1 // SPDX-License-Identifier: GPL-2.0 2 #include <linux/pagewalk.h> 3 #include <linux/mm_inline.h> 4 #include <linux/hugetlb.h> 5 #include <linux/huge_mm.h> 6 #include <linux/mount.h> 7 #include <linux/seq_file.h> 8 #include <linux/highmem.h> 9 #include <linux/ptrace.h> 10 #include <linux/slab.h> 11 #include <linux/pagemap.h> 12 #include <linux/mempolicy.h> 13 #include <linux/rmap.h> 14 #include <linux/swap.h> 15 #include <linux/sched/mm.h> 16 #include <linux/swapops.h> 17 #include <linux/mmu_notifier.h> 18 #include <linux/page_idle.h> 19 #include <linux/shmem_fs.h> 20 #include <linux/uaccess.h> 21 #include <linux/pkeys.h> 22 23 #include <asm/elf.h> 24 #include <asm/tlb.h> 25 #include <asm/tlbflush.h> 26 #include "internal.h" 27 28 #define SEQ_PUT_DEC(str, val) \ 29 seq_put_decimal_ull_width(m, str, (val) << (PAGE_SHIFT-10), 8) 30 void task_mem(struct seq_file *m, struct mm_struct *mm) 31 { 32 unsigned long text, lib, swap, anon, file, shmem; 33 unsigned long hiwater_vm, total_vm, hiwater_rss, total_rss; 34 35 anon = get_mm_counter(mm, MM_ANONPAGES); 36 file = get_mm_counter(mm, MM_FILEPAGES); 37 shmem = get_mm_counter(mm, MM_SHMEMPAGES); 38 39 /* 40 * Note: to minimize their overhead, mm maintains hiwater_vm and 41 * hiwater_rss only when about to *lower* total_vm or rss. Any 42 * collector of these hiwater stats must therefore get total_vm 43 * and rss too, which will usually be the higher. Barriers? not 44 * worth the effort, such snapshots can always be inconsistent. 45 */ 46 hiwater_vm = total_vm = mm->total_vm; 47 if (hiwater_vm < mm->hiwater_vm) 48 hiwater_vm = mm->hiwater_vm; 49 hiwater_rss = total_rss = anon + file + shmem; 50 if (hiwater_rss < mm->hiwater_rss) 51 hiwater_rss = mm->hiwater_rss; 52 53 /* split executable areas between text and lib */ 54 text = PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK); 55 text = min(text, mm->exec_vm << PAGE_SHIFT); 56 lib = (mm->exec_vm << PAGE_SHIFT) - text; 57 58 swap = get_mm_counter(mm, MM_SWAPENTS); 59 SEQ_PUT_DEC("VmPeak:\t", hiwater_vm); 60 SEQ_PUT_DEC(" kB\nVmSize:\t", total_vm); 61 SEQ_PUT_DEC(" kB\nVmLck:\t", mm->locked_vm); 62 SEQ_PUT_DEC(" kB\nVmPin:\t", atomic64_read(&mm->pinned_vm)); 63 SEQ_PUT_DEC(" kB\nVmHWM:\t", hiwater_rss); 64 SEQ_PUT_DEC(" kB\nVmRSS:\t", total_rss); 65 SEQ_PUT_DEC(" kB\nRssAnon:\t", anon); 66 SEQ_PUT_DEC(" kB\nRssFile:\t", file); 67 SEQ_PUT_DEC(" kB\nRssShmem:\t", shmem); 68 SEQ_PUT_DEC(" kB\nVmData:\t", mm->data_vm); 69 SEQ_PUT_DEC(" kB\nVmStk:\t", mm->stack_vm); 70 seq_put_decimal_ull_width(m, 71 " kB\nVmExe:\t", text >> 10, 8); 72 seq_put_decimal_ull_width(m, 73 " kB\nVmLib:\t", lib >> 10, 8); 74 seq_put_decimal_ull_width(m, 75 " kB\nVmPTE:\t", mm_pgtables_bytes(mm) >> 10, 8); 76 SEQ_PUT_DEC(" kB\nVmSwap:\t", swap); 77 seq_puts(m, " kB\n"); 78 hugetlb_report_usage(m, mm); 79 } 80 #undef SEQ_PUT_DEC 81 82 unsigned long task_vsize(struct mm_struct *mm) 83 { 84 return PAGE_SIZE * mm->total_vm; 85 } 86 87 unsigned long task_statm(struct mm_struct *mm, 88 unsigned long *shared, unsigned long *text, 89 unsigned long *data, unsigned long *resident) 90 { 91 *shared = get_mm_counter(mm, MM_FILEPAGES) + 92 get_mm_counter(mm, MM_SHMEMPAGES); 93 *text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK)) 94 >> PAGE_SHIFT; 95 *data = mm->data_vm + mm->stack_vm; 96 *resident = *shared + get_mm_counter(mm, MM_ANONPAGES); 97 return mm->total_vm; 98 } 99 100 #ifdef CONFIG_NUMA 101 /* 102 * Save get_task_policy() for show_numa_map(). 103 */ 104 static void hold_task_mempolicy(struct proc_maps_private *priv) 105 { 106 struct task_struct *task = priv->task; 107 108 task_lock(task); 109 priv->task_mempolicy = get_task_policy(task); 110 mpol_get(priv->task_mempolicy); 111 task_unlock(task); 112 } 113 static void release_task_mempolicy(struct proc_maps_private *priv) 114 { 115 mpol_put(priv->task_mempolicy); 116 } 117 #else 118 static void hold_task_mempolicy(struct proc_maps_private *priv) 119 { 120 } 121 static void release_task_mempolicy(struct proc_maps_private *priv) 122 { 123 } 124 #endif 125 126 static struct vm_area_struct *proc_get_vma(struct proc_maps_private *priv, 127 loff_t *ppos) 128 { 129 struct vm_area_struct *vma = vma_next(&priv->iter); 130 131 if (vma) { 132 *ppos = vma->vm_start; 133 } else { 134 *ppos = -2UL; 135 vma = get_gate_vma(priv->mm); 136 } 137 138 return vma; 139 } 140 141 static void *m_start(struct seq_file *m, loff_t *ppos) 142 { 143 struct proc_maps_private *priv = m->private; 144 unsigned long last_addr = *ppos; 145 struct mm_struct *mm; 146 147 /* See m_next(). Zero at the start or after lseek. */ 148 if (last_addr == -1UL) 149 return NULL; 150 151 priv->task = get_proc_task(priv->inode); 152 if (!priv->task) 153 return ERR_PTR(-ESRCH); 154 155 mm = priv->mm; 156 if (!mm || !mmget_not_zero(mm)) { 157 put_task_struct(priv->task); 158 priv->task = NULL; 159 return NULL; 160 } 161 162 if (mmap_read_lock_killable(mm)) { 163 mmput(mm); 164 put_task_struct(priv->task); 165 priv->task = NULL; 166 return ERR_PTR(-EINTR); 167 } 168 169 vma_iter_init(&priv->iter, mm, last_addr); 170 hold_task_mempolicy(priv); 171 if (last_addr == -2UL) 172 return get_gate_vma(mm); 173 174 return proc_get_vma(priv, ppos); 175 } 176 177 static void *m_next(struct seq_file *m, void *v, loff_t *ppos) 178 { 179 if (*ppos == -2UL) { 180 *ppos = -1UL; 181 return NULL; 182 } 183 return proc_get_vma(m->private, ppos); 184 } 185 186 static void m_stop(struct seq_file *m, void *v) 187 { 188 struct proc_maps_private *priv = m->private; 189 struct mm_struct *mm = priv->mm; 190 191 if (!priv->task) 192 return; 193 194 release_task_mempolicy(priv); 195 mmap_read_unlock(mm); 196 mmput(mm); 197 put_task_struct(priv->task); 198 priv->task = NULL; 199 } 200 201 static int proc_maps_open(struct inode *inode, struct file *file, 202 const struct seq_operations *ops, int psize) 203 { 204 struct proc_maps_private *priv = __seq_open_private(file, ops, psize); 205 206 if (!priv) 207 return -ENOMEM; 208 209 priv->inode = inode; 210 priv->mm = proc_mem_open(inode, PTRACE_MODE_READ); 211 if (IS_ERR(priv->mm)) { 212 int err = PTR_ERR(priv->mm); 213 214 seq_release_private(inode, file); 215 return err; 216 } 217 218 return 0; 219 } 220 221 static int proc_map_release(struct inode *inode, struct file *file) 222 { 223 struct seq_file *seq = file->private_data; 224 struct proc_maps_private *priv = seq->private; 225 226 if (priv->mm) 227 mmdrop(priv->mm); 228 229 return seq_release_private(inode, file); 230 } 231 232 static int do_maps_open(struct inode *inode, struct file *file, 233 const struct seq_operations *ops) 234 { 235 return proc_maps_open(inode, file, ops, 236 sizeof(struct proc_maps_private)); 237 } 238 239 /* 240 * Indicate if the VMA is a stack for the given task; for 241 * /proc/PID/maps that is the stack of the main task. 242 */ 243 static int is_stack(struct vm_area_struct *vma) 244 { 245 /* 246 * We make no effort to guess what a given thread considers to be 247 * its "stack". It's not even well-defined for programs written 248 * languages like Go. 249 */ 250 return vma->vm_start <= vma->vm_mm->start_stack && 251 vma->vm_end >= vma->vm_mm->start_stack; 252 } 253 254 static void show_vma_header_prefix(struct seq_file *m, 255 unsigned long start, unsigned long end, 256 vm_flags_t flags, unsigned long long pgoff, 257 dev_t dev, unsigned long ino) 258 { 259 seq_setwidth(m, 25 + sizeof(void *) * 6 - 1); 260 seq_put_hex_ll(m, NULL, start, 8); 261 seq_put_hex_ll(m, "-", end, 8); 262 seq_putc(m, ' '); 263 seq_putc(m, flags & VM_READ ? 'r' : '-'); 264 seq_putc(m, flags & VM_WRITE ? 'w' : '-'); 265 seq_putc(m, flags & VM_EXEC ? 'x' : '-'); 266 seq_putc(m, flags & VM_MAYSHARE ? 's' : 'p'); 267 seq_put_hex_ll(m, " ", pgoff, 8); 268 seq_put_hex_ll(m, " ", MAJOR(dev), 2); 269 seq_put_hex_ll(m, ":", MINOR(dev), 2); 270 seq_put_decimal_ull(m, " ", ino); 271 seq_putc(m, ' '); 272 } 273 274 static void 275 show_map_vma(struct seq_file *m, struct vm_area_struct *vma) 276 { 277 struct mm_struct *mm = vma->vm_mm; 278 struct file *file = vma->vm_file; 279 vm_flags_t flags = vma->vm_flags; 280 unsigned long ino = 0; 281 unsigned long long pgoff = 0; 282 unsigned long start, end; 283 dev_t dev = 0; 284 const char *name = NULL; 285 286 if (file) { 287 struct inode *inode = file_inode(vma->vm_file); 288 dev = inode->i_sb->s_dev; 289 ino = inode->i_ino; 290 pgoff = ((loff_t)vma->vm_pgoff) << PAGE_SHIFT; 291 } 292 293 start = vma->vm_start; 294 end = vma->vm_end; 295 show_vma_header_prefix(m, start, end, flags, pgoff, dev, ino); 296 297 /* 298 * Print the dentry name for named mappings, and a 299 * special [heap] marker for the heap: 300 */ 301 if (file) { 302 seq_pad(m, ' '); 303 seq_file_path(m, file, "\n"); 304 goto done; 305 } 306 307 if (vma->vm_ops && vma->vm_ops->name) { 308 name = vma->vm_ops->name(vma); 309 if (name) 310 goto done; 311 } 312 313 name = arch_vma_name(vma); 314 if (!name) { 315 struct anon_vma_name *anon_name; 316 317 if (!mm) { 318 name = "[vdso]"; 319 goto done; 320 } 321 322 if (vma->vm_start <= mm->brk && 323 vma->vm_end >= mm->start_brk) { 324 name = "[heap]"; 325 goto done; 326 } 327 328 if (is_stack(vma)) { 329 name = "[stack]"; 330 goto done; 331 } 332 333 anon_name = anon_vma_name(vma); 334 if (anon_name) { 335 seq_pad(m, ' '); 336 seq_printf(m, "[anon:%s]", anon_name->name); 337 } 338 } 339 340 done: 341 if (name) { 342 seq_pad(m, ' '); 343 seq_puts(m, name); 344 } 345 seq_putc(m, '\n'); 346 } 347 348 static int show_map(struct seq_file *m, void *v) 349 { 350 show_map_vma(m, v); 351 return 0; 352 } 353 354 static const struct seq_operations proc_pid_maps_op = { 355 .start = m_start, 356 .next = m_next, 357 .stop = m_stop, 358 .show = show_map 359 }; 360 361 static int pid_maps_open(struct inode *inode, struct file *file) 362 { 363 return do_maps_open(inode, file, &proc_pid_maps_op); 364 } 365 366 const struct file_operations proc_pid_maps_operations = { 367 .open = pid_maps_open, 368 .read = seq_read, 369 .llseek = seq_lseek, 370 .release = proc_map_release, 371 }; 372 373 /* 374 * Proportional Set Size(PSS): my share of RSS. 375 * 376 * PSS of a process is the count of pages it has in memory, where each 377 * page is divided by the number of processes sharing it. So if a 378 * process has 1000 pages all to itself, and 1000 shared with one other 379 * process, its PSS will be 1500. 380 * 381 * To keep (accumulated) division errors low, we adopt a 64bit 382 * fixed-point pss counter to minimize division errors. So (pss >> 383 * PSS_SHIFT) would be the real byte count. 384 * 385 * A shift of 12 before division means (assuming 4K page size): 386 * - 1M 3-user-pages add up to 8KB errors; 387 * - supports mapcount up to 2^24, or 16M; 388 * - supports PSS up to 2^52 bytes, or 4PB. 389 */ 390 #define PSS_SHIFT 12 391 392 #ifdef CONFIG_PROC_PAGE_MONITOR 393 struct mem_size_stats { 394 unsigned long resident; 395 unsigned long shared_clean; 396 unsigned long shared_dirty; 397 unsigned long private_clean; 398 unsigned long private_dirty; 399 unsigned long referenced; 400 unsigned long anonymous; 401 unsigned long lazyfree; 402 unsigned long anonymous_thp; 403 unsigned long shmem_thp; 404 unsigned long file_thp; 405 unsigned long swap; 406 unsigned long shared_hugetlb; 407 unsigned long private_hugetlb; 408 u64 pss; 409 u64 pss_anon; 410 u64 pss_file; 411 u64 pss_shmem; 412 u64 pss_dirty; 413 u64 pss_locked; 414 u64 swap_pss; 415 }; 416 417 static void smaps_page_accumulate(struct mem_size_stats *mss, 418 struct page *page, unsigned long size, unsigned long pss, 419 bool dirty, bool locked, bool private) 420 { 421 mss->pss += pss; 422 423 if (PageAnon(page)) 424 mss->pss_anon += pss; 425 else if (PageSwapBacked(page)) 426 mss->pss_shmem += pss; 427 else 428 mss->pss_file += pss; 429 430 if (locked) 431 mss->pss_locked += pss; 432 433 if (dirty || PageDirty(page)) { 434 mss->pss_dirty += pss; 435 if (private) 436 mss->private_dirty += size; 437 else 438 mss->shared_dirty += size; 439 } else { 440 if (private) 441 mss->private_clean += size; 442 else 443 mss->shared_clean += size; 444 } 445 } 446 447 static void smaps_account(struct mem_size_stats *mss, struct page *page, 448 bool compound, bool young, bool dirty, bool locked, 449 bool migration) 450 { 451 int i, nr = compound ? compound_nr(page) : 1; 452 unsigned long size = nr * PAGE_SIZE; 453 454 /* 455 * First accumulate quantities that depend only on |size| and the type 456 * of the compound page. 457 */ 458 if (PageAnon(page)) { 459 mss->anonymous += size; 460 if (!PageSwapBacked(page) && !dirty && !PageDirty(page)) 461 mss->lazyfree += size; 462 } 463 464 mss->resident += size; 465 /* Accumulate the size in pages that have been accessed. */ 466 if (young || page_is_young(page) || PageReferenced(page)) 467 mss->referenced += size; 468 469 /* 470 * Then accumulate quantities that may depend on sharing, or that may 471 * differ page-by-page. 472 * 473 * page_count(page) == 1 guarantees the page is mapped exactly once. 474 * If any subpage of the compound page mapped with PTE it would elevate 475 * page_count(). 476 * 477 * The page_mapcount() is called to get a snapshot of the mapcount. 478 * Without holding the page lock this snapshot can be slightly wrong as 479 * we cannot always read the mapcount atomically. It is not safe to 480 * call page_mapcount() even with PTL held if the page is not mapped, 481 * especially for migration entries. Treat regular migration entries 482 * as mapcount == 1. 483 */ 484 if ((page_count(page) == 1) || migration) { 485 smaps_page_accumulate(mss, page, size, size << PSS_SHIFT, dirty, 486 locked, true); 487 return; 488 } 489 for (i = 0; i < nr; i++, page++) { 490 int mapcount = page_mapcount(page); 491 unsigned long pss = PAGE_SIZE << PSS_SHIFT; 492 if (mapcount >= 2) 493 pss /= mapcount; 494 smaps_page_accumulate(mss, page, PAGE_SIZE, pss, dirty, locked, 495 mapcount < 2); 496 } 497 } 498 499 #ifdef CONFIG_SHMEM 500 static int smaps_pte_hole(unsigned long addr, unsigned long end, 501 __always_unused int depth, struct mm_walk *walk) 502 { 503 struct mem_size_stats *mss = walk->private; 504 struct vm_area_struct *vma = walk->vma; 505 506 mss->swap += shmem_partial_swap_usage(walk->vma->vm_file->f_mapping, 507 linear_page_index(vma, addr), 508 linear_page_index(vma, end)); 509 510 return 0; 511 } 512 #else 513 #define smaps_pte_hole NULL 514 #endif /* CONFIG_SHMEM */ 515 516 static void smaps_pte_hole_lookup(unsigned long addr, struct mm_walk *walk) 517 { 518 #ifdef CONFIG_SHMEM 519 if (walk->ops->pte_hole) { 520 /* depth is not used */ 521 smaps_pte_hole(addr, addr + PAGE_SIZE, 0, walk); 522 } 523 #endif 524 } 525 526 static void smaps_pte_entry(pte_t *pte, unsigned long addr, 527 struct mm_walk *walk) 528 { 529 struct mem_size_stats *mss = walk->private; 530 struct vm_area_struct *vma = walk->vma; 531 bool locked = !!(vma->vm_flags & VM_LOCKED); 532 struct page *page = NULL; 533 bool migration = false, young = false, dirty = false; 534 535 if (pte_present(*pte)) { 536 page = vm_normal_page(vma, addr, *pte); 537 young = pte_young(*pte); 538 dirty = pte_dirty(*pte); 539 } else if (is_swap_pte(*pte)) { 540 swp_entry_t swpent = pte_to_swp_entry(*pte); 541 542 if (!non_swap_entry(swpent)) { 543 int mapcount; 544 545 mss->swap += PAGE_SIZE; 546 mapcount = swp_swapcount(swpent); 547 if (mapcount >= 2) { 548 u64 pss_delta = (u64)PAGE_SIZE << PSS_SHIFT; 549 550 do_div(pss_delta, mapcount); 551 mss->swap_pss += pss_delta; 552 } else { 553 mss->swap_pss += (u64)PAGE_SIZE << PSS_SHIFT; 554 } 555 } else if (is_pfn_swap_entry(swpent)) { 556 if (is_migration_entry(swpent)) 557 migration = true; 558 page = pfn_swap_entry_to_page(swpent); 559 } 560 } else { 561 smaps_pte_hole_lookup(addr, walk); 562 return; 563 } 564 565 if (!page) 566 return; 567 568 smaps_account(mss, page, false, young, dirty, locked, migration); 569 } 570 571 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 572 static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr, 573 struct mm_walk *walk) 574 { 575 struct mem_size_stats *mss = walk->private; 576 struct vm_area_struct *vma = walk->vma; 577 bool locked = !!(vma->vm_flags & VM_LOCKED); 578 struct page *page = NULL; 579 bool migration = false; 580 581 if (pmd_present(*pmd)) { 582 /* FOLL_DUMP will return -EFAULT on huge zero page */ 583 page = follow_trans_huge_pmd(vma, addr, pmd, FOLL_DUMP); 584 } else if (unlikely(thp_migration_supported() && is_swap_pmd(*pmd))) { 585 swp_entry_t entry = pmd_to_swp_entry(*pmd); 586 587 if (is_migration_entry(entry)) { 588 migration = true; 589 page = pfn_swap_entry_to_page(entry); 590 } 591 } 592 if (IS_ERR_OR_NULL(page)) 593 return; 594 if (PageAnon(page)) 595 mss->anonymous_thp += HPAGE_PMD_SIZE; 596 else if (PageSwapBacked(page)) 597 mss->shmem_thp += HPAGE_PMD_SIZE; 598 else if (is_zone_device_page(page)) 599 /* pass */; 600 else 601 mss->file_thp += HPAGE_PMD_SIZE; 602 603 smaps_account(mss, page, true, pmd_young(*pmd), pmd_dirty(*pmd), 604 locked, migration); 605 } 606 #else 607 static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr, 608 struct mm_walk *walk) 609 { 610 } 611 #endif 612 613 static int smaps_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end, 614 struct mm_walk *walk) 615 { 616 struct vm_area_struct *vma = walk->vma; 617 pte_t *pte; 618 spinlock_t *ptl; 619 620 ptl = pmd_trans_huge_lock(pmd, vma); 621 if (ptl) { 622 smaps_pmd_entry(pmd, addr, walk); 623 spin_unlock(ptl); 624 goto out; 625 } 626 627 if (pmd_trans_unstable(pmd)) 628 goto out; 629 /* 630 * The mmap_lock held all the way back in m_start() is what 631 * keeps khugepaged out of here and from collapsing things 632 * in here. 633 */ 634 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 635 for (; addr != end; pte++, addr += PAGE_SIZE) 636 smaps_pte_entry(pte, addr, walk); 637 pte_unmap_unlock(pte - 1, ptl); 638 out: 639 cond_resched(); 640 return 0; 641 } 642 643 static void show_smap_vma_flags(struct seq_file *m, struct vm_area_struct *vma) 644 { 645 /* 646 * Don't forget to update Documentation/ on changes. 647 */ 648 static const char mnemonics[BITS_PER_LONG][2] = { 649 /* 650 * In case if we meet a flag we don't know about. 651 */ 652 [0 ... (BITS_PER_LONG-1)] = "??", 653 654 [ilog2(VM_READ)] = "rd", 655 [ilog2(VM_WRITE)] = "wr", 656 [ilog2(VM_EXEC)] = "ex", 657 [ilog2(VM_SHARED)] = "sh", 658 [ilog2(VM_MAYREAD)] = "mr", 659 [ilog2(VM_MAYWRITE)] = "mw", 660 [ilog2(VM_MAYEXEC)] = "me", 661 [ilog2(VM_MAYSHARE)] = "ms", 662 [ilog2(VM_GROWSDOWN)] = "gd", 663 [ilog2(VM_PFNMAP)] = "pf", 664 [ilog2(VM_LOCKED)] = "lo", 665 [ilog2(VM_IO)] = "io", 666 [ilog2(VM_SEQ_READ)] = "sr", 667 [ilog2(VM_RAND_READ)] = "rr", 668 [ilog2(VM_DONTCOPY)] = "dc", 669 [ilog2(VM_DONTEXPAND)] = "de", 670 [ilog2(VM_ACCOUNT)] = "ac", 671 [ilog2(VM_NORESERVE)] = "nr", 672 [ilog2(VM_HUGETLB)] = "ht", 673 [ilog2(VM_SYNC)] = "sf", 674 [ilog2(VM_ARCH_1)] = "ar", 675 [ilog2(VM_WIPEONFORK)] = "wf", 676 [ilog2(VM_DONTDUMP)] = "dd", 677 #ifdef CONFIG_ARM64_BTI 678 [ilog2(VM_ARM64_BTI)] = "bt", 679 #endif 680 #ifdef CONFIG_MEM_SOFT_DIRTY 681 [ilog2(VM_SOFTDIRTY)] = "sd", 682 #endif 683 [ilog2(VM_MIXEDMAP)] = "mm", 684 [ilog2(VM_HUGEPAGE)] = "hg", 685 [ilog2(VM_NOHUGEPAGE)] = "nh", 686 [ilog2(VM_MERGEABLE)] = "mg", 687 [ilog2(VM_UFFD_MISSING)]= "um", 688 [ilog2(VM_UFFD_WP)] = "uw", 689 #ifdef CONFIG_ARM64_MTE 690 [ilog2(VM_MTE)] = "mt", 691 [ilog2(VM_MTE_ALLOWED)] = "", 692 #endif 693 #ifdef CONFIG_ARCH_HAS_PKEYS 694 /* These come out via ProtectionKey: */ 695 [ilog2(VM_PKEY_BIT0)] = "", 696 [ilog2(VM_PKEY_BIT1)] = "", 697 [ilog2(VM_PKEY_BIT2)] = "", 698 [ilog2(VM_PKEY_BIT3)] = "", 699 #if VM_PKEY_BIT4 700 [ilog2(VM_PKEY_BIT4)] = "", 701 #endif 702 #endif /* CONFIG_ARCH_HAS_PKEYS */ 703 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR 704 [ilog2(VM_UFFD_MINOR)] = "ui", 705 #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */ 706 }; 707 size_t i; 708 709 seq_puts(m, "VmFlags: "); 710 for (i = 0; i < BITS_PER_LONG; i++) { 711 if (!mnemonics[i][0]) 712 continue; 713 if (vma->vm_flags & (1UL << i)) { 714 seq_putc(m, mnemonics[i][0]); 715 seq_putc(m, mnemonics[i][1]); 716 seq_putc(m, ' '); 717 } 718 } 719 seq_putc(m, '\n'); 720 } 721 722 #ifdef CONFIG_HUGETLB_PAGE 723 static int smaps_hugetlb_range(pte_t *pte, unsigned long hmask, 724 unsigned long addr, unsigned long end, 725 struct mm_walk *walk) 726 { 727 struct mem_size_stats *mss = walk->private; 728 struct vm_area_struct *vma = walk->vma; 729 struct page *page = NULL; 730 731 if (pte_present(*pte)) { 732 page = vm_normal_page(vma, addr, *pte); 733 } else if (is_swap_pte(*pte)) { 734 swp_entry_t swpent = pte_to_swp_entry(*pte); 735 736 if (is_pfn_swap_entry(swpent)) 737 page = pfn_swap_entry_to_page(swpent); 738 } 739 if (page) { 740 int mapcount = page_mapcount(page); 741 742 if (mapcount >= 2) 743 mss->shared_hugetlb += huge_page_size(hstate_vma(vma)); 744 else 745 mss->private_hugetlb += huge_page_size(hstate_vma(vma)); 746 } 747 return 0; 748 } 749 #else 750 #define smaps_hugetlb_range NULL 751 #endif /* HUGETLB_PAGE */ 752 753 static const struct mm_walk_ops smaps_walk_ops = { 754 .pmd_entry = smaps_pte_range, 755 .hugetlb_entry = smaps_hugetlb_range, 756 }; 757 758 static const struct mm_walk_ops smaps_shmem_walk_ops = { 759 .pmd_entry = smaps_pte_range, 760 .hugetlb_entry = smaps_hugetlb_range, 761 .pte_hole = smaps_pte_hole, 762 }; 763 764 /* 765 * Gather mem stats from @vma with the indicated beginning 766 * address @start, and keep them in @mss. 767 * 768 * Use vm_start of @vma as the beginning address if @start is 0. 769 */ 770 static void smap_gather_stats(struct vm_area_struct *vma, 771 struct mem_size_stats *mss, unsigned long start) 772 { 773 const struct mm_walk_ops *ops = &smaps_walk_ops; 774 775 /* Invalid start */ 776 if (start >= vma->vm_end) 777 return; 778 779 #ifdef CONFIG_SHMEM 780 if (vma->vm_file && shmem_mapping(vma->vm_file->f_mapping)) { 781 /* 782 * For shared or readonly shmem mappings we know that all 783 * swapped out pages belong to the shmem object, and we can 784 * obtain the swap value much more efficiently. For private 785 * writable mappings, we might have COW pages that are 786 * not affected by the parent swapped out pages of the shmem 787 * object, so we have to distinguish them during the page walk. 788 * Unless we know that the shmem object (or the part mapped by 789 * our VMA) has no swapped out pages at all. 790 */ 791 unsigned long shmem_swapped = shmem_swap_usage(vma); 792 793 if (!start && (!shmem_swapped || (vma->vm_flags & VM_SHARED) || 794 !(vma->vm_flags & VM_WRITE))) { 795 mss->swap += shmem_swapped; 796 } else { 797 ops = &smaps_shmem_walk_ops; 798 } 799 } 800 #endif 801 /* mmap_lock is held in m_start */ 802 if (!start) 803 walk_page_vma(vma, ops, mss); 804 else 805 walk_page_range(vma->vm_mm, start, vma->vm_end, ops, mss); 806 } 807 808 #define SEQ_PUT_DEC(str, val) \ 809 seq_put_decimal_ull_width(m, str, (val) >> 10, 8) 810 811 /* Show the contents common for smaps and smaps_rollup */ 812 static void __show_smap(struct seq_file *m, const struct mem_size_stats *mss, 813 bool rollup_mode) 814 { 815 SEQ_PUT_DEC("Rss: ", mss->resident); 816 SEQ_PUT_DEC(" kB\nPss: ", mss->pss >> PSS_SHIFT); 817 SEQ_PUT_DEC(" kB\nPss_Dirty: ", mss->pss_dirty >> PSS_SHIFT); 818 if (rollup_mode) { 819 /* 820 * These are meaningful only for smaps_rollup, otherwise two of 821 * them are zero, and the other one is the same as Pss. 822 */ 823 SEQ_PUT_DEC(" kB\nPss_Anon: ", 824 mss->pss_anon >> PSS_SHIFT); 825 SEQ_PUT_DEC(" kB\nPss_File: ", 826 mss->pss_file >> PSS_SHIFT); 827 SEQ_PUT_DEC(" kB\nPss_Shmem: ", 828 mss->pss_shmem >> PSS_SHIFT); 829 } 830 SEQ_PUT_DEC(" kB\nShared_Clean: ", mss->shared_clean); 831 SEQ_PUT_DEC(" kB\nShared_Dirty: ", mss->shared_dirty); 832 SEQ_PUT_DEC(" kB\nPrivate_Clean: ", mss->private_clean); 833 SEQ_PUT_DEC(" kB\nPrivate_Dirty: ", mss->private_dirty); 834 SEQ_PUT_DEC(" kB\nReferenced: ", mss->referenced); 835 SEQ_PUT_DEC(" kB\nAnonymous: ", mss->anonymous); 836 SEQ_PUT_DEC(" kB\nLazyFree: ", mss->lazyfree); 837 SEQ_PUT_DEC(" kB\nAnonHugePages: ", mss->anonymous_thp); 838 SEQ_PUT_DEC(" kB\nShmemPmdMapped: ", mss->shmem_thp); 839 SEQ_PUT_DEC(" kB\nFilePmdMapped: ", mss->file_thp); 840 SEQ_PUT_DEC(" kB\nShared_Hugetlb: ", mss->shared_hugetlb); 841 seq_put_decimal_ull_width(m, " kB\nPrivate_Hugetlb: ", 842 mss->private_hugetlb >> 10, 7); 843 SEQ_PUT_DEC(" kB\nSwap: ", mss->swap); 844 SEQ_PUT_DEC(" kB\nSwapPss: ", 845 mss->swap_pss >> PSS_SHIFT); 846 SEQ_PUT_DEC(" kB\nLocked: ", 847 mss->pss_locked >> PSS_SHIFT); 848 seq_puts(m, " kB\n"); 849 } 850 851 static int show_smap(struct seq_file *m, void *v) 852 { 853 struct vm_area_struct *vma = v; 854 struct mem_size_stats mss; 855 856 memset(&mss, 0, sizeof(mss)); 857 858 smap_gather_stats(vma, &mss, 0); 859 860 show_map_vma(m, vma); 861 862 SEQ_PUT_DEC("Size: ", vma->vm_end - vma->vm_start); 863 SEQ_PUT_DEC(" kB\nKernelPageSize: ", vma_kernel_pagesize(vma)); 864 SEQ_PUT_DEC(" kB\nMMUPageSize: ", vma_mmu_pagesize(vma)); 865 seq_puts(m, " kB\n"); 866 867 __show_smap(m, &mss, false); 868 869 seq_printf(m, "THPeligible: %d\n", 870 hugepage_vma_check(vma, vma->vm_flags, true, false, true)); 871 872 if (arch_pkeys_enabled()) 873 seq_printf(m, "ProtectionKey: %8u\n", vma_pkey(vma)); 874 show_smap_vma_flags(m, vma); 875 876 return 0; 877 } 878 879 static int show_smaps_rollup(struct seq_file *m, void *v) 880 { 881 struct proc_maps_private *priv = m->private; 882 struct mem_size_stats mss; 883 struct mm_struct *mm = priv->mm; 884 struct vm_area_struct *vma; 885 unsigned long vma_start = 0, last_vma_end = 0; 886 int ret = 0; 887 MA_STATE(mas, &mm->mm_mt, 0, 0); 888 889 priv->task = get_proc_task(priv->inode); 890 if (!priv->task) 891 return -ESRCH; 892 893 if (!mm || !mmget_not_zero(mm)) { 894 ret = -ESRCH; 895 goto out_put_task; 896 } 897 898 memset(&mss, 0, sizeof(mss)); 899 900 ret = mmap_read_lock_killable(mm); 901 if (ret) 902 goto out_put_mm; 903 904 hold_task_mempolicy(priv); 905 vma = mas_find(&mas, 0); 906 907 if (unlikely(!vma)) 908 goto empty_set; 909 910 vma_start = vma->vm_start; 911 do { 912 smap_gather_stats(vma, &mss, 0); 913 last_vma_end = vma->vm_end; 914 915 /* 916 * Release mmap_lock temporarily if someone wants to 917 * access it for write request. 918 */ 919 if (mmap_lock_is_contended(mm)) { 920 mas_pause(&mas); 921 mmap_read_unlock(mm); 922 ret = mmap_read_lock_killable(mm); 923 if (ret) { 924 release_task_mempolicy(priv); 925 goto out_put_mm; 926 } 927 928 /* 929 * After dropping the lock, there are four cases to 930 * consider. See the following example for explanation. 931 * 932 * +------+------+-----------+ 933 * | VMA1 | VMA2 | VMA3 | 934 * +------+------+-----------+ 935 * | | | | 936 * 4k 8k 16k 400k 937 * 938 * Suppose we drop the lock after reading VMA2 due to 939 * contention, then we get: 940 * 941 * last_vma_end = 16k 942 * 943 * 1) VMA2 is freed, but VMA3 exists: 944 * 945 * find_vma(mm, 16k - 1) will return VMA3. 946 * In this case, just continue from VMA3. 947 * 948 * 2) VMA2 still exists: 949 * 950 * find_vma(mm, 16k - 1) will return VMA2. 951 * Iterate the loop like the original one. 952 * 953 * 3) No more VMAs can be found: 954 * 955 * find_vma(mm, 16k - 1) will return NULL. 956 * No more things to do, just break. 957 * 958 * 4) (last_vma_end - 1) is the middle of a vma (VMA'): 959 * 960 * find_vma(mm, 16k - 1) will return VMA' whose range 961 * contains last_vma_end. 962 * Iterate VMA' from last_vma_end. 963 */ 964 vma = mas_find(&mas, ULONG_MAX); 965 /* Case 3 above */ 966 if (!vma) 967 break; 968 969 /* Case 1 above */ 970 if (vma->vm_start >= last_vma_end) 971 continue; 972 973 /* Case 4 above */ 974 if (vma->vm_end > last_vma_end) 975 smap_gather_stats(vma, &mss, last_vma_end); 976 } 977 /* Case 2 above */ 978 } while ((vma = mas_find(&mas, ULONG_MAX)) != NULL); 979 980 empty_set: 981 show_vma_header_prefix(m, vma_start, last_vma_end, 0, 0, 0, 0); 982 seq_pad(m, ' '); 983 seq_puts(m, "[rollup]\n"); 984 985 __show_smap(m, &mss, true); 986 987 release_task_mempolicy(priv); 988 mmap_read_unlock(mm); 989 990 out_put_mm: 991 mmput(mm); 992 out_put_task: 993 put_task_struct(priv->task); 994 priv->task = NULL; 995 996 return ret; 997 } 998 #undef SEQ_PUT_DEC 999 1000 static const struct seq_operations proc_pid_smaps_op = { 1001 .start = m_start, 1002 .next = m_next, 1003 .stop = m_stop, 1004 .show = show_smap 1005 }; 1006 1007 static int pid_smaps_open(struct inode *inode, struct file *file) 1008 { 1009 return do_maps_open(inode, file, &proc_pid_smaps_op); 1010 } 1011 1012 static int smaps_rollup_open(struct inode *inode, struct file *file) 1013 { 1014 int ret; 1015 struct proc_maps_private *priv; 1016 1017 priv = kzalloc(sizeof(*priv), GFP_KERNEL_ACCOUNT); 1018 if (!priv) 1019 return -ENOMEM; 1020 1021 ret = single_open(file, show_smaps_rollup, priv); 1022 if (ret) 1023 goto out_free; 1024 1025 priv->inode = inode; 1026 priv->mm = proc_mem_open(inode, PTRACE_MODE_READ); 1027 if (IS_ERR(priv->mm)) { 1028 ret = PTR_ERR(priv->mm); 1029 1030 single_release(inode, file); 1031 goto out_free; 1032 } 1033 1034 return 0; 1035 1036 out_free: 1037 kfree(priv); 1038 return ret; 1039 } 1040 1041 static int smaps_rollup_release(struct inode *inode, struct file *file) 1042 { 1043 struct seq_file *seq = file->private_data; 1044 struct proc_maps_private *priv = seq->private; 1045 1046 if (priv->mm) 1047 mmdrop(priv->mm); 1048 1049 kfree(priv); 1050 return single_release(inode, file); 1051 } 1052 1053 const struct file_operations proc_pid_smaps_operations = { 1054 .open = pid_smaps_open, 1055 .read = seq_read, 1056 .llseek = seq_lseek, 1057 .release = proc_map_release, 1058 }; 1059 1060 const struct file_operations proc_pid_smaps_rollup_operations = { 1061 .open = smaps_rollup_open, 1062 .read = seq_read, 1063 .llseek = seq_lseek, 1064 .release = smaps_rollup_release, 1065 }; 1066 1067 enum clear_refs_types { 1068 CLEAR_REFS_ALL = 1, 1069 CLEAR_REFS_ANON, 1070 CLEAR_REFS_MAPPED, 1071 CLEAR_REFS_SOFT_DIRTY, 1072 CLEAR_REFS_MM_HIWATER_RSS, 1073 CLEAR_REFS_LAST, 1074 }; 1075 1076 struct clear_refs_private { 1077 enum clear_refs_types type; 1078 }; 1079 1080 #ifdef CONFIG_MEM_SOFT_DIRTY 1081 1082 static inline bool pte_is_pinned(struct vm_area_struct *vma, unsigned long addr, pte_t pte) 1083 { 1084 struct page *page; 1085 1086 if (!pte_write(pte)) 1087 return false; 1088 if (!is_cow_mapping(vma->vm_flags)) 1089 return false; 1090 if (likely(!test_bit(MMF_HAS_PINNED, &vma->vm_mm->flags))) 1091 return false; 1092 page = vm_normal_page(vma, addr, pte); 1093 if (!page) 1094 return false; 1095 return page_maybe_dma_pinned(page); 1096 } 1097 1098 static inline void clear_soft_dirty(struct vm_area_struct *vma, 1099 unsigned long addr, pte_t *pte) 1100 { 1101 /* 1102 * The soft-dirty tracker uses #PF-s to catch writes 1103 * to pages, so write-protect the pte as well. See the 1104 * Documentation/admin-guide/mm/soft-dirty.rst for full description 1105 * of how soft-dirty works. 1106 */ 1107 pte_t ptent = *pte; 1108 1109 if (pte_present(ptent)) { 1110 pte_t old_pte; 1111 1112 if (pte_is_pinned(vma, addr, ptent)) 1113 return; 1114 old_pte = ptep_modify_prot_start(vma, addr, pte); 1115 ptent = pte_wrprotect(old_pte); 1116 ptent = pte_clear_soft_dirty(ptent); 1117 ptep_modify_prot_commit(vma, addr, pte, old_pte, ptent); 1118 } else if (is_swap_pte(ptent)) { 1119 ptent = pte_swp_clear_soft_dirty(ptent); 1120 set_pte_at(vma->vm_mm, addr, pte, ptent); 1121 } 1122 } 1123 #else 1124 static inline void clear_soft_dirty(struct vm_area_struct *vma, 1125 unsigned long addr, pte_t *pte) 1126 { 1127 } 1128 #endif 1129 1130 #if defined(CONFIG_MEM_SOFT_DIRTY) && defined(CONFIG_TRANSPARENT_HUGEPAGE) 1131 static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma, 1132 unsigned long addr, pmd_t *pmdp) 1133 { 1134 pmd_t old, pmd = *pmdp; 1135 1136 if (pmd_present(pmd)) { 1137 /* See comment in change_huge_pmd() */ 1138 old = pmdp_invalidate(vma, addr, pmdp); 1139 if (pmd_dirty(old)) 1140 pmd = pmd_mkdirty(pmd); 1141 if (pmd_young(old)) 1142 pmd = pmd_mkyoung(pmd); 1143 1144 pmd = pmd_wrprotect(pmd); 1145 pmd = pmd_clear_soft_dirty(pmd); 1146 1147 set_pmd_at(vma->vm_mm, addr, pmdp, pmd); 1148 } else if (is_migration_entry(pmd_to_swp_entry(pmd))) { 1149 pmd = pmd_swp_clear_soft_dirty(pmd); 1150 set_pmd_at(vma->vm_mm, addr, pmdp, pmd); 1151 } 1152 } 1153 #else 1154 static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma, 1155 unsigned long addr, pmd_t *pmdp) 1156 { 1157 } 1158 #endif 1159 1160 static int clear_refs_pte_range(pmd_t *pmd, unsigned long addr, 1161 unsigned long end, struct mm_walk *walk) 1162 { 1163 struct clear_refs_private *cp = walk->private; 1164 struct vm_area_struct *vma = walk->vma; 1165 pte_t *pte, ptent; 1166 spinlock_t *ptl; 1167 struct page *page; 1168 1169 ptl = pmd_trans_huge_lock(pmd, vma); 1170 if (ptl) { 1171 if (cp->type == CLEAR_REFS_SOFT_DIRTY) { 1172 clear_soft_dirty_pmd(vma, addr, pmd); 1173 goto out; 1174 } 1175 1176 if (!pmd_present(*pmd)) 1177 goto out; 1178 1179 page = pmd_page(*pmd); 1180 1181 /* Clear accessed and referenced bits. */ 1182 pmdp_test_and_clear_young(vma, addr, pmd); 1183 test_and_clear_page_young(page); 1184 ClearPageReferenced(page); 1185 out: 1186 spin_unlock(ptl); 1187 return 0; 1188 } 1189 1190 if (pmd_trans_unstable(pmd)) 1191 return 0; 1192 1193 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 1194 for (; addr != end; pte++, addr += PAGE_SIZE) { 1195 ptent = *pte; 1196 1197 if (cp->type == CLEAR_REFS_SOFT_DIRTY) { 1198 clear_soft_dirty(vma, addr, pte); 1199 continue; 1200 } 1201 1202 if (!pte_present(ptent)) 1203 continue; 1204 1205 page = vm_normal_page(vma, addr, ptent); 1206 if (!page) 1207 continue; 1208 1209 /* Clear accessed and referenced bits. */ 1210 ptep_test_and_clear_young(vma, addr, pte); 1211 test_and_clear_page_young(page); 1212 ClearPageReferenced(page); 1213 } 1214 pte_unmap_unlock(pte - 1, ptl); 1215 cond_resched(); 1216 return 0; 1217 } 1218 1219 static int clear_refs_test_walk(unsigned long start, unsigned long end, 1220 struct mm_walk *walk) 1221 { 1222 struct clear_refs_private *cp = walk->private; 1223 struct vm_area_struct *vma = walk->vma; 1224 1225 if (vma->vm_flags & VM_PFNMAP) 1226 return 1; 1227 1228 /* 1229 * Writing 1 to /proc/pid/clear_refs affects all pages. 1230 * Writing 2 to /proc/pid/clear_refs only affects anonymous pages. 1231 * Writing 3 to /proc/pid/clear_refs only affects file mapped pages. 1232 * Writing 4 to /proc/pid/clear_refs affects all pages. 1233 */ 1234 if (cp->type == CLEAR_REFS_ANON && vma->vm_file) 1235 return 1; 1236 if (cp->type == CLEAR_REFS_MAPPED && !vma->vm_file) 1237 return 1; 1238 return 0; 1239 } 1240 1241 static const struct mm_walk_ops clear_refs_walk_ops = { 1242 .pmd_entry = clear_refs_pte_range, 1243 .test_walk = clear_refs_test_walk, 1244 }; 1245 1246 static ssize_t clear_refs_write(struct file *file, const char __user *buf, 1247 size_t count, loff_t *ppos) 1248 { 1249 struct task_struct *task; 1250 char buffer[PROC_NUMBUF]; 1251 struct mm_struct *mm; 1252 struct vm_area_struct *vma; 1253 enum clear_refs_types type; 1254 int itype; 1255 int rv; 1256 1257 memset(buffer, 0, sizeof(buffer)); 1258 if (count > sizeof(buffer) - 1) 1259 count = sizeof(buffer) - 1; 1260 if (copy_from_user(buffer, buf, count)) 1261 return -EFAULT; 1262 rv = kstrtoint(strstrip(buffer), 10, &itype); 1263 if (rv < 0) 1264 return rv; 1265 type = (enum clear_refs_types)itype; 1266 if (type < CLEAR_REFS_ALL || type >= CLEAR_REFS_LAST) 1267 return -EINVAL; 1268 1269 task = get_proc_task(file_inode(file)); 1270 if (!task) 1271 return -ESRCH; 1272 mm = get_task_mm(task); 1273 if (mm) { 1274 MA_STATE(mas, &mm->mm_mt, 0, 0); 1275 struct mmu_notifier_range range; 1276 struct clear_refs_private cp = { 1277 .type = type, 1278 }; 1279 1280 if (mmap_write_lock_killable(mm)) { 1281 count = -EINTR; 1282 goto out_mm; 1283 } 1284 if (type == CLEAR_REFS_MM_HIWATER_RSS) { 1285 /* 1286 * Writing 5 to /proc/pid/clear_refs resets the peak 1287 * resident set size to this mm's current rss value. 1288 */ 1289 reset_mm_hiwater_rss(mm); 1290 goto out_unlock; 1291 } 1292 1293 if (type == CLEAR_REFS_SOFT_DIRTY) { 1294 mas_for_each(&mas, vma, ULONG_MAX) { 1295 if (!(vma->vm_flags & VM_SOFTDIRTY)) 1296 continue; 1297 vma->vm_flags &= ~VM_SOFTDIRTY; 1298 vma_set_page_prot(vma); 1299 } 1300 1301 inc_tlb_flush_pending(mm); 1302 mmu_notifier_range_init(&range, MMU_NOTIFY_SOFT_DIRTY, 1303 0, NULL, mm, 0, -1UL); 1304 mmu_notifier_invalidate_range_start(&range); 1305 } 1306 walk_page_range(mm, 0, -1, &clear_refs_walk_ops, &cp); 1307 if (type == CLEAR_REFS_SOFT_DIRTY) { 1308 mmu_notifier_invalidate_range_end(&range); 1309 flush_tlb_mm(mm); 1310 dec_tlb_flush_pending(mm); 1311 } 1312 out_unlock: 1313 mmap_write_unlock(mm); 1314 out_mm: 1315 mmput(mm); 1316 } 1317 put_task_struct(task); 1318 1319 return count; 1320 } 1321 1322 const struct file_operations proc_clear_refs_operations = { 1323 .write = clear_refs_write, 1324 .llseek = noop_llseek, 1325 }; 1326 1327 typedef struct { 1328 u64 pme; 1329 } pagemap_entry_t; 1330 1331 struct pagemapread { 1332 int pos, len; /* units: PM_ENTRY_BYTES, not bytes */ 1333 pagemap_entry_t *buffer; 1334 bool show_pfn; 1335 }; 1336 1337 #define PAGEMAP_WALK_SIZE (PMD_SIZE) 1338 #define PAGEMAP_WALK_MASK (PMD_MASK) 1339 1340 #define PM_ENTRY_BYTES sizeof(pagemap_entry_t) 1341 #define PM_PFRAME_BITS 55 1342 #define PM_PFRAME_MASK GENMASK_ULL(PM_PFRAME_BITS - 1, 0) 1343 #define PM_SOFT_DIRTY BIT_ULL(55) 1344 #define PM_MMAP_EXCLUSIVE BIT_ULL(56) 1345 #define PM_UFFD_WP BIT_ULL(57) 1346 #define PM_FILE BIT_ULL(61) 1347 #define PM_SWAP BIT_ULL(62) 1348 #define PM_PRESENT BIT_ULL(63) 1349 1350 #define PM_END_OF_BUFFER 1 1351 1352 static inline pagemap_entry_t make_pme(u64 frame, u64 flags) 1353 { 1354 return (pagemap_entry_t) { .pme = (frame & PM_PFRAME_MASK) | flags }; 1355 } 1356 1357 static int add_to_pagemap(unsigned long addr, pagemap_entry_t *pme, 1358 struct pagemapread *pm) 1359 { 1360 pm->buffer[pm->pos++] = *pme; 1361 if (pm->pos >= pm->len) 1362 return PM_END_OF_BUFFER; 1363 return 0; 1364 } 1365 1366 static int pagemap_pte_hole(unsigned long start, unsigned long end, 1367 __always_unused int depth, struct mm_walk *walk) 1368 { 1369 struct pagemapread *pm = walk->private; 1370 unsigned long addr = start; 1371 int err = 0; 1372 1373 while (addr < end) { 1374 struct vm_area_struct *vma = find_vma(walk->mm, addr); 1375 pagemap_entry_t pme = make_pme(0, 0); 1376 /* End of address space hole, which we mark as non-present. */ 1377 unsigned long hole_end; 1378 1379 if (vma) 1380 hole_end = min(end, vma->vm_start); 1381 else 1382 hole_end = end; 1383 1384 for (; addr < hole_end; addr += PAGE_SIZE) { 1385 err = add_to_pagemap(addr, &pme, pm); 1386 if (err) 1387 goto out; 1388 } 1389 1390 if (!vma) 1391 break; 1392 1393 /* Addresses in the VMA. */ 1394 if (vma->vm_flags & VM_SOFTDIRTY) 1395 pme = make_pme(0, PM_SOFT_DIRTY); 1396 for (; addr < min(end, vma->vm_end); addr += PAGE_SIZE) { 1397 err = add_to_pagemap(addr, &pme, pm); 1398 if (err) 1399 goto out; 1400 } 1401 } 1402 out: 1403 return err; 1404 } 1405 1406 static pagemap_entry_t pte_to_pagemap_entry(struct pagemapread *pm, 1407 struct vm_area_struct *vma, unsigned long addr, pte_t pte) 1408 { 1409 u64 frame = 0, flags = 0; 1410 struct page *page = NULL; 1411 bool migration = false; 1412 1413 if (pte_present(pte)) { 1414 if (pm->show_pfn) 1415 frame = pte_pfn(pte); 1416 flags |= PM_PRESENT; 1417 page = vm_normal_page(vma, addr, pte); 1418 if (pte_soft_dirty(pte)) 1419 flags |= PM_SOFT_DIRTY; 1420 if (pte_uffd_wp(pte)) 1421 flags |= PM_UFFD_WP; 1422 } else if (is_swap_pte(pte)) { 1423 swp_entry_t entry; 1424 if (pte_swp_soft_dirty(pte)) 1425 flags |= PM_SOFT_DIRTY; 1426 if (pte_swp_uffd_wp(pte)) 1427 flags |= PM_UFFD_WP; 1428 entry = pte_to_swp_entry(pte); 1429 if (pm->show_pfn) { 1430 pgoff_t offset; 1431 /* 1432 * For PFN swap offsets, keeping the offset field 1433 * to be PFN only to be compatible with old smaps. 1434 */ 1435 if (is_pfn_swap_entry(entry)) 1436 offset = swp_offset_pfn(entry); 1437 else 1438 offset = swp_offset(entry); 1439 frame = swp_type(entry) | 1440 (offset << MAX_SWAPFILES_SHIFT); 1441 } 1442 flags |= PM_SWAP; 1443 migration = is_migration_entry(entry); 1444 if (is_pfn_swap_entry(entry)) 1445 page = pfn_swap_entry_to_page(entry); 1446 if (pte_marker_entry_uffd_wp(entry)) 1447 flags |= PM_UFFD_WP; 1448 } 1449 1450 if (page && !PageAnon(page)) 1451 flags |= PM_FILE; 1452 if (page && !migration && page_mapcount(page) == 1) 1453 flags |= PM_MMAP_EXCLUSIVE; 1454 if (vma->vm_flags & VM_SOFTDIRTY) 1455 flags |= PM_SOFT_DIRTY; 1456 1457 return make_pme(frame, flags); 1458 } 1459 1460 static int pagemap_pmd_range(pmd_t *pmdp, unsigned long addr, unsigned long end, 1461 struct mm_walk *walk) 1462 { 1463 struct vm_area_struct *vma = walk->vma; 1464 struct pagemapread *pm = walk->private; 1465 spinlock_t *ptl; 1466 pte_t *pte, *orig_pte; 1467 int err = 0; 1468 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1469 bool migration = false; 1470 1471 ptl = pmd_trans_huge_lock(pmdp, vma); 1472 if (ptl) { 1473 u64 flags = 0, frame = 0; 1474 pmd_t pmd = *pmdp; 1475 struct page *page = NULL; 1476 1477 if (vma->vm_flags & VM_SOFTDIRTY) 1478 flags |= PM_SOFT_DIRTY; 1479 1480 if (pmd_present(pmd)) { 1481 page = pmd_page(pmd); 1482 1483 flags |= PM_PRESENT; 1484 if (pmd_soft_dirty(pmd)) 1485 flags |= PM_SOFT_DIRTY; 1486 if (pmd_uffd_wp(pmd)) 1487 flags |= PM_UFFD_WP; 1488 if (pm->show_pfn) 1489 frame = pmd_pfn(pmd) + 1490 ((addr & ~PMD_MASK) >> PAGE_SHIFT); 1491 } 1492 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 1493 else if (is_swap_pmd(pmd)) { 1494 swp_entry_t entry = pmd_to_swp_entry(pmd); 1495 unsigned long offset; 1496 1497 if (pm->show_pfn) { 1498 if (is_pfn_swap_entry(entry)) 1499 offset = swp_offset_pfn(entry); 1500 else 1501 offset = swp_offset(entry); 1502 offset = offset + 1503 ((addr & ~PMD_MASK) >> PAGE_SHIFT); 1504 frame = swp_type(entry) | 1505 (offset << MAX_SWAPFILES_SHIFT); 1506 } 1507 flags |= PM_SWAP; 1508 if (pmd_swp_soft_dirty(pmd)) 1509 flags |= PM_SOFT_DIRTY; 1510 if (pmd_swp_uffd_wp(pmd)) 1511 flags |= PM_UFFD_WP; 1512 VM_BUG_ON(!is_pmd_migration_entry(pmd)); 1513 migration = is_migration_entry(entry); 1514 page = pfn_swap_entry_to_page(entry); 1515 } 1516 #endif 1517 1518 if (page && !migration && page_mapcount(page) == 1) 1519 flags |= PM_MMAP_EXCLUSIVE; 1520 1521 for (; addr != end; addr += PAGE_SIZE) { 1522 pagemap_entry_t pme = make_pme(frame, flags); 1523 1524 err = add_to_pagemap(addr, &pme, pm); 1525 if (err) 1526 break; 1527 if (pm->show_pfn) { 1528 if (flags & PM_PRESENT) 1529 frame++; 1530 else if (flags & PM_SWAP) 1531 frame += (1 << MAX_SWAPFILES_SHIFT); 1532 } 1533 } 1534 spin_unlock(ptl); 1535 return err; 1536 } 1537 1538 if (pmd_trans_unstable(pmdp)) 1539 return 0; 1540 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 1541 1542 /* 1543 * We can assume that @vma always points to a valid one and @end never 1544 * goes beyond vma->vm_end. 1545 */ 1546 orig_pte = pte = pte_offset_map_lock(walk->mm, pmdp, addr, &ptl); 1547 for (; addr < end; pte++, addr += PAGE_SIZE) { 1548 pagemap_entry_t pme; 1549 1550 pme = pte_to_pagemap_entry(pm, vma, addr, *pte); 1551 err = add_to_pagemap(addr, &pme, pm); 1552 if (err) 1553 break; 1554 } 1555 pte_unmap_unlock(orig_pte, ptl); 1556 1557 cond_resched(); 1558 1559 return err; 1560 } 1561 1562 #ifdef CONFIG_HUGETLB_PAGE 1563 /* This function walks within one hugetlb entry in the single call */ 1564 static int pagemap_hugetlb_range(pte_t *ptep, unsigned long hmask, 1565 unsigned long addr, unsigned long end, 1566 struct mm_walk *walk) 1567 { 1568 struct pagemapread *pm = walk->private; 1569 struct vm_area_struct *vma = walk->vma; 1570 u64 flags = 0, frame = 0; 1571 int err = 0; 1572 pte_t pte; 1573 1574 if (vma->vm_flags & VM_SOFTDIRTY) 1575 flags |= PM_SOFT_DIRTY; 1576 1577 pte = huge_ptep_get(ptep); 1578 if (pte_present(pte)) { 1579 struct page *page = pte_page(pte); 1580 1581 if (!PageAnon(page)) 1582 flags |= PM_FILE; 1583 1584 if (page_mapcount(page) == 1) 1585 flags |= PM_MMAP_EXCLUSIVE; 1586 1587 if (huge_pte_uffd_wp(pte)) 1588 flags |= PM_UFFD_WP; 1589 1590 flags |= PM_PRESENT; 1591 if (pm->show_pfn) 1592 frame = pte_pfn(pte) + 1593 ((addr & ~hmask) >> PAGE_SHIFT); 1594 } else if (pte_swp_uffd_wp_any(pte)) { 1595 flags |= PM_UFFD_WP; 1596 } 1597 1598 for (; addr != end; addr += PAGE_SIZE) { 1599 pagemap_entry_t pme = make_pme(frame, flags); 1600 1601 err = add_to_pagemap(addr, &pme, pm); 1602 if (err) 1603 return err; 1604 if (pm->show_pfn && (flags & PM_PRESENT)) 1605 frame++; 1606 } 1607 1608 cond_resched(); 1609 1610 return err; 1611 } 1612 #else 1613 #define pagemap_hugetlb_range NULL 1614 #endif /* HUGETLB_PAGE */ 1615 1616 static const struct mm_walk_ops pagemap_ops = { 1617 .pmd_entry = pagemap_pmd_range, 1618 .pte_hole = pagemap_pte_hole, 1619 .hugetlb_entry = pagemap_hugetlb_range, 1620 }; 1621 1622 /* 1623 * /proc/pid/pagemap - an array mapping virtual pages to pfns 1624 * 1625 * For each page in the address space, this file contains one 64-bit entry 1626 * consisting of the following: 1627 * 1628 * Bits 0-54 page frame number (PFN) if present 1629 * Bits 0-4 swap type if swapped 1630 * Bits 5-54 swap offset if swapped 1631 * Bit 55 pte is soft-dirty (see Documentation/admin-guide/mm/soft-dirty.rst) 1632 * Bit 56 page exclusively mapped 1633 * Bit 57 pte is uffd-wp write-protected 1634 * Bits 58-60 zero 1635 * Bit 61 page is file-page or shared-anon 1636 * Bit 62 page swapped 1637 * Bit 63 page present 1638 * 1639 * If the page is not present but in swap, then the PFN contains an 1640 * encoding of the swap file number and the page's offset into the 1641 * swap. Unmapped pages return a null PFN. This allows determining 1642 * precisely which pages are mapped (or in swap) and comparing mapped 1643 * pages between processes. 1644 * 1645 * Efficient users of this interface will use /proc/pid/maps to 1646 * determine which areas of memory are actually mapped and llseek to 1647 * skip over unmapped regions. 1648 */ 1649 static ssize_t pagemap_read(struct file *file, char __user *buf, 1650 size_t count, loff_t *ppos) 1651 { 1652 struct mm_struct *mm = file->private_data; 1653 struct pagemapread pm; 1654 unsigned long src; 1655 unsigned long svpfn; 1656 unsigned long start_vaddr; 1657 unsigned long end_vaddr; 1658 int ret = 0, copied = 0; 1659 1660 if (!mm || !mmget_not_zero(mm)) 1661 goto out; 1662 1663 ret = -EINVAL; 1664 /* file position must be aligned */ 1665 if ((*ppos % PM_ENTRY_BYTES) || (count % PM_ENTRY_BYTES)) 1666 goto out_mm; 1667 1668 ret = 0; 1669 if (!count) 1670 goto out_mm; 1671 1672 /* do not disclose physical addresses: attack vector */ 1673 pm.show_pfn = file_ns_capable(file, &init_user_ns, CAP_SYS_ADMIN); 1674 1675 pm.len = (PAGEMAP_WALK_SIZE >> PAGE_SHIFT); 1676 pm.buffer = kmalloc_array(pm.len, PM_ENTRY_BYTES, GFP_KERNEL); 1677 ret = -ENOMEM; 1678 if (!pm.buffer) 1679 goto out_mm; 1680 1681 src = *ppos; 1682 svpfn = src / PM_ENTRY_BYTES; 1683 end_vaddr = mm->task_size; 1684 1685 /* watch out for wraparound */ 1686 start_vaddr = end_vaddr; 1687 if (svpfn <= (ULONG_MAX >> PAGE_SHIFT)) 1688 start_vaddr = untagged_addr(svpfn << PAGE_SHIFT); 1689 1690 /* Ensure the address is inside the task */ 1691 if (start_vaddr > mm->task_size) 1692 start_vaddr = end_vaddr; 1693 1694 /* 1695 * The odds are that this will stop walking way 1696 * before end_vaddr, because the length of the 1697 * user buffer is tracked in "pm", and the walk 1698 * will stop when we hit the end of the buffer. 1699 */ 1700 ret = 0; 1701 while (count && (start_vaddr < end_vaddr)) { 1702 int len; 1703 unsigned long end; 1704 1705 pm.pos = 0; 1706 end = (start_vaddr + PAGEMAP_WALK_SIZE) & PAGEMAP_WALK_MASK; 1707 /* overflow ? */ 1708 if (end < start_vaddr || end > end_vaddr) 1709 end = end_vaddr; 1710 ret = mmap_read_lock_killable(mm); 1711 if (ret) 1712 goto out_free; 1713 ret = walk_page_range(mm, start_vaddr, end, &pagemap_ops, &pm); 1714 mmap_read_unlock(mm); 1715 start_vaddr = end; 1716 1717 len = min(count, PM_ENTRY_BYTES * pm.pos); 1718 if (copy_to_user(buf, pm.buffer, len)) { 1719 ret = -EFAULT; 1720 goto out_free; 1721 } 1722 copied += len; 1723 buf += len; 1724 count -= len; 1725 } 1726 *ppos += copied; 1727 if (!ret || ret == PM_END_OF_BUFFER) 1728 ret = copied; 1729 1730 out_free: 1731 kfree(pm.buffer); 1732 out_mm: 1733 mmput(mm); 1734 out: 1735 return ret; 1736 } 1737 1738 static int pagemap_open(struct inode *inode, struct file *file) 1739 { 1740 struct mm_struct *mm; 1741 1742 mm = proc_mem_open(inode, PTRACE_MODE_READ); 1743 if (IS_ERR(mm)) 1744 return PTR_ERR(mm); 1745 file->private_data = mm; 1746 return 0; 1747 } 1748 1749 static int pagemap_release(struct inode *inode, struct file *file) 1750 { 1751 struct mm_struct *mm = file->private_data; 1752 1753 if (mm) 1754 mmdrop(mm); 1755 return 0; 1756 } 1757 1758 const struct file_operations proc_pagemap_operations = { 1759 .llseek = mem_lseek, /* borrow this */ 1760 .read = pagemap_read, 1761 .open = pagemap_open, 1762 .release = pagemap_release, 1763 }; 1764 #endif /* CONFIG_PROC_PAGE_MONITOR */ 1765 1766 #ifdef CONFIG_NUMA 1767 1768 struct numa_maps { 1769 unsigned long pages; 1770 unsigned long anon; 1771 unsigned long active; 1772 unsigned long writeback; 1773 unsigned long mapcount_max; 1774 unsigned long dirty; 1775 unsigned long swapcache; 1776 unsigned long node[MAX_NUMNODES]; 1777 }; 1778 1779 struct numa_maps_private { 1780 struct proc_maps_private proc_maps; 1781 struct numa_maps md; 1782 }; 1783 1784 static void gather_stats(struct page *page, struct numa_maps *md, int pte_dirty, 1785 unsigned long nr_pages) 1786 { 1787 int count = page_mapcount(page); 1788 1789 md->pages += nr_pages; 1790 if (pte_dirty || PageDirty(page)) 1791 md->dirty += nr_pages; 1792 1793 if (PageSwapCache(page)) 1794 md->swapcache += nr_pages; 1795 1796 if (PageActive(page) || PageUnevictable(page)) 1797 md->active += nr_pages; 1798 1799 if (PageWriteback(page)) 1800 md->writeback += nr_pages; 1801 1802 if (PageAnon(page)) 1803 md->anon += nr_pages; 1804 1805 if (count > md->mapcount_max) 1806 md->mapcount_max = count; 1807 1808 md->node[page_to_nid(page)] += nr_pages; 1809 } 1810 1811 static struct page *can_gather_numa_stats(pte_t pte, struct vm_area_struct *vma, 1812 unsigned long addr) 1813 { 1814 struct page *page; 1815 int nid; 1816 1817 if (!pte_present(pte)) 1818 return NULL; 1819 1820 page = vm_normal_page(vma, addr, pte); 1821 if (!page || is_zone_device_page(page)) 1822 return NULL; 1823 1824 if (PageReserved(page)) 1825 return NULL; 1826 1827 nid = page_to_nid(page); 1828 if (!node_isset(nid, node_states[N_MEMORY])) 1829 return NULL; 1830 1831 return page; 1832 } 1833 1834 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1835 static struct page *can_gather_numa_stats_pmd(pmd_t pmd, 1836 struct vm_area_struct *vma, 1837 unsigned long addr) 1838 { 1839 struct page *page; 1840 int nid; 1841 1842 if (!pmd_present(pmd)) 1843 return NULL; 1844 1845 page = vm_normal_page_pmd(vma, addr, pmd); 1846 if (!page) 1847 return NULL; 1848 1849 if (PageReserved(page)) 1850 return NULL; 1851 1852 nid = page_to_nid(page); 1853 if (!node_isset(nid, node_states[N_MEMORY])) 1854 return NULL; 1855 1856 return page; 1857 } 1858 #endif 1859 1860 static int gather_pte_stats(pmd_t *pmd, unsigned long addr, 1861 unsigned long end, struct mm_walk *walk) 1862 { 1863 struct numa_maps *md = walk->private; 1864 struct vm_area_struct *vma = walk->vma; 1865 spinlock_t *ptl; 1866 pte_t *orig_pte; 1867 pte_t *pte; 1868 1869 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1870 ptl = pmd_trans_huge_lock(pmd, vma); 1871 if (ptl) { 1872 struct page *page; 1873 1874 page = can_gather_numa_stats_pmd(*pmd, vma, addr); 1875 if (page) 1876 gather_stats(page, md, pmd_dirty(*pmd), 1877 HPAGE_PMD_SIZE/PAGE_SIZE); 1878 spin_unlock(ptl); 1879 return 0; 1880 } 1881 1882 if (pmd_trans_unstable(pmd)) 1883 return 0; 1884 #endif 1885 orig_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl); 1886 do { 1887 struct page *page = can_gather_numa_stats(*pte, vma, addr); 1888 if (!page) 1889 continue; 1890 gather_stats(page, md, pte_dirty(*pte), 1); 1891 1892 } while (pte++, addr += PAGE_SIZE, addr != end); 1893 pte_unmap_unlock(orig_pte, ptl); 1894 cond_resched(); 1895 return 0; 1896 } 1897 #ifdef CONFIG_HUGETLB_PAGE 1898 static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask, 1899 unsigned long addr, unsigned long end, struct mm_walk *walk) 1900 { 1901 pte_t huge_pte = huge_ptep_get(pte); 1902 struct numa_maps *md; 1903 struct page *page; 1904 1905 if (!pte_present(huge_pte)) 1906 return 0; 1907 1908 page = pte_page(huge_pte); 1909 1910 md = walk->private; 1911 gather_stats(page, md, pte_dirty(huge_pte), 1); 1912 return 0; 1913 } 1914 1915 #else 1916 static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask, 1917 unsigned long addr, unsigned long end, struct mm_walk *walk) 1918 { 1919 return 0; 1920 } 1921 #endif 1922 1923 static const struct mm_walk_ops show_numa_ops = { 1924 .hugetlb_entry = gather_hugetlb_stats, 1925 .pmd_entry = gather_pte_stats, 1926 }; 1927 1928 /* 1929 * Display pages allocated per node and memory policy via /proc. 1930 */ 1931 static int show_numa_map(struct seq_file *m, void *v) 1932 { 1933 struct numa_maps_private *numa_priv = m->private; 1934 struct proc_maps_private *proc_priv = &numa_priv->proc_maps; 1935 struct vm_area_struct *vma = v; 1936 struct numa_maps *md = &numa_priv->md; 1937 struct file *file = vma->vm_file; 1938 struct mm_struct *mm = vma->vm_mm; 1939 struct mempolicy *pol; 1940 char buffer[64]; 1941 int nid; 1942 1943 if (!mm) 1944 return 0; 1945 1946 /* Ensure we start with an empty set of numa_maps statistics. */ 1947 memset(md, 0, sizeof(*md)); 1948 1949 pol = __get_vma_policy(vma, vma->vm_start); 1950 if (pol) { 1951 mpol_to_str(buffer, sizeof(buffer), pol); 1952 mpol_cond_put(pol); 1953 } else { 1954 mpol_to_str(buffer, sizeof(buffer), proc_priv->task_mempolicy); 1955 } 1956 1957 seq_printf(m, "%08lx %s", vma->vm_start, buffer); 1958 1959 if (file) { 1960 seq_puts(m, " file="); 1961 seq_file_path(m, file, "\n\t= "); 1962 } else if (vma->vm_start <= mm->brk && vma->vm_end >= mm->start_brk) { 1963 seq_puts(m, " heap"); 1964 } else if (is_stack(vma)) { 1965 seq_puts(m, " stack"); 1966 } 1967 1968 if (is_vm_hugetlb_page(vma)) 1969 seq_puts(m, " huge"); 1970 1971 /* mmap_lock is held by m_start */ 1972 walk_page_vma(vma, &show_numa_ops, md); 1973 1974 if (!md->pages) 1975 goto out; 1976 1977 if (md->anon) 1978 seq_printf(m, " anon=%lu", md->anon); 1979 1980 if (md->dirty) 1981 seq_printf(m, " dirty=%lu", md->dirty); 1982 1983 if (md->pages != md->anon && md->pages != md->dirty) 1984 seq_printf(m, " mapped=%lu", md->pages); 1985 1986 if (md->mapcount_max > 1) 1987 seq_printf(m, " mapmax=%lu", md->mapcount_max); 1988 1989 if (md->swapcache) 1990 seq_printf(m, " swapcache=%lu", md->swapcache); 1991 1992 if (md->active < md->pages && !is_vm_hugetlb_page(vma)) 1993 seq_printf(m, " active=%lu", md->active); 1994 1995 if (md->writeback) 1996 seq_printf(m, " writeback=%lu", md->writeback); 1997 1998 for_each_node_state(nid, N_MEMORY) 1999 if (md->node[nid]) 2000 seq_printf(m, " N%d=%lu", nid, md->node[nid]); 2001 2002 seq_printf(m, " kernelpagesize_kB=%lu", vma_kernel_pagesize(vma) >> 10); 2003 out: 2004 seq_putc(m, '\n'); 2005 return 0; 2006 } 2007 2008 static const struct seq_operations proc_pid_numa_maps_op = { 2009 .start = m_start, 2010 .next = m_next, 2011 .stop = m_stop, 2012 .show = show_numa_map, 2013 }; 2014 2015 static int pid_numa_maps_open(struct inode *inode, struct file *file) 2016 { 2017 return proc_maps_open(inode, file, &proc_pid_numa_maps_op, 2018 sizeof(struct numa_maps_private)); 2019 } 2020 2021 const struct file_operations proc_pid_numa_maps_operations = { 2022 .open = pid_numa_maps_open, 2023 .read = seq_read, 2024 .llseek = seq_lseek, 2025 .release = proc_map_release, 2026 }; 2027 2028 #endif /* CONFIG_NUMA */ 2029