long addr, unsigned long end, struct mm_walk *walk)
2963 {
2964 	pte_t huge_pte = huge_ptep_get(walk->mm, addr, pte);
2965 	struct numa_maps *md;
2966 	struct page *page;
2967 
2968 	if (!pte_present(huge_pte))
2969 		return 0;
2970 
2971 	page = pte_page(huge_pte);
2972 
2973 	md = walk->private;
2974 	gather_stats(page, md, pte_dirty(huge_pte), 1);
2975 	return 0;
2976 }
2977 
2978 #else
2979 static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
2980 		unsigned long addr, unsigned long end, struct mm_walk *walk)
2981 {
2982 	return 0;
2983 }
2984 #endif
2985 
2986 static const struct mm_walk_ops show_numa_ops = {
2987 	.hugetlb_entry = gather_hugetlb_stats,
2988 	.pmd_entry = gather_pte_stats,
2989 	.walk_lock = PGWALK_RDLOCK,
2990 };
2991 
2992 /*
2993  * Display pages allocated per node and memory policy via /proc.
2994  */
2995 static int show_numa_map(struct seq_file *m, void *v)
2996 {
2997 	struct numa_maps_private *numa_priv = m->private;
2998 	struct proc_maps_private *proc_priv = &numa_priv->proc_maps;
2999 	struct vm_area_struct *vma = v;
3000 	struct numa_maps *md = &numa_priv->md;
3001 	struct file *file = vma->vm_file;
3002 	struct mm_struct *mm = vma->vm_mm;
3003 	char buffer[64];
3004 	struct mempolicy *pol;
3005 	pgoff_t ilx;
3006 	int nid;
3007 
3008 	if (!mm)
3009 		return 0;
3010 
3011 	/* Ensure we start with an empty set of numa_maps statistics. */
3012 	memset(md, 0, sizeof(*md));
3013 
3014 	pol = __get_vma_policy(vma, vma->vm_start, &ilx);
3015 	if (pol) {
3016 		mpol_to_str(buffer, sizeof(buffer), pol);
3017 		mpol_cond_put(pol);
3018 	} else {
3019 		mpol_to_str(buffer, sizeof(buffer), proc_priv->task_mempolicy);
3020 	}
3021 
3022 	seq_printf(m, "%08lx %s", vma->vm_start, buffer);
3023 
3024 	if (file) {
3025 		seq_puts(m, " file=");
3026 		seq_path(m, file_user_path(file), "\n\t= ");
3027 	} else if (vma_is_initial_heap(vma)) {
3028 		seq_puts(m, " heap");
3029 	} else if (vma_is_initial_stack(vma)) {
3030 		seq_puts(m, " stack");
3031 	}
3032 
3033 	if (is_vm_hugetlb_page(vma))
3034 		seq_puts(m, " huge");
3035 
3036 	/* mmap_lock is held by m_start */
3037 	walk_page_vma(vma, &show_numa_ops, md);
3038 
3039 	if (!md->pages)
3040 		goto out;
3041 
3042 	if (md->anon)
3043 		seq_printf(m, " anon=%lu", md->anon);
3044 
3045 	if (md->dirty)
3046 		seq_printf(m, " dirty=%lu", md->dirty);
3047 
3048 	if (md->pages != md->anon && md->pages != md->dirty)
3049 		seq_printf(m, " mapped=%lu", md->pages);
3050 
3051 	if (md->mapcount_max > 1)
3052 		seq_printf(m, " mapmax=%lu", md->mapcount_max);
3053 
3054 	if (md->swapcache)
3055 		seq_printf(m, " swapcache=%lu", md->swapcache);
3056 
3057 	if (md->active < md->pages && !is_vm_hugetlb_page(vma))
3058 		seq_printf(m, " active=%lu", md->active);
3059 
3060 	if (md->writeback)
3061 		seq_printf(m, " writeback=%lu", md->writeback);
3062 
3063 	for_each_node_state(nid, N_MEMORY)
3064 		if (md->node[nid])
3065 			seq_printf(m, " N%d=%lu", nid, md->node[nid]);
3066 
3067 	seq_printf(m, " kernelpagesize_kB=%lu", vma_kernel_pagesize(vma) >> 10);
3068 out:
3069 	seq_putc(m, '\n');
3070 	return 0;
3071 }
3072 
3073 static const struct seq_operations proc_pid_numa_maps_op = {
3074 	.start  = m_start,
3075 	.next   = m_next,
3076 	.stop   = m_stop,
3077 	.show   = show_numa_map,
3078 };
3079 
3080 static int pid_numa_maps_open(struct inode *inode, struct file *file)
3081 {
3082 	return proc_maps_open(inode, file, &proc_pid_numa_maps_op,
3083 				sizeof(struct numa_maps_private));
3084 }
3085 
3086 const struct file_operations proc_pid_numa_maps_operations = {
3087 	.open		= pid_numa_maps_open,
3088 	.read		= seq_read,
3089 	.llseek		= seq_lseek,
3090 	.release	= proc_map_release,
3091 };
3092 
3093 #endif /* CONFIG_NUMA */
3094