xref: /linux/fs/proc/task_mmu.c (revision c053784454550cf750399caa65482b31ffbe3c57)
1 #include <linux/mm.h>
2 #include <linux/hugetlb.h>
3 #include <linux/mount.h>
4 #include <linux/seq_file.h>
5 #include <linux/highmem.h>
6 #include <linux/ptrace.h>
7 #include <linux/slab.h>
8 #include <linux/pagemap.h>
9 #include <linux/mempolicy.h>
10 #include <linux/swap.h>
11 #include <linux/swapops.h>
12 
13 #include <asm/elf.h>
14 #include <asm/uaccess.h>
15 #include <asm/tlbflush.h>
16 #include "internal.h"
17 
18 void task_mem(struct seq_file *m, struct mm_struct *mm)
19 {
20 	unsigned long data, text, lib, swap;
21 	unsigned long hiwater_vm, total_vm, hiwater_rss, total_rss;
22 
23 	/*
24 	 * Note: to minimize their overhead, mm maintains hiwater_vm and
25 	 * hiwater_rss only when about to *lower* total_vm or rss.  Any
26 	 * collector of these hiwater stats must therefore get total_vm
27 	 * and rss too, which will usually be the higher.  Barriers? not
28 	 * worth the effort, such snapshots can always be inconsistent.
29 	 */
30 	hiwater_vm = total_vm = mm->total_vm;
31 	if (hiwater_vm < mm->hiwater_vm)
32 		hiwater_vm = mm->hiwater_vm;
33 	hiwater_rss = total_rss = get_mm_rss(mm);
34 	if (hiwater_rss < mm->hiwater_rss)
35 		hiwater_rss = mm->hiwater_rss;
36 
37 	data = mm->total_vm - mm->shared_vm - mm->stack_vm;
38 	text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK)) >> 10;
39 	lib = (mm->exec_vm << (PAGE_SHIFT-10)) - text;
40 	swap = get_mm_counter(mm, MM_SWAPENTS);
41 	seq_printf(m,
42 		"VmPeak:\t%8lu kB\n"
43 		"VmSize:\t%8lu kB\n"
44 		"VmLck:\t%8lu kB\n"
45 		"VmHWM:\t%8lu kB\n"
46 		"VmRSS:\t%8lu kB\n"
47 		"VmData:\t%8lu kB\n"
48 		"VmStk:\t%8lu kB\n"
49 		"VmExe:\t%8lu kB\n"
50 		"VmLib:\t%8lu kB\n"
51 		"VmPTE:\t%8lu kB\n"
52 		"VmSwap:\t%8lu kB\n",
53 		hiwater_vm << (PAGE_SHIFT-10),
54 		(total_vm - mm->reserved_vm) << (PAGE_SHIFT-10),
55 		mm->locked_vm << (PAGE_SHIFT-10),
56 		hiwater_rss << (PAGE_SHIFT-10),
57 		total_rss << (PAGE_SHIFT-10),
58 		data << (PAGE_SHIFT-10),
59 		mm->stack_vm << (PAGE_SHIFT-10), text, lib,
60 		(PTRS_PER_PTE*sizeof(pte_t)*mm->nr_ptes) >> 10,
61 		swap << (PAGE_SHIFT-10));
62 }
63 
64 unsigned long task_vsize(struct mm_struct *mm)
65 {
66 	return PAGE_SIZE * mm->total_vm;
67 }
68 
69 int task_statm(struct mm_struct *mm, int *shared, int *text,
70 	       int *data, int *resident)
71 {
72 	*shared = get_mm_counter(mm, MM_FILEPAGES);
73 	*text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK))
74 								>> PAGE_SHIFT;
75 	*data = mm->total_vm - mm->shared_vm;
76 	*resident = *shared + get_mm_counter(mm, MM_ANONPAGES);
77 	return mm->total_vm;
78 }
79 
80 static void pad_len_spaces(struct seq_file *m, int len)
81 {
82 	len = 25 + sizeof(void*) * 6 - len;
83 	if (len < 1)
84 		len = 1;
85 	seq_printf(m, "%*c", len, ' ');
86 }
87 
88 static void vma_stop(struct proc_maps_private *priv, struct vm_area_struct *vma)
89 {
90 	if (vma && vma != priv->tail_vma) {
91 		struct mm_struct *mm = vma->vm_mm;
92 		up_read(&mm->mmap_sem);
93 		mmput(mm);
94 	}
95 }
96 
97 static void *m_start(struct seq_file *m, loff_t *pos)
98 {
99 	struct proc_maps_private *priv = m->private;
100 	unsigned long last_addr = m->version;
101 	struct mm_struct *mm;
102 	struct vm_area_struct *vma, *tail_vma = NULL;
103 	loff_t l = *pos;
104 
105 	/* Clear the per syscall fields in priv */
106 	priv->task = NULL;
107 	priv->tail_vma = NULL;
108 
109 	/*
110 	 * We remember last_addr rather than next_addr to hit with
111 	 * mmap_cache most of the time. We have zero last_addr at
112 	 * the beginning and also after lseek. We will have -1 last_addr
113 	 * after the end of the vmas.
114 	 */
115 
116 	if (last_addr == -1UL)
117 		return NULL;
118 
119 	priv->task = get_pid_task(priv->pid, PIDTYPE_PID);
120 	if (!priv->task)
121 		return NULL;
122 
123 	mm = mm_for_maps(priv->task);
124 	if (!mm)
125 		return NULL;
126 	down_read(&mm->mmap_sem);
127 
128 	tail_vma = get_gate_vma(priv->task);
129 	priv->tail_vma = tail_vma;
130 
131 	/* Start with last addr hint */
132 	vma = find_vma(mm, last_addr);
133 	if (last_addr && vma) {
134 		vma = vma->vm_next;
135 		goto out;
136 	}
137 
138 	/*
139 	 * Check the vma index is within the range and do
140 	 * sequential scan until m_index.
141 	 */
142 	vma = NULL;
143 	if ((unsigned long)l < mm->map_count) {
144 		vma = mm->mmap;
145 		while (l-- && vma)
146 			vma = vma->vm_next;
147 		goto out;
148 	}
149 
150 	if (l != mm->map_count)
151 		tail_vma = NULL; /* After gate vma */
152 
153 out:
154 	if (vma)
155 		return vma;
156 
157 	/* End of vmas has been reached */
158 	m->version = (tail_vma != NULL)? 0: -1UL;
159 	up_read(&mm->mmap_sem);
160 	mmput(mm);
161 	return tail_vma;
162 }
163 
164 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
165 {
166 	struct proc_maps_private *priv = m->private;
167 	struct vm_area_struct *vma = v;
168 	struct vm_area_struct *tail_vma = priv->tail_vma;
169 
170 	(*pos)++;
171 	if (vma && (vma != tail_vma) && vma->vm_next)
172 		return vma->vm_next;
173 	vma_stop(priv, vma);
174 	return (vma != tail_vma)? tail_vma: NULL;
175 }
176 
177 static void m_stop(struct seq_file *m, void *v)
178 {
179 	struct proc_maps_private *priv = m->private;
180 	struct vm_area_struct *vma = v;
181 
182 	vma_stop(priv, vma);
183 	if (priv->task)
184 		put_task_struct(priv->task);
185 }
186 
187 static int do_maps_open(struct inode *inode, struct file *file,
188 			const struct seq_operations *ops)
189 {
190 	struct proc_maps_private *priv;
191 	int ret = -ENOMEM;
192 	priv = kzalloc(sizeof(*priv), GFP_KERNEL);
193 	if (priv) {
194 		priv->pid = proc_pid(inode);
195 		ret = seq_open(file, ops);
196 		if (!ret) {
197 			struct seq_file *m = file->private_data;
198 			m->private = priv;
199 		} else {
200 			kfree(priv);
201 		}
202 	}
203 	return ret;
204 }
205 
206 static void show_map_vma(struct seq_file *m, struct vm_area_struct *vma)
207 {
208 	struct mm_struct *mm = vma->vm_mm;
209 	struct file *file = vma->vm_file;
210 	int flags = vma->vm_flags;
211 	unsigned long ino = 0;
212 	unsigned long long pgoff = 0;
213 	unsigned long start;
214 	dev_t dev = 0;
215 	int len;
216 
217 	if (file) {
218 		struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
219 		dev = inode->i_sb->s_dev;
220 		ino = inode->i_ino;
221 		pgoff = ((loff_t)vma->vm_pgoff) << PAGE_SHIFT;
222 	}
223 
224 	/* We don't show the stack guard page in /proc/maps */
225 	start = vma->vm_start;
226 	if (vma->vm_flags & VM_GROWSDOWN)
227 		if (!vma_stack_continue(vma->vm_prev, vma->vm_start))
228 			start += PAGE_SIZE;
229 
230 	seq_printf(m, "%08lx-%08lx %c%c%c%c %08llx %02x:%02x %lu %n",
231 			start,
232 			vma->vm_end,
233 			flags & VM_READ ? 'r' : '-',
234 			flags & VM_WRITE ? 'w' : '-',
235 			flags & VM_EXEC ? 'x' : '-',
236 			flags & VM_MAYSHARE ? 's' : 'p',
237 			pgoff,
238 			MAJOR(dev), MINOR(dev), ino, &len);
239 
240 	/*
241 	 * Print the dentry name for named mappings, and a
242 	 * special [heap] marker for the heap:
243 	 */
244 	if (file) {
245 		pad_len_spaces(m, len);
246 		seq_path(m, &file->f_path, "\n");
247 	} else {
248 		const char *name = arch_vma_name(vma);
249 		if (!name) {
250 			if (mm) {
251 				if (vma->vm_start <= mm->start_brk &&
252 						vma->vm_end >= mm->brk) {
253 					name = "[heap]";
254 				} else if (vma->vm_start <= mm->start_stack &&
255 					   vma->vm_end >= mm->start_stack) {
256 					name = "[stack]";
257 				}
258 			} else {
259 				name = "[vdso]";
260 			}
261 		}
262 		if (name) {
263 			pad_len_spaces(m, len);
264 			seq_puts(m, name);
265 		}
266 	}
267 	seq_putc(m, '\n');
268 }
269 
270 static int show_map(struct seq_file *m, void *v)
271 {
272 	struct vm_area_struct *vma = v;
273 	struct proc_maps_private *priv = m->private;
274 	struct task_struct *task = priv->task;
275 
276 	show_map_vma(m, vma);
277 
278 	if (m->count < m->size)  /* vma is copied successfully */
279 		m->version = (vma != get_gate_vma(task))? vma->vm_start: 0;
280 	return 0;
281 }
282 
283 static const struct seq_operations proc_pid_maps_op = {
284 	.start	= m_start,
285 	.next	= m_next,
286 	.stop	= m_stop,
287 	.show	= show_map
288 };
289 
290 static int maps_open(struct inode *inode, struct file *file)
291 {
292 	return do_maps_open(inode, file, &proc_pid_maps_op);
293 }
294 
295 const struct file_operations proc_maps_operations = {
296 	.open		= maps_open,
297 	.read		= seq_read,
298 	.llseek		= seq_lseek,
299 	.release	= seq_release_private,
300 };
301 
302 /*
303  * Proportional Set Size(PSS): my share of RSS.
304  *
305  * PSS of a process is the count of pages it has in memory, where each
306  * page is divided by the number of processes sharing it.  So if a
307  * process has 1000 pages all to itself, and 1000 shared with one other
308  * process, its PSS will be 1500.
309  *
310  * To keep (accumulated) division errors low, we adopt a 64bit
311  * fixed-point pss counter to minimize division errors. So (pss >>
312  * PSS_SHIFT) would be the real byte count.
313  *
314  * A shift of 12 before division means (assuming 4K page size):
315  * 	- 1M 3-user-pages add up to 8KB errors;
316  * 	- supports mapcount up to 2^24, or 16M;
317  * 	- supports PSS up to 2^52 bytes, or 4PB.
318  */
319 #define PSS_SHIFT 12
320 
321 #ifdef CONFIG_PROC_PAGE_MONITOR
322 struct mem_size_stats {
323 	struct vm_area_struct *vma;
324 	unsigned long resident;
325 	unsigned long shared_clean;
326 	unsigned long shared_dirty;
327 	unsigned long private_clean;
328 	unsigned long private_dirty;
329 	unsigned long referenced;
330 	unsigned long swap;
331 	u64 pss;
332 };
333 
334 static int smaps_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
335 			   struct mm_walk *walk)
336 {
337 	struct mem_size_stats *mss = walk->private;
338 	struct vm_area_struct *vma = mss->vma;
339 	pte_t *pte, ptent;
340 	spinlock_t *ptl;
341 	struct page *page;
342 	int mapcount;
343 
344 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
345 	for (; addr != end; pte++, addr += PAGE_SIZE) {
346 		ptent = *pte;
347 
348 		if (is_swap_pte(ptent)) {
349 			mss->swap += PAGE_SIZE;
350 			continue;
351 		}
352 
353 		if (!pte_present(ptent))
354 			continue;
355 
356 		page = vm_normal_page(vma, addr, ptent);
357 		if (!page)
358 			continue;
359 
360 		mss->resident += PAGE_SIZE;
361 		/* Accumulate the size in pages that have been accessed. */
362 		if (pte_young(ptent) || PageReferenced(page))
363 			mss->referenced += PAGE_SIZE;
364 		mapcount = page_mapcount(page);
365 		if (mapcount >= 2) {
366 			if (pte_dirty(ptent) || PageDirty(page))
367 				mss->shared_dirty += PAGE_SIZE;
368 			else
369 				mss->shared_clean += PAGE_SIZE;
370 			mss->pss += (PAGE_SIZE << PSS_SHIFT) / mapcount;
371 		} else {
372 			if (pte_dirty(ptent) || PageDirty(page))
373 				mss->private_dirty += PAGE_SIZE;
374 			else
375 				mss->private_clean += PAGE_SIZE;
376 			mss->pss += (PAGE_SIZE << PSS_SHIFT);
377 		}
378 	}
379 	pte_unmap_unlock(pte - 1, ptl);
380 	cond_resched();
381 	return 0;
382 }
383 
384 static int show_smap(struct seq_file *m, void *v)
385 {
386 	struct proc_maps_private *priv = m->private;
387 	struct task_struct *task = priv->task;
388 	struct vm_area_struct *vma = v;
389 	struct mem_size_stats mss;
390 	struct mm_walk smaps_walk = {
391 		.pmd_entry = smaps_pte_range,
392 		.mm = vma->vm_mm,
393 		.private = &mss,
394 	};
395 
396 	memset(&mss, 0, sizeof mss);
397 	mss.vma = vma;
398 	/* mmap_sem is held in m_start */
399 	if (vma->vm_mm && !is_vm_hugetlb_page(vma))
400 		walk_page_range(vma->vm_start, vma->vm_end, &smaps_walk);
401 
402 	show_map_vma(m, vma);
403 
404 	seq_printf(m,
405 		   "Size:           %8lu kB\n"
406 		   "Rss:            %8lu kB\n"
407 		   "Pss:            %8lu kB\n"
408 		   "Shared_Clean:   %8lu kB\n"
409 		   "Shared_Dirty:   %8lu kB\n"
410 		   "Private_Clean:  %8lu kB\n"
411 		   "Private_Dirty:  %8lu kB\n"
412 		   "Referenced:     %8lu kB\n"
413 		   "Swap:           %8lu kB\n"
414 		   "KernelPageSize: %8lu kB\n"
415 		   "MMUPageSize:    %8lu kB\n",
416 		   (vma->vm_end - vma->vm_start) >> 10,
417 		   mss.resident >> 10,
418 		   (unsigned long)(mss.pss >> (10 + PSS_SHIFT)),
419 		   mss.shared_clean  >> 10,
420 		   mss.shared_dirty  >> 10,
421 		   mss.private_clean >> 10,
422 		   mss.private_dirty >> 10,
423 		   mss.referenced >> 10,
424 		   mss.swap >> 10,
425 		   vma_kernel_pagesize(vma) >> 10,
426 		   vma_mmu_pagesize(vma) >> 10);
427 
428 	if (m->count < m->size)  /* vma is copied successfully */
429 		m->version = (vma != get_gate_vma(task)) ? vma->vm_start : 0;
430 	return 0;
431 }
432 
433 static const struct seq_operations proc_pid_smaps_op = {
434 	.start	= m_start,
435 	.next	= m_next,
436 	.stop	= m_stop,
437 	.show	= show_smap
438 };
439 
440 static int smaps_open(struct inode *inode, struct file *file)
441 {
442 	return do_maps_open(inode, file, &proc_pid_smaps_op);
443 }
444 
445 const struct file_operations proc_smaps_operations = {
446 	.open		= smaps_open,
447 	.read		= seq_read,
448 	.llseek		= seq_lseek,
449 	.release	= seq_release_private,
450 };
451 
452 static int clear_refs_pte_range(pmd_t *pmd, unsigned long addr,
453 				unsigned long end, struct mm_walk *walk)
454 {
455 	struct vm_area_struct *vma = walk->private;
456 	pte_t *pte, ptent;
457 	spinlock_t *ptl;
458 	struct page *page;
459 
460 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
461 	for (; addr != end; pte++, addr += PAGE_SIZE) {
462 		ptent = *pte;
463 		if (!pte_present(ptent))
464 			continue;
465 
466 		page = vm_normal_page(vma, addr, ptent);
467 		if (!page)
468 			continue;
469 
470 		/* Clear accessed and referenced bits. */
471 		ptep_test_and_clear_young(vma, addr, pte);
472 		ClearPageReferenced(page);
473 	}
474 	pte_unmap_unlock(pte - 1, ptl);
475 	cond_resched();
476 	return 0;
477 }
478 
479 #define CLEAR_REFS_ALL 1
480 #define CLEAR_REFS_ANON 2
481 #define CLEAR_REFS_MAPPED 3
482 
483 static ssize_t clear_refs_write(struct file *file, const char __user *buf,
484 				size_t count, loff_t *ppos)
485 {
486 	struct task_struct *task;
487 	char buffer[PROC_NUMBUF];
488 	struct mm_struct *mm;
489 	struct vm_area_struct *vma;
490 	long type;
491 
492 	memset(buffer, 0, sizeof(buffer));
493 	if (count > sizeof(buffer) - 1)
494 		count = sizeof(buffer) - 1;
495 	if (copy_from_user(buffer, buf, count))
496 		return -EFAULT;
497 	if (strict_strtol(strstrip(buffer), 10, &type))
498 		return -EINVAL;
499 	if (type < CLEAR_REFS_ALL || type > CLEAR_REFS_MAPPED)
500 		return -EINVAL;
501 	task = get_proc_task(file->f_path.dentry->d_inode);
502 	if (!task)
503 		return -ESRCH;
504 	mm = get_task_mm(task);
505 	if (mm) {
506 		struct mm_walk clear_refs_walk = {
507 			.pmd_entry = clear_refs_pte_range,
508 			.mm = mm,
509 		};
510 		down_read(&mm->mmap_sem);
511 		for (vma = mm->mmap; vma; vma = vma->vm_next) {
512 			clear_refs_walk.private = vma;
513 			if (is_vm_hugetlb_page(vma))
514 				continue;
515 			/*
516 			 * Writing 1 to /proc/pid/clear_refs affects all pages.
517 			 *
518 			 * Writing 2 to /proc/pid/clear_refs only affects
519 			 * Anonymous pages.
520 			 *
521 			 * Writing 3 to /proc/pid/clear_refs only affects file
522 			 * mapped pages.
523 			 */
524 			if (type == CLEAR_REFS_ANON && vma->vm_file)
525 				continue;
526 			if (type == CLEAR_REFS_MAPPED && !vma->vm_file)
527 				continue;
528 			walk_page_range(vma->vm_start, vma->vm_end,
529 					&clear_refs_walk);
530 		}
531 		flush_tlb_mm(mm);
532 		up_read(&mm->mmap_sem);
533 		mmput(mm);
534 	}
535 	put_task_struct(task);
536 
537 	return count;
538 }
539 
540 const struct file_operations proc_clear_refs_operations = {
541 	.write		= clear_refs_write,
542 	.llseek		= noop_llseek,
543 };
544 
545 struct pagemapread {
546 	int pos, len;
547 	u64 *buffer;
548 };
549 
550 #define PM_ENTRY_BYTES      sizeof(u64)
551 #define PM_STATUS_BITS      3
552 #define PM_STATUS_OFFSET    (64 - PM_STATUS_BITS)
553 #define PM_STATUS_MASK      (((1LL << PM_STATUS_BITS) - 1) << PM_STATUS_OFFSET)
554 #define PM_STATUS(nr)       (((nr) << PM_STATUS_OFFSET) & PM_STATUS_MASK)
555 #define PM_PSHIFT_BITS      6
556 #define PM_PSHIFT_OFFSET    (PM_STATUS_OFFSET - PM_PSHIFT_BITS)
557 #define PM_PSHIFT_MASK      (((1LL << PM_PSHIFT_BITS) - 1) << PM_PSHIFT_OFFSET)
558 #define PM_PSHIFT(x)        (((u64) (x) << PM_PSHIFT_OFFSET) & PM_PSHIFT_MASK)
559 #define PM_PFRAME_MASK      ((1LL << PM_PSHIFT_OFFSET) - 1)
560 #define PM_PFRAME(x)        ((x) & PM_PFRAME_MASK)
561 
562 #define PM_PRESENT          PM_STATUS(4LL)
563 #define PM_SWAP             PM_STATUS(2LL)
564 #define PM_NOT_PRESENT      PM_PSHIFT(PAGE_SHIFT)
565 #define PM_END_OF_BUFFER    1
566 
567 static int add_to_pagemap(unsigned long addr, u64 pfn,
568 			  struct pagemapread *pm)
569 {
570 	pm->buffer[pm->pos++] = pfn;
571 	if (pm->pos >= pm->len)
572 		return PM_END_OF_BUFFER;
573 	return 0;
574 }
575 
576 static int pagemap_pte_hole(unsigned long start, unsigned long end,
577 				struct mm_walk *walk)
578 {
579 	struct pagemapread *pm = walk->private;
580 	unsigned long addr;
581 	int err = 0;
582 	for (addr = start; addr < end; addr += PAGE_SIZE) {
583 		err = add_to_pagemap(addr, PM_NOT_PRESENT, pm);
584 		if (err)
585 			break;
586 	}
587 	return err;
588 }
589 
590 static u64 swap_pte_to_pagemap_entry(pte_t pte)
591 {
592 	swp_entry_t e = pte_to_swp_entry(pte);
593 	return swp_type(e) | (swp_offset(e) << MAX_SWAPFILES_SHIFT);
594 }
595 
596 static u64 pte_to_pagemap_entry(pte_t pte)
597 {
598 	u64 pme = 0;
599 	if (is_swap_pte(pte))
600 		pme = PM_PFRAME(swap_pte_to_pagemap_entry(pte))
601 			| PM_PSHIFT(PAGE_SHIFT) | PM_SWAP;
602 	else if (pte_present(pte))
603 		pme = PM_PFRAME(pte_pfn(pte))
604 			| PM_PSHIFT(PAGE_SHIFT) | PM_PRESENT;
605 	return pme;
606 }
607 
608 static int pagemap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
609 			     struct mm_walk *walk)
610 {
611 	struct vm_area_struct *vma;
612 	struct pagemapread *pm = walk->private;
613 	pte_t *pte;
614 	int err = 0;
615 
616 	/* find the first VMA at or above 'addr' */
617 	vma = find_vma(walk->mm, addr);
618 	for (; addr != end; addr += PAGE_SIZE) {
619 		u64 pfn = PM_NOT_PRESENT;
620 
621 		/* check to see if we've left 'vma' behind
622 		 * and need a new, higher one */
623 		if (vma && (addr >= vma->vm_end))
624 			vma = find_vma(walk->mm, addr);
625 
626 		/* check that 'vma' actually covers this address,
627 		 * and that it isn't a huge page vma */
628 		if (vma && (vma->vm_start <= addr) &&
629 		    !is_vm_hugetlb_page(vma)) {
630 			pte = pte_offset_map(pmd, addr);
631 			pfn = pte_to_pagemap_entry(*pte);
632 			/* unmap before userspace copy */
633 			pte_unmap(pte);
634 		}
635 		err = add_to_pagemap(addr, pfn, pm);
636 		if (err)
637 			return err;
638 	}
639 
640 	cond_resched();
641 
642 	return err;
643 }
644 
645 #ifdef CONFIG_HUGETLB_PAGE
646 static u64 huge_pte_to_pagemap_entry(pte_t pte, int offset)
647 {
648 	u64 pme = 0;
649 	if (pte_present(pte))
650 		pme = PM_PFRAME(pte_pfn(pte) + offset)
651 			| PM_PSHIFT(PAGE_SHIFT) | PM_PRESENT;
652 	return pme;
653 }
654 
655 /* This function walks within one hugetlb entry in the single call */
656 static int pagemap_hugetlb_range(pte_t *pte, unsigned long hmask,
657 				 unsigned long addr, unsigned long end,
658 				 struct mm_walk *walk)
659 {
660 	struct pagemapread *pm = walk->private;
661 	int err = 0;
662 	u64 pfn;
663 
664 	for (; addr != end; addr += PAGE_SIZE) {
665 		int offset = (addr & ~hmask) >> PAGE_SHIFT;
666 		pfn = huge_pte_to_pagemap_entry(*pte, offset);
667 		err = add_to_pagemap(addr, pfn, pm);
668 		if (err)
669 			return err;
670 	}
671 
672 	cond_resched();
673 
674 	return err;
675 }
676 #endif /* HUGETLB_PAGE */
677 
678 /*
679  * /proc/pid/pagemap - an array mapping virtual pages to pfns
680  *
681  * For each page in the address space, this file contains one 64-bit entry
682  * consisting of the following:
683  *
684  * Bits 0-55  page frame number (PFN) if present
685  * Bits 0-4   swap type if swapped
686  * Bits 5-55  swap offset if swapped
687  * Bits 55-60 page shift (page size = 1<<page shift)
688  * Bit  61    reserved for future use
689  * Bit  62    page swapped
690  * Bit  63    page present
691  *
692  * If the page is not present but in swap, then the PFN contains an
693  * encoding of the swap file number and the page's offset into the
694  * swap. Unmapped pages return a null PFN. This allows determining
695  * precisely which pages are mapped (or in swap) and comparing mapped
696  * pages between processes.
697  *
698  * Efficient users of this interface will use /proc/pid/maps to
699  * determine which areas of memory are actually mapped and llseek to
700  * skip over unmapped regions.
701  */
702 #define PAGEMAP_WALK_SIZE	(PMD_SIZE)
703 static ssize_t pagemap_read(struct file *file, char __user *buf,
704 			    size_t count, loff_t *ppos)
705 {
706 	struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
707 	struct mm_struct *mm;
708 	struct pagemapread pm;
709 	int ret = -ESRCH;
710 	struct mm_walk pagemap_walk = {};
711 	unsigned long src;
712 	unsigned long svpfn;
713 	unsigned long start_vaddr;
714 	unsigned long end_vaddr;
715 	int copied = 0;
716 
717 	if (!task)
718 		goto out;
719 
720 	ret = -EACCES;
721 	if (!ptrace_may_access(task, PTRACE_MODE_READ))
722 		goto out_task;
723 
724 	ret = -EINVAL;
725 	/* file position must be aligned */
726 	if ((*ppos % PM_ENTRY_BYTES) || (count % PM_ENTRY_BYTES))
727 		goto out_task;
728 
729 	ret = 0;
730 
731 	if (!count)
732 		goto out_task;
733 
734 	mm = get_task_mm(task);
735 	if (!mm)
736 		goto out_task;
737 
738 	pm.len = PM_ENTRY_BYTES * (PAGEMAP_WALK_SIZE >> PAGE_SHIFT);
739 	pm.buffer = kmalloc(pm.len, GFP_TEMPORARY);
740 	ret = -ENOMEM;
741 	if (!pm.buffer)
742 		goto out_mm;
743 
744 	pagemap_walk.pmd_entry = pagemap_pte_range;
745 	pagemap_walk.pte_hole = pagemap_pte_hole;
746 #ifdef CONFIG_HUGETLB_PAGE
747 	pagemap_walk.hugetlb_entry = pagemap_hugetlb_range;
748 #endif
749 	pagemap_walk.mm = mm;
750 	pagemap_walk.private = &pm;
751 
752 	src = *ppos;
753 	svpfn = src / PM_ENTRY_BYTES;
754 	start_vaddr = svpfn << PAGE_SHIFT;
755 	end_vaddr = TASK_SIZE_OF(task);
756 
757 	/* watch out for wraparound */
758 	if (svpfn > TASK_SIZE_OF(task) >> PAGE_SHIFT)
759 		start_vaddr = end_vaddr;
760 
761 	/*
762 	 * The odds are that this will stop walking way
763 	 * before end_vaddr, because the length of the
764 	 * user buffer is tracked in "pm", and the walk
765 	 * will stop when we hit the end of the buffer.
766 	 */
767 	ret = 0;
768 	while (count && (start_vaddr < end_vaddr)) {
769 		int len;
770 		unsigned long end;
771 
772 		pm.pos = 0;
773 		end = start_vaddr + PAGEMAP_WALK_SIZE;
774 		/* overflow ? */
775 		if (end < start_vaddr || end > end_vaddr)
776 			end = end_vaddr;
777 		down_read(&mm->mmap_sem);
778 		ret = walk_page_range(start_vaddr, end, &pagemap_walk);
779 		up_read(&mm->mmap_sem);
780 		start_vaddr = end;
781 
782 		len = min(count, PM_ENTRY_BYTES * pm.pos);
783 		if (copy_to_user(buf, pm.buffer, len)) {
784 			ret = -EFAULT;
785 			goto out_free;
786 		}
787 		copied += len;
788 		buf += len;
789 		count -= len;
790 	}
791 	*ppos += copied;
792 	if (!ret || ret == PM_END_OF_BUFFER)
793 		ret = copied;
794 
795 out_free:
796 	kfree(pm.buffer);
797 out_mm:
798 	mmput(mm);
799 out_task:
800 	put_task_struct(task);
801 out:
802 	return ret;
803 }
804 
805 const struct file_operations proc_pagemap_operations = {
806 	.llseek		= mem_lseek, /* borrow this */
807 	.read		= pagemap_read,
808 };
809 #endif /* CONFIG_PROC_PAGE_MONITOR */
810 
811 #ifdef CONFIG_NUMA
812 extern int show_numa_map(struct seq_file *m, void *v);
813 
814 static const struct seq_operations proc_pid_numa_maps_op = {
815         .start  = m_start,
816         .next   = m_next,
817         .stop   = m_stop,
818         .show   = show_numa_map,
819 };
820 
821 static int numa_maps_open(struct inode *inode, struct file *file)
822 {
823 	return do_maps_open(inode, file, &proc_pid_numa_maps_op);
824 }
825 
826 const struct file_operations proc_numa_maps_operations = {
827 	.open		= numa_maps_open,
828 	.read		= seq_read,
829 	.llseek		= seq_lseek,
830 	.release	= seq_release_private,
831 };
832 #endif
833