xref: /linux/fs/proc/task_mmu.c (revision d9996de40b121d976a17515aada54c54350e3f21)
1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/pagewalk.h>
3 #include <linux/mm_inline.h>
4 #include <linux/hugetlb.h>
5 #include <linux/huge_mm.h>
6 #include <linux/mount.h>
7 #include <linux/ksm.h>
8 #include <linux/seq_file.h>
9 #include <linux/highmem.h>
10 #include <linux/ptrace.h>
11 #include <linux/slab.h>
12 #include <linux/pagemap.h>
13 #include <linux/mempolicy.h>
14 #include <linux/rmap.h>
15 #include <linux/swap.h>
16 #include <linux/sched/mm.h>
17 #include <linux/swapops.h>
18 #include <linux/mmu_notifier.h>
19 #include <linux/page_idle.h>
20 #include <linux/shmem_fs.h>
21 #include <linux/uaccess.h>
22 #include <linux/pkeys.h>
23 #include <linux/minmax.h>
24 #include <linux/overflow.h>
25 #include <linux/buildid.h>
26 
27 #include <asm/elf.h>
28 #include <asm/tlb.h>
29 #include <asm/tlbflush.h>
30 #include "internal.h"
31 
32 #define SEQ_PUT_DEC(str, val) \
33 		seq_put_decimal_ull_width(m, str, (val) << (PAGE_SHIFT-10), 8)
34 void task_mem(struct seq_file *m, struct mm_struct *mm)
35 {
36 	unsigned long text, lib, swap, anon, file, shmem;
37 	unsigned long hiwater_vm, total_vm, hiwater_rss, total_rss;
38 
39 	anon = get_mm_counter(mm, MM_ANONPAGES);
40 	file = get_mm_counter(mm, MM_FILEPAGES);
41 	shmem = get_mm_counter(mm, MM_SHMEMPAGES);
42 
43 	/*
44 	 * Note: to minimize their overhead, mm maintains hiwater_vm and
45 	 * hiwater_rss only when about to *lower* total_vm or rss.  Any
46 	 * collector of these hiwater stats must therefore get total_vm
47 	 * and rss too, which will usually be the higher.  Barriers? not
48 	 * worth the effort, such snapshots can always be inconsistent.
49 	 */
50 	hiwater_vm = total_vm = mm->total_vm;
51 	if (hiwater_vm < mm->hiwater_vm)
52 		hiwater_vm = mm->hiwater_vm;
53 	hiwater_rss = total_rss = anon + file + shmem;
54 	if (hiwater_rss < mm->hiwater_rss)
55 		hiwater_rss = mm->hiwater_rss;
56 
57 	/* split executable areas between text and lib */
58 	text = PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK);
59 	text = min(text, mm->exec_vm << PAGE_SHIFT);
60 	lib = (mm->exec_vm << PAGE_SHIFT) - text;
61 
62 	swap = get_mm_counter(mm, MM_SWAPENTS);
63 	SEQ_PUT_DEC("VmPeak:\t", hiwater_vm);
64 	SEQ_PUT_DEC(" kB\nVmSize:\t", total_vm);
65 	SEQ_PUT_DEC(" kB\nVmLck:\t", mm->locked_vm);
66 	SEQ_PUT_DEC(" kB\nVmPin:\t", atomic64_read(&mm->pinned_vm));
67 	SEQ_PUT_DEC(" kB\nVmHWM:\t", hiwater_rss);
68 	SEQ_PUT_DEC(" kB\nVmRSS:\t", total_rss);
69 	SEQ_PUT_DEC(" kB\nRssAnon:\t", anon);
70 	SEQ_PUT_DEC(" kB\nRssFile:\t", file);
71 	SEQ_PUT_DEC(" kB\nRssShmem:\t", shmem);
72 	SEQ_PUT_DEC(" kB\nVmData:\t", mm->data_vm);
73 	SEQ_PUT_DEC(" kB\nVmStk:\t", mm->stack_vm);
74 	seq_put_decimal_ull_width(m,
75 		    " kB\nVmExe:\t", text >> 10, 8);
76 	seq_put_decimal_ull_width(m,
77 		    " kB\nVmLib:\t", lib >> 10, 8);
78 	seq_put_decimal_ull_width(m,
79 		    " kB\nVmPTE:\t", mm_pgtables_bytes(mm) >> 10, 8);
80 	SEQ_PUT_DEC(" kB\nVmSwap:\t", swap);
81 	seq_puts(m, " kB\n");
82 	hugetlb_report_usage(m, mm);
83 }
84 #undef SEQ_PUT_DEC
85 
86 unsigned long task_vsize(struct mm_struct *mm)
87 {
88 	return PAGE_SIZE * mm->total_vm;
89 }
90 
91 unsigned long task_statm(struct mm_struct *mm,
92 			 unsigned long *shared, unsigned long *text,
93 			 unsigned long *data, unsigned long *resident)
94 {
95 	*shared = get_mm_counter(mm, MM_FILEPAGES) +
96 			get_mm_counter(mm, MM_SHMEMPAGES);
97 	*text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK))
98 								>> PAGE_SHIFT;
99 	*data = mm->data_vm + mm->stack_vm;
100 	*resident = *shared + get_mm_counter(mm, MM_ANONPAGES);
101 	return mm->total_vm;
102 }
103 
104 #ifdef CONFIG_NUMA
105 /*
106  * Save get_task_policy() for show_numa_map().
107  */
108 static void hold_task_mempolicy(struct proc_maps_private *priv)
109 {
110 	struct task_struct *task = priv->task;
111 
112 	task_lock(task);
113 	priv->task_mempolicy = get_task_policy(task);
114 	mpol_get(priv->task_mempolicy);
115 	task_unlock(task);
116 }
117 static void release_task_mempolicy(struct proc_maps_private *priv)
118 {
119 	mpol_put(priv->task_mempolicy);
120 }
121 #else
122 static void hold_task_mempolicy(struct proc_maps_private *priv)
123 {
124 }
125 static void release_task_mempolicy(struct proc_maps_private *priv)
126 {
127 }
128 #endif
129 
130 static struct vm_area_struct *proc_get_vma(struct proc_maps_private *priv,
131 						loff_t *ppos)
132 {
133 	struct vm_area_struct *vma = vma_next(&priv->iter);
134 
135 	if (vma) {
136 		*ppos = vma->vm_start;
137 	} else {
138 		*ppos = -2UL;
139 		vma = get_gate_vma(priv->mm);
140 	}
141 
142 	return vma;
143 }
144 
145 static void *m_start(struct seq_file *m, loff_t *ppos)
146 {
147 	struct proc_maps_private *priv = m->private;
148 	unsigned long last_addr = *ppos;
149 	struct mm_struct *mm;
150 
151 	/* See m_next(). Zero at the start or after lseek. */
152 	if (last_addr == -1UL)
153 		return NULL;
154 
155 	priv->task = get_proc_task(priv->inode);
156 	if (!priv->task)
157 		return ERR_PTR(-ESRCH);
158 
159 	mm = priv->mm;
160 	if (!mm || !mmget_not_zero(mm)) {
161 		put_task_struct(priv->task);
162 		priv->task = NULL;
163 		return NULL;
164 	}
165 
166 	if (mmap_read_lock_killable(mm)) {
167 		mmput(mm);
168 		put_task_struct(priv->task);
169 		priv->task = NULL;
170 		return ERR_PTR(-EINTR);
171 	}
172 
173 	vma_iter_init(&priv->iter, mm, last_addr);
174 	hold_task_mempolicy(priv);
175 	if (last_addr == -2UL)
176 		return get_gate_vma(mm);
177 
178 	return proc_get_vma(priv, ppos);
179 }
180 
181 static void *m_next(struct seq_file *m, void *v, loff_t *ppos)
182 {
183 	if (*ppos == -2UL) {
184 		*ppos = -1UL;
185 		return NULL;
186 	}
187 	return proc_get_vma(m->private, ppos);
188 }
189 
190 static void m_stop(struct seq_file *m, void *v)
191 {
192 	struct proc_maps_private *priv = m->private;
193 	struct mm_struct *mm = priv->mm;
194 
195 	if (!priv->task)
196 		return;
197 
198 	release_task_mempolicy(priv);
199 	mmap_read_unlock(mm);
200 	mmput(mm);
201 	put_task_struct(priv->task);
202 	priv->task = NULL;
203 }
204 
205 static int proc_maps_open(struct inode *inode, struct file *file,
206 			const struct seq_operations *ops, int psize)
207 {
208 	struct proc_maps_private *priv = __seq_open_private(file, ops, psize);
209 
210 	if (!priv)
211 		return -ENOMEM;
212 
213 	priv->inode = inode;
214 	priv->mm = proc_mem_open(inode, PTRACE_MODE_READ);
215 	if (IS_ERR(priv->mm)) {
216 		int err = PTR_ERR(priv->mm);
217 
218 		seq_release_private(inode, file);
219 		return err;
220 	}
221 
222 	return 0;
223 }
224 
225 static int proc_map_release(struct inode *inode, struct file *file)
226 {
227 	struct seq_file *seq = file->private_data;
228 	struct proc_maps_private *priv = seq->private;
229 
230 	if (priv->mm)
231 		mmdrop(priv->mm);
232 
233 	return seq_release_private(inode, file);
234 }
235 
236 static int do_maps_open(struct inode *inode, struct file *file,
237 			const struct seq_operations *ops)
238 {
239 	return proc_maps_open(inode, file, ops,
240 				sizeof(struct proc_maps_private));
241 }
242 
243 static void get_vma_name(struct vm_area_struct *vma,
244 			 const struct path **path,
245 			 const char **name,
246 			 const char **name_fmt)
247 {
248 	struct anon_vma_name *anon_name = vma->vm_mm ? anon_vma_name(vma) : NULL;
249 
250 	*name = NULL;
251 	*path = NULL;
252 	*name_fmt = NULL;
253 
254 	/*
255 	 * Print the dentry name for named mappings, and a
256 	 * special [heap] marker for the heap:
257 	 */
258 	if (vma->vm_file) {
259 		/*
260 		 * If user named this anon shared memory via
261 		 * prctl(PR_SET_VMA ..., use the provided name.
262 		 */
263 		if (anon_name) {
264 			*name_fmt = "[anon_shmem:%s]";
265 			*name = anon_name->name;
266 		} else {
267 			*path = file_user_path(vma->vm_file);
268 		}
269 		return;
270 	}
271 
272 	if (vma->vm_ops && vma->vm_ops->name) {
273 		*name = vma->vm_ops->name(vma);
274 		if (*name)
275 			return;
276 	}
277 
278 	*name = arch_vma_name(vma);
279 	if (*name)
280 		return;
281 
282 	if (!vma->vm_mm) {
283 		*name = "[vdso]";
284 		return;
285 	}
286 
287 	if (vma_is_initial_heap(vma)) {
288 		*name = "[heap]";
289 		return;
290 	}
291 
292 	if (vma_is_initial_stack(vma)) {
293 		*name = "[stack]";
294 		return;
295 	}
296 
297 	if (anon_name) {
298 		*name_fmt = "[anon:%s]";
299 		*name = anon_name->name;
300 		return;
301 	}
302 }
303 
304 static void show_vma_header_prefix(struct seq_file *m,
305 				   unsigned long start, unsigned long end,
306 				   vm_flags_t flags, unsigned long long pgoff,
307 				   dev_t dev, unsigned long ino)
308 {
309 	seq_setwidth(m, 25 + sizeof(void *) * 6 - 1);
310 	seq_put_hex_ll(m, NULL, start, 8);
311 	seq_put_hex_ll(m, "-", end, 8);
312 	seq_putc(m, ' ');
313 	seq_putc(m, flags & VM_READ ? 'r' : '-');
314 	seq_putc(m, flags & VM_WRITE ? 'w' : '-');
315 	seq_putc(m, flags & VM_EXEC ? 'x' : '-');
316 	seq_putc(m, flags & VM_MAYSHARE ? 's' : 'p');
317 	seq_put_hex_ll(m, " ", pgoff, 8);
318 	seq_put_hex_ll(m, " ", MAJOR(dev), 2);
319 	seq_put_hex_ll(m, ":", MINOR(dev), 2);
320 	seq_put_decimal_ull(m, " ", ino);
321 	seq_putc(m, ' ');
322 }
323 
324 static void
325 show_map_vma(struct seq_file *m, struct vm_area_struct *vma)
326 {
327 	const struct path *path;
328 	const char *name_fmt, *name;
329 	vm_flags_t flags = vma->vm_flags;
330 	unsigned long ino = 0;
331 	unsigned long long pgoff = 0;
332 	unsigned long start, end;
333 	dev_t dev = 0;
334 
335 	if (vma->vm_file) {
336 		const struct inode *inode = file_user_inode(vma->vm_file);
337 
338 		dev = inode->i_sb->s_dev;
339 		ino = inode->i_ino;
340 		pgoff = ((loff_t)vma->vm_pgoff) << PAGE_SHIFT;
341 	}
342 
343 	start = vma->vm_start;
344 	end = vma->vm_end;
345 	show_vma_header_prefix(m, start, end, flags, pgoff, dev, ino);
346 
347 	get_vma_name(vma, &path, &name, &name_fmt);
348 	if (path) {
349 		seq_pad(m, ' ');
350 		seq_path(m, path, "\n");
351 	} else if (name_fmt) {
352 		seq_pad(m, ' ');
353 		seq_printf(m, name_fmt, name);
354 	} else if (name) {
355 		seq_pad(m, ' ');
356 		seq_puts(m, name);
357 	}
358 	seq_putc(m, '\n');
359 }
360 
361 static int show_map(struct seq_file *m, void *v)
362 {
363 	show_map_vma(m, v);
364 	return 0;
365 }
366 
367 static const struct seq_operations proc_pid_maps_op = {
368 	.start	= m_start,
369 	.next	= m_next,
370 	.stop	= m_stop,
371 	.show	= show_map
372 };
373 
374 static int pid_maps_open(struct inode *inode, struct file *file)
375 {
376 	return do_maps_open(inode, file, &proc_pid_maps_op);
377 }
378 
379 #define PROCMAP_QUERY_VMA_FLAGS (				\
380 		PROCMAP_QUERY_VMA_READABLE |			\
381 		PROCMAP_QUERY_VMA_WRITABLE |			\
382 		PROCMAP_QUERY_VMA_EXECUTABLE |			\
383 		PROCMAP_QUERY_VMA_SHARED			\
384 )
385 
386 #define PROCMAP_QUERY_VALID_FLAGS_MASK (			\
387 		PROCMAP_QUERY_COVERING_OR_NEXT_VMA |		\
388 		PROCMAP_QUERY_FILE_BACKED_VMA |			\
389 		PROCMAP_QUERY_VMA_FLAGS				\
390 )
391 
392 static int query_vma_setup(struct mm_struct *mm)
393 {
394 	return mmap_read_lock_killable(mm);
395 }
396 
397 static void query_vma_teardown(struct mm_struct *mm, struct vm_area_struct *vma)
398 {
399 	mmap_read_unlock(mm);
400 }
401 
402 static struct vm_area_struct *query_vma_find_by_addr(struct mm_struct *mm, unsigned long addr)
403 {
404 	return find_vma(mm, addr);
405 }
406 
407 static struct vm_area_struct *query_matching_vma(struct mm_struct *mm,
408 						 unsigned long addr, u32 flags)
409 {
410 	struct vm_area_struct *vma;
411 
412 next_vma:
413 	vma = query_vma_find_by_addr(mm, addr);
414 	if (!vma)
415 		goto no_vma;
416 
417 	/* user requested only file-backed VMA, keep iterating */
418 	if ((flags & PROCMAP_QUERY_FILE_BACKED_VMA) && !vma->vm_file)
419 		goto skip_vma;
420 
421 	/* VMA permissions should satisfy query flags */
422 	if (flags & PROCMAP_QUERY_VMA_FLAGS) {
423 		u32 perm = 0;
424 
425 		if (flags & PROCMAP_QUERY_VMA_READABLE)
426 			perm |= VM_READ;
427 		if (flags & PROCMAP_QUERY_VMA_WRITABLE)
428 			perm |= VM_WRITE;
429 		if (flags & PROCMAP_QUERY_VMA_EXECUTABLE)
430 			perm |= VM_EXEC;
431 		if (flags & PROCMAP_QUERY_VMA_SHARED)
432 			perm |= VM_MAYSHARE;
433 
434 		if ((vma->vm_flags & perm) != perm)
435 			goto skip_vma;
436 	}
437 
438 	/* found covering VMA or user is OK with the matching next VMA */
439 	if ((flags & PROCMAP_QUERY_COVERING_OR_NEXT_VMA) || vma->vm_start <= addr)
440 		return vma;
441 
442 skip_vma:
443 	/*
444 	 * If the user needs closest matching VMA, keep iterating.
445 	 */
446 	addr = vma->vm_end;
447 	if (flags & PROCMAP_QUERY_COVERING_OR_NEXT_VMA)
448 		goto next_vma;
449 
450 no_vma:
451 	return ERR_PTR(-ENOENT);
452 }
453 
454 static int do_procmap_query(struct proc_maps_private *priv, void __user *uarg)
455 {
456 	struct procmap_query karg;
457 	struct vm_area_struct *vma;
458 	struct mm_struct *mm;
459 	const char *name = NULL;
460 	char build_id_buf[BUILD_ID_SIZE_MAX], *name_buf = NULL;
461 	__u64 usize;
462 	int err;
463 
464 	if (copy_from_user(&usize, (void __user *)uarg, sizeof(usize)))
465 		return -EFAULT;
466 	/* argument struct can never be that large, reject abuse */
467 	if (usize > PAGE_SIZE)
468 		return -E2BIG;
469 	/* argument struct should have at least query_flags and query_addr fields */
470 	if (usize < offsetofend(struct procmap_query, query_addr))
471 		return -EINVAL;
472 	err = copy_struct_from_user(&karg, sizeof(karg), uarg, usize);
473 	if (err)
474 		return err;
475 
476 	/* reject unknown flags */
477 	if (karg.query_flags & ~PROCMAP_QUERY_VALID_FLAGS_MASK)
478 		return -EINVAL;
479 	/* either both buffer address and size are set, or both should be zero */
480 	if (!!karg.vma_name_size != !!karg.vma_name_addr)
481 		return -EINVAL;
482 	if (!!karg.build_id_size != !!karg.build_id_addr)
483 		return -EINVAL;
484 
485 	mm = priv->mm;
486 	if (!mm || !mmget_not_zero(mm))
487 		return -ESRCH;
488 
489 	err = query_vma_setup(mm);
490 	if (err) {
491 		mmput(mm);
492 		return err;
493 	}
494 
495 	vma = query_matching_vma(mm, karg.query_addr, karg.query_flags);
496 	if (IS_ERR(vma)) {
497 		err = PTR_ERR(vma);
498 		vma = NULL;
499 		goto out;
500 	}
501 
502 	karg.vma_start = vma->vm_start;
503 	karg.vma_end = vma->vm_end;
504 
505 	karg.vma_flags = 0;
506 	if (vma->vm_flags & VM_READ)
507 		karg.vma_flags |= PROCMAP_QUERY_VMA_READABLE;
508 	if (vma->vm_flags & VM_WRITE)
509 		karg.vma_flags |= PROCMAP_QUERY_VMA_WRITABLE;
510 	if (vma->vm_flags & VM_EXEC)
511 		karg.vma_flags |= PROCMAP_QUERY_VMA_EXECUTABLE;
512 	if (vma->vm_flags & VM_MAYSHARE)
513 		karg.vma_flags |= PROCMAP_QUERY_VMA_SHARED;
514 
515 	karg.vma_page_size = vma_kernel_pagesize(vma);
516 
517 	if (vma->vm_file) {
518 		const struct inode *inode = file_user_inode(vma->vm_file);
519 
520 		karg.vma_offset = ((__u64)vma->vm_pgoff) << PAGE_SHIFT;
521 		karg.dev_major = MAJOR(inode->i_sb->s_dev);
522 		karg.dev_minor = MINOR(inode->i_sb->s_dev);
523 		karg.inode = inode->i_ino;
524 	} else {
525 		karg.vma_offset = 0;
526 		karg.dev_major = 0;
527 		karg.dev_minor = 0;
528 		karg.inode = 0;
529 	}
530 
531 	if (karg.build_id_size) {
532 		__u32 build_id_sz;
533 
534 		err = build_id_parse(vma, build_id_buf, &build_id_sz);
535 		if (err) {
536 			karg.build_id_size = 0;
537 		} else {
538 			if (karg.build_id_size < build_id_sz) {
539 				err = -ENAMETOOLONG;
540 				goto out;
541 			}
542 			karg.build_id_size = build_id_sz;
543 		}
544 	}
545 
546 	if (karg.vma_name_size) {
547 		size_t name_buf_sz = min_t(size_t, PATH_MAX, karg.vma_name_size);
548 		const struct path *path;
549 		const char *name_fmt;
550 		size_t name_sz = 0;
551 
552 		get_vma_name(vma, &path, &name, &name_fmt);
553 
554 		if (path || name_fmt || name) {
555 			name_buf = kmalloc(name_buf_sz, GFP_KERNEL);
556 			if (!name_buf) {
557 				err = -ENOMEM;
558 				goto out;
559 			}
560 		}
561 		if (path) {
562 			name = d_path(path, name_buf, name_buf_sz);
563 			if (IS_ERR(name)) {
564 				err = PTR_ERR(name);
565 				goto out;
566 			}
567 			name_sz = name_buf + name_buf_sz - name;
568 		} else if (name || name_fmt) {
569 			name_sz = 1 + snprintf(name_buf, name_buf_sz, name_fmt ?: "%s", name);
570 			name = name_buf;
571 		}
572 		if (name_sz > name_buf_sz) {
573 			err = -ENAMETOOLONG;
574 			goto out;
575 		}
576 		karg.vma_name_size = name_sz;
577 	}
578 
579 	/* unlock vma or mmap_lock, and put mm_struct before copying data to user */
580 	query_vma_teardown(mm, vma);
581 	mmput(mm);
582 
583 	if (karg.vma_name_size && copy_to_user(u64_to_user_ptr(karg.vma_name_addr),
584 					       name, karg.vma_name_size)) {
585 		kfree(name_buf);
586 		return -EFAULT;
587 	}
588 	kfree(name_buf);
589 
590 	if (karg.build_id_size && copy_to_user(u64_to_user_ptr(karg.build_id_addr),
591 					       build_id_buf, karg.build_id_size))
592 		return -EFAULT;
593 
594 	if (copy_to_user(uarg, &karg, min_t(size_t, sizeof(karg), usize)))
595 		return -EFAULT;
596 
597 	return 0;
598 
599 out:
600 	query_vma_teardown(mm, vma);
601 	mmput(mm);
602 	kfree(name_buf);
603 	return err;
604 }
605 
606 static long procfs_procmap_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
607 {
608 	struct seq_file *seq = file->private_data;
609 	struct proc_maps_private *priv = seq->private;
610 
611 	switch (cmd) {
612 	case PROCMAP_QUERY:
613 		return do_procmap_query(priv, (void __user *)arg);
614 	default:
615 		return -ENOIOCTLCMD;
616 	}
617 }
618 
619 const struct file_operations proc_pid_maps_operations = {
620 	.open		= pid_maps_open,
621 	.read		= seq_read,
622 	.llseek		= seq_lseek,
623 	.release	= proc_map_release,
624 	.unlocked_ioctl = procfs_procmap_ioctl,
625 	.compat_ioctl	= compat_ptr_ioctl,
626 };
627 
628 /*
629  * Proportional Set Size(PSS): my share of RSS.
630  *
631  * PSS of a process is the count of pages it has in memory, where each
632  * page is divided by the number of processes sharing it.  So if a
633  * process has 1000 pages all to itself, and 1000 shared with one other
634  * process, its PSS will be 1500.
635  *
636  * To keep (accumulated) division errors low, we adopt a 64bit
637  * fixed-point pss counter to minimize division errors. So (pss >>
638  * PSS_SHIFT) would be the real byte count.
639  *
640  * A shift of 12 before division means (assuming 4K page size):
641  * 	- 1M 3-user-pages add up to 8KB errors;
642  * 	- supports mapcount up to 2^24, or 16M;
643  * 	- supports PSS up to 2^52 bytes, or 4PB.
644  */
645 #define PSS_SHIFT 12
646 
647 #ifdef CONFIG_PROC_PAGE_MONITOR
648 struct mem_size_stats {
649 	unsigned long resident;
650 	unsigned long shared_clean;
651 	unsigned long shared_dirty;
652 	unsigned long private_clean;
653 	unsigned long private_dirty;
654 	unsigned long referenced;
655 	unsigned long anonymous;
656 	unsigned long lazyfree;
657 	unsigned long anonymous_thp;
658 	unsigned long shmem_thp;
659 	unsigned long file_thp;
660 	unsigned long swap;
661 	unsigned long shared_hugetlb;
662 	unsigned long private_hugetlb;
663 	unsigned long ksm;
664 	u64 pss;
665 	u64 pss_anon;
666 	u64 pss_file;
667 	u64 pss_shmem;
668 	u64 pss_dirty;
669 	u64 pss_locked;
670 	u64 swap_pss;
671 };
672 
673 static void smaps_page_accumulate(struct mem_size_stats *mss,
674 		struct folio *folio, unsigned long size, unsigned long pss,
675 		bool dirty, bool locked, bool private)
676 {
677 	mss->pss += pss;
678 
679 	if (folio_test_anon(folio))
680 		mss->pss_anon += pss;
681 	else if (folio_test_swapbacked(folio))
682 		mss->pss_shmem += pss;
683 	else
684 		mss->pss_file += pss;
685 
686 	if (locked)
687 		mss->pss_locked += pss;
688 
689 	if (dirty || folio_test_dirty(folio)) {
690 		mss->pss_dirty += pss;
691 		if (private)
692 			mss->private_dirty += size;
693 		else
694 			mss->shared_dirty += size;
695 	} else {
696 		if (private)
697 			mss->private_clean += size;
698 		else
699 			mss->shared_clean += size;
700 	}
701 }
702 
703 static void smaps_account(struct mem_size_stats *mss, struct page *page,
704 		bool compound, bool young, bool dirty, bool locked,
705 		bool present)
706 {
707 	struct folio *folio = page_folio(page);
708 	int i, nr = compound ? compound_nr(page) : 1;
709 	unsigned long size = nr * PAGE_SIZE;
710 
711 	/*
712 	 * First accumulate quantities that depend only on |size| and the type
713 	 * of the compound page.
714 	 */
715 	if (folio_test_anon(folio)) {
716 		mss->anonymous += size;
717 		if (!folio_test_swapbacked(folio) && !dirty &&
718 		    !folio_test_dirty(folio))
719 			mss->lazyfree += size;
720 	}
721 
722 	if (folio_test_ksm(folio))
723 		mss->ksm += size;
724 
725 	mss->resident += size;
726 	/* Accumulate the size in pages that have been accessed. */
727 	if (young || folio_test_young(folio) || folio_test_referenced(folio))
728 		mss->referenced += size;
729 
730 	/*
731 	 * Then accumulate quantities that may depend on sharing, or that may
732 	 * differ page-by-page.
733 	 *
734 	 * refcount == 1 for present entries guarantees that the folio is mapped
735 	 * exactly once. For large folios this implies that exactly one
736 	 * PTE/PMD/... maps (a part of) this folio.
737 	 *
738 	 * Treat all non-present entries (where relying on the mapcount and
739 	 * refcount doesn't make sense) as "maybe shared, but not sure how
740 	 * often". We treat device private entries as being fake-present.
741 	 *
742 	 * Note that it would not be safe to read the mapcount especially for
743 	 * pages referenced by migration entries, even with the PTL held.
744 	 */
745 	if (folio_ref_count(folio) == 1 || !present) {
746 		smaps_page_accumulate(mss, folio, size, size << PSS_SHIFT,
747 				      dirty, locked, present);
748 		return;
749 	}
750 	/*
751 	 * We obtain a snapshot of the mapcount. Without holding the folio lock
752 	 * this snapshot can be slightly wrong as we cannot always read the
753 	 * mapcount atomically.
754 	 */
755 	for (i = 0; i < nr; i++, page++) {
756 		int mapcount = folio_precise_page_mapcount(folio, page);
757 		unsigned long pss = PAGE_SIZE << PSS_SHIFT;
758 		if (mapcount >= 2)
759 			pss /= mapcount;
760 		smaps_page_accumulate(mss, folio, PAGE_SIZE, pss,
761 				dirty, locked, mapcount < 2);
762 	}
763 }
764 
765 #ifdef CONFIG_SHMEM
766 static int smaps_pte_hole(unsigned long addr, unsigned long end,
767 			  __always_unused int depth, struct mm_walk *walk)
768 {
769 	struct mem_size_stats *mss = walk->private;
770 	struct vm_area_struct *vma = walk->vma;
771 
772 	mss->swap += shmem_partial_swap_usage(walk->vma->vm_file->f_mapping,
773 					      linear_page_index(vma, addr),
774 					      linear_page_index(vma, end));
775 
776 	return 0;
777 }
778 #else
779 #define smaps_pte_hole		NULL
780 #endif /* CONFIG_SHMEM */
781 
782 static void smaps_pte_hole_lookup(unsigned long addr, struct mm_walk *walk)
783 {
784 #ifdef CONFIG_SHMEM
785 	if (walk->ops->pte_hole) {
786 		/* depth is not used */
787 		smaps_pte_hole(addr, addr + PAGE_SIZE, 0, walk);
788 	}
789 #endif
790 }
791 
792 static void smaps_pte_entry(pte_t *pte, unsigned long addr,
793 		struct mm_walk *walk)
794 {
795 	struct mem_size_stats *mss = walk->private;
796 	struct vm_area_struct *vma = walk->vma;
797 	bool locked = !!(vma->vm_flags & VM_LOCKED);
798 	struct page *page = NULL;
799 	bool present = false, young = false, dirty = false;
800 	pte_t ptent = ptep_get(pte);
801 
802 	if (pte_present(ptent)) {
803 		page = vm_normal_page(vma, addr, ptent);
804 		young = pte_young(ptent);
805 		dirty = pte_dirty(ptent);
806 		present = true;
807 	} else if (is_swap_pte(ptent)) {
808 		swp_entry_t swpent = pte_to_swp_entry(ptent);
809 
810 		if (!non_swap_entry(swpent)) {
811 			int mapcount;
812 
813 			mss->swap += PAGE_SIZE;
814 			mapcount = swp_swapcount(swpent);
815 			if (mapcount >= 2) {
816 				u64 pss_delta = (u64)PAGE_SIZE << PSS_SHIFT;
817 
818 				do_div(pss_delta, mapcount);
819 				mss->swap_pss += pss_delta;
820 			} else {
821 				mss->swap_pss += (u64)PAGE_SIZE << PSS_SHIFT;
822 			}
823 		} else if (is_pfn_swap_entry(swpent)) {
824 			if (is_device_private_entry(swpent))
825 				present = true;
826 			page = pfn_swap_entry_to_page(swpent);
827 		}
828 	} else {
829 		smaps_pte_hole_lookup(addr, walk);
830 		return;
831 	}
832 
833 	if (!page)
834 		return;
835 
836 	smaps_account(mss, page, false, young, dirty, locked, present);
837 }
838 
839 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
840 static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
841 		struct mm_walk *walk)
842 {
843 	struct mem_size_stats *mss = walk->private;
844 	struct vm_area_struct *vma = walk->vma;
845 	bool locked = !!(vma->vm_flags & VM_LOCKED);
846 	struct page *page = NULL;
847 	bool present = false;
848 	struct folio *folio;
849 
850 	if (pmd_present(*pmd)) {
851 		page = vm_normal_page_pmd(vma, addr, *pmd);
852 		present = true;
853 	} else if (unlikely(thp_migration_supported() && is_swap_pmd(*pmd))) {
854 		swp_entry_t entry = pmd_to_swp_entry(*pmd);
855 
856 		if (is_pfn_swap_entry(entry))
857 			page = pfn_swap_entry_to_page(entry);
858 	}
859 	if (IS_ERR_OR_NULL(page))
860 		return;
861 	folio = page_folio(page);
862 	if (folio_test_anon(folio))
863 		mss->anonymous_thp += HPAGE_PMD_SIZE;
864 	else if (folio_test_swapbacked(folio))
865 		mss->shmem_thp += HPAGE_PMD_SIZE;
866 	else if (folio_is_zone_device(folio))
867 		/* pass */;
868 	else
869 		mss->file_thp += HPAGE_PMD_SIZE;
870 
871 	smaps_account(mss, page, true, pmd_young(*pmd), pmd_dirty(*pmd),
872 		      locked, present);
873 }
874 #else
875 static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
876 		struct mm_walk *walk)
877 {
878 }
879 #endif
880 
881 static int smaps_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
882 			   struct mm_walk *walk)
883 {
884 	struct vm_area_struct *vma = walk->vma;
885 	pte_t *pte;
886 	spinlock_t *ptl;
887 
888 	ptl = pmd_trans_huge_lock(pmd, vma);
889 	if (ptl) {
890 		smaps_pmd_entry(pmd, addr, walk);
891 		spin_unlock(ptl);
892 		goto out;
893 	}
894 
895 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
896 	if (!pte) {
897 		walk->action = ACTION_AGAIN;
898 		return 0;
899 	}
900 	for (; addr != end; pte++, addr += PAGE_SIZE)
901 		smaps_pte_entry(pte, addr, walk);
902 	pte_unmap_unlock(pte - 1, ptl);
903 out:
904 	cond_resched();
905 	return 0;
906 }
907 
908 static void show_smap_vma_flags(struct seq_file *m, struct vm_area_struct *vma)
909 {
910 	/*
911 	 * Don't forget to update Documentation/ on changes.
912 	 */
913 	static const char mnemonics[BITS_PER_LONG][2] = {
914 		/*
915 		 * In case if we meet a flag we don't know about.
916 		 */
917 		[0 ... (BITS_PER_LONG-1)] = "??",
918 
919 		[ilog2(VM_READ)]	= "rd",
920 		[ilog2(VM_WRITE)]	= "wr",
921 		[ilog2(VM_EXEC)]	= "ex",
922 		[ilog2(VM_SHARED)]	= "sh",
923 		[ilog2(VM_MAYREAD)]	= "mr",
924 		[ilog2(VM_MAYWRITE)]	= "mw",
925 		[ilog2(VM_MAYEXEC)]	= "me",
926 		[ilog2(VM_MAYSHARE)]	= "ms",
927 		[ilog2(VM_GROWSDOWN)]	= "gd",
928 		[ilog2(VM_PFNMAP)]	= "pf",
929 		[ilog2(VM_LOCKED)]	= "lo",
930 		[ilog2(VM_IO)]		= "io",
931 		[ilog2(VM_SEQ_READ)]	= "sr",
932 		[ilog2(VM_RAND_READ)]	= "rr",
933 		[ilog2(VM_DONTCOPY)]	= "dc",
934 		[ilog2(VM_DONTEXPAND)]	= "de",
935 		[ilog2(VM_LOCKONFAULT)]	= "lf",
936 		[ilog2(VM_ACCOUNT)]	= "ac",
937 		[ilog2(VM_NORESERVE)]	= "nr",
938 		[ilog2(VM_HUGETLB)]	= "ht",
939 		[ilog2(VM_SYNC)]	= "sf",
940 		[ilog2(VM_ARCH_1)]	= "ar",
941 		[ilog2(VM_WIPEONFORK)]	= "wf",
942 		[ilog2(VM_DONTDUMP)]	= "dd",
943 #ifdef CONFIG_ARM64_BTI
944 		[ilog2(VM_ARM64_BTI)]	= "bt",
945 #endif
946 #ifdef CONFIG_MEM_SOFT_DIRTY
947 		[ilog2(VM_SOFTDIRTY)]	= "sd",
948 #endif
949 		[ilog2(VM_MIXEDMAP)]	= "mm",
950 		[ilog2(VM_HUGEPAGE)]	= "hg",
951 		[ilog2(VM_NOHUGEPAGE)]	= "nh",
952 		[ilog2(VM_MERGEABLE)]	= "mg",
953 		[ilog2(VM_UFFD_MISSING)]= "um",
954 		[ilog2(VM_UFFD_WP)]	= "uw",
955 #ifdef CONFIG_ARM64_MTE
956 		[ilog2(VM_MTE)]		= "mt",
957 		[ilog2(VM_MTE_ALLOWED)]	= "",
958 #endif
959 #ifdef CONFIG_ARCH_HAS_PKEYS
960 		/* These come out via ProtectionKey: */
961 		[ilog2(VM_PKEY_BIT0)]	= "",
962 		[ilog2(VM_PKEY_BIT1)]	= "",
963 		[ilog2(VM_PKEY_BIT2)]	= "",
964 #if VM_PKEY_BIT3
965 		[ilog2(VM_PKEY_BIT3)]	= "",
966 #endif
967 #if VM_PKEY_BIT4
968 		[ilog2(VM_PKEY_BIT4)]	= "",
969 #endif
970 #endif /* CONFIG_ARCH_HAS_PKEYS */
971 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
972 		[ilog2(VM_UFFD_MINOR)]	= "ui",
973 #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
974 #ifdef CONFIG_X86_USER_SHADOW_STACK
975 		[ilog2(VM_SHADOW_STACK)] = "ss",
976 #endif
977 #if defined(CONFIG_64BIT) || defined(CONFIG_PPC32)
978 		[ilog2(VM_DROPPABLE)] = "dp",
979 #endif
980 #ifdef CONFIG_64BIT
981 		[ilog2(VM_SEALED)] = "sl",
982 #endif
983 	};
984 	size_t i;
985 
986 	seq_puts(m, "VmFlags: ");
987 	for (i = 0; i < BITS_PER_LONG; i++) {
988 		if (!mnemonics[i][0])
989 			continue;
990 		if (vma->vm_flags & (1UL << i)) {
991 			seq_putc(m, mnemonics[i][0]);
992 			seq_putc(m, mnemonics[i][1]);
993 			seq_putc(m, ' ');
994 		}
995 	}
996 	seq_putc(m, '\n');
997 }
998 
999 #ifdef CONFIG_HUGETLB_PAGE
1000 static int smaps_hugetlb_range(pte_t *pte, unsigned long hmask,
1001 				 unsigned long addr, unsigned long end,
1002 				 struct mm_walk *walk)
1003 {
1004 	struct mem_size_stats *mss = walk->private;
1005 	struct vm_area_struct *vma = walk->vma;
1006 	pte_t ptent = huge_ptep_get(walk->mm, addr, pte);
1007 	struct folio *folio = NULL;
1008 	bool present = false;
1009 
1010 	if (pte_present(ptent)) {
1011 		folio = page_folio(pte_page(ptent));
1012 		present = true;
1013 	} else if (is_swap_pte(ptent)) {
1014 		swp_entry_t swpent = pte_to_swp_entry(ptent);
1015 
1016 		if (is_pfn_swap_entry(swpent))
1017 			folio = pfn_swap_entry_folio(swpent);
1018 	}
1019 
1020 	if (folio) {
1021 		/* We treat non-present entries as "maybe shared". */
1022 		if (!present || folio_likely_mapped_shared(folio) ||
1023 		    hugetlb_pmd_shared(pte))
1024 			mss->shared_hugetlb += huge_page_size(hstate_vma(vma));
1025 		else
1026 			mss->private_hugetlb += huge_page_size(hstate_vma(vma));
1027 	}
1028 	return 0;
1029 }
1030 #else
1031 #define smaps_hugetlb_range	NULL
1032 #endif /* HUGETLB_PAGE */
1033 
1034 static const struct mm_walk_ops smaps_walk_ops = {
1035 	.pmd_entry		= smaps_pte_range,
1036 	.hugetlb_entry		= smaps_hugetlb_range,
1037 	.walk_lock		= PGWALK_RDLOCK,
1038 };
1039 
1040 static const struct mm_walk_ops smaps_shmem_walk_ops = {
1041 	.pmd_entry		= smaps_pte_range,
1042 	.hugetlb_entry		= smaps_hugetlb_range,
1043 	.pte_hole		= smaps_pte_hole,
1044 	.walk_lock		= PGWALK_RDLOCK,
1045 };
1046 
1047 /*
1048  * Gather mem stats from @vma with the indicated beginning
1049  * address @start, and keep them in @mss.
1050  *
1051  * Use vm_start of @vma as the beginning address if @start is 0.
1052  */
1053 static void smap_gather_stats(struct vm_area_struct *vma,
1054 		struct mem_size_stats *mss, unsigned long start)
1055 {
1056 	const struct mm_walk_ops *ops = &smaps_walk_ops;
1057 
1058 	/* Invalid start */
1059 	if (start >= vma->vm_end)
1060 		return;
1061 
1062 	if (vma->vm_file && shmem_mapping(vma->vm_file->f_mapping)) {
1063 		/*
1064 		 * For shared or readonly shmem mappings we know that all
1065 		 * swapped out pages belong to the shmem object, and we can
1066 		 * obtain the swap value much more efficiently. For private
1067 		 * writable mappings, we might have COW pages that are
1068 		 * not affected by the parent swapped out pages of the shmem
1069 		 * object, so we have to distinguish them during the page walk.
1070 		 * Unless we know that the shmem object (or the part mapped by
1071 		 * our VMA) has no swapped out pages at all.
1072 		 */
1073 		unsigned long shmem_swapped = shmem_swap_usage(vma);
1074 
1075 		if (!start && (!shmem_swapped || (vma->vm_flags & VM_SHARED) ||
1076 					!(vma->vm_flags & VM_WRITE))) {
1077 			mss->swap += shmem_swapped;
1078 		} else {
1079 			ops = &smaps_shmem_walk_ops;
1080 		}
1081 	}
1082 
1083 	/* mmap_lock is held in m_start */
1084 	if (!start)
1085 		walk_page_vma(vma, ops, mss);
1086 	else
1087 		walk_page_range(vma->vm_mm, start, vma->vm_end, ops, mss);
1088 }
1089 
1090 #define SEQ_PUT_DEC(str, val) \
1091 		seq_put_decimal_ull_width(m, str, (val) >> 10, 8)
1092 
1093 /* Show the contents common for smaps and smaps_rollup */
1094 static void __show_smap(struct seq_file *m, const struct mem_size_stats *mss,
1095 	bool rollup_mode)
1096 {
1097 	SEQ_PUT_DEC("Rss:            ", mss->resident);
1098 	SEQ_PUT_DEC(" kB\nPss:            ", mss->pss >> PSS_SHIFT);
1099 	SEQ_PUT_DEC(" kB\nPss_Dirty:      ", mss->pss_dirty >> PSS_SHIFT);
1100 	if (rollup_mode) {
1101 		/*
1102 		 * These are meaningful only for smaps_rollup, otherwise two of
1103 		 * them are zero, and the other one is the same as Pss.
1104 		 */
1105 		SEQ_PUT_DEC(" kB\nPss_Anon:       ",
1106 			mss->pss_anon >> PSS_SHIFT);
1107 		SEQ_PUT_DEC(" kB\nPss_File:       ",
1108 			mss->pss_file >> PSS_SHIFT);
1109 		SEQ_PUT_DEC(" kB\nPss_Shmem:      ",
1110 			mss->pss_shmem >> PSS_SHIFT);
1111 	}
1112 	SEQ_PUT_DEC(" kB\nShared_Clean:   ", mss->shared_clean);
1113 	SEQ_PUT_DEC(" kB\nShared_Dirty:   ", mss->shared_dirty);
1114 	SEQ_PUT_DEC(" kB\nPrivate_Clean:  ", mss->private_clean);
1115 	SEQ_PUT_DEC(" kB\nPrivate_Dirty:  ", mss->private_dirty);
1116 	SEQ_PUT_DEC(" kB\nReferenced:     ", mss->referenced);
1117 	SEQ_PUT_DEC(" kB\nAnonymous:      ", mss->anonymous);
1118 	SEQ_PUT_DEC(" kB\nKSM:            ", mss->ksm);
1119 	SEQ_PUT_DEC(" kB\nLazyFree:       ", mss->lazyfree);
1120 	SEQ_PUT_DEC(" kB\nAnonHugePages:  ", mss->anonymous_thp);
1121 	SEQ_PUT_DEC(" kB\nShmemPmdMapped: ", mss->shmem_thp);
1122 	SEQ_PUT_DEC(" kB\nFilePmdMapped:  ", mss->file_thp);
1123 	SEQ_PUT_DEC(" kB\nShared_Hugetlb: ", mss->shared_hugetlb);
1124 	seq_put_decimal_ull_width(m, " kB\nPrivate_Hugetlb: ",
1125 				  mss->private_hugetlb >> 10, 7);
1126 	SEQ_PUT_DEC(" kB\nSwap:           ", mss->swap);
1127 	SEQ_PUT_DEC(" kB\nSwapPss:        ",
1128 					mss->swap_pss >> PSS_SHIFT);
1129 	SEQ_PUT_DEC(" kB\nLocked:         ",
1130 					mss->pss_locked >> PSS_SHIFT);
1131 	seq_puts(m, " kB\n");
1132 }
1133 
1134 static int show_smap(struct seq_file *m, void *v)
1135 {
1136 	struct vm_area_struct *vma = v;
1137 	struct mem_size_stats mss = {};
1138 
1139 	smap_gather_stats(vma, &mss, 0);
1140 
1141 	show_map_vma(m, vma);
1142 
1143 	SEQ_PUT_DEC("Size:           ", vma->vm_end - vma->vm_start);
1144 	SEQ_PUT_DEC(" kB\nKernelPageSize: ", vma_kernel_pagesize(vma));
1145 	SEQ_PUT_DEC(" kB\nMMUPageSize:    ", vma_mmu_pagesize(vma));
1146 	seq_puts(m, " kB\n");
1147 
1148 	__show_smap(m, &mss, false);
1149 
1150 	seq_printf(m, "THPeligible:    %8u\n",
1151 		   !!thp_vma_allowable_orders(vma, vma->vm_flags,
1152 			   TVA_SMAPS | TVA_ENFORCE_SYSFS, THP_ORDERS_ALL));
1153 
1154 	if (arch_pkeys_enabled())
1155 		seq_printf(m, "ProtectionKey:  %8u\n", vma_pkey(vma));
1156 	show_smap_vma_flags(m, vma);
1157 
1158 	return 0;
1159 }
1160 
1161 static int show_smaps_rollup(struct seq_file *m, void *v)
1162 {
1163 	struct proc_maps_private *priv = m->private;
1164 	struct mem_size_stats mss = {};
1165 	struct mm_struct *mm = priv->mm;
1166 	struct vm_area_struct *vma;
1167 	unsigned long vma_start = 0, last_vma_end = 0;
1168 	int ret = 0;
1169 	VMA_ITERATOR(vmi, mm, 0);
1170 
1171 	priv->task = get_proc_task(priv->inode);
1172 	if (!priv->task)
1173 		return -ESRCH;
1174 
1175 	if (!mm || !mmget_not_zero(mm)) {
1176 		ret = -ESRCH;
1177 		goto out_put_task;
1178 	}
1179 
1180 	ret = mmap_read_lock_killable(mm);
1181 	if (ret)
1182 		goto out_put_mm;
1183 
1184 	hold_task_mempolicy(priv);
1185 	vma = vma_next(&vmi);
1186 
1187 	if (unlikely(!vma))
1188 		goto empty_set;
1189 
1190 	vma_start = vma->vm_start;
1191 	do {
1192 		smap_gather_stats(vma, &mss, 0);
1193 		last_vma_end = vma->vm_end;
1194 
1195 		/*
1196 		 * Release mmap_lock temporarily if someone wants to
1197 		 * access it for write request.
1198 		 */
1199 		if (mmap_lock_is_contended(mm)) {
1200 			vma_iter_invalidate(&vmi);
1201 			mmap_read_unlock(mm);
1202 			ret = mmap_read_lock_killable(mm);
1203 			if (ret) {
1204 				release_task_mempolicy(priv);
1205 				goto out_put_mm;
1206 			}
1207 
1208 			/*
1209 			 * After dropping the lock, there are four cases to
1210 			 * consider. See the following example for explanation.
1211 			 *
1212 			 *   +------+------+-----------+
1213 			 *   | VMA1 | VMA2 | VMA3      |
1214 			 *   +------+------+-----------+
1215 			 *   |      |      |           |
1216 			 *  4k     8k     16k         400k
1217 			 *
1218 			 * Suppose we drop the lock after reading VMA2 due to
1219 			 * contention, then we get:
1220 			 *
1221 			 *	last_vma_end = 16k
1222 			 *
1223 			 * 1) VMA2 is freed, but VMA3 exists:
1224 			 *
1225 			 *    vma_next(vmi) will return VMA3.
1226 			 *    In this case, just continue from VMA3.
1227 			 *
1228 			 * 2) VMA2 still exists:
1229 			 *
1230 			 *    vma_next(vmi) will return VMA3.
1231 			 *    In this case, just continue from VMA3.
1232 			 *
1233 			 * 3) No more VMAs can be found:
1234 			 *
1235 			 *    vma_next(vmi) will return NULL.
1236 			 *    No more things to do, just break.
1237 			 *
1238 			 * 4) (last_vma_end - 1) is the middle of a vma (VMA'):
1239 			 *
1240 			 *    vma_next(vmi) will return VMA' whose range
1241 			 *    contains last_vma_end.
1242 			 *    Iterate VMA' from last_vma_end.
1243 			 */
1244 			vma = vma_next(&vmi);
1245 			/* Case 3 above */
1246 			if (!vma)
1247 				break;
1248 
1249 			/* Case 1 and 2 above */
1250 			if (vma->vm_start >= last_vma_end) {
1251 				smap_gather_stats(vma, &mss, 0);
1252 				last_vma_end = vma->vm_end;
1253 				continue;
1254 			}
1255 
1256 			/* Case 4 above */
1257 			if (vma->vm_end > last_vma_end) {
1258 				smap_gather_stats(vma, &mss, last_vma_end);
1259 				last_vma_end = vma->vm_end;
1260 			}
1261 		}
1262 	} for_each_vma(vmi, vma);
1263 
1264 empty_set:
1265 	show_vma_header_prefix(m, vma_start, last_vma_end, 0, 0, 0, 0);
1266 	seq_pad(m, ' ');
1267 	seq_puts(m, "[rollup]\n");
1268 
1269 	__show_smap(m, &mss, true);
1270 
1271 	release_task_mempolicy(priv);
1272 	mmap_read_unlock(mm);
1273 
1274 out_put_mm:
1275 	mmput(mm);
1276 out_put_task:
1277 	put_task_struct(priv->task);
1278 	priv->task = NULL;
1279 
1280 	return ret;
1281 }
1282 #undef SEQ_PUT_DEC
1283 
1284 static const struct seq_operations proc_pid_smaps_op = {
1285 	.start	= m_start,
1286 	.next	= m_next,
1287 	.stop	= m_stop,
1288 	.show	= show_smap
1289 };
1290 
1291 static int pid_smaps_open(struct inode *inode, struct file *file)
1292 {
1293 	return do_maps_open(inode, file, &proc_pid_smaps_op);
1294 }
1295 
1296 static int smaps_rollup_open(struct inode *inode, struct file *file)
1297 {
1298 	int ret;
1299 	struct proc_maps_private *priv;
1300 
1301 	priv = kzalloc(sizeof(*priv), GFP_KERNEL_ACCOUNT);
1302 	if (!priv)
1303 		return -ENOMEM;
1304 
1305 	ret = single_open(file, show_smaps_rollup, priv);
1306 	if (ret)
1307 		goto out_free;
1308 
1309 	priv->inode = inode;
1310 	priv->mm = proc_mem_open(inode, PTRACE_MODE_READ);
1311 	if (IS_ERR(priv->mm)) {
1312 		ret = PTR_ERR(priv->mm);
1313 
1314 		single_release(inode, file);
1315 		goto out_free;
1316 	}
1317 
1318 	return 0;
1319 
1320 out_free:
1321 	kfree(priv);
1322 	return ret;
1323 }
1324 
1325 static int smaps_rollup_release(struct inode *inode, struct file *file)
1326 {
1327 	struct seq_file *seq = file->private_data;
1328 	struct proc_maps_private *priv = seq->private;
1329 
1330 	if (priv->mm)
1331 		mmdrop(priv->mm);
1332 
1333 	kfree(priv);
1334 	return single_release(inode, file);
1335 }
1336 
1337 const struct file_operations proc_pid_smaps_operations = {
1338 	.open		= pid_smaps_open,
1339 	.read		= seq_read,
1340 	.llseek		= seq_lseek,
1341 	.release	= proc_map_release,
1342 };
1343 
1344 const struct file_operations proc_pid_smaps_rollup_operations = {
1345 	.open		= smaps_rollup_open,
1346 	.read		= seq_read,
1347 	.llseek		= seq_lseek,
1348 	.release	= smaps_rollup_release,
1349 };
1350 
1351 enum clear_refs_types {
1352 	CLEAR_REFS_ALL = 1,
1353 	CLEAR_REFS_ANON,
1354 	CLEAR_REFS_MAPPED,
1355 	CLEAR_REFS_SOFT_DIRTY,
1356 	CLEAR_REFS_MM_HIWATER_RSS,
1357 	CLEAR_REFS_LAST,
1358 };
1359 
1360 struct clear_refs_private {
1361 	enum clear_refs_types type;
1362 };
1363 
1364 #ifdef CONFIG_MEM_SOFT_DIRTY
1365 
1366 static inline bool pte_is_pinned(struct vm_area_struct *vma, unsigned long addr, pte_t pte)
1367 {
1368 	struct folio *folio;
1369 
1370 	if (!pte_write(pte))
1371 		return false;
1372 	if (!is_cow_mapping(vma->vm_flags))
1373 		return false;
1374 	if (likely(!test_bit(MMF_HAS_PINNED, &vma->vm_mm->flags)))
1375 		return false;
1376 	folio = vm_normal_folio(vma, addr, pte);
1377 	if (!folio)
1378 		return false;
1379 	return folio_maybe_dma_pinned(folio);
1380 }
1381 
1382 static inline void clear_soft_dirty(struct vm_area_struct *vma,
1383 		unsigned long addr, pte_t *pte)
1384 {
1385 	/*
1386 	 * The soft-dirty tracker uses #PF-s to catch writes
1387 	 * to pages, so write-protect the pte as well. See the
1388 	 * Documentation/admin-guide/mm/soft-dirty.rst for full description
1389 	 * of how soft-dirty works.
1390 	 */
1391 	pte_t ptent = ptep_get(pte);
1392 
1393 	if (pte_present(ptent)) {
1394 		pte_t old_pte;
1395 
1396 		if (pte_is_pinned(vma, addr, ptent))
1397 			return;
1398 		old_pte = ptep_modify_prot_start(vma, addr, pte);
1399 		ptent = pte_wrprotect(old_pte);
1400 		ptent = pte_clear_soft_dirty(ptent);
1401 		ptep_modify_prot_commit(vma, addr, pte, old_pte, ptent);
1402 	} else if (is_swap_pte(ptent)) {
1403 		ptent = pte_swp_clear_soft_dirty(ptent);
1404 		set_pte_at(vma->vm_mm, addr, pte, ptent);
1405 	}
1406 }
1407 #else
1408 static inline void clear_soft_dirty(struct vm_area_struct *vma,
1409 		unsigned long addr, pte_t *pte)
1410 {
1411 }
1412 #endif
1413 
1414 #if defined(CONFIG_MEM_SOFT_DIRTY) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
1415 static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
1416 		unsigned long addr, pmd_t *pmdp)
1417 {
1418 	pmd_t old, pmd = *pmdp;
1419 
1420 	if (pmd_present(pmd)) {
1421 		/* See comment in change_huge_pmd() */
1422 		old = pmdp_invalidate(vma, addr, pmdp);
1423 		if (pmd_dirty(old))
1424 			pmd = pmd_mkdirty(pmd);
1425 		if (pmd_young(old))
1426 			pmd = pmd_mkyoung(pmd);
1427 
1428 		pmd = pmd_wrprotect(pmd);
1429 		pmd = pmd_clear_soft_dirty(pmd);
1430 
1431 		set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
1432 	} else if (is_migration_entry(pmd_to_swp_entry(pmd))) {
1433 		pmd = pmd_swp_clear_soft_dirty(pmd);
1434 		set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
1435 	}
1436 }
1437 #else
1438 static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
1439 		unsigned long addr, pmd_t *pmdp)
1440 {
1441 }
1442 #endif
1443 
1444 static int clear_refs_pte_range(pmd_t *pmd, unsigned long addr,
1445 				unsigned long end, struct mm_walk *walk)
1446 {
1447 	struct clear_refs_private *cp = walk->private;
1448 	struct vm_area_struct *vma = walk->vma;
1449 	pte_t *pte, ptent;
1450 	spinlock_t *ptl;
1451 	struct folio *folio;
1452 
1453 	ptl = pmd_trans_huge_lock(pmd, vma);
1454 	if (ptl) {
1455 		if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
1456 			clear_soft_dirty_pmd(vma, addr, pmd);
1457 			goto out;
1458 		}
1459 
1460 		if (!pmd_present(*pmd))
1461 			goto out;
1462 
1463 		folio = pmd_folio(*pmd);
1464 
1465 		/* Clear accessed and referenced bits. */
1466 		pmdp_test_and_clear_young(vma, addr, pmd);
1467 		folio_test_clear_young(folio);
1468 		folio_clear_referenced(folio);
1469 out:
1470 		spin_unlock(ptl);
1471 		return 0;
1472 	}
1473 
1474 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1475 	if (!pte) {
1476 		walk->action = ACTION_AGAIN;
1477 		return 0;
1478 	}
1479 	for (; addr != end; pte++, addr += PAGE_SIZE) {
1480 		ptent = ptep_get(pte);
1481 
1482 		if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
1483 			clear_soft_dirty(vma, addr, pte);
1484 			continue;
1485 		}
1486 
1487 		if (!pte_present(ptent))
1488 			continue;
1489 
1490 		folio = vm_normal_folio(vma, addr, ptent);
1491 		if (!folio)
1492 			continue;
1493 
1494 		/* Clear accessed and referenced bits. */
1495 		ptep_test_and_clear_young(vma, addr, pte);
1496 		folio_test_clear_young(folio);
1497 		folio_clear_referenced(folio);
1498 	}
1499 	pte_unmap_unlock(pte - 1, ptl);
1500 	cond_resched();
1501 	return 0;
1502 }
1503 
1504 static int clear_refs_test_walk(unsigned long start, unsigned long end,
1505 				struct mm_walk *walk)
1506 {
1507 	struct clear_refs_private *cp = walk->private;
1508 	struct vm_area_struct *vma = walk->vma;
1509 
1510 	if (vma->vm_flags & VM_PFNMAP)
1511 		return 1;
1512 
1513 	/*
1514 	 * Writing 1 to /proc/pid/clear_refs affects all pages.
1515 	 * Writing 2 to /proc/pid/clear_refs only affects anonymous pages.
1516 	 * Writing 3 to /proc/pid/clear_refs only affects file mapped pages.
1517 	 * Writing 4 to /proc/pid/clear_refs affects all pages.
1518 	 */
1519 	if (cp->type == CLEAR_REFS_ANON && vma->vm_file)
1520 		return 1;
1521 	if (cp->type == CLEAR_REFS_MAPPED && !vma->vm_file)
1522 		return 1;
1523 	return 0;
1524 }
1525 
1526 static const struct mm_walk_ops clear_refs_walk_ops = {
1527 	.pmd_entry		= clear_refs_pte_range,
1528 	.test_walk		= clear_refs_test_walk,
1529 	.walk_lock		= PGWALK_WRLOCK,
1530 };
1531 
1532 static ssize_t clear_refs_write(struct file *file, const char __user *buf,
1533 				size_t count, loff_t *ppos)
1534 {
1535 	struct task_struct *task;
1536 	char buffer[PROC_NUMBUF] = {};
1537 	struct mm_struct *mm;
1538 	struct vm_area_struct *vma;
1539 	enum clear_refs_types type;
1540 	int itype;
1541 	int rv;
1542 
1543 	if (count > sizeof(buffer) - 1)
1544 		count = sizeof(buffer) - 1;
1545 	if (copy_from_user(buffer, buf, count))
1546 		return -EFAULT;
1547 	rv = kstrtoint(strstrip(buffer), 10, &itype);
1548 	if (rv < 0)
1549 		return rv;
1550 	type = (enum clear_refs_types)itype;
1551 	if (type < CLEAR_REFS_ALL || type >= CLEAR_REFS_LAST)
1552 		return -EINVAL;
1553 
1554 	task = get_proc_task(file_inode(file));
1555 	if (!task)
1556 		return -ESRCH;
1557 	mm = get_task_mm(task);
1558 	if (mm) {
1559 		VMA_ITERATOR(vmi, mm, 0);
1560 		struct mmu_notifier_range range;
1561 		struct clear_refs_private cp = {
1562 			.type = type,
1563 		};
1564 
1565 		if (mmap_write_lock_killable(mm)) {
1566 			count = -EINTR;
1567 			goto out_mm;
1568 		}
1569 		if (type == CLEAR_REFS_MM_HIWATER_RSS) {
1570 			/*
1571 			 * Writing 5 to /proc/pid/clear_refs resets the peak
1572 			 * resident set size to this mm's current rss value.
1573 			 */
1574 			reset_mm_hiwater_rss(mm);
1575 			goto out_unlock;
1576 		}
1577 
1578 		if (type == CLEAR_REFS_SOFT_DIRTY) {
1579 			for_each_vma(vmi, vma) {
1580 				if (!(vma->vm_flags & VM_SOFTDIRTY))
1581 					continue;
1582 				vm_flags_clear(vma, VM_SOFTDIRTY);
1583 				vma_set_page_prot(vma);
1584 			}
1585 
1586 			inc_tlb_flush_pending(mm);
1587 			mmu_notifier_range_init(&range, MMU_NOTIFY_SOFT_DIRTY,
1588 						0, mm, 0, -1UL);
1589 			mmu_notifier_invalidate_range_start(&range);
1590 		}
1591 		walk_page_range(mm, 0, -1, &clear_refs_walk_ops, &cp);
1592 		if (type == CLEAR_REFS_SOFT_DIRTY) {
1593 			mmu_notifier_invalidate_range_end(&range);
1594 			flush_tlb_mm(mm);
1595 			dec_tlb_flush_pending(mm);
1596 		}
1597 out_unlock:
1598 		mmap_write_unlock(mm);
1599 out_mm:
1600 		mmput(mm);
1601 	}
1602 	put_task_struct(task);
1603 
1604 	return count;
1605 }
1606 
1607 const struct file_operations proc_clear_refs_operations = {
1608 	.write		= clear_refs_write,
1609 	.llseek		= noop_llseek,
1610 };
1611 
1612 typedef struct {
1613 	u64 pme;
1614 } pagemap_entry_t;
1615 
1616 struct pagemapread {
1617 	int pos, len;		/* units: PM_ENTRY_BYTES, not bytes */
1618 	pagemap_entry_t *buffer;
1619 	bool show_pfn;
1620 };
1621 
1622 #define PAGEMAP_WALK_SIZE	(PMD_SIZE)
1623 #define PAGEMAP_WALK_MASK	(PMD_MASK)
1624 
1625 #define PM_ENTRY_BYTES		sizeof(pagemap_entry_t)
1626 #define PM_PFRAME_BITS		55
1627 #define PM_PFRAME_MASK		GENMASK_ULL(PM_PFRAME_BITS - 1, 0)
1628 #define PM_SOFT_DIRTY		BIT_ULL(55)
1629 #define PM_MMAP_EXCLUSIVE	BIT_ULL(56)
1630 #define PM_UFFD_WP		BIT_ULL(57)
1631 #define PM_FILE			BIT_ULL(61)
1632 #define PM_SWAP			BIT_ULL(62)
1633 #define PM_PRESENT		BIT_ULL(63)
1634 
1635 #define PM_END_OF_BUFFER    1
1636 
1637 static inline pagemap_entry_t make_pme(u64 frame, u64 flags)
1638 {
1639 	return (pagemap_entry_t) { .pme = (frame & PM_PFRAME_MASK) | flags };
1640 }
1641 
1642 static int add_to_pagemap(pagemap_entry_t *pme, struct pagemapread *pm)
1643 {
1644 	pm->buffer[pm->pos++] = *pme;
1645 	if (pm->pos >= pm->len)
1646 		return PM_END_OF_BUFFER;
1647 	return 0;
1648 }
1649 
1650 static int pagemap_pte_hole(unsigned long start, unsigned long end,
1651 			    __always_unused int depth, struct mm_walk *walk)
1652 {
1653 	struct pagemapread *pm = walk->private;
1654 	unsigned long addr = start;
1655 	int err = 0;
1656 
1657 	while (addr < end) {
1658 		struct vm_area_struct *vma = find_vma(walk->mm, addr);
1659 		pagemap_entry_t pme = make_pme(0, 0);
1660 		/* End of address space hole, which we mark as non-present. */
1661 		unsigned long hole_end;
1662 
1663 		if (vma)
1664 			hole_end = min(end, vma->vm_start);
1665 		else
1666 			hole_end = end;
1667 
1668 		for (; addr < hole_end; addr += PAGE_SIZE) {
1669 			err = add_to_pagemap(&pme, pm);
1670 			if (err)
1671 				goto out;
1672 		}
1673 
1674 		if (!vma)
1675 			break;
1676 
1677 		/* Addresses in the VMA. */
1678 		if (vma->vm_flags & VM_SOFTDIRTY)
1679 			pme = make_pme(0, PM_SOFT_DIRTY);
1680 		for (; addr < min(end, vma->vm_end); addr += PAGE_SIZE) {
1681 			err = add_to_pagemap(&pme, pm);
1682 			if (err)
1683 				goto out;
1684 		}
1685 	}
1686 out:
1687 	return err;
1688 }
1689 
1690 static pagemap_entry_t pte_to_pagemap_entry(struct pagemapread *pm,
1691 		struct vm_area_struct *vma, unsigned long addr, pte_t pte)
1692 {
1693 	u64 frame = 0, flags = 0;
1694 	struct page *page = NULL;
1695 	struct folio *folio;
1696 
1697 	if (pte_present(pte)) {
1698 		if (pm->show_pfn)
1699 			frame = pte_pfn(pte);
1700 		flags |= PM_PRESENT;
1701 		page = vm_normal_page(vma, addr, pte);
1702 		if (pte_soft_dirty(pte))
1703 			flags |= PM_SOFT_DIRTY;
1704 		if (pte_uffd_wp(pte))
1705 			flags |= PM_UFFD_WP;
1706 	} else if (is_swap_pte(pte)) {
1707 		swp_entry_t entry;
1708 		if (pte_swp_soft_dirty(pte))
1709 			flags |= PM_SOFT_DIRTY;
1710 		if (pte_swp_uffd_wp(pte))
1711 			flags |= PM_UFFD_WP;
1712 		entry = pte_to_swp_entry(pte);
1713 		if (pm->show_pfn) {
1714 			pgoff_t offset;
1715 			/*
1716 			 * For PFN swap offsets, keeping the offset field
1717 			 * to be PFN only to be compatible with old smaps.
1718 			 */
1719 			if (is_pfn_swap_entry(entry))
1720 				offset = swp_offset_pfn(entry);
1721 			else
1722 				offset = swp_offset(entry);
1723 			frame = swp_type(entry) |
1724 			    (offset << MAX_SWAPFILES_SHIFT);
1725 		}
1726 		flags |= PM_SWAP;
1727 		if (is_pfn_swap_entry(entry))
1728 			page = pfn_swap_entry_to_page(entry);
1729 		if (pte_marker_entry_uffd_wp(entry))
1730 			flags |= PM_UFFD_WP;
1731 	}
1732 
1733 	if (page) {
1734 		folio = page_folio(page);
1735 		if (!folio_test_anon(folio))
1736 			flags |= PM_FILE;
1737 		if ((flags & PM_PRESENT) &&
1738 		    folio_precise_page_mapcount(folio, page) == 1)
1739 			flags |= PM_MMAP_EXCLUSIVE;
1740 	}
1741 	if (vma->vm_flags & VM_SOFTDIRTY)
1742 		flags |= PM_SOFT_DIRTY;
1743 
1744 	return make_pme(frame, flags);
1745 }
1746 
1747 static int pagemap_pmd_range(pmd_t *pmdp, unsigned long addr, unsigned long end,
1748 			     struct mm_walk *walk)
1749 {
1750 	struct vm_area_struct *vma = walk->vma;
1751 	struct pagemapread *pm = walk->private;
1752 	spinlock_t *ptl;
1753 	pte_t *pte, *orig_pte;
1754 	int err = 0;
1755 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1756 
1757 	ptl = pmd_trans_huge_lock(pmdp, vma);
1758 	if (ptl) {
1759 		unsigned int idx = (addr & ~PMD_MASK) >> PAGE_SHIFT;
1760 		u64 flags = 0, frame = 0;
1761 		pmd_t pmd = *pmdp;
1762 		struct page *page = NULL;
1763 		struct folio *folio = NULL;
1764 
1765 		if (vma->vm_flags & VM_SOFTDIRTY)
1766 			flags |= PM_SOFT_DIRTY;
1767 
1768 		if (pmd_present(pmd)) {
1769 			page = pmd_page(pmd);
1770 
1771 			flags |= PM_PRESENT;
1772 			if (pmd_soft_dirty(pmd))
1773 				flags |= PM_SOFT_DIRTY;
1774 			if (pmd_uffd_wp(pmd))
1775 				flags |= PM_UFFD_WP;
1776 			if (pm->show_pfn)
1777 				frame = pmd_pfn(pmd) + idx;
1778 		}
1779 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1780 		else if (is_swap_pmd(pmd)) {
1781 			swp_entry_t entry = pmd_to_swp_entry(pmd);
1782 			unsigned long offset;
1783 
1784 			if (pm->show_pfn) {
1785 				if (is_pfn_swap_entry(entry))
1786 					offset = swp_offset_pfn(entry) + idx;
1787 				else
1788 					offset = swp_offset(entry) + idx;
1789 				frame = swp_type(entry) |
1790 					(offset << MAX_SWAPFILES_SHIFT);
1791 			}
1792 			flags |= PM_SWAP;
1793 			if (pmd_swp_soft_dirty(pmd))
1794 				flags |= PM_SOFT_DIRTY;
1795 			if (pmd_swp_uffd_wp(pmd))
1796 				flags |= PM_UFFD_WP;
1797 			VM_BUG_ON(!is_pmd_migration_entry(pmd));
1798 			page = pfn_swap_entry_to_page(entry);
1799 		}
1800 #endif
1801 
1802 		if (page) {
1803 			folio = page_folio(page);
1804 			if (!folio_test_anon(folio))
1805 				flags |= PM_FILE;
1806 		}
1807 
1808 		for (; addr != end; addr += PAGE_SIZE, idx++) {
1809 			unsigned long cur_flags = flags;
1810 			pagemap_entry_t pme;
1811 
1812 			if (folio && (flags & PM_PRESENT) &&
1813 			    folio_precise_page_mapcount(folio, page + idx) == 1)
1814 				cur_flags |= PM_MMAP_EXCLUSIVE;
1815 
1816 			pme = make_pme(frame, cur_flags);
1817 			err = add_to_pagemap(&pme, pm);
1818 			if (err)
1819 				break;
1820 			if (pm->show_pfn) {
1821 				if (flags & PM_PRESENT)
1822 					frame++;
1823 				else if (flags & PM_SWAP)
1824 					frame += (1 << MAX_SWAPFILES_SHIFT);
1825 			}
1826 		}
1827 		spin_unlock(ptl);
1828 		return err;
1829 	}
1830 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1831 
1832 	/*
1833 	 * We can assume that @vma always points to a valid one and @end never
1834 	 * goes beyond vma->vm_end.
1835 	 */
1836 	orig_pte = pte = pte_offset_map_lock(walk->mm, pmdp, addr, &ptl);
1837 	if (!pte) {
1838 		walk->action = ACTION_AGAIN;
1839 		return err;
1840 	}
1841 	for (; addr < end; pte++, addr += PAGE_SIZE) {
1842 		pagemap_entry_t pme;
1843 
1844 		pme = pte_to_pagemap_entry(pm, vma, addr, ptep_get(pte));
1845 		err = add_to_pagemap(&pme, pm);
1846 		if (err)
1847 			break;
1848 	}
1849 	pte_unmap_unlock(orig_pte, ptl);
1850 
1851 	cond_resched();
1852 
1853 	return err;
1854 }
1855 
1856 #ifdef CONFIG_HUGETLB_PAGE
1857 /* This function walks within one hugetlb entry in the single call */
1858 static int pagemap_hugetlb_range(pte_t *ptep, unsigned long hmask,
1859 				 unsigned long addr, unsigned long end,
1860 				 struct mm_walk *walk)
1861 {
1862 	struct pagemapread *pm = walk->private;
1863 	struct vm_area_struct *vma = walk->vma;
1864 	u64 flags = 0, frame = 0;
1865 	int err = 0;
1866 	pte_t pte;
1867 
1868 	if (vma->vm_flags & VM_SOFTDIRTY)
1869 		flags |= PM_SOFT_DIRTY;
1870 
1871 	pte = huge_ptep_get(walk->mm, addr, ptep);
1872 	if (pte_present(pte)) {
1873 		struct folio *folio = page_folio(pte_page(pte));
1874 
1875 		if (!folio_test_anon(folio))
1876 			flags |= PM_FILE;
1877 
1878 		if (!folio_likely_mapped_shared(folio) &&
1879 		    !hugetlb_pmd_shared(ptep))
1880 			flags |= PM_MMAP_EXCLUSIVE;
1881 
1882 		if (huge_pte_uffd_wp(pte))
1883 			flags |= PM_UFFD_WP;
1884 
1885 		flags |= PM_PRESENT;
1886 		if (pm->show_pfn)
1887 			frame = pte_pfn(pte) +
1888 				((addr & ~hmask) >> PAGE_SHIFT);
1889 	} else if (pte_swp_uffd_wp_any(pte)) {
1890 		flags |= PM_UFFD_WP;
1891 	}
1892 
1893 	for (; addr != end; addr += PAGE_SIZE) {
1894 		pagemap_entry_t pme = make_pme(frame, flags);
1895 
1896 		err = add_to_pagemap(&pme, pm);
1897 		if (err)
1898 			return err;
1899 		if (pm->show_pfn && (flags & PM_PRESENT))
1900 			frame++;
1901 	}
1902 
1903 	cond_resched();
1904 
1905 	return err;
1906 }
1907 #else
1908 #define pagemap_hugetlb_range	NULL
1909 #endif /* HUGETLB_PAGE */
1910 
1911 static const struct mm_walk_ops pagemap_ops = {
1912 	.pmd_entry	= pagemap_pmd_range,
1913 	.pte_hole	= pagemap_pte_hole,
1914 	.hugetlb_entry	= pagemap_hugetlb_range,
1915 	.walk_lock	= PGWALK_RDLOCK,
1916 };
1917 
1918 /*
1919  * /proc/pid/pagemap - an array mapping virtual pages to pfns
1920  *
1921  * For each page in the address space, this file contains one 64-bit entry
1922  * consisting of the following:
1923  *
1924  * Bits 0-54  page frame number (PFN) if present
1925  * Bits 0-4   swap type if swapped
1926  * Bits 5-54  swap offset if swapped
1927  * Bit  55    pte is soft-dirty (see Documentation/admin-guide/mm/soft-dirty.rst)
1928  * Bit  56    page exclusively mapped
1929  * Bit  57    pte is uffd-wp write-protected
1930  * Bits 58-60 zero
1931  * Bit  61    page is file-page or shared-anon
1932  * Bit  62    page swapped
1933  * Bit  63    page present
1934  *
1935  * If the page is not present but in swap, then the PFN contains an
1936  * encoding of the swap file number and the page's offset into the
1937  * swap. Unmapped pages return a null PFN. This allows determining
1938  * precisely which pages are mapped (or in swap) and comparing mapped
1939  * pages between processes.
1940  *
1941  * Efficient users of this interface will use /proc/pid/maps to
1942  * determine which areas of memory are actually mapped and llseek to
1943  * skip over unmapped regions.
1944  */
1945 static ssize_t pagemap_read(struct file *file, char __user *buf,
1946 			    size_t count, loff_t *ppos)
1947 {
1948 	struct mm_struct *mm = file->private_data;
1949 	struct pagemapread pm;
1950 	unsigned long src;
1951 	unsigned long svpfn;
1952 	unsigned long start_vaddr;
1953 	unsigned long end_vaddr;
1954 	int ret = 0, copied = 0;
1955 
1956 	if (!mm || !mmget_not_zero(mm))
1957 		goto out;
1958 
1959 	ret = -EINVAL;
1960 	/* file position must be aligned */
1961 	if ((*ppos % PM_ENTRY_BYTES) || (count % PM_ENTRY_BYTES))
1962 		goto out_mm;
1963 
1964 	ret = 0;
1965 	if (!count)
1966 		goto out_mm;
1967 
1968 	/* do not disclose physical addresses: attack vector */
1969 	pm.show_pfn = file_ns_capable(file, &init_user_ns, CAP_SYS_ADMIN);
1970 
1971 	pm.len = (PAGEMAP_WALK_SIZE >> PAGE_SHIFT);
1972 	pm.buffer = kmalloc_array(pm.len, PM_ENTRY_BYTES, GFP_KERNEL);
1973 	ret = -ENOMEM;
1974 	if (!pm.buffer)
1975 		goto out_mm;
1976 
1977 	src = *ppos;
1978 	svpfn = src / PM_ENTRY_BYTES;
1979 	end_vaddr = mm->task_size;
1980 
1981 	/* watch out for wraparound */
1982 	start_vaddr = end_vaddr;
1983 	if (svpfn <= (ULONG_MAX >> PAGE_SHIFT)) {
1984 		unsigned long end;
1985 
1986 		ret = mmap_read_lock_killable(mm);
1987 		if (ret)
1988 			goto out_free;
1989 		start_vaddr = untagged_addr_remote(mm, svpfn << PAGE_SHIFT);
1990 		mmap_read_unlock(mm);
1991 
1992 		end = start_vaddr + ((count / PM_ENTRY_BYTES) << PAGE_SHIFT);
1993 		if (end >= start_vaddr && end < mm->task_size)
1994 			end_vaddr = end;
1995 	}
1996 
1997 	/* Ensure the address is inside the task */
1998 	if (start_vaddr > mm->task_size)
1999 		start_vaddr = end_vaddr;
2000 
2001 	ret = 0;
2002 	while (count && (start_vaddr < end_vaddr)) {
2003 		int len;
2004 		unsigned long end;
2005 
2006 		pm.pos = 0;
2007 		end = (start_vaddr + PAGEMAP_WALK_SIZE) & PAGEMAP_WALK_MASK;
2008 		/* overflow ? */
2009 		if (end < start_vaddr || end > end_vaddr)
2010 			end = end_vaddr;
2011 		ret = mmap_read_lock_killable(mm);
2012 		if (ret)
2013 			goto out_free;
2014 		ret = walk_page_range(mm, start_vaddr, end, &pagemap_ops, &pm);
2015 		mmap_read_unlock(mm);
2016 		start_vaddr = end;
2017 
2018 		len = min(count, PM_ENTRY_BYTES * pm.pos);
2019 		if (copy_to_user(buf, pm.buffer, len)) {
2020 			ret = -EFAULT;
2021 			goto out_free;
2022 		}
2023 		copied += len;
2024 		buf += len;
2025 		count -= len;
2026 	}
2027 	*ppos += copied;
2028 	if (!ret || ret == PM_END_OF_BUFFER)
2029 		ret = copied;
2030 
2031 out_free:
2032 	kfree(pm.buffer);
2033 out_mm:
2034 	mmput(mm);
2035 out:
2036 	return ret;
2037 }
2038 
2039 static int pagemap_open(struct inode *inode, struct file *file)
2040 {
2041 	struct mm_struct *mm;
2042 
2043 	mm = proc_mem_open(inode, PTRACE_MODE_READ);
2044 	if (IS_ERR(mm))
2045 		return PTR_ERR(mm);
2046 	file->private_data = mm;
2047 	return 0;
2048 }
2049 
2050 static int pagemap_release(struct inode *inode, struct file *file)
2051 {
2052 	struct mm_struct *mm = file->private_data;
2053 
2054 	if (mm)
2055 		mmdrop(mm);
2056 	return 0;
2057 }
2058 
2059 #define PM_SCAN_CATEGORIES	(PAGE_IS_WPALLOWED | PAGE_IS_WRITTEN |	\
2060 				 PAGE_IS_FILE |	PAGE_IS_PRESENT |	\
2061 				 PAGE_IS_SWAPPED | PAGE_IS_PFNZERO |	\
2062 				 PAGE_IS_HUGE | PAGE_IS_SOFT_DIRTY)
2063 #define PM_SCAN_FLAGS		(PM_SCAN_WP_MATCHING | PM_SCAN_CHECK_WPASYNC)
2064 
2065 struct pagemap_scan_private {
2066 	struct pm_scan_arg arg;
2067 	unsigned long masks_of_interest, cur_vma_category;
2068 	struct page_region *vec_buf;
2069 	unsigned long vec_buf_len, vec_buf_index, found_pages;
2070 	struct page_region __user *vec_out;
2071 };
2072 
2073 static unsigned long pagemap_page_category(struct pagemap_scan_private *p,
2074 					   struct vm_area_struct *vma,
2075 					   unsigned long addr, pte_t pte)
2076 {
2077 	unsigned long categories = 0;
2078 
2079 	if (pte_present(pte)) {
2080 		struct page *page;
2081 
2082 		categories |= PAGE_IS_PRESENT;
2083 		if (!pte_uffd_wp(pte))
2084 			categories |= PAGE_IS_WRITTEN;
2085 
2086 		if (p->masks_of_interest & PAGE_IS_FILE) {
2087 			page = vm_normal_page(vma, addr, pte);
2088 			if (page && !PageAnon(page))
2089 				categories |= PAGE_IS_FILE;
2090 		}
2091 
2092 		if (is_zero_pfn(pte_pfn(pte)))
2093 			categories |= PAGE_IS_PFNZERO;
2094 		if (pte_soft_dirty(pte))
2095 			categories |= PAGE_IS_SOFT_DIRTY;
2096 	} else if (is_swap_pte(pte)) {
2097 		swp_entry_t swp;
2098 
2099 		categories |= PAGE_IS_SWAPPED;
2100 		if (!pte_swp_uffd_wp_any(pte))
2101 			categories |= PAGE_IS_WRITTEN;
2102 
2103 		if (p->masks_of_interest & PAGE_IS_FILE) {
2104 			swp = pte_to_swp_entry(pte);
2105 			if (is_pfn_swap_entry(swp) &&
2106 			    !folio_test_anon(pfn_swap_entry_folio(swp)))
2107 				categories |= PAGE_IS_FILE;
2108 		}
2109 		if (pte_swp_soft_dirty(pte))
2110 			categories |= PAGE_IS_SOFT_DIRTY;
2111 	}
2112 
2113 	return categories;
2114 }
2115 
2116 static void make_uffd_wp_pte(struct vm_area_struct *vma,
2117 			     unsigned long addr, pte_t *pte, pte_t ptent)
2118 {
2119 	if (pte_present(ptent)) {
2120 		pte_t old_pte;
2121 
2122 		old_pte = ptep_modify_prot_start(vma, addr, pte);
2123 		ptent = pte_mkuffd_wp(old_pte);
2124 		ptep_modify_prot_commit(vma, addr, pte, old_pte, ptent);
2125 	} else if (is_swap_pte(ptent)) {
2126 		ptent = pte_swp_mkuffd_wp(ptent);
2127 		set_pte_at(vma->vm_mm, addr, pte, ptent);
2128 	} else {
2129 		set_pte_at(vma->vm_mm, addr, pte,
2130 			   make_pte_marker(PTE_MARKER_UFFD_WP));
2131 	}
2132 }
2133 
2134 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2135 static unsigned long pagemap_thp_category(struct pagemap_scan_private *p,
2136 					  struct vm_area_struct *vma,
2137 					  unsigned long addr, pmd_t pmd)
2138 {
2139 	unsigned long categories = PAGE_IS_HUGE;
2140 
2141 	if (pmd_present(pmd)) {
2142 		struct page *page;
2143 
2144 		categories |= PAGE_IS_PRESENT;
2145 		if (!pmd_uffd_wp(pmd))
2146 			categories |= PAGE_IS_WRITTEN;
2147 
2148 		if (p->masks_of_interest & PAGE_IS_FILE) {
2149 			page = vm_normal_page_pmd(vma, addr, pmd);
2150 			if (page && !PageAnon(page))
2151 				categories |= PAGE_IS_FILE;
2152 		}
2153 
2154 		if (is_zero_pfn(pmd_pfn(pmd)))
2155 			categories |= PAGE_IS_PFNZERO;
2156 		if (pmd_soft_dirty(pmd))
2157 			categories |= PAGE_IS_SOFT_DIRTY;
2158 	} else if (is_swap_pmd(pmd)) {
2159 		swp_entry_t swp;
2160 
2161 		categories |= PAGE_IS_SWAPPED;
2162 		if (!pmd_swp_uffd_wp(pmd))
2163 			categories |= PAGE_IS_WRITTEN;
2164 		if (pmd_swp_soft_dirty(pmd))
2165 			categories |= PAGE_IS_SOFT_DIRTY;
2166 
2167 		if (p->masks_of_interest & PAGE_IS_FILE) {
2168 			swp = pmd_to_swp_entry(pmd);
2169 			if (is_pfn_swap_entry(swp) &&
2170 			    !folio_test_anon(pfn_swap_entry_folio(swp)))
2171 				categories |= PAGE_IS_FILE;
2172 		}
2173 	}
2174 
2175 	return categories;
2176 }
2177 
2178 static void make_uffd_wp_pmd(struct vm_area_struct *vma,
2179 			     unsigned long addr, pmd_t *pmdp)
2180 {
2181 	pmd_t old, pmd = *pmdp;
2182 
2183 	if (pmd_present(pmd)) {
2184 		old = pmdp_invalidate_ad(vma, addr, pmdp);
2185 		pmd = pmd_mkuffd_wp(old);
2186 		set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
2187 	} else if (is_migration_entry(pmd_to_swp_entry(pmd))) {
2188 		pmd = pmd_swp_mkuffd_wp(pmd);
2189 		set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
2190 	}
2191 }
2192 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2193 
2194 #ifdef CONFIG_HUGETLB_PAGE
2195 static unsigned long pagemap_hugetlb_category(pte_t pte)
2196 {
2197 	unsigned long categories = PAGE_IS_HUGE;
2198 
2199 	/*
2200 	 * According to pagemap_hugetlb_range(), file-backed HugeTLB
2201 	 * page cannot be swapped. So PAGE_IS_FILE is not checked for
2202 	 * swapped pages.
2203 	 */
2204 	if (pte_present(pte)) {
2205 		categories |= PAGE_IS_PRESENT;
2206 		if (!huge_pte_uffd_wp(pte))
2207 			categories |= PAGE_IS_WRITTEN;
2208 		if (!PageAnon(pte_page(pte)))
2209 			categories |= PAGE_IS_FILE;
2210 		if (is_zero_pfn(pte_pfn(pte)))
2211 			categories |= PAGE_IS_PFNZERO;
2212 		if (pte_soft_dirty(pte))
2213 			categories |= PAGE_IS_SOFT_DIRTY;
2214 	} else if (is_swap_pte(pte)) {
2215 		categories |= PAGE_IS_SWAPPED;
2216 		if (!pte_swp_uffd_wp_any(pte))
2217 			categories |= PAGE_IS_WRITTEN;
2218 		if (pte_swp_soft_dirty(pte))
2219 			categories |= PAGE_IS_SOFT_DIRTY;
2220 	}
2221 
2222 	return categories;
2223 }
2224 
2225 static void make_uffd_wp_huge_pte(struct vm_area_struct *vma,
2226 				  unsigned long addr, pte_t *ptep,
2227 				  pte_t ptent)
2228 {
2229 	unsigned long psize;
2230 
2231 	if (is_hugetlb_entry_hwpoisoned(ptent) || is_pte_marker(ptent))
2232 		return;
2233 
2234 	psize = huge_page_size(hstate_vma(vma));
2235 
2236 	if (is_hugetlb_entry_migration(ptent))
2237 		set_huge_pte_at(vma->vm_mm, addr, ptep,
2238 				pte_swp_mkuffd_wp(ptent), psize);
2239 	else if (!huge_pte_none(ptent))
2240 		huge_ptep_modify_prot_commit(vma, addr, ptep, ptent,
2241 					     huge_pte_mkuffd_wp(ptent));
2242 	else
2243 		set_huge_pte_at(vma->vm_mm, addr, ptep,
2244 				make_pte_marker(PTE_MARKER_UFFD_WP), psize);
2245 }
2246 #endif /* CONFIG_HUGETLB_PAGE */
2247 
2248 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLB_PAGE)
2249 static void pagemap_scan_backout_range(struct pagemap_scan_private *p,
2250 				       unsigned long addr, unsigned long end)
2251 {
2252 	struct page_region *cur_buf = &p->vec_buf[p->vec_buf_index];
2253 
2254 	if (cur_buf->start != addr)
2255 		cur_buf->end = addr;
2256 	else
2257 		cur_buf->start = cur_buf->end = 0;
2258 
2259 	p->found_pages -= (end - addr) / PAGE_SIZE;
2260 }
2261 #endif
2262 
2263 static bool pagemap_scan_is_interesting_page(unsigned long categories,
2264 					     const struct pagemap_scan_private *p)
2265 {
2266 	categories ^= p->arg.category_inverted;
2267 	if ((categories & p->arg.category_mask) != p->arg.category_mask)
2268 		return false;
2269 	if (p->arg.category_anyof_mask && !(categories & p->arg.category_anyof_mask))
2270 		return false;
2271 
2272 	return true;
2273 }
2274 
2275 static bool pagemap_scan_is_interesting_vma(unsigned long categories,
2276 					    const struct pagemap_scan_private *p)
2277 {
2278 	unsigned long required = p->arg.category_mask & PAGE_IS_WPALLOWED;
2279 
2280 	categories ^= p->arg.category_inverted;
2281 	if ((categories & required) != required)
2282 		return false;
2283 
2284 	return true;
2285 }
2286 
2287 static int pagemap_scan_test_walk(unsigned long start, unsigned long end,
2288 				  struct mm_walk *walk)
2289 {
2290 	struct pagemap_scan_private *p = walk->private;
2291 	struct vm_area_struct *vma = walk->vma;
2292 	unsigned long vma_category = 0;
2293 	bool wp_allowed = userfaultfd_wp_async(vma) &&
2294 	    userfaultfd_wp_use_markers(vma);
2295 
2296 	if (!wp_allowed) {
2297 		/* User requested explicit failure over wp-async capability */
2298 		if (p->arg.flags & PM_SCAN_CHECK_WPASYNC)
2299 			return -EPERM;
2300 		/*
2301 		 * User requires wr-protect, and allows silently skipping
2302 		 * unsupported vmas.
2303 		 */
2304 		if (p->arg.flags & PM_SCAN_WP_MATCHING)
2305 			return 1;
2306 		/*
2307 		 * Then the request doesn't involve wr-protects at all,
2308 		 * fall through to the rest checks, and allow vma walk.
2309 		 */
2310 	}
2311 
2312 	if (vma->vm_flags & VM_PFNMAP)
2313 		return 1;
2314 
2315 	if (wp_allowed)
2316 		vma_category |= PAGE_IS_WPALLOWED;
2317 
2318 	if (vma->vm_flags & VM_SOFTDIRTY)
2319 		vma_category |= PAGE_IS_SOFT_DIRTY;
2320 
2321 	if (!pagemap_scan_is_interesting_vma(vma_category, p))
2322 		return 1;
2323 
2324 	p->cur_vma_category = vma_category;
2325 
2326 	return 0;
2327 }
2328 
2329 static bool pagemap_scan_push_range(unsigned long categories,
2330 				    struct pagemap_scan_private *p,
2331 				    unsigned long addr, unsigned long end)
2332 {
2333 	struct page_region *cur_buf = &p->vec_buf[p->vec_buf_index];
2334 
2335 	/*
2336 	 * When there is no output buffer provided at all, the sentinel values
2337 	 * won't match here. There is no other way for `cur_buf->end` to be
2338 	 * non-zero other than it being non-empty.
2339 	 */
2340 	if (addr == cur_buf->end && categories == cur_buf->categories) {
2341 		cur_buf->end = end;
2342 		return true;
2343 	}
2344 
2345 	if (cur_buf->end) {
2346 		if (p->vec_buf_index >= p->vec_buf_len - 1)
2347 			return false;
2348 
2349 		cur_buf = &p->vec_buf[++p->vec_buf_index];
2350 	}
2351 
2352 	cur_buf->start = addr;
2353 	cur_buf->end = end;
2354 	cur_buf->categories = categories;
2355 
2356 	return true;
2357 }
2358 
2359 static int pagemap_scan_output(unsigned long categories,
2360 			       struct pagemap_scan_private *p,
2361 			       unsigned long addr, unsigned long *end)
2362 {
2363 	unsigned long n_pages, total_pages;
2364 	int ret = 0;
2365 
2366 	if (!p->vec_buf)
2367 		return 0;
2368 
2369 	categories &= p->arg.return_mask;
2370 
2371 	n_pages = (*end - addr) / PAGE_SIZE;
2372 	if (check_add_overflow(p->found_pages, n_pages, &total_pages) ||
2373 	    total_pages > p->arg.max_pages) {
2374 		size_t n_too_much = total_pages - p->arg.max_pages;
2375 		*end -= n_too_much * PAGE_SIZE;
2376 		n_pages -= n_too_much;
2377 		ret = -ENOSPC;
2378 	}
2379 
2380 	if (!pagemap_scan_push_range(categories, p, addr, *end)) {
2381 		*end = addr;
2382 		n_pages = 0;
2383 		ret = -ENOSPC;
2384 	}
2385 
2386 	p->found_pages += n_pages;
2387 	if (ret)
2388 		p->arg.walk_end = *end;
2389 
2390 	return ret;
2391 }
2392 
2393 static int pagemap_scan_thp_entry(pmd_t *pmd, unsigned long start,
2394 				  unsigned long end, struct mm_walk *walk)
2395 {
2396 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2397 	struct pagemap_scan_private *p = walk->private;
2398 	struct vm_area_struct *vma = walk->vma;
2399 	unsigned long categories;
2400 	spinlock_t *ptl;
2401 	int ret = 0;
2402 
2403 	ptl = pmd_trans_huge_lock(pmd, vma);
2404 	if (!ptl)
2405 		return -ENOENT;
2406 
2407 	categories = p->cur_vma_category |
2408 		     pagemap_thp_category(p, vma, start, *pmd);
2409 
2410 	if (!pagemap_scan_is_interesting_page(categories, p))
2411 		goto out_unlock;
2412 
2413 	ret = pagemap_scan_output(categories, p, start, &end);
2414 	if (start == end)
2415 		goto out_unlock;
2416 
2417 	if (~p->arg.flags & PM_SCAN_WP_MATCHING)
2418 		goto out_unlock;
2419 	if (~categories & PAGE_IS_WRITTEN)
2420 		goto out_unlock;
2421 
2422 	/*
2423 	 * Break huge page into small pages if the WP operation
2424 	 * needs to be performed on a portion of the huge page.
2425 	 */
2426 	if (end != start + HPAGE_SIZE) {
2427 		spin_unlock(ptl);
2428 		split_huge_pmd(vma, pmd, start);
2429 		pagemap_scan_backout_range(p, start, end);
2430 		/* Report as if there was no THP */
2431 		return -ENOENT;
2432 	}
2433 
2434 	make_uffd_wp_pmd(vma, start, pmd);
2435 	flush_tlb_range(vma, start, end);
2436 out_unlock:
2437 	spin_unlock(ptl);
2438 	return ret;
2439 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */
2440 	return -ENOENT;
2441 #endif
2442 }
2443 
2444 static int pagemap_scan_pmd_entry(pmd_t *pmd, unsigned long start,
2445 				  unsigned long end, struct mm_walk *walk)
2446 {
2447 	struct pagemap_scan_private *p = walk->private;
2448 	struct vm_area_struct *vma = walk->vma;
2449 	unsigned long addr, flush_end = 0;
2450 	pte_t *pte, *start_pte;
2451 	spinlock_t *ptl;
2452 	int ret;
2453 
2454 	arch_enter_lazy_mmu_mode();
2455 
2456 	ret = pagemap_scan_thp_entry(pmd, start, end, walk);
2457 	if (ret != -ENOENT) {
2458 		arch_leave_lazy_mmu_mode();
2459 		return ret;
2460 	}
2461 
2462 	ret = 0;
2463 	start_pte = pte = pte_offset_map_lock(vma->vm_mm, pmd, start, &ptl);
2464 	if (!pte) {
2465 		arch_leave_lazy_mmu_mode();
2466 		walk->action = ACTION_AGAIN;
2467 		return 0;
2468 	}
2469 
2470 	if ((p->arg.flags & PM_SCAN_WP_MATCHING) && !p->vec_out) {
2471 		/* Fast path for performing exclusive WP */
2472 		for (addr = start; addr != end; pte++, addr += PAGE_SIZE) {
2473 			pte_t ptent = ptep_get(pte);
2474 
2475 			if ((pte_present(ptent) && pte_uffd_wp(ptent)) ||
2476 			    pte_swp_uffd_wp_any(ptent))
2477 				continue;
2478 			make_uffd_wp_pte(vma, addr, pte, ptent);
2479 			if (!flush_end)
2480 				start = addr;
2481 			flush_end = addr + PAGE_SIZE;
2482 		}
2483 		goto flush_and_return;
2484 	}
2485 
2486 	if (!p->arg.category_anyof_mask && !p->arg.category_inverted &&
2487 	    p->arg.category_mask == PAGE_IS_WRITTEN &&
2488 	    p->arg.return_mask == PAGE_IS_WRITTEN) {
2489 		for (addr = start; addr < end; pte++, addr += PAGE_SIZE) {
2490 			unsigned long next = addr + PAGE_SIZE;
2491 			pte_t ptent = ptep_get(pte);
2492 
2493 			if ((pte_present(ptent) && pte_uffd_wp(ptent)) ||
2494 			    pte_swp_uffd_wp_any(ptent))
2495 				continue;
2496 			ret = pagemap_scan_output(p->cur_vma_category | PAGE_IS_WRITTEN,
2497 						  p, addr, &next);
2498 			if (next == addr)
2499 				break;
2500 			if (~p->arg.flags & PM_SCAN_WP_MATCHING)
2501 				continue;
2502 			make_uffd_wp_pte(vma, addr, pte, ptent);
2503 			if (!flush_end)
2504 				start = addr;
2505 			flush_end = next;
2506 		}
2507 		goto flush_and_return;
2508 	}
2509 
2510 	for (addr = start; addr != end; pte++, addr += PAGE_SIZE) {
2511 		pte_t ptent = ptep_get(pte);
2512 		unsigned long categories = p->cur_vma_category |
2513 					   pagemap_page_category(p, vma, addr, ptent);
2514 		unsigned long next = addr + PAGE_SIZE;
2515 
2516 		if (!pagemap_scan_is_interesting_page(categories, p))
2517 			continue;
2518 
2519 		ret = pagemap_scan_output(categories, p, addr, &next);
2520 		if (next == addr)
2521 			break;
2522 
2523 		if (~p->arg.flags & PM_SCAN_WP_MATCHING)
2524 			continue;
2525 		if (~categories & PAGE_IS_WRITTEN)
2526 			continue;
2527 
2528 		make_uffd_wp_pte(vma, addr, pte, ptent);
2529 		if (!flush_end)
2530 			start = addr;
2531 		flush_end = next;
2532 	}
2533 
2534 flush_and_return:
2535 	if (flush_end)
2536 		flush_tlb_range(vma, start, addr);
2537 
2538 	pte_unmap_unlock(start_pte, ptl);
2539 	arch_leave_lazy_mmu_mode();
2540 
2541 	cond_resched();
2542 	return ret;
2543 }
2544 
2545 #ifdef CONFIG_HUGETLB_PAGE
2546 static int pagemap_scan_hugetlb_entry(pte_t *ptep, unsigned long hmask,
2547 				      unsigned long start, unsigned long end,
2548 				      struct mm_walk *walk)
2549 {
2550 	struct pagemap_scan_private *p = walk->private;
2551 	struct vm_area_struct *vma = walk->vma;
2552 	unsigned long categories;
2553 	spinlock_t *ptl;
2554 	int ret = 0;
2555 	pte_t pte;
2556 
2557 	if (~p->arg.flags & PM_SCAN_WP_MATCHING) {
2558 		/* Go the short route when not write-protecting pages. */
2559 
2560 		pte = huge_ptep_get(walk->mm, start, ptep);
2561 		categories = p->cur_vma_category | pagemap_hugetlb_category(pte);
2562 
2563 		if (!pagemap_scan_is_interesting_page(categories, p))
2564 			return 0;
2565 
2566 		return pagemap_scan_output(categories, p, start, &end);
2567 	}
2568 
2569 	i_mmap_lock_write(vma->vm_file->f_mapping);
2570 	ptl = huge_pte_lock(hstate_vma(vma), vma->vm_mm, ptep);
2571 
2572 	pte = huge_ptep_get(walk->mm, start, ptep);
2573 	categories = p->cur_vma_category | pagemap_hugetlb_category(pte);
2574 
2575 	if (!pagemap_scan_is_interesting_page(categories, p))
2576 		goto out_unlock;
2577 
2578 	ret = pagemap_scan_output(categories, p, start, &end);
2579 	if (start == end)
2580 		goto out_unlock;
2581 
2582 	if (~categories & PAGE_IS_WRITTEN)
2583 		goto out_unlock;
2584 
2585 	if (end != start + HPAGE_SIZE) {
2586 		/* Partial HugeTLB page WP isn't possible. */
2587 		pagemap_scan_backout_range(p, start, end);
2588 		p->arg.walk_end = start;
2589 		ret = 0;
2590 		goto out_unlock;
2591 	}
2592 
2593 	make_uffd_wp_huge_pte(vma, start, ptep, pte);
2594 	flush_hugetlb_tlb_range(vma, start, end);
2595 
2596 out_unlock:
2597 	spin_unlock(ptl);
2598 	i_mmap_unlock_write(vma->vm_file->f_mapping);
2599 
2600 	return ret;
2601 }
2602 #else
2603 #define pagemap_scan_hugetlb_entry NULL
2604 #endif
2605 
2606 static int pagemap_scan_pte_hole(unsigned long addr, unsigned long end,
2607 				 int depth, struct mm_walk *walk)
2608 {
2609 	struct pagemap_scan_private *p = walk->private;
2610 	struct vm_area_struct *vma = walk->vma;
2611 	int ret, err;
2612 
2613 	if (!vma || !pagemap_scan_is_interesting_page(p->cur_vma_category, p))
2614 		return 0;
2615 
2616 	ret = pagemap_scan_output(p->cur_vma_category, p, addr, &end);
2617 	if (addr == end)
2618 		return ret;
2619 
2620 	if (~p->arg.flags & PM_SCAN_WP_MATCHING)
2621 		return ret;
2622 
2623 	err = uffd_wp_range(vma, addr, end - addr, true);
2624 	if (err < 0)
2625 		ret = err;
2626 
2627 	return ret;
2628 }
2629 
2630 static const struct mm_walk_ops pagemap_scan_ops = {
2631 	.test_walk = pagemap_scan_test_walk,
2632 	.pmd_entry = pagemap_scan_pmd_entry,
2633 	.pte_hole = pagemap_scan_pte_hole,
2634 	.hugetlb_entry = pagemap_scan_hugetlb_entry,
2635 };
2636 
2637 static int pagemap_scan_get_args(struct pm_scan_arg *arg,
2638 				 unsigned long uarg)
2639 {
2640 	if (copy_from_user(arg, (void __user *)uarg, sizeof(*arg)))
2641 		return -EFAULT;
2642 
2643 	if (arg->size != sizeof(struct pm_scan_arg))
2644 		return -EINVAL;
2645 
2646 	/* Validate requested features */
2647 	if (arg->flags & ~PM_SCAN_FLAGS)
2648 		return -EINVAL;
2649 	if ((arg->category_inverted | arg->category_mask |
2650 	     arg->category_anyof_mask | arg->return_mask) & ~PM_SCAN_CATEGORIES)
2651 		return -EINVAL;
2652 
2653 	arg->start = untagged_addr((unsigned long)arg->start);
2654 	arg->end = untagged_addr((unsigned long)arg->end);
2655 	arg->vec = untagged_addr((unsigned long)arg->vec);
2656 
2657 	/* Validate memory pointers */
2658 	if (!IS_ALIGNED(arg->start, PAGE_SIZE))
2659 		return -EINVAL;
2660 	if (!access_ok((void __user *)(long)arg->start, arg->end - arg->start))
2661 		return -EFAULT;
2662 	if (!arg->vec && arg->vec_len)
2663 		return -EINVAL;
2664 	if (arg->vec && !access_ok((void __user *)(long)arg->vec,
2665 			      arg->vec_len * sizeof(struct page_region)))
2666 		return -EFAULT;
2667 
2668 	/* Fixup default values */
2669 	arg->end = ALIGN(arg->end, PAGE_SIZE);
2670 	arg->walk_end = 0;
2671 	if (!arg->max_pages)
2672 		arg->max_pages = ULONG_MAX;
2673 
2674 	return 0;
2675 }
2676 
2677 static int pagemap_scan_writeback_args(struct pm_scan_arg *arg,
2678 				       unsigned long uargl)
2679 {
2680 	struct pm_scan_arg __user *uarg	= (void __user *)uargl;
2681 
2682 	if (copy_to_user(&uarg->walk_end, &arg->walk_end, sizeof(arg->walk_end)))
2683 		return -EFAULT;
2684 
2685 	return 0;
2686 }
2687 
2688 static int pagemap_scan_init_bounce_buffer(struct pagemap_scan_private *p)
2689 {
2690 	if (!p->arg.vec_len)
2691 		return 0;
2692 
2693 	p->vec_buf_len = min_t(size_t, PAGEMAP_WALK_SIZE >> PAGE_SHIFT,
2694 			       p->arg.vec_len);
2695 	p->vec_buf = kmalloc_array(p->vec_buf_len, sizeof(*p->vec_buf),
2696 				   GFP_KERNEL);
2697 	if (!p->vec_buf)
2698 		return -ENOMEM;
2699 
2700 	p->vec_buf->start = p->vec_buf->end = 0;
2701 	p->vec_out = (struct page_region __user *)(long)p->arg.vec;
2702 
2703 	return 0;
2704 }
2705 
2706 static long pagemap_scan_flush_buffer(struct pagemap_scan_private *p)
2707 {
2708 	const struct page_region *buf = p->vec_buf;
2709 	long n = p->vec_buf_index;
2710 
2711 	if (!p->vec_buf)
2712 		return 0;
2713 
2714 	if (buf[n].end != buf[n].start)
2715 		n++;
2716 
2717 	if (!n)
2718 		return 0;
2719 
2720 	if (copy_to_user(p->vec_out, buf, n * sizeof(*buf)))
2721 		return -EFAULT;
2722 
2723 	p->arg.vec_len -= n;
2724 	p->vec_out += n;
2725 
2726 	p->vec_buf_index = 0;
2727 	p->vec_buf_len = min_t(size_t, p->vec_buf_len, p->arg.vec_len);
2728 	p->vec_buf->start = p->vec_buf->end = 0;
2729 
2730 	return n;
2731 }
2732 
2733 static long do_pagemap_scan(struct mm_struct *mm, unsigned long uarg)
2734 {
2735 	struct pagemap_scan_private p = {0};
2736 	unsigned long walk_start;
2737 	size_t n_ranges_out = 0;
2738 	int ret;
2739 
2740 	ret = pagemap_scan_get_args(&p.arg, uarg);
2741 	if (ret)
2742 		return ret;
2743 
2744 	p.masks_of_interest = p.arg.category_mask | p.arg.category_anyof_mask |
2745 			      p.arg.return_mask;
2746 	ret = pagemap_scan_init_bounce_buffer(&p);
2747 	if (ret)
2748 		return ret;
2749 
2750 	for (walk_start = p.arg.start; walk_start < p.arg.end;
2751 			walk_start = p.arg.walk_end) {
2752 		struct mmu_notifier_range range;
2753 		long n_out;
2754 
2755 		if (fatal_signal_pending(current)) {
2756 			ret = -EINTR;
2757 			break;
2758 		}
2759 
2760 		ret = mmap_read_lock_killable(mm);
2761 		if (ret)
2762 			break;
2763 
2764 		/* Protection change for the range is going to happen. */
2765 		if (p.arg.flags & PM_SCAN_WP_MATCHING) {
2766 			mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA, 0,
2767 						mm, walk_start, p.arg.end);
2768 			mmu_notifier_invalidate_range_start(&range);
2769 		}
2770 
2771 		ret = walk_page_range(mm, walk_start, p.arg.end,
2772 				      &pagemap_scan_ops, &p);
2773 
2774 		if (p.arg.flags & PM_SCAN_WP_MATCHING)
2775 			mmu_notifier_invalidate_range_end(&range);
2776 
2777 		mmap_read_unlock(mm);
2778 
2779 		n_out = pagemap_scan_flush_buffer(&p);
2780 		if (n_out < 0)
2781 			ret = n_out;
2782 		else
2783 			n_ranges_out += n_out;
2784 
2785 		if (ret != -ENOSPC)
2786 			break;
2787 
2788 		if (p.arg.vec_len == 0 || p.found_pages == p.arg.max_pages)
2789 			break;
2790 	}
2791 
2792 	/* ENOSPC signifies early stop (buffer full) from the walk. */
2793 	if (!ret || ret == -ENOSPC)
2794 		ret = n_ranges_out;
2795 
2796 	/* The walk_end isn't set when ret is zero */
2797 	if (!p.arg.walk_end)
2798 		p.arg.walk_end = p.arg.end;
2799 	if (pagemap_scan_writeback_args(&p.arg, uarg))
2800 		ret = -EFAULT;
2801 
2802 	kfree(p.vec_buf);
2803 	return ret;
2804 }
2805 
2806 static long do_pagemap_cmd(struct file *file, unsigned int cmd,
2807 			   unsigned long arg)
2808 {
2809 	struct mm_struct *mm = file->private_data;
2810 
2811 	switch (cmd) {
2812 	case PAGEMAP_SCAN:
2813 		return do_pagemap_scan(mm, arg);
2814 
2815 	default:
2816 		return -EINVAL;
2817 	}
2818 }
2819 
2820 const struct file_operations proc_pagemap_operations = {
2821 	.llseek		= mem_lseek, /* borrow this */
2822 	.read		= pagemap_read,
2823 	.open		= pagemap_open,
2824 	.release	= pagemap_release,
2825 	.unlocked_ioctl = do_pagemap_cmd,
2826 	.compat_ioctl	= do_pagemap_cmd,
2827 };
2828 #endif /* CONFIG_PROC_PAGE_MONITOR */
2829 
2830 #ifdef CONFIG_NUMA
2831 
2832 struct numa_maps {
2833 	unsigned long pages;
2834 	unsigned long anon;
2835 	unsigned long active;
2836 	unsigned long writeback;
2837 	unsigned long mapcount_max;
2838 	unsigned long dirty;
2839 	unsigned long swapcache;
2840 	unsigned long node[MAX_NUMNODES];
2841 };
2842 
2843 struct numa_maps_private {
2844 	struct proc_maps_private proc_maps;
2845 	struct numa_maps md;
2846 };
2847 
2848 static void gather_stats(struct page *page, struct numa_maps *md, int pte_dirty,
2849 			unsigned long nr_pages)
2850 {
2851 	struct folio *folio = page_folio(page);
2852 	int count = folio_precise_page_mapcount(folio, page);
2853 
2854 	md->pages += nr_pages;
2855 	if (pte_dirty || folio_test_dirty(folio))
2856 		md->dirty += nr_pages;
2857 
2858 	if (folio_test_swapcache(folio))
2859 		md->swapcache += nr_pages;
2860 
2861 	if (folio_test_active(folio) || folio_test_unevictable(folio))
2862 		md->active += nr_pages;
2863 
2864 	if (folio_test_writeback(folio))
2865 		md->writeback += nr_pages;
2866 
2867 	if (folio_test_anon(folio))
2868 		md->anon += nr_pages;
2869 
2870 	if (count > md->mapcount_max)
2871 		md->mapcount_max = count;
2872 
2873 	md->node[folio_nid(folio)] += nr_pages;
2874 }
2875 
2876 static struct page *can_gather_numa_stats(pte_t pte, struct vm_area_struct *vma,
2877 		unsigned long addr)
2878 {
2879 	struct page *page;
2880 	int nid;
2881 
2882 	if (!pte_present(pte))
2883 		return NULL;
2884 
2885 	page = vm_normal_page(vma, addr, pte);
2886 	if (!page || is_zone_device_page(page))
2887 		return NULL;
2888 
2889 	if (PageReserved(page))
2890 		return NULL;
2891 
2892 	nid = page_to_nid(page);
2893 	if (!node_isset(nid, node_states[N_MEMORY]))
2894 		return NULL;
2895 
2896 	return page;
2897 }
2898 
2899 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2900 static struct page *can_gather_numa_stats_pmd(pmd_t pmd,
2901 					      struct vm_area_struct *vma,
2902 					      unsigned long addr)
2903 {
2904 	struct page *page;
2905 	int nid;
2906 
2907 	if (!pmd_present(pmd))
2908 		return NULL;
2909 
2910 	page = vm_normal_page_pmd(vma, addr, pmd);
2911 	if (!page)
2912 		return NULL;
2913 
2914 	if (PageReserved(page))
2915 		return NULL;
2916 
2917 	nid = page_to_nid(page);
2918 	if (!node_isset(nid, node_states[N_MEMORY]))
2919 		return NULL;
2920 
2921 	return page;
2922 }
2923 #endif
2924 
2925 static int gather_pte_stats(pmd_t *pmd, unsigned long addr,
2926 		unsigned long end, struct mm_walk *walk)
2927 {
2928 	struct numa_maps *md = walk->private;
2929 	struct vm_area_struct *vma = walk->vma;
2930 	spinlock_t *ptl;
2931 	pte_t *orig_pte;
2932 	pte_t *pte;
2933 
2934 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2935 	ptl = pmd_trans_huge_lock(pmd, vma);
2936 	if (ptl) {
2937 		struct page *page;
2938 
2939 		page = can_gather_numa_stats_pmd(*pmd, vma, addr);
2940 		if (page)
2941 			gather_stats(page, md, pmd_dirty(*pmd),
2942 				     HPAGE_PMD_SIZE/PAGE_SIZE);
2943 		spin_unlock(ptl);
2944 		return 0;
2945 	}
2946 #endif
2947 	orig_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
2948 	if (!pte) {
2949 		walk->action = ACTION_AGAIN;
2950 		return 0;
2951 	}
2952 	do {
2953 		pte_t ptent = ptep_get(pte);
2954 		struct page *page = can_gather_numa_stats(ptent, vma, addr);
2955 		if (!page)
2956 			continue;
2957 		gather_stats(page, md, pte_dirty(ptent), 1);
2958 
2959 	} while (pte++, addr += PAGE_SIZE, addr != end);
2960 	pte_unmap_unlock(orig_pte, ptl);
2961 	cond_resched();
2962 	return 0;
2963 }
2964 #ifdef CONFIG_HUGETLB_PAGE
2965 static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
2966 		unsigned long addr, unsigned long end, struct mm_walk *walk)
2967 {
2968 	pte_t huge_pte = huge_ptep_get(walk->mm, addr, pte);
2969 	struct numa_maps *md;
2970 	struct page *page;
2971 
2972 	if (!pte_present(huge_pte))
2973 		return 0;
2974 
2975 	page = pte_page(huge_pte);
2976 
2977 	md = walk->private;
2978 	gather_stats(page, md, pte_dirty(huge_pte), 1);
2979 	return 0;
2980 }
2981 
2982 #else
2983 static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
2984 		unsigned long addr, unsigned long end, struct mm_walk *walk)
2985 {
2986 	return 0;
2987 }
2988 #endif
2989 
2990 static const struct mm_walk_ops show_numa_ops = {
2991 	.hugetlb_entry = gather_hugetlb_stats,
2992 	.pmd_entry = gather_pte_stats,
2993 	.walk_lock = PGWALK_RDLOCK,
2994 };
2995 
2996 /*
2997  * Display pages allocated per node and memory policy via /proc.
2998  */
2999 static int show_numa_map(struct seq_file *m, void *v)
3000 {
3001 	struct numa_maps_private *numa_priv = m->private;
3002 	struct proc_maps_private *proc_priv = &numa_priv->proc_maps;
3003 	struct vm_area_struct *vma = v;
3004 	struct numa_maps *md = &numa_priv->md;
3005 	struct file *file = vma->vm_file;
3006 	struct mm_struct *mm = vma->vm_mm;
3007 	char buffer[64];
3008 	struct mempolicy *pol;
3009 	pgoff_t ilx;
3010 	int nid;
3011 
3012 	if (!mm)
3013 		return 0;
3014 
3015 	/* Ensure we start with an empty set of numa_maps statistics. */
3016 	memset(md, 0, sizeof(*md));
3017 
3018 	pol = __get_vma_policy(vma, vma->vm_start, &ilx);
3019 	if (pol) {
3020 		mpol_to_str(buffer, sizeof(buffer), pol);
3021 		mpol_cond_put(pol);
3022 	} else {
3023 		mpol_to_str(buffer, sizeof(buffer), proc_priv->task_mempolicy);
3024 	}
3025 
3026 	seq_printf(m, "%08lx %s", vma->vm_start, buffer);
3027 
3028 	if (file) {
3029 		seq_puts(m, " file=");
3030 		seq_path(m, file_user_path(file), "\n\t= ");
3031 	} else if (vma_is_initial_heap(vma)) {
3032 		seq_puts(m, " heap");
3033 	} else if (vma_is_initial_stack(vma)) {
3034 		seq_puts(m, " stack");
3035 	}
3036 
3037 	if (is_vm_hugetlb_page(vma))
3038 		seq_puts(m, " huge");
3039 
3040 	/* mmap_lock is held by m_start */
3041 	walk_page_vma(vma, &show_numa_ops, md);
3042 
3043 	if (!md->pages)
3044 		goto out;
3045 
3046 	if (md->anon)
3047 		seq_printf(m, " anon=%lu", md->anon);
3048 
3049 	if (md->dirty)
3050 		seq_printf(m, " dirty=%lu", md->dirty);
3051 
3052 	if (md->pages != md->anon && md->pages != md->dirty)
3053 		seq_printf(m, " mapped=%lu", md->pages);
3054 
3055 	if (md->mapcount_max > 1)
3056 		seq_printf(m, " mapmax=%lu", md->mapcount_max);
3057 
3058 	if (md->swapcache)
3059 		seq_printf(m, " swapcache=%lu", md->swapcache);
3060 
3061 	if (md->active < md->pages && !is_vm_hugetlb_page(vma))
3062 		seq_printf(m, " active=%lu", md->active);
3063 
3064 	if (md->writeback)
3065 		seq_printf(m, " writeback=%lu", md->writeback);
3066 
3067 	for_each_node_state(nid, N_MEMORY)
3068 		if (md->node[nid])
3069 			seq_printf(m, " N%d=%lu", nid, md->node[nid]);
3070 
3071 	seq_printf(m, " kernelpagesize_kB=%lu", vma_kernel_pagesize(vma) >> 10);
3072 out:
3073 	seq_putc(m, '\n');
3074 	return 0;
3075 }
3076 
3077 static const struct seq_operations proc_pid_numa_maps_op = {
3078 	.start  = m_start,
3079 	.next   = m_next,
3080 	.stop   = m_stop,
3081 	.show   = show_numa_map,
3082 };
3083 
3084 static int pid_numa_maps_open(struct inode *inode, struct file *file)
3085 {
3086 	return proc_maps_open(inode, file, &proc_pid_numa_maps_op,
3087 				sizeof(struct numa_maps_private));
3088 }
3089 
3090 const struct file_operations proc_pid_numa_maps_operations = {
3091 	.open		= pid_numa_maps_open,
3092 	.read		= seq_read,
3093 	.llseek		= seq_lseek,
3094 	.release	= proc_map_release,
3095 };
3096 
3097 #endif /* CONFIG_NUMA */
3098