xref: /linux/fs/proc/task_mmu.c (revision c01044cc819160323f3ca4acd44fca487c4432e6)
1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/pagewalk.h>
3 #include <linux/vmacache.h>
4 #include <linux/hugetlb.h>
5 #include <linux/huge_mm.h>
6 #include <linux/mount.h>
7 #include <linux/seq_file.h>
8 #include <linux/highmem.h>
9 #include <linux/ptrace.h>
10 #include <linux/slab.h>
11 #include <linux/pagemap.h>
12 #include <linux/mempolicy.h>
13 #include <linux/rmap.h>
14 #include <linux/swap.h>
15 #include <linux/sched/mm.h>
16 #include <linux/swapops.h>
17 #include <linux/mmu_notifier.h>
18 #include <linux/page_idle.h>
19 #include <linux/shmem_fs.h>
20 #include <linux/uaccess.h>
21 #include <linux/pkeys.h>
22 
23 #include <asm/elf.h>
24 #include <asm/tlb.h>
25 #include <asm/tlbflush.h>
26 #include "internal.h"
27 
28 #define SEQ_PUT_DEC(str, val) \
29 		seq_put_decimal_ull_width(m, str, (val) << (PAGE_SHIFT-10), 8)
30 void task_mem(struct seq_file *m, struct mm_struct *mm)
31 {
32 	unsigned long text, lib, swap, anon, file, shmem;
33 	unsigned long hiwater_vm, total_vm, hiwater_rss, total_rss;
34 
35 	anon = get_mm_counter(mm, MM_ANONPAGES);
36 	file = get_mm_counter(mm, MM_FILEPAGES);
37 	shmem = get_mm_counter(mm, MM_SHMEMPAGES);
38 
39 	/*
40 	 * Note: to minimize their overhead, mm maintains hiwater_vm and
41 	 * hiwater_rss only when about to *lower* total_vm or rss.  Any
42 	 * collector of these hiwater stats must therefore get total_vm
43 	 * and rss too, which will usually be the higher.  Barriers? not
44 	 * worth the effort, such snapshots can always be inconsistent.
45 	 */
46 	hiwater_vm = total_vm = mm->total_vm;
47 	if (hiwater_vm < mm->hiwater_vm)
48 		hiwater_vm = mm->hiwater_vm;
49 	hiwater_rss = total_rss = anon + file + shmem;
50 	if (hiwater_rss < mm->hiwater_rss)
51 		hiwater_rss = mm->hiwater_rss;
52 
53 	/* split executable areas between text and lib */
54 	text = PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK);
55 	text = min(text, mm->exec_vm << PAGE_SHIFT);
56 	lib = (mm->exec_vm << PAGE_SHIFT) - text;
57 
58 	swap = get_mm_counter(mm, MM_SWAPENTS);
59 	SEQ_PUT_DEC("VmPeak:\t", hiwater_vm);
60 	SEQ_PUT_DEC(" kB\nVmSize:\t", total_vm);
61 	SEQ_PUT_DEC(" kB\nVmLck:\t", mm->locked_vm);
62 	SEQ_PUT_DEC(" kB\nVmPin:\t", atomic64_read(&mm->pinned_vm));
63 	SEQ_PUT_DEC(" kB\nVmHWM:\t", hiwater_rss);
64 	SEQ_PUT_DEC(" kB\nVmRSS:\t", total_rss);
65 	SEQ_PUT_DEC(" kB\nRssAnon:\t", anon);
66 	SEQ_PUT_DEC(" kB\nRssFile:\t", file);
67 	SEQ_PUT_DEC(" kB\nRssShmem:\t", shmem);
68 	SEQ_PUT_DEC(" kB\nVmData:\t", mm->data_vm);
69 	SEQ_PUT_DEC(" kB\nVmStk:\t", mm->stack_vm);
70 	seq_put_decimal_ull_width(m,
71 		    " kB\nVmExe:\t", text >> 10, 8);
72 	seq_put_decimal_ull_width(m,
73 		    " kB\nVmLib:\t", lib >> 10, 8);
74 	seq_put_decimal_ull_width(m,
75 		    " kB\nVmPTE:\t", mm_pgtables_bytes(mm) >> 10, 8);
76 	SEQ_PUT_DEC(" kB\nVmSwap:\t", swap);
77 	seq_puts(m, " kB\n");
78 	hugetlb_report_usage(m, mm);
79 }
80 #undef SEQ_PUT_DEC
81 
82 unsigned long task_vsize(struct mm_struct *mm)
83 {
84 	return PAGE_SIZE * mm->total_vm;
85 }
86 
87 unsigned long task_statm(struct mm_struct *mm,
88 			 unsigned long *shared, unsigned long *text,
89 			 unsigned long *data, unsigned long *resident)
90 {
91 	*shared = get_mm_counter(mm, MM_FILEPAGES) +
92 			get_mm_counter(mm, MM_SHMEMPAGES);
93 	*text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK))
94 								>> PAGE_SHIFT;
95 	*data = mm->data_vm + mm->stack_vm;
96 	*resident = *shared + get_mm_counter(mm, MM_ANONPAGES);
97 	return mm->total_vm;
98 }
99 
100 #ifdef CONFIG_NUMA
101 /*
102  * Save get_task_policy() for show_numa_map().
103  */
104 static void hold_task_mempolicy(struct proc_maps_private *priv)
105 {
106 	struct task_struct *task = priv->task;
107 
108 	task_lock(task);
109 	priv->task_mempolicy = get_task_policy(task);
110 	mpol_get(priv->task_mempolicy);
111 	task_unlock(task);
112 }
113 static void release_task_mempolicy(struct proc_maps_private *priv)
114 {
115 	mpol_put(priv->task_mempolicy);
116 }
117 #else
118 static void hold_task_mempolicy(struct proc_maps_private *priv)
119 {
120 }
121 static void release_task_mempolicy(struct proc_maps_private *priv)
122 {
123 }
124 #endif
125 
126 static void *m_start(struct seq_file *m, loff_t *ppos)
127 {
128 	struct proc_maps_private *priv = m->private;
129 	unsigned long last_addr = *ppos;
130 	struct mm_struct *mm;
131 	struct vm_area_struct *vma;
132 
133 	/* See m_next(). Zero at the start or after lseek. */
134 	if (last_addr == -1UL)
135 		return NULL;
136 
137 	priv->task = get_proc_task(priv->inode);
138 	if (!priv->task)
139 		return ERR_PTR(-ESRCH);
140 
141 	mm = priv->mm;
142 	if (!mm || !mmget_not_zero(mm)) {
143 		put_task_struct(priv->task);
144 		priv->task = NULL;
145 		return NULL;
146 	}
147 
148 	if (mmap_read_lock_killable(mm)) {
149 		mmput(mm);
150 		put_task_struct(priv->task);
151 		priv->task = NULL;
152 		return ERR_PTR(-EINTR);
153 	}
154 
155 	hold_task_mempolicy(priv);
156 	priv->tail_vma = get_gate_vma(mm);
157 
158 	vma = find_vma(mm, last_addr);
159 	if (vma)
160 		return vma;
161 
162 	return priv->tail_vma;
163 }
164 
165 static void *m_next(struct seq_file *m, void *v, loff_t *ppos)
166 {
167 	struct proc_maps_private *priv = m->private;
168 	struct vm_area_struct *next, *vma = v;
169 
170 	if (vma == priv->tail_vma)
171 		next = NULL;
172 	else if (vma->vm_next)
173 		next = vma->vm_next;
174 	else
175 		next = priv->tail_vma;
176 
177 	*ppos = next ? next->vm_start : -1UL;
178 
179 	return next;
180 }
181 
182 static void m_stop(struct seq_file *m, void *v)
183 {
184 	struct proc_maps_private *priv = m->private;
185 	struct mm_struct *mm = priv->mm;
186 
187 	if (!priv->task)
188 		return;
189 
190 	release_task_mempolicy(priv);
191 	mmap_read_unlock(mm);
192 	mmput(mm);
193 	put_task_struct(priv->task);
194 	priv->task = NULL;
195 }
196 
197 static int proc_maps_open(struct inode *inode, struct file *file,
198 			const struct seq_operations *ops, int psize)
199 {
200 	struct proc_maps_private *priv = __seq_open_private(file, ops, psize);
201 
202 	if (!priv)
203 		return -ENOMEM;
204 
205 	priv->inode = inode;
206 	priv->mm = proc_mem_open(inode, PTRACE_MODE_READ);
207 	if (IS_ERR(priv->mm)) {
208 		int err = PTR_ERR(priv->mm);
209 
210 		seq_release_private(inode, file);
211 		return err;
212 	}
213 
214 	return 0;
215 }
216 
217 static int proc_map_release(struct inode *inode, struct file *file)
218 {
219 	struct seq_file *seq = file->private_data;
220 	struct proc_maps_private *priv = seq->private;
221 
222 	if (priv->mm)
223 		mmdrop(priv->mm);
224 
225 	return seq_release_private(inode, file);
226 }
227 
228 static int do_maps_open(struct inode *inode, struct file *file,
229 			const struct seq_operations *ops)
230 {
231 	return proc_maps_open(inode, file, ops,
232 				sizeof(struct proc_maps_private));
233 }
234 
235 /*
236  * Indicate if the VMA is a stack for the given task; for
237  * /proc/PID/maps that is the stack of the main task.
238  */
239 static int is_stack(struct vm_area_struct *vma)
240 {
241 	/*
242 	 * We make no effort to guess what a given thread considers to be
243 	 * its "stack".  It's not even well-defined for programs written
244 	 * languages like Go.
245 	 */
246 	return vma->vm_start <= vma->vm_mm->start_stack &&
247 		vma->vm_end >= vma->vm_mm->start_stack;
248 }
249 
250 static void show_vma_header_prefix(struct seq_file *m,
251 				   unsigned long start, unsigned long end,
252 				   vm_flags_t flags, unsigned long long pgoff,
253 				   dev_t dev, unsigned long ino)
254 {
255 	seq_setwidth(m, 25 + sizeof(void *) * 6 - 1);
256 	seq_put_hex_ll(m, NULL, start, 8);
257 	seq_put_hex_ll(m, "-", end, 8);
258 	seq_putc(m, ' ');
259 	seq_putc(m, flags & VM_READ ? 'r' : '-');
260 	seq_putc(m, flags & VM_WRITE ? 'w' : '-');
261 	seq_putc(m, flags & VM_EXEC ? 'x' : '-');
262 	seq_putc(m, flags & VM_MAYSHARE ? 's' : 'p');
263 	seq_put_hex_ll(m, " ", pgoff, 8);
264 	seq_put_hex_ll(m, " ", MAJOR(dev), 2);
265 	seq_put_hex_ll(m, ":", MINOR(dev), 2);
266 	seq_put_decimal_ull(m, " ", ino);
267 	seq_putc(m, ' ');
268 }
269 
270 static void
271 show_map_vma(struct seq_file *m, struct vm_area_struct *vma)
272 {
273 	struct mm_struct *mm = vma->vm_mm;
274 	struct file *file = vma->vm_file;
275 	vm_flags_t flags = vma->vm_flags;
276 	unsigned long ino = 0;
277 	unsigned long long pgoff = 0;
278 	unsigned long start, end;
279 	dev_t dev = 0;
280 	const char *name = NULL;
281 
282 	if (file) {
283 		struct inode *inode = file_inode(vma->vm_file);
284 		dev = inode->i_sb->s_dev;
285 		ino = inode->i_ino;
286 		pgoff = ((loff_t)vma->vm_pgoff) << PAGE_SHIFT;
287 	}
288 
289 	start = vma->vm_start;
290 	end = vma->vm_end;
291 	show_vma_header_prefix(m, start, end, flags, pgoff, dev, ino);
292 
293 	/*
294 	 * Print the dentry name for named mappings, and a
295 	 * special [heap] marker for the heap:
296 	 */
297 	if (file) {
298 		seq_pad(m, ' ');
299 		seq_file_path(m, file, "\n");
300 		goto done;
301 	}
302 
303 	if (vma->vm_ops && vma->vm_ops->name) {
304 		name = vma->vm_ops->name(vma);
305 		if (name)
306 			goto done;
307 	}
308 
309 	name = arch_vma_name(vma);
310 	if (!name) {
311 		if (!mm) {
312 			name = "[vdso]";
313 			goto done;
314 		}
315 
316 		if (vma->vm_start <= mm->brk &&
317 		    vma->vm_end >= mm->start_brk) {
318 			name = "[heap]";
319 			goto done;
320 		}
321 
322 		if (is_stack(vma))
323 			name = "[stack]";
324 	}
325 
326 done:
327 	if (name) {
328 		seq_pad(m, ' ');
329 		seq_puts(m, name);
330 	}
331 	seq_putc(m, '\n');
332 }
333 
334 static int show_map(struct seq_file *m, void *v)
335 {
336 	show_map_vma(m, v);
337 	return 0;
338 }
339 
340 static const struct seq_operations proc_pid_maps_op = {
341 	.start	= m_start,
342 	.next	= m_next,
343 	.stop	= m_stop,
344 	.show	= show_map
345 };
346 
347 static int pid_maps_open(struct inode *inode, struct file *file)
348 {
349 	return do_maps_open(inode, file, &proc_pid_maps_op);
350 }
351 
352 const struct file_operations proc_pid_maps_operations = {
353 	.open		= pid_maps_open,
354 	.read		= seq_read,
355 	.llseek		= seq_lseek,
356 	.release	= proc_map_release,
357 };
358 
359 /*
360  * Proportional Set Size(PSS): my share of RSS.
361  *
362  * PSS of a process is the count of pages it has in memory, where each
363  * page is divided by the number of processes sharing it.  So if a
364  * process has 1000 pages all to itself, and 1000 shared with one other
365  * process, its PSS will be 1500.
366  *
367  * To keep (accumulated) division errors low, we adopt a 64bit
368  * fixed-point pss counter to minimize division errors. So (pss >>
369  * PSS_SHIFT) would be the real byte count.
370  *
371  * A shift of 12 before division means (assuming 4K page size):
372  * 	- 1M 3-user-pages add up to 8KB errors;
373  * 	- supports mapcount up to 2^24, or 16M;
374  * 	- supports PSS up to 2^52 bytes, or 4PB.
375  */
376 #define PSS_SHIFT 12
377 
378 #ifdef CONFIG_PROC_PAGE_MONITOR
379 struct mem_size_stats {
380 	unsigned long resident;
381 	unsigned long shared_clean;
382 	unsigned long shared_dirty;
383 	unsigned long private_clean;
384 	unsigned long private_dirty;
385 	unsigned long referenced;
386 	unsigned long anonymous;
387 	unsigned long lazyfree;
388 	unsigned long anonymous_thp;
389 	unsigned long shmem_thp;
390 	unsigned long file_thp;
391 	unsigned long swap;
392 	unsigned long shared_hugetlb;
393 	unsigned long private_hugetlb;
394 	u64 pss;
395 	u64 pss_anon;
396 	u64 pss_file;
397 	u64 pss_shmem;
398 	u64 pss_locked;
399 	u64 swap_pss;
400 	bool check_shmem_swap;
401 };
402 
403 static void smaps_page_accumulate(struct mem_size_stats *mss,
404 		struct page *page, unsigned long size, unsigned long pss,
405 		bool dirty, bool locked, bool private)
406 {
407 	mss->pss += pss;
408 
409 	if (PageAnon(page))
410 		mss->pss_anon += pss;
411 	else if (PageSwapBacked(page))
412 		mss->pss_shmem += pss;
413 	else
414 		mss->pss_file += pss;
415 
416 	if (locked)
417 		mss->pss_locked += pss;
418 
419 	if (dirty || PageDirty(page)) {
420 		if (private)
421 			mss->private_dirty += size;
422 		else
423 			mss->shared_dirty += size;
424 	} else {
425 		if (private)
426 			mss->private_clean += size;
427 		else
428 			mss->shared_clean += size;
429 	}
430 }
431 
432 static void smaps_account(struct mem_size_stats *mss, struct page *page,
433 		bool compound, bool young, bool dirty, bool locked)
434 {
435 	int i, nr = compound ? compound_nr(page) : 1;
436 	unsigned long size = nr * PAGE_SIZE;
437 
438 	/*
439 	 * First accumulate quantities that depend only on |size| and the type
440 	 * of the compound page.
441 	 */
442 	if (PageAnon(page)) {
443 		mss->anonymous += size;
444 		if (!PageSwapBacked(page) && !dirty && !PageDirty(page))
445 			mss->lazyfree += size;
446 	}
447 
448 	mss->resident += size;
449 	/* Accumulate the size in pages that have been accessed. */
450 	if (young || page_is_young(page) || PageReferenced(page))
451 		mss->referenced += size;
452 
453 	/*
454 	 * Then accumulate quantities that may depend on sharing, or that may
455 	 * differ page-by-page.
456 	 *
457 	 * page_count(page) == 1 guarantees the page is mapped exactly once.
458 	 * If any subpage of the compound page mapped with PTE it would elevate
459 	 * page_count().
460 	 */
461 	if (page_count(page) == 1) {
462 		smaps_page_accumulate(mss, page, size, size << PSS_SHIFT, dirty,
463 			locked, true);
464 		return;
465 	}
466 	for (i = 0; i < nr; i++, page++) {
467 		int mapcount = page_mapcount(page);
468 		unsigned long pss = PAGE_SIZE << PSS_SHIFT;
469 		if (mapcount >= 2)
470 			pss /= mapcount;
471 		smaps_page_accumulate(mss, page, PAGE_SIZE, pss, dirty, locked,
472 				      mapcount < 2);
473 	}
474 }
475 
476 #ifdef CONFIG_SHMEM
477 static int smaps_pte_hole(unsigned long addr, unsigned long end,
478 			  __always_unused int depth, struct mm_walk *walk)
479 {
480 	struct mem_size_stats *mss = walk->private;
481 
482 	mss->swap += shmem_partial_swap_usage(
483 			walk->vma->vm_file->f_mapping, addr, end);
484 
485 	return 0;
486 }
487 #else
488 #define smaps_pte_hole		NULL
489 #endif /* CONFIG_SHMEM */
490 
491 static void smaps_pte_entry(pte_t *pte, unsigned long addr,
492 		struct mm_walk *walk)
493 {
494 	struct mem_size_stats *mss = walk->private;
495 	struct vm_area_struct *vma = walk->vma;
496 	bool locked = !!(vma->vm_flags & VM_LOCKED);
497 	struct page *page = NULL;
498 
499 	if (pte_present(*pte)) {
500 		page = vm_normal_page(vma, addr, *pte);
501 	} else if (is_swap_pte(*pte)) {
502 		swp_entry_t swpent = pte_to_swp_entry(*pte);
503 
504 		if (!non_swap_entry(swpent)) {
505 			int mapcount;
506 
507 			mss->swap += PAGE_SIZE;
508 			mapcount = swp_swapcount(swpent);
509 			if (mapcount >= 2) {
510 				u64 pss_delta = (u64)PAGE_SIZE << PSS_SHIFT;
511 
512 				do_div(pss_delta, mapcount);
513 				mss->swap_pss += pss_delta;
514 			} else {
515 				mss->swap_pss += (u64)PAGE_SIZE << PSS_SHIFT;
516 			}
517 		} else if (is_migration_entry(swpent))
518 			page = migration_entry_to_page(swpent);
519 		else if (is_device_private_entry(swpent))
520 			page = device_private_entry_to_page(swpent);
521 	} else if (unlikely(IS_ENABLED(CONFIG_SHMEM) && mss->check_shmem_swap
522 							&& pte_none(*pte))) {
523 		page = find_get_entry(vma->vm_file->f_mapping,
524 						linear_page_index(vma, addr));
525 		if (!page)
526 			return;
527 
528 		if (xa_is_value(page))
529 			mss->swap += PAGE_SIZE;
530 		else
531 			put_page(page);
532 
533 		return;
534 	}
535 
536 	if (!page)
537 		return;
538 
539 	smaps_account(mss, page, false, pte_young(*pte), pte_dirty(*pte), locked);
540 }
541 
542 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
543 static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
544 		struct mm_walk *walk)
545 {
546 	struct mem_size_stats *mss = walk->private;
547 	struct vm_area_struct *vma = walk->vma;
548 	bool locked = !!(vma->vm_flags & VM_LOCKED);
549 	struct page *page = NULL;
550 
551 	if (pmd_present(*pmd)) {
552 		/* FOLL_DUMP will return -EFAULT on huge zero page */
553 		page = follow_trans_huge_pmd(vma, addr, pmd, FOLL_DUMP);
554 	} else if (unlikely(thp_migration_supported() && is_swap_pmd(*pmd))) {
555 		swp_entry_t entry = pmd_to_swp_entry(*pmd);
556 
557 		if (is_migration_entry(entry))
558 			page = migration_entry_to_page(entry);
559 	}
560 	if (IS_ERR_OR_NULL(page))
561 		return;
562 	if (PageAnon(page))
563 		mss->anonymous_thp += HPAGE_PMD_SIZE;
564 	else if (PageSwapBacked(page))
565 		mss->shmem_thp += HPAGE_PMD_SIZE;
566 	else if (is_zone_device_page(page))
567 		/* pass */;
568 	else
569 		mss->file_thp += HPAGE_PMD_SIZE;
570 	smaps_account(mss, page, true, pmd_young(*pmd), pmd_dirty(*pmd), locked);
571 }
572 #else
573 static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
574 		struct mm_walk *walk)
575 {
576 }
577 #endif
578 
579 static int smaps_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
580 			   struct mm_walk *walk)
581 {
582 	struct vm_area_struct *vma = walk->vma;
583 	pte_t *pte;
584 	spinlock_t *ptl;
585 
586 	ptl = pmd_trans_huge_lock(pmd, vma);
587 	if (ptl) {
588 		smaps_pmd_entry(pmd, addr, walk);
589 		spin_unlock(ptl);
590 		goto out;
591 	}
592 
593 	if (pmd_trans_unstable(pmd))
594 		goto out;
595 	/*
596 	 * The mmap_lock held all the way back in m_start() is what
597 	 * keeps khugepaged out of here and from collapsing things
598 	 * in here.
599 	 */
600 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
601 	for (; addr != end; pte++, addr += PAGE_SIZE)
602 		smaps_pte_entry(pte, addr, walk);
603 	pte_unmap_unlock(pte - 1, ptl);
604 out:
605 	cond_resched();
606 	return 0;
607 }
608 
609 static void show_smap_vma_flags(struct seq_file *m, struct vm_area_struct *vma)
610 {
611 	/*
612 	 * Don't forget to update Documentation/ on changes.
613 	 */
614 	static const char mnemonics[BITS_PER_LONG][2] = {
615 		/*
616 		 * In case if we meet a flag we don't know about.
617 		 */
618 		[0 ... (BITS_PER_LONG-1)] = "??",
619 
620 		[ilog2(VM_READ)]	= "rd",
621 		[ilog2(VM_WRITE)]	= "wr",
622 		[ilog2(VM_EXEC)]	= "ex",
623 		[ilog2(VM_SHARED)]	= "sh",
624 		[ilog2(VM_MAYREAD)]	= "mr",
625 		[ilog2(VM_MAYWRITE)]	= "mw",
626 		[ilog2(VM_MAYEXEC)]	= "me",
627 		[ilog2(VM_MAYSHARE)]	= "ms",
628 		[ilog2(VM_GROWSDOWN)]	= "gd",
629 		[ilog2(VM_PFNMAP)]	= "pf",
630 		[ilog2(VM_DENYWRITE)]	= "dw",
631 		[ilog2(VM_LOCKED)]	= "lo",
632 		[ilog2(VM_IO)]		= "io",
633 		[ilog2(VM_SEQ_READ)]	= "sr",
634 		[ilog2(VM_RAND_READ)]	= "rr",
635 		[ilog2(VM_DONTCOPY)]	= "dc",
636 		[ilog2(VM_DONTEXPAND)]	= "de",
637 		[ilog2(VM_ACCOUNT)]	= "ac",
638 		[ilog2(VM_NORESERVE)]	= "nr",
639 		[ilog2(VM_HUGETLB)]	= "ht",
640 		[ilog2(VM_SYNC)]	= "sf",
641 		[ilog2(VM_ARCH_1)]	= "ar",
642 		[ilog2(VM_WIPEONFORK)]	= "wf",
643 		[ilog2(VM_DONTDUMP)]	= "dd",
644 #ifdef CONFIG_ARM64_BTI
645 		[ilog2(VM_ARM64_BTI)]	= "bt",
646 #endif
647 #ifdef CONFIG_MEM_SOFT_DIRTY
648 		[ilog2(VM_SOFTDIRTY)]	= "sd",
649 #endif
650 		[ilog2(VM_MIXEDMAP)]	= "mm",
651 		[ilog2(VM_HUGEPAGE)]	= "hg",
652 		[ilog2(VM_NOHUGEPAGE)]	= "nh",
653 		[ilog2(VM_MERGEABLE)]	= "mg",
654 		[ilog2(VM_UFFD_MISSING)]= "um",
655 		[ilog2(VM_UFFD_WP)]	= "uw",
656 #ifdef CONFIG_ARM64_MTE
657 		[ilog2(VM_MTE)]		= "mt",
658 		[ilog2(VM_MTE_ALLOWED)]	= "",
659 #endif
660 #ifdef CONFIG_ARCH_HAS_PKEYS
661 		/* These come out via ProtectionKey: */
662 		[ilog2(VM_PKEY_BIT0)]	= "",
663 		[ilog2(VM_PKEY_BIT1)]	= "",
664 		[ilog2(VM_PKEY_BIT2)]	= "",
665 		[ilog2(VM_PKEY_BIT3)]	= "",
666 #if VM_PKEY_BIT4
667 		[ilog2(VM_PKEY_BIT4)]	= "",
668 #endif
669 #endif /* CONFIG_ARCH_HAS_PKEYS */
670 	};
671 	size_t i;
672 
673 	seq_puts(m, "VmFlags: ");
674 	for (i = 0; i < BITS_PER_LONG; i++) {
675 		if (!mnemonics[i][0])
676 			continue;
677 		if (vma->vm_flags & (1UL << i)) {
678 			seq_putc(m, mnemonics[i][0]);
679 			seq_putc(m, mnemonics[i][1]);
680 			seq_putc(m, ' ');
681 		}
682 	}
683 	seq_putc(m, '\n');
684 }
685 
686 #ifdef CONFIG_HUGETLB_PAGE
687 static int smaps_hugetlb_range(pte_t *pte, unsigned long hmask,
688 				 unsigned long addr, unsigned long end,
689 				 struct mm_walk *walk)
690 {
691 	struct mem_size_stats *mss = walk->private;
692 	struct vm_area_struct *vma = walk->vma;
693 	struct page *page = NULL;
694 
695 	if (pte_present(*pte)) {
696 		page = vm_normal_page(vma, addr, *pte);
697 	} else if (is_swap_pte(*pte)) {
698 		swp_entry_t swpent = pte_to_swp_entry(*pte);
699 
700 		if (is_migration_entry(swpent))
701 			page = migration_entry_to_page(swpent);
702 		else if (is_device_private_entry(swpent))
703 			page = device_private_entry_to_page(swpent);
704 	}
705 	if (page) {
706 		int mapcount = page_mapcount(page);
707 
708 		if (mapcount >= 2)
709 			mss->shared_hugetlb += huge_page_size(hstate_vma(vma));
710 		else
711 			mss->private_hugetlb += huge_page_size(hstate_vma(vma));
712 	}
713 	return 0;
714 }
715 #else
716 #define smaps_hugetlb_range	NULL
717 #endif /* HUGETLB_PAGE */
718 
719 static const struct mm_walk_ops smaps_walk_ops = {
720 	.pmd_entry		= smaps_pte_range,
721 	.hugetlb_entry		= smaps_hugetlb_range,
722 };
723 
724 static const struct mm_walk_ops smaps_shmem_walk_ops = {
725 	.pmd_entry		= smaps_pte_range,
726 	.hugetlb_entry		= smaps_hugetlb_range,
727 	.pte_hole		= smaps_pte_hole,
728 };
729 
730 static void smap_gather_stats(struct vm_area_struct *vma,
731 			     struct mem_size_stats *mss)
732 {
733 #ifdef CONFIG_SHMEM
734 	/* In case of smaps_rollup, reset the value from previous vma */
735 	mss->check_shmem_swap = false;
736 	if (vma->vm_file && shmem_mapping(vma->vm_file->f_mapping)) {
737 		/*
738 		 * For shared or readonly shmem mappings we know that all
739 		 * swapped out pages belong to the shmem object, and we can
740 		 * obtain the swap value much more efficiently. For private
741 		 * writable mappings, we might have COW pages that are
742 		 * not affected by the parent swapped out pages of the shmem
743 		 * object, so we have to distinguish them during the page walk.
744 		 * Unless we know that the shmem object (or the part mapped by
745 		 * our VMA) has no swapped out pages at all.
746 		 */
747 		unsigned long shmem_swapped = shmem_swap_usage(vma);
748 
749 		if (!shmem_swapped || (vma->vm_flags & VM_SHARED) ||
750 					!(vma->vm_flags & VM_WRITE)) {
751 			mss->swap += shmem_swapped;
752 		} else {
753 			mss->check_shmem_swap = true;
754 			walk_page_vma(vma, &smaps_shmem_walk_ops, mss);
755 			return;
756 		}
757 	}
758 #endif
759 	/* mmap_lock is held in m_start */
760 	walk_page_vma(vma, &smaps_walk_ops, mss);
761 }
762 
763 #define SEQ_PUT_DEC(str, val) \
764 		seq_put_decimal_ull_width(m, str, (val) >> 10, 8)
765 
766 /* Show the contents common for smaps and smaps_rollup */
767 static void __show_smap(struct seq_file *m, const struct mem_size_stats *mss,
768 	bool rollup_mode)
769 {
770 	SEQ_PUT_DEC("Rss:            ", mss->resident);
771 	SEQ_PUT_DEC(" kB\nPss:            ", mss->pss >> PSS_SHIFT);
772 	if (rollup_mode) {
773 		/*
774 		 * These are meaningful only for smaps_rollup, otherwise two of
775 		 * them are zero, and the other one is the same as Pss.
776 		 */
777 		SEQ_PUT_DEC(" kB\nPss_Anon:       ",
778 			mss->pss_anon >> PSS_SHIFT);
779 		SEQ_PUT_DEC(" kB\nPss_File:       ",
780 			mss->pss_file >> PSS_SHIFT);
781 		SEQ_PUT_DEC(" kB\nPss_Shmem:      ",
782 			mss->pss_shmem >> PSS_SHIFT);
783 	}
784 	SEQ_PUT_DEC(" kB\nShared_Clean:   ", mss->shared_clean);
785 	SEQ_PUT_DEC(" kB\nShared_Dirty:   ", mss->shared_dirty);
786 	SEQ_PUT_DEC(" kB\nPrivate_Clean:  ", mss->private_clean);
787 	SEQ_PUT_DEC(" kB\nPrivate_Dirty:  ", mss->private_dirty);
788 	SEQ_PUT_DEC(" kB\nReferenced:     ", mss->referenced);
789 	SEQ_PUT_DEC(" kB\nAnonymous:      ", mss->anonymous);
790 	SEQ_PUT_DEC(" kB\nLazyFree:       ", mss->lazyfree);
791 	SEQ_PUT_DEC(" kB\nAnonHugePages:  ", mss->anonymous_thp);
792 	SEQ_PUT_DEC(" kB\nShmemPmdMapped: ", mss->shmem_thp);
793 	SEQ_PUT_DEC(" kB\nFilePmdMapped:  ", mss->file_thp);
794 	SEQ_PUT_DEC(" kB\nShared_Hugetlb: ", mss->shared_hugetlb);
795 	seq_put_decimal_ull_width(m, " kB\nPrivate_Hugetlb: ",
796 				  mss->private_hugetlb >> 10, 7);
797 	SEQ_PUT_DEC(" kB\nSwap:           ", mss->swap);
798 	SEQ_PUT_DEC(" kB\nSwapPss:        ",
799 					mss->swap_pss >> PSS_SHIFT);
800 	SEQ_PUT_DEC(" kB\nLocked:         ",
801 					mss->pss_locked >> PSS_SHIFT);
802 	seq_puts(m, " kB\n");
803 }
804 
805 static int show_smap(struct seq_file *m, void *v)
806 {
807 	struct vm_area_struct *vma = v;
808 	struct mem_size_stats mss;
809 
810 	memset(&mss, 0, sizeof(mss));
811 
812 	smap_gather_stats(vma, &mss);
813 
814 	show_map_vma(m, vma);
815 
816 	SEQ_PUT_DEC("Size:           ", vma->vm_end - vma->vm_start);
817 	SEQ_PUT_DEC(" kB\nKernelPageSize: ", vma_kernel_pagesize(vma));
818 	SEQ_PUT_DEC(" kB\nMMUPageSize:    ", vma_mmu_pagesize(vma));
819 	seq_puts(m, " kB\n");
820 
821 	__show_smap(m, &mss, false);
822 
823 	seq_printf(m, "THPeligible:    %d\n",
824 		   transparent_hugepage_enabled(vma));
825 
826 	if (arch_pkeys_enabled())
827 		seq_printf(m, "ProtectionKey:  %8u\n", vma_pkey(vma));
828 	show_smap_vma_flags(m, vma);
829 
830 	return 0;
831 }
832 
833 static int show_smaps_rollup(struct seq_file *m, void *v)
834 {
835 	struct proc_maps_private *priv = m->private;
836 	struct mem_size_stats mss;
837 	struct mm_struct *mm;
838 	struct vm_area_struct *vma;
839 	unsigned long last_vma_end = 0;
840 	int ret = 0;
841 
842 	priv->task = get_proc_task(priv->inode);
843 	if (!priv->task)
844 		return -ESRCH;
845 
846 	mm = priv->mm;
847 	if (!mm || !mmget_not_zero(mm)) {
848 		ret = -ESRCH;
849 		goto out_put_task;
850 	}
851 
852 	memset(&mss, 0, sizeof(mss));
853 
854 	ret = mmap_read_lock_killable(mm);
855 	if (ret)
856 		goto out_put_mm;
857 
858 	hold_task_mempolicy(priv);
859 
860 	for (vma = priv->mm->mmap; vma; vma = vma->vm_next) {
861 		smap_gather_stats(vma, &mss);
862 		last_vma_end = vma->vm_end;
863 	}
864 
865 	show_vma_header_prefix(m, priv->mm->mmap->vm_start,
866 			       last_vma_end, 0, 0, 0, 0);
867 	seq_pad(m, ' ');
868 	seq_puts(m, "[rollup]\n");
869 
870 	__show_smap(m, &mss, true);
871 
872 	release_task_mempolicy(priv);
873 	mmap_read_unlock(mm);
874 
875 out_put_mm:
876 	mmput(mm);
877 out_put_task:
878 	put_task_struct(priv->task);
879 	priv->task = NULL;
880 
881 	return ret;
882 }
883 #undef SEQ_PUT_DEC
884 
885 static const struct seq_operations proc_pid_smaps_op = {
886 	.start	= m_start,
887 	.next	= m_next,
888 	.stop	= m_stop,
889 	.show	= show_smap
890 };
891 
892 static int pid_smaps_open(struct inode *inode, struct file *file)
893 {
894 	return do_maps_open(inode, file, &proc_pid_smaps_op);
895 }
896 
897 static int smaps_rollup_open(struct inode *inode, struct file *file)
898 {
899 	int ret;
900 	struct proc_maps_private *priv;
901 
902 	priv = kzalloc(sizeof(*priv), GFP_KERNEL_ACCOUNT);
903 	if (!priv)
904 		return -ENOMEM;
905 
906 	ret = single_open(file, show_smaps_rollup, priv);
907 	if (ret)
908 		goto out_free;
909 
910 	priv->inode = inode;
911 	priv->mm = proc_mem_open(inode, PTRACE_MODE_READ);
912 	if (IS_ERR(priv->mm)) {
913 		ret = PTR_ERR(priv->mm);
914 
915 		single_release(inode, file);
916 		goto out_free;
917 	}
918 
919 	return 0;
920 
921 out_free:
922 	kfree(priv);
923 	return ret;
924 }
925 
926 static int smaps_rollup_release(struct inode *inode, struct file *file)
927 {
928 	struct seq_file *seq = file->private_data;
929 	struct proc_maps_private *priv = seq->private;
930 
931 	if (priv->mm)
932 		mmdrop(priv->mm);
933 
934 	kfree(priv);
935 	return single_release(inode, file);
936 }
937 
938 const struct file_operations proc_pid_smaps_operations = {
939 	.open		= pid_smaps_open,
940 	.read		= seq_read,
941 	.llseek		= seq_lseek,
942 	.release	= proc_map_release,
943 };
944 
945 const struct file_operations proc_pid_smaps_rollup_operations = {
946 	.open		= smaps_rollup_open,
947 	.read		= seq_read,
948 	.llseek		= seq_lseek,
949 	.release	= smaps_rollup_release,
950 };
951 
952 enum clear_refs_types {
953 	CLEAR_REFS_ALL = 1,
954 	CLEAR_REFS_ANON,
955 	CLEAR_REFS_MAPPED,
956 	CLEAR_REFS_SOFT_DIRTY,
957 	CLEAR_REFS_MM_HIWATER_RSS,
958 	CLEAR_REFS_LAST,
959 };
960 
961 struct clear_refs_private {
962 	enum clear_refs_types type;
963 };
964 
965 #ifdef CONFIG_MEM_SOFT_DIRTY
966 static inline void clear_soft_dirty(struct vm_area_struct *vma,
967 		unsigned long addr, pte_t *pte)
968 {
969 	/*
970 	 * The soft-dirty tracker uses #PF-s to catch writes
971 	 * to pages, so write-protect the pte as well. See the
972 	 * Documentation/admin-guide/mm/soft-dirty.rst for full description
973 	 * of how soft-dirty works.
974 	 */
975 	pte_t ptent = *pte;
976 
977 	if (pte_present(ptent)) {
978 		pte_t old_pte;
979 
980 		old_pte = ptep_modify_prot_start(vma, addr, pte);
981 		ptent = pte_wrprotect(old_pte);
982 		ptent = pte_clear_soft_dirty(ptent);
983 		ptep_modify_prot_commit(vma, addr, pte, old_pte, ptent);
984 	} else if (is_swap_pte(ptent)) {
985 		ptent = pte_swp_clear_soft_dirty(ptent);
986 		set_pte_at(vma->vm_mm, addr, pte, ptent);
987 	}
988 }
989 #else
990 static inline void clear_soft_dirty(struct vm_area_struct *vma,
991 		unsigned long addr, pte_t *pte)
992 {
993 }
994 #endif
995 
996 #if defined(CONFIG_MEM_SOFT_DIRTY) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
997 static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
998 		unsigned long addr, pmd_t *pmdp)
999 {
1000 	pmd_t old, pmd = *pmdp;
1001 
1002 	if (pmd_present(pmd)) {
1003 		/* See comment in change_huge_pmd() */
1004 		old = pmdp_invalidate(vma, addr, pmdp);
1005 		if (pmd_dirty(old))
1006 			pmd = pmd_mkdirty(pmd);
1007 		if (pmd_young(old))
1008 			pmd = pmd_mkyoung(pmd);
1009 
1010 		pmd = pmd_wrprotect(pmd);
1011 		pmd = pmd_clear_soft_dirty(pmd);
1012 
1013 		set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
1014 	} else if (is_migration_entry(pmd_to_swp_entry(pmd))) {
1015 		pmd = pmd_swp_clear_soft_dirty(pmd);
1016 		set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
1017 	}
1018 }
1019 #else
1020 static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
1021 		unsigned long addr, pmd_t *pmdp)
1022 {
1023 }
1024 #endif
1025 
1026 static int clear_refs_pte_range(pmd_t *pmd, unsigned long addr,
1027 				unsigned long end, struct mm_walk *walk)
1028 {
1029 	struct clear_refs_private *cp = walk->private;
1030 	struct vm_area_struct *vma = walk->vma;
1031 	pte_t *pte, ptent;
1032 	spinlock_t *ptl;
1033 	struct page *page;
1034 
1035 	ptl = pmd_trans_huge_lock(pmd, vma);
1036 	if (ptl) {
1037 		if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
1038 			clear_soft_dirty_pmd(vma, addr, pmd);
1039 			goto out;
1040 		}
1041 
1042 		if (!pmd_present(*pmd))
1043 			goto out;
1044 
1045 		page = pmd_page(*pmd);
1046 
1047 		/* Clear accessed and referenced bits. */
1048 		pmdp_test_and_clear_young(vma, addr, pmd);
1049 		test_and_clear_page_young(page);
1050 		ClearPageReferenced(page);
1051 out:
1052 		spin_unlock(ptl);
1053 		return 0;
1054 	}
1055 
1056 	if (pmd_trans_unstable(pmd))
1057 		return 0;
1058 
1059 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1060 	for (; addr != end; pte++, addr += PAGE_SIZE) {
1061 		ptent = *pte;
1062 
1063 		if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
1064 			clear_soft_dirty(vma, addr, pte);
1065 			continue;
1066 		}
1067 
1068 		if (!pte_present(ptent))
1069 			continue;
1070 
1071 		page = vm_normal_page(vma, addr, ptent);
1072 		if (!page)
1073 			continue;
1074 
1075 		/* Clear accessed and referenced bits. */
1076 		ptep_test_and_clear_young(vma, addr, pte);
1077 		test_and_clear_page_young(page);
1078 		ClearPageReferenced(page);
1079 	}
1080 	pte_unmap_unlock(pte - 1, ptl);
1081 	cond_resched();
1082 	return 0;
1083 }
1084 
1085 static int clear_refs_test_walk(unsigned long start, unsigned long end,
1086 				struct mm_walk *walk)
1087 {
1088 	struct clear_refs_private *cp = walk->private;
1089 	struct vm_area_struct *vma = walk->vma;
1090 
1091 	if (vma->vm_flags & VM_PFNMAP)
1092 		return 1;
1093 
1094 	/*
1095 	 * Writing 1 to /proc/pid/clear_refs affects all pages.
1096 	 * Writing 2 to /proc/pid/clear_refs only affects anonymous pages.
1097 	 * Writing 3 to /proc/pid/clear_refs only affects file mapped pages.
1098 	 * Writing 4 to /proc/pid/clear_refs affects all pages.
1099 	 */
1100 	if (cp->type == CLEAR_REFS_ANON && vma->vm_file)
1101 		return 1;
1102 	if (cp->type == CLEAR_REFS_MAPPED && !vma->vm_file)
1103 		return 1;
1104 	return 0;
1105 }
1106 
1107 static const struct mm_walk_ops clear_refs_walk_ops = {
1108 	.pmd_entry		= clear_refs_pte_range,
1109 	.test_walk		= clear_refs_test_walk,
1110 };
1111 
1112 static ssize_t clear_refs_write(struct file *file, const char __user *buf,
1113 				size_t count, loff_t *ppos)
1114 {
1115 	struct task_struct *task;
1116 	char buffer[PROC_NUMBUF];
1117 	struct mm_struct *mm;
1118 	struct vm_area_struct *vma;
1119 	enum clear_refs_types type;
1120 	struct mmu_gather tlb;
1121 	int itype;
1122 	int rv;
1123 
1124 	memset(buffer, 0, sizeof(buffer));
1125 	if (count > sizeof(buffer) - 1)
1126 		count = sizeof(buffer) - 1;
1127 	if (copy_from_user(buffer, buf, count))
1128 		return -EFAULT;
1129 	rv = kstrtoint(strstrip(buffer), 10, &itype);
1130 	if (rv < 0)
1131 		return rv;
1132 	type = (enum clear_refs_types)itype;
1133 	if (type < CLEAR_REFS_ALL || type >= CLEAR_REFS_LAST)
1134 		return -EINVAL;
1135 
1136 	task = get_proc_task(file_inode(file));
1137 	if (!task)
1138 		return -ESRCH;
1139 	mm = get_task_mm(task);
1140 	if (mm) {
1141 		struct mmu_notifier_range range;
1142 		struct clear_refs_private cp = {
1143 			.type = type,
1144 		};
1145 
1146 		if (type == CLEAR_REFS_MM_HIWATER_RSS) {
1147 			if (mmap_write_lock_killable(mm)) {
1148 				count = -EINTR;
1149 				goto out_mm;
1150 			}
1151 
1152 			/*
1153 			 * Writing 5 to /proc/pid/clear_refs resets the peak
1154 			 * resident set size to this mm's current rss value.
1155 			 */
1156 			reset_mm_hiwater_rss(mm);
1157 			mmap_write_unlock(mm);
1158 			goto out_mm;
1159 		}
1160 
1161 		if (mmap_read_lock_killable(mm)) {
1162 			count = -EINTR;
1163 			goto out_mm;
1164 		}
1165 		tlb_gather_mmu(&tlb, mm, 0, -1);
1166 		if (type == CLEAR_REFS_SOFT_DIRTY) {
1167 			for (vma = mm->mmap; vma; vma = vma->vm_next) {
1168 				if (!(vma->vm_flags & VM_SOFTDIRTY))
1169 					continue;
1170 				mmap_read_unlock(mm);
1171 				if (mmap_write_lock_killable(mm)) {
1172 					count = -EINTR;
1173 					goto out_mm;
1174 				}
1175 				/*
1176 				 * Avoid to modify vma->vm_flags
1177 				 * without locked ops while the
1178 				 * coredump reads the vm_flags.
1179 				 */
1180 				if (!mmget_still_valid(mm)) {
1181 					/*
1182 					 * Silently return "count"
1183 					 * like if get_task_mm()
1184 					 * failed. FIXME: should this
1185 					 * function have returned
1186 					 * -ESRCH if get_task_mm()
1187 					 * failed like if
1188 					 * get_proc_task() fails?
1189 					 */
1190 					mmap_write_unlock(mm);
1191 					goto out_mm;
1192 				}
1193 				for (vma = mm->mmap; vma; vma = vma->vm_next) {
1194 					vma->vm_flags &= ~VM_SOFTDIRTY;
1195 					vma_set_page_prot(vma);
1196 				}
1197 				mmap_write_downgrade(mm);
1198 				break;
1199 			}
1200 
1201 			mmu_notifier_range_init(&range, MMU_NOTIFY_SOFT_DIRTY,
1202 						0, NULL, mm, 0, -1UL);
1203 			mmu_notifier_invalidate_range_start(&range);
1204 		}
1205 		walk_page_range(mm, 0, mm->highest_vm_end, &clear_refs_walk_ops,
1206 				&cp);
1207 		if (type == CLEAR_REFS_SOFT_DIRTY)
1208 			mmu_notifier_invalidate_range_end(&range);
1209 		tlb_finish_mmu(&tlb, 0, -1);
1210 		mmap_read_unlock(mm);
1211 out_mm:
1212 		mmput(mm);
1213 	}
1214 	put_task_struct(task);
1215 
1216 	return count;
1217 }
1218 
1219 const struct file_operations proc_clear_refs_operations = {
1220 	.write		= clear_refs_write,
1221 	.llseek		= noop_llseek,
1222 };
1223 
1224 typedef struct {
1225 	u64 pme;
1226 } pagemap_entry_t;
1227 
1228 struct pagemapread {
1229 	int pos, len;		/* units: PM_ENTRY_BYTES, not bytes */
1230 	pagemap_entry_t *buffer;
1231 	bool show_pfn;
1232 };
1233 
1234 #define PAGEMAP_WALK_SIZE	(PMD_SIZE)
1235 #define PAGEMAP_WALK_MASK	(PMD_MASK)
1236 
1237 #define PM_ENTRY_BYTES		sizeof(pagemap_entry_t)
1238 #define PM_PFRAME_BITS		55
1239 #define PM_PFRAME_MASK		GENMASK_ULL(PM_PFRAME_BITS - 1, 0)
1240 #define PM_SOFT_DIRTY		BIT_ULL(55)
1241 #define PM_MMAP_EXCLUSIVE	BIT_ULL(56)
1242 #define PM_FILE			BIT_ULL(61)
1243 #define PM_SWAP			BIT_ULL(62)
1244 #define PM_PRESENT		BIT_ULL(63)
1245 
1246 #define PM_END_OF_BUFFER    1
1247 
1248 static inline pagemap_entry_t make_pme(u64 frame, u64 flags)
1249 {
1250 	return (pagemap_entry_t) { .pme = (frame & PM_PFRAME_MASK) | flags };
1251 }
1252 
1253 static int add_to_pagemap(unsigned long addr, pagemap_entry_t *pme,
1254 			  struct pagemapread *pm)
1255 {
1256 	pm->buffer[pm->pos++] = *pme;
1257 	if (pm->pos >= pm->len)
1258 		return PM_END_OF_BUFFER;
1259 	return 0;
1260 }
1261 
1262 static int pagemap_pte_hole(unsigned long start, unsigned long end,
1263 			    __always_unused int depth, struct mm_walk *walk)
1264 {
1265 	struct pagemapread *pm = walk->private;
1266 	unsigned long addr = start;
1267 	int err = 0;
1268 
1269 	while (addr < end) {
1270 		struct vm_area_struct *vma = find_vma(walk->mm, addr);
1271 		pagemap_entry_t pme = make_pme(0, 0);
1272 		/* End of address space hole, which we mark as non-present. */
1273 		unsigned long hole_end;
1274 
1275 		if (vma)
1276 			hole_end = min(end, vma->vm_start);
1277 		else
1278 			hole_end = end;
1279 
1280 		for (; addr < hole_end; addr += PAGE_SIZE) {
1281 			err = add_to_pagemap(addr, &pme, pm);
1282 			if (err)
1283 				goto out;
1284 		}
1285 
1286 		if (!vma)
1287 			break;
1288 
1289 		/* Addresses in the VMA. */
1290 		if (vma->vm_flags & VM_SOFTDIRTY)
1291 			pme = make_pme(0, PM_SOFT_DIRTY);
1292 		for (; addr < min(end, vma->vm_end); addr += PAGE_SIZE) {
1293 			err = add_to_pagemap(addr, &pme, pm);
1294 			if (err)
1295 				goto out;
1296 		}
1297 	}
1298 out:
1299 	return err;
1300 }
1301 
1302 static pagemap_entry_t pte_to_pagemap_entry(struct pagemapread *pm,
1303 		struct vm_area_struct *vma, unsigned long addr, pte_t pte)
1304 {
1305 	u64 frame = 0, flags = 0;
1306 	struct page *page = NULL;
1307 
1308 	if (pte_present(pte)) {
1309 		if (pm->show_pfn)
1310 			frame = pte_pfn(pte);
1311 		flags |= PM_PRESENT;
1312 		page = vm_normal_page(vma, addr, pte);
1313 		if (pte_soft_dirty(pte))
1314 			flags |= PM_SOFT_DIRTY;
1315 	} else if (is_swap_pte(pte)) {
1316 		swp_entry_t entry;
1317 		if (pte_swp_soft_dirty(pte))
1318 			flags |= PM_SOFT_DIRTY;
1319 		entry = pte_to_swp_entry(pte);
1320 		if (pm->show_pfn)
1321 			frame = swp_type(entry) |
1322 				(swp_offset(entry) << MAX_SWAPFILES_SHIFT);
1323 		flags |= PM_SWAP;
1324 		if (is_migration_entry(entry))
1325 			page = migration_entry_to_page(entry);
1326 
1327 		if (is_device_private_entry(entry))
1328 			page = device_private_entry_to_page(entry);
1329 	}
1330 
1331 	if (page && !PageAnon(page))
1332 		flags |= PM_FILE;
1333 	if (page && page_mapcount(page) == 1)
1334 		flags |= PM_MMAP_EXCLUSIVE;
1335 	if (vma->vm_flags & VM_SOFTDIRTY)
1336 		flags |= PM_SOFT_DIRTY;
1337 
1338 	return make_pme(frame, flags);
1339 }
1340 
1341 static int pagemap_pmd_range(pmd_t *pmdp, unsigned long addr, unsigned long end,
1342 			     struct mm_walk *walk)
1343 {
1344 	struct vm_area_struct *vma = walk->vma;
1345 	struct pagemapread *pm = walk->private;
1346 	spinlock_t *ptl;
1347 	pte_t *pte, *orig_pte;
1348 	int err = 0;
1349 
1350 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1351 	ptl = pmd_trans_huge_lock(pmdp, vma);
1352 	if (ptl) {
1353 		u64 flags = 0, frame = 0;
1354 		pmd_t pmd = *pmdp;
1355 		struct page *page = NULL;
1356 
1357 		if (vma->vm_flags & VM_SOFTDIRTY)
1358 			flags |= PM_SOFT_DIRTY;
1359 
1360 		if (pmd_present(pmd)) {
1361 			page = pmd_page(pmd);
1362 
1363 			flags |= PM_PRESENT;
1364 			if (pmd_soft_dirty(pmd))
1365 				flags |= PM_SOFT_DIRTY;
1366 			if (pm->show_pfn)
1367 				frame = pmd_pfn(pmd) +
1368 					((addr & ~PMD_MASK) >> PAGE_SHIFT);
1369 		}
1370 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1371 		else if (is_swap_pmd(pmd)) {
1372 			swp_entry_t entry = pmd_to_swp_entry(pmd);
1373 			unsigned long offset;
1374 
1375 			if (pm->show_pfn) {
1376 				offset = swp_offset(entry) +
1377 					((addr & ~PMD_MASK) >> PAGE_SHIFT);
1378 				frame = swp_type(entry) |
1379 					(offset << MAX_SWAPFILES_SHIFT);
1380 			}
1381 			flags |= PM_SWAP;
1382 			if (pmd_swp_soft_dirty(pmd))
1383 				flags |= PM_SOFT_DIRTY;
1384 			VM_BUG_ON(!is_pmd_migration_entry(pmd));
1385 			page = migration_entry_to_page(entry);
1386 		}
1387 #endif
1388 
1389 		if (page && page_mapcount(page) == 1)
1390 			flags |= PM_MMAP_EXCLUSIVE;
1391 
1392 		for (; addr != end; addr += PAGE_SIZE) {
1393 			pagemap_entry_t pme = make_pme(frame, flags);
1394 
1395 			err = add_to_pagemap(addr, &pme, pm);
1396 			if (err)
1397 				break;
1398 			if (pm->show_pfn) {
1399 				if (flags & PM_PRESENT)
1400 					frame++;
1401 				else if (flags & PM_SWAP)
1402 					frame += (1 << MAX_SWAPFILES_SHIFT);
1403 			}
1404 		}
1405 		spin_unlock(ptl);
1406 		return err;
1407 	}
1408 
1409 	if (pmd_trans_unstable(pmdp))
1410 		return 0;
1411 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1412 
1413 	/*
1414 	 * We can assume that @vma always points to a valid one and @end never
1415 	 * goes beyond vma->vm_end.
1416 	 */
1417 	orig_pte = pte = pte_offset_map_lock(walk->mm, pmdp, addr, &ptl);
1418 	for (; addr < end; pte++, addr += PAGE_SIZE) {
1419 		pagemap_entry_t pme;
1420 
1421 		pme = pte_to_pagemap_entry(pm, vma, addr, *pte);
1422 		err = add_to_pagemap(addr, &pme, pm);
1423 		if (err)
1424 			break;
1425 	}
1426 	pte_unmap_unlock(orig_pte, ptl);
1427 
1428 	cond_resched();
1429 
1430 	return err;
1431 }
1432 
1433 #ifdef CONFIG_HUGETLB_PAGE
1434 /* This function walks within one hugetlb entry in the single call */
1435 static int pagemap_hugetlb_range(pte_t *ptep, unsigned long hmask,
1436 				 unsigned long addr, unsigned long end,
1437 				 struct mm_walk *walk)
1438 {
1439 	struct pagemapread *pm = walk->private;
1440 	struct vm_area_struct *vma = walk->vma;
1441 	u64 flags = 0, frame = 0;
1442 	int err = 0;
1443 	pte_t pte;
1444 
1445 	if (vma->vm_flags & VM_SOFTDIRTY)
1446 		flags |= PM_SOFT_DIRTY;
1447 
1448 	pte = huge_ptep_get(ptep);
1449 	if (pte_present(pte)) {
1450 		struct page *page = pte_page(pte);
1451 
1452 		if (!PageAnon(page))
1453 			flags |= PM_FILE;
1454 
1455 		if (page_mapcount(page) == 1)
1456 			flags |= PM_MMAP_EXCLUSIVE;
1457 
1458 		flags |= PM_PRESENT;
1459 		if (pm->show_pfn)
1460 			frame = pte_pfn(pte) +
1461 				((addr & ~hmask) >> PAGE_SHIFT);
1462 	}
1463 
1464 	for (; addr != end; addr += PAGE_SIZE) {
1465 		pagemap_entry_t pme = make_pme(frame, flags);
1466 
1467 		err = add_to_pagemap(addr, &pme, pm);
1468 		if (err)
1469 			return err;
1470 		if (pm->show_pfn && (flags & PM_PRESENT))
1471 			frame++;
1472 	}
1473 
1474 	cond_resched();
1475 
1476 	return err;
1477 }
1478 #else
1479 #define pagemap_hugetlb_range	NULL
1480 #endif /* HUGETLB_PAGE */
1481 
1482 static const struct mm_walk_ops pagemap_ops = {
1483 	.pmd_entry	= pagemap_pmd_range,
1484 	.pte_hole	= pagemap_pte_hole,
1485 	.hugetlb_entry	= pagemap_hugetlb_range,
1486 };
1487 
1488 /*
1489  * /proc/pid/pagemap - an array mapping virtual pages to pfns
1490  *
1491  * For each page in the address space, this file contains one 64-bit entry
1492  * consisting of the following:
1493  *
1494  * Bits 0-54  page frame number (PFN) if present
1495  * Bits 0-4   swap type if swapped
1496  * Bits 5-54  swap offset if swapped
1497  * Bit  55    pte is soft-dirty (see Documentation/admin-guide/mm/soft-dirty.rst)
1498  * Bit  56    page exclusively mapped
1499  * Bits 57-60 zero
1500  * Bit  61    page is file-page or shared-anon
1501  * Bit  62    page swapped
1502  * Bit  63    page present
1503  *
1504  * If the page is not present but in swap, then the PFN contains an
1505  * encoding of the swap file number and the page's offset into the
1506  * swap. Unmapped pages return a null PFN. This allows determining
1507  * precisely which pages are mapped (or in swap) and comparing mapped
1508  * pages between processes.
1509  *
1510  * Efficient users of this interface will use /proc/pid/maps to
1511  * determine which areas of memory are actually mapped and llseek to
1512  * skip over unmapped regions.
1513  */
1514 static ssize_t pagemap_read(struct file *file, char __user *buf,
1515 			    size_t count, loff_t *ppos)
1516 {
1517 	struct mm_struct *mm = file->private_data;
1518 	struct pagemapread pm;
1519 	unsigned long src;
1520 	unsigned long svpfn;
1521 	unsigned long start_vaddr;
1522 	unsigned long end_vaddr;
1523 	int ret = 0, copied = 0;
1524 
1525 	if (!mm || !mmget_not_zero(mm))
1526 		goto out;
1527 
1528 	ret = -EINVAL;
1529 	/* file position must be aligned */
1530 	if ((*ppos % PM_ENTRY_BYTES) || (count % PM_ENTRY_BYTES))
1531 		goto out_mm;
1532 
1533 	ret = 0;
1534 	if (!count)
1535 		goto out_mm;
1536 
1537 	/* do not disclose physical addresses: attack vector */
1538 	pm.show_pfn = file_ns_capable(file, &init_user_ns, CAP_SYS_ADMIN);
1539 
1540 	pm.len = (PAGEMAP_WALK_SIZE >> PAGE_SHIFT);
1541 	pm.buffer = kmalloc_array(pm.len, PM_ENTRY_BYTES, GFP_KERNEL);
1542 	ret = -ENOMEM;
1543 	if (!pm.buffer)
1544 		goto out_mm;
1545 
1546 	src = *ppos;
1547 	svpfn = src / PM_ENTRY_BYTES;
1548 	start_vaddr = svpfn << PAGE_SHIFT;
1549 	end_vaddr = mm->task_size;
1550 
1551 	/* watch out for wraparound */
1552 	if (svpfn > mm->task_size >> PAGE_SHIFT)
1553 		start_vaddr = end_vaddr;
1554 
1555 	/*
1556 	 * The odds are that this will stop walking way
1557 	 * before end_vaddr, because the length of the
1558 	 * user buffer is tracked in "pm", and the walk
1559 	 * will stop when we hit the end of the buffer.
1560 	 */
1561 	ret = 0;
1562 	while (count && (start_vaddr < end_vaddr)) {
1563 		int len;
1564 		unsigned long end;
1565 
1566 		pm.pos = 0;
1567 		end = (start_vaddr + PAGEMAP_WALK_SIZE) & PAGEMAP_WALK_MASK;
1568 		/* overflow ? */
1569 		if (end < start_vaddr || end > end_vaddr)
1570 			end = end_vaddr;
1571 		ret = mmap_read_lock_killable(mm);
1572 		if (ret)
1573 			goto out_free;
1574 		ret = walk_page_range(mm, start_vaddr, end, &pagemap_ops, &pm);
1575 		mmap_read_unlock(mm);
1576 		start_vaddr = end;
1577 
1578 		len = min(count, PM_ENTRY_BYTES * pm.pos);
1579 		if (copy_to_user(buf, pm.buffer, len)) {
1580 			ret = -EFAULT;
1581 			goto out_free;
1582 		}
1583 		copied += len;
1584 		buf += len;
1585 		count -= len;
1586 	}
1587 	*ppos += copied;
1588 	if (!ret || ret == PM_END_OF_BUFFER)
1589 		ret = copied;
1590 
1591 out_free:
1592 	kfree(pm.buffer);
1593 out_mm:
1594 	mmput(mm);
1595 out:
1596 	return ret;
1597 }
1598 
1599 static int pagemap_open(struct inode *inode, struct file *file)
1600 {
1601 	struct mm_struct *mm;
1602 
1603 	mm = proc_mem_open(inode, PTRACE_MODE_READ);
1604 	if (IS_ERR(mm))
1605 		return PTR_ERR(mm);
1606 	file->private_data = mm;
1607 	return 0;
1608 }
1609 
1610 static int pagemap_release(struct inode *inode, struct file *file)
1611 {
1612 	struct mm_struct *mm = file->private_data;
1613 
1614 	if (mm)
1615 		mmdrop(mm);
1616 	return 0;
1617 }
1618 
1619 const struct file_operations proc_pagemap_operations = {
1620 	.llseek		= mem_lseek, /* borrow this */
1621 	.read		= pagemap_read,
1622 	.open		= pagemap_open,
1623 	.release	= pagemap_release,
1624 };
1625 #endif /* CONFIG_PROC_PAGE_MONITOR */
1626 
1627 #ifdef CONFIG_NUMA
1628 
1629 struct numa_maps {
1630 	unsigned long pages;
1631 	unsigned long anon;
1632 	unsigned long active;
1633 	unsigned long writeback;
1634 	unsigned long mapcount_max;
1635 	unsigned long dirty;
1636 	unsigned long swapcache;
1637 	unsigned long node[MAX_NUMNODES];
1638 };
1639 
1640 struct numa_maps_private {
1641 	struct proc_maps_private proc_maps;
1642 	struct numa_maps md;
1643 };
1644 
1645 static void gather_stats(struct page *page, struct numa_maps *md, int pte_dirty,
1646 			unsigned long nr_pages)
1647 {
1648 	int count = page_mapcount(page);
1649 
1650 	md->pages += nr_pages;
1651 	if (pte_dirty || PageDirty(page))
1652 		md->dirty += nr_pages;
1653 
1654 	if (PageSwapCache(page))
1655 		md->swapcache += nr_pages;
1656 
1657 	if (PageActive(page) || PageUnevictable(page))
1658 		md->active += nr_pages;
1659 
1660 	if (PageWriteback(page))
1661 		md->writeback += nr_pages;
1662 
1663 	if (PageAnon(page))
1664 		md->anon += nr_pages;
1665 
1666 	if (count > md->mapcount_max)
1667 		md->mapcount_max = count;
1668 
1669 	md->node[page_to_nid(page)] += nr_pages;
1670 }
1671 
1672 static struct page *can_gather_numa_stats(pte_t pte, struct vm_area_struct *vma,
1673 		unsigned long addr)
1674 {
1675 	struct page *page;
1676 	int nid;
1677 
1678 	if (!pte_present(pte))
1679 		return NULL;
1680 
1681 	page = vm_normal_page(vma, addr, pte);
1682 	if (!page)
1683 		return NULL;
1684 
1685 	if (PageReserved(page))
1686 		return NULL;
1687 
1688 	nid = page_to_nid(page);
1689 	if (!node_isset(nid, node_states[N_MEMORY]))
1690 		return NULL;
1691 
1692 	return page;
1693 }
1694 
1695 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1696 static struct page *can_gather_numa_stats_pmd(pmd_t pmd,
1697 					      struct vm_area_struct *vma,
1698 					      unsigned long addr)
1699 {
1700 	struct page *page;
1701 	int nid;
1702 
1703 	if (!pmd_present(pmd))
1704 		return NULL;
1705 
1706 	page = vm_normal_page_pmd(vma, addr, pmd);
1707 	if (!page)
1708 		return NULL;
1709 
1710 	if (PageReserved(page))
1711 		return NULL;
1712 
1713 	nid = page_to_nid(page);
1714 	if (!node_isset(nid, node_states[N_MEMORY]))
1715 		return NULL;
1716 
1717 	return page;
1718 }
1719 #endif
1720 
1721 static int gather_pte_stats(pmd_t *pmd, unsigned long addr,
1722 		unsigned long end, struct mm_walk *walk)
1723 {
1724 	struct numa_maps *md = walk->private;
1725 	struct vm_area_struct *vma = walk->vma;
1726 	spinlock_t *ptl;
1727 	pte_t *orig_pte;
1728 	pte_t *pte;
1729 
1730 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1731 	ptl = pmd_trans_huge_lock(pmd, vma);
1732 	if (ptl) {
1733 		struct page *page;
1734 
1735 		page = can_gather_numa_stats_pmd(*pmd, vma, addr);
1736 		if (page)
1737 			gather_stats(page, md, pmd_dirty(*pmd),
1738 				     HPAGE_PMD_SIZE/PAGE_SIZE);
1739 		spin_unlock(ptl);
1740 		return 0;
1741 	}
1742 
1743 	if (pmd_trans_unstable(pmd))
1744 		return 0;
1745 #endif
1746 	orig_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
1747 	do {
1748 		struct page *page = can_gather_numa_stats(*pte, vma, addr);
1749 		if (!page)
1750 			continue;
1751 		gather_stats(page, md, pte_dirty(*pte), 1);
1752 
1753 	} while (pte++, addr += PAGE_SIZE, addr != end);
1754 	pte_unmap_unlock(orig_pte, ptl);
1755 	cond_resched();
1756 	return 0;
1757 }
1758 #ifdef CONFIG_HUGETLB_PAGE
1759 static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
1760 		unsigned long addr, unsigned long end, struct mm_walk *walk)
1761 {
1762 	pte_t huge_pte = huge_ptep_get(pte);
1763 	struct numa_maps *md;
1764 	struct page *page;
1765 
1766 	if (!pte_present(huge_pte))
1767 		return 0;
1768 
1769 	page = pte_page(huge_pte);
1770 	if (!page)
1771 		return 0;
1772 
1773 	md = walk->private;
1774 	gather_stats(page, md, pte_dirty(huge_pte), 1);
1775 	return 0;
1776 }
1777 
1778 #else
1779 static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
1780 		unsigned long addr, unsigned long end, struct mm_walk *walk)
1781 {
1782 	return 0;
1783 }
1784 #endif
1785 
1786 static const struct mm_walk_ops show_numa_ops = {
1787 	.hugetlb_entry = gather_hugetlb_stats,
1788 	.pmd_entry = gather_pte_stats,
1789 };
1790 
1791 /*
1792  * Display pages allocated per node and memory policy via /proc.
1793  */
1794 static int show_numa_map(struct seq_file *m, void *v)
1795 {
1796 	struct numa_maps_private *numa_priv = m->private;
1797 	struct proc_maps_private *proc_priv = &numa_priv->proc_maps;
1798 	struct vm_area_struct *vma = v;
1799 	struct numa_maps *md = &numa_priv->md;
1800 	struct file *file = vma->vm_file;
1801 	struct mm_struct *mm = vma->vm_mm;
1802 	struct mempolicy *pol;
1803 	char buffer[64];
1804 	int nid;
1805 
1806 	if (!mm)
1807 		return 0;
1808 
1809 	/* Ensure we start with an empty set of numa_maps statistics. */
1810 	memset(md, 0, sizeof(*md));
1811 
1812 	pol = __get_vma_policy(vma, vma->vm_start);
1813 	if (pol) {
1814 		mpol_to_str(buffer, sizeof(buffer), pol);
1815 		mpol_cond_put(pol);
1816 	} else {
1817 		mpol_to_str(buffer, sizeof(buffer), proc_priv->task_mempolicy);
1818 	}
1819 
1820 	seq_printf(m, "%08lx %s", vma->vm_start, buffer);
1821 
1822 	if (file) {
1823 		seq_puts(m, " file=");
1824 		seq_file_path(m, file, "\n\t= ");
1825 	} else if (vma->vm_start <= mm->brk && vma->vm_end >= mm->start_brk) {
1826 		seq_puts(m, " heap");
1827 	} else if (is_stack(vma)) {
1828 		seq_puts(m, " stack");
1829 	}
1830 
1831 	if (is_vm_hugetlb_page(vma))
1832 		seq_puts(m, " huge");
1833 
1834 	/* mmap_lock is held by m_start */
1835 	walk_page_vma(vma, &show_numa_ops, md);
1836 
1837 	if (!md->pages)
1838 		goto out;
1839 
1840 	if (md->anon)
1841 		seq_printf(m, " anon=%lu", md->anon);
1842 
1843 	if (md->dirty)
1844 		seq_printf(m, " dirty=%lu", md->dirty);
1845 
1846 	if (md->pages != md->anon && md->pages != md->dirty)
1847 		seq_printf(m, " mapped=%lu", md->pages);
1848 
1849 	if (md->mapcount_max > 1)
1850 		seq_printf(m, " mapmax=%lu", md->mapcount_max);
1851 
1852 	if (md->swapcache)
1853 		seq_printf(m, " swapcache=%lu", md->swapcache);
1854 
1855 	if (md->active < md->pages && !is_vm_hugetlb_page(vma))
1856 		seq_printf(m, " active=%lu", md->active);
1857 
1858 	if (md->writeback)
1859 		seq_printf(m, " writeback=%lu", md->writeback);
1860 
1861 	for_each_node_state(nid, N_MEMORY)
1862 		if (md->node[nid])
1863 			seq_printf(m, " N%d=%lu", nid, md->node[nid]);
1864 
1865 	seq_printf(m, " kernelpagesize_kB=%lu", vma_kernel_pagesize(vma) >> 10);
1866 out:
1867 	seq_putc(m, '\n');
1868 	return 0;
1869 }
1870 
1871 static const struct seq_operations proc_pid_numa_maps_op = {
1872 	.start  = m_start,
1873 	.next   = m_next,
1874 	.stop   = m_stop,
1875 	.show   = show_numa_map,
1876 };
1877 
1878 static int pid_numa_maps_open(struct inode *inode, struct file *file)
1879 {
1880 	return proc_maps_open(inode, file, &proc_pid_numa_maps_op,
1881 				sizeof(struct numa_maps_private));
1882 }
1883 
1884 const struct file_operations proc_pid_numa_maps_operations = {
1885 	.open		= pid_numa_maps_open,
1886 	.read		= seq_read,
1887 	.llseek		= seq_lseek,
1888 	.release	= proc_map_release,
1889 };
1890 
1891 #endif /* CONFIG_NUMA */
1892