1 #include <linux/mm.h> 2 #include <linux/vmacache.h> 3 #include <linux/hugetlb.h> 4 #include <linux/huge_mm.h> 5 #include <linux/mount.h> 6 #include <linux/seq_file.h> 7 #include <linux/highmem.h> 8 #include <linux/ptrace.h> 9 #include <linux/slab.h> 10 #include <linux/pagemap.h> 11 #include <linux/mempolicy.h> 12 #include <linux/rmap.h> 13 #include <linux/swap.h> 14 #include <linux/swapops.h> 15 #include <linux/mmu_notifier.h> 16 #include <linux/page_idle.h> 17 #include <linux/shmem_fs.h> 18 19 #include <asm/elf.h> 20 #include <asm/uaccess.h> 21 #include <asm/tlbflush.h> 22 #include "internal.h" 23 24 void task_mem(struct seq_file *m, struct mm_struct *mm) 25 { 26 unsigned long text, lib, swap, ptes, pmds, anon, file, shmem; 27 unsigned long hiwater_vm, total_vm, hiwater_rss, total_rss; 28 29 anon = get_mm_counter(mm, MM_ANONPAGES); 30 file = get_mm_counter(mm, MM_FILEPAGES); 31 shmem = get_mm_counter(mm, MM_SHMEMPAGES); 32 33 /* 34 * Note: to minimize their overhead, mm maintains hiwater_vm and 35 * hiwater_rss only when about to *lower* total_vm or rss. Any 36 * collector of these hiwater stats must therefore get total_vm 37 * and rss too, which will usually be the higher. Barriers? not 38 * worth the effort, such snapshots can always be inconsistent. 39 */ 40 hiwater_vm = total_vm = mm->total_vm; 41 if (hiwater_vm < mm->hiwater_vm) 42 hiwater_vm = mm->hiwater_vm; 43 hiwater_rss = total_rss = anon + file + shmem; 44 if (hiwater_rss < mm->hiwater_rss) 45 hiwater_rss = mm->hiwater_rss; 46 47 text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK)) >> 10; 48 lib = (mm->exec_vm << (PAGE_SHIFT-10)) - text; 49 swap = get_mm_counter(mm, MM_SWAPENTS); 50 ptes = PTRS_PER_PTE * sizeof(pte_t) * atomic_long_read(&mm->nr_ptes); 51 pmds = PTRS_PER_PMD * sizeof(pmd_t) * mm_nr_pmds(mm); 52 seq_printf(m, 53 "VmPeak:\t%8lu kB\n" 54 "VmSize:\t%8lu kB\n" 55 "VmLck:\t%8lu kB\n" 56 "VmPin:\t%8lu kB\n" 57 "VmHWM:\t%8lu kB\n" 58 "VmRSS:\t%8lu kB\n" 59 "RssAnon:\t%8lu kB\n" 60 "RssFile:\t%8lu kB\n" 61 "RssShmem:\t%8lu kB\n" 62 "VmData:\t%8lu kB\n" 63 "VmStk:\t%8lu kB\n" 64 "VmExe:\t%8lu kB\n" 65 "VmLib:\t%8lu kB\n" 66 "VmPTE:\t%8lu kB\n" 67 "VmPMD:\t%8lu kB\n" 68 "VmSwap:\t%8lu kB\n", 69 hiwater_vm << (PAGE_SHIFT-10), 70 total_vm << (PAGE_SHIFT-10), 71 mm->locked_vm << (PAGE_SHIFT-10), 72 mm->pinned_vm << (PAGE_SHIFT-10), 73 hiwater_rss << (PAGE_SHIFT-10), 74 total_rss << (PAGE_SHIFT-10), 75 anon << (PAGE_SHIFT-10), 76 file << (PAGE_SHIFT-10), 77 shmem << (PAGE_SHIFT-10), 78 mm->data_vm << (PAGE_SHIFT-10), 79 mm->stack_vm << (PAGE_SHIFT-10), text, lib, 80 ptes >> 10, 81 pmds >> 10, 82 swap << (PAGE_SHIFT-10)); 83 hugetlb_report_usage(m, mm); 84 } 85 86 unsigned long task_vsize(struct mm_struct *mm) 87 { 88 return PAGE_SIZE * mm->total_vm; 89 } 90 91 unsigned long task_statm(struct mm_struct *mm, 92 unsigned long *shared, unsigned long *text, 93 unsigned long *data, unsigned long *resident) 94 { 95 *shared = get_mm_counter(mm, MM_FILEPAGES) + 96 get_mm_counter(mm, MM_SHMEMPAGES); 97 *text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK)) 98 >> PAGE_SHIFT; 99 *data = mm->data_vm + mm->stack_vm; 100 *resident = *shared + get_mm_counter(mm, MM_ANONPAGES); 101 return mm->total_vm; 102 } 103 104 #ifdef CONFIG_NUMA 105 /* 106 * Save get_task_policy() for show_numa_map(). 107 */ 108 static void hold_task_mempolicy(struct proc_maps_private *priv) 109 { 110 struct task_struct *task = priv->task; 111 112 task_lock(task); 113 priv->task_mempolicy = get_task_policy(task); 114 mpol_get(priv->task_mempolicy); 115 task_unlock(task); 116 } 117 static void release_task_mempolicy(struct proc_maps_private *priv) 118 { 119 mpol_put(priv->task_mempolicy); 120 } 121 #else 122 static void hold_task_mempolicy(struct proc_maps_private *priv) 123 { 124 } 125 static void release_task_mempolicy(struct proc_maps_private *priv) 126 { 127 } 128 #endif 129 130 static void vma_stop(struct proc_maps_private *priv) 131 { 132 struct mm_struct *mm = priv->mm; 133 134 release_task_mempolicy(priv); 135 up_read(&mm->mmap_sem); 136 mmput(mm); 137 } 138 139 static struct vm_area_struct * 140 m_next_vma(struct proc_maps_private *priv, struct vm_area_struct *vma) 141 { 142 if (vma == priv->tail_vma) 143 return NULL; 144 return vma->vm_next ?: priv->tail_vma; 145 } 146 147 static void m_cache_vma(struct seq_file *m, struct vm_area_struct *vma) 148 { 149 if (m->count < m->size) /* vma is copied successfully */ 150 m->version = m_next_vma(m->private, vma) ? vma->vm_start : -1UL; 151 } 152 153 static void *m_start(struct seq_file *m, loff_t *ppos) 154 { 155 struct proc_maps_private *priv = m->private; 156 unsigned long last_addr = m->version; 157 struct mm_struct *mm; 158 struct vm_area_struct *vma; 159 unsigned int pos = *ppos; 160 161 /* See m_cache_vma(). Zero at the start or after lseek. */ 162 if (last_addr == -1UL) 163 return NULL; 164 165 priv->task = get_proc_task(priv->inode); 166 if (!priv->task) 167 return ERR_PTR(-ESRCH); 168 169 mm = priv->mm; 170 if (!mm || !atomic_inc_not_zero(&mm->mm_users)) 171 return NULL; 172 173 down_read(&mm->mmap_sem); 174 hold_task_mempolicy(priv); 175 priv->tail_vma = get_gate_vma(mm); 176 177 if (last_addr) { 178 vma = find_vma(mm, last_addr); 179 if (vma && (vma = m_next_vma(priv, vma))) 180 return vma; 181 } 182 183 m->version = 0; 184 if (pos < mm->map_count) { 185 for (vma = mm->mmap; pos; pos--) { 186 m->version = vma->vm_start; 187 vma = vma->vm_next; 188 } 189 return vma; 190 } 191 192 /* we do not bother to update m->version in this case */ 193 if (pos == mm->map_count && priv->tail_vma) 194 return priv->tail_vma; 195 196 vma_stop(priv); 197 return NULL; 198 } 199 200 static void *m_next(struct seq_file *m, void *v, loff_t *pos) 201 { 202 struct proc_maps_private *priv = m->private; 203 struct vm_area_struct *next; 204 205 (*pos)++; 206 next = m_next_vma(priv, v); 207 if (!next) 208 vma_stop(priv); 209 return next; 210 } 211 212 static void m_stop(struct seq_file *m, void *v) 213 { 214 struct proc_maps_private *priv = m->private; 215 216 if (!IS_ERR_OR_NULL(v)) 217 vma_stop(priv); 218 if (priv->task) { 219 put_task_struct(priv->task); 220 priv->task = NULL; 221 } 222 } 223 224 static int proc_maps_open(struct inode *inode, struct file *file, 225 const struct seq_operations *ops, int psize) 226 { 227 struct proc_maps_private *priv = __seq_open_private(file, ops, psize); 228 229 if (!priv) 230 return -ENOMEM; 231 232 priv->inode = inode; 233 priv->mm = proc_mem_open(inode, PTRACE_MODE_READ); 234 if (IS_ERR(priv->mm)) { 235 int err = PTR_ERR(priv->mm); 236 237 seq_release_private(inode, file); 238 return err; 239 } 240 241 return 0; 242 } 243 244 static int proc_map_release(struct inode *inode, struct file *file) 245 { 246 struct seq_file *seq = file->private_data; 247 struct proc_maps_private *priv = seq->private; 248 249 if (priv->mm) 250 mmdrop(priv->mm); 251 252 return seq_release_private(inode, file); 253 } 254 255 static int do_maps_open(struct inode *inode, struct file *file, 256 const struct seq_operations *ops) 257 { 258 return proc_maps_open(inode, file, ops, 259 sizeof(struct proc_maps_private)); 260 } 261 262 /* 263 * Indicate if the VMA is a stack for the given task; for 264 * /proc/PID/maps that is the stack of the main task. 265 */ 266 static int is_stack(struct proc_maps_private *priv, 267 struct vm_area_struct *vma, int is_pid) 268 { 269 int stack = 0; 270 271 if (is_pid) { 272 stack = vma->vm_start <= vma->vm_mm->start_stack && 273 vma->vm_end >= vma->vm_mm->start_stack; 274 } else { 275 struct inode *inode = priv->inode; 276 struct task_struct *task; 277 278 rcu_read_lock(); 279 task = pid_task(proc_pid(inode), PIDTYPE_PID); 280 if (task) 281 stack = vma_is_stack_for_task(vma, task); 282 rcu_read_unlock(); 283 } 284 return stack; 285 } 286 287 static void 288 show_map_vma(struct seq_file *m, struct vm_area_struct *vma, int is_pid) 289 { 290 struct mm_struct *mm = vma->vm_mm; 291 struct file *file = vma->vm_file; 292 struct proc_maps_private *priv = m->private; 293 vm_flags_t flags = vma->vm_flags; 294 unsigned long ino = 0; 295 unsigned long long pgoff = 0; 296 unsigned long start, end; 297 dev_t dev = 0; 298 const char *name = NULL; 299 300 if (file) { 301 struct inode *inode = file_inode(vma->vm_file); 302 dev = inode->i_sb->s_dev; 303 ino = inode->i_ino; 304 pgoff = ((loff_t)vma->vm_pgoff) << PAGE_SHIFT; 305 } 306 307 /* We don't show the stack guard page in /proc/maps */ 308 start = vma->vm_start; 309 if (stack_guard_page_start(vma, start)) 310 start += PAGE_SIZE; 311 end = vma->vm_end; 312 if (stack_guard_page_end(vma, end)) 313 end -= PAGE_SIZE; 314 315 seq_setwidth(m, 25 + sizeof(void *) * 6 - 1); 316 seq_printf(m, "%08lx-%08lx %c%c%c%c %08llx %02x:%02x %lu ", 317 start, 318 end, 319 flags & VM_READ ? 'r' : '-', 320 flags & VM_WRITE ? 'w' : '-', 321 flags & VM_EXEC ? 'x' : '-', 322 flags & VM_MAYSHARE ? 's' : 'p', 323 pgoff, 324 MAJOR(dev), MINOR(dev), ino); 325 326 /* 327 * Print the dentry name for named mappings, and a 328 * special [heap] marker for the heap: 329 */ 330 if (file) { 331 seq_pad(m, ' '); 332 seq_file_path(m, file, "\n"); 333 goto done; 334 } 335 336 if (vma->vm_ops && vma->vm_ops->name) { 337 name = vma->vm_ops->name(vma); 338 if (name) 339 goto done; 340 } 341 342 name = arch_vma_name(vma); 343 if (!name) { 344 if (!mm) { 345 name = "[vdso]"; 346 goto done; 347 } 348 349 if (vma->vm_start <= mm->brk && 350 vma->vm_end >= mm->start_brk) { 351 name = "[heap]"; 352 goto done; 353 } 354 355 if (is_stack(priv, vma, is_pid)) 356 name = "[stack]"; 357 } 358 359 done: 360 if (name) { 361 seq_pad(m, ' '); 362 seq_puts(m, name); 363 } 364 seq_putc(m, '\n'); 365 } 366 367 static int show_map(struct seq_file *m, void *v, int is_pid) 368 { 369 show_map_vma(m, v, is_pid); 370 m_cache_vma(m, v); 371 return 0; 372 } 373 374 static int show_pid_map(struct seq_file *m, void *v) 375 { 376 return show_map(m, v, 1); 377 } 378 379 static int show_tid_map(struct seq_file *m, void *v) 380 { 381 return show_map(m, v, 0); 382 } 383 384 static const struct seq_operations proc_pid_maps_op = { 385 .start = m_start, 386 .next = m_next, 387 .stop = m_stop, 388 .show = show_pid_map 389 }; 390 391 static const struct seq_operations proc_tid_maps_op = { 392 .start = m_start, 393 .next = m_next, 394 .stop = m_stop, 395 .show = show_tid_map 396 }; 397 398 static int pid_maps_open(struct inode *inode, struct file *file) 399 { 400 return do_maps_open(inode, file, &proc_pid_maps_op); 401 } 402 403 static int tid_maps_open(struct inode *inode, struct file *file) 404 { 405 return do_maps_open(inode, file, &proc_tid_maps_op); 406 } 407 408 const struct file_operations proc_pid_maps_operations = { 409 .open = pid_maps_open, 410 .read = seq_read, 411 .llseek = seq_lseek, 412 .release = proc_map_release, 413 }; 414 415 const struct file_operations proc_tid_maps_operations = { 416 .open = tid_maps_open, 417 .read = seq_read, 418 .llseek = seq_lseek, 419 .release = proc_map_release, 420 }; 421 422 /* 423 * Proportional Set Size(PSS): my share of RSS. 424 * 425 * PSS of a process is the count of pages it has in memory, where each 426 * page is divided by the number of processes sharing it. So if a 427 * process has 1000 pages all to itself, and 1000 shared with one other 428 * process, its PSS will be 1500. 429 * 430 * To keep (accumulated) division errors low, we adopt a 64bit 431 * fixed-point pss counter to minimize division errors. So (pss >> 432 * PSS_SHIFT) would be the real byte count. 433 * 434 * A shift of 12 before division means (assuming 4K page size): 435 * - 1M 3-user-pages add up to 8KB errors; 436 * - supports mapcount up to 2^24, or 16M; 437 * - supports PSS up to 2^52 bytes, or 4PB. 438 */ 439 #define PSS_SHIFT 12 440 441 #ifdef CONFIG_PROC_PAGE_MONITOR 442 struct mem_size_stats { 443 unsigned long resident; 444 unsigned long shared_clean; 445 unsigned long shared_dirty; 446 unsigned long private_clean; 447 unsigned long private_dirty; 448 unsigned long referenced; 449 unsigned long anonymous; 450 unsigned long anonymous_thp; 451 unsigned long shmem_thp; 452 unsigned long swap; 453 unsigned long shared_hugetlb; 454 unsigned long private_hugetlb; 455 u64 pss; 456 u64 swap_pss; 457 bool check_shmem_swap; 458 }; 459 460 static void smaps_account(struct mem_size_stats *mss, struct page *page, 461 bool compound, bool young, bool dirty) 462 { 463 int i, nr = compound ? 1 << compound_order(page) : 1; 464 unsigned long size = nr * PAGE_SIZE; 465 466 if (PageAnon(page)) 467 mss->anonymous += size; 468 469 mss->resident += size; 470 /* Accumulate the size in pages that have been accessed. */ 471 if (young || page_is_young(page) || PageReferenced(page)) 472 mss->referenced += size; 473 474 /* 475 * page_count(page) == 1 guarantees the page is mapped exactly once. 476 * If any subpage of the compound page mapped with PTE it would elevate 477 * page_count(). 478 */ 479 if (page_count(page) == 1) { 480 if (dirty || PageDirty(page)) 481 mss->private_dirty += size; 482 else 483 mss->private_clean += size; 484 mss->pss += (u64)size << PSS_SHIFT; 485 return; 486 } 487 488 for (i = 0; i < nr; i++, page++) { 489 int mapcount = page_mapcount(page); 490 491 if (mapcount >= 2) { 492 if (dirty || PageDirty(page)) 493 mss->shared_dirty += PAGE_SIZE; 494 else 495 mss->shared_clean += PAGE_SIZE; 496 mss->pss += (PAGE_SIZE << PSS_SHIFT) / mapcount; 497 } else { 498 if (dirty || PageDirty(page)) 499 mss->private_dirty += PAGE_SIZE; 500 else 501 mss->private_clean += PAGE_SIZE; 502 mss->pss += PAGE_SIZE << PSS_SHIFT; 503 } 504 } 505 } 506 507 #ifdef CONFIG_SHMEM 508 static int smaps_pte_hole(unsigned long addr, unsigned long end, 509 struct mm_walk *walk) 510 { 511 struct mem_size_stats *mss = walk->private; 512 513 mss->swap += shmem_partial_swap_usage( 514 walk->vma->vm_file->f_mapping, addr, end); 515 516 return 0; 517 } 518 #endif 519 520 static void smaps_pte_entry(pte_t *pte, unsigned long addr, 521 struct mm_walk *walk) 522 { 523 struct mem_size_stats *mss = walk->private; 524 struct vm_area_struct *vma = walk->vma; 525 struct page *page = NULL; 526 527 if (pte_present(*pte)) { 528 page = vm_normal_page(vma, addr, *pte); 529 } else if (is_swap_pte(*pte)) { 530 swp_entry_t swpent = pte_to_swp_entry(*pte); 531 532 if (!non_swap_entry(swpent)) { 533 int mapcount; 534 535 mss->swap += PAGE_SIZE; 536 mapcount = swp_swapcount(swpent); 537 if (mapcount >= 2) { 538 u64 pss_delta = (u64)PAGE_SIZE << PSS_SHIFT; 539 540 do_div(pss_delta, mapcount); 541 mss->swap_pss += pss_delta; 542 } else { 543 mss->swap_pss += (u64)PAGE_SIZE << PSS_SHIFT; 544 } 545 } else if (is_migration_entry(swpent)) 546 page = migration_entry_to_page(swpent); 547 } else if (unlikely(IS_ENABLED(CONFIG_SHMEM) && mss->check_shmem_swap 548 && pte_none(*pte))) { 549 page = find_get_entry(vma->vm_file->f_mapping, 550 linear_page_index(vma, addr)); 551 if (!page) 552 return; 553 554 if (radix_tree_exceptional_entry(page)) 555 mss->swap += PAGE_SIZE; 556 else 557 put_page(page); 558 559 return; 560 } 561 562 if (!page) 563 return; 564 565 smaps_account(mss, page, false, pte_young(*pte), pte_dirty(*pte)); 566 } 567 568 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 569 static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr, 570 struct mm_walk *walk) 571 { 572 struct mem_size_stats *mss = walk->private; 573 struct vm_area_struct *vma = walk->vma; 574 struct page *page; 575 576 /* FOLL_DUMP will return -EFAULT on huge zero page */ 577 page = follow_trans_huge_pmd(vma, addr, pmd, FOLL_DUMP); 578 if (IS_ERR_OR_NULL(page)) 579 return; 580 if (PageAnon(page)) 581 mss->anonymous_thp += HPAGE_PMD_SIZE; 582 else if (PageSwapBacked(page)) 583 mss->shmem_thp += HPAGE_PMD_SIZE; 584 else if (is_zone_device_page(page)) 585 /* pass */; 586 else 587 VM_BUG_ON_PAGE(1, page); 588 smaps_account(mss, page, true, pmd_young(*pmd), pmd_dirty(*pmd)); 589 } 590 #else 591 static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr, 592 struct mm_walk *walk) 593 { 594 } 595 #endif 596 597 static int smaps_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end, 598 struct mm_walk *walk) 599 { 600 struct vm_area_struct *vma = walk->vma; 601 pte_t *pte; 602 spinlock_t *ptl; 603 604 ptl = pmd_trans_huge_lock(pmd, vma); 605 if (ptl) { 606 smaps_pmd_entry(pmd, addr, walk); 607 spin_unlock(ptl); 608 return 0; 609 } 610 611 if (pmd_trans_unstable(pmd)) 612 return 0; 613 /* 614 * The mmap_sem held all the way back in m_start() is what 615 * keeps khugepaged out of here and from collapsing things 616 * in here. 617 */ 618 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 619 for (; addr != end; pte++, addr += PAGE_SIZE) 620 smaps_pte_entry(pte, addr, walk); 621 pte_unmap_unlock(pte - 1, ptl); 622 cond_resched(); 623 return 0; 624 } 625 626 static void show_smap_vma_flags(struct seq_file *m, struct vm_area_struct *vma) 627 { 628 /* 629 * Don't forget to update Documentation/ on changes. 630 */ 631 static const char mnemonics[BITS_PER_LONG][2] = { 632 /* 633 * In case if we meet a flag we don't know about. 634 */ 635 [0 ... (BITS_PER_LONG-1)] = "??", 636 637 [ilog2(VM_READ)] = "rd", 638 [ilog2(VM_WRITE)] = "wr", 639 [ilog2(VM_EXEC)] = "ex", 640 [ilog2(VM_SHARED)] = "sh", 641 [ilog2(VM_MAYREAD)] = "mr", 642 [ilog2(VM_MAYWRITE)] = "mw", 643 [ilog2(VM_MAYEXEC)] = "me", 644 [ilog2(VM_MAYSHARE)] = "ms", 645 [ilog2(VM_GROWSDOWN)] = "gd", 646 [ilog2(VM_PFNMAP)] = "pf", 647 [ilog2(VM_DENYWRITE)] = "dw", 648 #ifdef CONFIG_X86_INTEL_MPX 649 [ilog2(VM_MPX)] = "mp", 650 #endif 651 [ilog2(VM_LOCKED)] = "lo", 652 [ilog2(VM_IO)] = "io", 653 [ilog2(VM_SEQ_READ)] = "sr", 654 [ilog2(VM_RAND_READ)] = "rr", 655 [ilog2(VM_DONTCOPY)] = "dc", 656 [ilog2(VM_DONTEXPAND)] = "de", 657 [ilog2(VM_ACCOUNT)] = "ac", 658 [ilog2(VM_NORESERVE)] = "nr", 659 [ilog2(VM_HUGETLB)] = "ht", 660 [ilog2(VM_ARCH_1)] = "ar", 661 [ilog2(VM_DONTDUMP)] = "dd", 662 #ifdef CONFIG_MEM_SOFT_DIRTY 663 [ilog2(VM_SOFTDIRTY)] = "sd", 664 #endif 665 [ilog2(VM_MIXEDMAP)] = "mm", 666 [ilog2(VM_HUGEPAGE)] = "hg", 667 [ilog2(VM_NOHUGEPAGE)] = "nh", 668 [ilog2(VM_MERGEABLE)] = "mg", 669 [ilog2(VM_UFFD_MISSING)]= "um", 670 [ilog2(VM_UFFD_WP)] = "uw", 671 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS 672 /* These come out via ProtectionKey: */ 673 [ilog2(VM_PKEY_BIT0)] = "", 674 [ilog2(VM_PKEY_BIT1)] = "", 675 [ilog2(VM_PKEY_BIT2)] = "", 676 [ilog2(VM_PKEY_BIT3)] = "", 677 #endif 678 }; 679 size_t i; 680 681 seq_puts(m, "VmFlags: "); 682 for (i = 0; i < BITS_PER_LONG; i++) { 683 if (!mnemonics[i][0]) 684 continue; 685 if (vma->vm_flags & (1UL << i)) { 686 seq_printf(m, "%c%c ", 687 mnemonics[i][0], mnemonics[i][1]); 688 } 689 } 690 seq_putc(m, '\n'); 691 } 692 693 #ifdef CONFIG_HUGETLB_PAGE 694 static int smaps_hugetlb_range(pte_t *pte, unsigned long hmask, 695 unsigned long addr, unsigned long end, 696 struct mm_walk *walk) 697 { 698 struct mem_size_stats *mss = walk->private; 699 struct vm_area_struct *vma = walk->vma; 700 struct page *page = NULL; 701 702 if (pte_present(*pte)) { 703 page = vm_normal_page(vma, addr, *pte); 704 } else if (is_swap_pte(*pte)) { 705 swp_entry_t swpent = pte_to_swp_entry(*pte); 706 707 if (is_migration_entry(swpent)) 708 page = migration_entry_to_page(swpent); 709 } 710 if (page) { 711 int mapcount = page_mapcount(page); 712 713 if (mapcount >= 2) 714 mss->shared_hugetlb += huge_page_size(hstate_vma(vma)); 715 else 716 mss->private_hugetlb += huge_page_size(hstate_vma(vma)); 717 } 718 return 0; 719 } 720 #endif /* HUGETLB_PAGE */ 721 722 void __weak arch_show_smap(struct seq_file *m, struct vm_area_struct *vma) 723 { 724 } 725 726 static int show_smap(struct seq_file *m, void *v, int is_pid) 727 { 728 struct vm_area_struct *vma = v; 729 struct mem_size_stats mss; 730 struct mm_walk smaps_walk = { 731 .pmd_entry = smaps_pte_range, 732 #ifdef CONFIG_HUGETLB_PAGE 733 .hugetlb_entry = smaps_hugetlb_range, 734 #endif 735 .mm = vma->vm_mm, 736 .private = &mss, 737 }; 738 739 memset(&mss, 0, sizeof mss); 740 741 #ifdef CONFIG_SHMEM 742 if (vma->vm_file && shmem_mapping(vma->vm_file->f_mapping)) { 743 /* 744 * For shared or readonly shmem mappings we know that all 745 * swapped out pages belong to the shmem object, and we can 746 * obtain the swap value much more efficiently. For private 747 * writable mappings, we might have COW pages that are 748 * not affected by the parent swapped out pages of the shmem 749 * object, so we have to distinguish them during the page walk. 750 * Unless we know that the shmem object (or the part mapped by 751 * our VMA) has no swapped out pages at all. 752 */ 753 unsigned long shmem_swapped = shmem_swap_usage(vma); 754 755 if (!shmem_swapped || (vma->vm_flags & VM_SHARED) || 756 !(vma->vm_flags & VM_WRITE)) { 757 mss.swap = shmem_swapped; 758 } else { 759 mss.check_shmem_swap = true; 760 smaps_walk.pte_hole = smaps_pte_hole; 761 } 762 } 763 #endif 764 765 /* mmap_sem is held in m_start */ 766 walk_page_vma(vma, &smaps_walk); 767 768 show_map_vma(m, vma, is_pid); 769 770 seq_printf(m, 771 "Size: %8lu kB\n" 772 "Rss: %8lu kB\n" 773 "Pss: %8lu kB\n" 774 "Shared_Clean: %8lu kB\n" 775 "Shared_Dirty: %8lu kB\n" 776 "Private_Clean: %8lu kB\n" 777 "Private_Dirty: %8lu kB\n" 778 "Referenced: %8lu kB\n" 779 "Anonymous: %8lu kB\n" 780 "AnonHugePages: %8lu kB\n" 781 "ShmemPmdMapped: %8lu kB\n" 782 "Shared_Hugetlb: %8lu kB\n" 783 "Private_Hugetlb: %7lu kB\n" 784 "Swap: %8lu kB\n" 785 "SwapPss: %8lu kB\n" 786 "KernelPageSize: %8lu kB\n" 787 "MMUPageSize: %8lu kB\n" 788 "Locked: %8lu kB\n", 789 (vma->vm_end - vma->vm_start) >> 10, 790 mss.resident >> 10, 791 (unsigned long)(mss.pss >> (10 + PSS_SHIFT)), 792 mss.shared_clean >> 10, 793 mss.shared_dirty >> 10, 794 mss.private_clean >> 10, 795 mss.private_dirty >> 10, 796 mss.referenced >> 10, 797 mss.anonymous >> 10, 798 mss.anonymous_thp >> 10, 799 mss.shmem_thp >> 10, 800 mss.shared_hugetlb >> 10, 801 mss.private_hugetlb >> 10, 802 mss.swap >> 10, 803 (unsigned long)(mss.swap_pss >> (10 + PSS_SHIFT)), 804 vma_kernel_pagesize(vma) >> 10, 805 vma_mmu_pagesize(vma) >> 10, 806 (vma->vm_flags & VM_LOCKED) ? 807 (unsigned long)(mss.pss >> (10 + PSS_SHIFT)) : 0); 808 809 arch_show_smap(m, vma); 810 show_smap_vma_flags(m, vma); 811 m_cache_vma(m, vma); 812 return 0; 813 } 814 815 static int show_pid_smap(struct seq_file *m, void *v) 816 { 817 return show_smap(m, v, 1); 818 } 819 820 static int show_tid_smap(struct seq_file *m, void *v) 821 { 822 return show_smap(m, v, 0); 823 } 824 825 static const struct seq_operations proc_pid_smaps_op = { 826 .start = m_start, 827 .next = m_next, 828 .stop = m_stop, 829 .show = show_pid_smap 830 }; 831 832 static const struct seq_operations proc_tid_smaps_op = { 833 .start = m_start, 834 .next = m_next, 835 .stop = m_stop, 836 .show = show_tid_smap 837 }; 838 839 static int pid_smaps_open(struct inode *inode, struct file *file) 840 { 841 return do_maps_open(inode, file, &proc_pid_smaps_op); 842 } 843 844 static int tid_smaps_open(struct inode *inode, struct file *file) 845 { 846 return do_maps_open(inode, file, &proc_tid_smaps_op); 847 } 848 849 const struct file_operations proc_pid_smaps_operations = { 850 .open = pid_smaps_open, 851 .read = seq_read, 852 .llseek = seq_lseek, 853 .release = proc_map_release, 854 }; 855 856 const struct file_operations proc_tid_smaps_operations = { 857 .open = tid_smaps_open, 858 .read = seq_read, 859 .llseek = seq_lseek, 860 .release = proc_map_release, 861 }; 862 863 enum clear_refs_types { 864 CLEAR_REFS_ALL = 1, 865 CLEAR_REFS_ANON, 866 CLEAR_REFS_MAPPED, 867 CLEAR_REFS_SOFT_DIRTY, 868 CLEAR_REFS_MM_HIWATER_RSS, 869 CLEAR_REFS_LAST, 870 }; 871 872 struct clear_refs_private { 873 enum clear_refs_types type; 874 }; 875 876 #ifdef CONFIG_MEM_SOFT_DIRTY 877 static inline void clear_soft_dirty(struct vm_area_struct *vma, 878 unsigned long addr, pte_t *pte) 879 { 880 /* 881 * The soft-dirty tracker uses #PF-s to catch writes 882 * to pages, so write-protect the pte as well. See the 883 * Documentation/vm/soft-dirty.txt for full description 884 * of how soft-dirty works. 885 */ 886 pte_t ptent = *pte; 887 888 if (pte_present(ptent)) { 889 ptent = ptep_modify_prot_start(vma->vm_mm, addr, pte); 890 ptent = pte_wrprotect(ptent); 891 ptent = pte_clear_soft_dirty(ptent); 892 ptep_modify_prot_commit(vma->vm_mm, addr, pte, ptent); 893 } else if (is_swap_pte(ptent)) { 894 ptent = pte_swp_clear_soft_dirty(ptent); 895 set_pte_at(vma->vm_mm, addr, pte, ptent); 896 } 897 } 898 #else 899 static inline void clear_soft_dirty(struct vm_area_struct *vma, 900 unsigned long addr, pte_t *pte) 901 { 902 } 903 #endif 904 905 #if defined(CONFIG_MEM_SOFT_DIRTY) && defined(CONFIG_TRANSPARENT_HUGEPAGE) 906 static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma, 907 unsigned long addr, pmd_t *pmdp) 908 { 909 pmd_t pmd = pmdp_huge_get_and_clear(vma->vm_mm, addr, pmdp); 910 911 pmd = pmd_wrprotect(pmd); 912 pmd = pmd_clear_soft_dirty(pmd); 913 914 set_pmd_at(vma->vm_mm, addr, pmdp, pmd); 915 } 916 #else 917 static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma, 918 unsigned long addr, pmd_t *pmdp) 919 { 920 } 921 #endif 922 923 static int clear_refs_pte_range(pmd_t *pmd, unsigned long addr, 924 unsigned long end, struct mm_walk *walk) 925 { 926 struct clear_refs_private *cp = walk->private; 927 struct vm_area_struct *vma = walk->vma; 928 pte_t *pte, ptent; 929 spinlock_t *ptl; 930 struct page *page; 931 932 ptl = pmd_trans_huge_lock(pmd, vma); 933 if (ptl) { 934 if (cp->type == CLEAR_REFS_SOFT_DIRTY) { 935 clear_soft_dirty_pmd(vma, addr, pmd); 936 goto out; 937 } 938 939 page = pmd_page(*pmd); 940 941 /* Clear accessed and referenced bits. */ 942 pmdp_test_and_clear_young(vma, addr, pmd); 943 test_and_clear_page_young(page); 944 ClearPageReferenced(page); 945 out: 946 spin_unlock(ptl); 947 return 0; 948 } 949 950 if (pmd_trans_unstable(pmd)) 951 return 0; 952 953 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 954 for (; addr != end; pte++, addr += PAGE_SIZE) { 955 ptent = *pte; 956 957 if (cp->type == CLEAR_REFS_SOFT_DIRTY) { 958 clear_soft_dirty(vma, addr, pte); 959 continue; 960 } 961 962 if (!pte_present(ptent)) 963 continue; 964 965 page = vm_normal_page(vma, addr, ptent); 966 if (!page) 967 continue; 968 969 /* Clear accessed and referenced bits. */ 970 ptep_test_and_clear_young(vma, addr, pte); 971 test_and_clear_page_young(page); 972 ClearPageReferenced(page); 973 } 974 pte_unmap_unlock(pte - 1, ptl); 975 cond_resched(); 976 return 0; 977 } 978 979 static int clear_refs_test_walk(unsigned long start, unsigned long end, 980 struct mm_walk *walk) 981 { 982 struct clear_refs_private *cp = walk->private; 983 struct vm_area_struct *vma = walk->vma; 984 985 if (vma->vm_flags & VM_PFNMAP) 986 return 1; 987 988 /* 989 * Writing 1 to /proc/pid/clear_refs affects all pages. 990 * Writing 2 to /proc/pid/clear_refs only affects anonymous pages. 991 * Writing 3 to /proc/pid/clear_refs only affects file mapped pages. 992 * Writing 4 to /proc/pid/clear_refs affects all pages. 993 */ 994 if (cp->type == CLEAR_REFS_ANON && vma->vm_file) 995 return 1; 996 if (cp->type == CLEAR_REFS_MAPPED && !vma->vm_file) 997 return 1; 998 return 0; 999 } 1000 1001 static ssize_t clear_refs_write(struct file *file, const char __user *buf, 1002 size_t count, loff_t *ppos) 1003 { 1004 struct task_struct *task; 1005 char buffer[PROC_NUMBUF]; 1006 struct mm_struct *mm; 1007 struct vm_area_struct *vma; 1008 enum clear_refs_types type; 1009 int itype; 1010 int rv; 1011 1012 memset(buffer, 0, sizeof(buffer)); 1013 if (count > sizeof(buffer) - 1) 1014 count = sizeof(buffer) - 1; 1015 if (copy_from_user(buffer, buf, count)) 1016 return -EFAULT; 1017 rv = kstrtoint(strstrip(buffer), 10, &itype); 1018 if (rv < 0) 1019 return rv; 1020 type = (enum clear_refs_types)itype; 1021 if (type < CLEAR_REFS_ALL || type >= CLEAR_REFS_LAST) 1022 return -EINVAL; 1023 1024 task = get_proc_task(file_inode(file)); 1025 if (!task) 1026 return -ESRCH; 1027 mm = get_task_mm(task); 1028 if (mm) { 1029 struct clear_refs_private cp = { 1030 .type = type, 1031 }; 1032 struct mm_walk clear_refs_walk = { 1033 .pmd_entry = clear_refs_pte_range, 1034 .test_walk = clear_refs_test_walk, 1035 .mm = mm, 1036 .private = &cp, 1037 }; 1038 1039 if (type == CLEAR_REFS_MM_HIWATER_RSS) { 1040 if (down_write_killable(&mm->mmap_sem)) { 1041 count = -EINTR; 1042 goto out_mm; 1043 } 1044 1045 /* 1046 * Writing 5 to /proc/pid/clear_refs resets the peak 1047 * resident set size to this mm's current rss value. 1048 */ 1049 reset_mm_hiwater_rss(mm); 1050 up_write(&mm->mmap_sem); 1051 goto out_mm; 1052 } 1053 1054 down_read(&mm->mmap_sem); 1055 if (type == CLEAR_REFS_SOFT_DIRTY) { 1056 for (vma = mm->mmap; vma; vma = vma->vm_next) { 1057 if (!(vma->vm_flags & VM_SOFTDIRTY)) 1058 continue; 1059 up_read(&mm->mmap_sem); 1060 if (down_write_killable(&mm->mmap_sem)) { 1061 count = -EINTR; 1062 goto out_mm; 1063 } 1064 for (vma = mm->mmap; vma; vma = vma->vm_next) { 1065 vma->vm_flags &= ~VM_SOFTDIRTY; 1066 vma_set_page_prot(vma); 1067 } 1068 downgrade_write(&mm->mmap_sem); 1069 break; 1070 } 1071 mmu_notifier_invalidate_range_start(mm, 0, -1); 1072 } 1073 walk_page_range(0, ~0UL, &clear_refs_walk); 1074 if (type == CLEAR_REFS_SOFT_DIRTY) 1075 mmu_notifier_invalidate_range_end(mm, 0, -1); 1076 flush_tlb_mm(mm); 1077 up_read(&mm->mmap_sem); 1078 out_mm: 1079 mmput(mm); 1080 } 1081 put_task_struct(task); 1082 1083 return count; 1084 } 1085 1086 const struct file_operations proc_clear_refs_operations = { 1087 .write = clear_refs_write, 1088 .llseek = noop_llseek, 1089 }; 1090 1091 typedef struct { 1092 u64 pme; 1093 } pagemap_entry_t; 1094 1095 struct pagemapread { 1096 int pos, len; /* units: PM_ENTRY_BYTES, not bytes */ 1097 pagemap_entry_t *buffer; 1098 bool show_pfn; 1099 }; 1100 1101 #define PAGEMAP_WALK_SIZE (PMD_SIZE) 1102 #define PAGEMAP_WALK_MASK (PMD_MASK) 1103 1104 #define PM_ENTRY_BYTES sizeof(pagemap_entry_t) 1105 #define PM_PFRAME_BITS 55 1106 #define PM_PFRAME_MASK GENMASK_ULL(PM_PFRAME_BITS - 1, 0) 1107 #define PM_SOFT_DIRTY BIT_ULL(55) 1108 #define PM_MMAP_EXCLUSIVE BIT_ULL(56) 1109 #define PM_FILE BIT_ULL(61) 1110 #define PM_SWAP BIT_ULL(62) 1111 #define PM_PRESENT BIT_ULL(63) 1112 1113 #define PM_END_OF_BUFFER 1 1114 1115 static inline pagemap_entry_t make_pme(u64 frame, u64 flags) 1116 { 1117 return (pagemap_entry_t) { .pme = (frame & PM_PFRAME_MASK) | flags }; 1118 } 1119 1120 static int add_to_pagemap(unsigned long addr, pagemap_entry_t *pme, 1121 struct pagemapread *pm) 1122 { 1123 pm->buffer[pm->pos++] = *pme; 1124 if (pm->pos >= pm->len) 1125 return PM_END_OF_BUFFER; 1126 return 0; 1127 } 1128 1129 static int pagemap_pte_hole(unsigned long start, unsigned long end, 1130 struct mm_walk *walk) 1131 { 1132 struct pagemapread *pm = walk->private; 1133 unsigned long addr = start; 1134 int err = 0; 1135 1136 while (addr < end) { 1137 struct vm_area_struct *vma = find_vma(walk->mm, addr); 1138 pagemap_entry_t pme = make_pme(0, 0); 1139 /* End of address space hole, which we mark as non-present. */ 1140 unsigned long hole_end; 1141 1142 if (vma) 1143 hole_end = min(end, vma->vm_start); 1144 else 1145 hole_end = end; 1146 1147 for (; addr < hole_end; addr += PAGE_SIZE) { 1148 err = add_to_pagemap(addr, &pme, pm); 1149 if (err) 1150 goto out; 1151 } 1152 1153 if (!vma) 1154 break; 1155 1156 /* Addresses in the VMA. */ 1157 if (vma->vm_flags & VM_SOFTDIRTY) 1158 pme = make_pme(0, PM_SOFT_DIRTY); 1159 for (; addr < min(end, vma->vm_end); addr += PAGE_SIZE) { 1160 err = add_to_pagemap(addr, &pme, pm); 1161 if (err) 1162 goto out; 1163 } 1164 } 1165 out: 1166 return err; 1167 } 1168 1169 static pagemap_entry_t pte_to_pagemap_entry(struct pagemapread *pm, 1170 struct vm_area_struct *vma, unsigned long addr, pte_t pte) 1171 { 1172 u64 frame = 0, flags = 0; 1173 struct page *page = NULL; 1174 1175 if (pte_present(pte)) { 1176 if (pm->show_pfn) 1177 frame = pte_pfn(pte); 1178 flags |= PM_PRESENT; 1179 page = vm_normal_page(vma, addr, pte); 1180 if (pte_soft_dirty(pte)) 1181 flags |= PM_SOFT_DIRTY; 1182 } else if (is_swap_pte(pte)) { 1183 swp_entry_t entry; 1184 if (pte_swp_soft_dirty(pte)) 1185 flags |= PM_SOFT_DIRTY; 1186 entry = pte_to_swp_entry(pte); 1187 frame = swp_type(entry) | 1188 (swp_offset(entry) << MAX_SWAPFILES_SHIFT); 1189 flags |= PM_SWAP; 1190 if (is_migration_entry(entry)) 1191 page = migration_entry_to_page(entry); 1192 } 1193 1194 if (page && !PageAnon(page)) 1195 flags |= PM_FILE; 1196 if (page && page_mapcount(page) == 1) 1197 flags |= PM_MMAP_EXCLUSIVE; 1198 if (vma->vm_flags & VM_SOFTDIRTY) 1199 flags |= PM_SOFT_DIRTY; 1200 1201 return make_pme(frame, flags); 1202 } 1203 1204 static int pagemap_pmd_range(pmd_t *pmdp, unsigned long addr, unsigned long end, 1205 struct mm_walk *walk) 1206 { 1207 struct vm_area_struct *vma = walk->vma; 1208 struct pagemapread *pm = walk->private; 1209 spinlock_t *ptl; 1210 pte_t *pte, *orig_pte; 1211 int err = 0; 1212 1213 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1214 ptl = pmd_trans_huge_lock(pmdp, vma); 1215 if (ptl) { 1216 u64 flags = 0, frame = 0; 1217 pmd_t pmd = *pmdp; 1218 1219 if ((vma->vm_flags & VM_SOFTDIRTY) || pmd_soft_dirty(pmd)) 1220 flags |= PM_SOFT_DIRTY; 1221 1222 /* 1223 * Currently pmd for thp is always present because thp 1224 * can not be swapped-out, migrated, or HWPOISONed 1225 * (split in such cases instead.) 1226 * This if-check is just to prepare for future implementation. 1227 */ 1228 if (pmd_present(pmd)) { 1229 struct page *page = pmd_page(pmd); 1230 1231 if (page_mapcount(page) == 1) 1232 flags |= PM_MMAP_EXCLUSIVE; 1233 1234 flags |= PM_PRESENT; 1235 if (pm->show_pfn) 1236 frame = pmd_pfn(pmd) + 1237 ((addr & ~PMD_MASK) >> PAGE_SHIFT); 1238 } 1239 1240 for (; addr != end; addr += PAGE_SIZE) { 1241 pagemap_entry_t pme = make_pme(frame, flags); 1242 1243 err = add_to_pagemap(addr, &pme, pm); 1244 if (err) 1245 break; 1246 if (pm->show_pfn && (flags & PM_PRESENT)) 1247 frame++; 1248 } 1249 spin_unlock(ptl); 1250 return err; 1251 } 1252 1253 if (pmd_trans_unstable(pmdp)) 1254 return 0; 1255 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 1256 1257 /* 1258 * We can assume that @vma always points to a valid one and @end never 1259 * goes beyond vma->vm_end. 1260 */ 1261 orig_pte = pte = pte_offset_map_lock(walk->mm, pmdp, addr, &ptl); 1262 for (; addr < end; pte++, addr += PAGE_SIZE) { 1263 pagemap_entry_t pme; 1264 1265 pme = pte_to_pagemap_entry(pm, vma, addr, *pte); 1266 err = add_to_pagemap(addr, &pme, pm); 1267 if (err) 1268 break; 1269 } 1270 pte_unmap_unlock(orig_pte, ptl); 1271 1272 cond_resched(); 1273 1274 return err; 1275 } 1276 1277 #ifdef CONFIG_HUGETLB_PAGE 1278 /* This function walks within one hugetlb entry in the single call */ 1279 static int pagemap_hugetlb_range(pte_t *ptep, unsigned long hmask, 1280 unsigned long addr, unsigned long end, 1281 struct mm_walk *walk) 1282 { 1283 struct pagemapread *pm = walk->private; 1284 struct vm_area_struct *vma = walk->vma; 1285 u64 flags = 0, frame = 0; 1286 int err = 0; 1287 pte_t pte; 1288 1289 if (vma->vm_flags & VM_SOFTDIRTY) 1290 flags |= PM_SOFT_DIRTY; 1291 1292 pte = huge_ptep_get(ptep); 1293 if (pte_present(pte)) { 1294 struct page *page = pte_page(pte); 1295 1296 if (!PageAnon(page)) 1297 flags |= PM_FILE; 1298 1299 if (page_mapcount(page) == 1) 1300 flags |= PM_MMAP_EXCLUSIVE; 1301 1302 flags |= PM_PRESENT; 1303 if (pm->show_pfn) 1304 frame = pte_pfn(pte) + 1305 ((addr & ~hmask) >> PAGE_SHIFT); 1306 } 1307 1308 for (; addr != end; addr += PAGE_SIZE) { 1309 pagemap_entry_t pme = make_pme(frame, flags); 1310 1311 err = add_to_pagemap(addr, &pme, pm); 1312 if (err) 1313 return err; 1314 if (pm->show_pfn && (flags & PM_PRESENT)) 1315 frame++; 1316 } 1317 1318 cond_resched(); 1319 1320 return err; 1321 } 1322 #endif /* HUGETLB_PAGE */ 1323 1324 /* 1325 * /proc/pid/pagemap - an array mapping virtual pages to pfns 1326 * 1327 * For each page in the address space, this file contains one 64-bit entry 1328 * consisting of the following: 1329 * 1330 * Bits 0-54 page frame number (PFN) if present 1331 * Bits 0-4 swap type if swapped 1332 * Bits 5-54 swap offset if swapped 1333 * Bit 55 pte is soft-dirty (see Documentation/vm/soft-dirty.txt) 1334 * Bit 56 page exclusively mapped 1335 * Bits 57-60 zero 1336 * Bit 61 page is file-page or shared-anon 1337 * Bit 62 page swapped 1338 * Bit 63 page present 1339 * 1340 * If the page is not present but in swap, then the PFN contains an 1341 * encoding of the swap file number and the page's offset into the 1342 * swap. Unmapped pages return a null PFN. This allows determining 1343 * precisely which pages are mapped (or in swap) and comparing mapped 1344 * pages between processes. 1345 * 1346 * Efficient users of this interface will use /proc/pid/maps to 1347 * determine which areas of memory are actually mapped and llseek to 1348 * skip over unmapped regions. 1349 */ 1350 static ssize_t pagemap_read(struct file *file, char __user *buf, 1351 size_t count, loff_t *ppos) 1352 { 1353 struct mm_struct *mm = file->private_data; 1354 struct pagemapread pm; 1355 struct mm_walk pagemap_walk = {}; 1356 unsigned long src; 1357 unsigned long svpfn; 1358 unsigned long start_vaddr; 1359 unsigned long end_vaddr; 1360 int ret = 0, copied = 0; 1361 1362 if (!mm || !atomic_inc_not_zero(&mm->mm_users)) 1363 goto out; 1364 1365 ret = -EINVAL; 1366 /* file position must be aligned */ 1367 if ((*ppos % PM_ENTRY_BYTES) || (count % PM_ENTRY_BYTES)) 1368 goto out_mm; 1369 1370 ret = 0; 1371 if (!count) 1372 goto out_mm; 1373 1374 /* do not disclose physical addresses: attack vector */ 1375 pm.show_pfn = file_ns_capable(file, &init_user_ns, CAP_SYS_ADMIN); 1376 1377 pm.len = (PAGEMAP_WALK_SIZE >> PAGE_SHIFT); 1378 pm.buffer = kmalloc(pm.len * PM_ENTRY_BYTES, GFP_TEMPORARY); 1379 ret = -ENOMEM; 1380 if (!pm.buffer) 1381 goto out_mm; 1382 1383 pagemap_walk.pmd_entry = pagemap_pmd_range; 1384 pagemap_walk.pte_hole = pagemap_pte_hole; 1385 #ifdef CONFIG_HUGETLB_PAGE 1386 pagemap_walk.hugetlb_entry = pagemap_hugetlb_range; 1387 #endif 1388 pagemap_walk.mm = mm; 1389 pagemap_walk.private = ± 1390 1391 src = *ppos; 1392 svpfn = src / PM_ENTRY_BYTES; 1393 start_vaddr = svpfn << PAGE_SHIFT; 1394 end_vaddr = mm->task_size; 1395 1396 /* watch out for wraparound */ 1397 if (svpfn > mm->task_size >> PAGE_SHIFT) 1398 start_vaddr = end_vaddr; 1399 1400 /* 1401 * The odds are that this will stop walking way 1402 * before end_vaddr, because the length of the 1403 * user buffer is tracked in "pm", and the walk 1404 * will stop when we hit the end of the buffer. 1405 */ 1406 ret = 0; 1407 while (count && (start_vaddr < end_vaddr)) { 1408 int len; 1409 unsigned long end; 1410 1411 pm.pos = 0; 1412 end = (start_vaddr + PAGEMAP_WALK_SIZE) & PAGEMAP_WALK_MASK; 1413 /* overflow ? */ 1414 if (end < start_vaddr || end > end_vaddr) 1415 end = end_vaddr; 1416 down_read(&mm->mmap_sem); 1417 ret = walk_page_range(start_vaddr, end, &pagemap_walk); 1418 up_read(&mm->mmap_sem); 1419 start_vaddr = end; 1420 1421 len = min(count, PM_ENTRY_BYTES * pm.pos); 1422 if (copy_to_user(buf, pm.buffer, len)) { 1423 ret = -EFAULT; 1424 goto out_free; 1425 } 1426 copied += len; 1427 buf += len; 1428 count -= len; 1429 } 1430 *ppos += copied; 1431 if (!ret || ret == PM_END_OF_BUFFER) 1432 ret = copied; 1433 1434 out_free: 1435 kfree(pm.buffer); 1436 out_mm: 1437 mmput(mm); 1438 out: 1439 return ret; 1440 } 1441 1442 static int pagemap_open(struct inode *inode, struct file *file) 1443 { 1444 struct mm_struct *mm; 1445 1446 mm = proc_mem_open(inode, PTRACE_MODE_READ); 1447 if (IS_ERR(mm)) 1448 return PTR_ERR(mm); 1449 file->private_data = mm; 1450 return 0; 1451 } 1452 1453 static int pagemap_release(struct inode *inode, struct file *file) 1454 { 1455 struct mm_struct *mm = file->private_data; 1456 1457 if (mm) 1458 mmdrop(mm); 1459 return 0; 1460 } 1461 1462 const struct file_operations proc_pagemap_operations = { 1463 .llseek = mem_lseek, /* borrow this */ 1464 .read = pagemap_read, 1465 .open = pagemap_open, 1466 .release = pagemap_release, 1467 }; 1468 #endif /* CONFIG_PROC_PAGE_MONITOR */ 1469 1470 #ifdef CONFIG_NUMA 1471 1472 struct numa_maps { 1473 unsigned long pages; 1474 unsigned long anon; 1475 unsigned long active; 1476 unsigned long writeback; 1477 unsigned long mapcount_max; 1478 unsigned long dirty; 1479 unsigned long swapcache; 1480 unsigned long node[MAX_NUMNODES]; 1481 }; 1482 1483 struct numa_maps_private { 1484 struct proc_maps_private proc_maps; 1485 struct numa_maps md; 1486 }; 1487 1488 static void gather_stats(struct page *page, struct numa_maps *md, int pte_dirty, 1489 unsigned long nr_pages) 1490 { 1491 int count = page_mapcount(page); 1492 1493 md->pages += nr_pages; 1494 if (pte_dirty || PageDirty(page)) 1495 md->dirty += nr_pages; 1496 1497 if (PageSwapCache(page)) 1498 md->swapcache += nr_pages; 1499 1500 if (PageActive(page) || PageUnevictable(page)) 1501 md->active += nr_pages; 1502 1503 if (PageWriteback(page)) 1504 md->writeback += nr_pages; 1505 1506 if (PageAnon(page)) 1507 md->anon += nr_pages; 1508 1509 if (count > md->mapcount_max) 1510 md->mapcount_max = count; 1511 1512 md->node[page_to_nid(page)] += nr_pages; 1513 } 1514 1515 static struct page *can_gather_numa_stats(pte_t pte, struct vm_area_struct *vma, 1516 unsigned long addr) 1517 { 1518 struct page *page; 1519 int nid; 1520 1521 if (!pte_present(pte)) 1522 return NULL; 1523 1524 page = vm_normal_page(vma, addr, pte); 1525 if (!page) 1526 return NULL; 1527 1528 if (PageReserved(page)) 1529 return NULL; 1530 1531 nid = page_to_nid(page); 1532 if (!node_isset(nid, node_states[N_MEMORY])) 1533 return NULL; 1534 1535 return page; 1536 } 1537 1538 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1539 static struct page *can_gather_numa_stats_pmd(pmd_t pmd, 1540 struct vm_area_struct *vma, 1541 unsigned long addr) 1542 { 1543 struct page *page; 1544 int nid; 1545 1546 if (!pmd_present(pmd)) 1547 return NULL; 1548 1549 page = vm_normal_page_pmd(vma, addr, pmd); 1550 if (!page) 1551 return NULL; 1552 1553 if (PageReserved(page)) 1554 return NULL; 1555 1556 nid = page_to_nid(page); 1557 if (!node_isset(nid, node_states[N_MEMORY])) 1558 return NULL; 1559 1560 return page; 1561 } 1562 #endif 1563 1564 static int gather_pte_stats(pmd_t *pmd, unsigned long addr, 1565 unsigned long end, struct mm_walk *walk) 1566 { 1567 struct numa_maps *md = walk->private; 1568 struct vm_area_struct *vma = walk->vma; 1569 spinlock_t *ptl; 1570 pte_t *orig_pte; 1571 pte_t *pte; 1572 1573 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1574 ptl = pmd_trans_huge_lock(pmd, vma); 1575 if (ptl) { 1576 struct page *page; 1577 1578 page = can_gather_numa_stats_pmd(*pmd, vma, addr); 1579 if (page) 1580 gather_stats(page, md, pmd_dirty(*pmd), 1581 HPAGE_PMD_SIZE/PAGE_SIZE); 1582 spin_unlock(ptl); 1583 return 0; 1584 } 1585 1586 if (pmd_trans_unstable(pmd)) 1587 return 0; 1588 #endif 1589 orig_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl); 1590 do { 1591 struct page *page = can_gather_numa_stats(*pte, vma, addr); 1592 if (!page) 1593 continue; 1594 gather_stats(page, md, pte_dirty(*pte), 1); 1595 1596 } while (pte++, addr += PAGE_SIZE, addr != end); 1597 pte_unmap_unlock(orig_pte, ptl); 1598 return 0; 1599 } 1600 #ifdef CONFIG_HUGETLB_PAGE 1601 static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask, 1602 unsigned long addr, unsigned long end, struct mm_walk *walk) 1603 { 1604 pte_t huge_pte = huge_ptep_get(pte); 1605 struct numa_maps *md; 1606 struct page *page; 1607 1608 if (!pte_present(huge_pte)) 1609 return 0; 1610 1611 page = pte_page(huge_pte); 1612 if (!page) 1613 return 0; 1614 1615 md = walk->private; 1616 gather_stats(page, md, pte_dirty(huge_pte), 1); 1617 return 0; 1618 } 1619 1620 #else 1621 static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask, 1622 unsigned long addr, unsigned long end, struct mm_walk *walk) 1623 { 1624 return 0; 1625 } 1626 #endif 1627 1628 /* 1629 * Display pages allocated per node and memory policy via /proc. 1630 */ 1631 static int show_numa_map(struct seq_file *m, void *v, int is_pid) 1632 { 1633 struct numa_maps_private *numa_priv = m->private; 1634 struct proc_maps_private *proc_priv = &numa_priv->proc_maps; 1635 struct vm_area_struct *vma = v; 1636 struct numa_maps *md = &numa_priv->md; 1637 struct file *file = vma->vm_file; 1638 struct mm_struct *mm = vma->vm_mm; 1639 struct mm_walk walk = { 1640 .hugetlb_entry = gather_hugetlb_stats, 1641 .pmd_entry = gather_pte_stats, 1642 .private = md, 1643 .mm = mm, 1644 }; 1645 struct mempolicy *pol; 1646 char buffer[64]; 1647 int nid; 1648 1649 if (!mm) 1650 return 0; 1651 1652 /* Ensure we start with an empty set of numa_maps statistics. */ 1653 memset(md, 0, sizeof(*md)); 1654 1655 pol = __get_vma_policy(vma, vma->vm_start); 1656 if (pol) { 1657 mpol_to_str(buffer, sizeof(buffer), pol); 1658 mpol_cond_put(pol); 1659 } else { 1660 mpol_to_str(buffer, sizeof(buffer), proc_priv->task_mempolicy); 1661 } 1662 1663 seq_printf(m, "%08lx %s", vma->vm_start, buffer); 1664 1665 if (file) { 1666 seq_puts(m, " file="); 1667 seq_file_path(m, file, "\n\t= "); 1668 } else if (vma->vm_start <= mm->brk && vma->vm_end >= mm->start_brk) { 1669 seq_puts(m, " heap"); 1670 } else if (is_stack(proc_priv, vma, is_pid)) { 1671 seq_puts(m, " stack"); 1672 } 1673 1674 if (is_vm_hugetlb_page(vma)) 1675 seq_puts(m, " huge"); 1676 1677 /* mmap_sem is held by m_start */ 1678 walk_page_vma(vma, &walk); 1679 1680 if (!md->pages) 1681 goto out; 1682 1683 if (md->anon) 1684 seq_printf(m, " anon=%lu", md->anon); 1685 1686 if (md->dirty) 1687 seq_printf(m, " dirty=%lu", md->dirty); 1688 1689 if (md->pages != md->anon && md->pages != md->dirty) 1690 seq_printf(m, " mapped=%lu", md->pages); 1691 1692 if (md->mapcount_max > 1) 1693 seq_printf(m, " mapmax=%lu", md->mapcount_max); 1694 1695 if (md->swapcache) 1696 seq_printf(m, " swapcache=%lu", md->swapcache); 1697 1698 if (md->active < md->pages && !is_vm_hugetlb_page(vma)) 1699 seq_printf(m, " active=%lu", md->active); 1700 1701 if (md->writeback) 1702 seq_printf(m, " writeback=%lu", md->writeback); 1703 1704 for_each_node_state(nid, N_MEMORY) 1705 if (md->node[nid]) 1706 seq_printf(m, " N%d=%lu", nid, md->node[nid]); 1707 1708 seq_printf(m, " kernelpagesize_kB=%lu", vma_kernel_pagesize(vma) >> 10); 1709 out: 1710 seq_putc(m, '\n'); 1711 m_cache_vma(m, vma); 1712 return 0; 1713 } 1714 1715 static int show_pid_numa_map(struct seq_file *m, void *v) 1716 { 1717 return show_numa_map(m, v, 1); 1718 } 1719 1720 static int show_tid_numa_map(struct seq_file *m, void *v) 1721 { 1722 return show_numa_map(m, v, 0); 1723 } 1724 1725 static const struct seq_operations proc_pid_numa_maps_op = { 1726 .start = m_start, 1727 .next = m_next, 1728 .stop = m_stop, 1729 .show = show_pid_numa_map, 1730 }; 1731 1732 static const struct seq_operations proc_tid_numa_maps_op = { 1733 .start = m_start, 1734 .next = m_next, 1735 .stop = m_stop, 1736 .show = show_tid_numa_map, 1737 }; 1738 1739 static int numa_maps_open(struct inode *inode, struct file *file, 1740 const struct seq_operations *ops) 1741 { 1742 return proc_maps_open(inode, file, ops, 1743 sizeof(struct numa_maps_private)); 1744 } 1745 1746 static int pid_numa_maps_open(struct inode *inode, struct file *file) 1747 { 1748 return numa_maps_open(inode, file, &proc_pid_numa_maps_op); 1749 } 1750 1751 static int tid_numa_maps_open(struct inode *inode, struct file *file) 1752 { 1753 return numa_maps_open(inode, file, &proc_tid_numa_maps_op); 1754 } 1755 1756 const struct file_operations proc_pid_numa_maps_operations = { 1757 .open = pid_numa_maps_open, 1758 .read = seq_read, 1759 .llseek = seq_lseek, 1760 .release = proc_map_release, 1761 }; 1762 1763 const struct file_operations proc_tid_numa_maps_operations = { 1764 .open = tid_numa_maps_open, 1765 .read = seq_read, 1766 .llseek = seq_lseek, 1767 .release = proc_map_release, 1768 }; 1769 #endif /* CONFIG_NUMA */ 1770