1 // SPDX-License-Identifier: GPL-2.0 2 #include <linux/mm.h> 3 #include <linux/vmacache.h> 4 #include <linux/hugetlb.h> 5 #include <linux/huge_mm.h> 6 #include <linux/mount.h> 7 #include <linux/seq_file.h> 8 #include <linux/highmem.h> 9 #include <linux/ptrace.h> 10 #include <linux/slab.h> 11 #include <linux/pagemap.h> 12 #include <linux/mempolicy.h> 13 #include <linux/rmap.h> 14 #include <linux/swap.h> 15 #include <linux/sched/mm.h> 16 #include <linux/swapops.h> 17 #include <linux/mmu_notifier.h> 18 #include <linux/page_idle.h> 19 #include <linux/shmem_fs.h> 20 #include <linux/uaccess.h> 21 22 #include <asm/elf.h> 23 #include <asm/tlb.h> 24 #include <asm/tlbflush.h> 25 #include "internal.h" 26 27 void task_mem(struct seq_file *m, struct mm_struct *mm) 28 { 29 unsigned long text, lib, swap, ptes, pmds, anon, file, shmem; 30 unsigned long hiwater_vm, total_vm, hiwater_rss, total_rss; 31 32 anon = get_mm_counter(mm, MM_ANONPAGES); 33 file = get_mm_counter(mm, MM_FILEPAGES); 34 shmem = get_mm_counter(mm, MM_SHMEMPAGES); 35 36 /* 37 * Note: to minimize their overhead, mm maintains hiwater_vm and 38 * hiwater_rss only when about to *lower* total_vm or rss. Any 39 * collector of these hiwater stats must therefore get total_vm 40 * and rss too, which will usually be the higher. Barriers? not 41 * worth the effort, such snapshots can always be inconsistent. 42 */ 43 hiwater_vm = total_vm = mm->total_vm; 44 if (hiwater_vm < mm->hiwater_vm) 45 hiwater_vm = mm->hiwater_vm; 46 hiwater_rss = total_rss = anon + file + shmem; 47 if (hiwater_rss < mm->hiwater_rss) 48 hiwater_rss = mm->hiwater_rss; 49 50 text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK)) >> 10; 51 lib = (mm->exec_vm << (PAGE_SHIFT-10)) - text; 52 swap = get_mm_counter(mm, MM_SWAPENTS); 53 ptes = PTRS_PER_PTE * sizeof(pte_t) * atomic_long_read(&mm->nr_ptes); 54 pmds = PTRS_PER_PMD * sizeof(pmd_t) * mm_nr_pmds(mm); 55 seq_printf(m, 56 "VmPeak:\t%8lu kB\n" 57 "VmSize:\t%8lu kB\n" 58 "VmLck:\t%8lu kB\n" 59 "VmPin:\t%8lu kB\n" 60 "VmHWM:\t%8lu kB\n" 61 "VmRSS:\t%8lu kB\n" 62 "RssAnon:\t%8lu kB\n" 63 "RssFile:\t%8lu kB\n" 64 "RssShmem:\t%8lu kB\n" 65 "VmData:\t%8lu kB\n" 66 "VmStk:\t%8lu kB\n" 67 "VmExe:\t%8lu kB\n" 68 "VmLib:\t%8lu kB\n" 69 "VmPTE:\t%8lu kB\n" 70 "VmPMD:\t%8lu kB\n" 71 "VmSwap:\t%8lu kB\n", 72 hiwater_vm << (PAGE_SHIFT-10), 73 total_vm << (PAGE_SHIFT-10), 74 mm->locked_vm << (PAGE_SHIFT-10), 75 mm->pinned_vm << (PAGE_SHIFT-10), 76 hiwater_rss << (PAGE_SHIFT-10), 77 total_rss << (PAGE_SHIFT-10), 78 anon << (PAGE_SHIFT-10), 79 file << (PAGE_SHIFT-10), 80 shmem << (PAGE_SHIFT-10), 81 mm->data_vm << (PAGE_SHIFT-10), 82 mm->stack_vm << (PAGE_SHIFT-10), text, lib, 83 ptes >> 10, 84 pmds >> 10, 85 swap << (PAGE_SHIFT-10)); 86 hugetlb_report_usage(m, mm); 87 } 88 89 unsigned long task_vsize(struct mm_struct *mm) 90 { 91 return PAGE_SIZE * mm->total_vm; 92 } 93 94 unsigned long task_statm(struct mm_struct *mm, 95 unsigned long *shared, unsigned long *text, 96 unsigned long *data, unsigned long *resident) 97 { 98 *shared = get_mm_counter(mm, MM_FILEPAGES) + 99 get_mm_counter(mm, MM_SHMEMPAGES); 100 *text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK)) 101 >> PAGE_SHIFT; 102 *data = mm->data_vm + mm->stack_vm; 103 *resident = *shared + get_mm_counter(mm, MM_ANONPAGES); 104 return mm->total_vm; 105 } 106 107 #ifdef CONFIG_NUMA 108 /* 109 * Save get_task_policy() for show_numa_map(). 110 */ 111 static void hold_task_mempolicy(struct proc_maps_private *priv) 112 { 113 struct task_struct *task = priv->task; 114 115 task_lock(task); 116 priv->task_mempolicy = get_task_policy(task); 117 mpol_get(priv->task_mempolicy); 118 task_unlock(task); 119 } 120 static void release_task_mempolicy(struct proc_maps_private *priv) 121 { 122 mpol_put(priv->task_mempolicy); 123 } 124 #else 125 static void hold_task_mempolicy(struct proc_maps_private *priv) 126 { 127 } 128 static void release_task_mempolicy(struct proc_maps_private *priv) 129 { 130 } 131 #endif 132 133 static void vma_stop(struct proc_maps_private *priv) 134 { 135 struct mm_struct *mm = priv->mm; 136 137 release_task_mempolicy(priv); 138 up_read(&mm->mmap_sem); 139 mmput(mm); 140 } 141 142 static struct vm_area_struct * 143 m_next_vma(struct proc_maps_private *priv, struct vm_area_struct *vma) 144 { 145 if (vma == priv->tail_vma) 146 return NULL; 147 return vma->vm_next ?: priv->tail_vma; 148 } 149 150 static void m_cache_vma(struct seq_file *m, struct vm_area_struct *vma) 151 { 152 if (m->count < m->size) /* vma is copied successfully */ 153 m->version = m_next_vma(m->private, vma) ? vma->vm_end : -1UL; 154 } 155 156 static void *m_start(struct seq_file *m, loff_t *ppos) 157 { 158 struct proc_maps_private *priv = m->private; 159 unsigned long last_addr = m->version; 160 struct mm_struct *mm; 161 struct vm_area_struct *vma; 162 unsigned int pos = *ppos; 163 164 /* See m_cache_vma(). Zero at the start or after lseek. */ 165 if (last_addr == -1UL) 166 return NULL; 167 168 priv->task = get_proc_task(priv->inode); 169 if (!priv->task) 170 return ERR_PTR(-ESRCH); 171 172 mm = priv->mm; 173 if (!mm || !mmget_not_zero(mm)) 174 return NULL; 175 176 down_read(&mm->mmap_sem); 177 hold_task_mempolicy(priv); 178 priv->tail_vma = get_gate_vma(mm); 179 180 if (last_addr) { 181 vma = find_vma(mm, last_addr - 1); 182 if (vma && vma->vm_start <= last_addr) 183 vma = m_next_vma(priv, vma); 184 if (vma) 185 return vma; 186 } 187 188 m->version = 0; 189 if (pos < mm->map_count) { 190 for (vma = mm->mmap; pos; pos--) { 191 m->version = vma->vm_start; 192 vma = vma->vm_next; 193 } 194 return vma; 195 } 196 197 /* we do not bother to update m->version in this case */ 198 if (pos == mm->map_count && priv->tail_vma) 199 return priv->tail_vma; 200 201 vma_stop(priv); 202 return NULL; 203 } 204 205 static void *m_next(struct seq_file *m, void *v, loff_t *pos) 206 { 207 struct proc_maps_private *priv = m->private; 208 struct vm_area_struct *next; 209 210 (*pos)++; 211 next = m_next_vma(priv, v); 212 if (!next) 213 vma_stop(priv); 214 return next; 215 } 216 217 static void m_stop(struct seq_file *m, void *v) 218 { 219 struct proc_maps_private *priv = m->private; 220 221 if (!IS_ERR_OR_NULL(v)) 222 vma_stop(priv); 223 if (priv->task) { 224 put_task_struct(priv->task); 225 priv->task = NULL; 226 } 227 } 228 229 static int proc_maps_open(struct inode *inode, struct file *file, 230 const struct seq_operations *ops, int psize) 231 { 232 struct proc_maps_private *priv = __seq_open_private(file, ops, psize); 233 234 if (!priv) 235 return -ENOMEM; 236 237 priv->inode = inode; 238 priv->mm = proc_mem_open(inode, PTRACE_MODE_READ); 239 if (IS_ERR(priv->mm)) { 240 int err = PTR_ERR(priv->mm); 241 242 seq_release_private(inode, file); 243 return err; 244 } 245 246 return 0; 247 } 248 249 static int proc_map_release(struct inode *inode, struct file *file) 250 { 251 struct seq_file *seq = file->private_data; 252 struct proc_maps_private *priv = seq->private; 253 254 if (priv->mm) 255 mmdrop(priv->mm); 256 257 kfree(priv->rollup); 258 return seq_release_private(inode, file); 259 } 260 261 static int do_maps_open(struct inode *inode, struct file *file, 262 const struct seq_operations *ops) 263 { 264 return proc_maps_open(inode, file, ops, 265 sizeof(struct proc_maps_private)); 266 } 267 268 /* 269 * Indicate if the VMA is a stack for the given task; for 270 * /proc/PID/maps that is the stack of the main task. 271 */ 272 static int is_stack(struct vm_area_struct *vma) 273 { 274 /* 275 * We make no effort to guess what a given thread considers to be 276 * its "stack". It's not even well-defined for programs written 277 * languages like Go. 278 */ 279 return vma->vm_start <= vma->vm_mm->start_stack && 280 vma->vm_end >= vma->vm_mm->start_stack; 281 } 282 283 static void show_vma_header_prefix(struct seq_file *m, 284 unsigned long start, unsigned long end, 285 vm_flags_t flags, unsigned long long pgoff, 286 dev_t dev, unsigned long ino) 287 { 288 seq_setwidth(m, 25 + sizeof(void *) * 6 - 1); 289 seq_printf(m, "%08lx-%08lx %c%c%c%c %08llx %02x:%02x %lu ", 290 start, 291 end, 292 flags & VM_READ ? 'r' : '-', 293 flags & VM_WRITE ? 'w' : '-', 294 flags & VM_EXEC ? 'x' : '-', 295 flags & VM_MAYSHARE ? 's' : 'p', 296 pgoff, 297 MAJOR(dev), MINOR(dev), ino); 298 } 299 300 static void 301 show_map_vma(struct seq_file *m, struct vm_area_struct *vma, int is_pid) 302 { 303 struct mm_struct *mm = vma->vm_mm; 304 struct file *file = vma->vm_file; 305 vm_flags_t flags = vma->vm_flags; 306 unsigned long ino = 0; 307 unsigned long long pgoff = 0; 308 unsigned long start, end; 309 dev_t dev = 0; 310 const char *name = NULL; 311 312 if (file) { 313 struct inode *inode = file_inode(vma->vm_file); 314 dev = inode->i_sb->s_dev; 315 ino = inode->i_ino; 316 pgoff = ((loff_t)vma->vm_pgoff) << PAGE_SHIFT; 317 } 318 319 start = vma->vm_start; 320 end = vma->vm_end; 321 show_vma_header_prefix(m, start, end, flags, pgoff, dev, ino); 322 323 /* 324 * Print the dentry name for named mappings, and a 325 * special [heap] marker for the heap: 326 */ 327 if (file) { 328 seq_pad(m, ' '); 329 seq_file_path(m, file, "\n"); 330 goto done; 331 } 332 333 if (vma->vm_ops && vma->vm_ops->name) { 334 name = vma->vm_ops->name(vma); 335 if (name) 336 goto done; 337 } 338 339 name = arch_vma_name(vma); 340 if (!name) { 341 if (!mm) { 342 name = "[vdso]"; 343 goto done; 344 } 345 346 if (vma->vm_start <= mm->brk && 347 vma->vm_end >= mm->start_brk) { 348 name = "[heap]"; 349 goto done; 350 } 351 352 if (is_stack(vma)) 353 name = "[stack]"; 354 } 355 356 done: 357 if (name) { 358 seq_pad(m, ' '); 359 seq_puts(m, name); 360 } 361 seq_putc(m, '\n'); 362 } 363 364 static int show_map(struct seq_file *m, void *v, int is_pid) 365 { 366 show_map_vma(m, v, is_pid); 367 m_cache_vma(m, v); 368 return 0; 369 } 370 371 static int show_pid_map(struct seq_file *m, void *v) 372 { 373 return show_map(m, v, 1); 374 } 375 376 static int show_tid_map(struct seq_file *m, void *v) 377 { 378 return show_map(m, v, 0); 379 } 380 381 static const struct seq_operations proc_pid_maps_op = { 382 .start = m_start, 383 .next = m_next, 384 .stop = m_stop, 385 .show = show_pid_map 386 }; 387 388 static const struct seq_operations proc_tid_maps_op = { 389 .start = m_start, 390 .next = m_next, 391 .stop = m_stop, 392 .show = show_tid_map 393 }; 394 395 static int pid_maps_open(struct inode *inode, struct file *file) 396 { 397 return do_maps_open(inode, file, &proc_pid_maps_op); 398 } 399 400 static int tid_maps_open(struct inode *inode, struct file *file) 401 { 402 return do_maps_open(inode, file, &proc_tid_maps_op); 403 } 404 405 const struct file_operations proc_pid_maps_operations = { 406 .open = pid_maps_open, 407 .read = seq_read, 408 .llseek = seq_lseek, 409 .release = proc_map_release, 410 }; 411 412 const struct file_operations proc_tid_maps_operations = { 413 .open = tid_maps_open, 414 .read = seq_read, 415 .llseek = seq_lseek, 416 .release = proc_map_release, 417 }; 418 419 /* 420 * Proportional Set Size(PSS): my share of RSS. 421 * 422 * PSS of a process is the count of pages it has in memory, where each 423 * page is divided by the number of processes sharing it. So if a 424 * process has 1000 pages all to itself, and 1000 shared with one other 425 * process, its PSS will be 1500. 426 * 427 * To keep (accumulated) division errors low, we adopt a 64bit 428 * fixed-point pss counter to minimize division errors. So (pss >> 429 * PSS_SHIFT) would be the real byte count. 430 * 431 * A shift of 12 before division means (assuming 4K page size): 432 * - 1M 3-user-pages add up to 8KB errors; 433 * - supports mapcount up to 2^24, or 16M; 434 * - supports PSS up to 2^52 bytes, or 4PB. 435 */ 436 #define PSS_SHIFT 12 437 438 #ifdef CONFIG_PROC_PAGE_MONITOR 439 struct mem_size_stats { 440 bool first; 441 unsigned long resident; 442 unsigned long shared_clean; 443 unsigned long shared_dirty; 444 unsigned long private_clean; 445 unsigned long private_dirty; 446 unsigned long referenced; 447 unsigned long anonymous; 448 unsigned long lazyfree; 449 unsigned long anonymous_thp; 450 unsigned long shmem_thp; 451 unsigned long swap; 452 unsigned long shared_hugetlb; 453 unsigned long private_hugetlb; 454 unsigned long first_vma_start; 455 u64 pss; 456 u64 pss_locked; 457 u64 swap_pss; 458 bool check_shmem_swap; 459 }; 460 461 static void smaps_account(struct mem_size_stats *mss, struct page *page, 462 bool compound, bool young, bool dirty) 463 { 464 int i, nr = compound ? 1 << compound_order(page) : 1; 465 unsigned long size = nr * PAGE_SIZE; 466 467 if (PageAnon(page)) { 468 mss->anonymous += size; 469 if (!PageSwapBacked(page) && !dirty && !PageDirty(page)) 470 mss->lazyfree += size; 471 } 472 473 mss->resident += size; 474 /* Accumulate the size in pages that have been accessed. */ 475 if (young || page_is_young(page) || PageReferenced(page)) 476 mss->referenced += size; 477 478 /* 479 * page_count(page) == 1 guarantees the page is mapped exactly once. 480 * If any subpage of the compound page mapped with PTE it would elevate 481 * page_count(). 482 */ 483 if (page_count(page) == 1) { 484 if (dirty || PageDirty(page)) 485 mss->private_dirty += size; 486 else 487 mss->private_clean += size; 488 mss->pss += (u64)size << PSS_SHIFT; 489 return; 490 } 491 492 for (i = 0; i < nr; i++, page++) { 493 int mapcount = page_mapcount(page); 494 495 if (mapcount >= 2) { 496 if (dirty || PageDirty(page)) 497 mss->shared_dirty += PAGE_SIZE; 498 else 499 mss->shared_clean += PAGE_SIZE; 500 mss->pss += (PAGE_SIZE << PSS_SHIFT) / mapcount; 501 } else { 502 if (dirty || PageDirty(page)) 503 mss->private_dirty += PAGE_SIZE; 504 else 505 mss->private_clean += PAGE_SIZE; 506 mss->pss += PAGE_SIZE << PSS_SHIFT; 507 } 508 } 509 } 510 511 #ifdef CONFIG_SHMEM 512 static int smaps_pte_hole(unsigned long addr, unsigned long end, 513 struct mm_walk *walk) 514 { 515 struct mem_size_stats *mss = walk->private; 516 517 mss->swap += shmem_partial_swap_usage( 518 walk->vma->vm_file->f_mapping, addr, end); 519 520 return 0; 521 } 522 #endif 523 524 static void smaps_pte_entry(pte_t *pte, unsigned long addr, 525 struct mm_walk *walk) 526 { 527 struct mem_size_stats *mss = walk->private; 528 struct vm_area_struct *vma = walk->vma; 529 struct page *page = NULL; 530 531 if (pte_present(*pte)) { 532 page = vm_normal_page(vma, addr, *pte); 533 } else if (is_swap_pte(*pte)) { 534 swp_entry_t swpent = pte_to_swp_entry(*pte); 535 536 if (!non_swap_entry(swpent)) { 537 int mapcount; 538 539 mss->swap += PAGE_SIZE; 540 mapcount = swp_swapcount(swpent); 541 if (mapcount >= 2) { 542 u64 pss_delta = (u64)PAGE_SIZE << PSS_SHIFT; 543 544 do_div(pss_delta, mapcount); 545 mss->swap_pss += pss_delta; 546 } else { 547 mss->swap_pss += (u64)PAGE_SIZE << PSS_SHIFT; 548 } 549 } else if (is_migration_entry(swpent)) 550 page = migration_entry_to_page(swpent); 551 else if (is_device_private_entry(swpent)) 552 page = device_private_entry_to_page(swpent); 553 } else if (unlikely(IS_ENABLED(CONFIG_SHMEM) && mss->check_shmem_swap 554 && pte_none(*pte))) { 555 page = find_get_entry(vma->vm_file->f_mapping, 556 linear_page_index(vma, addr)); 557 if (!page) 558 return; 559 560 if (radix_tree_exceptional_entry(page)) 561 mss->swap += PAGE_SIZE; 562 else 563 put_page(page); 564 565 return; 566 } 567 568 if (!page) 569 return; 570 571 smaps_account(mss, page, false, pte_young(*pte), pte_dirty(*pte)); 572 } 573 574 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 575 static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr, 576 struct mm_walk *walk) 577 { 578 struct mem_size_stats *mss = walk->private; 579 struct vm_area_struct *vma = walk->vma; 580 struct page *page; 581 582 /* FOLL_DUMP will return -EFAULT on huge zero page */ 583 page = follow_trans_huge_pmd(vma, addr, pmd, FOLL_DUMP); 584 if (IS_ERR_OR_NULL(page)) 585 return; 586 if (PageAnon(page)) 587 mss->anonymous_thp += HPAGE_PMD_SIZE; 588 else if (PageSwapBacked(page)) 589 mss->shmem_thp += HPAGE_PMD_SIZE; 590 else if (is_zone_device_page(page)) 591 /* pass */; 592 else 593 VM_BUG_ON_PAGE(1, page); 594 smaps_account(mss, page, true, pmd_young(*pmd), pmd_dirty(*pmd)); 595 } 596 #else 597 static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr, 598 struct mm_walk *walk) 599 { 600 } 601 #endif 602 603 static int smaps_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end, 604 struct mm_walk *walk) 605 { 606 struct vm_area_struct *vma = walk->vma; 607 pte_t *pte; 608 spinlock_t *ptl; 609 610 ptl = pmd_trans_huge_lock(pmd, vma); 611 if (ptl) { 612 if (pmd_present(*pmd)) 613 smaps_pmd_entry(pmd, addr, walk); 614 spin_unlock(ptl); 615 goto out; 616 } 617 618 if (pmd_trans_unstable(pmd)) 619 goto out; 620 /* 621 * The mmap_sem held all the way back in m_start() is what 622 * keeps khugepaged out of here and from collapsing things 623 * in here. 624 */ 625 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 626 for (; addr != end; pte++, addr += PAGE_SIZE) 627 smaps_pte_entry(pte, addr, walk); 628 pte_unmap_unlock(pte - 1, ptl); 629 out: 630 cond_resched(); 631 return 0; 632 } 633 634 static void show_smap_vma_flags(struct seq_file *m, struct vm_area_struct *vma) 635 { 636 /* 637 * Don't forget to update Documentation/ on changes. 638 */ 639 static const char mnemonics[BITS_PER_LONG][2] = { 640 /* 641 * In case if we meet a flag we don't know about. 642 */ 643 [0 ... (BITS_PER_LONG-1)] = "??", 644 645 [ilog2(VM_READ)] = "rd", 646 [ilog2(VM_WRITE)] = "wr", 647 [ilog2(VM_EXEC)] = "ex", 648 [ilog2(VM_SHARED)] = "sh", 649 [ilog2(VM_MAYREAD)] = "mr", 650 [ilog2(VM_MAYWRITE)] = "mw", 651 [ilog2(VM_MAYEXEC)] = "me", 652 [ilog2(VM_MAYSHARE)] = "ms", 653 [ilog2(VM_GROWSDOWN)] = "gd", 654 [ilog2(VM_PFNMAP)] = "pf", 655 [ilog2(VM_DENYWRITE)] = "dw", 656 #ifdef CONFIG_X86_INTEL_MPX 657 [ilog2(VM_MPX)] = "mp", 658 #endif 659 [ilog2(VM_LOCKED)] = "lo", 660 [ilog2(VM_IO)] = "io", 661 [ilog2(VM_SEQ_READ)] = "sr", 662 [ilog2(VM_RAND_READ)] = "rr", 663 [ilog2(VM_DONTCOPY)] = "dc", 664 [ilog2(VM_DONTEXPAND)] = "de", 665 [ilog2(VM_ACCOUNT)] = "ac", 666 [ilog2(VM_NORESERVE)] = "nr", 667 [ilog2(VM_HUGETLB)] = "ht", 668 [ilog2(VM_ARCH_1)] = "ar", 669 [ilog2(VM_WIPEONFORK)] = "wf", 670 [ilog2(VM_DONTDUMP)] = "dd", 671 #ifdef CONFIG_MEM_SOFT_DIRTY 672 [ilog2(VM_SOFTDIRTY)] = "sd", 673 #endif 674 [ilog2(VM_MIXEDMAP)] = "mm", 675 [ilog2(VM_HUGEPAGE)] = "hg", 676 [ilog2(VM_NOHUGEPAGE)] = "nh", 677 [ilog2(VM_MERGEABLE)] = "mg", 678 [ilog2(VM_UFFD_MISSING)]= "um", 679 [ilog2(VM_UFFD_WP)] = "uw", 680 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS 681 /* These come out via ProtectionKey: */ 682 [ilog2(VM_PKEY_BIT0)] = "", 683 [ilog2(VM_PKEY_BIT1)] = "", 684 [ilog2(VM_PKEY_BIT2)] = "", 685 [ilog2(VM_PKEY_BIT3)] = "", 686 #endif 687 }; 688 size_t i; 689 690 seq_puts(m, "VmFlags: "); 691 for (i = 0; i < BITS_PER_LONG; i++) { 692 if (!mnemonics[i][0]) 693 continue; 694 if (vma->vm_flags & (1UL << i)) { 695 seq_printf(m, "%c%c ", 696 mnemonics[i][0], mnemonics[i][1]); 697 } 698 } 699 seq_putc(m, '\n'); 700 } 701 702 #ifdef CONFIG_HUGETLB_PAGE 703 static int smaps_hugetlb_range(pte_t *pte, unsigned long hmask, 704 unsigned long addr, unsigned long end, 705 struct mm_walk *walk) 706 { 707 struct mem_size_stats *mss = walk->private; 708 struct vm_area_struct *vma = walk->vma; 709 struct page *page = NULL; 710 711 if (pte_present(*pte)) { 712 page = vm_normal_page(vma, addr, *pte); 713 } else if (is_swap_pte(*pte)) { 714 swp_entry_t swpent = pte_to_swp_entry(*pte); 715 716 if (is_migration_entry(swpent)) 717 page = migration_entry_to_page(swpent); 718 else if (is_device_private_entry(swpent)) 719 page = device_private_entry_to_page(swpent); 720 } 721 if (page) { 722 int mapcount = page_mapcount(page); 723 724 if (mapcount >= 2) 725 mss->shared_hugetlb += huge_page_size(hstate_vma(vma)); 726 else 727 mss->private_hugetlb += huge_page_size(hstate_vma(vma)); 728 } 729 return 0; 730 } 731 #endif /* HUGETLB_PAGE */ 732 733 void __weak arch_show_smap(struct seq_file *m, struct vm_area_struct *vma) 734 { 735 } 736 737 static int show_smap(struct seq_file *m, void *v, int is_pid) 738 { 739 struct proc_maps_private *priv = m->private; 740 struct vm_area_struct *vma = v; 741 struct mem_size_stats mss_stack; 742 struct mem_size_stats *mss; 743 struct mm_walk smaps_walk = { 744 .pmd_entry = smaps_pte_range, 745 #ifdef CONFIG_HUGETLB_PAGE 746 .hugetlb_entry = smaps_hugetlb_range, 747 #endif 748 .mm = vma->vm_mm, 749 }; 750 int ret = 0; 751 bool rollup_mode; 752 bool last_vma; 753 754 if (priv->rollup) { 755 rollup_mode = true; 756 mss = priv->rollup; 757 if (mss->first) { 758 mss->first_vma_start = vma->vm_start; 759 mss->first = false; 760 } 761 last_vma = !m_next_vma(priv, vma); 762 } else { 763 rollup_mode = false; 764 memset(&mss_stack, 0, sizeof(mss_stack)); 765 mss = &mss_stack; 766 } 767 768 smaps_walk.private = mss; 769 770 #ifdef CONFIG_SHMEM 771 if (vma->vm_file && shmem_mapping(vma->vm_file->f_mapping)) { 772 /* 773 * For shared or readonly shmem mappings we know that all 774 * swapped out pages belong to the shmem object, and we can 775 * obtain the swap value much more efficiently. For private 776 * writable mappings, we might have COW pages that are 777 * not affected by the parent swapped out pages of the shmem 778 * object, so we have to distinguish them during the page walk. 779 * Unless we know that the shmem object (or the part mapped by 780 * our VMA) has no swapped out pages at all. 781 */ 782 unsigned long shmem_swapped = shmem_swap_usage(vma); 783 784 if (!shmem_swapped || (vma->vm_flags & VM_SHARED) || 785 !(vma->vm_flags & VM_WRITE)) { 786 mss->swap = shmem_swapped; 787 } else { 788 mss->check_shmem_swap = true; 789 smaps_walk.pte_hole = smaps_pte_hole; 790 } 791 } 792 #endif 793 794 /* mmap_sem is held in m_start */ 795 walk_page_vma(vma, &smaps_walk); 796 if (vma->vm_flags & VM_LOCKED) 797 mss->pss_locked += mss->pss; 798 799 if (!rollup_mode) { 800 show_map_vma(m, vma, is_pid); 801 } else if (last_vma) { 802 show_vma_header_prefix( 803 m, mss->first_vma_start, vma->vm_end, 0, 0, 0, 0); 804 seq_pad(m, ' '); 805 seq_puts(m, "[rollup]\n"); 806 } else { 807 ret = SEQ_SKIP; 808 } 809 810 if (!rollup_mode) 811 seq_printf(m, 812 "Size: %8lu kB\n" 813 "KernelPageSize: %8lu kB\n" 814 "MMUPageSize: %8lu kB\n", 815 (vma->vm_end - vma->vm_start) >> 10, 816 vma_kernel_pagesize(vma) >> 10, 817 vma_mmu_pagesize(vma) >> 10); 818 819 820 if (!rollup_mode || last_vma) 821 seq_printf(m, 822 "Rss: %8lu kB\n" 823 "Pss: %8lu kB\n" 824 "Shared_Clean: %8lu kB\n" 825 "Shared_Dirty: %8lu kB\n" 826 "Private_Clean: %8lu kB\n" 827 "Private_Dirty: %8lu kB\n" 828 "Referenced: %8lu kB\n" 829 "Anonymous: %8lu kB\n" 830 "LazyFree: %8lu kB\n" 831 "AnonHugePages: %8lu kB\n" 832 "ShmemPmdMapped: %8lu kB\n" 833 "Shared_Hugetlb: %8lu kB\n" 834 "Private_Hugetlb: %7lu kB\n" 835 "Swap: %8lu kB\n" 836 "SwapPss: %8lu kB\n" 837 "Locked: %8lu kB\n", 838 mss->resident >> 10, 839 (unsigned long)(mss->pss >> (10 + PSS_SHIFT)), 840 mss->shared_clean >> 10, 841 mss->shared_dirty >> 10, 842 mss->private_clean >> 10, 843 mss->private_dirty >> 10, 844 mss->referenced >> 10, 845 mss->anonymous >> 10, 846 mss->lazyfree >> 10, 847 mss->anonymous_thp >> 10, 848 mss->shmem_thp >> 10, 849 mss->shared_hugetlb >> 10, 850 mss->private_hugetlb >> 10, 851 mss->swap >> 10, 852 (unsigned long)(mss->swap_pss >> (10 + PSS_SHIFT)), 853 (unsigned long)(mss->pss >> (10 + PSS_SHIFT))); 854 855 if (!rollup_mode) { 856 arch_show_smap(m, vma); 857 show_smap_vma_flags(m, vma); 858 } 859 m_cache_vma(m, vma); 860 return ret; 861 } 862 863 static int show_pid_smap(struct seq_file *m, void *v) 864 { 865 return show_smap(m, v, 1); 866 } 867 868 static int show_tid_smap(struct seq_file *m, void *v) 869 { 870 return show_smap(m, v, 0); 871 } 872 873 static const struct seq_operations proc_pid_smaps_op = { 874 .start = m_start, 875 .next = m_next, 876 .stop = m_stop, 877 .show = show_pid_smap 878 }; 879 880 static const struct seq_operations proc_tid_smaps_op = { 881 .start = m_start, 882 .next = m_next, 883 .stop = m_stop, 884 .show = show_tid_smap 885 }; 886 887 static int pid_smaps_open(struct inode *inode, struct file *file) 888 { 889 return do_maps_open(inode, file, &proc_pid_smaps_op); 890 } 891 892 static int pid_smaps_rollup_open(struct inode *inode, struct file *file) 893 { 894 struct seq_file *seq; 895 struct proc_maps_private *priv; 896 int ret = do_maps_open(inode, file, &proc_pid_smaps_op); 897 898 if (ret < 0) 899 return ret; 900 seq = file->private_data; 901 priv = seq->private; 902 priv->rollup = kzalloc(sizeof(*priv->rollup), GFP_KERNEL); 903 if (!priv->rollup) { 904 proc_map_release(inode, file); 905 return -ENOMEM; 906 } 907 priv->rollup->first = true; 908 return 0; 909 } 910 911 static int tid_smaps_open(struct inode *inode, struct file *file) 912 { 913 return do_maps_open(inode, file, &proc_tid_smaps_op); 914 } 915 916 const struct file_operations proc_pid_smaps_operations = { 917 .open = pid_smaps_open, 918 .read = seq_read, 919 .llseek = seq_lseek, 920 .release = proc_map_release, 921 }; 922 923 const struct file_operations proc_pid_smaps_rollup_operations = { 924 .open = pid_smaps_rollup_open, 925 .read = seq_read, 926 .llseek = seq_lseek, 927 .release = proc_map_release, 928 }; 929 930 const struct file_operations proc_tid_smaps_operations = { 931 .open = tid_smaps_open, 932 .read = seq_read, 933 .llseek = seq_lseek, 934 .release = proc_map_release, 935 }; 936 937 enum clear_refs_types { 938 CLEAR_REFS_ALL = 1, 939 CLEAR_REFS_ANON, 940 CLEAR_REFS_MAPPED, 941 CLEAR_REFS_SOFT_DIRTY, 942 CLEAR_REFS_MM_HIWATER_RSS, 943 CLEAR_REFS_LAST, 944 }; 945 946 struct clear_refs_private { 947 enum clear_refs_types type; 948 }; 949 950 #ifdef CONFIG_MEM_SOFT_DIRTY 951 static inline void clear_soft_dirty(struct vm_area_struct *vma, 952 unsigned long addr, pte_t *pte) 953 { 954 /* 955 * The soft-dirty tracker uses #PF-s to catch writes 956 * to pages, so write-protect the pte as well. See the 957 * Documentation/vm/soft-dirty.txt for full description 958 * of how soft-dirty works. 959 */ 960 pte_t ptent = *pte; 961 962 if (pte_present(ptent)) { 963 ptent = ptep_modify_prot_start(vma->vm_mm, addr, pte); 964 ptent = pte_wrprotect(ptent); 965 ptent = pte_clear_soft_dirty(ptent); 966 ptep_modify_prot_commit(vma->vm_mm, addr, pte, ptent); 967 } else if (is_swap_pte(ptent)) { 968 ptent = pte_swp_clear_soft_dirty(ptent); 969 set_pte_at(vma->vm_mm, addr, pte, ptent); 970 } 971 } 972 #else 973 static inline void clear_soft_dirty(struct vm_area_struct *vma, 974 unsigned long addr, pte_t *pte) 975 { 976 } 977 #endif 978 979 #if defined(CONFIG_MEM_SOFT_DIRTY) && defined(CONFIG_TRANSPARENT_HUGEPAGE) 980 static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma, 981 unsigned long addr, pmd_t *pmdp) 982 { 983 pmd_t pmd = *pmdp; 984 985 if (pmd_present(pmd)) { 986 /* See comment in change_huge_pmd() */ 987 pmdp_invalidate(vma, addr, pmdp); 988 if (pmd_dirty(*pmdp)) 989 pmd = pmd_mkdirty(pmd); 990 if (pmd_young(*pmdp)) 991 pmd = pmd_mkyoung(pmd); 992 993 pmd = pmd_wrprotect(pmd); 994 pmd = pmd_clear_soft_dirty(pmd); 995 996 set_pmd_at(vma->vm_mm, addr, pmdp, pmd); 997 } else if (is_migration_entry(pmd_to_swp_entry(pmd))) { 998 pmd = pmd_swp_clear_soft_dirty(pmd); 999 set_pmd_at(vma->vm_mm, addr, pmdp, pmd); 1000 } 1001 } 1002 #else 1003 static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma, 1004 unsigned long addr, pmd_t *pmdp) 1005 { 1006 } 1007 #endif 1008 1009 static int clear_refs_pte_range(pmd_t *pmd, unsigned long addr, 1010 unsigned long end, struct mm_walk *walk) 1011 { 1012 struct clear_refs_private *cp = walk->private; 1013 struct vm_area_struct *vma = walk->vma; 1014 pte_t *pte, ptent; 1015 spinlock_t *ptl; 1016 struct page *page; 1017 1018 ptl = pmd_trans_huge_lock(pmd, vma); 1019 if (ptl) { 1020 if (cp->type == CLEAR_REFS_SOFT_DIRTY) { 1021 clear_soft_dirty_pmd(vma, addr, pmd); 1022 goto out; 1023 } 1024 1025 if (!pmd_present(*pmd)) 1026 goto out; 1027 1028 page = pmd_page(*pmd); 1029 1030 /* Clear accessed and referenced bits. */ 1031 pmdp_test_and_clear_young(vma, addr, pmd); 1032 test_and_clear_page_young(page); 1033 ClearPageReferenced(page); 1034 out: 1035 spin_unlock(ptl); 1036 return 0; 1037 } 1038 1039 if (pmd_trans_unstable(pmd)) 1040 return 0; 1041 1042 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 1043 for (; addr != end; pte++, addr += PAGE_SIZE) { 1044 ptent = *pte; 1045 1046 if (cp->type == CLEAR_REFS_SOFT_DIRTY) { 1047 clear_soft_dirty(vma, addr, pte); 1048 continue; 1049 } 1050 1051 if (!pte_present(ptent)) 1052 continue; 1053 1054 page = vm_normal_page(vma, addr, ptent); 1055 if (!page) 1056 continue; 1057 1058 /* Clear accessed and referenced bits. */ 1059 ptep_test_and_clear_young(vma, addr, pte); 1060 test_and_clear_page_young(page); 1061 ClearPageReferenced(page); 1062 } 1063 pte_unmap_unlock(pte - 1, ptl); 1064 cond_resched(); 1065 return 0; 1066 } 1067 1068 static int clear_refs_test_walk(unsigned long start, unsigned long end, 1069 struct mm_walk *walk) 1070 { 1071 struct clear_refs_private *cp = walk->private; 1072 struct vm_area_struct *vma = walk->vma; 1073 1074 if (vma->vm_flags & VM_PFNMAP) 1075 return 1; 1076 1077 /* 1078 * Writing 1 to /proc/pid/clear_refs affects all pages. 1079 * Writing 2 to /proc/pid/clear_refs only affects anonymous pages. 1080 * Writing 3 to /proc/pid/clear_refs only affects file mapped pages. 1081 * Writing 4 to /proc/pid/clear_refs affects all pages. 1082 */ 1083 if (cp->type == CLEAR_REFS_ANON && vma->vm_file) 1084 return 1; 1085 if (cp->type == CLEAR_REFS_MAPPED && !vma->vm_file) 1086 return 1; 1087 return 0; 1088 } 1089 1090 static ssize_t clear_refs_write(struct file *file, const char __user *buf, 1091 size_t count, loff_t *ppos) 1092 { 1093 struct task_struct *task; 1094 char buffer[PROC_NUMBUF]; 1095 struct mm_struct *mm; 1096 struct vm_area_struct *vma; 1097 enum clear_refs_types type; 1098 struct mmu_gather tlb; 1099 int itype; 1100 int rv; 1101 1102 memset(buffer, 0, sizeof(buffer)); 1103 if (count > sizeof(buffer) - 1) 1104 count = sizeof(buffer) - 1; 1105 if (copy_from_user(buffer, buf, count)) 1106 return -EFAULT; 1107 rv = kstrtoint(strstrip(buffer), 10, &itype); 1108 if (rv < 0) 1109 return rv; 1110 type = (enum clear_refs_types)itype; 1111 if (type < CLEAR_REFS_ALL || type >= CLEAR_REFS_LAST) 1112 return -EINVAL; 1113 1114 task = get_proc_task(file_inode(file)); 1115 if (!task) 1116 return -ESRCH; 1117 mm = get_task_mm(task); 1118 if (mm) { 1119 struct clear_refs_private cp = { 1120 .type = type, 1121 }; 1122 struct mm_walk clear_refs_walk = { 1123 .pmd_entry = clear_refs_pte_range, 1124 .test_walk = clear_refs_test_walk, 1125 .mm = mm, 1126 .private = &cp, 1127 }; 1128 1129 if (type == CLEAR_REFS_MM_HIWATER_RSS) { 1130 if (down_write_killable(&mm->mmap_sem)) { 1131 count = -EINTR; 1132 goto out_mm; 1133 } 1134 1135 /* 1136 * Writing 5 to /proc/pid/clear_refs resets the peak 1137 * resident set size to this mm's current rss value. 1138 */ 1139 reset_mm_hiwater_rss(mm); 1140 up_write(&mm->mmap_sem); 1141 goto out_mm; 1142 } 1143 1144 down_read(&mm->mmap_sem); 1145 tlb_gather_mmu(&tlb, mm, 0, -1); 1146 if (type == CLEAR_REFS_SOFT_DIRTY) { 1147 for (vma = mm->mmap; vma; vma = vma->vm_next) { 1148 if (!(vma->vm_flags & VM_SOFTDIRTY)) 1149 continue; 1150 up_read(&mm->mmap_sem); 1151 if (down_write_killable(&mm->mmap_sem)) { 1152 count = -EINTR; 1153 goto out_mm; 1154 } 1155 for (vma = mm->mmap; vma; vma = vma->vm_next) { 1156 vma->vm_flags &= ~VM_SOFTDIRTY; 1157 vma_set_page_prot(vma); 1158 } 1159 downgrade_write(&mm->mmap_sem); 1160 break; 1161 } 1162 mmu_notifier_invalidate_range_start(mm, 0, -1); 1163 } 1164 walk_page_range(0, mm->highest_vm_end, &clear_refs_walk); 1165 if (type == CLEAR_REFS_SOFT_DIRTY) 1166 mmu_notifier_invalidate_range_end(mm, 0, -1); 1167 tlb_finish_mmu(&tlb, 0, -1); 1168 up_read(&mm->mmap_sem); 1169 out_mm: 1170 mmput(mm); 1171 } 1172 put_task_struct(task); 1173 1174 return count; 1175 } 1176 1177 const struct file_operations proc_clear_refs_operations = { 1178 .write = clear_refs_write, 1179 .llseek = noop_llseek, 1180 }; 1181 1182 typedef struct { 1183 u64 pme; 1184 } pagemap_entry_t; 1185 1186 struct pagemapread { 1187 int pos, len; /* units: PM_ENTRY_BYTES, not bytes */ 1188 pagemap_entry_t *buffer; 1189 bool show_pfn; 1190 }; 1191 1192 #define PAGEMAP_WALK_SIZE (PMD_SIZE) 1193 #define PAGEMAP_WALK_MASK (PMD_MASK) 1194 1195 #define PM_ENTRY_BYTES sizeof(pagemap_entry_t) 1196 #define PM_PFRAME_BITS 55 1197 #define PM_PFRAME_MASK GENMASK_ULL(PM_PFRAME_BITS - 1, 0) 1198 #define PM_SOFT_DIRTY BIT_ULL(55) 1199 #define PM_MMAP_EXCLUSIVE BIT_ULL(56) 1200 #define PM_FILE BIT_ULL(61) 1201 #define PM_SWAP BIT_ULL(62) 1202 #define PM_PRESENT BIT_ULL(63) 1203 1204 #define PM_END_OF_BUFFER 1 1205 1206 static inline pagemap_entry_t make_pme(u64 frame, u64 flags) 1207 { 1208 return (pagemap_entry_t) { .pme = (frame & PM_PFRAME_MASK) | flags }; 1209 } 1210 1211 static int add_to_pagemap(unsigned long addr, pagemap_entry_t *pme, 1212 struct pagemapread *pm) 1213 { 1214 pm->buffer[pm->pos++] = *pme; 1215 if (pm->pos >= pm->len) 1216 return PM_END_OF_BUFFER; 1217 return 0; 1218 } 1219 1220 static int pagemap_pte_hole(unsigned long start, unsigned long end, 1221 struct mm_walk *walk) 1222 { 1223 struct pagemapread *pm = walk->private; 1224 unsigned long addr = start; 1225 int err = 0; 1226 1227 while (addr < end) { 1228 struct vm_area_struct *vma = find_vma(walk->mm, addr); 1229 pagemap_entry_t pme = make_pme(0, 0); 1230 /* End of address space hole, which we mark as non-present. */ 1231 unsigned long hole_end; 1232 1233 if (vma) 1234 hole_end = min(end, vma->vm_start); 1235 else 1236 hole_end = end; 1237 1238 for (; addr < hole_end; addr += PAGE_SIZE) { 1239 err = add_to_pagemap(addr, &pme, pm); 1240 if (err) 1241 goto out; 1242 } 1243 1244 if (!vma) 1245 break; 1246 1247 /* Addresses in the VMA. */ 1248 if (vma->vm_flags & VM_SOFTDIRTY) 1249 pme = make_pme(0, PM_SOFT_DIRTY); 1250 for (; addr < min(end, vma->vm_end); addr += PAGE_SIZE) { 1251 err = add_to_pagemap(addr, &pme, pm); 1252 if (err) 1253 goto out; 1254 } 1255 } 1256 out: 1257 return err; 1258 } 1259 1260 static pagemap_entry_t pte_to_pagemap_entry(struct pagemapread *pm, 1261 struct vm_area_struct *vma, unsigned long addr, pte_t pte) 1262 { 1263 u64 frame = 0, flags = 0; 1264 struct page *page = NULL; 1265 1266 if (pte_present(pte)) { 1267 if (pm->show_pfn) 1268 frame = pte_pfn(pte); 1269 flags |= PM_PRESENT; 1270 page = _vm_normal_page(vma, addr, pte, true); 1271 if (pte_soft_dirty(pte)) 1272 flags |= PM_SOFT_DIRTY; 1273 } else if (is_swap_pte(pte)) { 1274 swp_entry_t entry; 1275 if (pte_swp_soft_dirty(pte)) 1276 flags |= PM_SOFT_DIRTY; 1277 entry = pte_to_swp_entry(pte); 1278 frame = swp_type(entry) | 1279 (swp_offset(entry) << MAX_SWAPFILES_SHIFT); 1280 flags |= PM_SWAP; 1281 if (is_migration_entry(entry)) 1282 page = migration_entry_to_page(entry); 1283 1284 if (is_device_private_entry(entry)) 1285 page = device_private_entry_to_page(entry); 1286 } 1287 1288 if (page && !PageAnon(page)) 1289 flags |= PM_FILE; 1290 if (page && page_mapcount(page) == 1) 1291 flags |= PM_MMAP_EXCLUSIVE; 1292 if (vma->vm_flags & VM_SOFTDIRTY) 1293 flags |= PM_SOFT_DIRTY; 1294 1295 return make_pme(frame, flags); 1296 } 1297 1298 static int pagemap_pmd_range(pmd_t *pmdp, unsigned long addr, unsigned long end, 1299 struct mm_walk *walk) 1300 { 1301 struct vm_area_struct *vma = walk->vma; 1302 struct pagemapread *pm = walk->private; 1303 spinlock_t *ptl; 1304 pte_t *pte, *orig_pte; 1305 int err = 0; 1306 1307 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1308 ptl = pmd_trans_huge_lock(pmdp, vma); 1309 if (ptl) { 1310 u64 flags = 0, frame = 0; 1311 pmd_t pmd = *pmdp; 1312 struct page *page = NULL; 1313 1314 if ((vma->vm_flags & VM_SOFTDIRTY) || pmd_soft_dirty(pmd)) 1315 flags |= PM_SOFT_DIRTY; 1316 1317 if (pmd_present(pmd)) { 1318 page = pmd_page(pmd); 1319 1320 flags |= PM_PRESENT; 1321 if (pm->show_pfn) 1322 frame = pmd_pfn(pmd) + 1323 ((addr & ~PMD_MASK) >> PAGE_SHIFT); 1324 } 1325 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 1326 else if (is_swap_pmd(pmd)) { 1327 swp_entry_t entry = pmd_to_swp_entry(pmd); 1328 1329 frame = swp_type(entry) | 1330 (swp_offset(entry) << MAX_SWAPFILES_SHIFT); 1331 flags |= PM_SWAP; 1332 VM_BUG_ON(!is_pmd_migration_entry(pmd)); 1333 page = migration_entry_to_page(entry); 1334 } 1335 #endif 1336 1337 if (page && page_mapcount(page) == 1) 1338 flags |= PM_MMAP_EXCLUSIVE; 1339 1340 for (; addr != end; addr += PAGE_SIZE) { 1341 pagemap_entry_t pme = make_pme(frame, flags); 1342 1343 err = add_to_pagemap(addr, &pme, pm); 1344 if (err) 1345 break; 1346 if (pm->show_pfn && (flags & PM_PRESENT)) 1347 frame++; 1348 } 1349 spin_unlock(ptl); 1350 return err; 1351 } 1352 1353 if (pmd_trans_unstable(pmdp)) 1354 return 0; 1355 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 1356 1357 /* 1358 * We can assume that @vma always points to a valid one and @end never 1359 * goes beyond vma->vm_end. 1360 */ 1361 orig_pte = pte = pte_offset_map_lock(walk->mm, pmdp, addr, &ptl); 1362 for (; addr < end; pte++, addr += PAGE_SIZE) { 1363 pagemap_entry_t pme; 1364 1365 pme = pte_to_pagemap_entry(pm, vma, addr, *pte); 1366 err = add_to_pagemap(addr, &pme, pm); 1367 if (err) 1368 break; 1369 } 1370 pte_unmap_unlock(orig_pte, ptl); 1371 1372 cond_resched(); 1373 1374 return err; 1375 } 1376 1377 #ifdef CONFIG_HUGETLB_PAGE 1378 /* This function walks within one hugetlb entry in the single call */ 1379 static int pagemap_hugetlb_range(pte_t *ptep, unsigned long hmask, 1380 unsigned long addr, unsigned long end, 1381 struct mm_walk *walk) 1382 { 1383 struct pagemapread *pm = walk->private; 1384 struct vm_area_struct *vma = walk->vma; 1385 u64 flags = 0, frame = 0; 1386 int err = 0; 1387 pte_t pte; 1388 1389 if (vma->vm_flags & VM_SOFTDIRTY) 1390 flags |= PM_SOFT_DIRTY; 1391 1392 pte = huge_ptep_get(ptep); 1393 if (pte_present(pte)) { 1394 struct page *page = pte_page(pte); 1395 1396 if (!PageAnon(page)) 1397 flags |= PM_FILE; 1398 1399 if (page_mapcount(page) == 1) 1400 flags |= PM_MMAP_EXCLUSIVE; 1401 1402 flags |= PM_PRESENT; 1403 if (pm->show_pfn) 1404 frame = pte_pfn(pte) + 1405 ((addr & ~hmask) >> PAGE_SHIFT); 1406 } 1407 1408 for (; addr != end; addr += PAGE_SIZE) { 1409 pagemap_entry_t pme = make_pme(frame, flags); 1410 1411 err = add_to_pagemap(addr, &pme, pm); 1412 if (err) 1413 return err; 1414 if (pm->show_pfn && (flags & PM_PRESENT)) 1415 frame++; 1416 } 1417 1418 cond_resched(); 1419 1420 return err; 1421 } 1422 #endif /* HUGETLB_PAGE */ 1423 1424 /* 1425 * /proc/pid/pagemap - an array mapping virtual pages to pfns 1426 * 1427 * For each page in the address space, this file contains one 64-bit entry 1428 * consisting of the following: 1429 * 1430 * Bits 0-54 page frame number (PFN) if present 1431 * Bits 0-4 swap type if swapped 1432 * Bits 5-54 swap offset if swapped 1433 * Bit 55 pte is soft-dirty (see Documentation/vm/soft-dirty.txt) 1434 * Bit 56 page exclusively mapped 1435 * Bits 57-60 zero 1436 * Bit 61 page is file-page or shared-anon 1437 * Bit 62 page swapped 1438 * Bit 63 page present 1439 * 1440 * If the page is not present but in swap, then the PFN contains an 1441 * encoding of the swap file number and the page's offset into the 1442 * swap. Unmapped pages return a null PFN. This allows determining 1443 * precisely which pages are mapped (or in swap) and comparing mapped 1444 * pages between processes. 1445 * 1446 * Efficient users of this interface will use /proc/pid/maps to 1447 * determine which areas of memory are actually mapped and llseek to 1448 * skip over unmapped regions. 1449 */ 1450 static ssize_t pagemap_read(struct file *file, char __user *buf, 1451 size_t count, loff_t *ppos) 1452 { 1453 struct mm_struct *mm = file->private_data; 1454 struct pagemapread pm; 1455 struct mm_walk pagemap_walk = {}; 1456 unsigned long src; 1457 unsigned long svpfn; 1458 unsigned long start_vaddr; 1459 unsigned long end_vaddr; 1460 int ret = 0, copied = 0; 1461 1462 if (!mm || !mmget_not_zero(mm)) 1463 goto out; 1464 1465 ret = -EINVAL; 1466 /* file position must be aligned */ 1467 if ((*ppos % PM_ENTRY_BYTES) || (count % PM_ENTRY_BYTES)) 1468 goto out_mm; 1469 1470 ret = 0; 1471 if (!count) 1472 goto out_mm; 1473 1474 /* do not disclose physical addresses: attack vector */ 1475 pm.show_pfn = file_ns_capable(file, &init_user_ns, CAP_SYS_ADMIN); 1476 1477 pm.len = (PAGEMAP_WALK_SIZE >> PAGE_SHIFT); 1478 pm.buffer = kmalloc(pm.len * PM_ENTRY_BYTES, GFP_KERNEL); 1479 ret = -ENOMEM; 1480 if (!pm.buffer) 1481 goto out_mm; 1482 1483 pagemap_walk.pmd_entry = pagemap_pmd_range; 1484 pagemap_walk.pte_hole = pagemap_pte_hole; 1485 #ifdef CONFIG_HUGETLB_PAGE 1486 pagemap_walk.hugetlb_entry = pagemap_hugetlb_range; 1487 #endif 1488 pagemap_walk.mm = mm; 1489 pagemap_walk.private = ± 1490 1491 src = *ppos; 1492 svpfn = src / PM_ENTRY_BYTES; 1493 start_vaddr = svpfn << PAGE_SHIFT; 1494 end_vaddr = mm->task_size; 1495 1496 /* watch out for wraparound */ 1497 if (svpfn > mm->task_size >> PAGE_SHIFT) 1498 start_vaddr = end_vaddr; 1499 1500 /* 1501 * The odds are that this will stop walking way 1502 * before end_vaddr, because the length of the 1503 * user buffer is tracked in "pm", and the walk 1504 * will stop when we hit the end of the buffer. 1505 */ 1506 ret = 0; 1507 while (count && (start_vaddr < end_vaddr)) { 1508 int len; 1509 unsigned long end; 1510 1511 pm.pos = 0; 1512 end = (start_vaddr + PAGEMAP_WALK_SIZE) & PAGEMAP_WALK_MASK; 1513 /* overflow ? */ 1514 if (end < start_vaddr || end > end_vaddr) 1515 end = end_vaddr; 1516 down_read(&mm->mmap_sem); 1517 ret = walk_page_range(start_vaddr, end, &pagemap_walk); 1518 up_read(&mm->mmap_sem); 1519 start_vaddr = end; 1520 1521 len = min(count, PM_ENTRY_BYTES * pm.pos); 1522 if (copy_to_user(buf, pm.buffer, len)) { 1523 ret = -EFAULT; 1524 goto out_free; 1525 } 1526 copied += len; 1527 buf += len; 1528 count -= len; 1529 } 1530 *ppos += copied; 1531 if (!ret || ret == PM_END_OF_BUFFER) 1532 ret = copied; 1533 1534 out_free: 1535 kfree(pm.buffer); 1536 out_mm: 1537 mmput(mm); 1538 out: 1539 return ret; 1540 } 1541 1542 static int pagemap_open(struct inode *inode, struct file *file) 1543 { 1544 struct mm_struct *mm; 1545 1546 mm = proc_mem_open(inode, PTRACE_MODE_READ); 1547 if (IS_ERR(mm)) 1548 return PTR_ERR(mm); 1549 file->private_data = mm; 1550 return 0; 1551 } 1552 1553 static int pagemap_release(struct inode *inode, struct file *file) 1554 { 1555 struct mm_struct *mm = file->private_data; 1556 1557 if (mm) 1558 mmdrop(mm); 1559 return 0; 1560 } 1561 1562 const struct file_operations proc_pagemap_operations = { 1563 .llseek = mem_lseek, /* borrow this */ 1564 .read = pagemap_read, 1565 .open = pagemap_open, 1566 .release = pagemap_release, 1567 }; 1568 #endif /* CONFIG_PROC_PAGE_MONITOR */ 1569 1570 #ifdef CONFIG_NUMA 1571 1572 struct numa_maps { 1573 unsigned long pages; 1574 unsigned long anon; 1575 unsigned long active; 1576 unsigned long writeback; 1577 unsigned long mapcount_max; 1578 unsigned long dirty; 1579 unsigned long swapcache; 1580 unsigned long node[MAX_NUMNODES]; 1581 }; 1582 1583 struct numa_maps_private { 1584 struct proc_maps_private proc_maps; 1585 struct numa_maps md; 1586 }; 1587 1588 static void gather_stats(struct page *page, struct numa_maps *md, int pte_dirty, 1589 unsigned long nr_pages) 1590 { 1591 int count = page_mapcount(page); 1592 1593 md->pages += nr_pages; 1594 if (pte_dirty || PageDirty(page)) 1595 md->dirty += nr_pages; 1596 1597 if (PageSwapCache(page)) 1598 md->swapcache += nr_pages; 1599 1600 if (PageActive(page) || PageUnevictable(page)) 1601 md->active += nr_pages; 1602 1603 if (PageWriteback(page)) 1604 md->writeback += nr_pages; 1605 1606 if (PageAnon(page)) 1607 md->anon += nr_pages; 1608 1609 if (count > md->mapcount_max) 1610 md->mapcount_max = count; 1611 1612 md->node[page_to_nid(page)] += nr_pages; 1613 } 1614 1615 static struct page *can_gather_numa_stats(pte_t pte, struct vm_area_struct *vma, 1616 unsigned long addr) 1617 { 1618 struct page *page; 1619 int nid; 1620 1621 if (!pte_present(pte)) 1622 return NULL; 1623 1624 page = vm_normal_page(vma, addr, pte); 1625 if (!page) 1626 return NULL; 1627 1628 if (PageReserved(page)) 1629 return NULL; 1630 1631 nid = page_to_nid(page); 1632 if (!node_isset(nid, node_states[N_MEMORY])) 1633 return NULL; 1634 1635 return page; 1636 } 1637 1638 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1639 static struct page *can_gather_numa_stats_pmd(pmd_t pmd, 1640 struct vm_area_struct *vma, 1641 unsigned long addr) 1642 { 1643 struct page *page; 1644 int nid; 1645 1646 if (!pmd_present(pmd)) 1647 return NULL; 1648 1649 page = vm_normal_page_pmd(vma, addr, pmd); 1650 if (!page) 1651 return NULL; 1652 1653 if (PageReserved(page)) 1654 return NULL; 1655 1656 nid = page_to_nid(page); 1657 if (!node_isset(nid, node_states[N_MEMORY])) 1658 return NULL; 1659 1660 return page; 1661 } 1662 #endif 1663 1664 static int gather_pte_stats(pmd_t *pmd, unsigned long addr, 1665 unsigned long end, struct mm_walk *walk) 1666 { 1667 struct numa_maps *md = walk->private; 1668 struct vm_area_struct *vma = walk->vma; 1669 spinlock_t *ptl; 1670 pte_t *orig_pte; 1671 pte_t *pte; 1672 1673 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1674 ptl = pmd_trans_huge_lock(pmd, vma); 1675 if (ptl) { 1676 struct page *page; 1677 1678 page = can_gather_numa_stats_pmd(*pmd, vma, addr); 1679 if (page) 1680 gather_stats(page, md, pmd_dirty(*pmd), 1681 HPAGE_PMD_SIZE/PAGE_SIZE); 1682 spin_unlock(ptl); 1683 return 0; 1684 } 1685 1686 if (pmd_trans_unstable(pmd)) 1687 return 0; 1688 #endif 1689 orig_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl); 1690 do { 1691 struct page *page = can_gather_numa_stats(*pte, vma, addr); 1692 if (!page) 1693 continue; 1694 gather_stats(page, md, pte_dirty(*pte), 1); 1695 1696 } while (pte++, addr += PAGE_SIZE, addr != end); 1697 pte_unmap_unlock(orig_pte, ptl); 1698 cond_resched(); 1699 return 0; 1700 } 1701 #ifdef CONFIG_HUGETLB_PAGE 1702 static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask, 1703 unsigned long addr, unsigned long end, struct mm_walk *walk) 1704 { 1705 pte_t huge_pte = huge_ptep_get(pte); 1706 struct numa_maps *md; 1707 struct page *page; 1708 1709 if (!pte_present(huge_pte)) 1710 return 0; 1711 1712 page = pte_page(huge_pte); 1713 if (!page) 1714 return 0; 1715 1716 md = walk->private; 1717 gather_stats(page, md, pte_dirty(huge_pte), 1); 1718 return 0; 1719 } 1720 1721 #else 1722 static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask, 1723 unsigned long addr, unsigned long end, struct mm_walk *walk) 1724 { 1725 return 0; 1726 } 1727 #endif 1728 1729 /* 1730 * Display pages allocated per node and memory policy via /proc. 1731 */ 1732 static int show_numa_map(struct seq_file *m, void *v, int is_pid) 1733 { 1734 struct numa_maps_private *numa_priv = m->private; 1735 struct proc_maps_private *proc_priv = &numa_priv->proc_maps; 1736 struct vm_area_struct *vma = v; 1737 struct numa_maps *md = &numa_priv->md; 1738 struct file *file = vma->vm_file; 1739 struct mm_struct *mm = vma->vm_mm; 1740 struct mm_walk walk = { 1741 .hugetlb_entry = gather_hugetlb_stats, 1742 .pmd_entry = gather_pte_stats, 1743 .private = md, 1744 .mm = mm, 1745 }; 1746 struct mempolicy *pol; 1747 char buffer[64]; 1748 int nid; 1749 1750 if (!mm) 1751 return 0; 1752 1753 /* Ensure we start with an empty set of numa_maps statistics. */ 1754 memset(md, 0, sizeof(*md)); 1755 1756 pol = __get_vma_policy(vma, vma->vm_start); 1757 if (pol) { 1758 mpol_to_str(buffer, sizeof(buffer), pol); 1759 mpol_cond_put(pol); 1760 } else { 1761 mpol_to_str(buffer, sizeof(buffer), proc_priv->task_mempolicy); 1762 } 1763 1764 seq_printf(m, "%08lx %s", vma->vm_start, buffer); 1765 1766 if (file) { 1767 seq_puts(m, " file="); 1768 seq_file_path(m, file, "\n\t= "); 1769 } else if (vma->vm_start <= mm->brk && vma->vm_end >= mm->start_brk) { 1770 seq_puts(m, " heap"); 1771 } else if (is_stack(vma)) { 1772 seq_puts(m, " stack"); 1773 } 1774 1775 if (is_vm_hugetlb_page(vma)) 1776 seq_puts(m, " huge"); 1777 1778 /* mmap_sem is held by m_start */ 1779 walk_page_vma(vma, &walk); 1780 1781 if (!md->pages) 1782 goto out; 1783 1784 if (md->anon) 1785 seq_printf(m, " anon=%lu", md->anon); 1786 1787 if (md->dirty) 1788 seq_printf(m, " dirty=%lu", md->dirty); 1789 1790 if (md->pages != md->anon && md->pages != md->dirty) 1791 seq_printf(m, " mapped=%lu", md->pages); 1792 1793 if (md->mapcount_max > 1) 1794 seq_printf(m, " mapmax=%lu", md->mapcount_max); 1795 1796 if (md->swapcache) 1797 seq_printf(m, " swapcache=%lu", md->swapcache); 1798 1799 if (md->active < md->pages && !is_vm_hugetlb_page(vma)) 1800 seq_printf(m, " active=%lu", md->active); 1801 1802 if (md->writeback) 1803 seq_printf(m, " writeback=%lu", md->writeback); 1804 1805 for_each_node_state(nid, N_MEMORY) 1806 if (md->node[nid]) 1807 seq_printf(m, " N%d=%lu", nid, md->node[nid]); 1808 1809 seq_printf(m, " kernelpagesize_kB=%lu", vma_kernel_pagesize(vma) >> 10); 1810 out: 1811 seq_putc(m, '\n'); 1812 m_cache_vma(m, vma); 1813 return 0; 1814 } 1815 1816 static int show_pid_numa_map(struct seq_file *m, void *v) 1817 { 1818 return show_numa_map(m, v, 1); 1819 } 1820 1821 static int show_tid_numa_map(struct seq_file *m, void *v) 1822 { 1823 return show_numa_map(m, v, 0); 1824 } 1825 1826 static const struct seq_operations proc_pid_numa_maps_op = { 1827 .start = m_start, 1828 .next = m_next, 1829 .stop = m_stop, 1830 .show = show_pid_numa_map, 1831 }; 1832 1833 static const struct seq_operations proc_tid_numa_maps_op = { 1834 .start = m_start, 1835 .next = m_next, 1836 .stop = m_stop, 1837 .show = show_tid_numa_map, 1838 }; 1839 1840 static int numa_maps_open(struct inode *inode, struct file *file, 1841 const struct seq_operations *ops) 1842 { 1843 return proc_maps_open(inode, file, ops, 1844 sizeof(struct numa_maps_private)); 1845 } 1846 1847 static int pid_numa_maps_open(struct inode *inode, struct file *file) 1848 { 1849 return numa_maps_open(inode, file, &proc_pid_numa_maps_op); 1850 } 1851 1852 static int tid_numa_maps_open(struct inode *inode, struct file *file) 1853 { 1854 return numa_maps_open(inode, file, &proc_tid_numa_maps_op); 1855 } 1856 1857 const struct file_operations proc_pid_numa_maps_operations = { 1858 .open = pid_numa_maps_open, 1859 .read = seq_read, 1860 .llseek = seq_lseek, 1861 .release = proc_map_release, 1862 }; 1863 1864 const struct file_operations proc_tid_numa_maps_operations = { 1865 .open = tid_numa_maps_open, 1866 .read = seq_read, 1867 .llseek = seq_lseek, 1868 .release = proc_map_release, 1869 }; 1870 #endif /* CONFIG_NUMA */ 1871